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SUMMARY 

 

Nuclear receptors are ligand-activated transcription factors that play significant 

roles in various biological processes within the body, such as cell development, hormone 

metabolism, reproduction, and cardiac function. As transcription factors, nuclear 

receptors are involved in many diseases, such as diabetes, cancer, and arthritis, resulting 

in approximately 10-15% of the pharmaceutical drugs presently on the market being 

targeted toward nuclear receptors. Structurally, nuclear receptors consist of a DNA-

binding domain (DBD), responsible for binding specific sequences of DNA called 

response elements, fused to a ligand-binding domain (LBD) through a hinge region. The 

LBD binds a small molecule ligand. Upon ligand binding, the LBD changes to an active 

conformation leading to the recruitment of coactivator (CoAC) proteins and initiation of 

transcription. As a result of their involvement in disease, there is an emphasis on 

engineering nuclear receptors for applications in gene therapy, drug discovery and 

metabolic engineering. 

Chemical complementation uses an engineered yeast strain, PJ69-4A, which 

contains Gal4 response elements (Gal4 REs) controling expression of the ADE2 and HIS3 

genetic selection markers, along with the lacZ gene, which can be used for a colorimetric 

screening assay. In chemical complementation, the interaction between a nuclear receptor 

and a small molecule is linked to the survival of the yeast cells in selective media. 

Chemical complementation uses two fusion proteins: a fusion of the Gal4 DBD with the 

nuclear receptor LBD and a fusion of the nuclear receptor CoAc with the Gal4 activation 



 xx

domain (GAD). Chemical complementation can be used for drug discovery as well as 

protein engineering applications.  

The original focus of this work was to use chemical complementation to engineer 

a nuclear receptor to bind and activate transcription in response to a novel small 

molecule, specifically the following β-lactam antibiotics: penicillin G, oxacillin, 

cloxacillin, ampicillin, amoxicillin, or nafcillin. The first target nuclear receptor to 

engineer to activate transcription in response to the β-lactam antibiotics was the pregnane 

X receptor (PXR), a nuclear receptor involved in xenobiotic metabolism. A PXR library 

toward the antibiotics was designed based on crystal structure analysis as well as amino 

acid sequence alignments. The PXR library was assessed in the chemical 

complementation system using selective plates containing the antibiotics. All of the 

variants obtained were constitutively active, meaning they grow without the presence of 

an exogenous small molecule. To overcome the constitutive activity, three different 

approaches were taken. First, a knockout yeast strain was developed that could remove 

any potential endogenous ligands in the yeast that could be activating PXR in chemical 

complementation. Second, the nuclear receptor was changed to the human estrogen 

receptor alpha (hERα). Lastly, a selection system called negative chemical 

complementation was utilized to remove the constitutively active variants from a library 

of nuclear receptor variants. 

Yeast steroid metabolism is different from mammalian cholesterol metabolism. 

Therefore, to develop a knockout strain, the ERG24 gene, involved in the yeast steroid 

biosynthetic pathway, was replaced by a Kan selection marker, which renders yeast 

resistant to the antibiotic geneticin. Removing the ERG24 gene removes steroid 



 xxi

metabolites that could be causing the constitutive activity observed with PXR. The 

knockout strain was engineered; however, a pure knockout strain was not obtained. The 

engineered strain contained both the parent genome and the ERG24 knockout. This strain 

was therefore not used to engineer nuclear receptor variants.  

The second approach was to design a library of hERα variants to be activated by 

the β-lactam antibiotics. The residues chosen to mutate in the hERα library was based on 

modeling the antibiotics into the pocket of the crystal structure with the natural ligand 17-

β estratiol (E2). The mutations were chosen to introduce hydrogen bonding potentials 

into the ligand binding pocket (LBP). When put through selection, the hERα library 

produced functional variants that were activated by E2, however none were activated by 

the β-lactam antibiotics. The rational library produced three variants that contain a point 

mutation at residue L346: L346M, L346V, and L346E, which displayed varying levels of 

sensitivity toward E2. Therefore, this position was saturated to investigate the role this 

residue has in ligand binding and activity and to determine if changing the chemical 

properties at position 346 would cause the variant to bind a different steroid molecule. 

The last approach taken to overcome constitutive activity in chemical 

complementation was to use negative chemical complementation, a selection system that 

uses the URA3 selection marker. In negative chemical complementation when a ligand 

activates the nuclear receptor and the URA3 gene is expressed in media containing 

5’fluoorotic acid (5’FOA), the toxin 5-fluorouracil (5’FU) is produced, leading to cell 

death. To engineer a nuclear receptor to be activated by the β-lactam antibiotics, a 

random mutagenic library of hERα was put through selection in media containing 5’FOA 

to remove the constitutively active variants from the library. This method removed most 



 xxii

of the constitutively active variants and produced functional hERα variants, but none of 

the variants were activated by the antibiotics. 

Negative chemical complementation can also be used in a high-throughput 

method toward drug discovery applications. Various ligands function as nuclear receptor 

activators or repressors, known as agonists or antagonists. hERα was therefore tested 

with the current drugs 4-hydroxy tamoxifen (OHT) and the potent antagonist Fulvestrant 

to assess the use of this system for drug discovery of potential antagonists. Growth above 

basal was not observed in the negative selection system using uracil selective media with 

5’FOA with an antagonist. Initial work toward developing a positive selection method 

using nuclear receptor corepressors to discover nuclear receptor antagonists was 

performed. Modifying this selection system could not only engineer nuclear receptors to 

bind novel small molecules, but also make nuclear receptor antagonist drug discovery 

possible. 
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CHAPTER 1 

NUCLEAR RECEPTORS 

Nuclear receptors are a diverse superfamily of ligand-activated transcription 

factors that play significant roles in various biological processes within the body, such as 

cell development, hormone metabolism, reproduction, cardiac function, and immune 

responses [1-3]. There are 48 known human nuclear receptors that bind various ligands, 

including hormones, retinoids, fatty acids, and xenobiotics [1, 4, 5]. Commonly known 

nuclear receptors include the estrogen receptor (ER), the retinoid X receptor (RXR), and 

the liver X receptor (LXR) [1, 2, 4-6]. These nuclear receptors are divided into several 

subfamilies based on the type of ligand each receptor binds [4, 7]. Nuclear receptors that 

are referred to as orphan receptors do not have an identified physiological ligand [1, 3, 4, 

6]. Nuclear receptors contain several isotypes, such as α, β, and γ, as a result of different 

promoter usage as well as RNA-splicing. These isotypes are all involved in individual 

biological pathways, thus adding an additional level of complexity to this family of 

proteins [8].  

Before nuclear receptors were cloned, the biological effect of these receptors was 

known. Studies had showed that steroids played a role in inflammation, yet the 

mechanism of action was not identified [4, 7]. The first human nuclear receptor that was 

cloned was the glucocorticoid receptor (GR), soon followed by other steroid receptors, 

such as the estrogen receptor [4, 7, 9]. In comparing the different sequences, conservation 

in the various domains was observed, leading to the current classifications of nuclear 

receptors within the superfamily [4, 7]. The classifications are also based on the types of 

ligands that are known to interact with these receptors [4, 7]. 
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Their role as transcription factors and regulators of gene expression results in the 

involvement of these receptors in various metabolic and physiological related diseases, 

such as diabetes, obesity, arthritis, and cancer [1, 10]. As a result, approximately 10-15% 

of the pharmaceutical drugs presently on the market are targeted toward nuclear 

receptors, as ligands for these receptors [11]. In fact, in 2003, thirty-four out of the two-

hundred most commonly prescribed drugs were targeted toward nuclear receptors [7]. 

Examples of current drugs include thiazolidinediones for the peroxisome proliferator-

activated receptor gamma ( PPARγ) and dexamethasone for the glucocorticoid receptor 

(GR), targeting type II diabetes and inflammatory diseases, respectively [1, 10, 12, 13]. 

