
Improving a Semantic Parser through User Interaction

Pius von Däniken

January 2021

Contents

1 Introduction 1

2 Background 2

3 Operation Trees 5

3.1 The OTTA Corpus . 7

4 Operation Trees to Text (OT3) 8

4.1 Domain-agnostic productions . 9

4.2 Filter Operations . 10

4.3 Join Operations . 11

4.3.1 Relaxing the distinction between Entities and Relations 13

4.4 Declaration of Domain-specific metadata 13

4.5 Extension of OT3 . 15

5 Operation Tree Correction Framework 15

5.1 How to modify OT . 17

5.2 Evaluating the OT Correction Framework 22

6 Discussion 26

7 Conclusion 27

i

1 Introduction

The dawn of the information age in the latter half of the past century and the advent

of the internet have thoroughly revolutionized the way humanity stores, retrieves, and

interacts with knowledge and information. The written word, which had superseded oral

traditions, has been the dominant store of knowledge for centuries. This legacy persists

to this day, with the internet still largely consisting of so-called unstructured text. Of

course language and, as a result, texts are anything but unstructured, with linguists

dedicating their lives to prying open that underlying structure. The problem of querying

and extracting knowledge from such texts with the help of computers is studied by the

field of Information Retrieval (Mitra and Chaudhuri, 2000). The last twenty years have

shown staggering progress in that field, propelling the likes of Google to their current

behemoth status.

At the same time, new and so called structured ways of representing knowledge have

been introduced to facilitate processing by computer systems. The most prominent are

Relational Database Management Systems (RDBMS), which are based on the mathe-

matical formalism of relational algebra introduced by Codd (1970, 1989). They organize

knowledge as a collection of tables that can refer to each other. An alternate representa-

tion is the Resource Description Framework (RDF1), which represents knowledge in the

form of triples of the form subject - predicate - object. In either case, interaction with

stored knowledge is mediated by a query language, such as SQL in the case of RDBMS or

SPARQL for RDF. To successfully retrieve an answer, a user not only needs to be able

to wield those programming languages, but also needs to know exactly how the world, or

domain, is modelled in the specific instance. This is usually referred to as the schema of

the database.

While these technologies are part of any undergraduate computer science curriculum,

very few people outside the field know how to use them, making the knowledge stored in

such databases inaccessible to most. One way to close this accessibility gap is to provide a

way to query such systems using natural language. Such Natural Language Interfaces for

Databases (NLIDB) are an active area of research. The core task of an NLIDB system is

to provide an answer to a question posed in natural language by querying the underlying

database. For example, given access to the IMDb2 database, the NLIDB system should be

able to answer questions about movies, such as “What are the most popular movies?” We

will give a brief glimpse of some of these systems in Section 2 and refer readers interested

in a thorough overview to a recent survey by Affolter et al. (2019).

Unfortunately, current NLIDB systems are still far from perfect and there are many

sources of errors. One of the most challenging problems is the inherent ambiguity of

1https://www.w3.org/TR/rdf-mt/
2https://www.imdb.com/

1

natural language. Therefore, it is often not enough to present the user with just the raw

answer of the system, since the correctness of the answer by itself can be hard to judge

without context. If our system produces “Battlefield Earth” as the answer to the question

about popular movies, a user might not know that the answer is wrong. Even if the system

gives an obviously wrong answer, like “John Travolta”, the user has no guidance on how

to rephrase the question to get the right answer. To remedy this, a NLIDB system can

produce an explanation alongside its answer that gives insight into what might have gone

wrong. At the most basic level, one could present the user with an SQL statement that

was produced by the system, but this assumes that the user can understand SQL.

We previously developed an approach that produces a synthetic natural language

question from the query produced by an NLIDB system (von Däniken et al., 2021). For

our example question it would produce: “What are the names of movies with maximum

popularity?”, which is effectively a paraphrase of the original question. We showed that

asking users whether the generated question is equivalent to their original question is a

good proxy for the correctness of NLDIB output. In the present work, we take this one

step further and let the user manipulate the generated natural language representation

to, hopefully, correct the NLIDB output. We show that by adding this simple element of

user interaction, we can increase the accuracy of the system from 56.1% to 83.2%.

2 Background

NLIDB. Research into NLIDB goes back to at least the 1960s with systems such as

Baseball (Green Jr et al., 1961), which was used to answer simple questions about base-

ball games. Since then, various fields of computer science and artificial intelligence have

contributed ideas and approaches.

Systems like SODA (Blunschi et al., 2012) are based on ideas from information re-

trieval. SODA extracts keywords from the user’s question, such as table names and

literals. It then matches these to entries in the database or the associated metadata.

During this process, a keyword could match multiple concepts in the database or meta-

data. Therefore, all candidate sets of matches are ranked according to a heuristic, before

being translated into SQL.

Athena (Saha et al., 2016) and its successor Athena++ (Sen et al., 2020) use extensive

linguistic analysis, such as dependency parsing and symbolic reasoning over a domain on-

tology to translate a human question to an intermediate representation they call ontology

query language. The rule set is quite elaborate and extensive and Athena++ is powerful

enough to handle complex nested queries.

Finally, we point out one system in particular that is very similar to what we are

proposing in this work, namely TR Discover (Song et al., 2015). It uses first order

logic as the intermediate representation of a query and uses a feature-based context free

2

grammar to continuously parse an input question. To encourage the input strings to

conform to its grammar, it provides suggestions while the user is typing their question.

Affolter et al. (2019) refer to such systems as grammar based. While the framework

we lay out in Sections 4 and 5 would conceptually allow for a very similar workflow ,

we instead investigate how this approach can be used as a post-processing step. We will

allow the user to provide an arbitrary natural language utterance, retrieve the intermediate

representation from a semantic parser, apply our grammar to produce a natural language

representation of the query, and let the user manipulate that representation in a way that

conforms to the grammar.

Semantic Parsing. In the natural language processing and computational linguistics

communities the NLIDB problem is known as part of Semantic Parsing. In general,

semantic parsing is the problem of mapping a natural language utterance to a formal

semantic representation. For NLIDB, this corresponds to mapping a question to a query

that can be executed on the database. More generally, this could also apply to translating

natural language to any kind of programming language. The recent boom of neural

network based machine learning models has led to variety of models for the task.

A seminal model for a majority of recent advances was GrammarNet (Yin and Neu-

big, 2017). The model was originally built to translate natural language descriptions to

programs. Similar to models popular in machine translation, it uses an encoder-decoder

architecture. The encoder is a recurrent neural network (RNN), such as LSTM (Hochre-

iter and Schmidhuber, 1997) or GRU (Cho et al., 2014), that will map the sequence of

words in the input question to a high dimensional vector representation. The decoder

network is another RNN that, starting from the encoder representation, will generate a

sequence of production rules. These production rules correspond to a context free gram-

mar and applying them, in order, will result in a parse tree for that grammar, such as an

abstract syntax tree of some program or, in our case, a query. The model can be extended

with a pre-training step inspired by auto-encoders. During pre-training, the text encoder

is substituted by another encoder that is given the task of mapping a tree conforming to

the grammar to a high dimensional vector. This makes it easier for the overall system to

learn the structure of the grammar.

In the meantime, various extensions of this framework have been considered. A recent

culmination of this refinement is RAT-SQL (Wang et al., 2020). One issue when us-

ing GrammarNet for text-to-SQL parsing is that it is unaware of the underlying database

schema. Bogin et al. (2019) address this issue by providing a learned representation of the

schema as an additional input. That representation is based on a graph neural network.

