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SUMMARY

The field of Mathematical Programming offers a range of tools and algorithms to solve

optimization problems. Software based on these ideas is used in many application areas

to solve real world decision problems. However, few available software packages provide

any guarantee of correct answers or certification of results, despite their widespread use.

Computations are typically performed entirely in floating-point arithmetic where attempts

are made to satisfy feasibility and optimality conditions approximately instead of exactly.

The focus of this dissertation is the advancement of theory and computation related to

exact precision mathematical programming. We will specifically consider linear program-

ming (LP) and mixed-integer programming (MIP) problems. Implementing software which

relies entirely on exact arithmetic could give prohibitive slowdown compared to inexact

methods so we make use of hybrid symbolic-numeric computation. In this paradigm algo-

rithms are designed to use fast inexact arithmetic for many operations and then correct or

verify the results using safe or exact computation.

In Chapter 1 we will further motivate the topic of this dissertation by describing different

types of errors that can result from the use of floating-point arithmetic. We will also describe

a range of applications where numerical errors are unacceptable.

In Chapter 2 we present new results in symbolic linear algebra. We study output-

sensitive algorithms to solve rational linear systems of equations. These algorithms have

the same worst case performance as conventional methods but are guaranteed to terminate

early when the exact rational solution has a small representation. These techniques were

motivated by experiments performed on linear systems arising when solving exact LPs.

In Chapter 3 we investigate solving very sparse rational linear systems of equations

which arise as a bottleneck in solving exact LPs. A computational study is performed

comparing four different techniques for exact rational system solving on a wide range of

xi



instances arising from applied problems.

Chapter 4 describes a new algorithm to compute valid LP bounds by correcting approx-

imate solutions. This algorithm is designed to be used in the MIP setting and accelerates

bound computations by reusing structural information throughout a branch-and-bound tree.

We show this method to be more general than some algorithms previously described for

this purpose. Computational experiments are performed to demonstrate its effectiveness.

In Chapter 5 we discuss future directions for research in exact mathematical program-

ming including challenges, opportunities and new application areas.
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CHAPTER I

INTRODUCTION

A Linear Programming (LP) problem is an optimization problem of the form

min cTx

s.t. Ax ≥ b

x ≥ 0

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm and x is a vector of decision variables. A Mixed-Integer

Programming (MIP) problem has the same form with the added integrality constraints

xi ∈ Z ∀i ∈ I where I ⊆ {1, . . . , n}. A problem with all decision variables required to be

integral is an Integer Programming (IP) problem.

The frameworks of LP, IP and MIP are powerful and flexible tools for modeling and

solving decision problems. The most widely used algorithm for solving LP problems is the

simplex method, which was developed by George Dantzig [44]. Although it performs well

in practice, no version of the simplex method has been shown to run in polynomial time.

For detailed coverage of the simplex algorithm see [36, 135]. Polynomial-time algorithms

for LP including the ellipsoid method and interior-point methods have also been developed,

details and history for these algorithms can be found in [130, 143].

The simplex method solves LPs by pivoting between adjacent vertices of the polyhedron

describing the feasible region of the LP until reaching an optimal vertex. At each iteration

of the simplex method, its position is represented as an LP basis. A feasible basis gives a

structural description of a vertex of the polyhedron as a system of linear equations. An

optimal LP basis also provides a description of a dual solution which gives a certificate

of optimality. The simplex method is also an effective tool for re-optimizing LPs. After

making certain types of changes to an LP, additional pivots can be performed to identify

the new optimal solution. This characteristic is useful when solving IP and MIP problems
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where solution methods often require the result of many closely related LPs.

The most commonly used framework for solving IP and MIP problems is the LP based

branch-and-bound algorithm in combination with cutting planes. Classic references for

these algorithms include [116, 130, 142]. We will give a brief description of these techniques

for IP, although many of the ideas apply, with some differences, for MIP as well. For an IP

problem, its LP relaxation is the LP that results after relaxing the integrality constraints.

The first step of the branch-and-bound algorithm is solving the LP relaxation of the IP,

which can be done using the simplex method. If the optimal solution is integral, then it

satisfies the relaxed integrality constraints and is an optimal solution for the original IP.

Otherwise branching is performed; the problem is split into two new problems which exclude

the fractional solution but whose union contain all of the integer solutions. This procedure

is applied recursively, possibly generating many subproblems. At any stage of the algorithm,

subproblems with objective value exceeding the objective value of the best known integer

solution are discarded. After termination, this algorithm produces an optimal solution and

a tree describing the subproblems and LP results, which give a certificate of optimality. In

the worst case the branch-and-bound algorithm may enumerate all feasible solutions, but

in practice it often performs much better than enumeration.

Cutting planes are another tool used to solve IPs. A cutting plane is an additional

linear constraint that can be added to the problem description without changing the feasible

region, i.e. it is satisfied by all integer solutions to the problem. The pure cutting plane

algorithm for IP is an iterative algorithm that starts by solving the LP relaxation. If a

fractional solution is found then one or more valid cutting planes are identified and added

to the problem, cutting off the fractional solution. This process is repeated iteratively.

Some versions of the pure cutting plane algorithm will theoretically identify the optimal

solution after a finite number of iterations, but other versions of the algorithm will not

always converge.

Figure 1 gives a small example of a fractional solution being excluded by branching or

adding a cutting plane; each method eliminates the fractional solution without eliminating

2



f f f

Fractional Solution f Branching Cutting Plane

Figure 1: Branching and Cutting Planes for Integer Programming

any integer solutions from the updated search space. In practice, solvers often use a combi-

nation of branch-and-bound and cutting planes to solve IPs and MIPs. A common strategy

is to iteratively apply cutting planes at the LP relaxation of the problem until some criterion

is satisfied, then the branch-and-bound algorithm is applied. It can also be useful to apply

branch-and-cut where cutting planes are added at other nodes of the branch-and-bound

tree.

1.1 Motivation

1.1.1 Dangers of Numerical Computation

Many software packages have been developed to solve mathematical-programming problems.

Some of the most widely used software packages today for MIP include commercial solvers

IBM ILOG CLPEX, FICO XPress, Gurobi and non-commercial solvers SCIP and COIN-

OR. By default, all of these software packages use an LP based branch-and-bound algorithm

along with cutting planes to solve MIPs. Each of these software packages currently use

floating-point numbers for their computation.

Floating-point numbers are the widely used standard for numerical computation. The

most recent version of the IEEE standard for floating-point numbers is the IEEE 754-2008,

released in 2008 [86]. A double precision number is represented in the form

(−1)sign ×

(
1 +

52∑
1

2−ib−i

)
× 2e

where sign is a single bit indicating the sign, bi are 52 binary digits used to represent
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the significant figures of the number and e defines the exponent, taking integer values

in e ∈ [−1022, 1023]. The IEEE standard defines the representation of base 2 and base 10

floating-point numbers and dictates what results should be returned by the basic arithmetic

operations in order to maintain consistent behavior across different platforms.

Floating-point computations can be performed quickly on computers but the limited

size of this representation, and the limited choice of base, has its disadvantages. Many

numbers, such as 1/3, cannot be represented exactly as a floating-point number and small

errors can occur during arithmetic operations. The relative error incurred by a single

operation is usually small but algorithms requiring many operations can accumulate and

propagate these small errors, leading to errors of significant magnitude.

Another convention of numerical computation, necessitated by the possible errors, is

an inexact handling of comparison relations. Software using floating-point numbers will

typically consider two numbers “equal” when their difference is lower than a predefined

numerical tolerance. This notion of numerical equality can be problematic for many reasons

and is not an equivalence relation. If two numbers are considered ≈ when their difference is

less than ε then we may have numbers a, b and c satisfying a ≈ b, b ≈ c, but a 6≈ c. Similar

measures are taken when handling other relations such as ≤ and ≥. In [73] Goldberg gives

a survey of issues related to floating-point computation including the problems described

here.

There are several documented tragic errors involving floating-point computation. During

the first US gulf war patriot missiles were used to intercept SCUD missiles, the software

controlling missiles was based on floating-point computations. Repeated use of the number

1/10 in the code, which is not representable exactly as a base-2 floating point number,

led to miscalculations that accumulated to form significant errors. On Feb 25, 1991, as a

direct result of this miscalculation, a patriot missile failed to intercept an incoming Iraqi

SCUD missile; it was off target by more than 0.6 kilometers and resulted in the death of

28 US soldiers [70]. In a later incident, the 1996 launch of the European Ariane 5 Rocket

ended in failure when it went out of control and exploded 37 seconds into its flight path.

The explosion was due to a software error caused by improper handling of a floating-point

4



calculation; the software converted a 64-bit floating-point number to a 16-bit signed integer

causing an overflow and system crash. The rocket and its cargo were worth an estimated

360 million USD [59, 119].

Optimization software relying on floating-point computation can return incorrect results.

Mistakes may arise from errors in floating-point computation and from the use of numerical

tolerances for handling =,≤,≥ or measuring integrality of a number. By default CPLEX

12.1 uses a tolerance of 1e-6 to measure feasibility of constraints and a tolerance of 1e-5 to

measure integrality of variables [85]. The manual states “CPLEX uses numerical methods of

finite-precision arithmetic. Consequently, the feasibility of a solution depends on the value

given to tolerances... in the presence of numeric difficulties, CPLEX may create solutions

that are slightly infeasible or integer infeasible”. Other commercial software packages come

with similar warnings. In some cases software packages may even relax these tolerances if a

solution satisfying them cannot be found. The assumption is made that many users would

prefer a solution that violates the tolerances than to receive no solution at all.

Errors in floating-point operations and the use of tolerances can result in the following

types of mistakes when solving LP, IP or MIP problems:

1. A suboptimal solution is returned as optimal.

2. A feasible problem is declared infeasible.

3. An infeasible problem is declared feasible.

Another possible source of errors for MIP and IP problems is the use of cutting planes.

Numerical problems can cause cuts to be invalid and cut off feasible solutions.

Among these possible errors some may be more likely in practice than others. As

solutions are returned in a floating-point representation, any solution involving fractional

values is likely to violate the constraints by a small amount, even if the returned solution

is a floating-point approximation of a correct optimal solution. We would conjecture that

the solver returning a suboptimal solution is a relatively likely type of error for LP, IP and

MIP, although in such cases solutions may be very close to optimal. It is also possible for

feasible problems to be declared infeasible for IP and MIP problems due to invalid cutting

5



Table 1: Objective Values Returned for sgpf5y6

LP Solver Objective Value

Cplex 7.1 Primal -6398.71
Cplex 7.1 Dual -6484.44
Cplex 9.0 Primal -6406.78
Cplex 9.0 Dual -6484.47
Cplex 11.0 Primal -6425.87
Cplex 11.0 Dual -6484.46
Cplex 12.1 Primal -6425.87
Cplex 12.1 Dual -6484.47
Gurobi 2.0 Primal -6484.47
Gurobi 2.0 Dual -6484.47
XPress-15 Primal -6380.45
XPress-15 Dual -6344.30
XPress-20 Primal -6349.93
XPress-20 Dual -6408.02
QSopt Primal -6419.94
QSopt Dual -6480.33
CLP-1.02.01 -6480.95
CLP-1.12.0 -6481.26
GLPK-4.37 -6463.66
GLPK-4.44 -6484.47
MOSEK 6.0 -6292.06
Soplex 1.2.2 -6473.33

Exact Value −1621116398840608
250000000000 ≈ -6484.47

planes. Incorrect conclusions regarding feasibility of an LP or a solver incorrectly returning

a solution for an infeasible IP/MIP may be less likely to occur frequently, but are still

possible.

Table 1 gives an example of the results returned for the optimal solution value by several

different LP solvers for the LP sgpf5y6 from the Mittelmann LP test set [110]. Several of

these runs were performed by William Cook and Sanjeeb Dash (personal communication),

some of the other values are taken from log files on Mittelmann’s optimization benchmark

webpage [111]. The relative difference between the largest and smallest values is nearly 3%.

This demonstrates that serious deviations can occur even when solving LPs arising from

real-world problems.

Neumaier and Shcherbina [118] constructed a small IP for which multiple commercial

6



IP solvers incorrectly reported the problem to be infeasible; after adding an additional

constraint to the model the IP solvers found a feasible solution. Their example has only 20

variables, 20 constraints and modestly-sized integer coefficients. The author of this thesis

performed a study where a model was developed to determine playoff qualification of teams

in the USA National Hockey League by solving an IP feasibility problem [34]. During this

study there were some instances that were known to be feasible that were identified as

infeasible by a commercial IP solver. The solver correctly found a feasible solution after

fixing variables.

In a recent computational study [104], Margot observed many cut generators to produce

invalid cuts; cutting off feasible solutions on a range of problems. He says that the question

of how often a cut generator produces invalid cuts “seems to have been completely ignored in

the literature.” He argues that in order to give a fair comparison of cutting-plane generators

it is necessary to measure their accuracy as well as measures of their effectiveness. If

accuracy is not considered then a cut generator that produces many invalid cuts may have

a faster solution time and appear to quickly close the optimality gap of a problem. Without

considering its accuracy it would not be possible to recognize that the speed, and apparent

effectiveness, of such a cut generator could be due to its incorrect actions. Moreover, in

applications where exact or correct solutions are required, any number of invalid cuts is

unacceptable.

Articles discussing the implementation of pure cutting plane methods [145, 146] give

some explanation of why numerical problems arise as a significant problem in pure cutting

plane methods. In [145] they write “Pure cutting plane algorithms have been found not to

work in practice because of numerical problems due to the cuts becoming increasingly parallel

(a phenomenon accompanied by dual degeneracy), increasing determinant size and condition

number, etc. For these reasons, cutting planes are in practice used in cut-and-branch or

branch-and-cut mode.”

Despite the variety of ways in which floating-point computation can lead to failure,

software susceptible to such error is heavily used across many industries for important

decision making. This leads to the question, why are errors tolerated by users? We discuss
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three reasons why this may be the case; exact/symbolic solutions are not required for many

applications, inexact codes often produce results that are nearly correct, fast exact tools

have not been readily available.

For many industrial applications an exact representation of the true optimal solution

may not be more useful than a floating-point solution that is very close to feasible/optimal.

To this effect Steve Wright is quoted in [27] as saying “In many optimization problems,

simple, approximate solutions are more useful than complex exact solutions.” The exact

representation of a solution may have a complicated representation providing more digits

of accuracy than a practitioner could act on in any meaningful way. Also, small numerical

violations of some constraints may not pose any real problem because the data defining

problems often comes from inexact sources.

Another important point is that, despite the possibility of errors, well designed software

based on floating-point computation often produces meaningful and useful results. In most

cases the solutions found may be nearly optimal and nearly feasible. In a study by Koch

[95] a piece of software called perPlex was developed to exactly compute basic LP solutions,

given an LP and a basis. By exactly computing a primal and dual solution it could also

verify if a given basis was optimal. He found that for the NETLIB LP test set [117], CPLEX

was able to find a truly optimal basis on all but 3 problems using the default settings;

after manually tuning various settings it could find the optimal basis on all problems.

The SOPLEX LP solver was also able to find most of the optimal bases using its default

settings and found all optimal bases after increasing the precision to 128-bit arithmetic.

This demonstrates that high performance LP solvers often find the optimal basis. It is

worth noting that in many applications a near optimal solution is often acceptable. In cases

when computing power is a limiting factor and users only solve problems to 1% or 5% of

optimality in the first place, the user may see the extra effort required to find exact results

unnecessary and impractical.

Finally, a lack of available tools to find certified or exact solutions is a reason users

make due with inexact solutions. If fast exact tools were available, and did not involve a

prohibitive slowdown, they could provide exact solutions to users who wanted or needed
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them. The availability of such tools could also open up new application areas. In the next

section we will survey several applications where correct or exact solutions are necessary.

1.1.2 Applications of Exact Mathematical Programming

There are many applications of mathematical programming where exact solutions are desir-

able or necessary. While this list is far from complete, it serves as a motivation for further

developing exact methodologies.

1.1.2.1 Computer-Assisted Mathematics

Bailey and Borwein [14, 15] outline several possible roles of experimental mathematics:

“Gaining insight and intuition; Visualizing math principles; Discovering new relationships;

Testing and especially falsifying conjectures; Exploring a possible result to see if it merits

formal proof; Suggesting approaches for formal proof; Computing replacing lengthy hand

derivations; Confirming analytically derived results.” Just as the frameworks of LP and

MIP can be used to model many real-world problems, they can also be used to model a

wide variety of mathematical structures and problems. When used to explore, evaluate and

prove mathematical ideas, correctness and exactness of solutions is clearly very important.

Only a few years after the development of the exact LP solver QSopt ex [13] it has

already been used to generate output that was used to assist in proving theoretical results.

Hicks and McMurry [83] use an early version of QSopt ex to generate Farkas multipliers that

are used in a proof. They prove that the branchwidth of a graph and the branchwidth of

that graph’s cyclic matroid are equal if the graph has a cycle of length at least 2. They used

the code to assist in finding an exact solution to an LP; the correctness of the multipliers

they computed can be verified by hand. In [84], the authors utilized the QSopt LP solver to

provide a vector they used to prove a result related to the Caccetta-Häggkvist Conjecture.

In [49], the authors use linear programming to help in the proof of new upper bounds for

the densities of measurable sets in Rn that avoid a finite set of prescribed distances; they

correct the solution returned by a floating-point LP solver to ensure the correctness of their

result.

Approaches based on integer programming and column generation have been applied

9



to other problems including Graph Coloring [108], and computation of Crossing Numbers

[29, 35]; in both cases inexact floating-point computation could lead to incorrect conclusions.

The recent work of Held et al. [82] specifically addresses the problem of generating safe lower

bounds for graph coloring problems.

The most high profile use of mathematical programming in proofs in recent years is

Thomas Hales’ proof of the Kepler Conjecture. The proof was originally announced in

1998; it has involved a series of publications and is still in the process of completion [78, 80].

One computational aspect of the proof involves solving thousands of LPs. Thomas Hales

and others have established the flyspeck project [79] to fully develop a formal proof of the

conjecture. The authors estimated in 2010 that it may take an additional 20 working years

of effort to complete the proof. The PhD thesis of S. Obua has focused on one component

of the proof involving LPs. He used interval arithmetic in combination with a floating-

point LP solver to verify the result of thousands of LPs showing that many of the possible

counterexamples are not counterexamples [120, 121].

In order to use solutions of LP or MIP problems in a mathematical proof it is necessary

for the software to generate easily checkable certificates of correctness. Even if software is

thought to be correct, the implementation of an LP or MIP solver is simply too complicated

for anyone to be entirely sure there are no programming errors. In the case of linear

programming a primal-dual solution is a certificate of its own optimality. The relationship

between the primal and dual LP problems ensures that if a pair of primal and dual solutions

is found for a problem, simply verifying that they are both feasible and have the same

objective value is sufficient to show that they are both optimal solutions. Generating

optimality certificates for MIP/IP problems is not as easy, but is still possible. Since

integer programming is NP-complete it is unlikely that finding optimality certificates with

a small representation will be possible in general.

1.1.2.2 Feasibility Problems

Some LP or MIP problems are given with no objective function at all; where the goal is to

identify a feasible solution, or determine that no solution exists. Feasibility problems may
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have a small number of feasible solutions making them particularly sensitive to numerical

mistakes; a single incorrect cutting plane could lead to a false result. An exact solver

could decide feasibility results without the possibility of numerical mistakes. We focus

special attention to feasibility problems here, as opposed to general optimization problems,

because a false result could be more significant. For some optimization problems a mistake

may only lead to a slightly suboptimal solution, but the false result for a feasibility problem

completely reverses the conclusion.

1.1.2.3 Numerically Difficult Problems

Some models contain inherent numerical difficulties. This can occur when models contain

large and small numbers together, or where the matrix is ill conditioned. It is observed

in [122] that the majority of the problems in the NETLIB LP library [117] are ill condi-

tioned. This does not imply that these LPs are unsolvable by numerical methods, but it

does suggest that care must be taken to recognize and avoid numerical problems. Reformu-

lation can sometimes help to correct numerical issues, but this may not always be possible.

Bad numerical properties of models may be easily recognized by users when solvers return

unexpected, infeasible or conflicting results. Many solvers are also capable of reporting nu-

merical properties of a solution such as the condition number of the LP basis matrix, which

can indicate numerical instability. Availability of exact solvers could be especially useful for

solving numerically difficult problems, which could otherwise be unsolvable to any degree

of confidence.

1.1.2.4 Cut generation

Many techniques have been developed to generate cutting planes for integer and mixed

integer programming problems. Some classes of cuts are generated directly from a simplex

tableau, others are generated using special problem structures. In some cases the separation

problem is formulated as an LP [17, 18] or MIP [19, 46, 68]. Exactly solving the separation

subproblems would ensure that mistakes do not lead to invalid cuts. In some cases it

may even make sense to use exact methods in a cut generator that is used within a larger

framework of floating-point computation. In such a case, even if the problem is not being
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solved exactly, safe cut generation could eliminate the possibility of feasible solutions being

cut off by incorrect cuts.

1.1.2.5 Combinatorial Auctions

A combinatorial auction involves the sale of several items where bidders are permitted to

bid on combinations or packages of items in addition to bidding on individual items. This

system is also referred to as package bidding. The problem of choosing winners in a combi-

natorial auction is NP-complete, but can naturally be modeled as an integer programming

problem. This type of auction has been proposed or implemented in many settings includ-

ing logistics, airwave allocation, airport time slot allocation and financial trading. To date,

billions of dollars in transactions have been decided by combinatorial auctions [50]. Exactly

determining the optimal solution for these problems is of critical importance. If a false

result was obtained, items could be sold according to a suboptimal solution. Discovery of

a better solution could have serious legal and financial consequences.

1.1.2.6 Health Care Systems

Tools from optimization are often used to improve medical decision making. Recent work

has successfully improved treatment plans for cancer [99]. Software designed for medical

decision making is subjected to higher quality standards than other industries. Use of exact

precision techniques could improve performance guarantees and reduce liability. Errors in

medicine can occur from many causes including human error or computer errors unrelated

to numerical issues. There are documented cases of medical software errors causing tragic

results; in the 1980s a software error in the Therac-25 medical accelerator delivered fatal

radiation overdoses to several patients before the bug was discovered [102].

1.1.2.7 Compiler Optimization

Integer programming models have been successfully used in several aspects of compiler

optimization. Wilken et al. [141] used IP for instruction scheduling. Other studies have

applied integer programming to the register allocation problem [75]. Incorrect decisions in

these settings could cause compiler mistakes.
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1.1.2.8 Chip Design Verification

Verification is a significant component of the computer chip design process. In Part III

of [3] Achterberg motivates the problem, and addresses techniques to solve chip design

verification problems using constraint integer programming (CIP). CIP is a generalization of

integer programming that allows additional types of constraints, solution techniques involve

a combination of methods from integer programming and constraint programming. The

possibility of numerical errors is a significant concern in this application because incorrect

results could result in faulty designs.

1.2 Background

1.2.1 Exact Solutions

Theoretical discussions of optimization problems use the terms solution, or optimal solution,

when referring to a solution of the problem over the real or rational numbers. However,

in articles reporting computational work, or software packages, the same terminology is

used to describe inexact and possibly incorrect numerically obtained solutions. Therefore

we make the distinction of calling solutions an exact solution or an exact optimal solution

when referring to an exact symbolic description of the correct optimal solution. In general,

the exact representation of the solution may be complicated. An exact solution should

satisfy all of the problem constraints exactly, with no numerical error. We will also call

a solution which satisfies all constraints with no error exactly feasible and we will call a

correct lower (or upper) bound on the objective value an exact bound or a valid bound.

For both the theoretical and computational components of this dissertation we will focus

attention on solving LP and MIP problems over Q, the set of rational numbers. Although

there are cases where irrational numbers are of interest, there are many reasons to focus

on rational numbers, at least as a first step. Some applications involving irrational data

and discussion of how safe or exact computations may be performed in the domain of

real numbers are given in Chapter 5. The restriction to rational numbers is often used in

theoretical settings as well, see [130]. One problem with irrational numbers is that they do

not admit finite decimal representations, which is a significant obstacle for both computation
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and complexity analysis. There are also theoretical differences between solving problems

over the real and rational numbers. A commonly given example is the integer programming

problem max{x −
√

2y|x −
√

2y ≤ 0;x, y ≥ 1;x, y integer}, note that x, y can be chosen

so that x −
√

2y is arbitrarily close to 0, but this value can never be attained because
√

2

is irrational. However, any integer programming problem with rational input data and

bounded objective value attains an optimal solution. Related discussion also appears in

section 1.2.4 of Espinoza [66].

1.2.2 Efforts for Correct Results in Inexact Codes

We have discussed many types of mistakes that can result from floating-point computation

in optimization software. However, it is important to recognize that developers are typically

very aware of the limitations of floating-point computation and implement many safeguards

to minimize the occurrence of such errors. Success in solving large industrial problems is

a testament to these efforts; a naive implementation of the simplex algorithm in floating-

point arithmetic is likely to fail very easily, even on small problems. Software manuals

generally caution users about the dangers of numerical computation and sometimes include

suggestions of how to tune parameters or reformulate models to reduce numerical problems.

A historical account of many major advances for computational linear programming is

given in [23]. A significant computational challenge in implementing the simplex algorithm

is building and updating an LU factorization of the basis matrix. Suhl and Suhl [133]

describe details of how to compute LU factorizations for sparse LP basis matrices. Their

methods improve speed and numerical stability and are used by many commercial LP solvers

today.

Commercial MIP codes also try to avoid generating cutting planes that are incorrect

or possess bad numerical behavior. For example, in the Gurobi MIP solver, any time cuts

are generated with a large deviation in the size of their coefficients they are thrown away.

There are also limits on the rank of cuts that can be generated because high rank cuts can

be especially susceptible to numerical problems. Even with such safeguards in place there is

no guarantee that the results will be correct, and Zonghao Gu notes that programming bugs
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or other problems such as compiler or hardware errors can also cause incorrect results [77].

The Gurobi LP solver also is able to switch into a higher quad-precision mode if numerical

troubles are detected. Many of the safeguards listed here, and others, are implemented in

most high performance optimization software systems.

1.2.3 Exact Linear Programming

Significant progress has already been made toward computationally solving LPs exactly

over the rational numbers using hybrid symbolic-numeric methods [13, 55, 66, 95, 97]. We

describe the basic idea of the algorithm given in [13] which is implemented as the software

QSopt ex [11]. First, a floating-point LP solver is called to solve an approximation of

the problem. After performing the simplex algorithm using double-precision floating-point

arithmetic this solver will return a basis, giving a structural description of the solution,

alongside the numerical solution. The primal and dual solutions associated with this basis

are computed in exact rational arithmetic and checked for optimality. If the solution is

certified as optimal, it is returned. Otherwise, the precision of the floating-point LP solver is

increased and more simplex pivots are carried out to find another solution, then the process

is repeated. As a last resort pivots are done in rational arithmetic, guaranteeing that the

correct solution will be identified. A similar procedure is followed to show unboundedness

or infeasibility. Algorithm 1 gives an outline of this strategy.

Algorithm 1 Rational LP Algorithm (feasible, bounded case)

Input: max{cx : Ax ≤ b} in rational precision
for precision = double, 128, 256, . . . , rational do

Get Ā, b̄, c̄ ≈ A, b, c in current precision
Solve max{c̄x : Āx ≤ b̄} by simplex algorithm
Let B = optimal basis
Compute x, y, exact rational primal/dual solutions for basis B
Verify optimality of solution
if Verification successful then

Return rational solution
else

Continue, starting next simplex solve at B
end if

end for

This strategy is considerably faster than using exact rational arithmetic throughout all
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computations. However, the exact computation of basic solutions still remains a necessary

and computationally expensive component of this algorithm. For this reason a major focus

of this dissertation is the advancement of methods to solve very sparse linear systems of

equations over the rational numbers.

1.2.4 Exact Mixed Integer Programming

Exact IP and MIP have seen less computational progress than exact LP, but significant

first steps have been taken. An article by Neumaier and Shcherbina [118] describes meth-

ods for safe computation in MIP. The authors give strategies for generating safe LP bounds

and infeasibility certificates and generating safe cutting planes. The methods they describe

involve directed rounding and interval arithmetic with floating-point numbers to avoid in-

correct results.

A number of other studies have considered algorithms to compute safe bounds on LP

objective values relying on interval arithmetic. Jansson [87] describes algorithms for com-

puting rigorous bounds on LP objective values, Keil et al. [93] describe a computational

study of these methods on the NETLIB LP library. A more recent study by Althaus

and Dumitriu [6] describe a more general method for computing safe LP bounds. Inter-

val computations are performed by storing upper and lower bounds of a true value using

floating-point numbers and performing computations in a way that preserve the bound

correctness using directed rounding. This strategy will not compute exact solutions but

it can compute intervals containing a solution or give rigorous objective bounds. Valid

bounds on LP objectives are useful for an exact MIP solver because they can be used to

prune nodes in a branch-and-bound tree without computing exact LP solutions. Interval

computations are significantly faster than exact rational arithmetic and avoid some of the

problems associated with floating-point numbers. However, in the presence of numerical

troubles, interval computations can also break down when the gap between the upper and

lower interval bounds become large.

Another central question for implementing an exact MIP solver is how to handle cutting

planes. One possibility is to compute all cuts in exact arithmetic from the original problem
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data, although this exact strategy could be computationally expensive. A recent study [40]

describes a safe way of deriving Gomory mixed-integer cuts (GMI cuts) with floating-point

numbers by using safe directed rounding. They perform computations and demonstrate

this approach to be practical.

Applegate et al. [9] present a proof of optimality for the optimal tour of a traveling

salesman problem with 85,900 cities. An optimal tour for the problem is given along with a

certificate proving the lower bound. It is not difficult to verify the cost of the optimal tour,

but building a system to represent and validate the lower bound – proving its optimality –

was a significant challenge. The lower bound certificate is given in terms of the IP model

of the problem. The cutting planes generated for this model are stored in a structural

description and, depending on the class of cuts, their validity can be verified in different

ways. Valid LP bounds in the branch-and-bound tree are obtained by correcting dual

solutions from a floating-point LP solver to be feasible. The compressed proof of correctness

is approximately 8MB and is available for download along with a program that verifies its

correctness. This work provides a model for the type of system that could be built to verify

the correctness of results for general IP or MIP problems.

A recent series of studies [47, 48, 105] have considered new approaches to proving com-

binatorial infeasibility via Hilbert’s nullstellensatz. The authors gave algorithms to prove

infeasibility for a number of combinatorial problems including non 3-colorability of graphs

by solving systems of polynomial equations. Their methods are demonstrated to be compu-

tationally effective. Additionally, much of their computation uses finite field computation

instead of floating-point computation, so it is not subject to the same numerical errors.

Although it is not clear how their work could be extended to general IP feasibility problems

it is an interesting new direction. It is conceivable that new classes of heuristics to generate

certificates of infeasibility for general IP problems could be computationally effective.

1.3 Overview and Contributions of Dissertation

In Chapter 2 we describe and analyze new output-sensitive methods for computing exact

solutions to linear systems of equations over the rational numbers. A common approach for
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solving rational systems is to use p-adic lifting or iterative refinement to build a modular

or approximate solution, then apply rational number reconstruction [57, 137]. An upper

bound can be computed on the number of iterations these algorithms must perform before

rational reconstruction is guaranteed to return the correct solution. However, in practice

such bounds can be conservative. Output sensitive lifting is the technique of performing

rational reconstruction at intermediate steps of the algorithm and verifying correctness,

which allows the possibility of early termination when the solution size is small. Output-

sensitive algorithms for rational systems of equations have already appeared in the literature

and have been used in practice. The contribution of this chapter is describing output

sensitive algorithms which are asymptotically faster than conventional methods when the

final solution size is small, but maintain the same worst case complexity when solution size

is large. We also introduce a variant of the iterative-refinement method that incorporates

warm starts into the rational reconstruction procedure. Computational tests are performed

on several classes of dense matrices and support the conclusions of the theoretical analysis.