One common drug used to inhibit expression of genes regulated by the human estrogen 

receptor alpha (hERα) is 4-hydroxytamoxifen (OHT), which is currently prescribed to 

treat breast cancer. Mifepristone (RU486) is also used as an anti-progestin and anti-

glucocorticoid for the progesterone receptor (PR) and glucocorticoid receptor (GR) [14, 

15]. However, there is still a vast interest in the pharmaceutical industry to discover novel 

nuclear receptor ligands for additional therapeutic applications [3, 7]. 

1.1 Nuclear Receptor Structure 

Nuclear receptors have a modular structure consisting of five to six common 

domains, known as domains A through F (Figure 1.1) [1, 2, 4, 8, 16, 17]. The A/B 

domain has the highest variability in the nuclear receptor superfamily, containing the 

ligand-independent activation function 1 (AF-1) with a poorly defined structure [4, 18, 

19]. The A/B domain has been thought to be involved in mediating gene activation and 

contains phosphorylation sites for providing interactions with other domains or proteins 

[18-20]. Domains C and E, the DNA-binding domain (DBD) and ligand-binding domain  
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Figure 1.1 Scheme of nuclear receptor domains. 
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(LBD), respectively will be discussed below. These two domains are connected through 

the D domain, a hinge region, providing rotational flexibility between domains C and E. 

The F domain, located at the C-terminus, also does not have a defined function, although 

this domain has been implicated in regulating nuclear receptor interactions with other 

proteins [16, 21, 22].  

The DNA-binding domain (DBD) and ligand-binding domain (LBD) of nuclear 

receptors, domains C and E, are evolutionarily conserved [1, 12, 23, 24]. Between the 

DBD and LBD, the DBD is the most conserved domain among all of the nuclear receptor 

domains [3, 4]. The DBD consists of zinc fingers, two zinc ions coordinated by two 

cysteine or histidine residues, which bind specific DNA sequences called response 

elements (REs) [2, 12, 23, 25, 26]. Nuclear receptors bind a variety of response elements, 

that consist of multiple copies of a consensus sequence either as direct repeat (DR) or 

inverted repeat (IR) of the sequence, often separated by a spacer sequence; thus providing 

the specificity for nuclear receptor binding [23, 26, 27]. Steroid receptors mainly 

recognize the sequence AGAACA, whereas non-steroid receptors recognize the sequence 

AGGTCA [23]. Most nuclear receptors also function as homo or heterodimers, a function 

that is regulated by the recognition of the DBD with the response element [3, 4]. Figure 

1.2 shows the DBDs of a crystal structure of two nuclear receptors in a heterodimer 

bound to a DNA response element. The response element consisting of a direct repeat of 

two consensus sequences for the two different receptors involved in the heterodimer can 

be seen (Figure 1.2).  
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In most nuclear receptors, the three-dimensional structure of the LBD consists of 

primarily an α-helical structure with two β-sheets that fold into an α-helical sandwich 

with one main β-turn [24]. The helices within the LBD are numbered one through twelve 

 [8, 17, 28]. This numbering system is based on the original crystal structure of the apo 

RXR LBD, which contained twelve defined α-helices [28]. Some nuclear receptors, such 

as the pregnane X receptor (PXR) or the vitamin D receptor (VDR), however, have 

additional helices creating a larger LBD [17]. The carboxy-terminal of the LBD includes 

the ligand-dependent activation function 2 (AF-2), located within Helix 12. The AF-2 is 

crucial for the functionality of activating these receptors. When the ligand binds to the 

LBD, the AF-2 domain is repositioned into an active conformation, making contacts with 

helices 3, 4/5, and 10/11 [1, 3]. The conformational change is clearly seen in the 

difference between the apo and holo structures of the retinoid X receptor alpha (RXRα), 

where Helix 12 is repositioned over the ligand binding pocket in the holo structure 

(Figure 1.3) [7, 28, 29]. Although Helix 12 makes the largest change, helices 3 and 10/11 

also shift slightly to form the α-helical sandwich around the ligand. 

The ligand binding pocket (LBP) is formed from helices 3, 7, and 12, although 

residues from additional helices make contacts with the ligand [3, 7, 17]. The LBPs can 

vary in size and shape, having pocket volumes ranging from less than 400 Å3 to greater 

than 1500 Å3 [3, 7, 30]. Despite the size and shape differences, nuclear receptor LBP’s all 

have similar characteristics. The core of the pocket contains primarily hydrophobic 

residues, making key hydrophobic contacts for ligand binding  [3]. The pocket often also 

contains important hydrogen bonding residues, used to anchor the ligand into the pocket 

[5, 7, 17]. For example, 17-β estradiol (E2) forms two hydrogen bonds with residues in  
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the LBP, located on opposite ends of the pocket, of the estrogen receptor [31]. A 

glutamate in helix 3, E353, an arginine in helix 6, R394, and a water molecule form a 

network of hydrogen bonds with the 3-hydroxy group of E2 at one end of the pocket. 

Histidine 524, located in helix 11 on the opposite side of the pocket, also forms a 

hydrogen bond with the 17-hydroxy group of E2 [3, 31]. 

Although the structural elements of the DBD and LBD have been studied 

extensively and the general functions of these domains are identified, the first full-length 

crystal structure containing all the domains of the nuclear receptors was only recently 

published (Figure 1.4) [19]. The complete structure is a heterodimer between RXRα and 

PPARγ, each bound to a ligand, a coactivator peptide, and the DNA [19]. Chandra et al. 

show that the PPARγ LBD plays a significant role in directing the DBDs of both nuclear 

receptors to bind the DNA [19]. In the crystal structure, the A/B domains of both 

receptors could not be visualized due to the highly unstructured nature of that domain. In 

addition, the structure highlights the interface of multiple domains, providing evidence 

that a larger network of interactions among the nuclear receptor domains and the DNA 

exists [19]. 

1.2 Nuclear Receptor Function 

The mechanism of nuclear receptor activation and gene regulation involves 

multiple proteins and requires that several important processes take place. Nuclear 

receptors are either localized in the cytoplasm or in the nucleus, depending on the type of 

receptor. When ligand binds, nuclear receptors in the cytoplasm translocate into the 

nucleus, interacting with their respective response elements and activating gene 

expression [1, 3, 4, 32]. 
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Figure 1.4. Full length crystal structure of PPARγ with RXRα bound 
to DNA (PDB 3DZY). PPARγ is shown in purple with the coactivator 
peptide in cyan. RXRα is shown in marine with the coactivator peptide in 
green. The ligands are displayed as sticks and colored dark red. The DNA 
is grey and the zinc ions are shown as spheres and colored orange. 
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Nuclear receptors also associate with coregulator proteins, known as coactivators 

(CoAc) and corepressors (CoR) [4, 33]. Both interact with specific domains on the LBD, 

known as interaction domains (ID), through amino acid motifs made up of LXXLL or 

LXXXIXXXI/L, where X is any amino acid, for coactivators and corepressors, 

respectively [4, 33, 34]. These motifs are receptor specific and can be repeated in 

combinations of one, two, or more, depending on the specific coregulator protein [35-37]. 

The IDs on the LBD are hydrophobic clefts formed by helices 3, 4, and 12, thus creating 

the region for coregulator interaction. Coactivators and corepressors associate with 

similar regions in this hydrophobic cleft on the LBD, but not identical locations due to 

the differences in the structural fold of the active versus inactive receptor [1]. 

