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Abstract. The effects of cross-diffusion on linear and weak nonlinear stability of double diffusive convection in an electrically
conducting horizontal fluid layer with an imposed vertical magnetic field are investigated. The criterion for the onset of
stationary and oscillatory convection is obtained analytically by performing the linear instability analysis. Several noteworthy
departures from those of doubly diffusive fluid systems are unveiled under certain parametric conditions. It is shown that
(i) disconnected closed convex oscillatory neutral curve separated from the stationary neutral curve exists requiring three
critical thermal Rayleigh numbers to completely specify the linear instability criteria instead of a usual single critical value,
(ii) an electrically conducting fluid layer in the presence of magnetic field can be destabilized by stable solute concentration
gradient, and (iii) a doubly diffusive conducting fluid layer can be destabilized in the presence of magnetic field. It is
demonstrated that small variations in the off-diagonal elements enforce discrepancies in the instability criteria. A weak
nonlinear stationary stability analysis has been performed using a perturbation method and a cubic Landau equation is
derived and the stability of bifurcating equilibrium solution is discussed. It is found that subcritical bifurcation occurs
depending on the choices of governing parameters.
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1. Introduction

Double diffusive convection in a fluid layer has been studied extensively both theoretically and exper-
imentally due to its wide range of applications in various fields such as solidification of molten alloys,
oceanography, high quality crystal production, astrophysics, geothermally heated lakes and magmas to
mention a few. When compared to single component fluid systems, a variety of interesting convective
phenomena can occur in double diffusive fluid systems wherein the instability sets in even when the basic
state is hydrostatically stable. The instability sets in either via fingering or diffusive regime. Excellent
reviews on this topic are reported by Tuner [1], Huppert and Turner [2] and Platten and Legros [3].

The gradient of one component contributing to the flux of the other component is recognizable in
double diffusive fluid systems and such diffusion transport phenomena are commonly referred to as cross-
diffusion. The following linear combination of driving gradients for heat ( �JT ) and solute concentration
( �JS) fluxes hold when the system is not too far from the thermodynamic equilibrium

�JT = − (D11∇T + D12∇S) (1)
�JS = − (D21∇T + D22∇S) (2)

where T is the temperature, S is the solute concentration, D11 is the thermal diffusivity and D22 is
the solute analog of D11, while D12 and D21 are the cross diffusion diffusivities called Dufour and Soret
coefficients, respectively. Since flux contributions from the gradient of each component are significant,
both cross-diffusive terms are to be retained. It is observed that, in some instances, the character of the
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instability mechanism itself differs due to the presence of cross-diffusion terms. For some parameter com-
binations, predicted finger instability when cross-diffusion is not taken into account becomes a diffusive
instability even when the cross diffusion coefficients are two orders of magnitude smaller than the main
diagonal elements of the diffusivity matrix.

There exists gargantuan literature on double diffusive convection with Soret and/or Dufour effects.
An elementary transition state approach was used by Mortimer and Eyring [4] to obtain a simple model
theory for the Soret and Dufour effects. Both Soret and Dufour effects on thermosolutal convection was
investigated by Knobloch [5] and showed that the equations are identical to the thermosolutal problem
except for a relation between the thermal and solute Rayleigh numbers. An in-depth study of double
diffusive convection caused by molecular diffusion in a solute-solute pair for which both Soret and Dufour
effects are important was carried out by McDougall [6]. The stability of gravity modulated double cross
diffusive fluid layer was taken up by Terrones et al. [7], while a priori bounds and structural stability for
double diffusive convection incorporating the Soret effect was considered by Straughan and Hutter [8].
The simultaneous influence of Soret and Dufour effects on linear and nonlinear double diffusive convection
in a layer of couple stress fluid was studied by Malashetty et al. [9].

Another deeply studied classical example of double diffusive convection is thermal convection in an
electrically conducting fluid layer in the presence of a uniform vertical magnetic field, referred to as
magnetoconvection. This is a classical problem and has been studied extensively because of its applications
in astrophysical and geophysical problems as well as in many engineering applications [10–17]. In general,
it has been shown that the presence of magnetic field is to introduce oscillatory convection as the preferred
mode of instability if the magnetic diffusivity is less than the fluid viscosity and the Chandrasekhar number
exceeds a threshold value. Moreover, the magnetic field is found to instill stabilizing effect on stationary
and oscillatory convection. Harfash and Straughan [18] studied the effect of vertical magnetic field on
convective movement of a reacting solute in a viscous incompressible fluid occupying a plane layer. The
effect of vertical throughflow on the onset of magnetoconvection was considered by Reza and Gupta [19].
In his review article on magnetoconvection, Stein [20] emphasized the need for future studies pertaining
to this field.

The fluid dynamical systems encountered in geophysics and astrophysics often involves compositional
gradients in addition to gradients in magnetic field, angular momentum and temperature. As a result,
multidiffusive effects may be expected but it becomes a formidable task to make a general study encom-
passing all these effects. To simplify the problem, particular combinations of effects have been isolated
to make the studies manageable. One such study that has been undertaken in the past is the interaction
between the magnetic field and double diffusive convection, known as double diffusive magnetoconvec-
tion. Lortz [21] was the first to study finite amplitude steady thermohaline magnetoconvection with the
object of clarifying some of the mathematical aspects of the so-called relative stability criterion of Malkus
and Veronis [22] and provided the behaviour of steady solutions. Rudraiah and Shivakumara [23] studied
linear and nonlinear double diffusive magnetoconvection and the vigor of convection was analyzed by
quantizing heat and mass transfer in terms of Nusselt numbers. It was further displayed by Rudraiah
and Shivakumara [24] that a doubly diffusive conducting fluid layer can be destabilized with an imposed
magnetic field and with the addition of a bottom-heavy solute gradient. In his review article, Rudraiah
[25] principally dealt with the interaction between double-diffusive convection and an externally imposed
vertical magnetic field in a Boussinesq fluid. Later, Shivakumara [26] showed the existence of disconnected
oscillatory neutral curves indicating the requirement of three critical thermal Rayleigh numbers to specify
the linear stability criteria of double diffusive magnetoconvection. Prakash et al. [27] mathematically es-
tablished that oscillatory motions of growing amplitude in an initially bottom-heavy configuration cannot
be manifested in magneto-hydrodynamic triply diffusive convection problem, while the onset of convection
in a multicomponent fluid layer in the presence of a uniform magnetic field was analyzed by Prakash et
al. [28]. Recently, Naveen Kumar et al. [29] investigated linear and nonlinear stability of double diffusive
convection in an electrically conducting couple stress fluid layer in the presence of a uniform vertical
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Fig. 1. Physical configuration

magnetic field. They showed that some of the unusual results observed in the case of Newtonian fluids
will carry over to the electrically conducting couple stress fluids as well.

