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Abstract The first general Zagreb index Ma
1ðGÞ of a graph

G is equal to the sum of the ath powers of the vertex

degrees of G. For a� 0 and k� 1, we obtain the lower and

upper bounds for Ma
1ðGÞ and Ma

1ðLðGÞÞ in terms of order,

size, minimum/maximum vertex degrees and minimal non-

pendant vertex degree using some classical inequalities and

majorization technique, where L(G) is the line graph of G.

Also, we obtain some bounds and exact values of

Ma
1ðJðGÞÞ and Ma

1ðLkðGÞÞ, where J(G) is a jump graph

(complement of a line graph) and LkðGÞ is an iterated line

graph of a graph G.

Keywords First Zagreb index �
General first Zagreb index � Line graph � Jump graph �
Iterated line graph
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1 Introduction

The graphs considered here are finite, undirected, without

loops and multiple edges. Let G ¼ ðV;EÞ be a connected

graph with jVðGÞj ¼ n vertices and jEðGÞj ¼ m edges. The

degree dGðvÞ of a vertex v is the number of vertices adja-

cent to v. The edge e connecting the vertices u and v is

denoted by e ¼ uv. The degree of an edge e ¼ uv is

denoted by dGðeÞ and similarly defined by

dGðeÞ ¼ dGðuÞ þ dGðvÞ � 2. The vertices and edges of a

graph are said to be its elements, [1, 2].

A molecular graph is a graph in which the vertices

correspond to the atoms and the edges to the bonds of a

molecule. A single number that can be computed from the

molecular graph and used to characterize some property of

the underlying molecule is said to be a topological index or

molecular structure descriptor. Numerous such descriptors

have been considered in theoretical chemistry and have

found some applications, especially in QSPR/QSAR

research, [3, 4].

The first Zagreb index was introduced by Gutman and

Trinajstić [5]. It is an important molecular descriptor and

has been closely correlated with many chemical properties.

The first Zagreb index of G is defined as

M1ðGÞ ¼
X

u2VðGÞ
dGðuÞ2 or

M1ðGÞ ¼
X

uv2EðGÞ
½dGðuÞ þ dGðvÞ�:

For their history, applications and mathematical properties,

see [6–13] and the references cited therein.

Li et al. [14, 15] introduced the generalized version of

the first Zagreb index defined as
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Ma
1ðGÞ ¼

X

u2VðGÞ
dGðuÞa;

where a is an arbitrary real number. This graph invariant is

also known as ‘‘general zeroth-order Randić index,’’

[16, 17].

Following M1ðGÞ, the forgotten topological index (also

called F-index) was introduced by Furtula and Gutman

[18] and is defined as

FðGÞ ¼
X

v2VðGÞ
dGðuÞ3 ¼

X

uv2EðGÞ

�
dGðuÞ2 þ dGðvÞ2

�
:

Shirdel et al. [19] introduced the first hyper-Zagreb index

of G, which is defined as

HM1ðGÞ ¼
X

uv2EðGÞ
½dGðuÞ þ dGðvÞ�2:

Clearly, we note that M0
1ðGÞ ¼ n, M1

1ðGÞ ¼ 2m, M2
1ðGÞ ¼

M1ðGÞ and M3
1ðGÞ ¼ FðGÞ and M4

1ðGÞ ¼ HM1ðGÞ.

2 Bounds on Ma
1ðGÞ

First, we prove a lower bound for Ma
1ðGÞ in terms of order

n and size m. For this purpose, we recall the following

facts.

If a real-valued function f(x) defined on an interval has a

second derivative f
00 ðxÞ; then a necessary and sufficient

condition for it to be strictly convex on that interval is that

f
00 ðxÞ[ 0. For a positive integer k, if f(x) is strictly convex,

then by Jensen’s inequality, we have

f
Pk

i¼1
xi
k

� �
� 1

k

Pk
i¼1 f ðxiÞ with equality if and only if

x1 ¼ x2 ¼ � � � ¼ xk, and if �f ðxÞ is strictly convex, then the
inequality is reversed.

Theorem 1 Let G be a simple graph with n� 3 vertices

and m edges. Then, for all a� 1,

Ma
1ðGÞ�

2ama

na�1
:

Further, equality holds if and only if G is regular.

Proof Let G be a simple graph with n� 3 vertices and m

edges. We have Ma
1ðGÞ ¼

P
v2VðGÞ dGðvÞ

a
, for all a� 1.

Since f ðxÞ ¼ xa is strictly convex for x[ 0. By Jensen’s

inequality, we have

Xk

i¼1

f ðxiÞ� kf
Xk

i¼1

xi
k

 !
:

Therefore,

Ma
1ðGÞ� n

X

u2VðGÞ

dGðuÞ
n

0

@

1

A
a

� n
2m

n

� �a

� 2ama

na�1
:

h

Corollary 1 For any (n, m)-simple graph G with n� 3

vertices and a ¼ 2,

M2
1ðGÞ ¼ M1ðGÞ�

4m2

n
:

Theorem 2 Let G be a connected graph with n� 3

vertices and m edges. Then, for all a� 1, we have

Ma
1ðGÞ� n

Y

u2VðGÞ
ðdGðuÞÞa

0

@

1

A

1
n

:

