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Abstract: In this paper a Ground Speed Measuring System which can measure the ground speed over the ground in 
three dimensions is proposed. The system uses two Kalman filters to compute the final ground speed based 
on the readings from its various sensors. The proposed solution combines state of the art techniques from 
different fields of sensor technology and will be incorporated into the high-performance driverless vehicle 
after completion of this project. The findings and learnings of developing this system are discussed and an 
evaluation of the module is presented. In the end, the system can accurately estimate a test vehicle’s ground 
speed during system field tests. 

1 INTRODUCTION 

To be able to drive autonomously, a car depends on 
precise sensor data and accurate algorithmic 
calculations. Lots of various kinds of information is 
required for autonomous driving. One of them is the 
speed of movement of the vehicle over the ground. 
To determine the ground speed of an autonomously 
driving vehicle, multiple sensors can be fused 
together to form a fail-safe system.  

In this body of work we evaluate some of the 
different possible approaches and then propose the 
design and construction of a ground speed sensor 
that measures the speed over the ground in 3 
dimensions, and which can pass the data on to the 
control unit of the vehicle. A prototype, focused on 
economic efficiency, is developed and introduced 
and the implementation is discussed. The algorithms 
and system architecture are presented, which are 
designed for robustness, reliability, and extensibility. 
The ground speed measuring system is designed to 
accurately measure and uses a set of measurements 
generated by different sensors. The readings from 
these sensors must be combined to determine an 
estimate of the ground speed that is as accurate as 
possible. 

This work is carried out in cooperation with the 
Formula Student ZHAW team and in close contact 
with the driverless and electrical engineering teams.  

2 GROUND SPEED SENSOR FOR 
AUTONOMOUS VEHICLES 

Driverless vehicles are autonomous cars in which 
human drivers are never required to take control to 
safely operate the vehicles. They combine sensors 
and software to control, navigate, and drive the ve-
hicle without any human influence. 

With a ground speed sensor and a suitable sensor 
fusion algorithm, the vehicle’s odometry data will be 
much more accurate than without such a system. 
Having an accurate ground speed measurement can 
therefore help refine the vehicle’s position while 
mapping an environment. In addition, this will allow 
for longer periods between the corrections the map-
ping algorithm has to undertake. With a Ground 
Speed Measuring System (GSMS), it will also be 
possible to recognize if one or more wheels lose 
traction on the ground which could lead to an unfor-
tunate situation known as understeering. Like hu-
mans, autonomous vehicles could have difficulties 
adapting quickly to loss of traction, therefore recog-
nizing such a situation as soon as possible can make 
a huge difference in reaction time. 

2.1 Formula Student 

Formula Student is a worldwide competitive design 
competition for student teams with the aim of build-
ing a race car. It provides a platform to student 
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engineering teams for developing and enhancing 
vehicle technologies in multiple domains. There are 
three different competition categories: combustion 
engine vehicles, electric vehicles and driverless 
vehicles. The driverless category is the most recently 
added one, having started in 2017. In the Formula 
Student Driverless competition, a team is tasked to 
build an autonomous race car that can complete the 
racetracks without a driver’s influence by only using 
onboard sensors and computers. The Formula Stu-
dent ZHAW team was formed by students from 
different engineering backgrounds at the Zurich 
University of Applied Sciences with the intention of 
competing in the electric and driverless categories. 

2.2 Related Work 

Since 2017, hundreds of Formula Student teams 
have been working on driverless vehicles. Outstand-
ing results and various publications have been deliv-
ered by the Academic Motorsports Club Zurich 
(AMZ) from ETH Zurich.  