As previously mentioned, nuclear receptors are transcription factors that regulate 

gene expression through small molecule ligands [4, 8, 24, 38]. Functionally, in the 

absence of ligand, most nuclear receptors are bound to corepressor proteins, such as the 

silencing mediator for retinoid and thyroid hormone receptors (SMRT), and the receptor 

is in an inactive conformation. Corepressors are then involved in recruiting other 

proteins, such as histone deacetylases (HDACS) that deacetylate histones, condensing the 

chromatin, inhibiting RNA polymerase from binding to the DNA and therefore 

transcription cannot occur [1, 34, 39, 40]. However, upon ligand binding, the LBD 

undergoes a conformational change, positioning Helix 12 in the active conformation [1, 

3, 24]. Corepressor proteins dissociate from the nuclear receptor, allowing coactivators, 

such as the steroid receptor coactivator 1 (SRC-1) and the activator for thyroid and 

retinoid receptors (ACTR) to associate with the active LBD (Figure 1.5) [33, 34, 40-44]. 

These coactivators then recruit histone acetyl transferases (HATs) that acetylate histones  
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causing the destabilization of the chromatin, leading to the recruitment of RNA 

polymerase (RNAP) to activate transcription [1, 3, 14, 24, 38, 39].  

Nuclear receptors interact with two main types of ligands, agonists and 

antagonists. Agonists are small molecule ligands that bind and activate the nuclear 

receptor, through inducing the proper conformational change necessary in the AF-2 

domain of the LBD. Antagonists, on the other hand, are small molecule ligands that bind 

to the nuclear receptor, but do not cause the proper conformational change to occur. 

Therefore corepressors associate with the nuclear receptor and transcription is repressed 

[14, 45]. Due to the variety of ligands and large network of interactions with which 

nuclear receptors are associated, investigation towards understanding these interactions 

are continually pursued [24, 46]. One tool that can be used toward further understanding 

nuclear receptor-ligand interactions is chemical complementation. 

1.3 Chemical Complementation 

Genetic selection systems have been demonstrated to be powerful tools for 

discovering and deciphering protein-protein interactions and small molecule-protein 

interactions [47-51]. Various genetic selection systems have been developed in 

microorganisms, such as bacteria and yeast. As a simple eukaryote, yeast have proven to 

be quick, cheap, and accessible hosts for selection, As shown by the success of the yeast 

two-hybrid system developed by Fields and Song [47, 52-54]. Advances in these genetic 

selection techniques and the availability of numerous microbial strains allows for the 

possibility of developing additional in vivo genetic selection systems, increasing the  
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Figure 1.6. Scheme of the chemical complementation selection 
system. The nuclear receptor (NR) ligand binding domain (LBD) fused 
to the Gal4 DNA-binding domain (DBD), is introduced into a yeast 
strain containing Gal4 response elements (Gal4REs) controlling 
expression of genetic selection genes. Upon ligand binding, a 
conformational change occurs; recruiting a fusion protein of the NR 
coactivator (CoAc) and the Gal4 activation domain (GAD) that binds to 
the LBD, leading to the initiation of transcription of a selection marker. 
Gene expression occurs and cells survive on media with ligand.  
 



14 
 

feasibility and efficiency of alternative detection systems for protein-protein, protein-

RNA or DNA, and protein-small molecule interactions [55-57].  

Our lab developed a genetic selection system in Saccharomyces cerevisiae, called 

chemical complementation, for detecting the interaction of a small molecule with a 

nuclear receptor [58]. Chemical complementation uses an engineered yeast strain, PJ69-

4A, which contains Gal4 response elements (Gal4 REs) controling expression of the 

ADE2 and HIS3 genetic selection markers, along with the lacZ gene, which can be used 

for a colorimetric screening assay [59].  

Chemical complementation uses two fusion proteins. The Gal4 DNA-binding 

domain is fused to the nuclear receptor LBD and a human nuclear receptor coactivator is 

fused to the Gal4 activation domain (GAD). Gal4 is a ligand-independent transcription 

factor [60]. Ligand binding to the nuclear receptor LBD causes the recruitment of the 

CoAc:GAD fusion protein, initiating transcription of the ADE2 or HIS3 selection marker 

required for yeast survival (Figure 1.6). The absence of a ligand, or the inability of the 

small molecule to activate the nuclear receptor LBD, causes cell death [14]. 

The advantage of using genetic selection systems in yeast, such as chemical 

complementation, provide versatile, feasible, and fast methods for deciphering protein-

protein and small molecule-protein interactions in comparison to mammalian cell assays 

[47, 49, 61-63]. Even though yeast are simple eukaryotes, the advantage is they do not 

possess any endogenous nuclear receptors present in mammalian cells. For example, 

libraries of synthetic or natural compounds can be assessed in a semi high-throughput 

manner using a 96-well plate format, where ligands able to bind and activate the nuclear 

receptor lead to cell growth. In terms of protein engineering, functional protein variants 
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can be discovered through the survival of the yeast as well. Ultimately, molecular 

interactions involved in cellular processes can be analyzed through high-throughput 

selection methods like chemical complementation. 

1.4 Applications of Chemical Complementation 

1.4.1 Drug Discovery 

Nuclear receptors are excellent targets for drug discovery because their essential role 

as transcriptional regulators leads to their involvement in several diseases [11, 48, 63]. 

Consequently, a vast number of pharmaceutical companies are currently targeting and 

developing nuclear receptor ligands as potential therapeutics, either as agonists or 

antagonists [7, 11]. Chemical complementation has the ability to rapidly and reproducibly 

analyze large libraries for protein-ligand interactions, and therefore provides a tool for 

discovering potential, novel, nuclear receptor ligands [64]. Through the high-throughput 

assay, novel nuclear receptor ligands can be developed.  

1.4.2 Engineering nuclear receptors 

Chemical complementation is also a powerful tool for directed protein evolution 

for engineering and discovering functional protein variants within large protein libraries 

[51, 55, 63]. The ability to influence protein-protein interactions as well as protein-ligand 

interactions can be used for applications such as gene therapy and metabolic engineering 

through the ability to control gene expression using a ligand-mutant receptor pair  [65]. 

Examples of this have been shown, where nuclear receptors have been engineered to 

activate transcription in response to a novel small molecule using various yeast-three 

hybrid genetic selection systems [58, 64-67].  
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Figure 1.7. Structures of various β-lactam antibiotics. 
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Previous research has utilized chemical complementation to engineer RXRα 

variants that are activated by the synthetic ligand LG335 and not by the wild-type ligand 

9-cis retinoic acid (9cRA) [64]. Directed evolution of hERα has also been successfully 

performed making new variants with different specificity [65-67]. For example, Zhao et 

al. increased the affinity and specificity of hERα toward testosterone from E2 through a 

yeast two-hybrid system that screened for testosterone activity [13].  

1.5 Using Nuclear Receptors to Develop a Novel Biocatalyst 

Nuclear receptor research can also be used to design and engineer novel 

biocatalysts [24, 46]. Consequently, the original focus of this work was to engineer a 

nuclear receptor to bind and activate transcription in response to a novel small molecule, 

specifically any of the following β-lactam antibiotics: penicillin G, oxacillin, cloxacillin, 

ampicillin, amoxicillin, or nafcillin (Figure 1.7) [68]. In particular, oxcillin, cloxacillin, 

and nafcillin, which are β-lactamase resistant antibiotics and currently are not synthesized 

enzymatically. The β-lactam antibiotics have been in clinical use for over 60 years, 

however the industrial production generates a significant amount of waste [68-70]. To 

overcome excess waste production, a biocatalytic process where an enzyme is engineered 

to make the antibiotic would prove extremely valuable. To create a system that can serve 

as an alternative process for mass producing the β-lactam antibiotics, two steps need to be 

accomplished to achieve enzyme activated growth. First, a nuclear receptor needs to be 

engineered to be activated by an antibiotic. Secondly, a library of engineered enzymes 

will be created to make the antibiotic from precursor molecules (Figure 1.8). To do this, 

yeast cells containing the desired enzyme, along with the nuclear receptor variant, and the 

precursors will produce the antibiotic to bind the nuclear receptor and allow the yeast to  
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survive (Figure 1.8). The first target nuclear receptor to engineer to be activated by an 

antibiotic was PXR, which will be discussed further in Chapter 2.  