Proof Let f ðxÞ ¼ logx. Clearly, logðxÞ is concave in

ð0;1Þ. By Jensen’s inequality, we have

log
X

u2VðGÞ

ðdGðuÞÞa

n

0
@

1
A� 1

n

X

u2VðGÞ
logðdGðuÞÞa

� 1

n
log

Y

u2VðGÞ
dGðuÞa

0

@

1

A

� log
Y

u2VðGÞ
dGðuÞa

0
@

1
A

1
n

:

Therefore,

1

n

X

u2VðGÞ
dGðuÞa �

Y

u2VðGÞ
dGðuÞa

0

@

1

A

1
n

X

u2VðGÞ
ðdGðuÞÞa � n

Y

u2VðGÞ
dGðuÞa

0
@

1
A

1
n

:

Thus, the upper bound follows. h

In order to prove our next result giving lower and upper

bounds for Ma
1ðGÞ in terms of order n, minimum degree

dðGÞ and maximum degree DðGÞ of a graph G, we apply

the well-known Diaz-Metcalf inequality.

Theorem 3 [20] Let ða1; a2; . . .; anÞ and ðb1; b2; . . .; bnÞ
be two n-tuples consisting of positive real numbers satis-

fying the condition

rai � bi �Rai
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for 1� i� n. Then,

Xn

i¼1

b2i þ rR
Xn

i¼1

a2i �ðr þ RÞ
Xn

i¼1

aibi:

Equality holds if and only if bi ¼ Rai or bi ¼ rai for

1� i� n.

Theorem 4 Let G be a simple graph with n� 3 vertices

and m edges. Then, for all a� 1,

n dðGÞa �Ma
1ðGÞ� nDðGÞa:

Further, both left- and right-hand side equality holds if and

only if G is regular.

Proof Let bi ¼ dGðuÞ
a
2; ai ¼ 1 and r ¼ dðGÞ

a
2; R ¼ DðGÞ

a
2.

Clearly,

dðGÞ
a
2 � dGðuÞ

a
2 �DðGÞ

a
2:

By the Diaz–Metcalf inequality, we have
X

u2VðGÞ
dGðuÞa þ ðdðGÞDðGÞÞ

a
2

X

u2VðGÞ
1

�ðdðGÞ
a
2 þ DðGÞ

a
2Þ
X

u2VðGÞ
dGðuÞ

a
2

;

and hence,

Ma
1ðGÞ þ n dðGÞ

a
2 �ðdðGÞ

a
2 þ DðGÞ

a
2ÞnDðGÞ

a
2:

Therefore, we have dGðuÞ
a
2 �DðGÞ

a
2 for all u 2 VðGÞ.

Hence, we can write

Ma
1ðGÞ� ðdðGÞ

a
2 þ DðGÞ

a
2ÞnDðGÞ

a
2 � n dðGÞ

a
2

and

Ma
1ðGÞ� n dðGÞ

a
2 þ nDðGÞ

a
2 � n dðGÞ

a
2 ¼ nDðGÞa:

Thus, the upper bound follows.

Let bi ¼ dGðuÞa; ai ¼ 1 and r ¼ dðGÞa; R ¼ DðGÞa. By
the Diaz–Metcalf inequality, we have
X

u2VðGÞ
dGðuÞ2a þ ðdðGÞDðGÞÞa

X

u2VðGÞ
1

�ðdðGÞa þ DðGÞaÞ
X

u2VðGÞ
dGðuÞa

and

Ma
1ðGÞ�

1

ðdðGÞa þ DðGÞaÞ
X

u2VðGÞ
dGðuÞ2a þ n

�
dðGÞDðGÞ

	a
2
4

3
5

� 1

ðdðGÞa þ DðGÞaÞ n dðGÞ2a þ n dðGÞaDðGÞa
h i

� 1

ðdðGÞa þ DðGÞaÞ n dðGÞ
a dðGÞa þ DðGÞa½ � ¼ n dðGÞa:

Thus, the lower bound follows.

Equality is attained if and only if G is regular. h

The following results are immediate from Theorem 4.

Corollary 2 For any graph G with n� 3 vertices and

a ¼ 2,

M2
1ðGÞ ¼ M1ðGÞ� nDðGÞ2:

Corollary 3 For any complete graph Kn with n� 3

vertices and a ¼ 2,

M2
1ðKnÞ ¼ nðn� 1Þ2:

Our next result gives lower and upper bounds for Ma
1ðGÞ

in terms of size m, minimum degree dðGÞ and maximum

degree DðGÞ of a graph G.

Theorem 5 Let G be a simple graph with n� 3 vertices

and m edges. Then, for all a� 0,

2m dðGÞa�1 �Ma
1ðGÞ� 2mDðGÞa�1:

Further, both left- and right-hand side equality holds if and

only if G is regular.

Proof Let f be a positive function defined on nonnegative

integers. Then,

XðGÞ ¼
X

u2VðGÞ
f ðdGðuÞÞ ¼

X

u2VðGÞ

X

uv2EðGÞ

f ðdGðuÞÞ
dGðuÞ

¼
X

uv2EðGÞ

f ðdGðuÞÞ
dGðuÞ

þ f ðdGðvÞÞ
dGðvÞ

� �
;

where X(G) is any degree-based topological index of a

graph G.