The acronym rat in RAT-SQL stands for relation aware attention. Its encoder consists of

several self attention layers (Vaswani et al., 2017) that have been augmented with informa-

tion about the schema. Another common extension, which is also employed by RAT-SQL,

3

is to use word representations from large language models, such as BERT (Devlin et al.,

2019).

Datasets. Over the years, various benchmark datasets for text-to-SQL semantic pars-

ing have been created. Such datasets provide a collection of natural language questions

and their associated SQL queries. Depending on the dataset, the number of unique SQL

queries can be smaller than the number of natural language utterances if paraphrases

are included. An early dataset is the ATIS corpus (Dahl et al., 1994), which contains a

database and questions about flights between cities in North America. The most promi-

nent dataset today is Spider (Yu et al., 2018). It contains 10181 natural language ques-

tions corresponding to 5693 SQL queries, spanning 200 databases. Notably, it features an

online leaderboard3 and is currently the de-facto standard for assessing the performance

of a semantic parser. Another SQL dataset is WikiSQL (Zhong et al., 2017). It is based

on data from Wikipedia4. Despite its size of over 80000 utterances, it is less popular

due to the queries being simple and not containing complex join operations. LC-QuAD

2.0 (Dubey et al., 2019) is an example of a dataset containing SPARQL queries. It is

based on Wikidata and DBpedia, two large online knowledge graphs. In this work, we

will use the OTTA corpus by Deriu et al. (2020). They propose an intermediate query

representation named Operation Trees that represent a simplified SQL syntax. We will

give more details on this formalism in Section 3.

Back-translation. The goal of translating a structured query back into natural lan-

guage is to provide non-technical users with an explanation of the query. The main

approach, so far, has been to define template phrases that are combined when traversing

the AST of the query. Systems based on this idea have been developed for SQL (Koutrika

et al., 2010), SPARQL (Ngonga Ngomo et al., 2013), and Operation Trees (von Däniken

et al., 2021). This work is largely based on Operation Trees and we will give a detailed

overview in Section 4. Wang et al. (2015) show that such systems can also be leveraged to

build a semantic parser. They generate natural language utterances for queries expressed

in lambda calculus. They then let humans paraphrase the generated utterances and train

a model to tell whether a given paraphrase and generated utterance match. They can

then use that model to search high scoring queries for a given human question, resulting

in a semantic parser.

This task can also be tackled by applying deep learning methods. One approach is

illustrated by Xu et al. (2018). They use a graph neural network to encode the AST of

a SQL query and a text decoder to generate the corresponding text. They show that

this outperforms more naive approaches that encode the query sequentially. The main

3https://yale-lily.github.io/spider
4https://en.wikipedia.org/wiki/Wikipedia

4

promise of neural approaches is that they can produce more fluent utterances, especially

for complex queries where the template based approaches often generate unwieldy and

unnatural utterances. On the other hand, neural methods cannot yet guarantee that the

generated utterance is complete in respect to the query. There is nothing preventing them

from, for example, forgetting to generate text to express certain nodes.

User Interaction. Recently, interest has grown in incorporating user interaction to

improve semantic parsers. Labutov et al. (2018) and Elgohary et al. (2020) consider a

setting where the user poses their question, the system then provides an explanation of

its parse, and the user can ultimately provide corrective feedback in natural language. As

an example, lets assume the user asked: ”What are Brad Pitt’s most popular movies?”

and the parser misunderstood it as: ”What are the names of movies starring Brad Pitt?”.

The user will then be able to provide feedback similar to: ”Yes, but I meant those with

maximum popularity.” The authors investigate various ways to incorporate this feedback

in the training process to improve the underlying parser. Yao et al. (2019) extend this by

explicitly modelling the interaction between the user and the system. They incorporate

a model that tries to predict errors in the parse and proactively prompts the user for

feedback. Their approach allows for several rounds before the final answer is returned.

They further (Yao et al., 2020) refined the approach by embedding it in an imitation

learning framework. The idea of prompting the user for specific feedback is also present

in Photon (Zeng et al., 2020). It will detect confusing spans in the input question and

prompt the user to rephrase them.

In contrast, our system will only allow the user to manipulate the query representation

in a limited way. The parsed query will be translated into natural language and the user

will be presented with a user interface that allows them to manipulate the synthetic

question in a manner that respects the underlying grammar.

3 Operation Trees

The Operation Tree (OT) representation for structured queries was introduced by Deriu

et al. (2020), as way to collect pairs of natural language questions and corresponding

queries in a more efficient manner. An OT is a binary tree where each node represents an

operation to be executed on the result sets of its children, with leaf nodes reading data

from the underlying database. Figure 1 shows an example OT based off of a database

related to movies and represents the question:“What is the average revenue of movies

produced in Japan?”

Formally, OT follow the context free grammar shown in Table 1. The nodes correspond

to operations known from relational algebra with some extensions. Therefore, there is a

close correspondence to other query representations, such as SQL.

5

Average(movie.revenue)

Merge(movie.id, production_country.movie_id)

GetData(movie) Merge(country.id, production_country.country_id)

GetData(production_country) Filter(country.name, =, Japan)

GetData(country)

Figure 1: Operation Tree for the question: “What is the average revenue of movies pro-
duced in Japan?” The root node is the final operation, which averages the movie revenue
column. There are two merge (join) operations involved that combine the countries and
movies via the production-country relation table. The filter selects all countries with the
name “Japan.” (Figure taken from von Däniken et al. (2021))

S ::= Done(R) | IsEmpty(R) | Count(R) | Sum(T,A) | Average(T,A)
R ::= ExtractV alues(T,A)
T ::= Min(T,A) | Max(T,A) | Distinct(T) | Filter(T,A,OP, LIT) |

Merge(T, T,A,A) | GetData(TN) | Union(T, T,A,A) |
Intersection(T, T,A,A) | Difference(T, T,A,A) | AverageBy(T,A) |
SumBy(T,A) | CountBy(T,A)

TN ::= table name
A ::= attribute
OP ::= <|>|≤|≥|=|6=
LIT ::= literal

Table 1: Full OT grammar as defined by Deriu et al. (2020). The terminals table name,
attribute, and literal stand for the sets of tables, columns of those tables, and entries in
the database respectively.

The following is a short overview of the function of the different nodes:

• Sum(T, A) and Average(T, A) will return the sum or average of the values in column

A of the result of the child query T.

• Count(R) will return the cardinality of the child query.

• Done(R) will return the whole result set of the child query.

• IsEmpty(R) returns whether the result of the child query is empty or not. It is used

6

to represent yes-no questions.

• ExtractValue(T, A) selects the column A of its child query.

• GetData(table name) reads the whole table referred to by table name from the

database.

• Filter(T, A, OP, LIT) corresponds to a where clause in SQL. It selects rows of the

child query by comparing the value in column A to the literal LIT with the operator

OP.

• Min(T, A) and Max(T, A) will select all rows of the child query with minimum or

maximum value for column A.

• Distinct(T) selects only unique rows of the child query.

• Merge(T1, T2, A1, A2) will create an inner join of the result sets T1 and T2 using

columns A1 and A2 respectively.

• Union, Difference, and Intersection correspond to set operations on the specified

columns of their sub-queries.

• SumBy, AverageBy, and CountBy group and aggregate the result by some column

A.

3.1 The OTTA Corpus

The traditional approach to collecting data for NLIDB systems is to have experts write

SQL queries for a given natural language question. For example, the Spider corpus (Yu

et al., 2018) was created in this manner. The creators of Spider let computer science stu-

dents create SQL queries and corresponding natural language questions for every database.