1.6 Summary 

In summary, nuclear receptors control many biological functions through gene 

expression, and as a result, are involved in many different diseases. The mechanism of 

nuclear receptor activation through a small molecule ligand and coregulator proteins is 

well studied, but more research is being conducted to develop additional drugs for 

therapeutic purposes [46]. The focus of this research involves engineering a nuclear 

receptor to bind and activate transcription in response to a small molecule ligand, 

specifically the β-lactam antibiotics penicillin G, oxacillin, cloxacillin, ampicillin, 

amoxicillin, and nafcillin. 

1.7 References 

 
1. Gronemeyer, H., J.A. Gustafsson, and V. Laudet, Principles for modulation of the 

nuclear receptor superfamily. Nature Reviews Drug Discovery, 2004. 3(11): p. 
950-964. 

2. Sonoda, J., L.M. Pei, and R.M. Evans, Nuclear receptors: Decoding metabolic 
disease. Febs Letters, 2008. 582(1): p. 2-9. 

3. Huang, P.X., V. Chandra, and F. Rastinejad, Structural Overview of the Nuclear 
Receptor Superfamily: Insights into Physiology and Therapeutics. Annual Review 
of Physiology, 2010. 72: p. 247-272. 

4. Germain, P., et al., Overview of nomenclature of nuclear receptors. 
Pharmacological Reviews, 2006. 58(4): p. 685-704. 



20 
 

5. Greschik, I. and D. Moras, Structure-activity relationship of nuclear receptor-
ligand interactions. Current Topics in Medicinal Chemistry, 2003. 3(14): p. 1573-
1599. 

6. Noy, N., Ligand specificity of nuclear hormone receptors: Sifting through 
promiscuity. Biochemistry, 2007. 46(47): p. 13461-13467. 

7. Moore, J.T., J.L. Collins, and K.H. Pearce, The nuclear receptor superfamily and 
drug discovery. ChemMedChem, 2006. 1(5): p. 504. 

8. Steinmetz, A.C.U., J.P. Renaud, and D. Moras, Binding of ligands and activation 
of transcription by nuclear receptors. Annual Review of Biophysics and 
Biomolecular Structure, 2001. 30: p. 329-359. 

9. Hollenberg, S.M., et al., Primary Structure and Expression of a Functional 
Human Glucocorticoid Receptor cDNA. Nature, 1985. 318(6047): p. 635-641. 

10. Bai, Z.L. and R. Gust, Breast Cancer, Estrogen Receptor and Ligands. Archiv 
Der Pharmazie, 2009. 342(3): p. 133-149. 

11. Chen, T.S., et al., Coactivators in assay design for nuclear hormone receptor 
drug discovery. Assay and Drug Development Technologies, 2003. 1(6): p. 835-
842. 

12. Laudet, V. and H. Gronemeyer, The Nuclear Receptor FactsBook. London: 
Academic Press, 2002. 

13. Chen, Q., et al., A yeast two-hybrid technology-based system for the discovery of 
PPAR gamma agonist and antagonist. Analytical Biochemistry, 2004. 335(2): p. 
253-259. 

14. Smith, C.L. and B.W. O'Malley, Coregulator function: A key to understanding 
tissue specificity of selective receptor modulators. Endocrine Reviews, 2004. 
25(1): p. 45-71. 

15. Zhang, J.H., F.T.F. Tsai, and D.S. Geller, Differential interaction of RU486 with 
the progesterone and glucocorticoid receptors. Journal of Molecular 
Endocrinology, 2006. 37(1): p. 163-173. 



21 
 

16. de Lera, A.R., et al., Design of selective nuclear receptor modulators: RAR and 
RXR as a case study. Nature Reviews Drug Discovery, 2007. 6(10): p. 811-820. 

17. Folkertsma, S., et al., A family-based approach reveals the function of residues in 
the nuclear receptor ligand-binding domain. Journal of Molecular Biology, 2004. 
341(2): p. 321-335. 

18. Warnmark, A., et al., Activation functions 1 and 2 of nuclear receptors: 
Molecular strategies for transcriptional activation. Molecular Endocrinology, 
2003. 17(10): p. 1901-1909. 

19. Chandra, V., et al., Structure of the intact PPAR-gamma-RXR-alpha nuclear 
receptor complex on DNA. Nature, 2008. 456(7220): p. 350-356. 

20. Bain, D.L., et al., Nuclear receptor structure: Implications for function. Annual 
Review of Physiology, 2007. 69: p. 201-220. 

21. Farboud, B. and M.L. Privalsky, Retinoic acid receptor-alpha is stabilized in a 
repressive state by its C-terminal, isotype-specific F domain. Molecular 
Endocrinology, 2004. 18(12): p. 2839-2853. 

22. Yang, J., et al., The F-domain of estrogen receptor-alpha inhibits ligand induced 
receptor dimerization. Molecular and Cellular Endocrinology, 2008. 295(1-2): p. 
94-100. 

23. Rastinejad, F., Retinoid X receptor and its partners in the nuclear receptor family. 
Current Opinion in Structural Biology, 2001. 11(1): p. 33-38. 

24. Chambon, P., The nuclear receptor superfamily: A personal retrospect on the first 
two decades. Molecular Endocrinology, 2005. 19(6): p. 1418-1428. 

25. Jakob, M., et al., Novel DNA-binding element within the C-terminal extension of 
the nuclear receptor DNA-binding domain. Nucleic Acids Research, 2007. 35(8): 
p. 2705-2718. 

26. Khorasanizadeh, S. and F. Rastinejad, Nuclear-receptor interactions on DNA-
response elements. Trends in Biochemical Sciences, 2001. 26(6): p. 384-390. 



22 
 

27. Lehmann, J.M., et al., The human orphan nuclear receptor PXR is activated by 
compounds that regulate CYP3A4 gene expression and cause drug interactions. 
Journal of Clinical Investigation, 1998. 102(5): p. 1016-1023. 

28. Bourguet, W., et al., Crystal Structure of the Ligand Binding Domain of the 
Human Nuclear Receptor RXR alpha. Nature, 1995. 375(6530): p. 377-382. 

29. Pogenberg, V., et al., Characterization of the interaction between retinoic acid 
receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional 
coactivators through structural and fluorescence anisotropy studies. Journal of 
Biological Chemistry, 2005. 280(2): p. 1625-1633. 

30. Goyanka, R., et al., Nuclear Receptor Engineering Based on Novel Structure 
Activity Relationships Revealed by Farnesyl Pyrophosphate. Protein Engineering 
Design & Selection, 2010. 

31. Brzozowski, A.M., et al., Molecular basis of agonism and antagonism in the 
oestrogen receptor. Nature, 1997. 389(6652): p. 753-758. 

32. Stanisic, V., D. Lonard, and B. O'Malley, Modulation of Steroid Hormone 
Receptor Activity. Progress in Brain Research, 2010. 181: p. 153-176. 

33. Rosenfeld, M.G., V.V. Lunyak, and C.K. Glass, Sensors and signals: a 
coactivator/corepressor/epigenetic code for integrating signal-dependent 
programs of transcriptionaf response. Genes & Development, 2006. 20(11): p. 
1405-1428. 

34. Privalsky, M.L., The role of corepressors in transcriptional regulation by nuclear 
hormone receptors. Annual Review of Physiology, 2004. 66: p. 315-360. 

35. McInerney, E.M., et al., Determinants of coactivator LXXLL motif specificity in 
nuclear receptor transcriptional activation. Genes & Development, 1998. 12(21): 
p. 3357-3368. 