Defining f ðdGðuÞÞ ¼ ðdGðuÞÞa, we have

Ma
1ðGÞ ¼

X

uv2EðGÞ
ðdGðuÞÞa�1 þ ðdGðvÞÞa�1
h i

:

Since for all u 2 VðGÞ, dðGÞ� dGðuÞ�DðGÞ. Hence, we
have
X

uv2EðGÞ
2 dðGÞa�1 �Ma

1ðGÞ

2 m dðGÞa�1 �Ma
1ðGÞ

Equality is attained on both sides if and only if G is

regular. h

Now, to obtain another result for the lower and upper

bounds for Ma
1ðGÞ in terms of order n, minimum degree

dðGÞ and maximum degree DðGÞ of a graph G, we apply

the Polya–Szego inequality as follows.

Theorem 6 [21] Let a ¼ ða1; a2; . . .; anÞ and b ¼
ðb1; b2; . . .; bnÞ be two n-tuples of positive numbers. If
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0\c� ai �A\1 and 0\b� bi �B\1 for each

i 2 f1; 2; . . .; ng, then

Xn

i¼1

a2i �
Xn

i¼1

b2i �
ðcbþ ABÞ2

4cbAB

Xn

i¼1

aibi

 !2

:

The equality holds iff p ¼ n A
c



A
c þ B

b

� �
and q ¼

n: Bb



A
c þ B

b

� �
are integers and p of the numbers

a1; a2; . . .; an are equal to c and q of these numbers are

equal to A, and similarly if q of the corresponding numbers

bi are equal to B and and q of them are equal to b.

Theorem 7 For any (n, m)-connected graph G with n� 3

vertices and a� 0, we have

2n dðGÞ2a

dðGÞa þ DðGÞað Þ
DðGÞ
dðGÞ

� �a
2

�Ma
1ðGÞ

� n

4

DðGÞ
dðGÞ

� �a
2

dðGÞ
a
2 þ DðGÞ

a
2

� �2
:

Further, both left- and right-hand side equalities hold if

and only if G is regular.

Proof Let ai ¼ dGðuÞ
a
2 and bi ¼ 1 in the Polya–Szego

inequality. Clearly, c ¼ dðGÞ
a
2, A ¼ DðGÞ

a
2, b ¼ 1 and

B ¼ 1. We have

X

u2VðGÞ
dGðuÞa n�

dðGÞ
a
2 þ DðGÞ

a
2

� �

4 dðGÞ
a
2DðGÞ

a
2

X

u2VðGÞ
dGðuÞ

a
2

2

4

3

5
2

�
dðGÞ

a
2 þ DðGÞ

a
2

� �

4 dðGÞ
a
2DðGÞ

a
2

nDðGÞ
a
2

h i2
:

Since dGðuÞ
a
2 �DðGÞ

a
2 for all u 2 VðGÞ, we have

Ma
1ðGÞ�

dðGÞ
a
2 þ DðGÞ

a
2

� �

4 n dðGÞ
a
2DðGÞ

a
2

n2 DðGÞa
� �

� n

4

DðGÞ
dðGÞ

� �a
2

dðGÞ
a
2 þ DðGÞ

a
2

� �2
:

Thus, the upper bound follows.

Let ai ¼ dGðuÞa and bi ¼ 1 in the Polya–Szego inequal-

ity. Clearly, c ¼ dðGÞa, A ¼ DðGÞa, b ¼ 1 and B ¼ 1. We

have

Ma
1ðGÞ�

4 n ðdðGÞDðGÞÞa

dðGÞa þ DðGÞað Þ2
X

u2VðGÞ
dGðuÞ2a

�

Thus, the lower bound follows.

Equality is attained on both sides if and only if G is

regular. h

In order to prove our next result giving another upper

bound for Ma
1ðGÞ, this time in terms of the size m of the

graph G. We make use of the following well-known

majorization technique, [22].

Let a ¼ ða1; a2; . . .; anÞ and b ¼ ðb1; b2; . . .; bnÞ be two

non-increasing n-tuples of real numbers. Then, we say that

a is majorized by b denoted by a � b if

1. a1 þ a2 þ � � � þ ak � b1 þ b2 þ � � � þ bk for

1� k� n� 1

2. a1 þ a2 þ � � � þ an ¼ b1 þ b2 þ � � � þ bn.

Lemma 1 [23] Suppose a ¼ ða1; a2; . . .; anÞ and b ¼
ðb1; b2; . . .; bnÞ are two non-increasing n-tuples of real

numbers. If a � b, then for any convex function f,

Xn

j¼1

f ðajÞ�
Xn

j¼1

f ðbjÞ:

Theorem 8 For any (n, m)-connected graph G with n� 3

vertices and for all a[ 1 or a\0, we have

Ma
1ðGÞ� 2a ma:

Proof We prove this result by means of the majorization

technique. Clearly,
�
dGðu1Þ; dGðu2Þ; . . .; dGðunÞ

	
�

ð2m; 0; . . .; 0Þ and f ðxÞ ¼ xa is convex for all a[ 1 or

a\0 and x[ 0. By the above lemma, we have
�
dGðu1Þa þ dGðu2Þa þ � � � þ dGðunÞa

	