In all the aforementioned investigations, the effects of cross-diffusion (Soret and Dufour effects) are
not considered despite their occurrence in noticeable magnitude and their decisive influence on the nature
of convective instability. In this context, the study turns out to be of paramount importance not only
in astrophysical and geophysical applications but also finds its relevance in crystal growth techniques
wherein unwanted convection with compositional gradients has to be controlled to enhance crystal purity.
These unavoidable convective motions can be effectively controlled with the help of magnetic field which
influence convection via the Lorentz force to inhibit the motion perpendicular to the field. As a result,
the overturning motions that are essential for convection are suppressed and convective energy transport
from the interior to the surface is reduced. Under the circumstances, it will be intriguing to emphasize the
impact of cross diffusion terms on linear and nonlinear double diffusive magnetoconvection and to examine
their role on some of the novel results explored in their absence. We have initiated this fundamental
study in the present paper by considering both Soret and Dufour effects. The linear instability problem
is investigated using normal mode analysis and the condition for stationary and oscillatory convection is
delineated. A weak nonlinear stationary stability analysis is carried out based on perturbation method
and the stability of bifurcating solution is analyzed by deriving a cubic Landau equation.

2. Mathematical formulation

The schematic configuration of the problem under consideration is shown in Fig. 1. It consists of an
incompressible electrically conducting binary fluid layer of depth d in the presence of a uniform, externally
imposed magnetic field �H = H0k̂, where k̂ is the unit vector in the vertical direction. The temperature T
and the solute concentration S are taken as two diffusing components with cross diffusion contributions
to the fluxes. A Cartesian coordinate system is chosen with the origin at the bottom of the fluid layer
and the z-axis is pointing vertically upward. The gravity is acting in the negative vertical direction. On
the bottom boundary z = 0, T is maintained at T0 + ΔT and S at S0 + ΔS while on the top boundary
z = d, they are maintained at T0 and S0, where ΔT, ΔS > 0.

The Alfvén speed is much smaller than the sound speed and the continuity equation is

∇ · �q = 0 (3)

where �q is the velocity. The fluid density depends on both temperature, solute concentration and also, in
general, on the pressure. For sufficiently small isobaric changes in T and S the fluid obeys an Oberbeck-
Boussinesq equation of state wherein the density depends linearly on temperature and solute concentration
and we have approximately (Veronis [30])

ρ = ρ0[1 − βT (T − T0) + βS(S − S0)] (4)

where βT = − (∂ρ/∂T )S,p/ρ0 is the isobaric thermal expansion coefficient, βS = (∂ρ/∂S)T,p/ρ0 is the
isobaric solute concentration expansion coefficient, p is the pressure and ρ0 is the fluid density at reference
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temperature T0 and solute concentration S0. The validity of the Oberbeck–Boussinesq approximation has
been proved by Rajagopal et al. [31]. Fluctuations in fluid density affect only the buoyancy term in the
equation of motion, which then takes the form [10,23]

ρ0

{
∂ �q
∂t

+ (�q · ∇)�q
}

= −∇P + ρ�g + μ( �H · ∇) �H + μf∇2 �q (5)

where �His the magnetic field, P = p + μH2/2 is the total pressure, �g is the gravitational acceleration, μ
is the magnetic permeability and μf is the fluid viscosity.

The magnetic field satisfies the equation

∇ · �H = 0 (6)

and then the evolution of the magnetic field is governed by the induction equation

∂ �H
∂t

= ∇ × (�q × �H) + νm∇2 �H (7)

where νm is the magnetic viscosity assumed to be uniform.
Following Fourier’s law and Fick’s law, the diffusion equations are, respectively

∂T

∂t
+ (�q · ∇)T + ∇ · �JT = 0 (8)

∂S

∂t
+ (�q · ∇)S + ∇ · �JS = 0. (9)

On using Eqs. (1) and (2), Eqs. (8) and (9), can be written in the matrix form{
∂

∂t
+ (�q · ∇)

} [
T
S

]
=

[
D11 D12

D21 D22

] [∇2T
∇2S

]
. (10a,b)

The basic state is steady and quiescent, and the basic solution whose stability is under investigation
is

�qb = 0, �Hb = H0k̂, Tb = T0 + ΔT
(
1 − z

d

)
, Sb = S0 + ΔS

(
1 − z

d

)

Pb = P0 − ρ0g

{
z − βT ΔT

(
z − z2

2d

)
+ βSΔS

(
z − z2

2d

)}
(11)

where the subscript b denotes the basic state and P0 is the pressure at z = 0. To examine the stability of
the above basic state solution, the variables are perturbed in the form

�q = �qb + �q′, �H = �Hb + �H ′, T = Tb + T ′, S = Sb + S′, P = Pb + P ′, ρ = ρb + ρ′ (12)

where �q′, �H ′, T ′, S′, P ′ and ρ′ are the perturbed velocity, magnetic field, temperature, solute concen-
tration, pressure and density, respectively. Substituting Eq. (12) into the governing equations, we obtain
(after neglecting the primes for simplicity)

∇ · �q = 0 (13)

ρ0

{
∂ �q
∂t

+ (�q · ∇)�q
}

= −∇P − (βT T − βSS)�g + μH0
∂ �H
∂z

+ μ( �H · ∇) �H + μf∇2 �q (14)

{
∂

∂t
+ (�q · ∇)

} [
T
S

]
=

[
ΔT
ΔS

]
w

d
+

[
D11 D12

D21 D22

] [∇2T
∇2S

]
(15a,b)

∇ · �H = 0 (16)

∂ �H
∂t

= ∇ × (�q × �H) + ( �H0 · ∇)�q + νm∇2 �H. (17)
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Because of the one dimensionality of the basic state and the horizontal isotropy of the problem, the
analysis is restricted to two-dimensional motions and the stream functions are introduced in the form