36. Watkins, R.E., et al., 2.1 angstrom crystal structure of human PXR in complex 
with the St. John's wort compound hyperforin. Biochemistry, 2003. 42(6): p. 
1430-1438. 



23 
 

37. Heldring, N., et al., Structural insights into corepressor recognition by 
antagonist-bound estrogen receptors. Journal of Biological Chemistry, 2007. 
282(14): p. 10449-10455. 

38. Mangelsdorf, D.J., et al., The nuclear receptor superfamily-the 2nd decade. Cell, 
1995. 83(6): p. 835-839. 

39. Guenther, M.G., O. Barak, and M.A. Lazar, The SMRT and N-CoR corepressors 
are activating cofactors for histone deacetylase 3. Molecular and Cellular 
Biology, 2001. 21(18): p. 6091-6101. 

40. Nagy, L., et al., Mechanism of corepressor binding and release from nuclear 
hormone receptors. Genes & Development, 1999. 13(24): p. 3209-3216. 

41. Leo, C. and J.D. Chen, The SRC family of nuclear receptor coactivators. Gene, 
2000. 245(1): p. 1-11. 

42. Leo, C., et al., Role of retinoid receptor coactivator pockets in cofactor 
recruitment and transcriptional regulation. Journal of Biological Chemistry, 
2001. 276(25): p. 23127-23134. 

43. Love, J.D., et al., Transcriptional repression by nuclear receptors: mechanisms 
and role in disease. Biochemical Society Transactions, 2000. 28: p. 390-396. 

44. McKenna, N.J. and B.W. O'Malley, Combinatorial control of gene expression by 
nuclear receptors and coregulators. Cell, 2002. 108(4): p. 465-474. 

45. Shiau, A.K., et al., The structural basis of estrogen receptor/coactivator 
recognition and the antagonism of this interaction by tamoxifen. Cell, 1998. 
95(7): p. 927-937. 

46. O'Malley, B., The Year in Basic Science: Nuclear Receptors and Coregulators. 
Molecular Endocrinology, 2008. 22(12): p. 2751-2758. 

47. Fields, S. and O.K. Song, A novel genetic system to detect protein-protein 
interactions. Nature, 1989. 340(6230): p. 245-246. 



24 
 

48. McDonnell, D.P., E. Vegeto, and M.A.G. Gleeson, Nuclear hormone receptors as 
targets for new drug discovery. Bio-Technology, 1993. 11(11): p. 1256-1261. 

49. Woycechowsky, K.J. and D. Hilvert, Deciphering enzymes - Genetic selection as 
a probe of structure and mechanism. European Journal of Biochemistry, 2004. 
271(9): p. 1630-1637. 

50. Lin, H.N., H.Y. Tao, and V.W. Cornish, Directed evolution of a glycosynthase via 
chemical complementation. Journal of the American Chemical Society, 2004. 
126(46): p. 15051-15059. 

51. Taylor, S.V., P. Kast, and D. Hilvert, Investigating and engineering enzymes by 
genetic selection. Angewandte Chemie International Edition, 2001. 40(18): p. 
3310-3335. 

52. Feilotter, H., et al., Construction of an improved host strain for two hybrid 
screening. Nucleic Acids Research, 1994. 22(8): p. 1502-1503. 

53. Cribb, P. and E. Serra, One- and two-hybrid analysis of the interactions between 
components of the Trypanosoma cruzi spliced leader RNA gene promoter binding 
complex. International Journal for Parasitology, 2009. 39(5): p. 525-532. 

54. Rajmohan, R., et al., Characterization of Wiskott-Aldrich syndrome (WAS) 
mutants using Saccharomyces cerevisiae. FEMS Yeast Research, 2009. 9(8): p. 
1226-1235. 

55. Drees, B.L., Progress and variations in two-hybrid and three-hybrid technologies. 
Current Opinion in Chemical Biology, 1999. 3(1): p. 64-70. 

56. Uetz, P., et al., A comprehensive analysis of protein-protein interactions in 
Saccharomyces cerevisiae. Nature, 2000. 403(6770): p. 623-627. 

57. Licitra, E.J. and J.O. Liu, A three-hybrid system for detecting small ligand-protein 
receptor interactions. Proceedings of the National Academy of Sciences of the 
United States of America, 1996. 93(23): p. 12817-12821. 

58. Azizi, B., E.I. Chang, and D.F. Doyle, Chemical complementation: small-
molecule-based genetic selection in yeast. Biochemical and Biophysical Research 
Communications, 2003. 306(3): p. 774-780. 



25 
 

59. James, P., J. Halladay, and E.A. Craig, Genomic libraries and a host strain 
designed for highly efficient two-hybrid selection in yeast. Genetics, 1996. 144(4): 
p. 1425-1436. 

60. Lohr, D., P. Venkov, and J. Zlatanova, Transcriptional regulation in the yeast 
GAL gene family: A complex genetic network. Faseb Journal, 1995. 9(9): p. 777-
787. 

61. Zeng, J., et al., Genome wide screens in yeast to identify potential binding sites 
and target genes of DNA-binding proteins. Nucleic Acids Research, 2008. 36(1): 
p. 8. 

62. Pollock, R. and T. Clackson, Dimerizer-regulated gene expression. Current 
Opinion in Biotechnology, 2002. 13(5): p. 459-467. 

63. Gillies, A.R., G. Skretas, and D.W. Wood, Engineered systems for detection and 
discovery of nuclear hormone-like compounds. Biotechnology Progress, 2008. 24: 
p. 8-16. 

64. Schwimmer, L.J., et al., Creation and discovery of ligand-receptor pairs for 
transcriptional control with small molecules. Proceedings of the National 
Academy of Sciences of the United States of America, 2004. 101(41): p. 14707-
14712. 

65. Chockalingam, K., et al., Directed evolution of specific receptor-ligand pairs for 
use in the creation of gene switches. Proceedings of the National Academy of 
Sciences of the United States of America, 2005. 102(16): p. 5691-5696. 

66. Chen, Z.L., et al., Directed evolution of human estrogen receptor variants with 
significantly enhanced androgen specificity and affinity. Journal of Biological 
Chemistry, 2004. 279(32): p. 33855-33864. 

67. Islam, K.M.D., et al., Directed evolution of estrogen receptor proteins with 
altered ligand-binding specificities. Protein Engineering Design & Selection, 
2009. 22(1): p. 45-52. 

68. Elander, R.P., Industrial production of beta-lactam antibiotics. Applied 
Microbiology and Biotechnology, 2003. 61(5-6): p. 385-392. 



26 
 

69. Demain, A.L. and R.P. Elander, The beta-lactam antibiotics: past, present, and 
future. Antonie Van Leeuwenhoek International Journal of General and Molecular 
Microbiology, 1999. 75(1-2): p. 5-19. 

70. Wegman, M.A., et al., Towards biocatalytic synthesis of beta-lactam antibiotics. 
Advanced Synthesis & Catalysis, 2001. 343(6-7): p. 559-576. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



27 
 

CHAPTER 2 

ENGINEERING NUCLEAR RECEPTORS TOWARD 

ANTIBIOTICS: PREGNANE X RECEPTOR 

 

2.1 Engineering Nuclear Receptors to Bind Antibiotics 

 Nuclear receptors play a vital role in gene regulation, and consequently are 

involved in many diseases. As a result, there is an emphasis on engineering nuclear 

receptors for applications in gene therapy, drug discovery and metabolic engineering. As 

mentioned in Chapter 1, the goal of this work is to engineer a nuclear receptor toward the 

β-lactam antibiotics via chemical complementation. The β-lactam antibiotics are widely 

used in the pharmaceutical industry, however the cost and production of waste is high [1]. 