In 2019, the AMZ-Racing driverless team pub-
lished a comprehensive report on the concept of 
their first driverless racing car for the 2017/2018 
racing season (Kabzan et al., 2017). The software-
hardware architecture of the developed “gotthard” 
system is designed as follows. The software stack is 
divided in three main modules: Perception, Motion 
Estimation and Mapping and Control. Following the 
architecture design, the velocity estimation is used to 
compensate the motion distortion in the Lidar pipe-
line, propagate the state in the SLAM (Simultaneous 
Localization and Mapping) algorithm, as well as 
input for the control module. AMZ states in the 
report that the velocity estimation needs to combine 
data from various sensors with a vehicle model in 
order for it to be robust against sensor failure and to 
compensate for model mismatch and sensor inaccu-
racies. AMZ proposes to use a nine state Extended 
Kalman Filter (EKF), which fuses data from six 
different sensors.  

AMZ also present the state estimation and sys-
tem integration for an autonomous race car in and 
testify that sensor faults are a major factor under-
mining the robustness of state estimation systems 
and, therefore, a probabilistic outlier detection 
method should be used that works with any sensor. 
Their approach makes use of the innovation covari-
ance calculated in the EKF which intrinsically ac-
counts for the uncertainty of the state and the sensor 
noise model. Furthermore, they determine that if 
wheel odometry is the only velocity source, and if 
the wheels are constantly blocked due to high accel-

erations, the velocity estimate deteriorates (Valls et 
al., 2018). 

Of course, AMZ is not the only Formula Student 
team that has achieved great results with a self-
developed measuring system that subsequently re-
sults in a ground speed estimation. To name a couple 
of other remarkable approaches, two teams solved 
this problem in the following ways:  

The Viennese TUW Racing team uses a differen-
tial Global Positioning System (GPS), provided by a 
Piksi Multi GNSS module along with two beacons 
placed outside the racetrack. The beacons allow for 
more precise positioning than a generic GPS system 
does. To measure the relative movement of the vehi-
cle they included a motorsport-grade Inertial Meas-
urement Unit (IMU) (Zeilinger et al., 2017).  

The Chinese BIT-FSD team relied mainly on 
wheel speed sensors to calculate their first driverless 
vehicle’s velocity in 2017. Even though their sensor 
setup also includes GPS, INS, Lidar and camera 
sensors, those are separately used to determine the 
vehicle’s position and surroundings. Wheel speed 
sensors are widely used for odometry calculations in 
wheeled robots, where the team got this idea from 
(Tian et al., 2018). 

Generally, Bayesian filters provide a statistical 
tool for dealing with measurement uncertainty, 
which are described in an easy-to-follow way in 
(Mochnac et al., 2009). This paper also explains that 
the probability density function includes all infor-
mation needed to optimally solve estimation prob-
lems in a recursive way, which is why such filter 
approaches are well suited for velocity estimation. 
The Extended Kalman Filter is the state-of-the-art 
estimator for fast, mildly non-linear systems and 
provides a solution to this problem. The EKF works 
by linearizing the involved models for every itera-
tion. The GSMS requires the use of an EKF for the 
attitude estimation.  

Noteworthy is also the Doppler-based approach 
which a French research group from the Sorbonne 
University Pierre and Marie Curie in Paris elaborate-
ly discuss in their paper (Lhomme-Desages et al., 
2009). With a low-cost Doppler radar and an accel-
erometer, the ground speed of a vehicle can also be 
obtained. The focus of the paper lies on measuring 
the slip rate, for which an estimation of the true 
velocity of the vehicle with respect to the ground is 
necessary. In this paper the authors do not resort to 
wheel-based methods like optical encoders or re-
solvers. The Doppler effect principle is as follows: a 
received electromagnetic wave’s frequency is com-
pared to a defined frequency, which changes as the 
receiver moves with respect to the transmitter. For 

ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics

662



their sensor fusion, a simple Kalman filter suffices to 
fuse the Doppler data and the accelerometer data 
which outputs an estimate of the longitudinal veloci-
ty. With these calculations it is possible to measure 
the slip rate for each wheel. 

2.3 System Requirements 

The general system requirement regarding a driver-
less race car is measurement certainty especially 
while cornering and on wet subsoil. We posed the 
following additional requirements for the developed 
system regarding its expandability: The system can 
be extended to allow further sensors to be added to 
the sensor fusion without having to reorganise the 
software structure. The system allows for a simula-
tion of recorded sensor data using tools such as 
MATLAB. Additional redundancy checks can be 
programmed to allow for even more precise system 
outputs. The system can be fully integrated into the 
future autonomous system of the Formula Student 
ZHAW driverless car. 