�ðð2mÞa þ 0þ � � � þ 0Þ
;

and hence,
X

u2VðGÞ
dGðuÞa �ð2mÞa:

Thus, the upper bound follows. h

Corollary 4 For any (n, m)-connected graph G with

n� 3 and a ¼ 2,

M2
1ðGÞ� 4m2:

To prove our next result, we make use of the following

definitions and observations:

A vertex v 2 VðTÞ is called a branching vertex of a tree

T, if degTðvÞ� 3. If degTðvÞ ¼ 1, the vertex v is named a

leaf (or a pendent vertex) of T. Further, the path with n

vertices, of which exactly two are leaves, is denoted by Pn,

and the star graph with exactly n� 1 leaves and one

branching vertex is denoted by Sn or K1;n�1 ; n� 2 vertices.

It is easy to see that every tree on n vertices has at least

two leaves and at most n�2
2

branching vertices.

Theorem 9 For any nontrivial tree T of order n with

a� 1,

Ma
1ðPnÞ�Ma

1ðTÞ�Ma
1ðSnÞ:

Proof We prove the result by using the majorization
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technique. Clearly, for the degree sequence of any tree T,

we have
�
dTðu1Þ; dTðu2Þ; . . .; dTðunÞ

	
� ðn� 1; 1; 1; . . .; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ðn�1Þ�times

Þ:

Let f ðxÞ ¼ xa. Clearly, f(x) is convex in ð0;1Þ. Then,
X

u2VðTÞ
dTðuÞa �ðn� 1Þa þ 1þ 1þ . . .þ 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ðn�1Þ�times

�ðn� 1Þ þ ðn� 1Þa:

But, for a tree, we have m ¼ n� 1; and therefore, we have

Ma
1ðTÞ�mþ ma: Thus, the upper bound follows.

Now, the degree sequence of any tree T satisfies
�
1; 2; 2; . . .2; 1

	
�
�
dTðu1Þ; dTðu2Þ; . . .; dTðunÞ

	
:

Therefore,

1a þ 2a þ � � � þ 2a þ 1a �
X

u2VðTÞ
dTðuÞa;

where f ðxÞ ¼ xa is convex for all a� 1. Hence,

Ma
1ðPnÞ ¼ 2þ ðn� 2Þ2a �Ma

1ðTÞ:

Thus, the lower bound follows. h

Now, we obtain some lower and upper bounds for

Ma
1ðGÞ in terms of the number of pendent vertices and

minimal non-pendent vertices of G.

Theorem 10 For any (n, m)-connected graph G with g-
pendent vertices, minimal non-pendent vertex degree d1ðGÞ
and a� 0,

gþ ðm� gÞ d1ðGÞa �Ma
1ðGÞ� gþ ðm� gÞDðGÞa:

Further, equality in both lower and upper bounds are

attained if and only if G is regular.

Proof For any a� 0, we have

Ma
1ðGÞ ¼

X

u2VðGÞ
½dGðuÞ�a

¼
X

u2VðGÞ;dGðuÞ¼1

1a þ
X

u2VðGÞ;dGðuÞ6¼1

½dGðuÞ�a

� gþ ðm� gÞDðGÞa:

Similarly,

Ma
1ðGÞ� gþ ðm� gÞ d1ðGÞa:

Hence, the desired result follows.

Further, the equality in both lower and upper bounds is

attained if and only if G is regular. h

Nordhaus and Gaddum [24] gave tight bounds on the

sum and product of the chromatic numbers of a graph and

its complement. Since then, such type of results have been

derived for several other graph invariants. Here, we derive

such a relation for Ma
1ðGÞ.

Theorem 11 For any (n, m)-connected graph G with

a� 2 and n� 4 vertices having a connected G, we have

1. 21�a n ðn� 1Þa �Ma
1ðGÞ þMa

1ðGÞ� n ðn� 1Þa,
2. n2 �Ma

1ðGÞ �Ma
1ðGÞ� n2ðn� 1Þ2a:

Proof

1. Since mþ m ¼ nðn�1Þ
2

, we have dGðuÞ þ dGðuÞ ¼ n� 1

and dGðvÞ þ dGðvÞ ¼ n� 1. Hence, we have

Ma
1ðGÞ þMa

1ðGÞ ¼
X

uv2EðGÞ
dGðuÞa�1 þ dGðvÞa�1

þ
X

uv62EðGÞ

dGðuÞ
a�1 þ dGðvÞ

a�1

�m
�
2ðn� 1Þa�1

�
þ m

�
2ðn� 1Þa�1

�

� 2ðmþ mÞ ðn� 1Þa�1:

Thus, the upper bound follows. By Theorem 1, we have

Ma
1ðGÞ� 2ama

na�1 and Ma
1ðGÞ�

2aðmÞa
na�1 . Therefore,

Ma
1ðGÞ þMa

1ðGÞ�
2a

na�1
ma þ ma½ �:

Since ma is convex for all a� 2, then by Jensen’s

inequality, we have

Ma
1ðGÞ þMa

1ðGÞ�
2a

na�1
2

mþ m

2

� �a

� 2aþ1

na�1

na ðn� 1Þa

22a
:

Thus, the lower bound follows.