Therefore, new synthetic or biosynthetic pathways are desirable to overcome the 

production and cost concerns. One mechanism to do this is to engineer an enzyme to 

biosynthetically mass produce the antibiotic, a method that is currently unavailable. Once 

this enzyme is able to create the desired product, a selection mechanism in the 

microorganism is needed to produce continual biosynthesis of the product. This work, 

therefore, focuses on engineering a nuclear receptor variant that is able to bind and 

activate in response to the β-lactam antibiotics and then use that receptor in chemical 

complementation to engineer an enzyme to make the antibiotics.  The pregnane X 

receptor (PXR) was chosen to engineer to bind and activate in response to β-lactam 

antibiotics.  

2.2 Promiscuous Activity of PXR 
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PXR, a member of the nuclear receptor superfamily, was originally defined as an 

orphan receptor due to the lack of a known “wild-type” ligand [2]. Prior to the discovery 

of PXR, certain compounds, such as the synthetic glucocorticoid dexamethasone, the 

antiglucocorticoid pregnenolone 16α-carbonitrile (PCN), the macrolide antibiotic 

rifampicin, and the herbal antidepressant hyperforin were known to turn on expression of 

a cytochrome P450 (CYP450) gene, specifically the cytochrome P-450 monooxygenase 

3A4 (CYP3A4) gene [2-5]. The family of CYP450 enzymes regulate endobiotic and 

xenobiotic metabolism, however the mechanism leading to the activation of CYP3A4 was 

unknown [3, 6, 7]. Initially, the glucocorticoid receptor (GR) was thought to be involved 

in this mechanism because the ligands leading to the activation of the CYP3A4 gene were 

glucocorticoids [2, 3, 6]. Once isolated, however, PXR was found to be the protein 

responsible for the expression of the CYP3A4 gene [2, 3, 6, 8, 9]. Additionally, PXR was 

also found to regulate expression of the CYP2C9 and CYP2B6 genes, both CYP450s 

involved in drug metabolism [7, 10-12]. PXR was also observed to be activated by 

naturally occurring pregnane steroids and synthetic steroids such as dexamethasone, as 

well as involved in regulating bile acid homeostasis through the detoxification of 

cholesterol and oxysterols [2, 5, 6, 8]. 

Evolutionarily, PXR is related to the constitutive androstane receptor (CAR) and 

the vitamin D receptor (VDR) due to the similar sequence identities among the DBDs and 

LBDs of these receptors [6, 13-15]. CAR, like PXR, is involved in xenobiotic 

metabolism, whereas VDR plays a role in bile acid homeostasis [6, 7, 16]. Functionally, 

PXR forms a heterodimer with the retinoid X receptor (RXR) and, through regulation of 

CYP3A4 gene expression, is responsible for the metabolism of more than 50 % of human  
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Figure 2.1. Structures of some ligands that activate PXR. 
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drugs [2]. PXR ligands vary in size and shape, ranging from the large antibiotic 

rifampicin (MW: 823 g/mol) to the cholesterol lowering drug SR12813 (MW: 505 

g/mol), and hyperforin (MW: 537 g/mol). (Figure 2.1) [2, 17-21]. These ligand binding 

capabilities make PXR a promiscuous nuclear receptor. 

 In addition to being activated by a broad range of compounds, another unique 

characteristic of PXR is the differences in ligand specificities among different species [5, 

22-25]. For example, mouse and rat PXR are strongly activated by PCN, but human and 

rabbit are not, whereas rifampicin activates human PXR well and has little to no activity 

with mouse and rat PXR [4]. On average, the mammalian PXR LBDs only share 

approximately 75-80 % sequence identity and among the non-mammalian orthologs only 

share about 50 % sequence identity [4, 13, 21]. Many nuclear receptors share at least 60-

70 % sequence identities across all species [21]. 

Structurally, PXR resembles most nuclear receptors, consisting of 12 α-helices, 

but contains two additional β-strands, making a total of five β-strands whereas most 

nuclear receptors contain two or three. In addition, the 1,200 Å3 binding pocket is 

significantly larger than most nuclear receptors, which have pocket sizes ranging from 

approximately 400 Å3 to 700 Å3 [26-28]. Evidence for the ability of PXR to 

accommodate large ligands is seen in the crystal structure of PXR with rifampicin, where 

partial unwinding of helix 7 expands the volume of PXR’s binding pocket to almost 

1,600 Å3 (Figure 2.2) [6, 18, 29]. In addition, the apo crystal structure of PXR LBD 

shows the receptor in the active conformation (PDB 1ILG) (Figure 2.3). Helix 12 is bent 

towards the rest of the protein forming the α-helical sandwich normally seen in the 

presence of a ligand [19]. The promiscuous activity of PXR is displayed through the  
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enhanced volume of the binding pocket, the additional structural elements, and the ability 

to be activated by ligands of various sizes, making this receptor an attractive candidate to 

engineer to bind the β-lactam antibiotics [2, 3, 19, 22, 30].  

2.3 PXR in Chemical Complementation 

As mentioned in Chapter 1, the development of chemical complementation, a 

genetic selection system in yeast for analyzing nuclear receptor interactions, was useful 

for many applications, such as protein and enzyme engineering. Prior to engineering PXR 

to activate transcription in response to a β-lactam antibiotic, this receptor was first tested 

in chemical complementation to determine if the receptor was functional in our yeast 

system. Overall, if the ligand is able to bind the nuclear receptor and transcription is 

activated, the yeast will survive on selective media. 

To test PXR in chemical complementation, a yeast expression plasmid containing 

the Gal4 DNA binding domain (Gal4DBD) fused to the PXR LBD (pGBDPXR), 

containing a tryptophan marker, was transformed into the yeast strain PJ69-4A [31]. 

Alongside that, a fusion of the nuclear receptor coactivator, the activator for thyroid 

hormone and retinoid receptors (ACTR), fused to the Gal4 activation domain (GAD) 

(pGAD10BAACTR), containing a leucine marker, was transformed into PJ69-4A. As a 

positive control, a plasmid with the holo Gal4 gene (pGBT9Gal4), containing a 

tryptophan marker, was also transformed into PJ69-4A with pGAD10BAACTR. Gal4 is 

a ligand-independent transcription factor [32]. In addition, the plasmid with the 

Gal4DBD fused to the RXRLBD, pGBDRXR, and pGAD10BAACTR were co-

transformed in PJ69-4A, also as controls. 



33 
 

  

 
Figure 2.3. Crystal structure of the LBD of 
apo PXR (PDB 1ILG). All α-helices are 
shown in blue and β-strands are shown in 
yellow. Helix 12 is shown in red. 
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Yeast transformants containing both pGBDPXR and pGAD10BAACTR were 

then analyzed on selective agar media. The selective media used was synthetic complete  

media lacking an essential nutrient. As a control, the transformants were streaked onto 

synthetic complete media lacking leucine and tryptophan (SC-LW), selecting for both 

fusion plasmids. As previously mentioned, the chemical complementation selection 

system uses either the ADE2 or HIS3 selective genes, involved in the adenine and 

histidine biosynthetic pathways, respectively. In adenine or histidine selective media, if 

the small molecule ligand activates the nuclear receptor and turns on transcription of the 

selective gene, the yeast will survive.  

PXR as well as the Gal4 and RXR controls were tested on synthetic complete 

media lacking adenine, leucine, and tryptophan (SC-ALW) with or without the ligand 9-

cis retinoic acid (9cRA), the wild-type ligand for RXR (Figure 2.4). As a ligand 

independent transcription factor, the sectors of the adenine selective plate with Gal4 

display growth with and without 9cRA as well as the nonselective SC-LW plate, as 

expected (Figure 2.4A-C). RXR did not grow on the adenine selective plate (SC-ALW) 

and shows ligand activated growth on the adenine selective plate with 9cRA (Figure 2.4). 