2.4 Sensor Placement 

The sensors may be mounted to the vehicle with a 
maximum distance of 500 mm above the ground and 
less than 700 mm forward of the front tires as is 
depicted in  
Figure 1. Furthermore, the vehicle is subjected to a 
rain test at the races. Therefore, all sensors must be 
adequately sealed and waterproof. 

 
Figure 1: Envelope to mount sensor systems on a formula 
student race car (FSG 2019). 

3 SYSTEM CONCEPT AND  
DESIGN 

3.1 Overall Concept 

The ground speed measuring system is designed to 
accurately and reliably measure the ground speed of 
an autonomous vehicle. The system features an 
Inertial Measurement Unit (IMU) and Global Posi-
tioning Sensor (GPS) to measure the ground speed 
as well as a microcontroller to process the raw sen-
sor readings. 

3.2 Microcontroller and Sensors 

With the sensor fusion of a GPS and an IMU the 
GSMS can provide an accurate measurement output 
which is based solely on the two sensors. The IMU 
measures the following quantities:  

• Acceleration (3D): X, Y and Z axes 
• Angular velocity (3D): X, Y and Z axes 
• Magnetic field strength (3D): X, Y and Z axes 

The GPS measures the following quantities:  

• Absolute position (3D): Latitude, Longitude, 
Altitude 

• Velocity (3D): Magnitude and angle relative to 
(true) north, vertical velocity 

3.3 Sensor Fusion and Data Processing 

The measurements from the sensors are processed 
and combined in a custom sensor fusion algorithm. 
The custom sensor fusion algorithm consists of 
multiple stages which perform different filtering and 
fusion tasks. An overview of the different stages is 
given in Figure 2. Readings from the implemented 
sensors must be combined to determine an estimate 
of the ground speed that is as accurate as possible, 
for which the GSMS uses two Kalman filters as can 
be seen in Figure 2. The first Kalman filter is only 
used to determine the system attitude while the sec-
ond Kalman filter estimates the final system veloci-
ty. 

 Attitude Kalman Filter 

The attitude Kalman filter is an EKF as the equa-
tions required to describe the physical properties of 
the system attitude are non-linear. The attitude Kal-
man filter is used to track the system attitude, which 
is represented using a quaternion (the first compo-
nent of the rotation quaternion describes the angle of 
rotation and the remaining three components de-
scribe the axis of rotation). The attitude of the race 
car is always described relative to the earth fixed 
inertial reference frame.  

The attitude Kalman filter has a state vector 𝑥 
that tracks the x, y and z components of the attitude 
error 𝑎 and the x, y and z components of the gyro-
scope bias. Therefore, the state vector is a column 
vector with 6 elements. It is important to note that 
the attitude Kalman filter does not directly track the 
quaternion 𝑞௥௘௙ as part of its state vector. Instead, it 
tracks an attitude error. At the beginning of each 
iteration, this error is assumed to be zero. 
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Figure 2: Sensor Fusion Concept. 

And at the end of each iteration, the attitude er-
ror is added to the reference attitude quaternion 𝑞௥௘௙ and then reset to zero. The system attitude is 
therefore expressed using two parts as described in 
the following equation: 

 qሺtሻ  ൌ  δqሺaሺtሻሻ  ⊕ 𝑞௥௘௙ ሺtሻ (1)

The above approach of tracking an attitude error 
instead of directly tracking the attitude is unique to 
the attitude Kalman filter. The EKF used to track the 
attitude in the GSMS therefore is a Multiplicative 
Extended Kalman Filter (MEKF). The term "multi-
plicative" refers to the fact that the attitude error 𝑎ሺ𝑡ሻ tracked by the attitude Kalman filter is propa-
gated to the reference attitude quaternion 𝑞௥௘௙ using 
a quaternion multiplication operation. To perform 
this quaternion multiplication at the end of each 
iteration, 𝑎ሺ𝑡ሻ is first converted into its quaternion 
representation and then multiplied with 𝑞௥௘௙. 