�q =
(

∂ψ

∂z
, 0 , −∂ψ

∂x

)
, (18)

�H =
(

∂A

∂z
, 0 , −∂A

∂x

)
(19)

where ψ(x, z, t) is the velocity stream function and A(x, z, t) is the magnetic field stream function. Elim-
inating the pressure term from Eq. (14) by cross differentiation and non-dimensionalizing the quantities
using d, d2/D11, D11, νD11/βT gd3, νD11/βSgd3 and H0/d as the units of length, time, velocity stream
function, temperature, solute concentration and magnetic stream function, respectively, the resulting
stability equations can then be written in the operator form

(L1 + L2)Ψ =
[

1
PrJ

(
ψ,∇2ψ

)
, −RmJ

(
A,∇2A

)
, J (ψ, T ) , J (ψ, S) , J (ψ,A)

]t (20)

where Ψ =
[
ψ, T, S, A

]t, J(· , ·) is the Jacobian, L1 and L2 are the linear differential operators given
by

L1 =

⎡
⎢⎢⎣

1
Pr

∂
∂t∇2 0 0 0
0 ∂

∂t 0 0
0 0 ∂

∂t 0
0 0 0 ∂

∂t

⎤
⎥⎥⎦ ,L2 =

⎡
⎢⎢⎣

−∇4 ∂
∂x − ∂

∂x −Rm
∂
∂z ∇2

RT
∂
∂x −τ11∇2 −τ12∇2 0

RS
∂
∂x −τ21∇2 −τ22∇2 0

− ∂
∂z 0 0 −τm∇2

⎤
⎥⎥⎦ . (21)

Here, RT = gβT d3ΔT/νD11 is the thermal Rayleigh number, RS = βSgd3ΔS/νD11is the solute
Rayleigh number, Q = μH2

0d2/ρ0ννm is the Chandrasekhar number, Pr = ν/D11is the Prandtl number,
τm = νm/D11 is the ratio of diffusivities, τ12 = βT D12/βSD11 is the Dufour number, τ21 = βSD21/βT D11

is the Soret number, τ11 = 1 and τ22 = D22/D11 is the ratio of diffusivities. We note that Rm(= Qτm) is
like thermal Rayleigh number has the product νD11 in the denominator and independent of νm. Thus,
the problem considered can be identified as a triply diffusive convection problem with magnetic field as
a third diffusing component.

We confine ourselves to the problem with stress free surfaces, which are considered to be flat and
perfect conductors of heat and solute concentration. Also, the tangential component of the magnetic field
is continuous across the boundaries. The required boundary conditions are [13]

ψ =
∂2ψ

∂z2
= T = S =

∂A

∂z
= 0 at z = 0, 1. (22)

3. Linear instability analysis

We neglect the nonlinear terms in Eq. (21) and assume the solution satisfying Eq.(22) in the form

[ψ, T, S] = [B1 sin(αx), B2 cos(αx), B3 cos(αx)]eσ t sin(πz), A = B4 sin(αx) cos(πz) (23)

where α is the horizontal wave number, σ is the growth term and B1 −B4 are constants. Substituting
Eq. (23) into the linearized version of Eq. (21), we obtain a system of algebraic equations which can be
written in the following matrix form⎡

⎢⎢⎣
σ δ + δ2Pr αPr −αPr π δPrRm

αRT σ + δ τ11 δ τ12 0
αRS δ τ21 σ + δ τ22 0
−π 0 0 σ + δ τm

⎤
⎥⎥⎦

⎡
⎢⎢⎣

B1

B2

B3

B4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ (24)
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where δ = α2 + π2. A non-trivial solution to the above system of equations exists if and only if∣∣∣∣∣∣∣∣

σ δ + δ2Pr αPr −αPr π δPrRm

αRT σ + δ τ11 δ τ12 0
αRS δ τ21 σ + δ τ22 0
−π 0 0 σ + δ τm

∣∣∣∣∣∣∣∣
= 0. (25)

For neutral solutions, we put σ = iω in Eq. (25) and obtain an expression for RT , after clearing the
complex quantities from the denominator, in the form

RT =
1

M3
(M1 + iωδ M2) (26)

where

M1 =
(
δ2τ2

m + ω2
) [

Pr
{
a4δ

2
(
a3α

2RS + a2δ
3
)

+
(
α2RS + a5δ

3
)
ω2

} − δ ω2
[
δ2 (a3τ21 + a4τ22) + ω2

]]
+Prπ2δRm

[
a2a4δ

4τm + δ2 (a3τ21 + a4τ22 + a5τm) ω2 + ω4
]

M2 =
(
δ2τ2

m + ω2
) {

δ
(
a2 a4δ

4 + a5 ω2
)

+ Pr
(
α2RS (a4 − a3) + δ2 (a3τ21 + a4τ22) + δ ω2

)}
+Prπ2δRm

[
δ2 (a3τ21τm + a4τ22τm − a2a4) + (τm − a5) ω2

]
M3 = α2Pr

(
δ2τ2

m + ω2
) (

a2
4 δ2 + ω2

)
with

b1 = δ; b2 = δ2 [Pr + τm + a1] ; b3 = δ3 (a2 + a1τm) + α2Pr (RS − RT ) + π2PrδRm + δ3Pr (a1 + τm)
b4 = a2δ

4τm + Prδ
[
α2RS (a3 + τm) − α2RT (a4 + τm) + δ

(
a1π

2Rm + δ2 (a2 + a1τm)
)]

b5 = Prδ2
[
a2 π2δRm +

(
a3α

2RS − a4α
2RT + a2δ

3
)
τm

]
a1 = τ11 + τ22; a2 = τ11τ22 − τ12τ21; a3 = τ11 + τ12; a4 = τ22 + τ21; a5 = τ11 − τ21.

The thermal Rayleigh number RT being a physical quantity, it implies either ω = 0 or M2 = 0
in Eq. (26). The condition ω = 0 corresponds to stationary convection and the case M2 = 0(ω �= 0)
corresponds to oscillatory convection.