Chapter 3 further studies methods for solving rational linear systems of equations and

focuses specific attention on very sparse systems. A test set of very sparse rational systems

is assembled by taking LP bases from a range of real-world LPs. We compare a direct exact

solver based on LU factorization, Wiedemann’s method for black-box linear algebra [140],

Dixon’s p-adic lifting algorithm [57], and the use of iterative numerical methods and rational

reconstruction as developed by Wan [137]. Practical improvements to these algorithms are

developed to exploit the extreme sparsity occurring in our test set. Extensive computational

tests give a side-by-side comparison of these four methods and measure the effectiveness of

a number of heuristic improvements.

Chapter 4 introduces the project-and-shift method for generating valid LP bounds for

exact mixed-integer programming. The method repairs approximate LP dual solutions

to be exactly feasible by performing a projection and shift to ensure all constraints are

satisfied without numerical error. Bound computations are accelerated by reusing structural

information about the problem through the branch-and-bound tree. We show this new

method to be more generally applicable than a fast bounding method presented by Neumaier
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and Shcherbina [118]. We also show that it can perform faster than solving exact LPs at

every node of the branch-and-bound tree. Several variations of this algorithm are described

and tested computationally in an exact branch-and-bound code implemented within the

mixed-integer programming framework SCIP [3, 4].

In Chapter 5 we discuss future directions for research in exact mathematical program-

ming. We outline some possible next steps to further develop exact methods for IP and

MIP. Obstacles related to solving optimization over the real numbers are discussed. Finally,

we discuss some mathematical problems where exact integer programming could be used.
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CHAPTER II

OUTPUT SENSITIVE LIFTING

2.1 Introduction

Solving rational or integer linear systems of equations is a well developed area of symbolic

computation. Dixon [57] gave an effective procedure for solving systems exactly by comput-

ing x̂ = A−1b mod pk through p-adic lifting and applying rational reconstruction to recover

the exact rational solution. Wiedemann’s black-box method for solving systems of equations

over a finite field can also be used along with p-adic lifting or the Chinese Remainder Algo-

rithm to solve systems in the sparse setting [92, 140]. Alternate techniques include calling a

fixed precision numerical solver within an iterative refinement routine to find an extended

precision solution x̂ ≈ A−1b, sufficient for rational reconstruction to be applied [134, 137].

Others have further developed and analyzed these methods [32, 33, 60, 64, 114, 115].

A core component of these techniques is rational number reconstruction, which allows

an exact rational solution to be recovered from either a modular or approximate solution.

We define the bitsize of a nonzero rational number p/q to be bitsize(p/q) = dlog(|pq|)e.

For a rational vector v we will define size(v) = maxi bitsize(ni/d) where n/d = v is a

representation of v using an integer vector n and a common denominator d. We remark

that there are alternate definitions one could use for the size of a vector. In Chapter 3 we

will use the notation of bitsize() defined by looking at the maximum bitsize of a component

of a vector without using a common denominator, but the notion of size() defined here

is relevant for the results in this chapter. In order to reconstruct a rational solution x

from a modular solution, the system of equations must be solved modulo a number M ,

the size of which depends on the final solution size. Similarly, if a rational solution is to

be reconstructed from an approximate solution, the level of approximation depends on the

size of the final solution. The solution vector is unknown before solving the system so an

upper bound on its size is computed to guide the rational reconstruction procedure. For an
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integer system of equations Ax = b, Cramer’s rule and the Hadamard determinant bound

imply that a solution vector has size bounded by log(‖A‖2n−1
2 ‖b‖2). This bound can often

be excessive, leading to unnecessary computation, both in the number of lifting loops that

must be performed, and in the cost of performing rational reconstruction on large integers.

Output sensitive lifting is the technique of attempting rational reconstruction at inter-

mediate steps of the algorithm with the possibility of identifying the solution early and

avoiding unnecessary lifting/refinement loops. The term output sensitive lifting is used by

Chen and Storjohann [32, 33] and is incorporated into their algorithms. The idea of output

sensitive lifting has also been used in several other settings, such as the computation of

determinants by Kaltofen [90] where it is referred to as early termination. Output sensitive

lifting was also studied in [31] for solving systems of equations over cyclotomic fields. Use

of output sensitive lifting can provide both theoretical and practical improvements when

solving systems of equations exactly. It is applicable in both the dense and sparse settings.

The commonly used bounds can be weak for several reasons. Cramer’s rule tells us

that the denominator of a solution to an integer system Ax = b will divide det(A) and

the Hadamard bound gives det(A) ≤ ‖A‖n2 . While tight in some cases, the Hadamard

bound is often weak; this is experimentally and probabilistically studied in [2]. Even if the

determinant is well approximated by the Hadamard bound, or calculated exactly, it only

provides an upper bound on the solution denominator size and there are many situations in

which solutions will not meet this bound. Systems of equations may have special structure

leading to small solution size, or integral solutions. In Chapter 3 of this Thesis it is observed

that in systems of equations arising from linear programming applications, the solution

bitsize was often much lower than this bound. In such cases, application of output sensitive

lifting has a huge impact on solution times.

The size of the solution to a system of equations also depends on the right hand side.

A matrix which has very complex solutions for particular right hand side vectors will have

trivial or uncomplicated solutions for others. This is one way in which exact precision linear

algebra differs significantly from numerical linear algebra. If a matrix can be successfully

factored or inverted numerically, then solving the system for different right hand sides,
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represented in machine precision, will require almost identical amounts of computation.

When solving a system exactly over the rational numbers, varying the right hand side can

have a drastic effect on the size of the solution and solve time.

This Chapter studies output sensitive techniques applied to two related classes of al-

gorithms for solving linear systems. The first class of algorithm we consider is the p-adic

lifting based strategy of Dixon [57] and the second algorithm is the iterative-refinement

method developed by Wan [137]. Both algorithms have an iterative structure and are later

defined as Algorithms 3 and 5. We will use the terminology of p-adic lifting and lifting

when describing and referencing the Dixon algorithm because it constructs a modular p-

adic solution from the bottom up in order to determine a rational solution. We will use the

terminology of iterative refinement or refinement to describe Wan’s Algorithm because it is

based on iteratively refining an approximate solution, constructing an approximate solution

in a top down manner. The similar structure of the Algorithms of Dixon and Wan allows

output sensitive lifting to be applied in a similar way in both cases.

In Section 2 we present background material in rational reconstruction and give some

related results. In Section 3 we review Dixon’s method and show how it is impacted by

applying output sensitive lifting. In Section 4 we describe two output sensitive versions of

the iterative-refinement method, one of which incorporates warm starts for rational recon-

struction. Section 5 presents computational results and Section 6 contains our conclusions.

2.2 Rational Reconstruction

2.2.1 Background

Rational reconstruction is a necessary component of all the algorithms described in this

Chapter. We briefly describe rational reconstruction and some related background material.

The following well known result appears in [130] as Corollary 6.3a.

Theorem 2.2.1. There exists a polynomial algorithm which, for a given rational number

α and natural number Bd tests if there exists a rational number p/q with 1 ≤ q ≤ Bd and

|α− p/q| < 1/(2B2
d), and if so, finds this (unique) rational number.

If an upper bound Bd is computed for the denominators of the components of x and a
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vector x̂ satisfying |x̂−x|∞ < 1/(2B2
d) is computed, this theorem can be applied component-

wise to x̂ to compute the exact solution x. Theorem 2.2.1 is used for this purpose in the

iterative-refinement method later described as Algorithm 5.

The following result is given, in more generality, as Theorem 5.26 in [136] and is analo-

gous to Theorem 2.2.1. Also see [91] for more details and discussion.

Theorem 2.2.2. There exists a polynomial algorithm which, for given natural numbers n,

M , Bn, Bd, with 2BnBd ≤M tests if there exists a rational number p/q with gcd(p, q) = 1,

|p| < Bn and 1 ≤ q < Bd such that p = nq mod M , and if so, finds this (unique) rational

number.

Using this result a rational system of equations can be solved by scaling it to be integral,

computing a solution to the system modulo an appropriate integer M and reconstructing the

exact rational solution component-wise. Theorem 2.2.2 is used for this purpose in Dixon’s

Algorithm which is later described as Algorithm 3.

In both of the preceding theorems, the algorithms to reconstruct rational numbers rely

on the Extended Euclidean Algorithm (EEA) to compute continued fraction convergents.

The standard Euclidean Algorithm computes the greatest common divisor of integers m,n

by repeatedly calculating the remainder of integer divisions. The EEA records additional

information along the way, including the continued fraction expansion of m/n which is com-

puted as a byproduct of the integer divisions. The continued fraction convergents provide a

sequence of increasingly accurate rational approximations. They are best approximations in

the sense that each convergent is closer to m/n than any number with smaller denominator.

We use [a0; a1, . . . , ak] to denote the continued fraction representation of a rational number

m/n, and we will call the rational number pi
qi

representing [a0; a1, . . . , ai] the ith convergent

of m/n.

Algorithm 2 gives a description of the Euclidean Algorithm. The EEA will perform

the same operations as the Euclidean Algorithm and its output will include the remainder

sequence r0, . . . , rl in addition to the quotient sequence a0, . . . , al−1, where ai :=
⌊

ri
ri+1

⌋
and
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Algorithm 2 Euclidean Algorithm

Input: integers m,n
r0 := n, r1 := m, i := 1
while ri 6= 0 do
ri+1 := ri−1 mod ri
i := i+ 1

end while
l := i− 1
Return: rl=gcd(m,n)

the matrix sequence defined by:

Q0 =

1 0

0 1

 and Qi = Qi−1

ai−1 1

1 0

 ∀i ≥ 1.

There are several equivalent ways to define the matrix sequence and this notation is the

most convenient for our purposes. We now state some basic results concerning continued

fractions; these appear (with varying notation) in either Section 3.2 of [136] or Section 12.2

of [127].

Remark 2.2.3. Consider the rational number m/n for integers m and n ≥ 1, let ri be the

output of Algorithm 2 and ai, Qi be as defined above. Also let pi
qi

be the ith convergent of r,

and define pi−2 = 0, qi−2 = 1, pi−1 = 1, qi−1 = 0. Then the following relations hold:

1. For k ≥ 0, pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.

2.
∣∣∣piqi − pi+1

qi+1

∣∣∣ = 1
qiqi+1

.

3. If m
n > 0 then p1

q1
< p3

q3
< · · · < m

n < · · · < p4
q4
< p2

q2
.

4. If m
n < 0 then p2

q2
< p4

q4
< · · · < m

n < · · · < p3
q3
< p1

q1
.

5. Qi =

pi−1 pi−2

qi−1 qi−2

 ∀i ≥ 0

6.

m
n

 = Qi

 ri

ri+1

.
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7.

 ri

ri+1

 = Q−1
i

m
n

 = (−1)i

 qi−2 −pi−2

−qi−1 pi−1


m
n

.

A straightforward implementation of rational reconstruction will require O(d2) bit op-

erations where d is the number of bits used to represent the input. Recent articles including

[103, 123, 124] describe rational reconstruction algorithms that use O(M(d) log(d)) bit op-

erations where M(d) is the cost of multiplication of integers with size bounded by 2d. Using

fast multiplication of [129] we have M(d) = O(d log(d) log log(d)). This speedup of rational

reconstruction is achieved using similar ideas to the fast Extended Euclidean Algorithm.

2.2.2 Numerical Examples of Rational Reconstruction

In this Section we will present some illustrative numerical examples of rational number

reconstruction, demonstrating how number are reconstructed using Theorems 2.2.1 and

2.2.2. Suppose the rational number

p/q =
1234

56789

is an unknown solution value to a problem.

In order to apply Theorem 2.2.1 to reconstruct this number we would need an upper

bound Bd on the denominator q, and an approximation α of p/q which satisfies |α− p/q| <

1/(2B2
d). In this case Bd = 107 and α = 0.021729560302171 satisfy these conditions.

Now, we list the first 9 continued fraction convergents of α and observe that taking the

last convergent with denominator less than B gives p/q.

Example 2.2.4 (Continued fraction convergents of α).

0

1
,

1

46
,

49

2255
,

99

4556
,

148

6811
,

543

24989
,

691

31806
,

1234

56789
,

1960973537

90244510691
, . . .

Now we show an example involving Theorem 2.2.2. To meet the conditions of this

theorem we need numbers n, M , Bn, Bd, satisfying 2BnBd ≤M , |p| < Bn, 1 ≤ q < Bd and

p = nq mod M . Taking n = 91951526394851, M = 1017 and Bn = Bd = 107 we satisfy

these conditions. In order to reconstruct p and q, the algorithm will perform the EEA on

numbers n and M . The sequence of steps of the EEA generate a sequence of multipliers and
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remainders si, ti and ri satisfying n×si−M×ti = ri, where at the final step ri = gcd(n,M).

At each step of the algorithm the equation ri = nsi mod M holds and it is from such a

step that p, q are extracted. Below we show the intermediate steps of the EEA applied to n

and M and observe that p, q appear at the ninth iteration, the first and only step satisfying

both si ≤ Bd and ri ≤ Bn.

Example 2.2.5 (Steps of the Euclidean Algorithm applied to n,M).

n × 1 −M × 0 = 91951526394851

n × 1 −M × 1 = −15262008815850

n × 7 −M × 6 = 379473499751

n × 281 −M × 241 = −83068825810

n × 1131 −M × 970 = 47198196511

n × 1412 −M × 1211 = −35870629299

n × 2543 −M × 2181 = 11327567212

n × 9041 −M × 7754 = −1887927663

n × 56789 −M × 48705 = 1234

n × 86882919866 −M × 74515004879 = −213

n × 434414656119 −M × 372575073100 = 169

n × 521297575985 −M × 447090077979 = −44

n × 1998307384074 −M × 1713845307037 = 37

n × 2519604960059 −M × 2160935385016 = −7

n × 14596332184369 −M × 12518522232117 = 2

n × 46308601513166 −M × 39716502081367 = −1

2.2.3 Certifying Solution Vectors

We now consider some sufficient conditions that can be efficiently checked to certify cor-

rectness of a rational system of equations. A lemma similar to the following was given by

[30] and was used in [32, 33]. It can be used to certify correctness of reconstructed solu-

tions while requiring little computation. Throughout the rest of the Chapter we will use

‖A‖max = max |aij |.
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Lemma 2.2.6. Suppose A is a square integer matrix, y, b are integer vectors, and d ≥ 0 is

an integer. If for some integer M

Ay = bd mod M and

max(d‖b‖∞, n‖A‖max‖y‖∞) < M/2

then Ay = bd.

Proof. Suppose the conditions hold but Ay − bd 6= 0. Since Ay − bd must be integral and

Ay = bd mod M we have ‖Ay − bd‖∞ ≥M . But we also have

‖Ay − bd‖∞ ≤ ‖Ay‖∞ + ‖bd‖∞ ≤ 2 max(d‖b‖∞, n‖A‖max‖y‖∞) < M

which gives a contradiction.

We also make the observation that the statement of this lemma can be adjusted by

replacing n‖A‖max‖y‖∞ with ‖AT ‖2‖y‖2, and the proof will carry through identically by

the Cauchy-Schwartz inequality.

Corollary 2.2.7. Suppose A, b, y, d satisfy the conditions of Lemma 2.2.6. If Ay = bd,

then d 6= 0 implies x = y/d solves Ax = b, and d = 0 implies singularity of A.

Suppose a solution to a system of equations is computed modulo pk for some integer

k and rational reconstruction is attempted without knowledge of valid bounds, by using

guessed bounds such as Bn = Bd = d
√
pk/2e as in Theorem 2.2.2. In such a case, since

Bn, Bd are not known to be valid, the reconstructed solution may be incorrect. Lemma

2.2.6 gives a very easily checked condition to certify correctness of the solution. If the

solution is known to satisfy the modular system of equations, then checking the remaining

conditions of the theorem requires only a few multiplications, in contrast to a high precision

matrix-vector multiplication required to evaluate the linear equations exactly.

We now provide an analogue for the case when rational numbers are reconstructed from

approximate solutions.
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Lemma 2.2.8. Suppose A is a square integer matrix, b is an integer vector and x is a

rational vector that is known to satisfy ‖x−A−1b‖∞ < ε. If x = y/d, where y is an integer

vector, and d is an integer satisfying d < 1/(n‖A‖maxε), then Ax = b.

Proof. Suppose x̂ = A−1b and Ax 6= b. Since Ay − bd 6= 0 is integral, ‖Ay − bd‖∞ ≥ 1.

Next d < 1/(n‖A‖maxε) and ‖x− x̂‖∞ ≤ ε implies ‖x− x̂‖∞ < 1/(nd‖A‖max). So we have

‖Ay − bd‖∞ = d‖Ax− b‖∞ = d‖A(x− x̂)‖∞ ≤ dn‖A‖max‖x− x̂‖∞ < 1

which gives a contradiction.

An alternative version of this system check criterion can be stated in terms of the amount

by which the candidate solution violates the equations.

Lemma 2.2.9. Suppose A is a square integer matrix, b is an integer vector and x is a

rational vector that is known to satisfy ‖Ax − b‖∞ < ε. If x = y/d, where y is an integer

vector, and d is an integer satisfying d < 1/ε, then Ax = b.

Proof. Suppose Ax 6= b then since Ay − bd 6= 0 is integral, ‖Ay − bd‖∞ ≥ 1. This gives

1 ≤ ‖Ay − bd‖∞ = d‖Ax− b‖∞ = dε < 1

which is a contradiction.

Lemma 2.2.8 implies that if a rational solution x is reconstructed from an approximate

solution, where the common denominator of the vector x is small enough, and its accuracy

is known to satisfy a required bound, then its correctness can be certified without evaluating

the equations.

While Lemmas 2.2.6 and 2.2.8 provide conditions to quickly certify correctness of solu-

tions that have been reconstructed, their conditions are not necessary, and a correct rational

solution may fail to satisfy them. The following example illustrates that this gap can depend

on both the dimension and size of the data entries.

Example 2.2.10. Suppose A = aIn for an integer a and In is the n dimensional identity

matrix. For an n dimensional vector b = [a, a, . . . , a]T , x = y/d = [1, 1, . . . , 1]T /1 is a
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solution to Ax = b for all positive integers a, n. After solving this system modulo M ≥ 2 for

a number M not dividing a, the correct solution will be reconstructed successfully. However,

the conditions in Lemma 2.2.6 will not be met unless a solution is computed modulo M ≥

2na.

This example also can be applied to Lemma 2.2.8, where we see that any value of ε ≤ 1/2

is sufficient for the correct solution to be determined using rational reconstruction, however

the conditions are not satisfied unless the system is solved to within an error ε ≤ 1/(2na).

Therefore, to design an algorithm that will compute and certify the correct rational so-

lution as soon as possible, these techniques have both practical and theoretical drawbacks.

We also mention that if an incorrect solution vector is checked for correctness by evaluating

the linear equations of the system, its incorrectness can likely be discovered after evaluating

only a small number of the equations. Therefore, although evaluating all of the linear equa-

tions could be computationally expensive, we expect identifying incorrectness of solutions

to be considerably faster.

We now provide necessary and sufficient conditions that can be used to verify correctness

of a reconstructed solution. While these conditions are not as easily checked as those in the

previously discussed results they can be easier to verify than evaluating the equations using

full precision.

Lemma 2.2.11. Suppose A is a square integer matrix, y, b are integer vectors, d is a

positive integer and x = y/d. Then Ax = b if and only if there exists an integer M ≥ 1

such both of the following conditions hold.

Ay = bd mod M (1)

‖Ax− b‖∞ < M/d (2)

Proof. If Ax = b then for any integer M ≥ 1 the modular equation must hold and ‖Ax −

b‖∞ = 0 < M/d. For the reverse direction suppose Ax 6= b, then for any positive integer

M , Ay = bd mod M implies ‖Ay − bd‖∞ ≥ M , which means ‖Ax − b‖∞ ≥ M/d so both

conditions cannot hold at once.
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Thus, if solution y/d is known to satisfy Ay = bd mod M , to check Ax = b it is

necessary and sufficient that ‖Ax−b‖∞ < M/d, which can be verified using approximations

or interval arithmetic. Similarly, if we have computed a rational solution x = y/d satisfying

‖Ax− b‖∞ < ε, this result tells us that instead of explicitly checking Ax = b, it is sufficient

to select any positive integer M ≥ d/ε and verify that Ay = bd mod M . Evaluating this

modular system will require less computation than verifying the full precision equations,

especially when d/ε is reasonably small.

Related results also appear in [65] where it is shown, under some assumptions, that if the

solutions at two (or more) consecutive lifting steps are the same there is a high probability

that they give the correct answer. As our focus is on deterministic algorithms we refer the

reader to this reference for more information.

2.2.4 Warm Starting Rational Reconstruction

For the algorithm presented in Section 4 it is of interest to understand how the output

of the Extended Euclidean Algorithm, and rational reconstruction, can change when its

input is slightly perturbed. Understanding this will help us to perform warm starts for the

rational reconstruction algorithm corresponding to Theorem 2.2.1. The following appears

as Theorem A in [100]; related results appear in [103, 123].

Theorem 2.2.12. Let
pk−1

qk−1
, pkqk be two consecutive convergents to a number β. Then these

fractions are consecutive convergents to α if and only if∣∣∣∣α− pk
qk

∣∣∣∣ < 1

qk(qk + qk−1)
.

This theorem gives conditions which can be used to verify that a sequence of continued

fraction approximations is correct up to a certain point. The following result applies this

theorem to the framework of rational reconstruction.

Theorem 2.2.13. Let x, α be a rational numbers satisfying |x − α| < 1/(2B2) for some

integer B. Suppose pk
qk

is any continued fraction convergent of x such that qk < B. If k ≥ 3

then either
pk−2

qk−2
,
pk−1

qk−1
or

pk−1

qk−1
, pkqk are two consecutive convergents of α.
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Proof. Without loss of generality we may assume
pk−1

qk−1
≤ x ≤ pk

qk
. First suppose |α− pk−1

qk−1
| <

1
qkqk−1

. Then by Remark 2.2.3 if k ≥ 1, qk ≥ qk−1 + qk−2, so we have∣∣∣∣α− pk−1

qk−1

∣∣∣∣ < 1

qkqk−1
≤ 1

qk−1(qk−1 + qk−2)

and by Theorem 2.2.12,
pk−2

qk−2
,
pk−1

qk−1
are two consecutive convergents of α. So we may assume

that |α − pk−1

qk−1
| ≥ 1

qkqk−1
. From |pkqk −

pk−1

qk−1
| = 1

qkqk−1
and

pk−1

qk−1
≤ x it follows that pk

qk
≤ α.

Finally |x− α| < 1
2B2 and x ≤ pk

qk
gives∣∣∣∣α− pk

qk

∣∣∣∣ < 1

2B2
≤ 1

2q2
k

≤ 1

qk(qk + qk−1)
.

By Theorem 2.2.12 we have
pk−1

qk−1
, pkqk as two consecutive convergents of α, which establishes

our desired result.

Thus, if rational reconstruction is performed using an approximate input x ≈ α, the

intermediate steps of the EEA will be correct in all but possibly the last step. If x is later

refined to a more accurate approximation of α then in order to apply rational reconstruction

again, we can start the algorithm where it left off, with the need for at most one step

backward.

2.3 Output Sensitive Lifting for Dixon’s Method

Algorithm 3 describes Dixon’s well known algorithm for solving an integer system of equa-

tions Ax = b [57]. This algorithm is sometimes referred to as the p-adic lifting algorithm

for solving linear systems and related ideas are considered by other authors [96, 112, 138].

His algorithm has three steps; first an inverse of A mod p is computed, second p-adic

lifting is used to construct a solution mod pk, then the rational solution is reconstructed.

Dixon showed the following bound regarding the complexity of his algorithm assuming

Ax = b is an n dimensional square system of equations and ‖A‖max, ‖b‖∞ are bounded by a

constant. In his analysis he also assumed that a prime p not dividing det(A) and bounded

by a constant not depending on A was found (such a prime might not exist).

Theorem 2.3.1. Let Ax = b be an n dimensional square nonsingular integer system of

equations. If the entries of A, b are bounded by a constant and p is bounded by a constant,

then Algorithm 3 will find the rational solution using O(n3 log2(n)) bit operations.
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Algorithm 3 Standard Dixon Algorithm

Input: A, b, p {Ax = b is system to be solved, p is a prime not dividing det(A)}
Compute A−1 mod p
x̂ := 0, i := 0, d := b, B := 2‖A‖2n−1

2 ‖b‖2
while pi < B do
y := A−1d mod p
x̂ := x̂+ ypi {This will set x̂ = A−1b mod pi+1 }
d :=

(
d−Ay
p

)
i := i+ 1

end while
x:=Reconstruct(x̂, pi)
Return: x {Solution to system}

We will review how this bound was obtained. The inversion of A mod p can be done

with O(n3) operations. There will be O(log(B)) lifting steps. At the ith iteration of the

algorithm, entries of x̂ will be in the range [0, pi+1−1] and d is updated to equal (b−Ax̂)/pi.

Therefore d will have integral entries with bitsize O(log n). Updating y, x̂ and d in each

lifting step is accomplished with O(n2 log(n)) bit operations. This gives a total cost of

O(n2 log(n) log(B)) over all lifting steps. The rational number reconstruction, using the

Extended Euclidean Algorithm component-wise, has a cost of O(n log2(B)) operations. We

also have log(B) = log(2‖A‖2n−1
2 ‖b‖2) = O(n log(n)), so the bit complexity is

O(n3 + n2 log(n) log(B) + n log2(B)) = O(n3 log2 n).

In practice a word sized prime that does not divide det(A) can often be identified by

randomly selecting a prime. In the case that a prime is selected that does divide det(A) this

can be recognized in the first step of the algorithm when computing A−1 mod p. In general

the size of p will depend on the dimension and size of entries in A. In [132] an algorithm to

determine a prime p with size O(log n+ log log ‖A‖max) is analyzed in Corollary 36.

More general complexity analysis of Dixon’s method is given by Mulders and Storjohann

as Theorem 20 in [114], which does not assume constant bounds on A, b and p. We restate

a version of their result as Theorem 2.3.2.

Theorem 2.3.2. The p-adic lifting algorithm for solving a system of integer equations
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exactly is correct and given input A, b, p it will terminate after

O(n3(log n+ log ‖A‖max + log p)2 + n log2 ‖b‖∞)

bit operations.

Their statement of the algorithm differs slightly from Algorithm 3 but follows the same

basic structure. Mulders and Storjohann prove this theorem using standard arithmetic and

in a later paper [115] they also give a detailed complexity analysis of Dixon’s method using

fast arithmetic as Proposition 31.

Algorithm 4 describes the output sensitive version of Dixon’s Algorithm. In this variant

of the algorithm, instead of waiting until the modulus of the intermediate solution x̂ exceeds

the bound B, rational reconstruction is attempted at intermediate steps. Success of the

rational reconstruction is not theoretically guaranteed at these steps, so the reconstructed

solution must be verified. The bit complexity of the output sensitive Dixon algorithm will

depend on which steps are specified as reconstruction steps. Here we will make the choice

that reconstruction is attempted at a geometric frequency, namely at steps i where i = 2k

for some integer k. This choice of frequency is important. For example, if reconstruction is

attempted at predetermined constant length intervals the bit complexity of the algorithm

would change. We will use log(S) = size(A−1b) to represent the size of the solution. Recall

that we have defined size() of a vector to be the maximum bitsize over all of its entries

after all entries are represented with a common denominator. We also know that the

numerator and denominator bounds from Cramer’s rule and the Hadamard bound gave us

2S ≤ B = 2‖A‖2n−1
2 ‖b‖2. We will now give an analysis of the complexity of Algorithm 4 in

terms of the system dimension n and the solution size log(S). For simplicity of presentation

we assume entries of A, b, p are bounded by a constant.

We first give a simplified analysis of Algorithm 4 where we are assuming all of the entries

in the problem input, and the prime p are of size bounded by a constant.

Theorem 2.3.3. Let Ax = b be an n dimensional square nonsingular integer system of

equations and suppose the entries of A, b are bounded by a constant. Also suppose that p

is a prime bounded by a constant which does not divide det(A) and log(S) = size(A−1b).
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Algorithm 4 Output Sensitive Dixon Algorithm

Input: A, b, p {Ax = b is system to be solved, p is a prime not dividing det(A)}
Compute A−1 mod p
x̂ := 0, i := 0, d := b
while solution not found do
y := A−1d mod p
x̂ := x̂+ ypi

if reconstruction step then
x :=Reconstruct(x̂, pi+1) {Using Theorem 2.2.2 component-wise with
Bn = Bd =

√
pi+1/2}

Check Ax = b
end if
d :=

(
d−Ay
p

)
i := i+ 1

end while
Return: x {Solution to system}

Then the Output Sensitive Dixon Algorithm terminates after O(n3 + n2 log(n) log(S)) bit

operations.

Proof. Reducing A mod p and computing A−1 mod p will require O(n3) operations.

Next we will show that the number of loops is O(log(S)). In the ith loop of the algorithm

a solution to the system modulo pi+1 will be constructed. By Theorem 2.2.2 the reconstruc-

tion routine is guaranteed to succeed when both Bn and Bd exceed the (unknown) quantity

S. Therefore if reconstruction is attempted at a loop where Bn = Bd =
√
pi+1/2 ≥ S,

or i ≥ 2(log(S)/ log(p)), the correct solution is ensured to be correctly reconstructed. The

geometric choice of reconstruction frequency ensures we will perform at most two times the

necessary number of loops beyond the earliest loop where i is large enough to correctly

reconstruct the solution.

The number of operations performed in each loop, excluding the cost of the rational

reconstruction attempts and the solution check, is O(n2 log(n)) as in the standard Dixon

Algorithm. The computational cost of performing rational reconstruction while in loop i is

O(ni2) because each component will have bitsize O(i). In order to check the reconstructed

candidate solution x we will first transform to a representation having a common denom-

inator d to get x = z/d. Then if z or d exceed the numerator and denominator bounds

Bn, Bd the check is aborted, otherwise the solution is checked by computing Az and bd. The
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cost of computing Az and bd will be O(n2 log(n)i) since it requires performing an integer

matrix-vector multiplication where the entries of the matrix are bounded by a constant, and

the entries of the vector are bounded by 2O(i). Thus, since reconstruction will be attempted

and verified at steps i = 2k for k = 1, 2, . . . , O(log log(S)) we have the following bound on

the combined cost of rational reconstruction and solution checking:

O(log log(S))∑
k=1

(
O(n(2k)2) +O(n2 log(n)2k)

)
= O(n log2(S) + n2 log(n) log(S)).

Using log(S) = O(n log(n)) we have the following bound on the total number of bit

operations O(n3+n2 log(n) log(S)+n log2(S)+n2 log(n) log(S)) = O(n3+n2 log(n) log(S)).

We see that this algorithm gives an improved runtime if the solution size is small is

small. Moreover, under the assumption that sizes of A, b, p are bounded by a constant,

log(S) = O(n log n) so this matches the worst case bound of O(n3 log2 n) given in Theorem

2.3.1.

We will now analyze Algorithm 4 without assuming constant size bounds on entries of

A, b and p. This is similar to the proof of Theorem 20 in [114].

Theorem 2.3.4. Let Ax = b be a square nonsingular integer system of equations and a

prime p is known not dividing det(A) and log(S) = size(A−1b) then the Output Sensitive

Dixon Algorithm terminates after

O
(
n3 log2(p) + n2 log(‖A‖max) log(p) + n log(S) log(‖b‖∞)

+n2 log(S)(log n+ log ‖A‖max + log p)
)

bit operations.

Proof. We will bound the complexity of this algorithm in three steps. First we look at the

initial cost of reducing A mod p and computing its mod p inverse. Second we consider

the cost of all of the lifting steps. Third, we consider the combined cost of performing

rational reconstruction including checking the intermediate solutions. We also note that
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the Hadamard bound tells us that the solution size, log(S) = O(n log(n) + n log ‖A‖max +

log ‖b‖∞)

Inversion: Reduction of A mod p and computation of A−1 mod p can be done using

O(n2 log(‖A‖max) log(p) + n3 log2(p))

bit operations.

Lifting: The number of loops the algorithm will perform is O(log(S)/ log(p)). We will

now count the cost of each lifting loop.