Instead of changing the attitude error 𝑎ሺ𝑡ሻ, the 
prediction step directly adjusts the reference quater-
nion 𝑞௥௘௙ . After 𝑞௥௘௙  has been updated, the error 
covariance matrix 𝑃 must be updated as well. This is 
required as the process model introduces new errors. 
These errors are represented by the process noise 
covariance matrix 𝑄. The steps to update 𝑃 therefore 
involve the matrix 𝑄. The measurement step of the 
attitude Kalman filter corrects the previously calcu-
lated estimate using absolute measurements of the 

system attitude. The measurement step is executed 
twice, as the GSMS uses the gravity vector given by 
the accelerometer and the North vector given by the 
magnetometer as two absolute measurements for the 
system attitude. Finally, the error propagation step 
must always be called before a new iteration of the 
attitude Kalman filter algorithm is started. 

 Velocity Kalman Filter  

The velocity Kalman filter is a regular Kalman filter 
as the equations required to describe the system 
velocity are all linear. This makes the velocity Kal-
man filter significantly simpler than the attitude 
Kalman filter. The velocity Kalman filter can also 
directly track the velocity of the system in its state 
vector 𝑥. The state vector 𝑥 for the velocity Kalman 
filter contains the x, y and z components of the sys-
tem velocity. 

The initial value for the state vector 𝑥 is set to 
the zero vector. The state vector directly tracks the 
system velocity. Setting the state vector 𝑥 to the zero 
vector therefore results in the following initial condi-
tion: The system velocity 𝑣𝑒𝑙 is set to the zero vec-
tor. The system is usually initialized while the race 
car is not moving, therefore the above initial value 
for the system velocity 𝑣𝑒𝑙 is a reasonable choice.  

The velocity Kalman filter predicts the system 
velocity by integrating the linear acceleration meas-
ured using the accelerometer. The integral over the 
linear acceleration 𝑙𝑖𝑛_𝑎𝑐𝑐𝑒𝑙 is computed using the 
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time 𝑑𝑡 that has passed since the last iteration of the 
algorithm. The GSMS is designed such that 𝑑𝑡  is 
always 10ms. After the state vector 𝑥 has been up-
dated, as for the MEKF, the error covariance matrix 𝑃 must be updated as well. These errors are repre-
sented by the process noise covariance matrix 𝑄.  

The measurement step of the velocity Kalman 
filter will correct the previously calculated estimate 
using an absolute measurement of the system veloci-
ty. The GSMS uses the velocity measured in 3 di-
mensions by the GPS as absolute measurements for 
the system velocity. 

4 RESULTS 

To test the developed system, we made the follow-
ing comparisons:  
• The output of the custom attitude Kalman filter 

algorithm was compared to the output of the 
sensor fusion firmware, which runs on the 
IMU.  

• The output of the custom velocity Kalman fil-
ter algorithm was compared to the GPS veloci-
ty measurement (which is only available at a 
lower frequency than the output of the velocity 
Kalman filter).  

4.1 Attitude Kalman Filter 

The first test was carried out in a residential area by 
driving around two blocks in a figure of 8. This test 
was performed at low speeds of around 30 km/h. The 
goal of this test was to demonstrate that the algo-
rithms of the GSMS are processing the sensor data 
correctly. The accuracy is only evaluated in a qualita-
tive manner. The performance of the attitude Kalman 
filter is demonstrated very well using this test. Driv-
ing a figure of 8 involved turns in both directions and 
it ensured that the vehicle was oriented in a variety of 
different directions throughout the test. 

The attitude is represented as a rotation consist-
ing of four components. All attitude plots display the 
w, x, y and z components of the quaternion separate-
ly. Due to the trigonometric functions involved in 
the quaternion representation of a rotation, the 
meaning of individual components of a quaternion is 
often difficult to interpret. Certain individual com-
ponents displayed in the attitude plots manage to 
show specific properties of the tests, which will be 
explained for each plot. 