PXR showed growth on all three plates, and is therefore constitutively active, meaning 

the yeast grow on selective media without the presence of an exogenous small molecule 

(Figure 2.4A-C). Due to the observed growth on the SC-ALW plate without ligand, these 

streaking results confirm that wild-type PXR is constitutively active in chemical 

complementation (Figure 2.4B). 
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2.4 PXR Library for Antibiotics 

2.4.1 Library Design 

Despite the constitutive activity of PXR in chemical complementation, 

engineering a PXR variant toward the antibiotics became a two-fold issue. The first goal  

was to create a variant that was not constitutively active, and the second goal was to 

rationally design a library to find a variant able to bind and activate in response to any of 

the β-lactam antibiotics: ampicillin, amoxicillin, penicillin G, oxacillin, cloxacillin, and 

nafcillin. As mentioned in Chapter 1, the nuclear receptor variant can be used in chemical 

complementation to engineer an enzyme to make the antibiotics. 

To design a library of PXR variants able to be activated by the antibiotics, two 

main steps were taken. First, the residues in the receptor’s ligand binding pocket were 

chosen for mutagenesis. These residues are selected based on structural analysis as well 

as on known protein-ligand interactions. Once a list of residues was generated, mutations 

at each of those positions were determined based on sequence alignments focusing on 

evolutionarily conserved residues and the amino acid properties within the wild-type 

protein.  

Amino acid residues from the crystal structures of three different PXRLBD-ligand 

structures, specifically with rifampicin, SR12813, and hyperforin (PDB files 1SKX, 

1ILH, and 1M13, respectively) were analyzed [17-19]. In each structure, residues within 

4.0 Å of the ligand were considered for mutagenesis (Figure 2.5). Four angstroms is an 

optimal distance between the ligand and receptor to generate a list of amino acids that 

contact the ligand. In Figure 2.5, a Venn diagram of the residues common to all three 

structures and within 4 Å of the ligand is shown, useful for determining differences  
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Figure 2.5. Venn diagram of common residues within 4 Å of the ligand 
in three different crystal structures of the PXRLBD with the ligands 
rifampicin, SR12813, and hyperforin (PDB files 1SKX, 1M13, and 
1ILH, respectively). All residues highlighted in yellow were chosen to 
mutate in the PXR library. Phenylalanine 288 and serine 247 were not 
chosen to minimize the library size. 
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among the residues that contact the ligand in the various structures. For example, L209 is 

common between the structures with SR12813 and hyperforin, but not the structure with 

rifampicin, whereas V211, F251 and R410 are common between the structures with 

SR12813 and rifampicin, but not the structure with hyperforin. All of the common 

residues among the three structures were considered for mutagenesis in the library. 

Phenylalanine 288 and serine 247 were not chosen to minimize the library size, resulting 

in L240, M243, F281, C284, Q285, W299, M323, H407, L411, and F420 as the residues 

for the library. 

The types of mutations made at each position were determined based on sequence 

alignments of PXR, VDR, and CAR since these three receptors belong to the same 

subgroup as PXR within the nuclear receptor superfamily (Figure 2.6) [13, 16]. Five of 

the ten positions, L240, M243, F281, M323, and L411, were chosen to be mutated to the 

hydrophobic amino acids leucine, isoleucine, valine, phenylalanine, and methionine to 

maintain the hydrophobic residues in the ligand binding pocket (LBP). Previously, 

Chrenik et al. showed that a mutation of Q285 to isoleucine did not significantly affect 

activity with rifampicin, despite the presence of two hydrogen bonds between Q285 and 

rifampicin [18]. Q285, therefore, was also mutated to a leucine, isoleucine, valine, 

phenylalanine, and methionine to be consistent with maintaining the hydrophobic nature 

of the pocket. Tryptophan 299 was mutated to a phenylalanine based on the presence of a 

phenylalanine at that position in CAR. Due to the nature of the genetic code, a cysteine 

was also introduced into the design at position 299, producing a complete list of changes 

consisting of tryptophan, phenylalanine, leucine, and cysteine at position 299.  At residue 

C284, PXR orthologs and VDR contain a conserved isoleucine, therefore an isoleucine  
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Figure 2.6. Alignment of PXR orthologs. Residues for the library are shown 
in red. Secondary structural elements are shown in yellow above the 
corresponding residues. The Residue numbers are shown every ten residues. 
The species abbreviations are h: human, rb: rabbit, r: rat, m: mouse, fr:frog, 
ma: Macaca mulatta (Rhesus macaque), and f: fish. 
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Figure 2.7. PXR library design. (A) Ligand binding pocket of LBD with 
rifampicin showing residues selected for mutagenesis. (B) Residues chosen to 
mutate in the PXR library and mutations at each position. The subscripts 
indicate amino acids that appear with more than one codon at the randomized 
amino acid position and are represented twice in the design. 
 



41 
 

was incorporated at that position, as well as, serine due to the similarity in size and 

polarity to cysteine. Therefore, the genetic code introduce a phenylalanine, resulting in 

four possible substitutions: cysteine, isoleucine, serine, and phenylalanine. As seen in 

Figure 2.6, position 407 is a glutamine in the PXR orthologs therefore H407 was chosen 

to be mutated to a glutamine (Figure 2.6). In order to maintain the wild-type polarity at 

H407, that position was not mutated to any hydrophobic amino acids. Also based on the 

sequence alignments, position 420 was substituted with phenylalanine, tyrosine, valine, 

and aspartic acid. The theoretical library size at the amino acid level for these designed 

mutations is 2.0 x 106 variants (Figure 2.7). The list of oligonucleotides containing the 

designed changes for the PXR library is shown in Table 2.1. 

2.4.2 PXR Library Construction and Selection in Chemical Complementation 

To create the library of PXR variants, oligonucleotides containing the randomized 

mutations were combined using overlap extension PCR to produce a complete cassette 

with the designed mutations (Figure 2.8) [33]. Each oligonucleotide contains overlap 

regions at the 5’ and 3’ ends that are complementary to the previous and following 

oligonucleotides (Figure 2.8). The fragments hybridize at the complementary ends to 

generate larger cassettes containing the randomized mutations and are amplified via PCR. 

These larger cassettes are also combined through PCR to make the complete insert 

cassette.  

The ends of the complete insert cassette are complementary to regions in the 

background plasmid. The background plasmid was created to eliminate any possible 

contamination from the wild-type receptor when the library is transformed into yeast. To 

make the background plasmid, SacII and KpnI restriction sites were inserted into the  
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wild-type PXRLBD gene in the pGBDPXR plasmid. The section of the gene between 

these two sites was then digested and replaced with a random DNA sequence (Figure 

2.9). When transcription of this gene occurs, multiple STOP codons are produced, 

leading to a nonfunctional protein, thus eliminating background due to the wild-type 

receptor. 

Prior to transforming the PXR library cassette into yeast, the yeast strain 

containing the GAD:ACTR fusion protein was grown to competency. The background 

plasmid is then digested with SacII and KpnI and the library cassette along with the 

digested background vector were added to the yeast cells (Figure 2.10). Through 

homologous recombination of the library cassette with the background plasmid, yeast 

cells containing a library of mutants were plated onto adenine selective media containing 

ligand sets with the β-lactam antibiotics combined with several additional small molecule 

ligands (Figure 2.10). The first ligand set contained the antibiotics amoxicillin, 

cloxacillin, penicillin G as well as the ligand 17-β estradiol. The second ligand set 

contained the antibiotics ampicillin, oxacillin, nafcillin, as well as 9cRA and resveratrol. 

Ligand sets were designed based on similarities in the structures of the ligands. The 

library of mutants was also plated onto SC-LW nonselective media to determine whether 

homologous recombination occurred as well as to determine the library size and diversity 

of mutations in the library. 

The transformation produced a library size of 1.42 x 105 colonies and a 

transformation efficiency of 9.5 x 105 colonies/g vector casette DNA. Approximately 

100 colonies from the adenine selective plates containing the various ligands were  



46 
 

  

 

Fi
gu

re
 2

.1
0.