At the ith step of the algorithm

d =

(
b−A(A−1b mod pi)

pi

)
and since pi must divide b−A(A−1b mod pi) this implies d always has entries with absolute

value at most ‖b‖∞ + n‖A‖max. To compute y := A−1d mod p we reduce d mod p which

will cost O(n log(p)(log ‖b‖∞ + log n+ log ‖A‖max)) and then doing a mod p matrix-vector

multiplication will cost O(n2 log2(p)).

Now we bound the cost of computing x̂ := x̂ + ypi in each loop. Observe that x̂ will

require at most O(logS) bits to represent it at any stage of the algorithm. pi can be updated

and stored from step to step and will always have size O(log(S)). y will have size O(log p).

The dominating cost will be the multiplication of ypi which will cost O(n log(S) log(p)).

Finally we consider the cost of updating d := (d−Ay)/p. Since y has entries with abso-

lute value at most p, and entries of Ay are at most n‖A‖maxp, the cost of the multiplications

and additions required to compute Ay is bounded byO(n2(log(‖A‖max) log(p)+log n)). Sub-

tracting Ay from d will cost O(n(log n+ log p+ log ‖A‖max + log ‖b‖∞)) and then dividing

by p will have cost O(n log(p)(log ‖b‖∞ + log n+ log ‖A‖max + log p)).

Combining terms we have the following bound on the computation required in each

loop:

O(n log(p) log(S) + n log(p)(log n+ log ‖b‖∞)

+n2(log(‖A‖max) log(p) + log n+ log2(p))
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Multiplying the total loop cost by the number of loops O(log(S)/ log(p)) can be bounded

by:

O(n log2(S) + n log(S) log(‖b‖∞)

+n2 log(S)(log(‖A‖max) + log n+ log p))

as a bound on all computation in the lifting steps.

Reconstruction: Finally we consider the combined cost of the rational reconstruction

and solution checks performed. At the ith loop the cost of rational reconstruction is bounded

by O(n(i log(p))2) since each of the n components will have bitsize O(i log(p)). Once a can-

didate solution x is reconstructed it is checked for correctness. This can be done by first

transforming it to be represented with a common denominator as z/d = x. If any entries

of z or the common denominator d exceed the numerator and denominator bounds Bn =

Bd =
√
pi+1/2 then the check is aborted. Now, if the bitsize of d and the entries of z are

O(i log(p)) then the cost of computing Az will be O(n2(log(‖A‖max)(i) log(p)+log(n))) since

it requires performing an integer matrix-vector multiplication where the entries of the matrix

are bounded by ‖A‖max, and the entries of the vector have bitsize O(i log p) and the largest

entries of the resulting values ofAz have bitsize bounded byO(log ‖A‖max+log n+(i) log(p)).

The cost of computing bd is O(n log(‖b‖∞)(i) log(p)). Therefore the total cost of rational re-

construction and solution checking over all loops k = 1, 2, . . . , O(log(log(S)/ log(p))) where

it is applied is:

O(log(log(S)/ log(p)))∑
k=1

O
(
n log2(p)(2k)2

+n2(log(‖A‖max) log(p)2k + log n) + n log(‖b‖∞) log(p)2k
)
.

This summation is bounded above by:

O(n log2(S) + n2 log(S)(log ‖A‖max + log n)

+n log(S) log(‖b‖∞))

Total cost: Finally, considering the cost of the matrix inversion, lifting and reconstruction
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attempts can all be bounded by:

O
(
n3 log2(p) + n2 log(‖A‖max) log(p) + n log2(S)

+n2 log(S)(log n+ log ‖A‖max + log p) + n log(S) log(‖b‖∞)
)

And using the fact that log(S) = O(n log(n)+n log(‖A‖max)+log ‖b‖∞) we can simplify

this to:

O
(
n3 log2(p) + n2 log(‖A‖max) log(p) + n log(S) log(‖b‖∞)

+n2 log(S)(log n+ log ‖A‖max + log p)
)

which gives the desired bound.

This result agrees with the result of Theorem 2.3.1 when the sizes of the input numbers

are all treated as constants. Comparing this to Theorem 2.3.2 we see that the algorithm

can perform asymptotically faster if the final solution size is small. We will also see that it

performs no worse even when the solution size is as large as possible.

Corollary 2.3.5. The bit complexity of the Output Sensitive Dixon Algorithm as given by

Theorem 2.3.4 is

O(n3(log n+ log ‖A‖max + log p)2 + n log2 ‖b‖∞)

Proof. The result of Theorem 2.3.4 gives the following bound:

O
(
n3 log2(p) + n2 log(‖A‖max) log(p) + n log(S) log(‖b‖∞)

+n2 log(S)(log n+ log ‖A‖max + log p)
)

By the Hadamard bound we know that log(S) = O(n log(n) + n log(‖A‖max) + log ‖b‖∞),

so plugging in this bound and removing all terms that already satisfy the desired bound we

are left with:

O(n2 log(‖b‖∞)(log n+ log ‖A‖max + log p))

To observe that these terms also meet our desired bound consider the two cases where either

log(‖b‖∞) ≥ n(log n+ log ‖A‖max + log p) or log(‖b‖∞) ≤ n(log n+ log ‖A‖max + log p) and

the result follows.
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2.4 Output Sensitive Iterative Refinement

The iterative-refinement method solves linear systems of equations over the rational num-

bers by calculating a highly accurate approximate solution and applying Theorem 2.2.1 to

reconstruct the rational solution. The approximate solution is calculated and iteratively

refined using numerical methods.

Algorithm 5 Iterative Refinement Method

Input: A, b {Ax = b is system to be solved}
Compute numerical LU factorization of A
N := 0 {Numerator of the approximation}
D := 1 {Common denominator of approximation}
B := 2‖A‖2n2
∆ := b {Error measure of solution at each step}
while D < B do

Compute x̂ :≈ A−1∆ {Using numerical LU factorization}
Choose an integer α < ||∆||∞

||∆−Ax̂||∞ where αx̂ is within floating point range

Set x̄ ≈ αx̂ {Round to the nearest integer}
∆ := α∆−Ax̄ {Update the residual}
D := D × α {Update the denominator}
N := N × α+ x̄

end while
Reconstruct x using N/D
Return: x {Solution to system}

This general idea was used by [134], and was later improved upon by Wan [137] who

showed how to more efficiently keep track of the error by rounding and adjusting the approx-

imate solution. In order to guarantee correctness of the reconstructed solution, Cramer’s

rule and the Hadamard bound are used, as in Dixon’s method, to bound the size of the ra-

tional solutions. Algorithm 5 gives a description of the iterative-refinement method similar

to the algorithm of Wan [137]. All versions of the iterative-refinement method described

in this section require the assumption that the matrix can be successfully numerically fac-

tored or inverted. The iterative structure of this algorithm is similar to Dixon’s method

and rational reconstruction can also be attempted at intermediate steps to make it output

sensitive. This strategy is described as Algorithm 6.

If rational reconstruction is attempted component-wise at an intermediate step of the
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Algorithm 6 Output Sensitive I. R. Method

Input: A, b {Ax = b is system to be solved}
Compute numerical LU factorization of A
N := 0 {Numerator of the approximation}
D := 1 {Common denominator of approximation}
∆ := b {Error measure of solution at each step}
while solution not found do

Compute x̂ :≈ A−1∆ {Using numerical LU factorization}
Choose an integer α < ||∆||∞

||∆−Ax̂||∞ where αx̂ is within floating point range

Set x̄ ≈ αx̂ {Round to the nearest integer}
∆ := α∆−Ax̄ {Update the residual}
D := D × α {Update the denominator}
N := N × α+ x̄
if reconstruction step then
x :=Reconstruct(N,D) {Using Theorem 2.2.1 and Bd =

√
D/2}

Check Ax = b
end if

end while
Return: x {Solution to system}

iterative-refinement algorithm then by Theorem 2.2.13 some steps of the EEA will be cor-

rect, even if the reconstructed solution is not correct. Therefore the strategy of Algorithm

6 may recompute the same leading sequence of convergents each time rational reconstruc-

tion is attempted. Algorithm 7 describes a procedure to warm start rational reconstruction

within the output-sensitive iterative-refinement method in order to avoid this recomputa-

tion. It differs from the previous algorithms discussed because it interweaves the rational

reconstruction routine with the refinement steps instead of calling rational reconstruction

as a separable routine.

After performing each step of the while loop we obtain a refinement of the approximation

of the solution to the system of equations. We will use Ni/D to represent the approximation

of the ith component, and note that this notation does not appear in the algorithm descrip-

tion because N/D is stored in terms of its EEA matrix and remainder sequence instead of

explicitly. For the discussion here we assume that the numerical solver is providing enough

correct solution bits that at any step of the algorithm |Ni/D − (A−1b)i| < 1/D holds.

For the ith component of the solution Qik, r
i
k, r

i
k+1 stores the matrix and remainder

sequence representation of Ni/D after k steps of the EEA. Recall that in Remark 2.2.3 we
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Algorithm 7 O.S. I.R. Method with Warm Starts

Input: A, b {Ax = b is system to be solved}
Compute numerical LU factorization of A
D := 1 {Common denominator of approximation}
(Qi0, r

i
0, r

i
1) = (I2, 0, 1) ∀i ∈ 1, . . . ,dim(A) {Here Qik, r

i
k, r

i
k+1 represents the elements

of the matrix and remainder sequence of the EEA of the ith solution component after k
iterations of the EEA.}
∆ := b {Error measure of solution at each step}
while solution not found do

Compute x̂ :≈ A−1∆ {Using numerical LU factorization}
Choose an integer α < ||∆||∞

||∆−Ax̂||∞ where αx̂ is within floating point range

Set x̄ ≈ αx̂ {Round to the nearest integer}
∆ := α∆−Ax̄ {Update the residual}
D := D × α {Update the common denominator of approximation}
Update Qik, r

i
k, r

i
k+1∀i using x̄i, α and Lemma 2.4.1

Perform additional steps of EEA on (Qik, r
i
k, r

i
k+1) maintaining qik−1 <

√
D/2

{The intermediate reconstructed solution x is defined by xi = pik−1/q
i
k−1.}

Check Ax = b {Use full precision check if step in loop is a power of 2, otherwise
use the quick check of Lemma 2.2.8}

end while
Return: x {Solution to system}

saw that the matrix sequence stores the continued fraction convergents of a number. These

values are initialized as (Qi0, r
i
0, r

i
1) = (I2, 0, 1). By Theorem 2.2.13 if |Ni/D − (A−1b)i| <

1/D and if we update the matrix sequence maintaining qik−1 <
√
D/2 then either Qik

or Qik−1 will be a correct element of the EEA matrix sequence for the true value of the

ith solution component (A−1b)i. Thus, if k ≥ 1, then we can be safe and backtrack to

Qik−1 which will be in the matrix sequence when the EEA is applied to the numerator and

denominator of (A−1b)i.

After performing each refinement step, two steps must be done to update the continued

fraction approximation of the final solution. First Qik, r
i
k, r

i
k+1 must be updated to reflect

the updated representation of the approximation Ni/D. Assuming Qik is found in the matrix

sequence for Ni/D we only need to update the remainders rik, r
i
k+1. A formula to make this

update is given in Lemma 2.4.1. Secondly, once rik, r
i
k+1 are updated, additional iterations

of the EEA are performed to refine the matrix sequence. This is done component-wise so

the progress of the EEA on each component will be different. Steps of the EEA will be

performed, starting with Qik, r
i
k, r

i
k+1, maintaining qik−1 <

√
D/2. After performing these
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operations xi = pik−1/q
i
k−1 will give the continued fraction approximation of the approximate

solution Ni/D with denominator not exceeding
√
D/2.

The following lemma gives an explicit formula for updating the remainders rik, r
i
k+1 when

the approximate solution is refined.

Lemma 2.4.1. Let N̂i/D̂ be a rational number and suppose at the kth step of the EEA the

following have been computed

Q̂k =

p̂k−1 p̂k−2

q̂k−1 q̂k−2

 , r̂k, r̂k+1.

Let Ni/D be a rational number for which Qk = Q̂k is known to be a matrix encountered in

the application of the EEA. Then if Ni
D = N̂iα+x̄i

D̂α
, the following relation gives the values of

ri, ri+1, the remainders encountered at the kth step of the EEA when applied to Ni, D: rk

rk+1

 = α

 r̂k

r̂k+1

+ (−1)kx̄i

 q̂k−2

−q̂k−1

 .

Proof. By Remark 2.2.3, we have the following rk

rk+1

 = Q−1
k

Ni

D

 = αQ−1
k

N̂i

D̂

+ x̄iQ
−1
k

1

0



= α

 r̂k

r̂k+1

+ (−1)kx̄i

 q̂k−2

−q̂k−1


which gives our proposed formula.

This gives a way to update the remainder sequence, ri, ri+1, from r̂i, r̂i+1 without re-

quiring to access Ni or D. The only required information is a scale factor α and difference

x̄i, which might have a much smaller representation than Ni or D. After applying Lemma

2.4.1 to update the remainders more steps of the EEA can be performed advancing the ma-

trix sequence and further refining the continued fraction approximation of each component

Ni/D

As noted earlier, the numerator of the approximate solution, which was stored as N in

Algorithms 5 and 6, is no longer explicitly stored by Algorithm 7. Instead, it is represented
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by the matrix sequence and remainders which are updated at each step. From Remark 2.2.3

we see the approximation of the ith solution component, represented by Ni/D, is stored as

Ni

D

 = Qik

 rik

rik+1

 .

In order to check the correctness of the candidate solutions computed in Algorithm 7 the

quick check given by Lemma 2.2.8 can be used at every step, this check is fast to compute

but may fail to recognize a correct solution. A more expensive but always correct exact

check can be done at loops that are done in a geometric progression ensuring the algorithm

terminates after O(log(S)) loops. Within this framework there are other choices that could

be made regarding how to check the solutions. A suggestion of one referee was to entirely

skip the quick checks by Lemma 2.2.8 and only update Qik, r
i
k, r

i
k+1 at loops that are a power

of two, or some other geometric frequency, to take advantage of asymptotically faster steps

of the EEA and performing the full precision checks at these steps.

Remark 2.4.2. If A is an n × n matrix which can successfully be numerically factored,

the entries of A, b are bounded by a constant and log(S) = size(A−1b), then the output-

sensitive versions of the iterative-refinement methods described as Algorithm 6 and 7 will

both terminate with the correct solution to Ax = b after performing O(n3 +n2 log(n) log(S))

bit operations.

The structure of the algorithm here mirrors the Output Sensitive Dixon’s method which

was analyzed in the previous section in Theorem 2.3.3, so we only note some differences

here. In [137] Wan gave a proof of correctness and an analysis of his algorithm which is

similar to Algorithm 5. We have stated this result as an informal remark and refer the

reader to Wan’s paper [137] to see how one can make a more rigorous statement of this

type involving a numerical solver. The only significant difference between Algorithm 5 and

its output-sensitive counterparts is how and when the rational reconstruction is performed.

Moreover, by using Theorem 2.2.13 to warm start the rational reconstruction at each step

Algorithm 7 will perform asymptotically the same amount of computation for rational

reconstruction as Algorithm 6. In Algorithm 7 the reconstructed solution is available at
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every step of the while loop and thus the quick check to certify Ax = b given by Lemma

2.2.8 can be done at every loop of the refinement procedure. The more computationally

expensive check will only be performed at a geometric frequency.

We note that for p-adic lifting, the idea of using warm starts for the EEA cannot be

applied in the same way. Iterative refinement computes an approximate solution in a top

down fashion, with each refinement making smaller and smaller adjustments leaving the

leading digits unchanged. For p-adic lifting, the solution is computed from the bottom up,

and the leading digits of the modular solution change at every iteration.

2.5 Computational Results

In this section we present computational results to compare the performance of the methods

described in this Chapter. Source codes for the methods tested here and scripts to generate

the test problems are freely available at

www.isye.gatech.edu/~dsteffy/rational/

for any research purposes.

2.5.1 Implementation

Output sensitive lifting can be applied in both the sparse and dense case. It can be applied

in both the modular (i.e. Dixon) or numerical (iterative refinement) settings. For our

computations we have chosen to evaluate it in the dense setting using both a Dixon based

solver and an iterative-refinement based solver. The reason we have chosen to consider

both these methods is that the Dixon based solver can be tested on some well known

problems which are too ill-conditioned for a numerical solver to handle. Testing the iterative-

refinement solver allows us to evaluate the warm starts within the iterative-refinement

method as described in Algorithm 7 in comparison with the standard and output sensitive

methods (Algorithms 5 and 6). Moreover, in Chapter 3 output sensitive lifting is tested

within many methods in the sparse setting and is found to be highly successful for a large

class of applied problems.

Our implementation of Dixon’s algorithm is written in C/C++ and uses the FFLAS and
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FFPACK packages [61], which provide fast BLAS and LAPACK routines for finite fields

in C++. We implemented both the standard Dixon algorithm as described in Algorithm

3 along with the output sensitive Dixon algorithm as given in Algorithm 4. For Dixon’s

Algorithm any non-integral inputs are scaled to be integral before solving.

The implementation of the iterative-refinement methods are written in C and uses the

BLAS [58, 98] and LAPACK [8] routines for the dense numerical linear algebra. We have

used the ATLAS package [139] which provides automatically tuned BLAS and a subset

of LAPACK routines. We implemented three strategies for rational reconstruction for the

iterative-refinement method. First, we use the Hadamard bound as in Algorithm 5; second,

we attempt reconstruction at loops which are a power of two using the framework of Al-

gorithm 6; third, we implement a version of Algorithm 7 where the partially reconstructed

solutions are stored from step to step and reused.

We use a straightforward implementation of rational reconstruction, employing a tech-

nique referred to as the DLCM method in Section 3.3.2.2 of this dissertation. This tech-

nique is also used by Chen and Storjohann [32, 33] and others [92, 131]. The DLCM method

amounts to storing the LCM of the denominators of the reconstructed solution vector and

using this information to accelerate component-wise reconstruction by fixing factors of the

component denominators or terminating early if this common denominator grows too large.

For Dixon’s method we apply the DLCM method as it is described in [32, 33] and Section

3.3.2.2. For the iterative-refinement methods we use a modified strategy because the warm

starts in Algorithm 7 store the work of the EEA from step to step making it incompatible

with the DLCM method. The modified strategy we use is to reconstruct the candidate exact

solution component-wise and keep track of the common denominator of the re-constructed

components during each reconstruction step. If this common denominator of the recon-

structed components exceeds the denominator bound (
√
D/2 where D is the denominator

of the approximate solution), then no further steps of the EEA are performed and more

refinement steps are performed. This gives a minor slowdown to Algorithms 5 and 6 but

allows a side by side comparison between them and Algorithm 7. An recent study of vector

rational number reconstruction can be found in [28].
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We also comment that the purpose of our implementations were to accurately compare

ideas described in this article in a straightforward implementation. The implementations

are not expected to be competitive with state of the art solvers such as LinBox [60] or IML

[32, 33].

2.5.2 Test Problems

The goal of our computational experiments is two-fold. First, we seek to evaluate how output

sensitive lifting can accelerate linear system solving on problems for which the bitsize of

the final solution is small, problems where it should have a distinct advantage. Secondly,

we seek to compare the speed of the standard and output sensitive algorithms on problems

whose output is very large, to verify that in the worst case there is no significant drawback

to using output sensitive lifting.

In order to meet these goals and adequately compare the algorithms we chose a variety

of problems in our test set. Table 2 provides descriptions of the classes of dense matrices

which we use to test our methods.

Table 2: Description of Test Matrices

Matrix Type Construction

Hadamard Dn for n = 2k D1 = (1) and Dn =
(
Dn/2 Dn/2
Dn/2 −Dn/2

)
Random Rn {Rn}ij ∈ [−100, 100] if i 6= j, and {Rn}ii = 10, 000
Hilbert Hn {Hn}ij = 1/(i+ j − 1)
Vandermonde Vn {Vn}ij = ij−1

Lehmer Ln {Ln}ij = min(i, j)/max(i, j)

There was some difficulty in choosing which problems to consider. It is difficult to

find an explicit linear system of equations for which the size of the solution meets the

Hadamard bound exactly. The Hadamard matrices have determinants which meet the

Hadamard determinant bound tightly det(Dn) = 2n−1. However, when using these matrices

the solution size will not be as large because the inverse matrixD−1
n = 1

nDn has small entries.

We also consider randomly generated dense matrices. For these matrices we choose

the entries uniformly at random from integers with absolute value at most 100, and assign

the diagonal entries all to 10,000 to ensure numerical stability. The Hilbert matrix is

46



a frequently cited example of an ill-conditioned matrix, and it is impossibly difficult for

numerical solvers to tackle, even at low dimension. We use a type of Vandermonde matrix

with the rows generated by increasing integers as described in the table. The Lehmer

matrices are also a well known class of ill-conditioned matrices.

Choosing right hand sides for the systems of equations is also an important consideration.

Some computational linear algebra studies use arbitrary right hand sides, such as setting b

equal to the sum of the columns in A, giving a solution of all ones. While in the numerical

setting, this is a perfectly reasonable right hand side to consider, it is not appropriate in

our case because the algorithms studied here have run times depending on the size of the

solutions. For our evaluations we will use the unit vector e1 as the right hand side for

each system. This is a reasonable choice because it corresponds to computing the first row

of the inverse matrix, which should be adequately representative of the typical solution

complexity.

2.5.3 Computations

Computations were performed on a Linux machine with a 2.4 GHz AMD Opteron 250

processor and 4GB of RAM. Table 3 compares the standard Dixon algorithm and the output

sensitive Dixon algorithm on the entire problem set; the solve times are given in seconds.

In addition to the total solution time for each method we include a profile of how time was

spent in different stages of the algorithm. The solution time is divided between the following

three tasks: the finite field matrix factorization, the p-adic lifting steps, and the rational

reconstruction (including solution verification). Solution verification is only performed when

rational reconstruction is attempted by the output sensitive methods at loops where the

correctness is not guaranteed. Whenever pi surpasses the bound B solution checks are not

necessary. Due to system load and other factors solution times vary with each run, therefore

these timings should be considered as approximate values. The reason times are shown to

1/100 of a second is to allow for a comparison between the subroutines. The table also

includes the log of the Hadamard bound on the solution size log(B) = log(2‖A‖2n−1
2 ‖b‖2),

along with the actual size log(S) = size(A−1b) ≤ log(B)− 1.
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The first observation we make from Table 3 is that the Hadamard bound was a very

weak upper bound on the solution size on all problem classes except the randomly generated

matrices. On the set of randomly generated matrices, the Hadamard bound did provide a

fairly tight bound on the final solution bitsize. In these cases the output sensitive algorithm

performs the same number of loops as the standard Dixon algorithm and also performs

additional reconstruction attempts at intermediate steps. Even on these problems, the

output sensitive Dixon algorithm has approximately the same solution times as the standard

Dixon algorithm. This demonstrates that even if the Hadamard bound is nearly tight the

output sensitive lifting only performs a small amount of additional computation. This

occurs because at steps where incorrect solutions are generated, this incorrectness can be

recognized very quickly. The first possibility is that the rational reconstruction routine

aborts early if the common denominator of the reconstructed components grows too large.

The second possibility is that the algorithm reconstructs an incorrect solution vector and

checks its correctness by evaluating the system of equations. In this second case it will

likely only evaluate a very small number of equations to recognize its incorrectness, which

could be much less costly than evaluating the full system as was accounted for in the worst

case complexity analysis of Theorem 2.3.3. For the remainder of the problem set the output

sensitive method has an advantage of several orders of magnitude. The lifting steps that

were avoided gave a significant reduction in the computational costs. We also notice on

some problems with smaller solution size the cost of rational reconstruction and solution

verification is larger for the output sensitive method than the standard methods due to the

final solution verification.

Results for the iterative-refinement based solvers using Algorithms 5, 6 and 7 on the

Hadamard and random matrices are given in Table 4. The Hilbert, Vandermonde and

Lehmer matrices are were too numerically difficult for the LAPACK routines to handle so

they are not included in the results.

We observe from Table 4 that the performance ratio between the standard and output

sensitive lifting strategies of Algorithms 5 and 6 is similar to their related versions of the

Dixon method compared in Table 3. We also observe that Algorithm 7 did not give any
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Table 4: Solve Times for Iterative-Refinement in Seconds

Lifting Strategy (Algorithm Number)

Matrix Std. (5) O.S. (6) O.S. & W.S. (7)

D1024 8.57 0.91 0.92
D2048 71.10 4.49 4.57
D4096 965.87 27.39 27.17

R500 12.12 12.07 12.46
R1000 94.52 94.60 98.25
R2000 763.50 756.89 798.66

improvement over the basic output sensitive lifting strategy given in Algorithm 6. The extra

bookkeeping required in Algorithm 7 may be more costly than any benefits gained by saving

the information for these problems. In comparison to the breakdown for Dixon’s method

in Table 3 for the factorization, refinement and reconstruction there was extra cost was

incurred by the reconstruction steps in these algorithms due to the less efficient handling of

the DLCM method that was done to allow a side by side comparison between Algorithms

5, 6 and 7.

The main purpose of these computations was to study the effectiveness of output sensi-

tive methods, and not to compare Dixon’s algorithm vs. the iterative-refinement method.

However, we can make some observations about their relative speed. Before making the

direct comparison we note one difference in the implementation: as described in Section

2.5.1 the implementations handle the DLCM method differently because the version of this

algorithm used in Dixon’s method is not compatible with the warm starts in Algorithm 7.

If Algorithm 6 is adjusted to use the same version of the DLCM method as Algorithm 4 we

observed that the solution times of Algorithm 6 were often faster on our test set, but not

by orders of magnitude. Therefore we conclude that the iterative-refinement method can

be faster than Dixon’s Algorithm when both are applicable, but not by a huge margin. We

also remark that tuning parameters such as how large of a prime p is used for p-adic lifting

or how many digits of accuracy the numerical solver has in iterative refinement can effect

the solution times. Other recent studies including [137] and Chapter 3 of this dissertation

observed the iterative-refinement method to be slightly faster but not by a huge order of
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magnitude.

2.6 Conclusions

Our study reinforces a conclusion that has already been observed in practice: output sensi-

tive lifting can improve algorithms for symbolically solving systems of linear equations. We

show that output sensitive algorithms can allow for systems of rational linear equations to

be solved very quickly when the final solutions are small in size, while maintaining the same

worst case bit complexity even when solutions are large in size. Tests were performed on

several types of dense systems where output sensitive lifting was observed to give significant

improvements on problems with small solution size, without noticeable slowdown even when

the solution size was large.

We introduced a strategy to warm start the rational reconstruction portion of the

iterative-refinement method. While this did not further improve on the other output sensi-

tive version of iterative refinement there may be other settings in which warm starting the

EEA or rational reconstruction could prove helpful.

We have primarily focused on output sensitive lifting applied to dense systems of equa-

tions; this technique is also fully applicable in the sparse setting. Our results suggest that

any exact precision linear system solver relying on iterative methods should employ output

sensitive lifting.
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CHAPTER III

EXACT COMPUTATION OF BASIC SOLUTIONS FOR LINEAR

PROGRAMMING

3.1 Introduction

The goal of this Chapter is to determine which exact methods are best suited for solving lin-

ear systems of equations arising in the solution of real-world linear-programming problems.

These problems tend to be very sparse and they have been the focus of much research, due

to the wide-ranging application of linear and integer programming. Until recently, software

developed to solve LP problems has provided approximate floating-point solutions; commer-

cial LP packages, such as CPLEX, attempt to find solutions within fixed error tolerances.

As discussed in Section 1.2.3, an effective approach for solving LP problems exactly is to

perform the simplex algorithm using inexact floating-point precision, then use symbolic

computation to construct, check, and correct the final solution [13, 55, 95, 97]. This strat-

egy is more efficient than carrying out all computations in rational precision throughout the

entire simplex method. The exact solution of linear systems is a bottleneck in this proce-

dure; solving these systems quickly can have a large influence on the solve times. Finding

a fast and robust method for this setting is the objective of this study.

We will give a comparison of four solution procedures for rational linear systems.

Our starting point is the LU-factorization routine developed in the QSopt [10] linear-

programming code. This routine is engineered specifically for the type of sparse matrices

that arise in LP applications and is based on the methods of Suhl and Suhl [133]. We adopt

the QSopt routine in a direct LU-based solver, as well as an implementations of Dixon’s

p-adic-lifting algorithm [57] and Wan’s iterative-refinement method [137]. We also consider

a rational solver based on the black-box algorithm of [140]. All four methods are tested on

a large collection of instances arising in the exact solution of LP problems.

The Chapter is structured as follows. The testbed of problem instances is described in
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Section 3.2. The four solution methods we consider are described in Section 3.3. Results

from our computational study are presented in Section 3.4, and conclusions are summarized

in Section 3.5. The testbed of rational linear systems and the computer codes for the rational

solvers are freely available at

www.isye.gatech.edu/~dsteffy/rational/

for any research purposes.

3.2 Test Instances from LP Applications

The linear-programming research community is fortunate to have several publicly-available

libraries of test instances. In our study we collected these instances together into a single

testbed. The set includes the instances from NETLIB [71, 117], MIPLIB 3.0 [24], MIPLIB

2003 [5], the miscellaneous, problematic, and stochastic collections of [109], the collection of

[110], and a collection of traveling-salesman relaxations [12] from the TSPLIB [126]. These

collections are comprised of instances gathered from business and industrial applications,

and from academic studies. The problems range in size from several variables up to over

one million variables.

The 695 instances in our testbed were given to QSopt ex. For each instance that was

solved by the code, the optimal basis matrix was recorded. In several cases an optimal

solution was not found within 24 hours of computing time. For these examples, the basis

from the last exact rational solve employed by QSopt ex was recorded.

When examining the resulting linear systems, we found groups of instances with very

similar characteristics. In these cases, we chose a representative system and deleted the other

similar instances. For example, the 37 instances delf000 up to delf036 in the miscellaneous

collection of [109] were replaced by the single instance delf000.

We also ran a pre-processing algorithm to repeatedly remove rows and columns having a

single nonzero component. Many such examples existed in our systems, due to the inclusion

of slack variables in the LP models. In the resulting collection of reduced problems, we

deleted all instances having dimension less than 100.
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The final problem set contains 276 instances, with dimensions ranging from 100 to over

50,000. For each instance we have both the square basis matrix and the corresponding right-

hand-side vector. Within the computational results section, Table 10 includes information

on the problem-set characteristics and Table 12 includes details for selected instances.

3.3 Solution Methods

3.3.1 Direct Methods

The QSopt ex code is based on the floating-point LP solver QSopt [10], which adopts

the LU-factorization methods described in [133]. We refer to the QSopt double-precision

floating-point equation solver as QSLU double. This solver was adapted by [66] to solve

over alternate data types, including rational numbers, using the GNU Multiple Precision

Library [72], and it is included in the QSopt ex code. We refer to this rational solver as

QSLU rational. We created a version of the code to solve over word-sized prime-order fields

using a data type with optimized operations; we call this finite-field solver QSLU ffield.

Figure 2 gives a performance profile comparing the speed of solving all instances in our test

set using these three solvers. A performance profile plots the number of instances solved

within a factor x of the fastest method time. The vertical axis represents the number of

instances. The horizontal axis gives the solve-time ratios. Table 5 gives the geometric mean

of the solve-time ratios, normalized by the solve time of QSLU double.

Table 5: Relative Speed of QSLU Solvers

Solver Time Ratio

QSLU double 1.00
QSLU ffield 1.05
QSLU rational 89.72

While the double-precision and finite-field solvers are close in time, solving over the

rational numbers is considerably slower. This comes as no surprise, since storing and per-

forming operations on full-precision rational numbers is computationally expensive. This

supports the idea that techniques for solving rational systems of equations that rely on

fixed-precision solvers as subroutines could have advantages over direct exact methods. We
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Figure 2: Comparison of QSLU Solvers

also tested a direct rational solver using the conjugate gradient method and the GMP li-

brary, programmed by Sanjeeb Dash of IBM, and found it much slower than the rational

LU-factorization method.