Figure 3 clearly demonstrates that our custom at-
titude Kalman filter calculates a meaningful system 

attitude. This claim is supported by the following 
observations: The graph shows that the x and y 
components of the plot remain roughly constant 
around zero. This is the expected behaviour if the 
vehicle is only rotated around its z axis. The graph 
also shows that the z component of the quaternion 
continuously changes its value throughout the test. 
This is the expected behaviour if the vehicle is driv-
ing a figure of 8 on a horizontal plane. 

The attitude computed by the custom sensor fu-
sion algorithm can now be compared to the attitude, 
that is computed by the bno055 sensor fusion firm-
ware. The output of the sensor fusion firmware is 
displayed in Figure 4. 

 
Figure 3: System Attitude (as computed by the custom 
attitude Kalman filter). 

 
Figure 4: Actual system attitude (as computed by the 
bno055 firmware). 

This graph allows us to prove that the GSMS 
does not only calculate a meaningful system attitude, 
but that it is also in line with the output of an inde-
pendent algorithm. When comparing the two graphs 
the following can be observed: The custom sensor 
fusion algorithm implemented in the GSMS com-

Ground Speed Measuring System for Autonomous Vehicles

665



putes (qualitatively) the same attitude as the bno055 
sensor fusion firmware. The custom sensor fusion 
algorithm correctly processes the input of all three 
sensors (accelerometer, gyroscope and magnetome-
ter). The x and y axis of the attitude quaternion 
measured by our custom sensor fusion algorithm 
shows higher fluctuation than the output computed 
by the bno055 sensor fusion firmware. The reason 
for this is unknown.  

Figure 5 shows the angle of the difference in ro-
tation between the attitude computed by the GSMS 
and by the bno055 sensor fusion firmware. This plot 
effectively visualizes the difference between the two 
plots shown before. The plot shows that the differ-
ence between the two attitude measurements is usu-
ally between 5 and 25 degrees. Our experiments 
showed that this is mostly caused by magnetic dis-
turbances which influence the measurement made by 
the magnetometer inside the IMU. The custom sen-
sor fusion firmware starts to output inaccurate atti-
tude values if the magnetometer is not in an ideal 
environment.  

The bno055 sensor fusion firmware on the other 
hand seems to have a mechanism that detects situa-
tions where magnetometer measurements are unreli-
able. It then most likely stops relying on the magne-
tometer input until it is able to re-calibrate the mag-
netometer. The strong magnetic disturbances were 
mostly caused by the residential area in which this 
test was performed. The second test was performed 
in an area with less buildings which lead to an im-
proved performance of the custom attitude Kalman 
filter. 

 
Figure 5: Attitude error. 

4.2 Velocity Kalman Filter 

The test described above is also well suited to 
demonstrate the performance of the velocity Kalman 

filter. Figure 6 shows the velocity as it was recorded 
by the GPS. The plot visualizes all three axes which 
correspond to the 𝑁𝑜𝑟𝑡ℎሺ𝑥ሻ, 𝐸𝑎𝑠𝑡ሺ𝑦ሻ  and 𝑈𝑝ሺ𝑧ሻ 
axes of the inertial frame. It is important to note that 
the following plot shows the GPS measurement, 
which is always made in the inertial frame. The plot 
shows that the car was moving in different directions 
on a horizontal plane. Therefore, the GPS measured 
non-zero values on the x and y axis while the z axis 
remained constant at zero velocity. This is the ex-
pected behaviour. 

The plot in Figure 7 shows how the previously 
calculated system attitude is used to transform the 
GPS velocity from the inertial frame into the body 
frame. This plot displays the same velocity as Figure 
6 but after it was rotated into the body frame using 
the system attitude computed by the GSMS. Thus, 
the plot now shows the three axes x, y and z corre-
sponding to the body frame. We can clearly see that 
the plot only shows a significant velocity for the y 
axis. This is the expected behaviour because the y 
axis is facing in the direction of travel. This is fur  
 

 
Figure 6: GPS velocity. 