3.1. Stationary convection (ω = 0)

The stationary onset occurs at RT = Rs
T , where

Rs
T =

a3

a4
RS +

a2

a4

[
δ3

α2
+

Qπ2δ

α2

]
. (27)

The above equation indicates that the cross-diffusion terms influence the stationary onset. The min-
imum value of Rs

T can be found by setting the derivative of Eq. (27) with respect to α equal to zero.
Then, we get an expression for the critical wave number αc as

2α6
c + 3π2α4

c − π4
(
Q + π2

)
= 0. (28)

It is worth noting that αc is independent of not only additional diffusing component but also cross-
diffusion terms and coincides with that of Chandrasekhar [10]. The critical value of Rs

T is denoted by Rs
Tc

and determined numerically from Eq. (27) for various values of governing parameters. In the absence of
cross-diffusion terms, Eq. (27) becomes

Rs
T =

RS

τ22
+

δ3

α2
+

(
π2δ

α2

)
Q. (29)
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This result coincides with that of Rudraiah and Shivakumara [23]. In the absence of additional diffusing
component (i.e. RS = 0), the above equation coincides with Chandrasekhar [10] and Proctor and Weiss
[13]. In the absence of magnetic field (i.e.,Q = 0), Eq. (23) reduces to

Rs
T =

RS

τ22
+

δ3

α2
(30)

which coincides with Veronis [30]. Equation (30) attains its critical value at α2
c = π2/2 and the critical

value is

Rs
Tc =

RS

τ22
+

27π4

4
. (31)

3.2. Oscillatory convection (ω �= 0, M2 = 0)

The condition M2 = 0 gives a dispersion relation of the form

m1(ω2)2 + m2(ω2) + m3 = 0 (32)

where

m1 = δ (Pr + a5)
m2 = δ3

[
a2a4 + a5τ

2
m

]
+ Pr

{
α2RS (a4 − a3) + δ

[
π2Rm (τm − a5) + δ2

(
a3τ21 + a4τ22 + τ2

m

)]}

m3 = δ2Prτ2
m

{
α2RS (a4 − a3) +

a2a4 δ3

Pr
+ δ3 (a3τ21 + a4τ22) +

π2δRm

τ2
m

[(a3τ21 + a4τ22) τm − a2a4]
}

.

Equation (32) may produce two real positive values of ω2 corresponding to two different onset fre-
quencies at the same wave number α for some suitable combination of governing parameters. In that
case, for each one of these frequency values (ω2 > 0), there is a corresponding real value of RT on the
oscillatory neutral curve which may have important consequences as far as the linear instability of the
system is concerned.

The oscillatory thermal Rayleigh number can be obtained from

Ro
T =

M1

M3
(33)

and ω2 is given by Eq. (32). It is difficult to find the critical value of αand the corresponding critical
oscillatory number Ro

Tc analytically. The critical values of Ro
T are determined numerically for various

values of governing parameters. For any chosen governing parameters, the value of Ro
T with respect to α

is determined as follows. Equation (32) is solved first to determine the positive values of ω2. If there are
none, then no oscillatory convection is possible. If there is only one positive value of ω2 then the critical
value of Ro

T with respect to the wave number is computed numerically from Eq. (33) and is denoted
by Ro

Tc. If there are two positive values of ω2, then the least of Ro
T amongst the positive values of ω2

is retained and the critical value of Ro
T with respect to the wave number is computed numerically. The

smaller value amongst Ro
Tc and Rs

Tc is called the critical thermal Rayleigh number and denoted by RTc.

4. Weak nonlinear stability analysis

The linear instability theory gives us the condition for instability but do not predict the amplitude of
convective motion and the stability of bifurcating solution (subcritical/supercritical). Because of these
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reasons, a weak nonlinear stationary stability analysis has been carried out using a well-known pertur-
bation method [32,33]. The dependent variables ψ, T , C, A and RD are expanded in powers of χ(� 1)
as follows

RT = RTc + χ2RT2 + · · ·, ψ =
∞∑

i=1

χiψi, T =
∞∑

i=1

χiTi, S =
∞∑

i=1

χiSi, A =
∞∑

i=1

χiAi. (34)

Also a slow time scale s is introduced in the form s = χ2 t and the operator ∂/∂ t is replaced by
∂/∂ t = χ2∂/∂ s. Substituting Eq. (34) into Eq. (21), we get a set of partial differential equations at each
order in χ.

At the first-order in χ, we get a system of homogeneous linear partial differential equations

L2Ψ1 =
[
0 0 0 0

]t (35)

where Ψi =
[
ψi Ti Si Ai

]t (i = 1, 2, 3, ···). This corresponds to linear instability problem for the stationary
case. The eigenvalue and the eigenfunctions are given in the previous section. Let

ψ1 = ψ, T1 = T, S1 = S, A1 = A. (36)

The undetermined amplitudes B1 − B4 are related by

B2 =
αB1

δD
[τ12RS − τ22RT ] , B3 =

αB1

δD
[τ21RT − τ11RS ] , B4 =

πB1

δ τm
(37)

and the amplitude B1 will be determined at a later stage.
At the second-order in χ, we get a system of inhomogeneous partial differential equations

L2Ψ2 =
[
0 J (ψ1, T1) J (ψ1, S1) J (ψ1, A1)

]t
, (38)

where ⎡
⎣ J (ψ1, T1)

J (ψ1, S1)
J (ψ1, A1)

⎤
⎦ =

παB1

2

⎡
⎣ B2 sin (2πz)

B3 sin (2πz)
B4 sin (2αx)

⎤
⎦ .

The solution is

ψ2 = 0; T2 =
α2B2

1

8πδD2
{a6RS − a7RT } sin(2πz),

S2 =
α2B2

1

8πδD2
{a8RT − a9RS} sin(2πz); A2 =

−π2B2
1

8αδτ2
m

sin(2αx) (39)

where

a6 = τ12τ22 + τ11τ12; a7 = τ22τ22 + τ21τ12; a8 = τ11τ21 + τ21τ22 ; a9 = τ11τ11 + τ21τ12.