There were many characteristics of individual problems which influenced the deficit

in speed between the double-precision solver and the exact rational solver, including the

dimension and the complexity of the solutions. The ratio of 89.72 presented in the table

can be seen as a characteristic of our problem set and a bound on how much we could

possibly hope to improve our speed over the rational solver by using the double-precision

and finite-field solvers as subroutines. From the performance profile we also observe that

the finite-field solver was the fastest solver on some instances. This may seem surprising

as finite-field operations are generally slower than double-precision operations; one possible

explanation is the simplification of some operations in the code afforded by exact finite-field

computation over numerical computation, such as checking if an element is zero.
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Direct exact-precision methods are not usually thought of as being among the fastest

methods for solving systems of linear equations exactly. However, we experienced a reason-

able level of success in the sparse setting with QSLU rational, in some cases outperforming

the other methods presented in this Chapter. A considerable amount of the computational

effort of a sparse LU solver is spent finding permutations of the system to reduce the fill-in

and to reduce the number of arithmetic operations that must be performed. Such compu-

tation depends only on the nonzero structure of the matrix, and this helps QSLU rational

avoid many full-precision arithmetic operations. In the dense setting, we expect a larger

performance gap between a direct rational solver and fixed-precision solvers. For dense

systems, BLAS routines [58, 98] can be used for fast floating-point linear algebra, and [61]

have introduced a comparably fast system for dense linear algebra over finite fields. These

dense routines were employed in the dense solvers described in Chapter 2.

3.3.2 Rational Reconstruction

Section 2.2.1 of Chapter 2 gives a description of techniques for rational number reconstruc-

tion and the two main results, Theorem 2.2.2 and Theorem 2.2.1, will be used in this Chap-

ter. The polynomial-time algorithms associated with these theorems are based on finding

selected continued fraction convergents using the Extended Euclidean Algorithm (EEA).

Section 5.10 of [136] gives a description of rational reconstruction, including numerical ex-

amples, another description appears in [91]. The EEA appears as Algorithm 3.6 in [136] and

is also discussed in Section 2.2.1 of this dissertation. Some methods have been studied to

accelerate rational reconstruction, including [94, 103, 113, 123, 124]. In our implementation,

we use a technique, sometimes referred to as Lehmer’s GCD algorithm, to accelerate our

computations (see Algorithm 1.3.7 in [37]). The EEA involves successively performing inte-

ger divisions. Lehmer’s algorithm accelerates the EEA computationally by performing the

integer divisions on approximations of the numbers instead of on large integers. Specifically,

in our routines we replace extended-precision integer division with floating-point number

inversion when possible, carrying out several steps of the EEA based on truncated data and

then synchronizing and updating the full-precision data. We found this to speed up the
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rational reconstruction by at least a factor of two, and more with large inputs. [38] also

used Lehmer’s algorithm to speed up rational reconstruction and experienced comparable

levels of success.

3.3.2.1 Reconstruction Bounds

The bitsize of a nonzero rational number p/q is log(|pq|), and the bitsize of a rational

vector is defined to be the maximum bitsize of its components. In Chapter 2 we gave a

related definition of size of a vector as being the maximum bitsize over all components

after representing the vector with a common denominator. For a given instance, the exact

bitsize of the solution is not known without solving the system, but it can be bounded

using Cramer’s rule. Cramer’s rule states that for a square nonsingular system Ax =

b, the ith component of the solution vector is determined by xi = det(Ai)
det(A) where Ai is

constructed by replacing the ith column of A with b. Computing determinants exactly is

computationally expensive, so the Hadamard bound is typically used to provide an upper

bound. The Hadamard determinant bound states that det(A) ≤ ‖A‖n2 ≤ n
n
2 ‖A‖nmax. This

gives log(‖A‖2n−1
2 ‖b‖2) as a bound on the bitsize of x. Specifically, Bn = ‖A‖n−1

2 ‖b‖2 and

Bd = ‖A‖n2 give upper bounds on the numerator and denominator of the solution of Ax = b

that are valid for Theorems 2.2.1 and 2.2.2. Table 6 shows the bound on solution bitsize

generated by the Hadamard bound, along with the actual bitsize of the solution, for several

of the larger instances in our test set.

Table 6: Actual Solution Size vs. Hadamard Bound

Problem Solution Bitsize Hadamard Bound

cont11 l 1263 4570016
gen1 439931 1046612

momentum3 159597 11521199

The examples in Table 6 illustrate that the bitsize of the solution can be much lower

than the Hadamard-based bound. This suggests that computation of modular and floating-

point solutions based on the Hadamard bound can lead to unnecessary computation and

memory use. For the problem cont11 l, computing an approximate solution with 4,570,016

57



bits for each component would require over 31 gigabytes of memory for storage alone,

when a solution with 1,000 times fewer digits gives sufficient information to successfully

reconstruct the exact solution. In Chapter 2 we saw that using the Hadamard bound could

result in very slow solution times. For many of the problems in our test set of LP problems

performing computations using this bound would not even be a possibility as it would cause

the algorithms to exhaust the computer memory. For a more in depth investigation into

the tightness of the Hadamard bound, see [1, 2].

As an alternative to the Hadamard bound, we can use smaller but possibly incorrect

bounds, then verify the results that are obtained. In this scheme, we attempt rational

reconstruction on an approximate solution corresponding to the guessed bound, and check

the resulting exact solution for correctness. If it is correct, we can terminate, and other-

wise we increase the bound and repeat. Correctness of a candidate solution can be easily

certified by evaluating the linear equations. In [32, 33], this technique is referred to as

output-sensitive lifting. This technique is used in a different context by [62] where it is

referred to as early termination. This method is made especially practical because while

computing high-precision solutions by iterative methods, less-precise solutions are encoun-

tered at intermediate steps without any extra computation, giving an opportunity to try

rational reconstruction. Chen and Storjohann also provide a simple formula to certify so-

lutions obtained via modular rational reconstruction without evaluating all equations. A

detailed treatment of output sensitive lifting can be found in Chapter 2.

3.3.2.2 Vector Reconstruction

Reconstructing the solution vector of a system of equations can be achieved by applying

Theorem 2.2.1 or Theorem 2.2.2 component-wise to approximate or modular solution vec-

tors. Considering information from the entire system of equations can lead to faster methods

for reconstructing a solution vector. We discuss two such techniques, one using the relation-

ship of the denominators of the solution components to accelerate rational reconstruction,

the second using the equations to deduce some values without reconstruction.

For many systems of equations, the denominators of the components of the solution
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vector share common factors. The first method we look at exploits this situation. This

method is discussed in [33, 92] for use in modular rational reconstruction and we call it the

DLCM. The DLCM technique for modular reconstruction is well known and currently used

in other software such as LinBox and NTL [60, 131]. Let ∆ be the least common multiple of

the denominators of the components that have been reconstructed so far. Suppose the next

component of the solution we reconstruct is p/q, from n,M,Bn, Bd, as in Theorem 2.2.2.

Compute n′ = ∆n mod M , then reconstruct p′/q′ from n′,M using bounds Bn, bBd/∆c,

and assign

p

q
:=

p′

q′∆
.

Fixing ∆ as a factor of the denominator, and then reconstructing the remaining factors of

the denominator and the numerator, accelerates the routine because rational reconstruction

terminates faster when the denominator bound Bd is lower. In fact, if q divides ∆ then p/q

can be immediately identified by the rational-reconstruction routine without any steps of

the EEA. It is possible to reduce M to a value M ′ ≥M/∆, as described in [92], to further

accelerate this procedure.

The DLCM technique can also be applied to accelerate floating-point rational reconstruc-

tion. Suppose a component of the solution p/q is to be reconstructed from an approximation

α, and a common denominator ∆ of other components is known. Rational reconstruction

is applied to find a rational number p′/q′ that best approximates ∆α with denominator less

than Bd/∆, and then the assignment

p

q
:=

p′

q′∆

can be made. Again, by assigning some factors of the denominator ahead of time, we reduce

the calculations in the rational-reconstruction routine.

We mention one possible drawback of this technique. For DLCM to work correctly, the

bound Bd must be an upper bound on the size of the common denominator of the entire

solution vector, while component-wise rational reconstruction only requires Bd to be a

bound on the individual denominators of the solution vector’s components. The Hadamard

bound given in the previous section will always bound the common denominator. However,
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a smaller bound that is valid for each component individually, but less than the common

denominator of the components, can cause this technique to fail. From the statements of the

theorems, we see that increasing the bound Bd necessitates the computation of approximate

solutions with more digits of accuracy, or solutions modulo a larger number. The following

example illustrates this possible drawback.

Example 3.3.1. If the solution to Ax = b is x = (1/2, 1/3, . . . , 1/pn) where pn is the nth

prime number, then a bound of Bd = pn will suffice for component-wise rational reconstruc-

tion. However, the DLCM method requires the bound Bd to be at least 2 × 3 × · · · × pn to

terminate properly.

Despite the possible drawback highlighted in Example 3.3.1, this characteristic could

also prove advantageous in an output-sensitive lifting algorithm. Suppose output-sensitive

lifting is applied with some insufficiently large bounds Bn, Bd. The DLCM method would

recognize failure and terminate early after the common denominator ∆ grows larger than

Bd. Therefore, that rational-reconstruction attempt with a bound too small to determine

the actual solution would terminate before reconstructing every component of the solution

vector. This can avoid a significant amount of computation that would otherwise be spent

in failed vector reconstruction attempts. This strategy is used by [33] to reduce the overall

time spent on rational reconstruction in their rational solver. When reconstructing a vector

component-wise a similar early stopping criterion can be set by maintaining a common

denominator of the reconstructed components and terminating if it becomes larger than

Bd. This strategy is also used in the implementation in Chapter 2.

The second technique we explored is the use of the equations from the system to deduce

some components of the solution vector. Once part of the solution vector is reconstructed,

it is possible that the known components, along with the equations, will directly imply

the values of unknown components. If the equations are sparse, evaluating an equation

to determine the exact rational value of an unknown solution component could be faster

than performing rational reconstruction to determine that component. We call this method

of reconstructing some components and then deducing all implied components the ELIM
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technique. To apply this technique, the primary challenge is to determine an order in which

to consider components for reconstruction, and to determine which equations to use for

deducing values.

A matrix A is said to have lower bandwidth of p if aij = 0 whenever i > j + p [74].

The lower-bandwidth minimization problem is the problem of performing row and column

permutations on a matrix to minimize its lower bandwidth. If the n× n matrix A defining

a system of equations has lower bandwidth of p, and the final p components of the solution

vector are known exactly, then all remaining components can be determined by solving

a n − p lower-triangular system of equations by backwards substitution. Determining the

minimum number of components of the solution vector that must be reconstructed, in order

to deduce the remaining portion of the solution vector from the equations, is equivalent to

the lower-bandwidth minimization problem.

We use a greedy heuristic, Algorithm 8, to determine the variable ordering. The algo-

rithm partitions the columns ofA into a setR and an ordered list E. Variables corresponding

to columns in R will be reconstructed and variables corresponding to columns in E will be

deduced using equations from the system. A list L(i) for i ∈ E is constructed such that L(i)

gives an index to a row of A that has a nonzero element in its ith column and has zeros in

every column j appearing after i in the list E. Thus, R∪E gives an ordering to reconstruct

the variables, where every variable in R is obtained by rational reconstruction and each

variable i in E can be deduced using constraint L(i) and the preceding variables. We use

Aj to denote the jth column of A, and we use ai to denote the ith row of A. The algorithm

is described in terms of deleting rows and columns of the matrix; after such deletions, we

maintain the original labeling of the remaining rows and columns.

We found this heuristic effective in reducing the number of variables to be reconstructed.

Table 7 shows the number of variables that could be eliminated by the routine, that is, the

number of variables in the list E.

To illustrate the overall effectiveness of the DLCM and ELIM methods, Table 8 compares

the solve times and loop count of an exact solver based on Dixon’s method (introduced

later) on our entire problem set. Details of the output-sensitive lifting used can be found in
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Algorithm 8 Variable Ordering Algorithm

Input: Matrix A {From Ax = b}
Initialize: R = ∅, E = ∅
while A 6= ∅ do

Remove any all zero rows ai from A
if ∃i such that ai has a unique nonzero element aij then
E := E ∪ {j} {Variable j can be eliminated}
L(j) := i {Implied by constraint i}
Remove Aj ,ai from A

else
Choose Aj with the maximum number of nonzeros
R := R ∪ {j} {Mark column with most nonzeros for rational reconstruction}
Remove Aj from A

end if
end while
Return: R,E,L

Table 7: Percent of Variables Eliminated

Elimination % Instances (out of 276)

70%+ 219
80%+ 145
90%+ 66
95%+ 35

Section 3.4.1. The solve times are expressed as geometric means of the ratios with the time

needed for Dixon’s method using component-wise rational reconstruction. It also shows

the geometric mean of the ratios of how many loops each method performed to achieve

the final solution. The ratios presented here compare the total solve times, of which the

reconstruction is just a part. This measure is used to consider the variation in solve times

because the ELIM method and the component-wise reconstruction are in some cases able

to construct a solution with less information than the DLCM method. We also tested a

combination of the two techniques, listed as “DLCM and ELIM” in the table. In this case

we applied the ELIM routine as it is described but applied the DLCM method to reconstruct

the first p components of the solution vector.

From this table we observe that both methods reduce the overall solve time by approx-

imately 60%. The loop ratio here indicates how many loops of p-adic lifting were required
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to identify the correct solution by using output-sensitive lifting. As we can see, the DLCM

method required a geometric average of 16 % more loops than the component-wise recon-

struction, indicating that the phenomenon shown in Example 3.3.1 does occur to some

degree, although much less dramatic than the worst case. Despite these extra loops, the

huge speedup and possibility of early termination gained at each reconstruction by the

DLCM method, over the component-wise computation, still allows the DLCM to finish

much faster. We also see that the ELIM method is able to finish in fewer loops than the

component-wise reconstruction in some cases; this would occur when some of the compo-

nents that are deduced by the elimination routine have representation too large to have

been reconstructed component-wise. When combining DLCM and ELIM we see that the

number of loops again increases as the DLCM computation terminates the procedure early,

resulting in a slight slowdown over the pure ELIM routine.

Table 8: Improvement Using Vector Reconstruction

Vector RR Method Solve Time Ratio Loops Count Ratio

Component-wise 1.00 1.00
DLCM 0.39 1.16
ELIM 0.40 0.97

DLCM and ELIM 0.41 1.15

From these tests see that the DLCM method is fastest for our set of instances. We

therefore use DLCM throughout our modular and floating-point rational-reconstruction

routines for the remainder of the Chapter. Note, however, that the ELIM method is nearly

as fast, and on certain classes of sparse problems it may be faster. Dixon’s method uses

modular rational reconstruction, but in our tests we noticed similar acceleration of the

floating-point reconstruction routine using these techniques.

We also performed tests comparing the speed of the component-wise and DCLM methods

for reconstructing solution vectors, excluding the time required to solve the linear system.

To make this comparison we considered the solution vector from each problem. We deter-

mined a bound for the component-wise reconstruction to terminate correctly, which was
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B1 = 2B2 where B is the largest numerator or denominator in any component of the solu-

tion. We also computed a bound valid to reconstruct the vector using the DLCM method,

which is B2 = 2B2 where B is the largest of the numerator in any component of the solution

or the least common denominator for the solution vector, whichever is larger. We found

that on 129 out of 276 problems the bounds were the same, and that the geometric average

of log(B2)/ log(B1) was 1.21, which corresponds to the loop ratio in Table 8. One would

expect this number to match the 1.16 in Table 8. The difference occurs because the table

is generated by timings on our Dixon solver which uses an output-sensitive lifting scheme

that will not attempt rational reconstruction at every loop. When the bounds B1, B2 are

close to each other the solvers will often finish at the same time, even if the bounds are

not equal. As we are taking the geometric mean in both cases this explains the gap; the

arithmetic mean would be expected to be the same.

As we saw in Table 8, DLCM was still a faster overall strategy despite these extra loops,

but there were some instances where this ratio was quite large and effected speed. On some

problems this ratio was as high as 66, and the Dixon solver using output-sensitive lifting

and component-wise reconstruction was over 100 times faster than the DLCM-based Dixon

solver. We also considered the time required to reconstruct the solution by component-wise

reconstruction at B1, divided by the time to use DLCM vector reconstruction at bound B2;

we found the geometric mean of these ratios to be 7.80. To have a pure direct comparison

of these we also compared component-wise reconstruction and DLCM vector reconstruction

both at B2 and found their ratio to be 8.92, and found DLCM to be as much as 75 times

faster on individual problems. These final numbers indicate that, although component-wise

reconstruction can be faster on some problems, the DLCM method can provide a huge

speedup overall.

3.3.3 Iterative Refinement

Applying Theorem 2.2.1, a rational system of equations can be solved exactly given a bound

on the size of the denominators of the solution and an approximate solution within a required

degree of accuracy. When the number of digits of accuracy required of the approximate

64



solution is large, solving the system in extended-precision floating-point arithmetic can be

as slow as solving the system directly in rational precision, or slower. The iterative refine-

ment procedure allows us to use repeated approximate floating-point solves to construct an

extended-precision solution, taking advantage of the speed of a floating-point LU solver.

Iterative refinement is the process of finding and refining an approximate solution. Once

a system is solved approximately, the exact error of the approximate solution can be de-

termined, and further approximate solves can be used to help correct the error. Repeating

this process gives solutions that are increasingly accurate. State of the art floating-point

solvers typically perform iterative refinement to refine a double-precision solution so that

the backwards error is close to machine epsilon.

Ursic and Patarra [134] adopted iterative refinement to obtain high-accuracy approxi-

mate solutions, and combined this with rational reconstruction to solve linear systems of

equations exactly. Wan [137] introduced an improved version of this algorithm, reducing

the number of extended-precision operations that are required. Wan’s method works with

systems of equations that are integer; rational systems are handled by scaling the entries

to be integral. We have given a detailed description of Wan’s Algorithm as Algorithm 5 in

Chapter 2.

For this Chapter, we implemented a version of iterative refinement using Wan’s strategy

and the solver QSLU double. Incorrect choices of α can quickly cause the algorithm to

fail, so computing an error measure of the approximate solution x̂ at each step to guide

the selection of α is necessary. Note that scaling a rational problem to be integral can

create difficulties for numerical LU-factorization solvers, since some entries can become

very large. This problem is avoided by performing the numerical LU factorization on the

original unscaled form of the problem, then using the scaled integral matrix only in the

refinement steps of the algorithm.

We will later show that iterative refinement and rational reconstruction is a very effective

method for solving systems of equations exactly, often performing the fastest on our test set.

The drawback to this method is its vulnerability to numerical difficulties with floating-point

computations. We did experience some trouble on a small subset of examples that were
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numerically unstable; other methods considered in this Chapter do not share this problem.

3.3.4 Dixon’s Method

Dixon’s method [57, 138] for solving exact rational systems of equations relies on Theo-

rem 2.2.2. This algorithm is stated in terms of integer systems of equations, so we first

scale a rational system to be integer. In order to determine a solution modulo a large

number M , [57] uses the p-adic-lifting procedure, which constructs a solution modulo pk by

successively solving systems of equations modulo p. Algorithm 3 gives a detailed description

of this algorithm.

In our implementation, we use QSLU ffield for the finite-field solves. For a nonsingular

integer matrix A, A mod p is nonsingular for a prime p if and only if p does not divide

det(A). Instead of computing det(A) to guide the choice of p, we can guess different primes

until an LU factorization is successful. The prime p is chosen small enough so that all

numbers can be stored as machine-precision integers.

The p-adic-lifting procedure can be thought of as an analogue to the iterative-refinement

method, since they both use fixed-precision solve routines iteratively to build extended-

precision solutions. One advantage Dixon’s method has over iterative refinement is that

the finite-field elements are stored exactly, leaving no chance for numerical problems when

performing calculations. For further detail and analysis of the complexity of Dixon’s method

see Chapter 2 or [32, 33, 57, 114].

3.3.5 Wiedemann’s Method

Wiedemann’s method for solving systems of equations over finite fields was introduced in

[140]. We say that a sequence {ai} is linearly generated if there exists c0, c1, . . . cm such that

∀k ≥ 0, c0ak+c1ak+1 + . . . cmak+m = 0. The polynomial f(x) = c0 +c1x+ . . . cmx
m with cm

normalized to 1 is called the minimum polynomial of the sequence. Wiedemann’s method

uses the fact that, over a finite field, the sequence I, A,A2, A3, . . . is linearly generated. His

method calculates the minimum polynomial of this sequence (or of the sequence {Aib}∞i=0)

using a randomized algorithm based on the Berlekamp-Massey algorithm [22, 106]. This
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gives an explicit formula for solving Ax = b:

c0I + c1A+ c2A
2 + . . . cmA

m = 0,

c0A
−1b+ c1b+ c2Ab+ . . . cmA

m−1b = 0,

A−1b = −c−1
0 (c1b+ c2Ab+ . . . cmA

m−1b).

In both the computation and evaluation of the minimum polynomial, access to the matrix

is only needed as a matrix-vector multiplication oracle. Therefore, Wiedemann’s method is

referred to as a black-box algorithm, and it is particularly suited for working with sparse

matrices. A presentation of this technique is given in Section 12.4 of [136].

Dixon’s method for solving rational systems of equations, given in Algorithm 3, relies on

a finite-field solve routine for each p-adic-lifting step. Replacing QSLU ffield with Wiede-

mann’s method gives an alternative approach to solving systems of equations exactly. A

more detailed description of Wiedemann’s method applied to solving rational systems of

equations, including complexity analysis, is given in [92].

3.4 Computational Results

3.4.1 Implementation

We tested four methods in the C programming language to solve rational linear systems

of equations: QSLU rational, iterative refinement, Dixon, and Wiedemann. Figure 3 gives

a flowchart showing the relationship of these four methods. The rational-reconstruction

routines used in the methods share a common structure, using the techniques detailed in

Section 3.3.2. We implemented fast finite-field operations, storing the elements as integers,

pre-computing inverse tables, using delayed modulus computation, and using floating-point

operations to accelerate multiplications. These techniques are standard and they are em-

ployed by other software packages such as [60, 131].

When used, we attempted rational reconstruction with a frequency relative to the num-

ber of loops in the iterative refinement/p-adic-lifting procedure. In [33], rational recon-

struction is attempted every 10 loops. After some experimentation, we found it effective

to attempt rational reconstruction with a geometric frequency; we choose specifically to
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Figure 3: Relationship Between Algorithms

attempt reconstruction when the loop number is a power of two. Using this strategy, if the

approximate solution after k loops is sufficient to reconstruct the rational solution, then at

most log(k) unsuccessful attempts are made. We remark that if rational reconstruction is

attempted before enough loops are completed to accurately reconstruct the solution, this

can be recognized without reconstructing the entire vector, as mentioned in Section 3.3.2.2.

Therefore, failed attempts at reconstruction will stop before reconstructing each component

and thus have a considerably lower computational cost than the final reconstruction step in

which each component is reconstructed. Despite this fact we still found it computationally

faster to attempt reconstruction less frequently. A more detailed analysis of our strategy for

output-sensitive lifting can be found in Chapter 2. We also modified the geometric strategy

slightly by imposing a maximum number of loops between reconstruction attempts, giving

improved solve times for our problem set. A similar strategy is also employed and ana-

lyzed by [31] for solving linear systems over cyclotomic fields. A description and analysis of

output-sensitive lifting applied to determinant computation can be found in [90]. A proba-

bilistic output-sensitive lifting strategy is used in [65] where it is applied to the computation

of integer hulls.
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To verify the competitiveness of QSLU double, which was used as a subroutine in iter-

ative refinement, we compared it with the well-known solvers Pardiso [128] and SuperLU

[51]. In Table 9, it can be seen that the QSLU double code was faster on average over

our testbed of LP instances, although Pardiso and SuperLU were faster on some individual

problems. We may not expect QSLU double to outperform Pardiso and SuperLU on other

classes of instances, as it was developed using a method engineered specifically to solve

very sparse bases arising in the solution of LP problems. In our use of QSLU double, we

perform two refinement steps in double precision to improve the double-precision solution.

SuperLU contains a similar refinement scheme. We measured the backward relative error

of the final solutions and found SuperLU to produce more accurate solutions, with relative

backward error average of 1.27e-16, compared to 1.58e-15 for QSLU double. The back-

ward relative error of a solution x is defined to be maxi
|(Ax−b)i|∑
j |Aijxj |+|bi| . We found Pardiso

to achieve comparable errors on many instances, but we experienced numerical difficulties

on some examples, leading to unsatisfied constraints. The performance of the Pardiso and

SuperLU codes are compared with other numerical solvers in a nice computational study

by [76], covering symmetric systems.

Table 9: Numerical Sparse LU Solvers

Solver Time Ratio

QSLU double 1.00
SuperLU 2.36
Pardiso 2.50

We also compared our Wiedemann-based solver with the Wiedemann solver found in

LinBox 1.1.6 [60]. On the instances both codes completed, we found our new code to be 6.91

times faster by geometric mean, with ratios ranging from 0.13 to 17.30. We also compared

our Wiedemann finite-field solver against the LinBox Wiedemann finite-field solver, which

are used as subroutines in the rational solvers, and found our solver to be 1.84 times faster,

with ratios ranging from 0.013 to 3.50. A referee performed similar experiments on a smaller

subset of our problems and observed our Wiedemann rational solver to be 2.72 times faster
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and our Wiedemann finite-field solver to be on average 62% slower on a 3.4Ghz Intel P4

computer. These results suggest that the speedup in our rational solver comes from the

rational-reconstruction techniques employed in our implementation. The purpose of this

comparison is simply to demonstrate that our code is reasonably fast; LinBox is a much

larger and more general software package written in C++, and our software was tuned to

be as fast as possible on our specific problem set.

3.4.2 Rational System Results

Dixon’s method, QSLU rational, and Wiedemann’s method were all able to solve all in-

stances in our test set to completion. Iterative refinement was able to solve all but 5 of

the problems, which failed for numerical reasons. The problems where iterative refinement

failed were: cont11 l, pilot, rat7a, de063155, and de063157. Solve times varied greatly,

ranging from fractions of a second to days. In Table 10 we present a comparison of the

solve times over all instances. Computations were performed on linux-based machines with

2.4GHz AMD Opteron 250 processors and 4 gigabytes of RAM. To avoid the slower in-

stances outweighing all others, we normalized all solve times by dividing by the time for

Dixon’s method. We then computed the geometric means over the entire set of instances

and also over selected subsets. Using the geometric mean instead of the arithmetic mean

helps to prevent the results from being skewed by outliers. The five instances where itera-

tive refinement failed are omitted from the averages in that column. The partitions of the

problem set are based on the dimension of the instances, the bitsize of the final solutions,

and the density of the instances, taken as the average number of nonzeros per row.

An immediate observation is that on the entire problem set, iterative refinement is the

fastest method, followed by Dixon’s method, which is nearly as fast. QSLU rational is

more than 3 times slower on average, and Wiedemann’s method is on average nearly 40

times behind. By considering the various subsets of instances, we can identify patterns

concerning the effect of problem characteristics on the solve times. One observation is that

the dimension of the problem has the most significant relative effect on the Wiedemann

method. The larger instances can have a minimum polynomial of a higher degree, requiring
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Table 10: Geometric Means of Relative Solve Times

Problems Solver Time Ratios

Subset of Probs. Size of Subset Dixon Iter. Refine QSLU rational Wied.

All Problems 276 1.0 0.861 3.247 38.370

D
im

.

100-300 79 1.0 0.859 5.228 12.853
300-1,000 98 1.0 0.835 2.787 24.664

1,000-10,000 84 1.0 0.889 2.654 106.924
10,000+ 15 1.0 0.892 2.219 703.087

S
ol

b
it

si
ze 0-100 92 1.0 0.993 10.744 36.892

100-1,000 79 1.0 0.911 4.069 57.008
1,000-10,000 55 1.0 0.708 0.971 39.443

10,000+ 50 1.0 0.751 0.949 21.405

N
z.

/r
ow

2-3 84 1.0 0.966 2.314 61.571
3-5 99 1.0 0.814 2.352 34.924
5-10 68 1.0 0.825 4.982 32.789
10+ 25 1.0 0.811 11.342 17.433

huge numbers of matrix-vector multiplications to perform the finite-field solves.

We note that Dixon and iterative refinement have the best advantage over the QSLU rational

code on the instances with smaller solution bitsize; problems with a small solution bitsize

can be computed with only a few steps of refinement/p-adic lifting. Relative to Dixon

and iterative refinement, QSLU rational becomes slower as the density increases, presum-

ably because the LU factorization has more fill-in and computation, which is relatively

more expensive using rational arithmetic. Wiedemann’s method becomes relatively faster

as the density increases; this is likely because increased density gives more work to the LU

factorizations used by the other methods.

In Figure 4 we give a performance profile comparing the four methods on the full problem

set. In this profile we can observe the close performance of Dixon and iterative refinement,

the lag in speed of the QSLU rational method, and the significantly slower speed of Wiede-

mann’s method. We note the sharp edge in the curves for Dixon and iterative refinement,

near the top where they cut far to the right quickly. This is caused by a small group of in-

stances on which QSLU rational is faster by a significant amount. Some the instances where

QSLU rational has a speed advantage are those having large solution bitsize; unfortunately
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the bitsize of a solution is not available before solving to aide in choosing a method.
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Figure 4: Comparison of Rational Solvers

Another important observation we can make from our experiments is how each of the

methods balances time between their internal subroutines. Table 11 provides profiling

data showing how the time was spent by each method, excluding QSLU rational. This

table was generated by considering the percent breakdown of the various stages of the

algorithm by each method, for each instance, then the (arithmetic) average was taken

over all instances. By residual computation we mean the time spent within each loop

calculating the new right hand side for which the fixed precision solve will be computed

and the radix conversion of the intermediate solution. Dixon and iterative refinement spent

similar portions of their time on the LU factorizations and rational reconstruction (including

the time for the solution verification), with a variation of time in their inner loops. The

backsolves were faster for iterative refinement, but the computation of the residual for

lifting was more expensive due to the additional work to compute the scaling factor α.
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We note that for Wiedemann’s method, the largest portion of time was spent doing the

first solve and then successive backsolves over finite fields; the large number of matrix-

vector multiplications that must be done in these stages is relatively much slower than

the LU factorization and solves. This table suggests that if Dixon’s method and iterative

refinement are to be made faster computationally, deeper investigation into accelerating

rational reconstruction could be helpful, as it occupied nearly half of the solve time for these

methods on average. The large portion of time spent on rational reconstruction may come as

some surprise when one considers the worst-case complexity analysis of Dixon’s method and

iterative refinement, which do not have rational reconstruction as the dominating factor. We

believe this is explained by the extreme sparsity of our matrices, which allows for faster than

predicted computation in other portions of the algorithm, while not reducing the required

computation for rational reconstruction. When comparing this to the results in Chapter

2, we can observe that the computations performed on the dense systems used a larger

portion of their computation on the lifting steps and less on the rational reconstruction and

solution verification. We can also note that due to the extreme sparsity of our test matrices

the time required to verify a solution by verifying that it satisfies all of the equations is

also relatively much less expensive than the corresponding solution verification performed

on dense systems.

Table 11: Profile of Time Spent

Solve Component Dixon Iter. Refine Wiedemann

Factorization/First Solve 11.9 % 10.1 % 23.7 %
Backsolves 15.5 % 4.5 % 61.3 %
Residual Computation 25.6 % 39.8 % 7.7 %
Rational Reconstruction 47.0 % 45.6 % 7.3 %

Finally, Table 12 provides solve times and detailed information for select instances.

3.5 Conclusions

The results of this computational study provide a picture of how rational solver methods

perform on a test set of very sparse real-world instances arising in linear-programming
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applications. By using variations of the QSopt factorization code and using common rational

reconstruction strategies, we give a side by side comparison of these methods.