To create the OTTA corpus, Deriu et al. (2020) automated the query generation

process by sampling suitable OT directly from the grammar in Table 1. Deriu et al. (2020)

then had students familiar with databases write matching natural language questions. As

a result of this, they could considerably speed up the annotation process.

moviepersonoscar country language company genre keyword

cast crewoscar_winner oscar_nominee production_country spoken_language production_company has_genre has_keyword

Figure 2: Overview of the moviedata database. Nodes represent tables and edges corre-
spond to foreign keys referencing another table.

The full OTTA corpus contains the data of five databases: chinook (online music

store), college, driving school, Formula 1, and moviedata (based on IMDB). This study will

7

restrict itself to the moviedata domain. We show the schema of the moviedata database

in Figure 2. At the time of its first publication, OTTA contained 1148 pairs of OT and

natural language questions.

The performance of a semantic parser is assessed by comparing the OT that is produced

by the parser for a given question to the corresponding gold OT from the corpus, for every

sample in the corpus. We can then compute the fraction of correct parses as the parser’s

accuracy. In general, there are different ways to compare OT. A simple method is to

execute both OT on the underlying database and compare the results. This tends to

overestimate the performance, as result sets can be equal by chance, especially for OT

with a IsEmpty root node. A better way is to compare the structure of the trees. When

doing this, one has to be careful to allow for certain re-orderings of nodes, if they do not

change the semantics of the tree. Otherwise, one would underestimate the accuracy. We

adopt such a structural equality metric to compute the accuracies reported in Section 5.2.

4 Operation Trees to Text (OT3)

S1 ::= Sum(T,A) | Average(T,A)
S2 ::= Done(R) | IsEmpty(R) | Count(R)
R ::= ExtractV alues(T,A)
T ::= Min(T,A) |Max(T,A) | Distinct(T) |Merge(T, T,A,A) | F
F ::= Filter(F,A,OP, LIT) | GetData(TN)
TN ::= table name
A ::= attribute
OP ::= <|>|≤|≥|=|6=
LIT ::= literal

Table 2: Reduced Grammar used by the Operation Tree to Text framework by von
Däniken et al. (2021).

In a previous study, we developed an approach to generate a natural language represen-

tation for arbitrary OTs (von Däniken et al., 2021), which we will explain before specifying

the applied modifications. The Operation Tree to Text or OT3 algorithm works on a sim-

plified grammar shown in Table 2. The most important change is the removal of all set

and grouping operations. These operations are difficult to express in natural language

and would lead to long unwieldy synthetic utterances. Prior experience from working

with OTTA indicates that even humans struggle with expressing those operations in a

natural way. The other change is that Filter operations have to appear directly before

a GetData operation. This is to ensure that relative clauses generated from Filter nodes

(see Section 4.2) stay close to their associated noun phrases. Note that this change does

not impact the expressivity of OT, as one can freely move Filter nodes up and down the

tree without impacting the semantics of the OT in the original grammar.

8

Given an OT defined over some database DB, the OT3 algorithm will traverse the

tree recursively and expand every node by applying deterministic expansion rules and

combining question fragments from its child nodes. All composition rules and the majority

of expansion rules are defined in a domain-agnostic way. Nevertheless, it is necessary to

provide domain-specific information for DB. In the following sections, we will give an

overview of all production rules and point out which parts have to be declared manually

per domain. In Section 4.4, we will summarize and exemplify the necessary domain-

specific declarations.

4.1 Domain-agnostic productions

Root Nodes
Sum [[Sum(T,A)]] = What is the total [[A]] of all [[T]]?
Average [[Average(T,A)]] = What is the average [[A]] of all [[T]]?
Count [[Count(R)]] = How many [[R]] are there?
IsEmpty [[IsEmpty(R)]] = Are there any [[R]]?
Done [[Done(R)]] = What are the [[R]]?

ExtractValues
ExtractValues [[projection(T,A)]] = [[A]] of [[T]]

Aggregations
Min [[min(T,A)]] = [[T]] with minimum [[A]]
Max [[max(T,A)]] = [[T]] with maximum [[A]]

Distinct
Distinct [[Distinct(T)]] = distinct [[T]]

Table 3: Overview of domain independent production rules.

In the following sections, we will use [[N]] to mean the expansion of some node N

to a natural language utterance. We show all domain independent production rules in

Table 3. In general, expansions of attributes [[A]] will result in the canonical name of the

attribute in either singular or plural form, depending on the parent node. The attribute

names themselves have to be provided externally for each specific database. Given these

rules, simple queries can easily be translated to natural language:

• Sum(GetData(’movie’), ’movie.revenue’)→ “What is the total revenue of all movies?”

• Min(GetData(’movie’), ’movie.runtime’) → “movies with minimum runtime”

• Count(ExtractValues(GetData(’oscar’), ’oscar.category’))→ “How many categories

of oscars are there?”

• Done(ExtractValues(Max(GetData(’movie’), ’movie.runtime’), ’movie.title’))→ “What

are the titles of movies with maximum runtime?”

9

Throughout all of these examples, nodes of type GetData(TN) were expanded to the

plural form of the table’s name (TN). Those names are defined externally. In general,

not all GetData operations can be expanded in that way. This will be expanded upon in

Section 4.3.

4.2 Filter Operations

All Filter operations are expressed as relative clauses. The exact wording depends on

the type of the attribute that is filtered on. We call the simplest attribute type Generic.

It is used as the default attribute type where none of the more specific types apply. In

particular, we assume that literals of generic attributes are not ordered.

Generic attributes will be expanded as:

Filter(T, A, OP, LIT) → [[T]] whose [[A]] [[OP]] [[LIT]]

[[A]] as defined earlier, expands to the attribute name and [[LIT]] will expand to the

literal itself. Since generic attributes are not ordered, the only legal values for OP are

= and 6=, which we expand to ”is” and ”is not” respectively. These are two concrete

examples:

• Filter(GetData(’person’), ’person.name’, =, “Brad Pitt”) → “people whose name

is ‘Brad Pitt’”

• Filter(GetData(’movie’), ’movie.tagline’, 6=, “A Street Romance”)→ “movies whose

tagline is not ‘A Street Romance’”

In some cases, it is more elegant to express the attribute as a verb phrase instead of

as a noun phrase. For example, the construction “customers whose city is ‘New York’”

sounds unnatural and would be better expressed as “customers who are living in New

York.” For such cases, we define the VerbPhrase attribute type. For these attributes,

we have to provide the auxiliary verb (’are’), the participle (’living’), and the preposition

(’in’) to express the phrase.

Another big category of attributes are covered by the Numeric type. Their expansion

is similar to generic attributes:

Filter(T, A, OP, LIT) → [[T]] with a [[A]] [[OP]] [[LIT]]

Unlike their generic counterparts, numeric attributes are ordered and as such allow for all

values of OP , which we expand as follows:

• > → “of more than”

• ≥ → “of at least”

• < → “of less than”

10

• ≤ → “of at most”

• = → “of”

• 6= → “other than”

When declaring a numeric attribute, we also allow the unit to be provided, such as

“dollar” for amounts of money (revenue or budget for movies). This can make the resulting

expression more comprehensible to the end user. These are some examples:

• Filter(GetData(’movie’), ’movie.budget’, <, “1000000”) → “movies with a budget

of less than 1000000 dollars”

• Filter(GetData(’movie’), ’movie.runtime’, ≥, “60”)→ “movies with a runtime of at

least 60 minutes”

• Filter(GetData(’movie’), ’movie.popularity’, 6=, “3”) → “movies with a popularity

other than 3”

We also define an attribute type for dates, for which we combine the approaches from

both VerbPhrase and Numeric attributes. An example is the release date attribute for

movies:

• Filter(GetData(’movie’), ’movie.release date’, <, “1991-24-12”) → “movies who

were released before ‘1991-24-12’”

The final types are for primary and foreign keys, which we assume only appear in

Merge nodes but would be treated like Generic attributes otherwise.