At the third-order in χ, we obtain

L2Ψ3 =
[
Δ1 Δ2 Δ3 Δ4

]t
, (40)

where

Δ1 =
{

δ

Pr

dB1

ds
− π4Rm

8 δ τ3
m

[
1 − 4α2

δ

]
B3

1

}
sin(αx) sin(πz) + · · ·,

Δ2 = −
{

dB2

ds
+ αRT2B1 +

α3

8δD2
{a6RS − a7RT } B3

1

}
cos(αx) sin(πz) + · · ·

Δ3 = −
{

dB3

ds
+

α3

8δD2
{a8RT − a9RS} B3

1

}
cos(αx) sin(πz) + · · ·,

Δ4 = −
{

dB4

ds
+

π3B3
1

8δτ2
m

}
sin(αx) cos(πz) + · · ·.
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The procedure outlined in the works of Rosenblat [32] and Raghunatha et al. [33], yields a cubic-
Landau equation of the form

Γ
dB1

ds
=

8δ

α2
RT2 B1 − ΩB3

1 (41)

where

Γ =
8a2δ

3

a4α4Pr
+

8
a2α2

{(
τ22 +

a3

a4
τ21

)
Rs

T −
(

τ12 +
a3

a4
τ11

)
RS

}
− 8a2δπ

2Rm

a4α4τ2
m

Ω =
Rs

T

a2
2

[
a7 +

a3

a4
a8

]
− RS

a2
2

[
a3

a4
a9 + a6

]
− 2a2 π4δ Rm

a4 α4τ3
m

(
1 − 2α2

δ

)
.

The coefficient of nonlinear term in Eq. (41) is Ω and its sign decides the nature of bifurcation
(subcritical/supercritical) in the neighborhood of Rs

T . For the steady state, Eq. (41) becomes

B2
1

α2

8(α2 + π2)
=

RT2

Ω
. (42)

The above equation suggests that RT2 and Ω must have the same sign, and RT2 = φ Ω, where φ is a
positive constant. Without loss in generality, we can choose φ = 1 and then we have

RT2 = Ω. (43)

The bifurcation is said to be stable if RT2 > 0 (supercritical) and unstable if RT2 < 0 (subcritical).
Since the expression for RT2 is cumbersome, no definite conclusion can be drawn directly about the
stability of bifurcating solution. Hence, the expression for RT2 has been evaluated numerically to analyze
the stability of bifurcating solution for different values of governing parameters. In the absence of cross
diffusion, the expression for RT2 reduces to

RT2 =

(
τ2
22 − 1

)
τ3
22

RS +
δ3

α2
+

π2δ

α2

Rm

τm
+

2π4
(
α2 − π2

)
α4

Rm

τ3
m

. (44)

From Eq. (44) it is observed that if α2 ≥ π2 and τ22 > 1, then the bifurcation turns out to be always
supercritical. In the absence of additional diffusing component (RS = 0), Eq. (44) becomes

RT2 =
δ3

α2
+

π2δ

α2

Rm

τm
+

2π4
(
α2 − π2

)
α4

Rm

τ3
m

(45)

and this expression coincides with that of Knobloch et al. [34] obtained using a modified perturbation
method with self-adjoint operator technique. In the absence of magnetic field (Rm = 0), the above
equation reduces to RT2 = δ3/α2 > 0 and note that the subcritical instability is not possible. In the
absence of magnetic field, Eq. (44) reduces to

RT2 =

(
τ2
22 − 1

)
τ3
22

RS +
δ3

α2
(46)

and coincides with Nagata and Thomas [35] obtained using the functional analysis approach.

5. Results and discussion

The Soret (thermo-diffusion) and Dufour (diffusion-thermo) effects on the linear instability and a weak
nonlinear stability of doubly diffusive electrically conducting fluid layer in the presence of a uniform ver-
tical magnetic field are investigated. The results obtained by performing the above analyses are discussed
separately in the following sub-sections.
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5.1. Linear instability analysis

Analytical expression for the occurrence of stationary and oscillatory convection is delineated using the
linear instability analysis. The presence of magnetic field acts like a third diffusing component and the
study serves as an example of a triple diffusive fluid system. Some novel results are uncovered from the
present analysis.

To validate the results, thermal Rayleigh numbers were numerically determined for the onset of sta-
tionary (Rs

T ) and oscillatory (Ro
T ) convection under the limiting conditions. The results obtained for

different values of Q and τm when RS = 0 and τ12 = τ21 = τ22 = 0 (i.e. in the absence of solute concen-
tration and cross-diffusion terms) for a fixed value of Pr = 1 and α = π are compared with those of Weiss
[11] in Table 1. The results are found to be in excellent agreement. Besides, the critical thermal Rayleigh
number RTc computed numerically as detailed before for different values of RS and Q for Pr = 7, τm = 3,
τ11 = 1, τ22 = 0.01 in the absence of cross-diffusion (τ12 = τ21 = 0) are tabulated in Table 2 along with
those of Rudraiah [25] (shown within the parenthesis). From the table it is seen that the results are in
total agreement.

The variation of RTc as a function of solute Rayleigh number Rs for different values of Q = 0, 100 and
200 when Pr = 7, τm = 3 and τ22 = 0.01 is exhibited in Fig. 2a–d. The results obtained in the absence of
cross diffusion effect (τ12 = τ21 = 0) are illustrated in Fig. 2a. It is observed that there is a discontinuity in
the curves of RTc for each value of Q very near to Rs = 0, called the threshold value (i.e. the value beyond
which the oscillatory convection is preferred). The curve lying to the left and right of the discontinuity
corresponds to stationary and oscillatory onset, respectively. The effect of increasing Q is to increase RTc

and thus it has a stabilizing effect on the onset of stationary and oscillatory convection. The relative
influence of only Soret and the combined Soret and Dufour effects on the instability characteristics of the
system are displayed in Fig. 2b–d. Figure 2b shows the results for τ12 = 0 and τ21 = 0.5, while Fig. 2c, d,
respectively, depict the results for the simultaneous presence of Soret as well as Dufour parameters are
less than unity (τ12 = 0.2, τ21 = 0.8) and greater than unity (τ12 = 1.2, τ21 = 1.8). In all these cases,
the threshold value of Rs increases with increasing Q significantly. Although the cross diffusion effects
show marginal influence on the stationary onset, they affect the oscillatory onset prominently.