There are several conclusions we can make from our computations. The two meth-

ods we found to be the fastest were Dixon’s method and iterative refinement. These two

methods perform repeated fixed-precision solves to obtain high-accuracy solutions and ap-

ply rational reconstruction. Iterative refinement is approximately 15% faster overall, but

Dixon’s method has an advantage in numerical stability. This agrees with the conclusion

of Wan [137] that his method is faster than Dixon’s method on well-conditioned matrices

and with the general knowledge that Dixon’s method should be faster than a direct elimi-

nation method using rational arithmetic. Our conclusions also agree with a computational

result in [63], who found that Wiedemann’s method could be slower than direct elimination

techniques on structured sparse matrices.

For such a speed difference we find Dixon’s method to be the most attractive method

for our application of exact-precision linear programming. An exact LP solver can call

the exact linear system solver many times, making robustness very important. In other

application areas, iterative refinement might be more attractive, especially if the systems

are known to be numerically stable. We note also that in some exact LP solution schemes,

a double-precision LU factorization of the basis matrix may be available at the end of a

call to the simplex method. In such cases, the factorization can be used in the steps of the

iterative-refinement method, resulting in a substantial savings in time. In our tests, the

QSLU rational code is faster than the other methods on a small subset of the instances.

If multiple processors are available, a reasonable strategy is to run Dixon’s method on one

processor, and QSLU rational on another.

We found Wiedemann’s method to not be attractive for our LP test instances. Its black-

box nature apparently does not make it competitive in this setting, as the LU factorizations

for these very sparse problems can be computed very quickly. We believe that the QSLU

codes benefited not only from the extreme sparsity of the matrices but from their structure as

well. For other classes of sparse matrices for which LU factorizations are not possible without

significant fill-in, we would expect Wiedemann’s method to perform more competitively. In
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such cases dense solvers might also be competitive, especially on the problems with smaller

dimension. In a study by [64] tests were performed on randomly generated sparse systems

and it was found that an efficient dense solver was often able to beat their sparse solver

unless the dimension was very large.

We have tried to use uniform standards as much as possible between our codes in order

to give a fair comparison of the methods we are evaluating. However, there is always

room for improvement in any implementation. We will make some comments on several

improvements that could be made and how they could influence the results of our study.

We thank the referees for some excellent suggestions in this light. The iterative solvers

could benefit from better strategies for radix conversion, such as those used by [33] in their

IML software; this strategy would take advantage of the asymptotically fast multiplication

algorithms in GMP. Other gains for the iterative solves could come from implementing

asymptotically faster strategies for rational number reconstruction such as the HalfGCD

strategy outlined in [103]. For QSLU rational a speedup could possibly be achieved by

delaying canonicalization of the rational numbers, which might reduce the overall time spent

on the frequent GCD computations that are made in association with arithmetic operations.

Additional speedup in QSLU rational might be achieved by applying additional effort in

the LU factorization to maintain sparsity; more aggressive strategies than those currently

used might pay off due to the high cost of rational arithmetic. If all of these suggestions

were implemented it would not effect the relative performance of the iterative solvers. We

also conjecture that the iterative solvers could be improved more than the direct rational

solver, which would not change our conclusions.
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CHAPTER IV

SAFE LP BOUNDS FOR EXACT MIXED INTEGER

PROGRAMMING

4.1 Introduction

Chapter 1 discusses many applications where finding exact solutions for MIPs is desirable or

necessary. In this Chapter we present a new method for computing valid LP bounds within

a MIP framework. We demonstrate its effectiveness using an exact branch-and-bound MIP

solver implemented within the SCIP [3, 4] framework.

Hybrid approaches have proven very successful for quickly finding exact rational solu-

tions to Linear Programming (LP) problems. Algorithms using a mix of floating-point and

symbolic computation are described in [13, 55, 66, 95, 97] and efficiently implemented and

studied by Applegate et al. [13] as QSopt ex [11]. These hybrid methods exploit the fact

that floating-point LP solvers are often able to find an optimal, or near optimal LP basis,

even when the solutions have some numerical error. Algorithm 1 in Section 1.2.3 outlines

the method used by Applegate et al. [13]. Their strategy can be summarized as follows: the

basis returned by a double-precision LP solver is tested for optimality by symbolically com-

puting the basic solution, if it is suboptimal then additional simplex pivots are performed

with increased precision, this process is repeated until the optimal basis is identified. This

method is considerably faster than an implementation using entirely rational arithmetic.

Following in the success of hybrid symbolic-numeric methods for linear programming,

hybrid methods are a clear choice for exact mixed-integer programming. The hybrid ap-

proach we have adopted for the branch-and-bound algorithm maintains a floating-point

representation of the MIP problem that is either an approximation or relaxation of the

original problem. Computations are performed using floating-point arithmetic as much as

possible. The decisions that could lead to an incorrect result if done incorrectly, namely

computing LP bounds and identifying a new best primal solution, are always performed
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in a safe or exact manner. Computing a primal solution exactly will necessarily involve

solving an exact LP. Therefore the question of how to quickly compute valid LP bounds is

a critical question for building a fast branch-and-bound based exact MIP solver. A more

detailed description of the hybrid method for mixed-integer programming can be found in

[42].

In Section 4.2 we describe some known methods for generating valid bounds for LP

problems. In Section 4.3 we describe the project-and-shift method for generating dual

bounds. A full description of our computational experiments presented in Section 4.4.

4.2 Background

The most straightforward way of computing valid LP bounds at nodes of a branch-and-

bound tree is to solve the LP relaxation exactly. Within a branch-and-bound framework

LP computations can be made faster by warm starting the dual simplex method at each node

with the optimal basis from the parent node. Reoptimization can often be accomplished

using a small number of pivots. This type of warm start could be used when solving node

LPs exactly. However, computing exact LP solutions in this way may still be much slower

than the floating-point LP solver. Even in the case when the exact LP solver quickly

determines the optimal basis by performing additional pivots in floating-point arithmetic,

it would still compute an exact solution and verify its optimality at that node. We have

seen that symbolically computing basic LP solutions is an expensive component of solving

exact LPs, and therefore performing this computation at every node is undesirable.

Applegate et al. [13] describe an exact rational MIP solver based on their exact LP

solver where each LP encountered was solved exactly. While their exact LP solver was

only moderately slower than the floating-point LP solvers, the exact MIP code was slower

than commercial solvers by two or three orders of magnitude. The cost associated with

computing numerous node LP solutions exactly is an explanation for this relative slowdown.

Despite the possible disadvantages of solving an exact LP at every node, it is important to

recognize that an exact LP solver will be a necessary component of an exact MIP solver and

is necessary to compute exact primal solutions. An exact LP solver also has the advantage
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that it will provide the tightest valid LP bound at any node of the branch-and-bound tree.

It may be necessary to compute this tight bound if all integer variables have been fixed

through branching and a bound strong enough to cut off the node is not obtained by other

methods.

4.2.1 Exploiting Primal Bound Constraints

When using the hybrid approach, access to approximate LP results will be available at each

node, giving either an optimal solution or proof of infeasibility returned by a floating-point

LP solver. The LP result may or may not be correct, but it is reasonable to assume that

it is often nearly correct and can provide useful information that can be used by alternate

dual bounding methods.

A special case occurs when all primal variables have finite upper and lower bounds. This

structure allows computation of valid dual bounds by using the dual variables corresponding

to the primal variable bounds to correct an approximate dual solution. This technique was

employed by Applegate et al. in the Concorde software package [39] to give valid bounds

when solving Traveling Salesman Problem (TSP) instances by branch-and-cut. For the

TSP all variables are bounded by zero and one and the use of this bounding technique is

described in section 5.4 of [12]. Neumaier and Shcherbina [118] described this procedure

more generally for MIPs having available upper and lower bounds on all primal variables.

Consider the following primal dual pair of LPs:

Primal:

max cTx

s.t. Ax ≤ b

l ≤ x ≤ u

Dual:

min bT y − lT zl + uT zu

s.t. AT y − Izl + Izu = c

y, zl, zu ≥ 0

Any approximate dual solution ỹ, z̃l, z̃u ≥ 0 can be corrected to be exactly dual feasible

by increasing zl, zu. If r = c − AT ỹ + Iz̃l − Iz̃u is the error of the approximate solution,

then a feasible solution is given by:

(y, zl, zu) = (ỹ, z̃l + r+, z̃u + r−).
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Where r+
i = max(ri, 0) and r−i = max(−ri, 0). This gives bTy− lT zl+u

T zu as a valid upper

bound on the primal objective. Since this dual bounding method corrects approximate dual

solutions using the dual variables coming from primal bound constraints we will call it the

primal-bound-shift method. The difference between the bound and the objective value of the

approximate dual solution will be small if the approximate dual solution does not violate

the constraints by a large amount and the bounds on the primal variables l, u are not large.

Proposition 4.2.1. Let ỹ, z̃l, z̃u ≥ 0 be an approximate dual solution, with cost bT ỹ− lT z̃l+

uT z̃u, then the bound computed by the primal bound correction method described above will

be at most −lT r+ + uT r− larger than the cost of the approximate dual solution.

Proof. Subtracting the objective value of the approximate solution from the objective value

of the corrected solution gives: (bTy−lT zl+u
T zu)−(bT ỹ−lT z̃l+uT z̃u) ≤ −lT r++uT r−.

Neumaier and Shcherbina observed that exact precision arithmetic can be entirely

avoided when computing r and computing the bound by using floating-point computation

and interval arithmetic (or directed rounding if the problem is described in floating-point

representable numbers). The strength and simplicity of computing this bound suggests that

it will be an excellent choice when tight primal variable bounds are available. The draw-

back to this method is that if some variable bounds are very large or missing then it could

produce weak or infinite bounds. We found that in our test set, 87 out of 155 problems

were missing at least some variable bounds, which could lead to failure of this method.

4.2.2 Interval Methods

Some recent studies [6, 87, 93] have looked at solving or detecting feasibility of LPs using

interval methods. The methods presented in these articles are more general and sophisti-

cated than the primal-bound-shift method described in the previous section. Althaus and

Dumitriu [6] describe an algorithm to certify feasibility and produce bounds for LPs. Their

algorithm identifies the implied equalities of the LP and then, using interval arithmetic,

corrects the interval solution to satisfy all of the constraints by shifting it toward the rel-

ative interior of the polyhedron. They implemented a version of the algorithm to certify
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feasibility of problems and had a high rate of success. They also describe how a variant

of their method could be used to compute valid LP bounds. Their method almost entirely

avoids exact precision arithmetic and does not require any special assumptions on the prob-

lem structure. However, it requires the solution of an auxiliary problem each time a bound

is computed and can potentially fail due to numerical problems.

4.3 Project and Shift

The methods described in the previous section determine a valid dual solution, or an interval

containing a valid dual solution by correcting an approximate dual solution. Similarly, the

method presented in this section will generate valid bounds by repairing approximate dual

solutions to be exactly feasible. An approximate dual solution is projected to satisfy all

of the equality constraints and then shifted toward the feasible region in a way to satisfy

all of the remaining inequalities. We will not require upper and lower bounds on primal

variables but by imposing some more general conditions on the problem structure we are

able to effectively reuse information throughout the branch-and-bound tree.

4.3.1 Basic Idea

The bounding method is defined in terms of the dual problem. Throughout the rest of the

Chapter we assume we are working with a MIP with a root and node LP relaxation given

below, where we have A ∈ Qm×n, c, x ∈ Qn, b, b′, y ∈ Qm, Ā ∈ Qm̄×n and b̄, z ∈ Qm̄.

Root Primal:

max cTx

s.t. Ax ≤ b

Root Dual:

min bT y

s.t. AT y = c

y ≥ 0

Node Primal:

max cTx

s.t. Ax ≤ b′

Āx ≤ b̄

Node Dual:

min b′T y + b̄T z

s.t. AT y + ĀT z = c

y, z ≥ 0

The most frequent operation performed in a branch-and-bound tree is the modification

of primal variable bounds. In our notation this would correspond to lowering components

of b, or to introducing new inequalities if the bound was previously infinite. We can assume

that the LP relaxation at any node has b′ ≤ b. Adding a cutting plane corresponds to adding
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a new inequality to the primal problem and thus a new column to the dual problem. A

solution feasible for the root node dual LP will be feasible for all of the node dual problems

in the branch-and-bound tree by setting the additional components z to zero.

Algorithm 9 LP Bound by Dual Correction (Single LP Version)

Input: Dual constraints AT y = c, y ≥ 0, approximate solution ỹ
Determine implied equalities of dual polyhedron
Compute relative interior point y∗ of dual polyhedron
Fix implied zero components of ỹ to zero
Project ỹ to satisfy AT ỹ = c
Take convex combination y of ỹ and interior point y∗ to ensure y ≥ 0
Return: Dual bound bT y

Algorithm 9 is a simplified description of the project-and-shift algorithm as it would be

applied to a single LP. It is described using the notation of the root node as given above.

As long as the dual LP is feasible this algorithm will always produce a valid bound. It

makes use of an approximate dual solution and corrects it to be exactly feasible. Here we

describe bounds in the case where the dual objective is bounded; we discuss the case of

primal infeasibility/dual unboundedness in Section 4.3.5. The main idea of the algorithm

given by Althaus and Dumitriu [6] is similar to this idea and uses interval arithmetic to

avoid the exact computation.

In principle, Algorithm 9 could be applied to generate a valid LP bound at each node

of the branch-and-bound tree, but the operations required could be quite expensive. The

operations of determining the implied equality constraints of the polyhedron and finding

a relative interior solution could be more difficult than solving the exact LP in the first

place. We now adopt this procedure to work efficiently in a MIP setting by performing the

most expensive computations only once at the root node of the branch-and-bound tree and

reusing the structural information in order to decrease the computation performed at each

bound computation.

The algorithm we describe will have two components. A setup phase that must be solved

once at the root node, and a bound computation operation that can be called at nodes of

the branch-and-bound tree. We make the assumption that the matrix AT has full row rank

and that there are no implied equalities. We will later demonstrate that this assumption
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about the problem structure is more general than the assumption of primal bounds and is

often satisfied on a large test set of real-world problems.

In the setup phase, given as Algorithm 10, we choose a submatrix ATS of AT by selecting

a subset S of the columns that span Rn. This subset S could be chosen to be all of

the columns. Then an LU factorization of ATS is computed. Finally a corrector point

y∗ is computed such that it is dual feasible and that it has strictly positive values in all

components corresponding to columns in S. Throughout this Chapter we refer to such a

point as an S-interior point.

Algorithm 10 Project and Shift: Setup Phase

Input: Root dual constraints AT y = c, y ≥ 0
Choose subset S of columns of AT spanning Rn
Compute exact LU factorization of submatrix ATS induced by S
Compute exact S-interior dual solution y∗

Return: S, LU , y∗

The node bound computation is given as Algorithm 11. An approximate dual solution,

ỹ, z̃ ≥ 0, is corrected to be exactly feasible. First, the violation of the equality constraints r

is computed and an adjustment correcting this violation w ∈ Rm is computed using the LU

factorization found in the setup phase. After adding this correction to (ỹ, z̃) it is possible

that some components of (ỹ + w, z̃) are negative, this possible negativity is corrected by

taking a convex combination with y∗ to ensure that all components satisfy non-negativity.

Note that the approximate dual solution is preconditioned to be non-negative. In the case

that some components are slightly negative due to numerical errors, those components can

be set to zero.

Algorithm 11 Project and Shift: Node Bound Computation

Input: Node dual constraints AT y + ĀT z = c, y, z ≥ 0, approximate dual sol. ỹ, z̃ ≥ 0
Compute error in equality constraints r = c−AT ỹ − ĀT z̃
Solve ATw = r using precomputed LU factorization of ATS
Choose smallest λ ∈ [0, 1] such that (y, z) = (1− λ)(ỹ + w, z̃) + λ(y∗, 0) is non-negative
Return: Dual bound b′T y + b̄T z

Choosing a value of λ such that (y, z) = (1 − λ)(ỹ + w, z̃) + λ(y∗, 0) ≥ 0 is always

possible. This is because all components of ỹ, z̃ ≥ 0, with the only negativity in (ỹ + w, z̃)
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coming from w whose support is a subset of the columns in S. By definition y∗ is strictly

positive in all components of S. Feasibility of (y, z) is guaranteed because it is a convex

combination of two solutions to the equality constraints of the system. This explains the

use of our assumptions: the assumption that the columns of S span Rn implies that the

LU factorization of ATS can be used to correct any violation r; the assumption that there

are no implied equalities ensures the existence of an S-interior point y∗ that can be used to

correct any negativity appearing in w.

Throughout the remainder of the Chapter we will refer to the use of Algorithms 10 and

11 together within a MIP branch-and-bound tree as the project-and-shift method. Algorithm

9 gave a simplified description of this method as it would be applied to a single LP.

The setup phase will require solving one or two exact LPs that will be described in

the later sections and computing an LU factorization. The node bound computations will

require considerably less computation, the most expensive part being the back-solve of a

system of equations that is done with a precomputed LU factorization. This method may

be relatively slow if used to compute a single LP bound but in a branch-and-bound tree it

could prove reasonable, especially when many nodes are processed. We would expect the

node bound computation step of this algorithm to be considerably faster than solving an

exact LP at a given node. Even if the optimal basis is passed to the exact LP solver as a

warm start it would compute the final basic solution exactly, which may require solving a

system of equations exactly. Computing a basic solution exactly is likely to be slower than

using a precomputed LU factorization to make the correction in Algorithm 11.

We now show that the assumption that the dual problem had no implied equalities and a

full row rank constraint matrix is more general than the assumption that all primal variables

have finite upper and lower bounds. For a problem described as equality constraints and

non-negativity constraints on the variables the term implied equality refers to any variable

bounds that are implied to be tight.
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Proposition 4.3.1. Suppose that an LP of the form:

min bT y − lT zl + uT zu

s.t. AT y − Izl + Izu = c

y, zl, zu ≥ 0

is feasible, then it has no implied equalities and the constraint matrix has full row rank.

Proof. The constraint matrix has full row rank because it has an identity submatrix. We

now show that there are no implied equalities. Let (y, zl, zu) be a feasible solution and let

α =
∑m

i=1(AT )i (the sum of all the columns of AT ). Consider the solution (y + 1, zl + 1 +

α+, zu + 1 + α−). We can see that each component is at least one and AT (y + 1)− I(zl +

1 + α+) + I(zu + 1 + α−) = AT y + α − Izl − α+ + Izu + α− = AT y − Izl + Izu = c.

Therefore this gives a feasible solution that is strictly positive in each component verifying

that no variables are implied to be zero.

Moreover, as we will see in Section 4.4 when considering our test set of 155 problems,

the conditions that the dual problem has no implied equalities and that the dual constraint

matrix is full rank holds on 150 of them, where only 68 of the problems had bounds on all

primal variables.

The project-and-shift method relies on the existence of a full row rank submatrix ATS

and also on the existence of a corrector point y∗ that is S-interior. We now show that the

existence of the S-interior point is equivalent to the condition that there are no implied

equalities.

Proposition 4.3.2. Suppose the LP min{bT y|AT y = c, y ≥ 0} is feasible and AT has full

row rank. Then there exists an S-interior point for a full row rank subset of columns S of

AT if and only if there are no implied equalities.

Proof. First, suppose there is an S-interior point of a full rank subset of the columns S.

We may assume that AT = [ATS |ATN ] where N is the set of columns not in S and there is

a solution (yS , yN ) with yS > 0. Let i ∈ N and suppose yi = 0, then we can construct

a solution in the following way. Since ATS has full row rank there exists a solution w
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to the equations ATSw = ATi . We can choose ε > 0 such that (yS − εw) > 0 and then

(yS − εw, yN + εei), where ei is the ith unit vector, is a feasible S-interior point that is

strictly positive in component i. This can be repeated for any column in N and therefore

there are no implied equalities. The converse of the statement holds trivially by taking S

equal to all the columns.

Now we consider the quality of the bounds that are produced by the project-and-shift

algorithm. Proposition 4.3.3 gives a bound on the strength of the LP bound in terms of

approximate dual solution and the information computed in Algorithm 10.

Proposition 4.3.3. Assume that when Algorithm 10 is applied to the root node problem

it identifies an S-interior point y∗ with objective value zR, and that ∀i ∈ S, y∗i ≥ d > 0.

Next, suppose Algorithm 11 is applied at the node to compute a bound, given an approximate

solution ỹ, z̃ ≥ 0 with objective value z̃N = b′T ỹ + b̄T z̃. Also assume that (zR − z̃N ) ≥ 0

(otherwise zR can be taken as a safe dual bound). Let r = c−AT ỹ− ĀT z̃ be the error of the

approximate solution and let w be the correction used, ATw = r. Then the bound returned

will be at most

z̃N + (1/d)(max
i∈S

w−i )(zR − z̃N ) + (b′Tw)+.

Proof. First note that (1/d)(maxi∈S w
−
i ) gives an upper bound on the value of λ computed

in Algorithm 11. Now we overestimate the dual bound produced by Algorithm 11.

b′T y + b̄T z = (1− λ)(b′T (ỹ + w) + b̄T z̃) + λ(b′T y∗)

≤ (1− λ)z̃N + (1− λ)b′Tw + λzR

≤ z̃N + λ(zR − z̃N ) + (b′Tw)+

≤ z̃N + (1/d)(max
i∈S

w−i )(zR − z̃N ) + (b′Tw)+

Unlike Proposition 4.2.1 and the primal-bound-shift dual bound method, the project-

and-shift method does not necessarily depend on the values or existence of primal variable

bounds. We can also identify characteristics of the problem, and of the information com-

puted in Algorithm 10 that can lead to stronger bound computations. If the S-interior

point y∗ has a good objective value, and if its components in S have large values, this
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can improve the bound quality. Another desirable feature is that the projection vector w

should hopefully be of small magnitude; this may be harder to control as w will depend on

the solution to the system of equations ATw = r. We also note that if the approximate

dual solution only violates the constraints by a small amount, this will generally lead to

a smaller difference between the objective value of the approximate dual solution and the

bound value.

4.3.2 Generating Projections

A key component of the project-and-shift method is the projection step. A projection of the

approximate dual solution into the affine hull of the dual polyhedron ensures that all equality

constraints are satisfied. Projection of a vector into an affine space is a basic operation of

linear algebra, in this section we explain our strategy for computing projections.

As described in Algorithms 10 and 11, the projection is done by computing an LU

factorization of a rectangular matrix ATS , which is used to compute a corrector w by solving

ATw = r. Using an LU factorization can take advantage of sparsity of the matrix, which is

often very sparse in real world MIP problems. Computing LU factorizations on problems

arising from LP applications is a well studied area so we can take advantage of these highly

developed techniques. Also, the matrix factorization, which is the most difficult operation is

only performed once during Algorithm 10 in the setup stage. When Algorithm 11 is called

to compute node bounds, the projection is accomplished by performing a back-solve using

the already computed factorization.

Alternative strategies for computing projections could use other methods, such as or-

thogonal projections. An advantage of computing orthogonal projections is that the ap-

proximate solution would be mapped to the closest point in the affine hull. The drawback

of using orthogonal projections is that they may be significantly more computationally ex-

pensive. To symbolically compute an orthogonal projection at each node may be even more

difficult than calling the exact LP solver with warm starts.
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In the project-and-shift method we choose a subset of the columns S to define a sub-

matrix ATS to control which submatrix has its LU factorization computed, and which com-

ponents can be adjusted during the projection. Choosing S as all the columns is a valid

choice, but there are reasons to choose a smaller subset. Choosing a smaller subset S will

reduce the dimension of ATS making the computation of the rectangular LU factorization

faster. Ideally we would also choose the columns of S as dual variables which can be ad-

justed without having a large effect on the objective value. One alternative choice for S

is to consider the optimal primal solution at the root node and then choose S to be the

set of all dual columns corresponding to active primal constraints. If we correctly compute

the optimal primal solution at the root node this choice of S would give a full row rank

submatrix ATS . Relative to other dual columns, those corresponding to active constraints at

the optimal root node solution may have better objective cost, leading to an improvement

in the bound quality as it is shown in Proposition 4.3.3

4.3.3 Identifying an S-interior Point

Freund, Roundy and Todd [69] described a method to simultaneously compute an interior

point and identify the affine hull of a polyhedron by solving a single LP. Using a similar

idea we write an Auxiliary problem that given a set S will identify an S-interior point if one

exists. Expressing the problem in the dual form, implied equality constraints correspond

to components of the problem that must be zero in any feasible solution. Here the added

variables are δ ∈ R|S| and λ is a single variable.

Dual LP Problem:

min bT y

s.t. AT y = c

y ≥ 0

Aux. LP Problem:

max
∑
i∈S

δi

s.t. AT y − λc = 0

yi ≥ δi ∀i ∈ S

y ≥ 0, λ ≥ 1, 0 ≤ δi ≤ 1

If we set S equal to all the columns of AT and suppose P = {y|AT y = c, y ≥ 0} and
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y, δ, λ is an optimal solution to the Aux. problem then 1
λy is contained in the relative interior

of P , and δi = 0 implies yi = 0 for every y ∈ P . Geometrically this problem adds an extra

dimension λ which scales the right hand side of the constraints converting the polyhedron

to a conic form. The variables δ are indicators of each inequality being satisfied strictly, and

if any δi can take a nonzero value, it can attain its maximum value of 1 by increasing y, λ

and moving further into the cone. Choosing S to be any strict subset of the dual columns,

an optimal solution would produce an S-interior point 1
λy if one exists; otherwise some

variables δi for i ∈ S would be zero.

In Algorithm 9 it was necessary to identify the affine hull and an interior point of the

dual polyhedron. Solving this auxiliary problem exactly would accomplish these goals.

However, it would not be practical to solve for each bound computation because that would

require solution of an exact LP at each node.

We can use this Aux. LP Problem within Algorithm 10 to correctly identify y∗ as needed.

It would also recognize if no S-interior point exists if δi was equal to zero for any i ∈ S in

the optimal solution. By Proposition 4.3.2 if this Aux. Problem fails to find an S-interior

point then the problem has implied equalities.

The clear disadvantage of using this method to identify the S-interior point is that the

point chosen in an arbitrary way. It could have a very bad objective value and could also

have some components with strictly positive but have very tiny values that could result in

poor bound values after application of Algorithm 11; both of these situations were observed

on some problems in our test set. Next we consider ways of choosing an S-interior point

while considering both its objective value and the value of its positive components.

Computing a bound using the project-and-shift method requires identification of an S-

interior point. In Algorithm 11 we see that the value of the bound computed will depend on

the objective value of this point, and the magnitude of the shift will depend on how large

the values of the point are. Therefore the ideal point y∗ would have a good objective value

and also have large values in the components in S. Since we have assumed that S induces a

full row rank submatrix of AT and there exists an S-interior point we can use the following

auxiliary problem to identify one, where α is weights given to balance the two components
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of the objective function. We just introduce one additional variable δ that is a lower bound

entries of S.

Optimized Aux. LP Problem:

max (1− α)(max{1, |zLP |})δ + α(bT y)

s.t. AT y = c

yi ≥ δ ∀i ∈ S

y ≥ 0, 0 ≤ δ ≤M

The first part of the objective function, (1−α)(max{1, |zLP |})δ, corresponds to a lower

bound on the minimum value over components in S. Maximizing δ maximizes the minimum

over all components of y in S. The second part α(bT y) corresponds to the objective value

of the original dual problem. One option for solving this problem is to choose the weight

α and solve the problem using an exact LP solver. We would typically have access to

the optimal solution for the root node LP so we normalize the first term by including a

factor of max{1, |zLP |} where zLP is the optimal objective value at the root node. For

practical purposes, instead of computing zLP exactly at the root node, we could also use

an approximation of this value provided by the floating-point LP solver.

In our experiments we found this strategy to be successful for some problems, but in

other cases the optimal solution had a value of δ = 0, even when setting the value of α to

be very small. When δ = 0 this indicates that that the solution does not give an S-interior

point, leading to failure of the project-and-shift method. In Table 13 we list some of the

failure rates for different values of α. (We make a note that this table actually gives an

underestimate of the failure rate, for each method a small number of instances timed out

or halted for system reasons, and those instances are not included as failures here.)

After observing this behavior we employed a second strategy where the problem is solved

in two stages. First, the problem was solved by setting α = 0. Then knowing a feasible value

of δ, the lower bound on δ is adjusted to reflect this known feasible value. Second, with

this lower bound on δ, α is set equal to 1 and the problem is re-solved. Solving the second
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Table 13: Success Rate of Single Stage Optimized Aux. LP Problem

Value of α Failure Rate (δ = 0)

α = 0.01 26/155
α = 0.0001 10/155
α = 0.000001 5/155

problem can also be done as a reoptimization since the only modification to the problem

changed the variable bounds and objective. After solving the first step of this problem

and adjusting the lower bound on δ, the optimal basis is still primal feasible (but not dual

feasible) and therefore re-optimization can be done using the primal simplex algorithm.

4.3.4 Shifting by Interior Ray

Thus far we have described the shift step of the project-and-shift method as using a projected

approximate solution and then shifting it using a convex combination of it along with

a corrector point y∗. An alternative is to correct the projected solution by adding some

multiple of a ray from the dual recession cone to correct it. We could adjust Algorithm 10 so

that instead of finding an S-interior point y∗ it would compute a ray r∗ in the dual recession

cone, R = {r : AT r = 0, r ≥ 0}, satisfying r∗i > 0 ∀i ∈ S. Following our previous notation,

we would call this an S-interior ray. Then, in Algorithm 11 instead of computing a bound

from the corrected solution as the convex combination (y, z) = (1 − δ)(ỹ + w, z̃) + δ(y∗, 0)

we would use (y, z) = (ỹ + w, z̃) + γ(r∗, 0), where γ is chosen large enough that (y, z) ≥ 0.

The drawback of this strategy is that it is less general than the previous assumptions.

For example, if the root node dual LP has a bounded feasible region, a ray r∗ satisfying

these conditions does not exist.

Proposition 4.3.4. Existence of an S-interior ray in the dual is implied by presence of all

primal bounds. Existence of S-interior ray implies existence of S-interior point.

Proof. If the primal problem has upper and lower bounds on all variables the dual will

be in the following form, the same as in Proposition 4.3.1, given by min{bT y − lT zl +

uT zu|AT y − Izl + Izu = c, y, zl, zu ≥ 0}. Then the ray given by (1,1+α+,1+α−) where
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α =
∑m

i=1(AT )i is in the recession cone and is strictly positive in each component.

Now to see that existence of an S-interior ray implies existence of S-interior point we

observe that taking any feasible solution and adding some multiple of an S-interior ray

would give an S-interior point.

Examples can easily be constructed to demonstrate that none of the reverse implications

hold. Table 14 lists how often each of these conditions held at the root node of the problem

on our test set.

Table 14: Occurrence of Conditions

Condition Occurrence

All primal bounds present 68/155
Existence of S-interior ray 128/155
Existence of S-interior solution 150/155

4.3.5 Proving LP Infeasibility

In addition to bounding LP objective values at nodes of the branch-and-bound tree another

frequent operation is to certify primal infeasibility of nodes. Primal infeasibility can be

certified by proving that the dual problem is unbounded. Proving dual infeasibility / primal

unboundedness is not as relevant a problem because if the root node primal LP has a

bounded objective value, then it will remain bounded through the branch-and-bound tree.

In this section we describe two different approaches of how the project-and-shift algorithm

can be adapted to certify primal infeasibility.

One possible method for proving the dual objective value is unbounded is to is to have the

floating-point LP solver return a cost-improving dual ray and then correct this approximate

ray to be exactly feasible. We could use the idea of projecting and shifting the dual ray to

be exactly feasible and if this operation produced an exactly feasible dual ray that was cost

improving then the primal infeasibility would be certified. The projection could be done the

same way as we have done in Algorithms 10 and 11, except that we would correct the ray

to satisfy AT y = 0, and the shift could be accomplished by using an S-interior ray of the
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dual. This approach has two drawbacks, first it would require an alternate Aux. problem

to be solved at the root node to identify an S-interior ray. Secondly, it would require the

less general condition that there is an S-interior ray which was discussed in the previous

section.

An alternate approach is to compute a valid dual bound strong enough to prune the

node without explicitly finding a cost improving dual ray. Whenever a valid dual bound

for a node is identified that surpasses the primal bound (the best known primal objective

value) that node can be pruned. In fact, many software packages for branch-and-bound will

terminate the simplex algorithm early at a node after a dual solution good enough to prune

it is identified.