4.3 Join Operations

To properly handle Merge nodes, we first have to introduce the distinction between entity

and relation tables. For entity tables, we assume that they do not contain any foreign

key attributes, while for relation tables we assume the opposite, namely that they exclu-

sively contain foreign key attributes. These are simplifying assumptions to illustrate our

approach and we will show how they can be relaxed at the end of this section.

All Merge operations will be between a primary key attribute of an entity table and

a foreign key of a relation table.

Consider the example OT in Figure 1. It contains two entity tables, movie and

country, that are combined through a relation table, production country. To express such

a relation, we again rely on external information, in the form of templates. In this concrete

instance, the template is “$movie that were produced in $country”, where $movie and

$country serve as placeholders for movie and country entities.

11

Note that in the OT format, the order in which entity branches attach to relations

does not generally matter. This is not the case in natural language, where the order of

the entities is important. An alternative template for the production country relation is:

“$country in which $movie were produced”, which has the order of the entities reversed.

This is important when considering the complete OT, as only the first will lead to a

coherent final utterance, since the root node asks for the revenue of movies. This means

that we have to define one template for each component entity for every relation table.

Done

Merge(movie.id, production_country.movie_id)

ExtractValues(_________)

Merge(country.id, production_country.country_id)Merge(movie.id, cast.movie_id)

GetData(movie) GetData(production_country)GetData(country)Merge(person.id, cast.person_id)

GetData(person) GetData(cast)

Figure 3: Example OT with two relation tables joining three entity tables.

Entity order is also relevant when multiple relations, and therefore multiple templates,

are involved. Consider the extended example in Figure 3 where we added another relation,

cast, between the movie and the additional person entities. Depending on the attribute

argument of the ExtractValues node, there are four possible ways to combine the tem-

plates:

• ”country.name”→ “What are the names of countries in which movies starring people

were produced?”

• ”person.name” → “What are the names of people starring in movies produced in

countries?”

• ”movie.title” → “What are the titles of movies starring people produced in coun-

tries?” or “What are the titles of movies produced in countries starring people?”

There are two valid ways of combining the templates “$movie produced in $country” and

“$movie starring $person”: either by inserting the whole second template into the $movie

argument of the first, or vice-versa. The order in which Merge nodes are processed decides

which one of the two options is used.

In summary, expanding [[GetData(table)]] will either result in the table’s canonical

name for entity tables or in a predefined template for relation tables. The selection of the

12

correct template depends on the relation, as well as the structure of the OT. Expanding

a Merge node will first expand both child nodes and then insert one sub-phrase into a

placeholder of the other. The whole OT3 process for the OT in Figure 1 is illustrated in

Figure 4.

countries

GetData(country)

whose name is Japancountries

Filter(country.name, =, Japan)

$movie which were produced in countries whose name is Japanmovies

GetData(movie)
Merge(country.id, production_country.country_id)

which were produced in countries whose name is Japanmovies

Merge(movie.id, production_country.movie_id)

movies which were produced in countries whose name is Japan ?What is the average revenue of all

Average(movie.revenue)

$movie which were produced in $country

GetData(production_country)

Figure 4: Example of how a natural language question is composed from an OT and
domain specific metadata. We write “$T” to denote placeholders where phrases from
sister subtrees will be inserted. (Figure taken from von Däniken et al. (2021))

4.3.1 Relaxing the distinction between Entities and Relations

In practice, most databases will rarely contain only pure relation tables, as described

above. In some cases, tables that are best modelled as entities will have foreign key

attributes. OT3 will treat such tables either as entities or relations, depending on whether

there is a Merge node involving a foreign key of that table.

In the simple case where there is no such Merge, the table is treated as an entity.

Otherwise, we can consider it a relation that has one of its entity components already

pre-filled. Therefore, we have to define templates for such tables.

There are also cases where a relation table has additional attributes. Our concrete

implementation of OT3 handles this by extending the templating system.

4.4 Declaration of Domain-specific metadata

In Listing 1, we show an example of how an entity table is declared. It contains the

name for the table in the underlying database and the name for the entity it represents.

These will not always be the same, as is the case here. Table names are usually expressed

without spaces, as such programmers will use snakecase or camelcase as table names,

which is unsuitable for non-technical end-users. The same is also the case for naming

attributes. As a concrete example, consider the vote count attribute of the movie entity.

13

Entity(

table_name='movie',

entity_name='movie',

attributes={

"id": PrimaryKey(),

"title": Name(is_default=True),

"revenue": Numeric(name='revenue', unit="dollar"),

"overview": Text(name="overview"),

"runtime": Numeric(name="runtime", unit="minute"),

"tagline": Text(name="tag line"),

"vote_count": Numeric(name="vote count"),

...

}

)

Listing 1: Example declaration of the movie entity table in the moviedata domain. Some
attributes have been omitted for brevity.

Relation(

table_name="production_company",

attributes={

"movie_id": ForeignKey(name="movie_id", target_table="movie"),

"company_id": ForeignKey(name="company_id", target_table="company"),

},

templates={

"movie": "$movie which were produced by $company",

"company": "$company which produced $movie",

}

)

Listing 2: Example declaration of the production company relation table in the moviedata
domain. Note that we declare a template for every component of the relation.

To declare attributes, we provide a mapping from attribute names to concrete instances

of the attribute types described previously. Note that the Text attribute type is equivalent

to the Generic type. The title attribute is tagged as the default attribute, which will be

relevant in Section 5.

In Listing 2, we show an example declaration of a relation table. For relation tables,

we additionally have to provide templates for how they are to be expressed in natural

language. The templates are declared as a mapping from the name of the head of the

relation to a template string. The component entities are represented by placeholders in

the form $table name.

The amount of manual effort to provide these declarations scales linearly with the size

of the database. We originally developed OT3 for the moviedata domain and providing

new declarations for the chinook domain was a two hour process.

14

4.5 Extension of OT3

Our original implementation of OT3 returned a raw string for a given OT. For our new

use case, we need more fine-grained information about which node generated what part

of the utterance.

We, therefore, updated OT3 to produce a sequence of tokens instead. A token consists

of one or more words of the generated utterance, a reference to the node which generated

those words, as well as more specific information for words which were generated due to

node attributes. We define the following token types:

• Token(content, node): content was generated based on the expansion of some node

[[N]].

• AttributeToken(content, node, attribute name): content was generated based on

the attribute argument of the respective node. It corresponds to an expansion of

the form [[A]].

• LiteralToken(content, node, attribute name): content was generated based on the

literal of a Filter node. It corresponds to an expansion of the form [[LIT]].

• ComparatorToken(content, node, attribute name): content was generated based on

the comparison operator of a Filter node. It corresponds to an expansion of the

form [[OP]].

• TableToken(content, node, table name): content was generated based on a GetData

operation on an entity table. It corresponds to an expansion of the form [[TN]].

The original natural language utterance can be recovered by concatenating the contents

of the token sequence. We show an example token sequence in Table 4.

Token Text What is the average revenue of all movies which were produced in countries whose name is Japan ?
Token Type Token AttributeToken Token TableToken Token TableToken Token AttributeToken ComparatorToken LiteralToken Token
Node Average(’movie.revenue’) GetData(’movie’) GetData(’production country’) GetData(’country’) Filter(’country.name’, =, ’Japan’) Average(’movie.revenue’)

Table 4: Sequence of tokens produced by updated OT3 for OT in Figure 1.