Figure 3a, b shows the variation of critical thermal Rayleigh number for the stationary onset Rs
Tc as

a function of RS for different values of Soret numberτ21and Dufour number τ12, respectively for Pr = 1,
Q = 2000, τm = 0.25, and τ22 = 0.2. We observe that Rs

Tc increases with increasing RS indicating its
effect is to delay the onset of stationary convection. From Fig. 3a, it is evident that increase in the value of
τ21 is to hasten the onset of stationary convection. However, τ12 shows a dual behaviour on the stationary
onset depending on the strength of the solute concentration gradient and this is evident from Fig. 3b.
We note that there exists a value of RS below which increase in τ12 hastens the onset of convection
but beyond which an opposite trend could be seen. Thus, the cross diffusion coefficients influence the
instability of the system.

The variation of Rs
Tc versus Chandrasekhar number Q for different values of τ21 and τ12 is shown in

Fig. 4a, b, respectively for Pr = 1, RS = 5000, τm = 0.1, and τ22 = 0.2. We observe that Rs
Tc increases

with an increase in the value of Q indicating that the effect of magnetic field is to stabilize the fluid
motion. Whereas, increase in the value of τ21 decreases the value of Rs

Tc and thus it has a destabilizing
effect on the system for all values of Q considered (see Fig. 4a). But the Dufour number τ12 exhibits a
mixed behaviour on the stability of the system. That is, increase in τ12 leads to instability up to a certain
value of Q and exceeding which a reverse trend is noticed (see Fig. 4b).

Nonetheless, the magnetic field and stable solute concentration in the presence of cross diffusion terms
display some unusual behaviour on the onset of oscillatory convection and also on the nature of convective
instability under certain parametric conditions and these are examined below:

5.1.1. Disconnected oscillatory neutral curves. The occurrence of disconnected oscillatory neutral curves
is an integral feature of triply diffusive fluid systems. To account for this trend, a systematic study on the
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(a) (b)

(c) (d)

Fig. 2. Variation of RTc with RS for different values of Q when Pr = 7, τm = 3 and τ22 = 0.01: a without cross diffusion
terms (τ12 = τ21 = 0), b with Soret effect (τ12 = 0, τ21 = 0.5), c with cross diffusion terms (τ12 = 0.2, τ21 = 0.8) and d
with cross diffusion terms (τ12 = 1.2, τ21 = 1.8)

evolution of neutral stability curves is taken up in the parameter space for which there is a possibility
of existing two oscillatory neutral solutions. The evolution of neutral stability curves for different values
of RS is shown in Fig. 5a–d. The results presented here are for Pr = 3, Q = 300, τm = 5, τ12 = 0.35 ,
τ21 = 0.7 and τ22 = 8.9 (i.e. τ22 > τm > 1). It may be noted that the oscillatory convection is possible
even if τ22 and τm are greater than unity; a result of contrast not found when the solute concentration
and magnetic field are present in isolation. Figure 5a exhibits the stationary and oscillatory neutral
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(a) (b)

Fig. 3. Variation of Rs
Tc with RS for different values of a τ21 with τ12 = 0.1, and b τ12 with τ21 = 0.1 when Pr = 1,

Q = 2000, τm = 0.25 and τ22 = 0.2

(a) (b)

Fig. 4. Variation of Rs
Tc with Q for different values of a τ21 with τ12 = 0.1, and b τ12 with τ21 = 0.1 when Pr = 1,

RS = 5000, τm = 0.1 and τ22 = 0.2

curves for RS = − 56,000 and it is seen that the oscillatory neutral curve is connected to the stationary
neutral curve at two bifurcation points signifying a single critical thermal Rayleigh number to establish
the linear instability criteria. When RS = − 50,000, the bifurcation points disappear and the oscillatory
neutral curve becomes closed convex curve and detaches from the stationary neutral curve as shown in
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(a) (b)

(c) (d)

Fig. 5. Evolution of neutral stability curves for Pr = 3, Q = 300, τm = 5, τ12 = 0.35, τ21 = 0.7, and τ22 = 8.9: a
RS = − 56,000, b RS = − 50,000, c RS = − 45,000, and d RS = − 43,600

Fig. 5b. The closed convex oscillatory neutral curve moves well below the stationary neutral curve for
RS = − 45,000 as shown in Fig. 5c and this has important implication on the instability characteristics
of the system. From this figure, it is evident that there exists a range of thermal Rayleigh numbers
RT2 < RT < RT3 in which all solutions oscillatory or stationary are stable. Thus, the linear instability
criteria involve three values of RT and may be stated as follows. For RT < RT1 and RT2 < RT < RT3,
the system is linearly stable. For RT1 < RT < RT2 and RT > RT3, the system is unstable. Thus, three
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Fig. 6. Stability boundary for Pr = 3, Q = 300, τm = 5, τ12 = 0.35 , τ21 = 0.7, and τ22 = 8.9

critical values of RT are needed to specify completely the linear instability criteria instead of a usual
single value as observed in doubly diffusive fluid systems. Interestingly, the closed convex oscillatory
neutral curve reduces in its size with further decrease in the value of |RS | and subsequently disappears
at RS = − 43,600, leaving behind only the stationary neutral curve (see Fig. 5d).

Figure 6 exemplifies the multivalued nature of the stability boundary in the (RTc, RS) plane for the
same parametric values considered in Fig. 5. From the figure it is evident that for RS < −56259.1815 the
onset is via oscillatory convection and which sets in at a lower value of RT than does stationary instability
with a single critical value of RT . For RS > −43247.639, the onset is via stationary convection and there
is again a single critical value of RT . But the interesting multivalued nature of the stability boundary
portion lies in the range −56259.1815 < RS < −43247.639. In this finite range of RS , it is obvious that
three values of RTc are needed to specify the linear instability criteria.

Figure 7a–d shows the evolution of neutral stability curves for different values of Q when Pr = 3,
RS = − 56,000, τm = 5, τ12 = 0.35, τ21 = 0.7, and τ22 = 8.9. Figure 7a exhibits the stationary and
oscillatory neutral curves for Q = 300 and note that the oscillatory neutral curve is connected to the
stationary neutral curve at two bifurcation points and requiring only one value of RT to establish the
linear instability criteria. The closed oscillatory neutral curve becomes closed and detaches completely
from the stationary neutral curve as shown in Fig. 7b when Q takes the value 380. The closed convex
oscillatory neutral goes on shrinking with increasing Q (see Fig. 7c) and finally disappears at Q = 470
leaving only the stationary neutral curve (see Fig. 7d).