Therefore at a node which is thought to be dual unbounded we can simply attain a

dual solution that surpasses the best primal bound by some amount and apply the project-

and-shift algorithm to that approximate solution with the goal of pruning the node. An

approximate dual solution surpassing the primal bound value should be readily available at

a primal infeasible node. Such a dual solution could be returned directly by the floating-

point LP solver, or it could be constructed by adding a multiple of an approximate cost

improving dual ray to a dual feasible solution.

4.4 Computational Results

In this section we describe an implementation of the project-and-shift algorithm, our test

sets and the computational results. The first goal of our computational tests is to determine

which of the several variations of the algorithm is the most effective in practice. The second

goal is to demonstrate that this method provides an advantage over other dual bounding

methods on some classes of problems.

4.4.1 Implementation and Test Set

The project-and-shift method for generating valid LP bounds is implemented within a

hybrid exact branch-and-bound version of the MIP software package SCIP [3, 4]. The

hybrid branch-and-bound code stores an exact representation of the problem, but applies

the branch-and-bound algorithm on a floating-point approximation or relaxation of the
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problem. In order to find exact precision solutions and to avoid any numerical errors,

symbolic computation is used to verify or recompute any computations that would be

susceptible to numerical error. Whenever an incumbent primal solution is identified using

the floating-point code, it is recomputed exactly by solving an exact LP. Finally, a valid

dual bounding method is used to compute the LP bound at each node. The implementation

allows the choice of several dual bounding methods, including the variants of the project-

and-shift algorithm described in this Chapter. Much of this exact framework was developed

by Kati Wolter and an in depth coverage of the hybrid branch-and-bound implementation

within SCIP will be presented in her forthcoming PhD thesis. An extended description also

appears in [42]. We also remark that the project-and-shift method is capable of computing

bounds in a branch-and-cut framework, but as the current exact version of SCIP does not

include cuts this functionality is not included.

The exact code is based on SCIP version 1.2.0.8. QSopt ex 2.5.5 [11] is used as the

exact LP solver and CPLEX 12.10 [85] is used as the floating-point LP solver. Daniel

Espinoza implemented a SCIP interface and additional features for QSopt ex to allow for

this integration. The auxiliary LPs in the setup phase of the project-and-shift algorithm

are solved using the QSopt ex interface. The rectangular LU factorizations are computed

using a code developed by combining the exact LU factorization code from QSopt ex [13]

and a sparse numerical rectangular LU factorization code from [45] which was provided by

Sanjeeb Dash, both of these were based directly on the methods of Suhl and Suhl [133].

Computations are performed on a test set of 155 MIP problems selected from MIPLIB

3.0 [24], MIPLIB 2003 [5], and the collection of Mittelmann [110]. Following the convention

used throughout this dissertation we solve the problems as they are given, we do not round

the input data to nearby rational numbers with small denominators or modify the input

data in any other way. The problems are all converted to ZIMPL format and read in

as rational numbers. Computational tests were run on the Zuse Institute Berlin (ZIB)

computing cluster using Intel E5420 processors with a one hour time limit.

Before presenting results comparing the different variants of the project-and-shift al-

gorithm we briefly describe some other aspects of the implementation which increased the
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overall speed of the methods. The version of QSopt ex used in our implementation uses

QSopt as its floating-point LP solver. We are therefore able to increase the speed of the

code by solving the floating-point approximation of the exact LPs with CPLEX and then

using the final basis from CPLEX to warm start QSopt ex. Another practical step that

is taken is a simple postprocessing of the exactly feasible dual solution obtained by the

project-and-shift method when some constraints of the problem have right and left hand

sides. If the dual multipliers for both sides of a specific constraint are nonzero then they

can be lowered by equal amounts so that one becomes zero, this will reduce the cost of the

dual solution and improve the bound quality.

4.4.2 Computations

We have described several variants of the project-and-shift algorithm, the significant deci-

sions to be made are how to choose the set S and how to choose the S-interior point. We

want a method that is as general as possible and is fast for the MIP application. In general

the speed of the dual bound method for MIP will be influenced by two things; how fast the

bounds can be computed and how strong the bounds are, because weak bounds may lead

to an increased node count.

As a first consideration we eliminate some of the variants due to their lack of generality.

The use of an S-interior ray instead of an S-interior point described in Section 4.3.4 has

conditions that satisfied less often than the other versions. Also, from Proposition 4.3.4

we know that any of the times it fails are when the conditions of the primal-bound-shift

method do not hold.

Next we consider the optimized interior point described in Section 4.3.3. We described

an auxiliary problem with a two part objective function. When using nonzero values of

α we often experienced problems where the solution to the optimization problem was not

S-interior, the failure rates are listed in Table 13. Based on these failure rates we will not

consider these variants as viable alternatives, however we do consider the setting of α = 0

and the two stage problem. We also remark that when using different nonzero values of

alpha did work, their performance on the overall branch-and-bound tree was similar to the
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performance of α = 0.

After eliminating these possibilities we are left with three choices of how to compute the

interior point. First, we could choose an arbitrary interior point using the Aux. problem

listed in the beginning of Section 4.3.3. Second, we could solve the Optimized interior point

problem given in Section 4.3.3 with α = 0; maximizing the minimum size of components

in S. Third, we could solve the two stage problem, where we maximize the minimum over

components in S, and then do further optimization with a modified objective function to

improve the point’s objective value. In the tables, we will denote these three settings as

P:Arbitrary, P:Opt and P:TwoStage, respectively. The second parameter we have to choose

is how to select the set S. We consider two possibilities, first we can let S be equal to all the

dual columns. The second possibility is to set S equal to all dual columns corresponding to

primal constraints that are active at the optimal root node solution, motivation for such a

choice is discussed in Section 4.3.3. We denote the parameter choices for the set S by S:All

and S:Active. These settings give us six combinations to compare.

First we compare the behavior at the root node, evaluating the quality of the bound

produced and the time necessary to compute it. The dual bound time required at the root

node is dominated by the solution of the auxiliary problem, which in each case involves

solving an exact LP. Table 15 compares the relative quality of the dual bounds at the

root node by comparing the bound value with the exact LP solution value. Namely, we

define the bound quality to be q = (zLP − DB)/max(1, zLP ), where zLP is the optimal

LP value, and DB is the value of the dual bound obtained. For each setting we list how

many problems had bounds with relative quality in five different ranges, the infinite bound

arising on problems where the conditions required by the algorithm were not satisfied. The

bounds are said to have value less than εm when q is below machine epsilon; it is mapped to

zero when converted to double precision. Any problems which fail due to memory overflow

or other system errors for any of the compared parameter settings are excluded from the

comparison in the tables.

The relative quality of the bounds produced by these settings is not surprising. Choosing

S equal to the active columns leads to increased bound quality. The selection of the interior
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point also impacts the quality, with the arbitrary interior point giving the worst bound, and

the two stage problem producing better bounds on average.

Table 15: Relative Bound Quality at Root Node

Setting [0, εm) [εm, 10−9) [10−9, 10−3) [10−3,∞) ∞

S:Active;P:Opt 50 83 9 2 5

S:Active;P:Arbitrary 50 77 15 2 5

S:Active;P:TwoStage 49 88 5 2 5

S:All;P:Opt 32 89 17 6 5

S:All;P:Arbitrary 32 80 26 6 5

S:All;P:TwoStage 34 91 13 6 5

Table 16 compares the computation time required at the root node by each method.

For each method three measures of time are considered; the geometric mean of the solve

times over the problem set, the total solution time over the problem set and the shifted

geometric mean over the problem set. The shifted geometric mean of numbers t1, . . . , tn

is defined to be (Πn
i=1(ti + s))1/n − s and is an intermediate measure between arithmetic

and geometric mean, we use a shift factor of s = 10. Each of these three measures are

computed and the table shows the relative percent increase compared with the reference

setting S:Active;P:Opt.

Table 16: Relative Bound Computation Time at Root Node

Instances Solved by All at Root (149)

Setting Geometric Mean Shifted Geometric Mean Total Time

S:Active;P:Opt 0 0 0

S:Active;P:Arbitrary +2 +14 +14

S:Active;P:TwoStage +68 +96 +444

S:All;P:Opt +56 +69 +214

S:All;P:Arbitrary +11 +21 +37

S:All;P:TwoStage +143 +187 +805

Figure 5 gives a performance profile comparing the solution times at the root node.

From this table and performance profile we also observe a predictable outcome. Selecting the

interior point using the two stage problem leads to a significant increase in the solution times.

Selecting the interior point in the arbitrary way is sometimes slower than the setting P:Opt,
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we would attribute this to the arbitrary point selection problem having more variables than

the optimized problem. Also, choosing S equal to the active columns instead of all columns

reduces the solution time.
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Figure 5: Bound Computation Time at Root Node

Next, Table 17 compares the total time solution times of these methods when used

to solve MIP problems using branch-and-bound. A considerable number of the problems

remain unsolved after the one hour time limit, so the table compares the solution time on

the problems which all methods finished.

From Table 17 we identify the settings S:Active;P:Opt, S:Active;P:Arbitrary and

S:All;P:Opt as the three most promising methods to compare in more detail. We will

compare these three methods more closely in Table 18 where we include details for specific

problems. For each algorithm and problem instance we list the number of branch-and-bound

nodes processed, the optimality gap remaining after one hour, or zero if the problem was

solved within one hour. We also include the total solution time, and the total amount of time
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Table 17: Relative Overall Computation Time

Instances Solved by All (34)

Setting Geometric Mean Shifted Geometric Mean Total Time

S:Active;P:Opt 0 0 0

S:Active;P:Arbitrary +6 +6 +3

S:Active;P:TwoStage +14 +12 +5

S:All;P:Opt +4 +2 +2

S:All;P:Arbitrary +11 +10 +5

S:All;P:TwoStage +23 +20 +10

spent on computing dual bounds. This table also includes details showing the performance

of using the Exact LP solver to compute the dual bounds. Additional statistics are compiled

in the final rows of the table, comparing the overall solution times on all problems and on

the subset of problems that were solved by all methods. The average optimality gap is also

included for problems on which all methods timed out. Figure 6 gives a performance profile

comparing the solution times of these methods for solving these MIPs.

Considering the results presented in Table 18 and Figure 6 it is not entirely clear which

of these three variants of the project-and-shift algorithm is best. None of the methods

dominates the others by a large margin and there is some crossover in the performance

profile. The settings S:Active;P:Opt does have the fastest average solution times on the

problems solved by all methods, so we will consider it as the best choice. One additional

observation that can be made is that on problems solved to optimality, the node counts

were often similar or the same between the different methods. This indicates that although

the project-and-shift method is producing LP bounds that are not as tight as the exact LP

solutions, they are often tight enough that they do not lead to a significant increase in the

number of nodes required to solve the problem.