5 Operation Tree Correction Framework

One of the use cases of OT3 presented in von Däniken et al. (2021) was to evaluate

the output OT a NLIDB system produces for a given human question without access

to the underlying true OT. The main idea was to present the user with the synthetic

utterance generated by OT3 and ask them whether it is semantically equivalent to their

question. We have shown that such a binary semantic textual similarity (Agirre et al.,

2013) judgement correlates strongly with the correctness of the parse. Indeed, untrained

15

crowdworkers were able to detect wrong parses with up to 77% accuracy. One advantage

of that approach is that the user does not need any prior training to provide such feedback.

In this work we expand upon that idea and extend OT3 to create a framework that lets

an end-user directly modify and correct a wrong OT in natural language, by manipulating

the text generated by OT3, as our main contribution.

Figure 5: Screen capture of the OT correction framework in use. Refer to the text for a
detailed explanation.

In Figure 5, we show a simple example of the correction framework in use. At the top

is the question as provided by a human. There is a row of buttons in blue underneath the

given question. The skip button lets the user skip the sample if they get stuck or do not

know what to do with the sample. The buttons labelled <- and -> are to undo a erroneous

modification or redo a previously undone action. The submit button is to indicate that the

user is done with their correction. Lastly, there is the utterance generated by OT3 from

the OT that was produced by a semantic parser for the human question. The utterance is

broken up by tokens (see Section 4.5) and every box is a drop-down menu (or text field in

case of literals) for the various possible modifications of the utterance and the underlying

OT. Concretely shown is the opened menu that would change the GetData node for the

person entity to another entity (which is unnecessary in this case as the utterance already

seems to match the human question). The menus labelled +f, +r, and +m, are to add a

Filter node, insert a relation, or add a Min or Max node, respectively.

At the most basic level, we can modify an OT by adding, deleting, or replacing nodes.

It is crucial to maintain the constraints imposed by the OT grammar as well as relation-

ships between tables and attributes. For example, if we inserted a Merge without also

adding its second sub-tree, the tree would be incomplete. Similarly, if we replace a Get-

Data node for some table but a node higher up refers to an attribute of that table, the tree

would be in an inconsistent state. We, therefore, will not allow all kinds of modifications

for all nodes.

The correction framework will enumerate all legal modifications to an OT, render them

to natural language, and assign them to the corresponding token of the OT3 output. For

example, the underlying OT in Figure 5 contains a GetData(’person’) node. The opened

drop-down menu corresponds to all allowed replacements of that node.

16

5.1 How to modify OT

Filter. While filters are among the most complex nodes in their composition, they are

relatively easy to modify. Earlier, we described (Section 4.2) how OT3 expresses filters as

relative clauses. The whole clause will usually consist of a Token introducing the relative

clause (“with a”, “whose”), an AttributeToken expressing the attribute to be filtered, a

ComparatorToken expressing the comparison made, and a LiteralToken representing the

literal that is being employed for comparison (see Table 4 for an example).

We attach the option to delete a filter node to its leading token, as all possible replace-

ments will be associated with more specialized tokens. Deleting a filter node is relatively

straightforward and will leave the resulting OT in a legal state.

Figure 6: Drop-down menu showing the options to change the attribute of a filter node.

We let the AttributeToken represent replacements of the node with a new filter on a

different attribute of the same entity. We show these options in natural language using

the name of the new attribute. An example can be seen in Figure 6. For the new filter,

we copy the literal and comparison operation from the original filter node. In some cases,

when changing from an ordered attribute type to a generic one, we have to replace the

comparison operation by = for the new filter to be legal.

Figure 7: Drop-down menu showing the options to change the comparison operation of a
filter node.

Changing the comparison operation is handled similarly to changing the attribute. We

attach the options for legal operations to the ComparatorToken. The wording for every

possible comparison corresponds to the one described in Section 4.2 and an example can

be seen in Figure 7. We copy the attribute and literal from the filter node to the new one.

Finally, the text representation of a literal is the literal itself. While we could use a

drop-down or similar to let the user select a value from the database, this is impractical

for even moderately sized databases. Therefore, it is preferable to pre-fill a text input

field with the literal from the OT and let the user modify it. Once the user provides a

new literal, we update the filter node accordingly.

17

Figure 8: Drop-down menu showing the options to add a new filter node.

We decided to add the placeholder +f after entity tokens to represent the option to

add a new filter to that entity. We show one option for every attribute of the entity and

represent it by the text generated by OT3 for the new filter node. Figure 8 shows an

example. We select = as the default comparison operator, and an arbitrary literal from

the database for the new node. The new node is inserted as a direct parent of the entity’s

GetData node.

Figure 9: Drop-down menu showing the options to delete or change Min/Max node.

Min and Max. The overall handling of Min and Max nodes is similar to Filter nodes.

OT3 will produce a generic token for the node itself and an AttributeToken for its at-

tribute. As shown in Figure 9, we attach the options to delete the node, or change it from

minimum to maximum, or vice-versa, to the generic token. Since these nodes always have

exactly one parent and one child, deleting and replacing them is straightforward.

Figure 10: Drop-down menu showing the options to change attribute for a Min or Max
node.

The attribute of a minimum or maximum operation can be changed to an ordered

attribute of any entity table in the sub-tree below it. Figure 10 shows an example.

The drop-down associated with the AttributeToken shows both attributes for movies and

people and all the attributes follow an ordering.

18

Average(movie.revenue)

Merge(movie.id, cast.movie_id)

GetData(movie) Merge(person.id, cast.person_id)

GetData(cast) Filter(person.name, =, Brad Pitt)

GetData(person)

Max(movie.budget)

GetData(movie)

Average(movie.revenue)

Merge(movie.id, cast.movie_id)

Merge(person.id, cast.person_id)

Filter(person.name, =, Brad Pitt)

GetData(person)

GetData(cast)

Max(movie.budget)

Figure 11: Example of two OT that differ in the position of a Max operation. See text
for detailed explanation.

Unlike filters, Min and Max cannot be moved up or down the OT without changing

the semantics of the tree. At the same time, this shift in meaning is not easy to capture

in natural language. Consider the difference between the two trees in Figure 11. The

tree on the left will average the revenue of all movies with maximum budget among the

movies that star Brad Pitt. The tree on the right, in contrast, will average the revenue

of all movies that have the maximum budget amongst all movies and also star Brad Pitt.

These two will not always be the same but the difference is subtle. The OTTA corpus

handles this ambiguity by only including OT where all Min and Max nodes are ancestors

of any Merge nodes. This means that trees like the one on the right in Figure 11 are not

allowed.

Figure 12: Drop-down menu showing the options to add a Min or Max node.

Knowing this, we place the special token, +m for adding a new Min or Max node at

the end of the question, since they are expressed as relative clauses referring to the whole

construction, following the leading entity in the question. This also means that when the

user chooses to add a Min or Max node, we insert it as the parent of the Merge node that

is closest to the root. Figure 12 shows how adding a Min or Max node is presented to the

user.

Entities and Relations. We illustrated how OT3 translates entities and relations to

natural language in Section 4.3. In particular, we point out, that entities will appear in

the final utterance in a specific order chained together by relation templates. The chain

starts with the entity whose attribute appears at the root of the whole tree (the attribute

argument of either the Sum, Average, or ExtractValues nodes). We will call that attribute

19

the main query attribute and the corresponding table the main query table.

Due to this interaction between the various GetData nodes, we only allow the re-

placement of the main query entity. Other entities can only be changed or removed by

modifying the associated relations.