 
Figure 7: Rotated GPS velocity. 
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ther proof that the attitude Kalman filter is in fact 
computing the correct attitude. Because the trans-
formation from Figure 6 to Figure 7 is solely based 
on this attitude. An incorrect attitude would have 
caused high non-zero values on the x and z compo-
nents in Figure 7. 

4.3 Linear Acceleration 

Figure 8 displays the linear acceleration calculated 
by the GSMS after the gravity vector has been sub-
tracted. Subtracting the gravity vector again involves 
the previously calculated system attitude. 

Figure 9 displays the linear acceleration as it was 
calculated by the bno055 sensor fusion firmware. 
These two plots show a similar linear acceleration. 
Especially high peaks of acceleration are found in 
both plots. The plots do however not meet the ex-
pected behaviour. The expected behaviour would be 
that both plots continuously show the same values 
on all three axes. We expect some interference to 
cause this unexpected behaviour. 

 
Figure 8: Kalman filter linear acceleration. 

 
Figure 9: Actual linear acceleration. 

4.4 Final System Output 

This part of the test compares the final output of the 
custom velocity Kalman filter implemented in the 
GSMS with the rotated velocity measurement that 
was recorded by the GPS. Figure 10 visualizes the 
error between the velocity Kalman filter output and 
the rotated GPS velocity. 

The plot shows two different properties: The an-
gle between the two velocity vectors in degrees 
(velocity angle error) and the difference in length 
between the two velocity vectors in m/s (velocity 
norm error).  

The graph can be interpreted as follows: The ve-
locity angle error is usually below 20 degrees and 
often below 10 degrees. This is the expected behav-
iour. It proves that the direction of the velocity 
measured by the GSMS is correct. The velocity 
norm error is usually below 1 m/s. This is the ex-
pected behaviour. It proves that the absolute value of 
the velocity measured by the GSMS is correct. The 
velocity angle error increases to values of up to 180 
degrees at the very end of the test. This is the ex-
pected behaviour for situations where the actual 
velocity is zero. At the very end of the test, the vehi-
cle was stationary after coming to a halt, and there-
fore the GSMS as well as the GPS are measuring 
velocity vectors which are very close to the zero 
vector. It is expected that the angle between those 
two vectors can assume any angle in the range of 0 
to 180 degrees, as seen in the graph.  

Figure 13 shows the final output of the GSMS. 
This is the signal which will be transmitted to the 
control unit of the self-driving car. It shows the three 
components of the vehicle ground speed in the body 
frame. It clearly shows that the main part of the 
velocity is measured on the y axis which is facing in 
the direction of travel. This is the expected behav-
iour.  

 
Figure 10: Velocity error. 
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Figure 11: Kalman filter velocity output. 

5 CONCLUSIONS 

One of the main motivations for developing a 
ground speed measuring system was to take part in 
the development of an autonomous race car. The 
idea was to have a reliable and redundant measuring 
system support the driverless vehicle in various 
aspects with this sensor fusion output, in order to be 
eligible to compete with top teams around the world.  

In this paper, an approach to a ground speed 
measuring system using two sensors providing data 
for sensor fusion was presented. Details were pro-
vided on the hardware and software architecture.  

The presented ground speed measuring system 
proved its functionality during testing. The tests 
performed on the GSMS showed that the custom 
sensor fusion algorithms are mathematically correct. 
They produced a qualitatively acceptable and usable 
output in all tests.  

However, the sensor fusion algorithms start to 
produce inaccurate outputs if the environment does 
not provide ideal conditions. This could be improved 
by adding more features to the currently implement-
ed algorithms of the GSMS, such as detection of 
incorrect sensor measurements (especially for the 
magnetometer) and/or additional filtering of sensor 
measurements prior to executing the Kalman filters 
(specifically a high pass filter for the gyroscope and 
a low pass filter for the accelerometer when deter-
mining the gravity vector). 
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