99



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

1
0
te

a
m

s
>

6
7

7
1
3

>
0
.8

>
3
6
0
0
.0

>
2
3
8
6
.2

>
6
8

5
8
6

>
0
.8

>
3
6
0
0
.0

>
2
3
7
3
.5

>
7
1

5
0
0

>
0
.8

>
3
6
0
0
.0

>
2
3
2
9
.4

>
6
8

7
0
8

>
0
.8

>
3
6
0
0
.0

>
2
2
1
7
.8

3
0
:7

0
:4

5
:0

5
:1

0
0

>
7

9
4
2

—
>

3
6
0
0
.0

>
3
0
2
8
.5

>
1
0

2
0
9

—
>

3
6
0
0
.0

>
2
9
5
5
.6

>
9

9
8
1

—
>

3
6
0
0
.0

>
2
9
4
4
.0

>
2

0
4
8

—
>

3
6
0
0
.0

>
3
4
8
7
.8

3
0
:7

0
:4

5
:0

9
5
:9

8
>

7
9
9
7

—
>

3
6
0
0
.0

>
3
2
5
3
.5

>
1
0

2
2
0

—
>

3
6
0
0
.0

>
3
1
4
6
.3

>
1
0

0
0
8

—
>

3
6
0
0
.0

>
3
2
4
7
.1

>
1
1

7
0
2

>
4
.3

>
3
6
0
0
.0

>
3
4
2
3
.5

3
0
:7

0
:4

5
:0

9
5
:1

0
0

>
1
0

5
8
5

>
0
.0

>
3
6
0
0
.0

>
2
6
3
5
.9

>
1
1

5
3
7

>
0
.0

>
3
6
0
0
.0

>
3
2
2
2
.4

>
1
0

7
4
4

—
>

3
6
0
0
.0

>
3
3
7
1
.5

1
7
0

0
.0

8
0
.3

6
2
.3

a
1
c1

s1
>

9
9

6
0
4

—
>

3
6
0
0
.0

>
3
3
7
1
.4

>
9
8

3
2
0

—
>

3
6
0
0
.0

>
3
3
7
5
.1

>
8
1

1
9
9

—
>

3
6
0
0
.0

>
3
4
1
3
.5

>
7
5

9
4
8

—
>

3
6
0
0
.0

>
3
3
9
8
.8

a
cc

-0
5
2

0
.0

3
.2

1
.0

5
2

0
.0

3
.1

1
.0

5
2

0
.0

4
.5

2
.0

4
7

0
.0

4
.2

1
.8

a
cc

-1
3

2
2
4

0
.0

3
3
8
.4

6
7
.8

3
2
2
4

0
.0

3
4
0
.1

6
9
.2

3
2
2
4

0
.0

3
3
8
.3

6
8
.9

5
8

0
.0

2
1
.2

4
.6

a
cc

-2
2
4
1

0
.0

4
5
.7

6
.0

2
4
1

0
.0

4
5
.8

6
.0

2
4
1

0
.0

4
7
.6

7
.9

4
9

0
.0

2
0
.5

4
.1

a
cc

-3
>

6
7
8
0

—
>

3
6
0
0
.0

>
1
9
2
.7

>
6

7
7
2

—
>

3
6
0
0
.0

>
2
0
1
.5

>
4

8
4
9

—
>

3
6
0
0
.0

>
1
1
7
1
.1

1
1
1
7

0
.0

8
6
1
.7

4
0
9
.3

a
cc

-4
>

6
4
7
8

—
>

3
6
0
0
.0

>
1
8
2
.5

>
6

4
3
8

—
>

3
6
0
0
.0

>
1
9
1
.4

>
5

4
7
8

—
>

3
6
0
0
.0

>
6
8
6
.5

9
2
7

0
.0

3
0
0
1
.2

2
5
4
7
.3

a
cc

-5
>

9
3
7
5

—
>

3
6
0
0
.0

>
2
5
0
.8

>
9

3
0
1

—
>

3
6
0
0
.0

>
2
7
4
.8

>
8

7
0
4

—
>

3
6
0
0
.0

>
5
0
6
.4

>
2

2
4
9

—
>

3
6
0
0
.0

>
2
5
4
1
.3

a
cc

-6
>

9
0
2
9

—
>

3
6
0
0
.0

>
2
2
2
.3

>
9

0
3
4

—
>

3
6
0
0
.0

>
2
2
3
.5

>
7

4
7
6

—
>

3
6
0
0
.0

>
8
2
4
.1

>
1

8
6
5

—
>

3
6
0
0
.0

>
2
8
9
7
.6

a
fl

o
w

3
0
a

>
3
5
7

8
1
1

>
1
7
.9

>
3
6
0
0
.0

>
3
3
1
8
.7

>
4
0
1

9
8
2

>
1
7
.7

>
3
6
0
0
.0

>
3
2
8
8
.2

>
3
1
0

3
5
1

>
1
8
.1

>
3
6
0
0
.0

>
3
3
5
7
.8

>
1
8
7

1
4
2

>
3
3
.2

>
3
6
0
0
.0

>
3
3
8
3
.2

a
fl

o
w

4
0
b

>
1
0
1

5
4
1

>
8
5
.2

>
3
6
0
0
.0

>
3
1
9
4
.7

>
1
1
3

4
5
2

>
8
5
.2

>
3
6
0
0
.0

>
3
1
4
4
.1

>
8
9

6
3
4

>
8
5
.3

>
3
6
0
0
.0

>
3
2
4
2
.2

>
7
2

1
3
2

>
8
5
.5

>
3
6
0
0
.0

>
3
3
0
7
.3

a
ir

0
3

2
1

0
.0

2
7
.8

2
6
.8

2
1

0
.0

2
4
.6

2
3
.5

2
1

0
.0

5
5
.5

5
4
.5

2
1

0
.0

3
.5

3
.0

a
ir

0
4

>
1
3

6
7
0

>
0
.4

>
3
6
0
0
.0

>
2
2
4
5
.5

>
1
3

8
4
6

>
0
.4

>
3
6
0
0
.0

>
2
2
2
9
.2

>
1
4

3
2
9

>
0
.4

>
3
6
0
0
.0

>
2
1
7
8
.4

>
9

8
3
6

>
0
.5

>
3
6
0
0
.0

>
2
6
4
1
.9

a
ir

0
5

>
2
1

6
4
6

>
1
.0

>
3
6
0
0
.0

>
2
7
2
2
.2

>
2
1

9
1
1

>
0
.9

>
3
6
0
0
.0

>
2
7
1
1
.8

>
2
3

6
8
3

>
0
.9

>
3
6
0
0
.0

>
2
6
4
4
.6

>
1
7

0
9
5

>
1
.0

>
3
6
0
0
.0

>
2
9
0
7
.8

a
rk

i0
0
1

>
2
0

8
4
7

—
>

3
6
0
0
.0

>
3
5
6
5
.4

>
2
1

0
3
0

—
>

3
6
0
0
.0

>
3
5
6
2
.0

>
5
4

3
5
4

—
>

3
6
0
0
.0

>
3
5
0
8
.5

>
4

1
0
7

—
>

3
6
0
0
.0

>
3
5
9
2
.2

a
tl

a
n
ta

-i
p

>
1

2
6
5

—
>

3
6
0
0
.0

>
3
2
9
4
.4

—
—

—
—

>
5
5
1

—
>

3
6
0
0
.0

>
3
4
1
5
.3

>
1

—
>

3
6
0
0
.0

>
3
5
8
7
.8

b
c1

>
9

8
8
2

>
9
2
.7

>
3
6
0
0
.0

>
3
4
2
9
.7

>
7

2
9
0

>
9
3
.9

>
3
6
0
0
.0

>
3
4
7
4
.7

>
3

4
7
9

—
>

3
6
0
0
.0

>
1
0
1
3
.1

>
2

4
1
9

>
9
8
.0

>
3
6
0
0
.0

>
3
5
6
1
.7

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

100



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

b
el

l3
a

3
6
2

6
0
9

0
.0

5
5
8
.1

4
6
5
.1

3
6
2

6
0
8

0
.0

5
2
6
.3

4
3
2
.8

3
6
2

6
2
0

0
.0

6
8
0
.1

5
8
5
.7

>
3
2
5

3
8
2

>
0
.0

>
3
6
0
0
.0

>
3
4
0
6
.1

b
el

l5
4
0
8

9
2
9

0
.0

4
9
5
.9

4
4
4
.3

4
0
9

0
0
7

0
.0

4
5
7
.0

4
0
5
.3

4
0
8

9
3
8

0
.0

5
7
1
.5

5
2
0
.2

>
4
0
6

8
5
3

>
0
.0

>
3
6
0
0
.0

>
3
4
7
0
.1

b
ie

n
st

1
4
2

0
1
8

0
.0

2
9
5
.9

1
9
7
.3

4
2

0
1
7

0
.0

3
3
1
.2

2
3
3
.6

4
1

8
9
2

0
.0

2
9
7
.6

2
0
0
.3

4
0

8
6
7

0
.0

8
0
6
.2

7
0
2
.0

b
ie

n
st

2
>

4
3
3

9
4
3

>
0
.5

>
3
6
0
0
.0

>
2
1
4
4
.5

>
3
8
4

2
5
4

>
3
.0

>
3
6
0
0
.0

>
2
3
1
2
.1

>
4
3
0

2
4
7

>
0
.6

>
3
6
0
0
.0

>
2
1
4
7
.0

>
1
8
7

5
3
0

>
1
5
.8

>
3
6
0
0
.0

>
2
9
5
0
.8

b
in

k
a
r1

0
1

>
1
2
3

4
8
5

—
>

3
6
0
0
.0

>
3
4
1
3
.2

>
1
2
3

3
9
4

—
>

3
6
0
0
.0

>
3
4
1
7
.1

>
1
2
5

0
1
0

—
>

3
6
0
0
.0

>
3
4
1
4
.9

>
9
2

9
2
5

—
>

3
6
0
0
.0

>
3
4
4
4
.7

b
le

n
d

2
4
4

9
8
8

0
.0

2
1
0
.4

2
0
0
.9

4
4

9
9
0

0
.0

2
4
2
.4

2
3
2
.6

4
5

0
0
6

0
.0

2
5
5
.9

2
4
6
.3

4
4

9
9
2

0
.0

5
7
7
.3

5
5
4
.4

ca
p

6
0
0
0

>
4
0

7
9
3

—
>

3
6
0
0
.0

>
3
4
5
4
.4

>
3
3

9
6
7

—
>

3
6
0
0
.0

>
3
4
8
0
.6

>
3
4

2
1
0

—
>

3
6
0
0
.0

>
3
4
7
9
.6

>
2
6

9
5
2

—
>

3
6
0
0
.0

>
3
4
9
1
.3

d
a
n

o
3

3
4
0

0
.0

1
2
1
.5

7
2
.3

4
0

0
.0

3
9
4
.8

3
4
5
.6

4
0

0
.0

9
5
.0

4
5
.9

4
0

0
.0

4
0
6
.0

3
7
2
.4

d
a
n

o
3

4
1
9
3

0
.0

4
1
8
.4

2
4
7
.3

1
9
3

0
.0

7
5
6
.6

5
8
5
.6

1
9
3

0
.0

2
5
4
.4

8
3
.0

1
9
3

0
.0

1
8
3
5
.1

1
7
1
3
.7

d
a
n

o
3

5
>

2
0
5
0

>
0
.1

>
3
6
0
0
.0

>
2
3
9
0
.3

>
1

8
4
4

>
0
.1

>
3
6
0
0
.0

>
2
5
0
3
.1

>
4

6
0
7

>
0
.0

>
3
6
0
0
.0

>
9
5
2
.8

>
2
7
4

>
0
.5

>
3
6
0
0
.0

>
3
4
6
1
.1

d
a
n

o
3
m

ip
>

1
7
9
2

—
>

3
6
0
0
.0

>
2
0
5
6
.9

>
1

5
3
2

—
>

3
6
0
0
.0

>
2
3
1
5
.0

>
1

8
7
4

—
>

3
6
0
0
.0

>
2
2
6
0
.1

>
3
7
9

—
>

3
6
0
0
.0

>
3
3
5
7
.8

d
a
n

o
in

t
>

9
3

8
5
2

>
6
.9

>
3
6
0
0
.0

>
2
6
5
2
.8

>
7
7

8
9
8

>
7
.0

>
3
6
0
0
.0

>
2
8
2
0
.1

>
1
5
6

1
1
0

>
6
.7

>
3
6
0
0
.0

>
2
0
4
5
.5

>
4
1

6
8
4

>
7
.2

>
3
6
0
0
.0

>
3
1
5
7
.6

d
cm

u
lt

i
2
0

1
3
3

0
.0

1
1
7
.0

1
0
8
.1

2
0

1
3
3

0
.0

1
1
5
.1

1
0
6
.1

2
0

1
3
3

0
.0

1
1
4
.2

1
0
5
.2

2
0

1
3
3

0
.0

2
0
4
.5

1
9
2
.9

d
is

ct
o
m

>
1
5

9
8
2

—
>

3
6
0
0
.0

>
3
4
4
1
.2

>
1
5

8
0
6

—
>

3
6
0
0
.0

>
3
4
4
2
.5

>
1
7

7
5
5

—
>

3
6
0
0
.0

>
3
4
1
3
.0

>
1
4

6
4
9

—
>

3
6
0
0
.0

>
3
4
9
8
.7

eg
o
u

t
6
0

8
7
1

0
.0

1
2
1
.6

1
1
2
.2

6
0

8
7
1

0
.0

1
1
6
.8

1
0
7
.3

6
0

8
7
1

0
.0

1
2
9
.4

1
2
0
.2

6
0

8
7
1

0
.0

3
5
0
.8

3
3
5
.6

ei
lD

7
6

>
5
8

9
9
5

>
1
4
.8

>
3
6
0
0
.0

>
3
1
4
4
.3

>
6
0

6
9
3

>
1
4
.7

>
3
6
0
0
.0

>
3
1
3
3
.9

>
6
8

8
9
6

>
1
4
.0

>
3
6
0
0
.0

>
3
0
5
5
.6

>
4
9

5
4
3

>
1
5
.9

>
3
6
0
0
.0

>
3
2
1
3
.4

en
ig

m
a

1
2
8

0
5
8

0
.0

1
6
2
.3

1
4
2
.6

1
2
8

0
5
8

0
.0

1
5
3
.6

1
3
2
.6

1
2
8

0
5
8

0
.0

1
4
5
.8

1
2
5
.2

1
2
8

0
5
8

0
.0

3
3
3
.1

3
0
7
.4

fa
st

0
5
0
7

>
1

6
5
4

—
>

3
6
0
0
.0

>
2
8
2
8
.6

>
1

9
7
3

—
>

3
6
0
0
.0

>
2
7
3
8
.2

>
1

5
5
0

—
>

3
6
0
0
.0

>
2
8
6
7
.9

>
1

0
9
0

—
>

3
6
0
0
.0

>
3
1
0
7
.7

fi
b

er
>

4
0
8

7
6
5

>
2
4
6
.5

>
3
6
0
0
.0

>
3
3
7
3
.4

>
4
1
7

5
0
0

>
2
4
6
.3

>
3
6
0
0
.0

>
3
3
7
2
.6

>
3
5
9

3
8
9

>
2
4
7
.7

>
3
6
0
0
.0

>
3
4
0
5
.3

>
1
5
6

9
1
8

>
2
5
9
.2

>
3
6
0
0
.0

>
3
4
2
1
.4

fi
x
n

et
6

>
4
1
9

7
5
9

>
4
0
7
.1

>
3
6
0
0
.0

>
3
4
9
2
.0

>
4
6
6

5
3
0

>
4
0
4
.9

>
3
6
0
0
.0

>
3
4
7
6
.7

>
3
6
0

7
9
3

>
4
1
0
.6

>
3
6
0
0
.0

>
3
5
0
5
.6

>
5
5
1

9
0
1

>
4
0
1
.6

>
3
6
0
0
.0

>
3
4
0
3
.9

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

101



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

fl
u

g
p

l
3

5
1
9

0
.0

1
.0

1
.0

3
5
1
9

0
.0

1
.0

1
.0

3
5
1
9

0
.0

1
.0

1
.0

3
5
1
9

0
.0

1
.6

1
.4

g
en

3
4

1
0
0

0
.0

3
9
5
.9

3
6
9
.8

3
4

1
0
0

0
.0

3
9
6
.4

3
7
0
.3

3
4

1
0
0

0
.0

4
2
8
.5

4
0
1
.8

3
4

1
0
0

0
.0

6
1
9
.0

5
8
5
.8

g
es

a
2
-o

>
2
4
7

6
3
9

>
1
.4

>
3
6
0
0
.0

>
3
4
1
5
.3

>
2
4
6

7
5
4

>
1
.4

>
3
6
0
0
.0

>
3
4
1
3
.9

>
2
0
4

9
9
0

>
1
.4

>
3
6
0
0
.0

>
3
4
5
0
.6

>
1
1
0

4
8
5

>
1
.5

>
3
6
0
0
.0

>
3
4
6
4
.1

g
es

a
2

>
2
2
9

1
2
7

>
1
.3

>
3
6
0
0
.0

>
3
4
1
9
.0

>
2
2
9

2
8
9

>
1
.3

>
3
6
0
0
.0

>
3
4
1
2
.7

>
1
4
9

6
8
6

—
>

3
6
0
0
.0

>
3
4
7
4
.8

>
9
9

9
9
4

—
>

3
6
0
0
.0

>
3
4
7
3
.8

g
es

a
3

1
2
8

2
1
0

0
.0

2
5
8
4
.3

2
4
1
7
.3

1
2
8

2
1
0

0
.0

2
6
1
0
.3

2
4
2
6
.8

1
2
8

2
1
0

0
.0

2
7
5
7
.1

2
5
6
3
.3

>
8
7

2
0
1

>
0
.2

>
3
6
0
0
.0

>
3
4
4
5
.2

g
es

a
3

o
1
7
8

4
3
7

0
.0

3
2
9
6
.1

3
0
7
6
.8

1
7
8

4
3
7

0
.0

3
3
2
0
.5

3
1
0
7
.0

1
7
8

4
3
7

0
.0

2
8
2
9
.2

2
6
1
8
.0

>
1
1
1

1
8
8

>
0
.2

>
3
6
0
0
.0

>
3
4
4
1
.7

g
la

ss
4

>
3
8
4

3
2
8

>
3
6
2
.5

>
3
6
0
0
.0

>
1
7
7
1
.0

>
1

1
7
1

1
8
5

>
2
3
7
.5

>
3
6
0
0
.0

>
3
2
3
5
.1

>
9
9
1

3
2
4

>
4
6
7
.5

>
3
6
0
0
.0

>
3
2
7
7
.4

>
3
6
6

4
0
8

>
4
6
7
.5

>
3
6
0
0
.0

>
3
4
1
3
.4

g
t2

>
2

0
5
0

4
4
2

>
2
0
2
.3

>
3
6
0
0
.0

>
3
3
6
3
.0

>
2

1
6
6

8
3
3

>
2
0
2
.3

>
3
6
0
0
.0

>
3
3
4
9
.7

>
1

9
9
4

2
7
8

>
2
0
2
.4

>
3
6
0
0
.0

>
3
3
6
7
.6

>
2

4
7
5

0
7
3

>
2
0
2
.1

>
3
6
0
0
.0

>
3
2
7
8
.4

h
a
rp

2
>

8
9

6
1
3

—
>

3
6
0
0
.0

>
3
4
7
3
.3

>
7
5

8
7
2

—
>

3
6
0
0
.0

>
3
4
8
7
.9

>
6
4

9
7
4

—
>

3
6
0
0
.0

>
3
5
0
9
.1

>
8
7

1
9
2

—
>

3
6
0
0
.0

>
3
3
4
4
.8

ir
p

>
1
2

4
9
7

>
0
.2

>
3
6
0
0
.0

>
3
3
7
4
.2

>
1
2

3
3
0

>
0
.2

>
3
6
0
0
.0

>
3
3
6
6
.5

>
9

5
7
4

>
0
.2

>
3
6
0
0
.0

>
3
4
2
7
.8

>
9

7
4
7

>
0
.2

>
3
6
0
0
.0

>
3
4
0
8
.1

k
h
b

0
5
2
5
0

6
6
0
6

0
.0

2
9
.2

2
7
.2

6
6
0
6

0
.0

2
8
.1

2
6
.0

6
6
0
6

0
.0

2
8
.1

2
6
.1

6
6
0
6

0
.0

4
2
.8

3
9
.7

l1
5
2
la

v
1
1

9
3
3

0
.0

3
4
1
.0

3
1
0
.5

1
1

9
2
9

0
.0

3
3
1
.1

3
0
4
.2

1
1

9
3
3

0
.0

3
4
2
.9

3
1
4
.8

1
1

9
3
4

0
.0

2
7
7
.2

2
4
7
.9

li
u

>
3
7
1

9
2
3

—
>

3
6
0
0
.0

>
3
2
7
0
.4

>
2
9
2

1
4
6

—
>

3
6
0
0
.0

>
3
3
0
7
.5

>
2
8
8

3
6
3

—
>

3
6
0
0
.0

>
3
2
9
3
.3

>
1
5
5

9
5
8

—
>

3
6
0
0
.0

>
3
3
3
9
.0

lr
n

>
2

7
0
5

—
>

3
6
0
0
.0

>
2
9
7
8
.3

>
2

8
9
8

—
>

3
6
0
0
.0

>
3
1
9
4
.9

>
2

8
4
1

—
>

3
6
0
0
.0

>
2
6
1
0
.7

>
2

5
9
1

—
>

3
6
0
0
.0

>
3
4
1
8
.7

ls
eu

7
9
5

9
6
3

0
.0

7
3
5
.5

6
4
2
.7

7
9
5

9
6
3

0
.0

6
9
6
.4

6
0
3
.5

7
9
5

9
5
5

0
.0

8
5
7
.6

7
6
6
.4

7
9
5

9
6
3

0
.0

8
6
6
.5

7
7
3
.5

m
a
n

n
a
8
1

>
1
1
6

6
6
3

—
>

3
6
0
0
.0

>
2
7
9
6
.4

>
1
4
8

7
2
9

—
>

3
6
0
0
.0

>
3
0
8
4
.5

>
1
4
2

9
9
3

—
>

3
6
0
0
.0

>
3
1
0
6
.2

>
5
8

5
8
7

—
>

3
6
0
0
.0

>
3
3
6
4
.9

m
a
rk

sh
a
re

1
>

5
1
1
0

9
2
0

—
>

3
6
0
0
.0

>
3
1
9
0
.7

>
5

1
9
3

5
4
5

—
>

3
6
0
0
.0

>
3
1
8
5
.6

>
6

4
2
1

6
6
3

—
>

3
6
0
0
.0

>
3
0
8
9
.2

>
4
1
3

1
1
4

—
>

3
6
0
0
.0

>
3
4
9
2
.8

m
a
rk

sh
a
re

1
1

>
5

7
3
0

3
4
8

—
>

3
6
0
0
.0

>
3
1
3
6
.4

>
5

7
0
7

2
7
6

—
>

3
6
0
0
.0

>
3
1
4
5
.2

>
6

9
5
8

0
0
2

—
>

3
6
0
0
.0

>
3
0
4
3
.8

>
3
6
7

5
1
7

—
>

3
6
0
0
.0

>
3
5
1
2
.4

m
a
rk

sh
a
re

2
>

3
3
4
1

2
7
0

—
>

3
6
0
0
.0

>
3
3
1
0
.6

>
3

3
5
6

2
0
3

—
>

3
6
0
0
.0

>
3
3
0
7
.5

>
4

3
9
0

7
7
2

—
>

3
6
0
0
.0

>
3
2
2
0
.9

>
4
2
5

5
0
9

—
>

3
6
0
0
.0

>
3
4
8
6
.6

m
a
rk

sh
a
re

2
1

>
4

8
5
8

0
3
9

—
>

3
6
0
0
.0

>
3
1
8
2
.4

>
4

9
3
5

9
8
3

—
>

3
6
0
0
.0

>
3
1
8
0
.2

>
6

0
4
6

6
9
2

—
>

3
6
0
0
.0

>
3
0
8
2
.8

>
4
2
4

6
5
7

—
>

3
6
0
0
.0

>
3
4
8
2
.2

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

102



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

m
a
rk

sh
a
re

4
0

3
8
2
6

1
2
8

0
.0

1
5
5
6
.4

1
2
6
4
.2

3
8
2
6

1
2
8

0
.0

1
5
9
2
.2

1
3
0
0
.2

3
8
2
6

1
2
8

0
.0

1
2
6
4
.5

9
7
5
.8

>
5
8
8

2
6
9

—
>

3
6
0
0
.0

>
3
4
7
5
.5

m
a
s7

4
>

2
3
8

5
0
7

>
4
4
.2

>
3
6
0
0
.0

>
3
5
5
9
.7

>
2
2
2

8
8
2

>
3
3
.7

>
3
6
0
0
.0

>
3
5
6
2
.1

>
9
4
2

9
4
2

>
3
5
.8

>
3
6
0
0
.0

>
3
4
4
3
.7

>
1
4
1

0
8
9

>
3
8
.9

>
3
6
0
0
.0

>
3
5
4
4
.5

m
a
s7

6
>

3
2
8

1
8
8

>
3
.9

>
3
6
0
0
.0

>
3
5
4
6
.1

>
3
0
4

8
2
1

>
1
.8

>
3
6
0
0
.0

>
3
5
4
6
.7

>
8
8
9

5
5
5

>
2
.9

>
3
6
0
0
.0

>
3
4
5
5
.2

>
1
7
2

3
8
2

>
2
.0

>
3
6
0
0
.0

>
3
5
3
4
.4

m
a
s2

8
4

>
9
2

6
6
8

>
3
.4

>
3
6
0
0
.0

>
3
5
7
1
.1

>
7
9

5
5
9

>
3
.4

>
3
6
0
0
.0

>
3
5
7
3
.8

>
4
4
8

2
1
2

>
2
.3

>
3
6
0
0
.0

>
3
4
5
5
.4

>
1
1
3

8
6
2

>
3
.2

>
3
6
0
0
.0

>
3
5
3
2
.2

m
ik

.2
5
0
-2

0
-7

5
.1

>
3
0
2

6
1
8

—
>

3
6
0
0
.0

>
3
5
4
7
.9

>
2
9
8

4
8
8

—
>

3
6
0
0
.0

>
3
5
5
0
.0

>
2
7
8

1
6
3

—
>

3
6
0
0
.0

>
3
5
5
2
.8

>
3
0
8

8
2
6

—
>

3
6
0
0
.0

>
3
5
1
8
.8

m
ik

.2
5
0
-2

0
-7

5
.2

>
2
8
7

0
6
0

—
>

3
6
0
0
.0

>
3
5
5
1
.8

>
2
7
6

5
4
0

—
>

3
6
0
0
.0

>
3
5
5
4
.2

>
2
7
3

5
9
9

—
>

3
6
0
0
.0

>
3
5
5
4
.5

>
3
0
9

4
9
7

—
>

3
6
0
0
.0

>
3
5
1
5
.7

m
ik

.2
5
0
-2

0
-7

5
.3

>
3
1
7

1
7
5

—
>

3
6
0
0
.0

>
3
5
4
5
.4

>
3
0
1

6
4
4

—
>

3
6
0
0
.0

>
3
5
4
7
.8

>
2
7
9

4
7
7

—
>

3
6
0
0
.0

>
3
5
5
2
.3

>
3
1
5

5
3
7

—
>

3
6
0
0
.0

>
3
5
1
8
.8

m
ik

.2
5
0
-2

0
-7

5
.4

>
3
2
6

1
7
6

—
>

3
6
0
0
.0

>
3
5
4
4
.2

>
3
0
4

7
9
1

—
>

3
6
0
0
.0

>
3
5
4
8
.1

>
2
9
6

0
3
8

—
>

3
6
0
0
.0

>
3
5
5
0
.7

>
3
1
6

2
7
1

—
>

3
6
0
0
.0

>
3
5
1
6
.4

m
ik

.2
5
0
-2

0
-7

5
.5

>
3
0
4

1
3
3

—
>

3
6
0
0
.0

>
3
5
4
9
.7

>
2
9
2

1
1
1

—
>

3
6
0
0
.0

>
3
5
5
2
.4

>
2
8
0

4
2
3

—
>

3
6
0
0
.0

>
3
5
5
1
.6

>
3
1
0

3
8
0

—
>

3
6
0
0
.0

>
3
5
1
7
.8

m
is

c0
3

1
5
6
1

0
.0

4
.0

3
.5

1
5
6
1

0
.0

4
.0

3
.3

1
5
6
1

0
.0

4
.8

4
.1

1
5
5
9

0
.0

4
.6

4
.1

m
is

c0
7

3
6
8

1
7
9

0
.0

2
5
9
8
.3

2
2
9
2
.7

3
6
8

1
7
9

0
.0

2
4
9
5
.4

2
1
8
7
.4

3
6
8

1
8
2

0
.0

2
8
7
9
.0

2
5
7
3
.5

3
6
5

3
5
4

0
.0

3
4
5
1
.2

3
1
2
5
.1

m
it

re
>

2
9

2
8
5

—
>

3
6
0
0
.0

>
3
4
4
1
.6

>
3
0

5
2
5

—
>

3
6
0
0
.0

>
3
4
3
9
.1

>
2
9

0
8
2

—
>

3
6
0
0
.0

>
3
4
4
8
.4

>
3
0

4
3
0

—
>

3
6
0
0
.0

>
3
4
5
3
.5

m
k
c

>
5
2

8
9
7

—
>

3
6
0
0
.0

>
3
4
2
1
.2

>
5
5

3
4
8

—
>

3
6
0
0
.0

>
3
4
1
3
.6

>
5
4

7
4
0

—
>

3
6
0
0
.0

>
3
4
1
9
.9

>
4
6

0
5
5

—
>

3
6
0
0
.0

>
3
3
9
9
.9

m
k
c1

>
6
8

4
6
2

>
5
.1

>
3
6
0
0
.0

>
3
3
3
6
.9

>
6
0

2
2
2

>
5
.1

>
3
6
0
0
.0

>
3
3
6
7
.9

>
5
6

7
9
8

>
5
.1

>
3
6
0
0
.0

>
3
3
7
6
.1

>
8
1

5
0
0

>
2
.8

>
3
6
0
0
.0

>
3
3
0
1
.3

m
o
d

0
0
8

5
9

2
1
1

0
.0

2
8
0
.8

2
7
2
.6

5
9

2
1
1

0
.0

2
4
8
.0

2
3
9
.3

5
9

2
1
1

0
.0

2
5
3
.7

2
4
5
.0

5
9

2
1
1

0
.0

6
2
6
.7

6
0
4
.6

m
o
d

0
1
0

9
3

7
3
2

0
.0

2
9
1
5
.5

2
7
0
4
.5

9
3

7
4
8

0
.0

2
9
9
3
.7

2
6
9
9
.2

9
3

7
3
1

0
.0

3
4
2
7
.5

3
2
1
2
.4

9
3

7
3
0

0
.0

2
6
5
3
.2

2
4
1
6
.5

m
o
d

0
1
1

>
2
2

2
9
3

>
1
6
.8

>
3
6
0
0
.0

>
3
2
1
4
.9

>
2
2

9
8
9

>
1
6
.7

>
3
6
0
0
.0

>
3
2
0
1
.2

>
2
1

1
4
7

>
1
6
.9

>
3
6
0
0
.0

>
3
2
3
4
.6

>
1
8

7
8
7

>
1
7
.0

>
3
6
0
0
.0

>
3
2
6
2
.4

m
o
d

g
lo

b
>

5
7
9

1
7
5

>
0
.7

>
3
6
0
0
.0

>
3
4
3
3
.6

>
5
6
0

3
7
3

>
0
.7

>
3
6
0
0
.0

>
3
4
4
0
.8

>
6
4
8

4
6
4

>
0
.7

>
3
6
0
0
.0

>
3
4
1
4
.0

>
2
5
0

6
4
7

>
0
.8

>
3
6
0
0
.0

>
3
4
4
5
.5

m
o
m

en
tu

m
1

>
1
3

—
>

3
6
0
0
.0

>
4
6
.0

>
5
0

—
>

3
6
0
0
.0

>
9
5
.9

>
5
0

—
>

3
6
0
0
.0

>
2
9
9
3
.1

>
2
3

—
>

3
6
0
0
.0

>
6
7
.6

m
o
m

en
tu

m
2

>
2
7
2

—
>

3
6
0
0
.0

>
1
4
1
1
.1

>
2
7
4

—
>

3
6
0
0
.0

>
1
8
3
6
.3

>
2
7
0

—
>

3
6
0
0
.0

>
2
2
4
4
.5

>
4

—
>

3
6
0
0
.0

>
3
5
9
3
.4

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

103



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

m
sc

9
8
-i

p
>

4
6
6
6

—
>

3
6
0
0
.0

>
1
6
5
1
.5

>
4

7
4
9

—
>

3
6
0
0
.0

>
1
6
3
5
.7

>
1

9
6
6

—
>

3
6
0
0
.0

>
3
2
0
2
.1

>
3

—
>

3
6
0
0
.0

>
3
5
9
2
.7

m
zz

v
1
1

>
1
0

7
6
9

—
>

3
6
0
0
.0

>
2
3
3
5
.9

>
1
0

6
8
4

—
>

3
6
0
0
.0

>
2
3
4
6
.8

>
9

0
9
7

—
>

3
6
0
0
.0

>
2
4
8
6
.4

>
6

5
6
5

—
>

3
6
0
0
.0

>
2
9
2
2
.3

m
zz

v
4
2
z

>
1
3

1
3
9

—
>

3
6
0
0
.0

>
3
0
2
1
.0

>
1
2

9
8
1

—
>

3
6
0
0
.0

>
3
0
2
5
.9

>
1
2

6
6
3

—
>

3
6
0
0
.0

>
2
9
8
2
.2

>
6

1
5
6

—
>

3
6
0
0
.0

>
3
2
2
3
.9

n
eo

s1
>

9
5

4
4
9

>
1
8
7
.9

>
3
6
0
0
.0

>
3
3
1
3
.5

>
9
9

3
7
3

>
1
8
7
.9

>
3
6
0
0
.0

>
3
3
0
1
.9

>
5
9

1
7
8

>
1
9
3
.8

>
3
6
0
0
.0

>
3
4
1
9
.9

>
7
8

8
3
3

>
1
9
0
.8

>
3
6
0
0
.0

>
3
3
5
8
.3

n
eo

s2
>

1
0
7

4
8
7

—
>

3
6
0
0
.0

>
3
2
4
3
.0

>
1
1
2

0
0
5

—
>

3
6
0
0
.0

>
3
2
3
3
.7

>
9
6

2
6
2

—
>

3
6
0
0
.0

>
3
2
4
4
.8

>
5
5

4
3
0

—
>

3
6
0
0
.0

>
3
4
2
2
.7

n
eo

s3
>

9
0

2
7
7

—
>

3
6
0
0
.0

>
3
2
0
2
.3

>
9
0

7
4
8

—
>

3
6
0
0
.0

>
3
1
9
8
.5

>
7
9

4
7
5

—
>

3
6
0
0
.0

>
3
2
4
3
.5

>
7
3

2
4
5

—
>

3
6
0
0
.0

>
3
2
8
9
.0

n
eo

s5
>

1
0
1
5

6
4
5

>
4
.3

>
3
6
0
0
.0

>
3
3
5
0
.2

>
1

0
5
9

6
4
8

>
4
.3

>
3
6
0
0
.0

>
3
3
3
9
.2

>
1

5
0
3

9
0
8

>
3
.9

>
3
6
0
0
.0

>
3
2
4
2
.8

>
1

4
3
5

4
6
8

>
3
.4

>
3
6
0
0
.0

>
3
2
8
2
.3

n
eo

s6
>

1
0

9
4
2

>
2
.4

>
3
6
0
0
.0

>
3
0
7
3
.9

>
1
0

1
4
4

>
1
.2

>
3
6
0
0
.0

>
3
1
4
4
.4

>
1
2

3
4
8

>
1
.2

>
3
6
0
0
.0

>
3
0
1
1
.5

>
6

3
4
8

>
2
.4

>
3
6
0
0
.0

>
3
3
0
7
.9

n
eo

s7
>

1
3
4

6
2
8

>
2
0
4
.5

>
3
6
0
0
.0

>
3
0
8
4
.5

>
1
3
0

0
5
6

>
2
0
8
.7

>
3
6
0
0
.0

>
3
1
1
1
.1

>
1
3
8

7
8
7

>
2
0
0
.5

>
3
6
0
0
.0

>
3
0
6
8
.5

>
6
1

6
1
1

>
2
0
1
.3

>
3
6
0
0
.0

>
3
3
1
4
.9

n
eo

s8
>

1
0

0
6
1

—
>

3
6
0
0
.0

>
2
8
4
3
.6

>
9

9
5
2

—
>

3
6
0
0
.0

>
2
8
3
7
.7

>
7

6
5
0

—
>

3
6
0
0
.0

>
3
0
1
0
.0

>
9
3
7

—
>

3
6
0
0
.0

>
3
5
1
1
.8

n
eo

s9
>

3
1
1
6

>
3
.3

>
3
6
0
0
.0

>
3
0
8
1
.0

>
3

4
6
3

>
3
.3

>
3
6
0
0
.0

>
3
0
2
7
.4

>
6
4
3

>
3
.3

>
3
6
0
0
.0

>
3
4
8
2
.9

>
2

4
1
5

>
3
.3

>
3
6
0
0
.0

>
2
9
8
3
.4

n
eo

s1
0

>
8

4
3
1

—
>

3
6
0
0
.0

>
2
7
1
1
.4

>
9

6
6
3

—
>

3
6
0
0
.0

>
2
7
4
3
.2

>
5

6
4
8

—
>

3
6
0
0
.0

>
2
9
3
7
.0

>
1

3
1
8

—
>

3
6
0
0
.0

>
3
4
7
8
.5

n
eo

s1
1

3
2

0
0
6

0
.0

2
7
1
3
.9

7
0
5
.3

3
2

0
0
6

0
.0

2
7
0
9
.1

7
0
4
.8

3
2

0
0
4

0
.0

2
7
3
7
.1

7
3
2
.2

3
0

5
9
0

0
.0

3
0
8
2
.0

1
2
0
9
.0

n
eo

s1
2

>
3
0

3
6
1

—
>

3
6
0
0
.0

>
3
7
7
4
.1

>
2
8

4
6
1

—
>

3
6
0
0
.0

>
3
7
8
3
.4

>
3
0

0
3
1

—
>

3
6
0
0
.0

>
3
7
7
6
.2

>
5

5
0
0

>
4
8
.7

>
3
6
0
0
.0

>
8
6
1
.9

n
eo

s1
3

>
1
7

5
0
3

>
7
2
.3

>
3
6
0
0
.0

>
2
8
5
3
.9

>
1
8

3
7
2

>
7
2
.3

>
3
6
0
0
.0

>
2
8
3
8
.1

>
1
5

9
7
1

>
7
2
.3

>
3
6
0
0
.0

>
2
9
0
9
.2

>
2
6
3

—
>

3
6
0
0
.0

>
3
5
8
7
.4

n
eo

s1
6

>
7
0
2

0
0
7

—
>

3
6
0
0
.0

>
2
9
3
9
.6

>
6
9
3

8
5
5

—
>

3
6
0
0
.0

>
2
9
5
1
.7

>
6
2
9

1
4
9

—
>

3
6
0
0
.0

>
3
0
1
7
.2

>
4
3
3

1
2
0

—
>

3
6
0
0
.0

>
3
1
5
9
.8

n
eo

s2
0

>
1
9
2

2
3
8

—
>

3
6
0
0
.0

>
2
6
5
4
.3

>
2
0
5

9
2
0

—
>

3
6
0
0
.0

>
2
7
4
7
.0

>
1
6
4

8
0
8

—
>

3
6
0
0
.0

>
2
8
3
4
.7

>
9

8
9
1

—
>

3
6
0
0
.0

>
3
5
5
4
.0

n
eo

s2
1

>
1
8
9

9
3
8

>
2
0
.2

>
3
6
0
0
.0

>
2
2
8
3
.4

>
1
8
8

6
6
0

>
2
0
.3

>
3
6
0
0
.0

>
2
2
8
5
.6

>
1
6
9

0
4
5

>
2
1
.4

>
3
6
0
0
.0

>
2
4
2
2
.1

>
1
1
7

2
7
4

>
2
5
.8

>
3
6
0
0
.0

>
2
7
4
4
.1

n
eo

s2
2

>
9
2

3
2
7

—
>

3
6
0
0
.0

>
3
2
1
8
.6

>
1
0
4

0
2
9

—
>

3
6
0
0
.0

>
3
2
9
5
.3

>
8
7

5
4
5

—
>

3
6
0
0
.0

>
3
3
3
5
.8

>
6
9

2
0
4

—
>

3
6
0
0
.0

>
3
3
7
4
.3

n
eo

s2
3

>
5
2
0

0
6
2

>
1
6
1
.6

>
3
6
0
0
.0

>
2
9
9
2
.9

>
4
0
0

0
9
0

>
1
6
1
.6

>
3
6
0
0
.0

>
3
1
2
8
.7

>
3
9
5

3
5
2

>
1
5
1
.2

>
3
6
0
0
.0

>
3
1
2
7
.8

>
1
7
0

4
6
4

>
1
7
5
.2

>
3
6
0
0
.0

>
3
3
4
1
.6

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

104



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

n
eo

s6
1
6
2
0
6

>
4
0
7

8
6
2

—
>

3
6
0
0
.0

>
2
9
6
4
.4

>
4
2
1

7
4
3

—
>

3
6
0
0
.0

>
2
9
5
5
.5

>
3
5
6

4
5
2

—
>

3
6
0
0
.0

>
3
0
4
3
.1

>
2
0
9

2
5
7

—
>

3
6
0
0
.0

>
3
2
4
9
.6

n
eo

s6
3
2
6
5
9

>
9
1
4

0
5
6

>
2
0
.3

>
3
6
0
0
.0

>
3
3
0
7
.4

>
9
2
8

2
1
6

>
2
0
.3

>
3
6
0
0
.0

>
3
3
0
1
.8

>
9
3
5

4
7
5

>
2
0
.3

>
3
6
0
0
.0

>
3
2
9
7
.6

>
1

0
9
6

2
9
9

>
2
0
.3

>
3
6
0
0
.0

>
3
2
6
0
.1

n
eo

s6
4
8
9
1
0

>
5
4
8

1
3
1

—
>

3
6
0
0
.0

>
2
9
8
9
.9

>
5
4
9

6
1
0

—
>

3
6
0
0
.0

>
3
0
0
4
.5

>
5
1
8

6
1
1

—
>

3
6
0
0
.0

>
3
0
4
5
.1

>
3
1
4

8
0
4

—
>

3
6
0
0
.0

>
3
2
6
5
.9

n
eo

s8
0
8
4
4
4

>
2
0

7
4
0

—
>

3
6
0
0
.0

>
3
1
4
5
.9

>
1
7

8
4
4

—
>

3
6
0
0
.0

>
3
0
6
0
.6

>
2
0

0
9
2

—
>

3
6
0
0
.0

>
3
1
5
0
.5

>
1

1
5
4

—
>

3
6
0
0
.0

>
3
5
7
6
.9

n
eo

s8
1
8
9
1
8

>
1
2
9

2
2
7

>
1
.2

>
3
6
0
0
.0

>
2
5
4
3
.9

>
1
2
7

1
6
7

>
1
.2

>
3
6
0
0
.0

>
2
5
6
1
.8

>
1
3
7

0
0
3

>
1
.2

>
3
6
0
0
.0

>
2
4
7
4
.4

>
4
5

9
7
9

>
1
.2

>
3
6
0
0
.0

>
3
2
6
2
.5

n
eo

s8
9
7
0
0
5

8
6

0
.0

6
8
2
.3

3
4
0
.2

8
6

0
.0

7
6
1
.1

3
7
3
.2

8
6

0
.0

1
2
0
8
.5

8
5
5
.8

4
9

0
.0

1
8
8
.9

3
2
.8

n
et

1
2

>
8

7
0
0

—
>

3
6
0
0
.0

>
1
4
3
6
.0

>
8

5
6
2

—
>

3
6
0
0
.0

>
1
4
3
6
.2

>
8

1
8
1

—
>

3
6
0
0
.0

>
1
5
7
1
.5

>
5

8
4
3

—
>

3
6
0
0
.0

>
2
1
9
4
.1

n
o
sw

o
t

>
1

6
5
2

7
2
1

—
>

3
6
0
0
.0

>
3
2
8
7
.7

>
1

1
3
1

6
7
8

—
>

3
6
0
0
.0

>
3
3
8
8
.1

>
1

8
1
1

0
3
7

—
>

3
6
0
0
.0

>
3
2
6
5
.1

>
2
8
9

6
6
8

—
>

3
6
0
0
.0

>
3
4
7
2
.3

n
s1

6
4
8
1
8
4

>
6
8

9
8
9

>
4
.1

>
3
6
0
0
.0

>
1
6
3
2
.0

>
6
6

2
5
3

>
4
.3

>
3
6
0
0
.0

>
1
6
2
9
.1

>
8
0

7
6
6

>
4
.0

>
3
6
0
0
.0

>
1
2
9
5
.6

>
5
1

1
6
1

>
4
.1

>
3
6
0
0
.0

>
2
2
7
8
.4

n
s1

6
8
8
3
4
7

>
6
5

2
3
9

—
>

3
6
0
0
.0

>
3
1
2
9
.0

>
6
3

2
3
5

—
>

3
6
0
0
.0

>
3
1
4
2
.3

>
2
8

0
0
5

—
>

3
6
0
0
.0

>
3
3
1
8
.7

>
2
3

4
1
3

—
>

3
6
0
0
.0

>
3
4
4
1
.6

n
s1

6
7
1
0
6
6

>
4
8

6
2
0

>
1
0
7
.4

>
3
6
0
0
.0

>
3
4
4
7
.2

>
4
2

7
9
6

>
1
0
7
.4

>
3
6
0
0
.0

>
3
4
2
6
.1

>
5
9

3
7
0

>
1
0
7
.4

>
3
6
0
0
.0

>
3
4
1
3
.1

>
5
9

2
1
7

>
1
0
7
.1

>
3
6
0
0
.0

>
3
4
0
9
.8

n
s1

6
9
2
8
5
5

>
4
9

8
5
1

—
>

3
6
0
0
.0

>
2
9
3
3
.0

>
4
6

8
7
2

—
>

3
6
0
0
.0

>
2
9
6
4
.6

>
2
8

4
8
2

—
>

3
6
0
0
.0

>
3
3
4
4
.9

>
5

9
0
3

—
>

3
6
0
0
.0

>
3
5
5
1
.8

n
sr

a
n

d
-i

p
x

>
2
3

8
8
5

>
3
8
0
.8

>
3
6
0
0
.0

>
3
4
4
9
.4

>
2
3

9
6
6

>
3
8
0
.8

>
3
6
0
0
.0

>
3
4
5
1
.0

>
2
4

4
0
6

>
3
8
0
.8

>
3
6
0
0
.0

>
3
4
4
9
.5

>
1
0

3
4
0

>
3
8
1
.1

>
3
6
0
0
.0

>
3
5
3
4
.6

n
u

g
0
8

1
4
3

0
.0

1
8
.9

4
.3

1
4
3

0
.0

1
8
.6

4
.0

1
4
3

0
.0

2
0
.6

6
.0

1
4
3

0
.0

4
2
.7

2
8
.7

n
w

0
4

>
1

5
0
0

>
3
.1

>
3
6
0
0
.0

>
3
4
5
1
.6

>
1

5
8
8

>
3
.1

>
3
6
0
0
.0

>
3
4
4
5
.2

—
—

—
—

>
3

2
3
0

>
2
.6

>
3
6
0
0
.0

>
3
2
6
9
.6

o
p

t1
2
1
7

>
3
7
9

7
3
5

—
>

3
6
0
0
.0

>
3
4
5
2
.4

>
3
7
8

5
8
6

—
>

3
6
0
0
.0

>
3
4
5
3
.7

>
4
9
1

1
3
5

—
>

3
6
0
0
.0

>
3
4
1
1
.3

>
8
9
5

5
3
5

—
>

3
6
0
0
.0

>
3
2
1
2
.0

p
0
0
3
3

2
6
7
0

0
.0

1
.0

1
.0

2
6
7
0

0
.0

1
.0

1
.0

2
6
7
0

0
.0

1
.1

1
.0

2
6
7
0

0
.0

1
.3

1
.1

p
0
2
0
1

5
7
8
8

0
.0

1
9
.5

1
7
.0

5
7
8
0

0
.0

1
7
.6

1
5
.2

5
7
8
0

0
.0

1
9
.6

1
7
.1

5
7
8
0

0
.0

3
0
.7

2
8
.2

p
0
2
8
2

>
1

1
1
1

0
1
2

—
>

3
6
0
0
.0

>
3
4
0
5
.9

>
1

1
2
8

3
6
8

—
>

3
6
0
0
.0

>
3
3
9
9
.1

>
9
3
8

2
8
2

—
>

3
6
0
0
.0

>
3
4
3
5
.8

>
2
4
1

6
7
1

—
>

3
6
0
0
.0

>
3
4
8
7
.1

p
0
5
4
8

>
6
4
2

6
4
9

—
>

3
6
0
0
.0

>
3
4
6
7
.4

>
6
8
8

9
8
4

—
>

3
6
0
0
.0

>
3
4
5
6
.7

>
6
0
7

9
9
0

—
>

3
6
0
0
.0

>
3
4
7
3
.9

>
3
2
2

0
7
1

—
>

3
6
0
0
.0

>
3
4
5
3
.5

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

105



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

p
2
7
5
6

>
1
8
9

6
0
1

—
>

3
6
0
0
.0

>
3
3
9
4
.3

>
2
0
0

1
5
8

—
>

3
6
0
0
.0

>
3
3
8
3
.3

>
1
3
5

9
8
2

—
>

3
6
0
0
.0

>
3
3
7
6
.3

>
1
7
7

3
0
0

—
>

3
6
0
0
.0

>
3
3
4
7
.6

p
k
1

>
9
8
1

8
0
0

>
3
5
.6

>
3
6
0
0
.0

>
3
4
0
8
.3

>
8
3
0

1
9
6

>
2
2
1
.0

>
3
6
0
0
.0

>
3
4
4
2
.3

>
1

7
6
8

5
9
6

>
1
.1

>
3
6
0
0
.0

>
3
2
4
5
.1

>
2
7
1

4
8
0

>
3
2
5
.3

>
3
6
0
0
.0

>
3
4
9
4
.5

p
p

0
8
a

>
1

8
7
6

3
3
4

>
1
0
4
.0

>
3
6
0
0
.0

>
3
3
0
5
.9

>
1

9
0
7

6
5
3

>
1
0
3
.9

>
3
6
0
0
.0

>
3
2
9
7
.1

>
1

7
6
7

1
4
2

>
1
0
4
.4

>
3
6
0
0
.0

>
3
3
2
3
.2

>
1

8
8
1

8
9
8

>
1
0
4
.0

>
3
6
0
0
.0

>
3
2
9
8
.6

p
p

0
8
a
C

U
T

S
>

9
1
9

9
6
9

>
5
1
.4

>
3
6
0
0
.0

>
3
2
6
4
.4

>
9
4
6

9
0
2

>
5
1
.4

>
3
6
0
0
.0

>
3
2
5
4
.8

>
1

0
9
1

9
4
0

>
5
1
.1

>
3
6
0
0
.0

>
3
2
0
3
.7

>
2
7
6

0
9
6

>
5
3
.8

>
3
6
0
0
.0

>
3
4
3
4
.9

p
ro

d
1

>
1

2
7
5

0
4
2

—
>

3
6
0
0
.0

>
3
3
7
1
.8

>
1

2
6
9

3
2
7

—
>

3
6
0
0
.0

>
3
3
7
6
.4

>
1

2
7
7

2
8
4

—
>

3
6
0
0
.0

>
3
3
6
6
.9

>
2
0
2

9
2
6

—
>

3
6
0
0
.0

>
3
5
0
2
.0

p
ro

d
2

>
7
4
4

4
6
1

—
>

3
6
0
0
.0

>
3
4
3
3
.5

>
7
3
6

8
0
6

—
>

3
6
0
0
.0

>
3
4
3
3
.9

>
7
4
4

9
4
2

—
>

3
6
0
0
.0

>
3
4
3
5
.2

>
1
3
9

1
5
5

—
>

3
6
0
0
.0

>
3
5
2
0
.4

p
ro

tf
o
ld

>
3

4
5
0

—
>

3
6
0
0
.0

>
2
2
7
.2

>
3

4
0
7

—
>

3
6
0
0
.0

>
2
5
5
.6

>
7

5
4
2

>
8
4
.2

>
3
6
0
0
.0

>
2
2
0
9
.2

>
6
2
3

—
>

3
6
0
0
.0

>
2
9
0
7
.6

q
a
p

1
0

2
4
6

0
.0

5
7
3
.3

2
5
.6

2
4
6

0
.0

5
7
2
.1

2
3
.9

2
4
6

0
.0

5
7
6
.6

2
7
.9

2
4
4

0
.0

2
6
3
9
.2

2
1
2
3
.9

q
iu

>
1
9
1

2
1
8

>
9
0
.1

>
3
6
0
0
.0

>
2
3
6
9
.0

>
1
9
3

7
3
2

>
9
0
.0

>
3
6
0
0
.0

>
2
3
6
1
.1

>
2
0
5

6
2
5

>
8
9
.9

>
3
6
0
0
.0

>
2
2
8
2
.9

>
1

7
0
0

—
>

3
6
0
0
.0

>
3
5
8
6
.8

q
n

et
1

>
1
8
3

9
6
0

>
8
6
.0

>
3
6
0
0
.0

>
3
3
5
8
.6

>
1
7
3

6
1
3

>
8
6
.1

>
3
6
0
0
.0

>
3
3
5
6
.4

>
1
8
4

9
5
1

>
8
6
.0

>
3
6
0
0
.0

>
3
3
4
5
.3

>
1
2
2

3
2
3

>
8
6
.3

>
3
6
0
0
.0

>
3
3
6
9
.9

q
n

et
1

o
>

2
1
3

9
9
9

>
3
.9

>
3
6
0
0
.0

>
3
3
0
8
.6

>
2
0
1

5
0
6

>
4
.1

>
3
6
0
0
.0

>
3
3
3
9
.5

>
1
9
0

9
6
4

>
5
.2

>
3
6
0
0
.0

>
3
3
4
1
.1

>
1
4
0

8
5
4

>
1
4
.2

>
3
6
0
0
.0

>
3
3
4
6
.6

ra
n

8
x
3
2

>
6
9
8

2
6
5

>
5
.4

>
3
6
0
0
.0

>
3
4
2
7
.8

>
8
0
0

1
8
6

>
5
.4

>
3
6
0
0
.0

>
3
4
0
1
.5

>
6
5
9

1
0
2

>
5
.5

>
3
6
0
0
.0

>
3
4
3
8
.6

>
3
1
0

2
0
9

>
6
.1

>
3
6
0
0
.0

>
3
4
3
5
.9

ra
n

1
0
x
2
6

>
6
8
1

2
9
0

>
6
.3

>
3
6
0
0
.0

>
3
4
1
8
.3

>
7
8
9

3
2
9

>
6
.2

>
3
6
0
0
.0

>
3
3
8
5
.5

>
6
7
0

4
3
4

>
6
.3

>
3
6
0
0
.0

>
3
4
1
8
.2

>
2
3
4

0
0
1

>
8
.4

>
3
6
0
0
.0

>
3
3
6
5
.5

ra
n

1
2
x
2
1

>
7
1
9

2
1
9

>
6
.9

>
3
6
0
0
.0

>
3
4
3
2
.1

>
8
1
1

9
2
3

>
6
.8

>
3
6
0
0
.0

>
3
4
1
1
.0

>
6
8
7

4
4
6

>
6
.9

>
3
6
0
0
.0

>
3
4
4
1
.2

>
2
6
8

5
0
5

>
1
1
.2

>
3
6
0
0
.0

>
3
4
4
9
.9

ra
n

1
3
x
1
3

>
1

1
0
2

6
1
4

>
9
.1

>
3
6
0
0
.0

>
3
3
9
2
.4

>
1

2
5
2

5
4
6

>
8
.3

>
3
6
0
0
.0

>
3
3
6
2
.6

>
1

0
5
5

9
6
1

>
9
.1

>
3
6
0
0
.0

>
3
4
0
0
.6

>
1

1
1
3

8
0
1

>
9
.1

>