We showed an example of the user interface for changing the main query table in

Figure 5 at the start of this section. In the simplest case, where the new entity is already

in the tree, we only have to update the main query attribute to promote the selected

entity to main query entity. For that purpose, we will select the default attribute of the

new main query table (see Section 4.4). If, on the other hand, the new main query table

is not part of the tree, we will discard all other GetData and Merge nodes and add a

GetData node for the new entity. This is extreme but unavoidable, as we would otherwise

have to guess and add the relation that connects the new table to the already existing

entities.

Figure 13: Drop-down menu showing the options to change a relation.

Figure 13 shows the options to delete or change a relation. When deleting a relation,

we not only have to delete the GetData node for the associated relation table, but any

Merge nodes that involve foreign keys of that relation table. When deleting a Merge

node, our implementation will select one of its two sub-trees to replace it and discard

the other sub-tree. As a general rule, we will always preserve the sub-tree containing the

main query table and prioritise entities appearing earlier in the utterance to later ones.

This is a naive solution that will in some cases discard too many nodes, but in practice

this has not shown to be problematic yet, as it relatively easy to add the nodes back (see

Section 5.2).

We let the user change an existing relation to any relation involving the entity that

appears first in the current utterance, assuming that the relation is not already part

of the OT. In the example in Figure 13, this would be the person entity. The current

implementation will first delete the current relation, as described above, and then insert

the new relation. This is unnecessarily destructive and a more sophisticated approach

would be to replace the relation table node and adapt the Merge nodes up the tree with

the new foreign key attributes. We intend to fix this in a later version.

Finally, to insert a new relation we provide another placeholder token, +r, directly

after each entity TableToken. The options are to add any relation involving that entity

which is not already part of the OT. Figure 8 shows an example. To insert a new relation,

20

Figure 14: Drop-down menu showing the options to add a new relation.

we add a Merge node as parent to the entity’s GetData node. The second sub-tree of

the new Merge node will contain the other GetData and Merge nodes to complete the

relation.

We note that the end user never directly manipulates Merge nodes but can only

influence them through changing relations.

Figure 15: Drop-down menu showing the options to change the question type.

Question Types. According to the grammar in Table 2, there are five different root

nodes. These correspond to five different types of questions that can be asked, which were

shown in Table 3. An ExtractValue node must always appear as a direct child of either

a Done, IsEmpty, or Count node. Therefore, we will treat them as a single unit. We

attach the option to change the question type to any token associated with one of these

nodes. An example can be seen in Figure 15. There are no options to delete or add a new

question type, as such operations would not lead to a well-formed OT. When changing

the question type, we replace the nodes corresponding to the old question type with ones

corresponding to the selected one. We copy the main query attribute from the old nodes

to the new ones. We only show the option to change to a Sum or Average question, when

the current main query attribute is summable.

Figure 16: Drop-down menu showing the option to add a Distinct node.

Distinct. Distinct nodes are conceptually simple, as the only operations that we define

for them are to either add a new Distinct node or delete one. OT3 will only produce one

21

token containing the word “distinct” for this node type and we add the option to delete

the node to that token.

Our grammar allows Distinct nodes to appear anywhere in the tree between the ques-

tion nodes and filter or GetData nodes. Similar to Min and Max nodes, the actual samples

in the OTTA corpus follow additional restrictions. In practice, a Distinct node will only

appear as a direct child of any root node. This includes the nodes requiring an Extract-

Values node. The Distinct node will be inserted between them. This is unfortunately in

violation of the grammar, as described. Luckily, this is only a minor deviation and does

not impact the overall approach. As a result, we place the special token for inserting a

Distinct node, +d, directly in front of the first token expressing the direct child of the root

node. This option is only available if there is not another Distinct node already present.

Figure 16 shows an example.

5.2 Evaluating the OT Correction Framework

To show the efficacy of our correction framework, we have used it to correct the outputs

of a real semantic parser. We use a GrammarNet parser (Yin and Neubig, 2017) with the

same settings as used by Deriu et al. (2020). We gave a brief overview of GrammarNet

in Section 2. As dataset, we used the OT (and questions) from the moviedata domain of

the OTTA corpus. We only used samples whose OT do not contain any set or grouping

operations. The resulting 1116 samples were split into a training set of 894 and a test set

of 222 samples, corresponding to 80% and 20% respectively. The resulting parser, trained

on the training set, achieves an accuracy of 54.9% on the test set.

We applied our correction framework to 107 randomly selected samples of the test

set. An annotator is presented with the original human question as well as the modifiable

textual representation of the OT produced by the parser as described in Section 5. They

can then apply as many modifications as they deem necessary (including none at all) to

make the synthetic utterance match the input question. Since we did not have time to

instruct external people in how to use our tool, we annotated the data ourselves.

Correction Applied No Correction Applied
Result Correct Result Incorrect Result Correct Result Incorrect

Correction Necessary 32 10 - 5
No Correction Necessary 5 3 52 -

Table 5: Overview of corrections performed during our experiment.

In Table 5, we give an overview of the number of trees which were corrected, if the

corrections were necessary, and if the result was equal to the reference gold OT. We can

see that the parser performed slightly better on our subset of 107 samples compared to

the full test set. In 60 cases no correction would have been necessary, meaning that the

parser has an accuracy of 56.1%. After our corrections, 89 OT are correct, improving

22

the accuracy to 83.2%. In 89.4% of cases, where it was necessary, a correction has been

applied. This is consistent with previous results showing high recall in humans finding

parse errors when presented with the output of OT3 (von Däniken et al., 2021). Similarly,

out of all OT needing correction, 84% were corrected, although not always successfully.

Error Analysis. We will take a closer look at the total 18 cases that were still incorrect

after a manual correction attempt, as well as the 5 cases where unnecessary corrections

were applied that did not change the correctness of the tree. The latter might strike one as

odd, since modifying an OT, that does not warrant it, should intuitively lead to an error.

In all of those cases, a single operation to replace the comparison operator of a Filter node

for a Date attribute was performed, updating the comparison operator to the same value

(for example replacing ≤ by another ≤). This stems from an ambiguity in texts produced

by OT3, which does not differentiate between strict and non-strict equality in dates. It

will produce “before 1984” for both “< 1984” and “≤ 1984”. In the drop-down menus of

the correction framework those have been disambiguated to “before (not including)” and

“before (including).” Since we annotated the data ourselves and were thus aware of this

limitation, we made sure to always disambiguate the comparison operation for dates.

ExtractValues(movie.release_date)

GetData(movie) Merge(oscar.id, oscar_nominee.oscar_id)

Filter(oscar.number, =, 6)

GetData(oscar)

Distinct

GetData(oscar_nominee)

Merge(movie.id, oscar_nominee.movie_id)

Count

ExtractValues(movie.title)

GetData(movie) Merge(oscar.id, oscar_nominee.oscar_id)

Filter(oscar.number, =, 6)

GetData(oscar)

Distinct

GetData(oscar_nominee)

Merge(movie.id, oscar_nominee.movie_id)

Count

How many movies were nominated for an oscar in the 6th edition?

Gold Tree from OTTA Parsed OT after correction

Figure 17: OT for the human input question: “How many movies were nominated for an
oscar in the 6th edition?” On the left, the gold OT from the OTTA corpus. On the right,
the parsed OT after it was corrected.