The implication of cross-diffusion terms on the nature of instability of the system is emphasized in
Fig. 8a–d which show the evolution of neutral stability curves for Pr = 3, Q = 300, RS = − 55,000,
τm = 5, τ21 = 0.7, and τ22 = 8.9. Figure 8a shows the neutral curves when the cross-diffusion terms
are absent (τ12 = τ21 = 0). For this case, it is observed that the oscillatory neutral curve is attached to
the stationary neutral curve at two bifurcation points and hence single critical value of RT is sufficient
to establish the linear instability criteria. However, when the cross-diffusion effects are introduced with
τ12 = 1 and τ21 = 0.7 the oscillatory neutral curve detaches from the stationary neutral curve as shown
in Fig. 8b. Keeping the value of Soret number, τ21 fixed at 0.7 and increasing the Dufour number τ12 to
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(a) (b)

(c) (d)

Fig. 7. Evolution of neutral stability curves for Pr = 3, RS = − 56,000, τm = 5, τ12 = 0.35 , τ21 = 0.7, and τ22 = 8.9: a
Q = 300, b Q = 380, c Q = 450, and d Q = 470

1.8 it shows that the closed convex oscillatory neutral curve shrinks and lies well below the stationary
neutral curve indicating the requirement of three critical values of thermal Rayleigh number to dictate
the linear instability criteria (Fig. 8c). Finally, at τ12 = 2.1, the oscillatory neutral curve disappears and
only the stationary neutral curve exists (Fig. 8d). It is thus evident that seemingly small variations in
the cross diffusion terms exhibit profound effect on the nature of instability. It is thus crucial to consider
the contribution of off-diagonal elements in analysing the instability of the system.
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(a) (b)

(c) (d)

Fig. 8. Evolution of neutral stability curves for Pr = 3, , Q = 300, RS = − 55,000, τm = 5, τ21 = 0.7, and τ22 = 8.9: a
τ12 = 0, b τ12 = 1, c τ12 = 1.8, and d τ12 = 2.1

5.1.2. Destabilization due to stable solute concentration. In double diffusive convection, the effect of
stable solute gradient is to increase the critical thermal oscillatory Rayleigh number and hence its effect
is to delay the onset of oscillatory convection. To the contrary, the presence of heavy solute at the bottom
of an electrically conducting fluid layer in the presence of magnetic field destabilizes the system under
certain parametric conditions. Figure 9a, b demonstrates the variation of critical oscillatory Rayleigh
number Ro

Tc and the corresponding frequency of oscillations ω2
c as a function of RS when Pr = 0.1,

Q = 2000, τm = 0.25, τ22 = 0.01 (i.e.τ22 < τm < 1) and for different values of Soret numberτ21as well
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(a) (b)

Fig. 9. Variation of Ro
Tc and ω2

c with RS for different values of a τ21 with τ12 = 0.1, and b τ12 with τ21 = 0.1 when
Pr = 0.1, Q = 2000, τm = 0.25, and τ22 = 0.01

as Dufour numberτ12. From these figures, it is obvious that there is some intermediate range of RS in
which the layer gets destabilized by increasing RS . The destabilization manifests itself as a minimum
in the Ro

Tc-RS plane with increasing ω2
c . The results shown in Fig. 9a for τ21 = 0, 0.05 and 0.1 when

τ12 = 0.1 disclose that increase in τ21 is to delay the onset of oscillatory convection and the simultaneous
presence of both Soret and Dufour effects is found to be more stabilizing compared to the presence of
only Dufour effect. Figure 9b displays the results for τ12 = 0, 0.05 and 0.1 when τ21 = 0.1. There exists
a threshold value of RS = 672.63 beyond which increasing τ12 hastens the onset of oscillatory convection
and prior to which it shows an opposite trend. The curves of ω2

c are also shown in Fig. 9a, b and it is
observed that the presence of cross-diffusion terms is to reduce the frequency of oscillations and also the
destabilization is associated with a monotonically increasing ω2

c . This is because the diffusion of solute,
for small values of τ22, is so slow that substantial changes in the bobbing frequency of the fluid parcel can
be produced by changes in RS that have little stabilizing effect via solute diffusion. Thus, the frequency
can be turned by adjusting RS . If the frequency is too small, a bobbling parcel of fluid will always remain
in approximate thermal equilibrium with its environment. If the frequency is too high, no significant heat
transfer will occur into or out of the parcel in the first place. In either extreme, the basic overstability
mechanism is operating at less than optimal efficiency. At some intermediate frequency, however, the
maximum efficiency is achieved, and overstable oscillations set in at a lower value of Ro

Tc than is possible
for larger or smaller frequencies.

Figure 10 depicts the implications of cross diffusion terms on the variation of Ro
Tc as a function of

RS for Pr = 0.1, Q = 2000, τm = 0.25 and τ22 = 0.01. We note that the curves of Ro
Tc pass through a
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Fig. 10. Variation of Ro
Tc and ω2

c with RS for different values of cross diffusion terms when Pr = 0.1, Q = 2000, τm = 0.25,
and τ22 = 0.01

minimum with increasing RS and the range of RS up to which the destabilization occurs depends on the
values of τ12 and τ21. For (τ12, τ21) = (0, 0), (0, 0.5) and (0.1, 0.5), the stabilizing solute concentration
instills instability up to the value of RS = 7127.84, 13183.40 and 50622.40, respectively. Thus, Soret and
Dufour effects increase the range of solute Rayleigh number significantly up to which the system gets
destabilized compared to their absence and also in the presence of only Soret effect.