3
6
0
0
.0

>
3
3
5
7
.2

re
n
ta

ca
r

1
6
5

0
.0

7
0
.8

6
3
.6

1
7
9

0
.0

1
6
1
.1

1
5
3
.8

1
6
5

0
.0

6
6
.6

5
9
.5

1
5
6

0
.0

4
4
.0

3
6
.9

rg
n

1
0

2
4
9

0
.0

3
0
.0

2
0
.2

1
0

2
4
9

0
.0

2
7
.0

1
8
.6

1
0

2
4
9

0
.0

3
3
.8

2
5
.3

1
0

2
1
9

0
.0

9
9
.5

9
5
.5

ro
ll
3
0
0
0

>
8
5

1
5
3

—
>

3
6
0
0
.0

>
3
0
3
7
.6

>
8
6

6
2
0

—
>

3
6
0
0
.0

>
3
0
2
6
.1

>
8
6

4
5
0

—
>

3
6
0
0
.0

>
3
0
2
5
.7

>
3
8

8
4
1

—
>

3
6
0
0
.0

>
3
3
3
0
.6

ro
u

t
>

3
8
4

7
3
9

>
3
3
.3

>
3
6
0
0
.0

>
3
2
4
8
.6

>
3
6
7

3
6
3

>
3
3
.3

>
3
6
0
0
.0

>
3
2
6
2
.3

>
4
2
2

6
8
0

>
3
3
.3

>
3
6
0
0
.0

>
3
2
1
3
.5

>
2
4
8

5
6
2

>
3
3
.3

>
3
6
0
0
.0

>
3
3
2
0
.9

se
t1

ch
>

4
5
2

3
2
3

—
>

3
6
0
0
.0

>
3
4
8
0
.9

>
4
7
7

2
2
9

—
>

3
6
0
0
.0

>
3
4
7
5
.1

>
4
7
2

4
2
1

—
>

3
6
0
0
.0

>
3
4
7
3
.6

>
1
8
1

0
9
5

—
>

3
6
0
0
.0

>
3
4
7
2
.9

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

106



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

se
y
m

o
u

r
>

4
1

0
2
9

—
>

3
6
0
0
.0

>
1
9
4
1
.1

>
4
4

7
7
4

—
>

3
6
0
0
.0

>
1
8
4
9
.1

>
3
6

0
0
2

—
>

3
6
0
0
.0

>
2
1
8
2
.0

>
1
2

6
4
7

—
>

3
6
0
0
.0

>
3
0
7
5
.2

se
y
m

o
u

r1
>

3
3

2
6
9

>
2
.1

>
3
6
0
0
.0

>
1
4
6
8
.1

>
3
4

8
5
0

>
2
.1

>
3
6
0
0
.0

>
1
3
6
7
.8

>
2
9

2
2
8

>
2
.1

>
3
6
0
0
.0

>
1
7
7
5
.5

>
1
3

2
5
2

>
2
.2

>
3
6
0
0
.0

>
2
9
7
2
.0

sp
9
7
a
r

>
4
5
1

—
>

3
6
0
0
.0

>
1
2
6
2
.7

>
5
7
8

—
>

3
6
0
0
.0

>
1
4
8
4
.6

>
5
4
4

—
>

3
6
0
0
.0

>
1
5
9
4
.2

>
4
7
9

—
>

3
6
0
0
.0

>
1
8
7
3
.9

st
ei

n
2
7

4
0
3
1

0
.0

2
.8

2
.0

4
0
3
1

0
.0

2
.7

1
.8

4
0
3
1

0
.0

3
.1

2
.2

4
0
3
1

0
.0

4
.7

4
.0

st
ei

n
4
5

5
8

3
2
9

0
.0

1
0
2
.0

7
2
.3

5
8

3
2
9

0
.0

9
7
.8

6
8
.2

5
8

3
3
3

0
.0

1
0
7
.5

7
9
.1

5
8

3
1
2

0
.0

1
6
6
.3

1
4
1
.7

sw
a
th

>
2
0
1

4
7
8

—
>

3
6
0
0
.0

>
4
9
0
9
.2

>
1
8
1

9
6
9

—
>

3
6
0
0
.0

>
4
8
9
8
.0

>
1
9
9

3
9
6

—
>

3
6
0
0
.0

>
4
9
0
7
.1

>
3
2

3
9
8

>
1
0
6
.4

>
3
6
0
0
.0

>
3
4
4
1
.6

sw
a
th

1
>

7
2

0
6
8

—
>

3
6
0
0
.0

>
3
7
1
7
.9

>
7
1

8
9
7

—
>

3
6
0
0
.0

>
3
7
1
8
.2

>
7
0

8
6
2

—
>

3
6
0
0
.0

>
3
7
1
7
.7

>
3
2

7
6
2

>
9
.7

>
3
6
0
0
.0

>
3
4
5
3
.4

sw
a
th

2
>

6
7

8
9
9

—
>

3
6
0
0
.0

>
3
6
7
2
.6

>
6
3

8
0
8

—
>

3
6
0
0
.0

>
3
6
7
2
.7

>
6
8

4
8
3

—
>

3
6
0
0
.0

>
3
6
7
6
.9

>
3
3

1
9
7

>
1
2
.2

>
3
6
0
0
.0

>
3
4
4
7
.3

sw
a
th

3
>

7
3

2
0
6

—
>

3
6
0
0
.0

>
3
7
1
4
.8

>
7
3

0
4
9

—
>

3
6
0
0
.0

>
3
7
1
1
.1

>
7
2

3
5
7

—
>

3
6
0
0
.0

>
3
7
1
1
.8

>
3
3

3
6
3

>
1
5
.6

>
3
6
0
0
.0

>
3
4
4
7
.5

t1
7
1
7

>
7
2
2

—
>

3
6
0
0
.0

>
2
2
0
6
.0

>
7
0
9

—
>

3
6
0
0
.0

>
2
2
0
0
.4

>
5
1
1

—
>

3
6
0
0
.0

>
2
5
9
2
.4

>
6
3
3

—
>

3
6
0
0
.0

>
3
3
1
4
.7

ti
m

ta
b

1
>

1
4
9
9

4
0
2

—
>

3
6
0
0
.0

>
3
3
3
0
.7

>
1

5
2
4

4
8
6

—
>

3
6
0
0
.0

>
3
3
3
1
.6

>
1

1
2
5

3
4
3

—
>

3
6
0
0
.0

>
3
4
0
1
.3

>
3
2
3

8
3
7

—
>

3
6
0
0
.0

>
3
4
4
7
.8

ti
m

ta
b

2
>

8
9
0

3
1
5

—
>

3
6
0
0
.0

>
3
3
7
8
.1

>
8
9
6

6
7
8

—
>

3
6
0
0
.0

>
3
3
7
7
.5

>
6
6
2

8
2
5

—
>

3
6
0
0
.0

>
3
4
3
3
.6

>
2
5
1

4
8
5

—
>

3
6
0
0
.0

>
3
4
4
0
.0

tr
1
2
-3

0
>

3
3
3

7
2
7

—
>

3
6
0
0
.0

>
3
4
8
2
.7

>
3
5
4

3
6
3

—
>

3
6
0
0
.0

>
3
4
8
0
.5

>
3
4
3

2
1
4

—
>

3
6
0
0
.0

>
3
4
9
2
.0

>
1
4
2

7
7
3

—
>

3
6
0
0
.0

>
3
4
7
9
.7

v
p

m
1

>
1

1
5
0

0
6
7

>
1
1
.6

>
3
6
0
0
.0

>
3
3
8
6
.4

>
1

3
0
2

0
8
3

>
1
1
.3

>
3
6
0
0
.0

>
3
3
5
5
.0

>
1

0
4
1

3
6
2

>
1
1
.8

>
3
6
0
0
.0

>
3
4
0
5
.5

>
1

3
9
4

4
4
4

>
1
1
.1

>
3
6
0
0
.0

>
3
3
2
3
.8

v
p

m
2

>
9
3
1

5
4
1

>
2
8
.2

>
3
6
0
0
.0

>
3
3
8
6
.0

>
9
7
3

7
3
1

>
2
8
.1

>
3
6
0
0
.0

>
3
3
7
2
.5

>
9
2
9

5
5
6

>
2
8
.3

>
3
6
0
0
.0

>
3
3
8
4
.1

>
7
4
9

5
2
4

>
2
9
.1

>
3
6
0
0
.0

>
3
3
7
4
.8

a
ll

(1
5
3
)

g
eo

m
.

m
ea

n
5
2

0
6
9

—
1
6
9
2
.8

1
1
8
7
.7

5
2

8
6
6

—
1
7
1
5
.5

1
2
2
7
.8

5
2

2
1
0

—
1
7
1
5
.5

1
3
0
8
.8

2
3

9
1
3

—
1
7
7
6
.4

1
4
9
6
.8

sh
.

g
eo

m
.

m
ea

n
5
5

6
9
1

—
1
8
2
2
.1

1
3
1
1
.1

5
6

1
2
6

—
1
8
4
7

1
3
5
5
.8

5
5

5
1
2

—
1
8
3
8

1
4
3
0
.1

2
7

2
9
6

—
1
9
0
6
.6

1
6
4
2
.1

a
ri

th
m

.
m

ea
n

3
9
1

2
2
9

—
2
9
1
9
.4

2
3
7
5
.7

3
9
7

5
5
5

—
2
9
2
4
.1

2
4
0
4
.3

4
3
5

2
8
0

—
2
9
2
5
.7

2
4
4
7
.2

1
7
6

6
5
5

—
2
9
7
6
.1

2
6
9
0
.3

co
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

107



T
ab

le
18

:
D

et
ai

le
d

R
es

u
lt

s
on

E
n
ti

re
P

ro
b

le
m

S
et

(C
on

ti
n
u

ed
)

S
:A

ct
iv

e;
P

:O
p

t
S

:A
ct

iv
e;

P
:A

rb
it

ra
ry

S
:A

ll
;P

:O
p

t
E

x
a
ct

L
P

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

N
o
d
es

G
a
p

T
im

e
D

B
T

N
o
d

es
G

a
p

T
im

e
D

B
T

a
ll

o
p

ti
m

a
l

(3
0
)

g
eo

m
.

m
ea

n
4

4
4
7

—
9
1

5
4
.6

4
4
5
9

—
9
7
.7

5
9
.6

4
4
4
6

—
9
7
.2

5
9
.5

3
5
9
0

—
1
1
7
.5

8
5
.4

sh
.

g
eo

m
.

m
ea

n
5

5
5
6

—
1
2
4
.5

8
1
.3

5
5
6
5

—
1
3
4
.5

9
0

5
5
5
5

—
1
3
0
.3

8
5
.3

4
8
0
8

—
1
6
0
.5

1
2
8
.1

a
ri

th
m

.
m

ea
n

5
9

6
1
1

—
4
4
5
.9

3
0
1
.9

5
9

6
1
2

—
4
6
9
.5

3
2
1
.4

5
9

6
0
7

—
4
9
1
.2

3
4
7

5
9

3
1
6

—
6
4
6
.8

5
2
3
.1

a
ll

ti
m

eo
u

t-
so

l
(4

6
)

g
eo

m
.

m
ea

n
1
6
6

1
2
7

1
1
.6

—
3
0
0
6
.5

1
6
9

1
8
2

1
2

—
3
0
5
1
.9

1
8
2

1
8
7

0
—

2
9
6
6

1
0
4

9
2
1

1
4
.3

—
3
2
4
3
.1

sh
.

g
eo

m
.

m
ea

n
1
6
6

5
3
1

1
9
.7

—
3
0
0
6
.8

1
6
9

6
0
7

2
0
.2

—
3
0
5
2
.1

1
8
2

9
8
4

1
8
.5

—
2
9
6
6
.4

1
0
5

8
4
0

2
2
.7

—
3
2
4
3
.1

a
ri

th
m

.
m

ea
n

4
1
3

8
1
6

6
3
.1

—
3
0
6
5
.5

4
4
2

3
5
1

6
4
.2

—
3
1
0
3

4
8
0

7
0
5

6
4
.4

—
3
0
5
2
.3

3
3
1

3
7
1

7
3
.2

—
3
2
5
8
.1

108



 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  10  100

N
um

be
r 

of
 in

st
an

ce
s

Number of times slower than fastest

S:Active;P:Opt
S:Active;P:Arbitrary

S:All;P:Opt
Exact LP

Figure 6: Overall Computation Time

All of the tests given so far have compared the methods on the entire problem set.

However, for problems where all of the primal variables have reasonable upper and lower

bounds the primal-bound-shift method described in Section 4.2.1 is expected to be the best

dual bounding method. Therefore, we now focus on the subset of our problem instances

that are missing some primal bounds. Figure 7 give a performance profile comparing the

project-and-shift method with settings S:Active;P:Opt against the exact LP solver on this

set of 87 problems. We see that there is an even more clear differentiation of the speed here.

It is considerably faster on most of the instances and is able to solve several more problems

within the one hour time limit.

The five problems where the conditions are not met for project and shift are: swath,

swath1, swath2, swath3 and neos12. We note that four out of five of these problem

instances are coming from the same type of structure. This indicates that the conditions

that the dual constraint matrix has full row rank and that there are no implied equalities
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Figure 7: Overall Computation Time on Problems with Missing Bounds

is often satisfied on real-world problems.

4.5 Conclusions

We have described a new method for computing dual bounds. This method does not rely

on primal variable bounds to compute the bound. It requires the exact solution to an LP

at the root node and an exact LU factorization, but once this information is computed the

LP bounds at each node of the branch-and-bound tree can be computed quickly.

One possible future direction would be looking at some combinations of the project-

and-shift method and the methods of Althaus and Dumitriu [6]. First, the auxiliary LP to

identify the polyhedral structure given in section 4.3.3 could be used in place of the iterative

algorithm used in [6] to determine implied equalities of the system; this observation may

speed up their method. It is also possible that the use of interval methods, as Althaus and

Dumitriu have done, could be applied to the project-and-shift method to eliminate some of

the exact computation and further increase the speed.
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As a final remark, we note that building a code that dynamically chooses between

project-and-shift, primal-bound-shift and other dual bounding strategies is faster than any

of the single methods on their own. A computational study describing this type of combi-

nation can be found in [42].
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CHAPTER V

FUTURE CHALLENGES

This chapter outlines future research directions and open questions related to exact math-

ematical programming.

5.1 Cutting Planes for Exact MIP

An important next step of developing a fast exact rational MIP solver is determining how

cutting planes should be derived and managed. Cutting planes are an extremely useful tool

for solving MIP problems. Commercial solvers typically use cutting planes together with

branch-and-bound; disabling cuts can significantly slow down solution times.

Within a hybrid symbolic-numeric MIP solver it is not clear how cuts should be handled,

other than the necessary requirement that all cuts must be valid. In the hybrid approach

for exact MIP, much of the computational work is performed on a floating-point relaxation

or approximation of the problem with the results verified or corrected using safe or symbolic

computation. One possible approach for using cutting planes in this model is to generate

cuts using exact rational arithmetic, adding them directly to the exact representation of

the problem. Much of the computation associated with branch-and-bound would still be

performed on the numerical approximations or relaxations of the MIP, including the added

cuts. The disadvantage of this strategy is that deriving cuts using exact arithmetic may

be very slow. For example, it may involve computing rows of a simplex tableau in rational

arithmetic.

Some authors have studied ways to safely compute valid cuts using floating-point arith-

metic. This approach is discussed by Neumaier and Shcherbina [118], and Cook et al. [40]

perform a computational study of safe GMI cuts. The safe floating-point approach allows

for cuts to be computed very quickly and avoids the possibility of incorrect rounding causing

invalid cuts. However, within the hybrid framework it is not clear how these cuts should

be added back to the exact description of the problem. Should they be added to the exact
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description of the problem exactly as they were generated, or should the cut coefficients be

transformed to other rational numbers?

A safe rounding procedure may produce cuts with numerically complicated coefficients

(involving rational numbers with large bitsize). Cuts with complicated coefficients could

cause difficultly whenever attempts are made to solve an exact LP. It is possible that cuts

derived exactly using rational arithmetic might have special structure (i.e. integrality, half

integrality or small rational representation) that could be destroyed in a safe rounding

procedure. As we have seen in Chapters 2 and 3, the difficulty of computing basic LP

solutions exactly is directly related to the bitsize of the final solution, so avoiding LPs with

unnecessarily complicated coefficients is important.

It may be helpful to post-process cuts computed using a safe floating-point rounding

procedure to have a simpler representation. This could be accomplished by scaling the

inequalities and safely rounding coefficients up or down to give integer coefficients. The

coefficients could also be safely outer approximated by continued fraction convergents with

small denominators. This type of operation would weaken a cut by a small amount, but

give it a less complicated rational representation.

We also remark that an exact separation routine may be able to derive the exact rep-

resentation for facets of a problem. A safe floating-point rounding procedure could slightly

perturb the inequality to no longer exactly represent a facet. It is not clear what effect this

could have on the convergence behavior of the cutting-plane method.

There are several other questions related to which cuts should be separated and added

that are not specific to the case of exact computation. For example, in recent studies such

as those of Zanette et al. [145, 146], other desirable properties of cuts are discussed. These

authors improve the behavior of a pure-cutting plane method by using the lexicographical

dual simplex method which helps avoid generating many nearly parallel cuts. They also

try to generate cuts with relatively small integer coefficients. These choices maintain LP

basis matrices with smaller condition number and determinant, which helps avoid numerical

problems.
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Within an exact MIP solver it may be necessary to find a balance between many conflict-

ing desirable characteristics. We would predict that the safe floating-point approach, such

as that of Cook et al. [40], will be a successful tool for exact MIP, but questions regarding

how these cuts should be mapped into the exact representation of the problem should be

addressed. Implementation and experimentation are necessary to answer these questions,

and could also lead to more general conclusions about the computational behavior of cutting

planes.

We would predict that computing all cuts using exact arithmetic will likely lead to

slower overall performance, but there are some situations where exact separation of cuts

would be useful even if it is slower. Several recent computational studies [19, 46, 68] have

had the goal of optimizing over the closure of various classes of cuts. These studies focused

specifically on measuring the strength of specific cuts, not on increasing the speed of the

MIP solver. The use of exact methods, or safe floating-point methods, in this type of study

would allow stronger conclusions to be drawn. We would not make any strong prediction

that the results of these studies were significantly affected by numerical mistakes. However,

with the uncertainty of numerical computations used to derive cutting planes there is always

some possibility of error.

5.1.1 Exact Separation of Two-Row Lattice-Free Cuts

The Gomory mixed-integer cut is one of the most successfully used cutting planes for MIP.

Gomory developed a procedure to derive a violated cutting plane from a single row of a

simplex tableau of a fractional solution. Recently, attention has focused on deriving cutting

planes from two-row relaxations. There is hope that by using two-row relaxations new cuts

may be derived that can build on the success of the single-row GMI cut.

Andersen et al. [7] characterize the facet-defining inequalities of the two row mixed-

integer system and show that they can be described as split cuts [41] or intersection cuts

[16] based on lattice-free triangles and quadrilaterals in R2. A lattice-free body contains no

integer points in its interior. Detailed polyhedral studies by Basu et al. [21], Borozan and

Cornuéjols [25], Cornuéjols and Margot [43], Dey and Wolsey [53, 54], and Zambelli [144]

114



have further developed the theory related to two-row mixed-integer systems.

Fractional point with 3 rays Integer hulls

Identification of triangle Maximal lattice-free triangle

Figure 8: Generating a Maximal Lattice-Free Triangle

The separation problem for computing lattice-free triangle cuts involves identifying a

maximal lattice-free triangle containing a specific fractional point f in its interior. The

vertices of the triangle should lie on three of several open rays in R2 originating at f . A

related separation problem is associated with separating quadrilateral cuts. Dey et al.[52]

observed that all cuts coming from maximal lattice-free triangles can be enumerated by

generating the integer hulls of the three convex cones formed by triples of rays r1, r2, r3.

Once the integer hulls of these cones are computed for a specific triple of rays, the unique

maximal triangle corresponding to those rays can be computed geometrically, Figure 8

illustrates this procedure.
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One component of this separation routine is to compute integer hulls of cones in R2

defined by two inequalities. A polynomial-time algorithm for this problem was developed

by Harvey [81] as part of a procedure for computing integer hulls of general two-dimensional

polyhedra. Harvey’s algorithm begins by performing a unimodular transformation so that

one inequality becomes vertical. The inequalities are then shifted so that the first integer

point on the non-vertical inequality is the origin. The transformed region is of the form:

My − x ≤ 0

x ≤ D

After this transformation, the origin is an extreme point of the integer hull. To discover the

next extreme point of the integer hull closest to the origin it is necessary to determine the

integer point (x, y) where y/x is the best under approximation of M with 1 ≤ x ≤ D. This

problem is equivalent to finding the odd principal convergent of the rational number M with

denominator closest to, but no larger than, D. The odd principal convergents of M can be

efficiently computed by applying the Extended Euclidean Algorithm to the numerator and

denominator of M . After the next extreme point is identified, the inequalities are shifted

to position this extreme point at the origin. The process is repeated until D is shifted to

zero, identifying the final extreme point of the integer hull. The output of the EEA can be

reused at each iteration, so it is only applied once.

x

y

x

y

1

2

3 4

Two-dimensional cone Integer hull

Figure 9: Integer Hull of the Transformed Cone

Figure 9 illustrates the result of the algorithm on a problem whose integer hull has four
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extreme points. The extreme points are labeled in the order which the algorithm would

identify them. We have implemented Harvey’s algorithm for cones to produce the exact

rational description of the integer hulls, using the GMP library [72] for multiple-precision

arithmetic. Since this algorithm is based on the Euclidean Algorithm, the core computation

is similar to the methods used for the rational reconstruction algorithms associated with

Theorems 2.2.1 and 2.2.2.

A number of recent computational studies of Basu et al. [20] and Dey et al. [52] have

focused on evaluating the effectiveness of these types of cuts computationally. In both

cases the authors separate cuts in a heuristic manner, possibly weakening their conclusions.

Initial exact computational tests have been performed in collaboration with K. Chen, W.

Cook and R. Fukasawa. Detailed algorithmic and computational results are expected to

appear in the PhD Thesis of K. Chen.

5.2 Irrational and Nonlinear Problems

LP, IP and MIP problems with rational input data are guaranteed to have optimal solutions

with a rational description. The techniques for computing exact solutions that have been

developed and used in this thesis have heavily exploited the properties of the rational

numbers. Other classes of problems, involving irrational input data or nonlinear constraints,

may require computation over the real numbers in order to find exact solutions. Some of

the LPs arising in the proof of the Kepler Conjecture involve irrational numbers [120].

Computation over the real numbers is significantly more difficult than over the rational

numbers; even storing the symbolic representations of irrationals poses a challenge. Because

of these challenges we would imagine that interval methods, such as those discussed in

Section 1.2.4, may be a good way to handle these types of problems.

Methods for computing rigorous bounds on LP/MIP objective values have been de-

veloped by Jansson [87], Keil et al. [93] and Althaus and Dumitriu [6]. Techniques for

computing rigorous bounds by using interval methods are applicable to real numbers with-

out any extra challenge, because numbers are not stored exactly. Several studies have

also considered techniques for generating safe bounds for convex optimization problems.
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Borradaile and Hentenryck [26] study safe methods for computing linear under and over

estimators of functions for applications in global optimization. Jansson [88] describes fast

methods for computing rigorous objective bounds for convex optimization problems, some

of which can be computed quickly by post-processing a solution returned by a numeri-

cal solver. Jansson et al. [89] consider methods for computing rigorous error bounds on

semidefinite programming problems and LPs.

5.3 Applications

In this section we discuss two mathematical applications for exact integer programming.

We describe how integer programming models could be used as a tool for proving bounds

for Ramsey numbers or for factoring integers.

The Ramsey Number R(n,m) is defined to be the smallest number r for which every

graph on r nodes contains either a clique of size n or a stable set of size m [56]. The

question of computing low Ramsey numbers is a difficult and actively studied problem. It

is currently known that R(3, 3) = 6, R(4, 4) = 18 and 43 ≤ R(5, 5) ≤ 49 [67, 107]. Table 19

gives some currently known bounds on some small Ramsey numbers. Discovery of many of

the known upper bounds for specific Ramsey numbers have involved massive computations,

an up to date survey of this problem is maintained by Radziszowski [125].

Table 19: Some Known Bounds for R(n,m)

R(n,m) 3 4 5 6

3 6 9 14 18
4 9 18 25 [35,41]
5 14 25 [43,49] [58,87]
6 18 [35,41] [58,87] [102,165]

For integers m,n, k there is a natural representation of all counterexamples to the state-

ment R(n,m) ≤ k as an integer programming feasibility problem. In this case, a feasible

solution to the following set of constraints is a certificate that R(n,m) > k and infeasibility

indicates that R(n,m) ≤ k. The binary variables xij are decision variables determining if
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the edge (i, j) is in graph with vertex set K = {1, . . . , k}∑
i,j∈S, i<j

xij ≤
(
n
2

)
− 1 ∀S ⊆ K, |S| = n

∑
i,j∈S, i<j

xij ≥ 1 ∀S ⊆ K, |S| = m

xij binary i, j ∈ K.

Solving this feasibility problem directly would not be practical for many reasons; the number

of constraints is exponential in k and the problem structure is highly symmetric. In order to

prove infeasibility of an instance, exact computation is also necessary. In order to use this

type of model some possible approaches would be to derive valid cutting planes that could

be added to the problem, develop symmetry breaking inequalities and consider problem

specific branching rules.

Another possible application for exact integer programming is to compute integer fac-

torizations. Factoring integers is a fundamental mathematical problem. The difficulty of

this problem is the basis for modern crypto-systems, but it is not known to be NP-hard

[101]. We will describe a formulation of the integer factoring problem developed by Cook,

Kannan and Lovász. If N is the number to be factored, they consider the variables X,Y

and formulate N = XY as a MIP. In order to represent this nonlinear constraint with linear

constraints they use binary variables x0, x1, . . . , xt−1 representing the bitwise description of

X, where t = blog2Nc. Introducing additional variables v0, . . . , vt−1 we can use the set of

constraints:

vt−1 = xt−1Y

vt−2 = 2vt−1 + xt−2Y

. . .

v0 = 2v1 + x0Y

Each one of these nonlinear constraints can be expressed linearly, v0 = 2v1 + x0Y can be

expressed as

2v1 ≤ v0 ≤ 2v1 + Y

2v1 + Y − (1− x0)N ≤ v0 ≤ 2v1 +Nx0
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This is referred to as the Horner multiplication system, and any feasible solution will sat-

isfy v0 = XY . In order to represent this problem without requiring large coefficients Cook,

Kannan and Lovász adjusted the formulation using the Chinese Remainder Theorem. The

adjusted formulation would express several constraints Ni = XiYi mod pi for several primes

pi where Ni = N mod pi and p1 · · · pn ≥ N . Using this formulation avoids large coef-

ficients and does not have a large number of constraints, but creates problems that are

difficult to solve and are prone to numerical problems. There are other ways to formu-

late this problem as a MIP, instead of creating binary variables for the bit representation

of Y and using a single integer variable for Y , one could represent both X and Y using

binary variables describing their bitwise representation. There is no guarantee that mixed-

integer-programming techniques will lead to competitive factoring algorithms. However,

development of a fast exact MIP solver will allow further computational development of

these ideas without numerical problems causing incorrect results. Some next steps could

include studying the polyhedral structure of this model and the development and testing of

specialized cutting planes.

5.4 Final Remarks

This chapter has outlined some future directions for research involving exact precision math-

ematical programming. There are still many open questions regarding the best computa-

tional strategies for finding exact solutions to optimization problems. It remains to be seen

how cutting planes should be handled within an exact IP/MIP solver and how the speed

of such a solver will compare with inexact numerical solvers using cutting planes. There

are many other challenges which include solving problems involving nonlinear constraints

or irrational input data. There are also exciting new application areas where more mature

tools for exact precision optimization could prove useful.
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[18] Balas, E., Ceria, S., and Cornuéjols, G., “A lift-and-project cutting plane al-
gorithm for mixed 0–1 programs,” Mathematical Programming, vol. 58, pp. 295–324,
1993.

[19] Balas, E. and Saxena, A., “Optimizing over the split closure,” Mathematical Pro-
gramming, vol. 113, pp. 219–240, 2008.
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[43] Cornuéjols, G. and Margot, F., “On the facets of mixed integer programs with
two integer variables and two constraints,” Mathematical Programming, vol. 120,
pp. 429–456, 2009.

[44] Dantzig, G., “Maximization of a linear function of variables subject to linear in-
equalities,” Activity Analysis of Production and Allocation, pp. 339–347, 1951.

123



[45] Dash, S. and Goycoolea, M., “A heuristic to generate rank-1 GMI cuts,” Technical
Report, IBM, 2010.
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