The most prominent source of errors seems to be ambiguous question types, accounting

for 7 out of the 18 errors. There are two sources of ambiguities. The first stems from a

human preference for succinctness. Some human annotators of the OTTA corpus seemed

to drop the main query attribute from the question in some cases for OT with Done,

IsEmpty, or Count root nodes, effectively ignoring the ExtractValues node. This makes

it impossible to correctly recover the original tree. We show an example in Figure 17. As

discussed in Section 3.1, the OTTA corpus was created by letting human annotators write

23

questions matching a tree sample from the OT grammar. The original tree can be seen on

the right in Figure 17. In the associated question: “How many movies were nominated for

an oscar in the 6th edition?”, the annotator did not include the release date main query

attribute. Therefore, it was impossible to recover that attribute for both the parser and

the corrector. In fact, the only correction operation that was applied in this instance was

to change the attribute of the Filter node. In this specific instance, one can argue that

the parsed OT matches the input question more closely.

The other source of ambiguity in question types comes up in some aggregation ques-

tions, when the root node is either Sum or Average. In a question such as: “How much

revenue did movies generate in which ‘Fritz Rasp’ was part of the cast?”, it is not en-

tirely clear whether we have to sum over all revenues of matching movies, or return them

individually.

The second largest source of errors stems from Distinct nodes. Human questions in

OTTA often do not contain explicit words such as unique, different, or distinct, to express

the presence of a Distinct node. When correcting a tree, it is, therefore, hard to know

whether adding or removing such a node is appropriate.

Since we only worked with a very limited set of samples, it is hard to draw any mean-

ingful conclusions from the other errors that were observed. We will mention the few

remaining errors that we deem interesting and that might be meaningful. In moviedata

specifically, there are relations that have some inherent ambiguity. When humans ex-

press the cast or crew relation it is not always entirely apparent which one is meant. A

similar confusion exists between the original language attribute for movies and the spo-

ken language relation between the tables movie and language. Finally, there is always the

element of human error, both in corrections and in the original annotation process.

Number of Corrections. Another aspect to evaluate is the number of interactions the

user has to perform to correct an OT. This depends on two factors, first of which is the

quality of the parser. The better the parser, the closer it will get to the true OT and

the less there will be to correct. The second aspect is the efficiency of the framework.

Ideally, our framework would be expressive enough to enable modifications with as few

interactions as possible. We count any time a user selects an option from a drop-down

menu as a discrete correction. In Figure 18, we show the histogram of the number of

interactions taken during our annotations. Out of the 50 OT that have been modified,

more than half, namely 28, required only a single interaction. The maximum number of

interactions for any single OT was 6.

We give an overview of the types of modifications applied in Table 6. The most

common change was to correct a comparison operator, accounting for around 27.4% of

modifications. The second most common modification was to change an attribute. This

is followed by adding filters and changing a literal. These two occur together because

24

Number of corrections applied to OT

Fr
eq

ue
nc

y

0

10

20

30

40

50

60

0 1 2 3 4 5 6

Figure 18: Histogram of the number of corrections applied to OT.

Correction Type Occurrences
Change Comparison Operator 29
Change Attribute 21
Add Filter 17
Change Literal 17
Delete Node 9
Add Relation 4
Add Distinct 3
Change Main Query Table 2
Change Question Type 2
Add Min/Max 2

Table 6: Types of corrections applied during our experiments.

the correction framework fills in an arbitrary literal when creating a new Filter node,

which subsequently has to be adjusted too (see Section 5). Similarly, it chooses = as the

default comparison operator for new Filter nodes, which might also have to be updated

and therefore account for some of those operations as well. Therefore, in the worst case,

a missing filter can take up to 3 interactions to correct. The distribution of corrections

also indicates that, overall, the errors made by the parser are relatively minor. In most

instances, GrammarNet seems to get the right structure of the question and only struggles

with missing Filter nodes and choosing wrong attributes and comparison operators.

25

6 Discussion

At first glance the accuracy of 83.2% that was achieved after the correction step seems

underwhelming. Our analysis has shown that an important proportion of the remain-

ing errors are due to ambiguities in the human questions in the OTTA corpus that the

annotators resolved in a wrong way. In an ideal setting, the person posing the initial

question would also be the person correcting the resulting parse. This would eliminate

the need for the corrector to guess the exact intention of the question. As such, there

is a mismatch in our experiment setting and one could argue that eliminating those po-

tential misinterpretations should lead to an even higher accuracy. On the other hand,

since we provided the corrections ourselves, there is also the potential to overestimate

the performance. Unlike potential lay users, we are intricately familiar with both OT3

and the correction framework and untrained users might introduce errors that we would

not. Finally, it is difficult to draw strong conclusions from the very limited number of

samples that we actually corrected. Overall, to more thoroughly assess the potential of

the framework, more extensive experiments are needed.

A promising result is that for most parses, only very few interactions are needed to

correct them. This indicates that even though the parser has relatively low accuracy, its

errors are minor and that our framework is reasonably efficient at letting the user correct

those errors. One inefficiency we discovered is that we need up to three interactions

to add a missing filter operation. Of course, one could naively enumerate all possible

combinations of attributes, comparison operators and literals as options when adding a

filter, but this would make the interaction overly complex. Overall, we are satisfied with

the trade-off between number of interactions and their complexities.

We also discovered some potential improvements of the templates of OT3. Most

importantly, the need to better disambiguate strict and non-strict inequalities for date

attributes has been identified.

We want to point out that the overall framework of enumerating and applying legal

modifications to OT has potential applications beyond just correcting parses. We see two

relatively simple ways to build a semantic parser on top of the base we provided. The

first would be to build something akin to TR Discover (Song et al., 2015), which we

described in Section 2. Concretely, instead of letting the user type an arbitrary natural

language question and parse it with another parser, we could just present them with our

correction interface initialized with a minimal legal tree (e.g. “What are the names of

movies?”). They could then extend and modify that representation the same way they

would for corrections until they arrive at a representation of their question. Of course

such a system would be pretty far removed from the original goal of NLIDB research, all

but eliminating the natural language component. Still, for some applications, it might be

an appropriate and pragmatic choice.

26

The other option would be to pursue the approach of Wang et al. (2015) that we

described in Section 2. This would involve training a paraphrase scoring model based on

human utterances from OTTA and the back-translations by OT3. The parser would then

consist of a beam search over OT, scored by the paraphrase model. Starting from a set of

minimal legal trees, we would apply all possible legal modifications in every iteration to all

trees in the current set to create new candidates. For every candidate, the corresponding

synthetic utterance is generated by OT3 and its similarity to the input question scored

by the paraphrase model. All but the the top k highest scoring candidates will be rejected

and the process repeated until there is no more improvement.

One aspect of our work we have not yet discussed is the user interface itself. We chose

the library REMI 5 to develop the user interface. It is a relatively simple way to create a

browser based interface for Python applications. Overall, we consider the graphical user

interface as presented to be a mere prototype and there are several improvements to be

made. Most importantly, we should rethink the use of drop-down menus to select changes.

Their blocky appearance makes the generated question hard to read. The use of special

tokens for adding new nodes in particular is unfortunate and hinders readability. A nicer

way would be to present a single text field containing the synthetic utterance that the

user can interact with.

7 Conclusion

In this work, we introduced a framework that lets users correct the output of a seman-

tic parser by modifying a synthetic textual representation of the parse. Based on the

Operation Tree representation of Deriu et al. (2020), we provided functionalities to enu-

merate and apply legal changes to any operation tree. We combine these functionalities

with prior work that allows back-translating an Operation Tree to natural language (von

Däniken et al., 2021). As a result, we proved that our correction framework allows users

to efficiently modify Operation Trees and improve the accuracy of a semantic parser from

56.1% to 83.2%. We consider changes to the user interface as improvements that can be

made within future work and point out potential further applications, such as using it as

a starting point to build a semantic parser.