2. Since 1� dðGÞ�DðGÞ� n� 1 and

1� dðGÞ�DðGÞ� n� 1 for both G and G are con-

nected with n� 4 vertices, by Theorem 4, we have the

desired results.

h

3 Line Graphs

The line graph L(G) is the graph with vertex set VðLðGÞÞ ¼
EðGÞ; and whose vertices correspond to the edges of

G with two vertices being adjacent if and only if the cor-

responding edges in G have a vertex in common. As

L(G) is defined on the edge set of a graph G, isolated

vertices of G, if there is any, play no role in L(G),

[8, 25, 26].

Ranjini et al. [27] obtained the first and second Zagreb

indices of the line graphs of the subdivision graphs. Here,

we obtain some lower and upper bounds for Ma
1ðLðGÞÞ in
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terms of the size m, minimum degree dðGÞ and maximum

degree DðGÞ of a graph G.

Theorem 12 Let G be a simple connected graph with

n� 3 vertices and m edges. Then, for all a� 0, we have

2a m
�
dðGÞ � 1

	a �Ma
1ðLðGÞÞ� 2a m

�
DðGÞ � 1

	a
:

Further, both left- and right-hand side equalities holds if

and only if G is regular.

Proof Let G be a simple connected (n, m)-graph with

a� 0. Then,

Ma
1ðLðGÞÞ ¼

X

uv2EðGÞ
dGðuÞ þ dGðvÞ � 2½ �a:

Since for all u; v 2 VðGÞ, dðGÞ� fdGðuÞ; dGðvÞg�DðGÞ,
we have
X

uv2EðGÞ
ðdðGÞ þ dðGÞ � 2Þa �Ma

1ðLðGÞÞ

�
X

uv2EðGÞ
ðDðGÞ þ DðGÞ � 2Þa

;

and therefore,

2a m
�
dðGÞ � 1

	a �Ma
1ðLðGÞÞ

Further, both left- and right-hand side equalities hold if and

only if G is regular. h

We now give our next result giving a lower bound for

Ma
1ðLðGÞÞ in terms of the size m and the first Zagreb index

M1ðGÞ.

Theorem 13 Let G be an (n, m)-connected graph with

n� 3 vertices. Then, for all a� 1, we have

Ma
1ðLðGÞÞ�

�
M1ðGÞ � 2m

	a

ma�1
:

Further, equality holds if and only if G is regular.

Proof Let G be a (n, m)-connected graph with n� 3

vertices and m edges. Clearly, jVðLðGÞÞj ¼ m and

jEðLðGÞÞj ¼ 1
2
M1ðGÞ � m. Hence, we have

Ma
1ðLðGÞÞ ¼

P
v2VðLðGÞÞ dLðGÞðvÞ

a
. For all a� 1 and x[ 0,

f ðxÞ ¼ xa is strictly convex. Hence, by Jensen’s inequality,

we have

Ma
1ðLðGÞÞ�m

X

u2VðLðGÞÞ

dLðGÞðuÞ
n

0
@

1
A

a

�m
1

m
2
� 1
2
M1ðGÞ � m

	� �a

�
�
M1ðGÞ � 2m

	a

ma�1
:

Further, equality holds if and only if G is regular. h

Corollary 5 Let G be an r-regular graph with n� 3

vertices. Then, for all a� 1, we have

Ma
1ðLðGÞÞ ¼ 2a�1n r ðr � 1Þa:

Let G be an (n, m)-connected graph. Then, G ffi LðGÞ if
and only if G ffi Cn; n� 3. Hence, we have

Corollary 6 For any cycle Cn with n� 3 vertices,

Ma
1ðCnÞ ¼ Ma

1ðLðCnÞÞ ¼ n 2a:

The following is an inequality for Ma
1ðLðGÞÞ in terms of

Ma�i
1 ðLðGÞÞ’s.

Theorem 14 For any (n, m)-connected graph G with

n� 3 vertices and a� 0,

Ma
1ðLðGÞÞ�

Xa

i¼0

a
i

� �
ð�1Þi 2i m�aþiþ1ðMa�i

1 ðGÞÞ:

Further, equality holds if and only if G is regular.

Proof Let G be a (n, m)-connected graph with n� 3 and

a� 0. Then,

Ma
1ðLðGÞÞ ¼

X

uv2EðGÞ
½dGðuÞ þ dGðvÞ � 2�a

¼
Xa

i¼0

a
i

� �
ð�1Þi ½dGðuÞ þ dGðvÞ�a�i

2i

¼
Xa

i¼0

a
i

� �
ð�1Þi 2i

X

uv2EðGÞ
½dGðuÞ þ dGðvÞ�a�i

¼ð�1Þa 2a m

þ
Xa�1

i¼0

a
i

� �
ð�1Þi 2i

X

uv2EðGÞ
½dGðuÞ þ dGðvÞ�a�i:

By Jensen’s inequality as xa is a convex function for a� 1

and x[ 0, we have

Ma
1ðLðGÞÞ� ð�1Þa 2a m

þ
Xa�1

i¼0

a
i

� �
ð�1Þi 2i m

X

uv2EðGÞ

dGðuÞ þ dGðvÞ
m

� a�i

�ð�1Þa 2a m

þ
Xa�1

i¼0

a
i

� �
ð�1Þi 2i mi�aþ1½Ma�1

1 ðGÞ�

�
Xa

i¼0

a
i

� �
ð�1Þi 2i m�aþiþ1ðMa�i

1 ðGÞÞ:

Further, equality holds if and only if G is regular. h
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Corollary 7 For any connected graph G with n� 3

vertices and a ¼ 2, we have

M2
1ðLðGÞÞ ¼ M1ðLðGÞÞ�

ðM1ðGÞÞ2

m
�M1ðGÞ þ 4m:

Theorem 15 Let G be a r-regular connected graph with

a� 0. Then,

Ma
1ðLðGÞÞ ¼

Xa

i¼0

Xa�i

j¼0

a
i

� � a� i

j

� �
ð�1Þið2Þi�1 Ma�iþ1

1 ðGÞ:

Proof Let G be an r-regular connected graph with a� 0.

Then,

Ma
1ðLðGÞÞ ¼

X

uv2EðGÞ
½dGðuÞ þ dGðvÞ � 2�a

¼
Xa

i¼0

a
i

� �
ð�1Þi 2i

X

uv2EðGÞ
½dGðuÞ þ dGðvÞ�a�i

¼
Xa

i¼0

a
i

� �
ð�1Þi 2i

Xa�i

j¼0

a� i

j

� �

X

uv2EðGÞ
ðdGðuÞÞa�i�j ðdGðvÞÞ j:

Since G is an r-regular connected graph as

dGðuÞ ¼ dGðvÞ ¼ r, we have

Ma
1ðLðGÞÞ ¼

Xa

i¼0

a
i

� �
ð�1Þi 2i

Xa�i

j¼0

a� i

j

� � X

uv2EðGÞ
ðdGðuÞÞa�i

¼
Xa

i¼0

Xa�i

j¼0

a
i

� �
ð�1Þi 2i a� i

j

� �
1

2

X

u2VðGÞ
ðdGðuÞÞa�iþ1

¼
Xa

i¼0

Xa�i

j¼0

a
i

� � a� i

j

� �
ð�1Þi2i�1 Ma�iþ1

1 ðGÞ:

h

Corollary 8 Let G be an r-regular connected graph with

a ¼ 2. Then,

M2
1ðLðGÞÞ ¼ M1ðLðGÞÞ

¼
X2

i¼0

X2�i

j¼0

2

i

� �
2� i

j

� �
ð�1Þi2i�1 M3�i

1 ðGÞ

¼ 2nrðr � 1Þ2:

In order to prove our next result on Ma
1ðLðGÞÞ, we make

use of the following trinomial theorem. For more details,

we refer to [28].

Theorem 16 Let x, y, z be three real numbers and n be a

whole number. Then,

ðxþ yþ zÞn ¼
X

i; j; k� 0;iþjþk¼n

n!

i! j! k!
xiy jzk:

Theorem 17 Let G be an r-regular connected graph and

let a be a whole number. Then,

Ma
1ðLðGÞÞ ¼

1

2

X

i; j; k� 0;iþjþk¼a

a!
i! j! k!

ð�2Þk Miþjþ1
1 ðGÞ:

Proof Let G be an r-regular connected graph and let a be

a whole number. Then,

Ma
1ðLðGÞÞ ¼

X

uv2EðGÞ
½dGðuÞ þ dGðvÞ � 2�a

¼
X

uv2EðGÞ
X

i; j; k� 0;iþjþk¼a

a!
i! j! k!

ðdGðuÞÞi ðdGðvÞÞ j ð�2Þk

¼
X

i; j; k� 0;iþjþk¼a

a!
i! j! k!

ð�2Þk

X

uv2EðGÞ
ðdGðuÞÞi ðdGðvÞÞ j:

Since G is r-regular, dGðuÞ ¼ dGðvÞ ¼ r, and hence, we

have

Ma
1ðLðGÞÞ ¼

X

i; j; k� 0;iþjþk¼a

a!
i! j! k!

ð�2Þk 1
2

X

u2VðGÞ
½dGðuÞ�iþjþ1

¼ 1

2

X

i; j; k� 0;iþjþk¼a

a!
i! j! k!

ð�2Þk Miþjþ1
1 ðGÞ:

h

The following results are immediate from the above

theorem.

Corollary 9 For any r-regular connected graph G with

a ¼ 2, we have

M2
1ðLðGÞÞ ¼ M1ðLðGÞÞ ¼

1

2

X

i; j; k� 0;iþjþk¼2

2!

i! j! k!
ð�2Þk Miþjþ1

1 ðGÞ

¼2nrðr � 1Þ2:

Corollary 10 Let G be an r-regular connected graph and

let a be a whole number. Then,

1. M2
1ðLðGÞÞ ¼ 1

2
M2

1ðGÞ for i ¼ 2; j ¼ 0; k ¼ 0 or

i ¼ 0; j ¼ 2; k ¼ 0,

2. M0
1ðLðGÞÞ ¼ 1

2
M0

1ðGÞ ¼ n for i ¼ 0; j ¼ 0; k ¼ 2,

3. M1
1ðLðGÞÞ ¼ �2M1

1ðGÞ ¼ m for i ¼ 1; j ¼ 0; k ¼ 1 or

i ¼ 0; j ¼ 1; k ¼ 1,

4. M2
1ðLðGÞÞ ¼ M2

1ðGÞ ¼ n for i ¼ 1; j ¼ 1; k ¼ 0.