5.1.3. Destabilization due to magnetic field. In the study of magnetoconvection, it is a well-established
fact that the magnetic field suppresses both steady and oscillatory instability [10]. In other words, increase
in the value of Chandrasekhar number Q is to increase both steady and oscillatory critical thermal
Rayleigh number. However, the presence of an additional diffusing component contradicts this result in
which case it is witnessed that the magnetic field hastens the onset of oscillatory convection rather than
suppressing it. Figure 11a, b shows the variation of Ro

Tc and ω2
c as a function of Q for different values of

τ21 (= 0, 0.1 and 0.2 with τ12 = 0.2) and τ12 (= 0, 0.1 and 0.2 with τ21 = 0.2), respectively for Pr = 0.1,
RS = 4500, τm = 0.1 and τ22 = 0.28 (i.e. τ22 > τm < 1). The figures demonstrate that Ro

Tc decreases with
Q initially and with further increase in Q stabilizes the fluid layer again. The destabilization manifests
itself as a minimum in the Ro

Tc-Q plot. Further examination of these figures reveals that increase in τ21
(Fig. 11a) and τ12 (Fig. 11b) is to delay and hasten the onset of oscillatory convection, respectively. The
variation of critical frequency ω2

c as a function of Q is also illustrated in Fig. 11a, b which increases
with increasing Q, while it decreases with increasing τ21 and decreasing τ12. The destabilization due to
magnetic field may have a physical basis similar to that of destabilizing effect due to a stable solute
concentration gradient as observed previously. This can be explained using the concept of frequency
phenomenon as before. We note that for small values of Q, ω2

c is relatively small so that the parcel of
fluid can remain in approximate density equilibrium with its environment via the diffusion of heat and
solute. As Q increases, however, so does the oscillation frequency. This has the effect of making it more
difficult for the parcel to remain in the density equilibrium with its surroundings as it bobs up and down
and the oscillations will grow. Of course, if ω2

c becomes too large, the basic overstability mechanism will
fail because very little heat or solute will be transferred to the parcel of the fluid during a cycle. Thus, we
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(a) (b)

Fig. 11. Variation of Ro
Tc and ω2

c with Q for different values of a τ21 with τ12 = 0.2, and b τ12 with τ21 = 0.2 when
Pr = 0.1, RS = 4500, τm = 0.1, and τ22 = 0.28

see that the instability is facilitated with increasing ω2
c . The overstability mechanism achieves its optimal

efficiency and convection becomes possible at a lower value of Ro
Tc than is possible for smaller or larger

values of ω2
c .

As before, the complexities of Soret and Dufour effects on the variation of Ro
Tc as a function of Q

are illustrated in Fig. 12 for Pr = 0.1, RS = 4500, τm = 0.1 and τ22 = 0.28. The curves of Ro
Tc pass

through a minimum with increasing Q and the range of Q up to which the destabilization occurs depends
on the values of τ12 as well as τ21. For values of (τ12, τ21) = (0, 0), (0, 0.2) and (0.1, 0.2), the results
reveal that an increase in the value of Chandrasekhar number is to enforce instability upto Q = 810,
780 and 680, respectively. We note that the presence of both Soret and Dufour effects is to decrease the
range of destabilization due to magnetic field compared to their absence. Moreover, it is seen that Ro

Tc

increases monotonically with increasing Q without showing any destabilization for (τ12, τ21) = (0, 0.6).
This is another instance showing the implication of cross-diffusion terms on the instability characteristics
of the system.

5.2. Weak nonlinear stationary stability analysis

A weak nonlinear stability analysis has been carried out using a perturbation method. A cubic Landau
equation is derived in terms of the amplitude function to identify the existence of supercritical or sub-
critical instability. The stability of stationary bifurcating solution is discussed in the neighborhood of
its critical value for a range of parametric values. The nature of stationary bifurcation is determined
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Fig. 12. Variation of Ro
Tc and ω2

c with Q for different values of cross diffusion terms when Pr = 0.1, RS = 4500, τm = 0.1,
and τ22 = 0.28

from the sign of Landau constant RT2 (i.e. the bifurcation is supercritical if RT2 > 0 and subcritical if
RT2 < 0). The point at which RT2changes the sign is termed as the tricritical point. Figures 13 and 14a,
b represent the computed values of RT2 as a function of RS for different values of Q with and without
cross diffusion terms. These figures demonstrate the possibility of occurring subcritical bifurcation for a
range of parametric values indicating the occurrence of instability before the linear threshold is reached.
This is believable because the linear instability analysis provides only adequate condition for instability.
Besides, the tricritical point is shifted towards higher values of RS with increasing Q and in the presence
of Soret and Dufour effects. Moreover, the Dufour and Soret numbers exhibit opposing contributions on
the range of RS beyond which the subcritical bifurcation is possible.

6. Conclusions

The simultaneous presence of Soret and Dufour effects on linear and weak nonlinear stability of double
diffusive magnetoconvection are investigated. The presence of magnetic field acts as an additional diffusing
component and in overall the entire fluid system behaves like a triply diffusive one. The condition for
the onset of stationary and oscillatory convection is obtained by accomplishing linear instability analysis,
while a cubic Landau equation is derived by performing a weak nonlinear stability analysis. The critical
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Fig. 13. Variation of RT2 with RS for different values of τ12, τ21 and Q when τm = 5 and τ22 = 0.5

(a) (b)

Fig. 14. Variation of RT2 with RS for different values of a τ12, and b τ21 when Q = 100, τm = 5 and τ22 = 0.5

wave number of stationary convection is independent of solute concentration and cross diffusion terms.
The oscillatory instability is found to be possible even if the diffusivity ratios are greater than unity in
contrast to double diffusive fluid systems. Although the cross diffusion effects show insignificant influence
on the stationary onset, they affect the oscillatory onset significantly. More importantly, disconnected
closed convex oscillatory neutral curves are identified under certain parametric conditions suggesting the
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requirement of three critical thermal Rayleigh numbers to specify the linear instability criteria instead of
the usual single critical value. Small variations in the cross diffusion terms found to have profound effect
on the nature of instability. Under different parametric spaces, a doubly cross diffusive fluid layer in the
presence of magnetic field gets destabilized by the addition of a bottom-heavy solute gradient and also the
magnetic field destabilizes a doubly cross diffusive conducting fluid layer. The range of solute Rayleigh
number and the Chandrasekhar number up to which the system gets destabilized is influenced by Soret
and/or Dufour coefficients. Both subcritical and supercritical bifurcations are possible depending on the
magnitude of governing parameters. Increase in the value of Chandrasekhar number and in the presence
of cross diffusion parameters as well as increase in the Soret number and decrease in the Dufour number
is to increase the range of solute Rayleigh number beyond which the subcritical instability is possible.
Thus, the foregoing study exemplifies the importance of considering cross-diffusion terms in the proper
analysis of double/multidiffusive stability problems.
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