References

Affolter, K., K. Stockinger, and A. Bernstein (2019, Oct). A comparative survey of recent

natural language interfaces for databases. The VLDB Journal 28 (5), 793–819.

Agirre, E., D. Cer, M. Diab, A. Gonzalez-Agirre, and W. Guo (2013, June). *SEM

5https://github.com/dddomodossola/remi

27

2013 shared task: Semantic textual similarity. In Second Joint Conference on Lexical

and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference

and the Shared Task: Semantic Textual Similarity, Atlanta, Georgia, USA, pp. 32–43.

Association for Computational Linguistics.

Blunschi, L., C. Jossen, D. Kossmann, M. Magdalini, and K. Stockinger (2012). Soda.

generating sql for business users. Proceedings of the VLDB Endowment 5 (10), 932 –

943. 38th International Conference on Very Large Data Bases; Conference Location:

Istanbul, Turkey; Conference Date: August 27-31, 2012.

Bogin, B., J. Berant, and M. Gardner (2019, July). Representing schema structure with

graph neural networks for text-to-SQL parsing. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 4560–

4565. Association for Computational Linguistics.

Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio (2014, October). Learning phrase representations using RNN encoder–

decoder for statistical machine translation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1724–

1734. Association for Computational Linguistics.

Codd, E. F. (1970, June). A relational model of data for large shared data banks. Com-

mun. ACM 13 (6), 377–387.

Codd, E. F. (1989). Relational database: A practical foundation for productivity. In

Readings in Artificial Intelligence and Databases, pp. 60–68. Elsevier.

Dahl, D. A., M. Bates, M. Brown, W. Fisher, K. Hunicke-smith, D. Pallett, E. Rudnicky,

and E. Shriberg (1994). Expanding the scope of the atis task: the atis-3 corpus. In in

Proc. ARPA Human Language Technology Workshop ’92, Plainsboro, NJ, pp. 43–48.

Morgan Kaufmann.

Deriu, J., K. Mlynchyk, P. Schläpfer, A. Rodrigo, D. von Grünigen, N. Kaiser,

K. Stockinger, E. Agirre, and M. Cieliebak (2020, July). A methodology for creating

question answering corpora using inverse data annotation. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, Online, pp. 897–911.

Association for Computational Linguistics.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019, June). BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Min-

neapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics.

28

Dubey, M., D. Banerjee, A. Abdelkawi, and J. Lehmann (2019). Lc-quad 2.0: A large

dataset for complex question answering over wikidata and dbpedia. In Proceedings of

the 18th International Semantic Web Conference (ISWC). Springer.

Elgohary, A., S. Hosseini, and A. Hassan Awadallah (2020, July). Speak to your parser:

Interactive text-to-SQL with natural language feedback. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, Online, pp. 2065–

2077. Association for Computational Linguistics.

Green Jr, B. F., A. K. Wolf, C. Chomsky, and K. Laughery (1961). Baseball: an automatic

question-answerer. In Papers presented at the May 9-11, 1961, western joint IRE-AIEE-

ACM computer conference, pp. 219–224.

Hochreiter, S. and J. Schmidhuber (1997, 12). Long short-term memory. Neural compu-

tation 9, 1735–80.

Koutrika, G., A. Simitsis, and Y. E. Ioannidis (2010). Explaining structured queries in

natural language. In 2010 IEEE 26th International Conference on Data Engineering

(ICDE 2010), pp. 333–344.

Labutov, I., B. Yang, and T. Mitchell (2018, October-November). Learning to learn

semantic parsers from natural language supervision. In Proceedings of the 2018 Con-

ference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp.

1676–1690. Association for Computational Linguistics.

Mitra, M. and B. B. Chaudhuri (2000, May). Information retrieval from documents: A

survey. Information Retrieval 2 (2), 141–163.

Ngonga Ngomo, A.-C., L. Bühmann, C. Unger, J. Lehmann, and D. Gerber (2013). Sorry,

i don’t speak sparql: Translating sparql queries into natural language. In Proceedings

of the 22nd International Conference on World Wide Web, WWW ’13, New York, NY,

USA, pp. 977–988. Association for Computing Machinery.

Saha, D., A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R. Mittal, and F. Özcan

(2016, August). Athena: An ontology-driven system for natural language querying

over relational data stores. In PVLDB (PVLDB ed.), Volume 9, pp. 1209–1220. VLDB

Endowment.

Sen, J., C. Lei, A. Quamar, F. Özcan, V. Efthymiou, A. Dalmia, G. Stager, A. Mit-

tal, D. Saha, and K. Sankaranarayanan (2020, July). Athena++: Natural language

querying for complex nested sql queries. Proc. VLDB Endow. 13 (12), 2747–2759.

Song, D., F. Schilder, C. Smiley, C. Brew, T. Zielund, H. Bretz, R. Martin, C. Dale,

J. Duprey, T. Miller, and J. Harrison (2015). Tr discover: A natural language interface

29

for querying and analyzing interlinked datasets. In M. Arenas, O. Corcho, E. Sim-

perl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin,

K. Thirunarayan, and S. Staab (Eds.), The Semantic Web - ISWC 2015, Cham, pp.

21–37. Springer International Publishing.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and

I. Polosukhin (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Advances in Neural

Information Processing Systems, Volume 30, pp. 5998–6008. Curran Associates, Inc.

von Däniken, P., J. Deriu, E. Agirre, and M. Cieliebak (2021). Using textual similarity

to evaluate and improve semantic parsing. In unpublished.

Wang, B., R. Shin, X. Liu, O. Polozov, and M. Richardson (2020, July). RAT-SQL:

Relation-aware schema encoding and linking for text-to-SQL parsers. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, Online, pp.

7567–7578. Association for Computational Linguistics.

Wang, Y., J. Berant, and P. Liang (2015, July). Building a semantic parser overnight.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-

guistics and the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), Beijing, China, pp. 1332–1342. Association for Computa-

tional Linguistics.

Xu, K., L. Wu, Z. Wang, Y. Feng, and V. Sheinin (2018, October-November). SQL-to-

text generation with graph-to-sequence model. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 931–936.

Association for Computational Linguistics.

Yao, Z., Y. Su, H. Sun, and W.-t. Yih (2019, November). Model-based interactive semantic

parsing: A unified framework and a text-to-SQL case study. In Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

Hong Kong, China, pp. 5447–5458. Association for Computational Linguistics.

Yao, Z., Y. Tang, W.-t. Yih, H. Sun, and Y. Su (2020, November). An imitation game for

learning semantic parsers from user interaction. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Online, pp. 6883–

6902. Association for Computational Linguistics.

Yin, P. and G. Neubig (2017, July). A syntactic neural model for general-purpose code

generation. In Proceedings of the 55th Annual Meeting of the Association for Com-

30

putational Linguistics (Volume 1: Long Papers), Vancouver, Canada, pp. 440–450.

Association for Computational Linguistics.

Yu, T., R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li, Q. Yao, S. Roman,

Z. Zhang, and D. Radev (2018, October-November). Spider: A large-scale human-

labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-

cessing, Brussels, Belgium, pp. 3911–3921. Association for Computational Linguistics.

Zeng, J., X. V. Lin, S. C. Hoi, R. Socher, C. Xiong, M. Lyu, and I. King (2020, July).

Photon: A robust cross-domain text-to-SQL system. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics: System Demonstrations, On-

line, pp. 204–214. Association for Computational Linguistics.

Zhong, V., C. Xiong, and R. Socher (2017). Seq2sql: Generating structured queries from

natural language using reinforcement learning. CoRR abs/1709.00103.

31