Theorem 18 Let Kr;s be a complete bipartite graph with

1� r� s, and let a be a whole number. Then,
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Ma
1ðLðKr;sÞÞ ¼

1

2

X

i; j; k� 0;iþjþk¼a

a!
i! j! k!

ð�2Þk riþ1 � sjþ1:

Proof Proof is similar to that of previous theorem. h

The following results are immediate from the above

theorem.

Corollary 11 Let Kr;s be a complete bipartite graph with

1� r� s and let a ¼ 2. Then,

M2
1ðLðKr;sÞÞ ¼ rsðr þ s� 2Þ2:

Corollary 12 Let G be an r-regular connected graph and

a be a whole number. Then, the sum of all coefficients of

Miþjþ1
1 ðGÞ in the expansion of Ma

1ðLðGÞÞ is equal to zero.

Corollary 13 Let G be an r-regular connected graph and

a be a whole number. Then, the number of terms in the

expansion of Ma
1ðLðGÞÞ is aþ2

2

� 	
:

Let d1ðGÞ be the minimal degree of non-pendant ver-

tices. Now we obtain lower and upper bounds for

Ma
1ðLðGÞÞ in terms of the number of pendent vertices and

d1ðGÞ.

Theorem 19 For any (n, m)-connected graph G with g
pendent vertices and minimal non-pendant vertex degree

d1ðGÞ,
ðd1ðGÞ � 1Þa gþ ðm� gÞ2a½ �

�Ma
1ðLðGÞÞ� ðDðGÞ � 1Þa gþ ðm� gÞ2a½ �:

Proof For any a� 0, we have

Ma
1ðLðGÞÞ ¼

X

uv2EðGÞ
½dGðuÞ þ dGðvÞ � 2�a

¼
X

uv2EðGÞ;dGðuÞ¼1;dGðvÞ6¼1

½dGðvÞ � 1�a

þ
X

uv2EðGÞ;dGðuÞ6¼1;dGðvÞ6¼1

½dGðuÞ þ dGðvÞ � 2�a

� gðDðGÞ � 1Þa þ ðm� gÞð2DðGÞ � 2Þa:

Thus, the upper bound follows. Similarly,

Ma
1ðLðGÞÞ� ðd1ðGÞ � 1Þa gþ ðm� gÞ2a½ �:

Hence, the desired result follows. h

Remark 1 The bounds in the above theorem are attained

if and only if dGðuÞ ¼ dGðvÞ ¼ DðGÞ ¼ d1ðGÞ for each

uv 2 EðGÞ with dGðuÞ 6¼ 1, dGðvÞ 6¼ 1 and dGðvÞ ¼
DðGÞ ¼ d1ðGÞ for each uv 2 EðGÞ with dGðuÞ ¼ 1.

4 Jump Graph

The complement of the line graph is called the jump graph

J(G) of a graph G, i.e., JðGÞ ¼ LðGÞ. For more details, we

refer to [29, 30].

Theorem 20 For an (n, m)-connected graph G with n� 4

and a� 0, we have

Ma
1ðJðGÞÞ�

Xa

i¼0

a
i

� �
ð�1Þi ðm� 1Þi Ma�i

1 ðLðGÞÞ:

Proof Let G be an (n, m)-connected graph with n� 4 and

a� 0. Then,

Ma
1ðJðGÞÞ ¼

X

u2VðJðGÞÞ
½dJðGÞðuÞ�a

¼
X

u2VðLðGÞÞ
ðm� 1Þ � dLðGÞðuÞ
� �a

;

since dLðGÞðuÞ þ dJðGÞðuÞ ¼ m� 1: Hence,

Ma
1ðJðGÞÞ ¼

Xa

i¼0

a
i

� �
ð�1Þi ðm� 1Þi

X

u2VðLðGÞÞ
½dLðGÞðuÞ�a�i

¼
Xa

i¼0

a
i

� �
ð�1Þi ðm� 1Þi Ma�i

1 ðLðGÞÞ:

h

By the above result, we reach to the following results.

Corollary 14 For any path graph Pn with n� 5 vertices

and a ¼ 2, we have

M2
1ðJðPnÞÞ ¼ n3 � 9n2 þ 28n� 30:

Theorem 21 Let G be a connected r-regular graph with

a� 0. Then,

Ma
1ðJðGÞÞ

¼ nr
Xa

i¼0

a
i

� �
ð�1Þi 2a�2i�1 ðr � 1Þa�i ðnr � 2Þi:

Proof Let G be a connected r-regular graph with a� 0.

Then,

Ma
1ðJðGÞÞ ¼

Xa

i¼0

a
i

� �
ð�1Þi ðm� 1Þi nr

2
ð2r � 2Þa�i

¼
Xa

i¼0

a
i

� �
ð�1Þi nr

2
� 1

� �i nr
2

2a�i ðr � 1Þa�i

¼
Xa

i¼0

a
i

� �
ð�1Þi ðnr � 2Þi

2i
nr

2
2a�i ðr � 1Þa�i

¼nr
Xa

i¼0

a
i

� �
ð�1Þi 2a�2i�1 ðr � 1Þa�i ðnr � 2Þi:

h
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By the above results, we obtain the followings.

Corollary 15 For any complete graph Kn with n� 3

vertices and a ¼ 2, we have

M2
1ðJðKnÞÞ ¼

nðn� 1Þ
8

n4 � 10n3 þ 37n2 � 60nþ 36
� �

:

Corollary 16 For any cycle Cn with n� 3 vertices and

a ¼ 2, we have

M2
1ðJðCnÞÞ ¼ n3 � 6n2 þ 9n:

Corollary 17 For any complete bipartite graph Kr;s with

2� r� s and a ¼ 2, we have

M2
1ðJðKr;sÞÞ ¼ rs

Xa

i¼0

a
i

� �
ð�1Þi ðrs� 1Þi ðr þ s� 2Þa�i:

5 Iterated Line Graph

If G is a graph and LðGÞ ¼ L1ðGÞ is its line graph, then

LkðGÞ, k ¼ 2; 3; . . .; defined recursively as LkðGÞ ¼
LðLk�1ðGÞÞ; are named as the iterated line graphs of G. For

more details, we refer to [31–33].

Theorem 22 For any complete bipartite graph Kr;s with

1� r� s and a� 0, we have

Ma
1ðLkðKr;sÞÞ ¼

rsðr þ s� 2Þa for k ¼ 1;

rs
Qk�2

i¼0

�
2i�1ðr þ s� 2Þ � 2i þ 1

	h i

� 2k�1ðr þ s� 2Þ � 2k þ 2
� 	a

for k[ 1:

8
>>>><

>>>>:

Proof Let Kr;s be a complete bipartite graph with

1� r� s and a� 0. By combinatorial methods, we find

that jVðLðKr;sÞÞj ¼ rs and jEðLðKr;sÞÞj ¼ rs
2
ðr þ s� 2Þ.

Since the kth-iterated line graph of Kr;s is a

ð2k�1ðr þ s� 2Þ � 2k þ 2Þ-regular graph, we also obtain

VðLkðKr;sÞÞ ¼
rs for k ¼ 1;

rs
Qk�2

i¼0

�
2i�1ðr þ s� 2Þ � 2i þ 1

	h i
for k[ 1

8
><

>:

and

EðLkðKr;sÞÞ ¼

rs

2
ðr þ s� 2Þ for k ¼ 1;

rs

2k

Yk�1

i¼0

�
2iðr þ s� 2Þ � 2i þ 1

	
" #

for k[ 1

8
>>>><

>>>>:

Therefore, Ma
1ðLkðKr;sÞÞ ¼

P
u2VðLkðKr;sÞÞ dLkðKr;sÞðuÞ

h ia
.

Hence, the desired result follows. h

By the above results, we reach to the following.

Corollary 18 For any star graph K1;s with s� 1 and

a� 2,

Ma
1ðLkðK1;sÞÞ ¼

sðs� 1Þa for k ¼ 1;

s
Qk�2

i¼0

�
2i�1ðs� 1Þ � 2i þ 1

	h i

� 2k�1ðs� 1Þ � 2k þ 2
� 	a

for k[ 1:

8
>>>><

>>>>:

Theorem 23 Let G be a connected r-regular graph with

a� 0 and k� 1. Then,

Ma
1ðLkðGÞÞ ¼ n

Yk�1

i¼0

�
2i�1r � 2i þ 1

	
" #

2kðr � 2Þ þ 2
� 	a

:

Proof Let G be a connected r-regular graph with a� 0

and k� 1. Then,

Ma
1ðLkðGÞÞ ¼

X

u2VðLkðGÞÞ
dLkðGÞðuÞ
� �a

:

For a connected r-regular graph G with jVðGÞj ¼ n, we

have

jVðLkðGÞÞj ¼ n
Yk�1

i¼0

�
2i�1r � 2i þ 1

	
;

and

jEðLkðGÞÞj ¼ n

2kþ1

Yk�1

i¼0

�
2ir � 2iþ1 þ 2

	
:

Further, the kth-iterated line graph of a connected r-regular

graph is
�
2kr � 2kþ1 þ 2

	
-regular graph. Therefore,

Ma
1ðLkðGÞÞ ¼

X

u2VðLkðGÞÞ
dLkðGÞðuÞ
� �a

¼
X

u2VðLkðGÞÞ
2k r � 2kþ1 þ 2
� �a

¼
X

u2VðLkðGÞÞ
2k ðr � 2Þ þ 2
� �a

¼ n
Yk�1

i¼0

�
2i�1r � 2i þ 1

	
" #

2kðr � 2Þ þ 2
� 	a

:

h

By the above results, we finally obtain the following

results.

Corollary 19 For any cycle Cn with n� 3 and a� 2, we

have

Ma
1ðLkðCnÞÞ ¼ n 2a:

Corollary 20 For any complete graph Kn with n� 3 and

a� 2, we have
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Ma
1ðLkðKnÞÞ ¼ n

Yk�1

i¼0

�
2i�1ðn� 3Þ þ 1

	
" #

2kðn� 3Þ þ 2
� 	a

:
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