 S
ch

em
e 

fo
r 

ge
ne

ra
tin

g 
lib

ra
ri

es
 o

f n
uc

le
ar

 r
ec

ep
to

r 
m

ut
an

ts
 in

 y
ea

st
. 

Th
e 

lib
ra

ry
 c

as
se

tte
 is

 tr
an

sf
or

m
ed

 w
ith

 th
e 

cu
t b

ac
kg

ro
un

d 
pl

as
m

id
 a

nd
, t

hr
ou

gh
 

ho
m

ol
og

ou
s r

ec
om

bi
na

tio
n,

 a
 li

br
ar

y 
of

 n
uc

le
ar

 re
ce

pt
or

 m
ut

an
ts

 is
 m

ad
e.

 T
he

 li
br

ar
y 

of
 m

ut
an

ts
 is

 p
la

te
d 

on
to

 n
on

se
le

ct
iv

e 
an

d 
se

le
ct

iv
e 

pl
at

es
, s

el
ec

tin
g 

fo
r l

ig
an

d-
ac

tiv
at

ed
 g

ro
w

th
.  

 



47 
 

  

 

Figure 2.11. PXR Library Streaking. Mutants from the selective plates 
from the PXR library are streaked onto selective plates without ligand 
and nonselective plates to determine if the mutants are constitutively 
active. A-C shows mutants streaked onto an adenine selective plate 
without ligand. All colonies display growth on plates A-C, and therefore, 
all variants are constitutively active. Plates D-F show the same mutants 
streaked onto synthetic complete media lacking leucine and tryptophan 
(SC-LW) nonselective plates. 
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streaked onto adenine selective plates without ligand (SC-ALW) as well as nonselective 

plates (SC-LW). The expected result was to obtain a variant that was not constitutively 

active and ligand-activated by one of the ligands on the plates. Streaking potential 

candidates showed that all variants were constitutively active, showing growth on the 

adenine selective plate without ligand (Figure 2.11). 

Colonies were obtained and sequenced alongside variants from the nonselective 

plates, providing sequencing for approximately 0.02 % of the total library (Table 2.2). 

Sequencing confirmed mutational diversity at each of the amino acid positions in the 

library, however all variants from the nonselective plates contained frame shifts. The 

diversity in the sequencing can be seen, for example, at C284, which had multiple 

variants with a mutation to a serine in the selective variants in comparison to those seen 

in the nonselective variants. Additionally, phenylalanine 420 maintained the wild-type 

phenylalanine at that position for most of the selective variants and had greater diversity 

in the mutations for the nonselective variants, demonstrating a lack of tolerance for 

change at that position. Despite the overall sequence diversity, definitive conclusions 

about the tolerance at each position cannot be made due to the presence of the frame shift 

mutations found from sequencing of variants from the nonselective plates. 

Although the results did not produce any variants that were not constitutively 

active, this was not surprising due to the activity of wild-type PXR in chemical 

complementation. However, these results display the power of genetic selection through 

ability to select functional versus nonfunctional protein variants as well as obtain 

sequence diversity. Wild-type PXR containing its own DBD is not constitutively active in  
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mammalian cells.  However, the Gal4DBD:PXRLBD construct that was used in chemical 

complementation had not been tested previously to determine whether in cell culture this 

fusion protein was ligand-activated. To confirm that PXR was only constitutively active 

in the chemical complementation selection system, the Gal4DBD:PXRLBD was tested 

for its activity in mammalin cell culture. 

2.5 PXR in HEK293T Mammalian Cells 

 Full length PXR containing the DBD and LBD is shown to be ligand activated in 

mammalian cells by ligands ranging from the large ligand rifampicin to smaller steroid-

like ligands, such as pregnenolone [18, 21, 34]. In chemical complementation, the Gal4 

DNA binding domain (GBD) is fused to the PXR LBD, however, this fusion had not 

been tested in mammalian cells. The GBDPXRLBD gene was therefore cloned  

into the mammalian expression vector pCMX, which contains a cytomegalovirus (CMV) 

promoter, using SacII and NotI restriction sites. This plasmid, pCMXGBDPXRLBD, was 

transfected into human embryonic kidney (HEK293T) cells along with a reporter plasmid 

containing four Gal4 response elements controlling a luciferase gene (p17*4TATALuc), 

as previously described. When ligand binds the LBD and the Gal4 DBD binds the Gal4 

response elements, the luciferase gene should be expressed and luciferase activity can be 

measured. As a control, a plasmid with a β-galactosidase gene (pCMXβgal) was 

transfected for use in a β-galactosidase colormetric assay to normalize the GBDPXRLBD 

activation levels [35]. 

A dose response using rifampicin was performed using the HEK293T mammalian 

cell line. PXR was shown to be activated by rifampicin with a fold activation level of 

22±5 and an EC50 of approximately 3 µM, which is comparable to published values  
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Figure 2.12. Activation profiles in HEK293T cells for Gal4DBD-PXRLBD 
(GBDPXR) with the Gal4RE reporter controlling renilla luciferase (RLU) in 
response to rifampicin and 9cRA. 
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around 5 µM (Figure 2.12) [17, 18]. As a control, PXR was also tested in a dose response 

with the RXR ligand 9cRA. No activation was observed in response to 9cRA, as 

expected, since this is the ligand for RXR. An interesting fact determined from this set of 

experiments is that the PXR functions as a homodimer when fused to the Gal4 DBD in 

mammalian cells. Overall, the results have shown that PXR is ligand activated in 

mammalian cells and confirms that PXR is constitutively active in yeast. One possible 

reason for the constitutive activity observed in yeast is an endogenous yeast metabolite 

activating PXR not present in mammalian cells. 

2.6 Summary and Future Work 

 The goal of this work was to engineer a PXR variant able to bind novel small 

molecules, specifically the β-lactam antibiotics, through analysis of a PXR library in  

chemical complementation. PXR was found to be constitutively active; therefore, the first 

step was to engineer a PXR variant to no longer be constitutively active. Sequencing 

results of the library showed variants with sequence diversity at the randomized amino 

acid positions. Streaking results, however, showed that all mutants were constitutively 

active, showing growth on the adenine selective plate without ligand. The constitutive 

activity with PXR was only observed in yeast. When tested in mammalian cell culture, 

PXR showed ligand activation with rifampicin. 

Due to the constitutive activity seen in the PXR library, and to continue pursuing 

a receptor with the ability to bind and activate in response to the β-lactam antibiotics, 

several different approaches were taken. First, a knockout yeast strain was developed to 

possibly eliminate metabolites that could be activating PXR and leading to PXR’s 

constitutive activity. Secondly, due to PXR’s constitutive nature in yeast, a new receptor, 
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the human estrogen receptor alpha (hERα), was chosen as the target for protein 

engineering with chemical complementation.  

2.7 Materials and Methods 

2.7.1 Strains 

 PJ69-4A (MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4∆ gal80∆ 

LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ), was a kind gift from Dr. Philip 

James (University of Wisconsin, Madison). The PJ69-4A strain contains three reporter 

genes, HIS3, ADE2, and lacZ, which are under the control of different Gal4 inducible 

promoters. 

2.7.2 Plasmids and Primers 

pCMX-hRXRα was a kind gift from Dr. Ronald Evans (Salk Institute for 

Biological Studies, La Jolla, CA) [103]. pGBDRXRα (containing residues 1-151 of the 

Gal4 gene and residues 44-462 of the RXR gene) was a kind gift of Dr. Kenji Miyata 

(McMaster University; Ontario, Canada) [104]. 

The plasmid pRESTA-PXR (containing residues 130-434) was obtained from Dr. 

Mathew Redinbo (University of North Carolina, Chapel Hill, NC) and was previously 

cloned into pGBD [36]. 

To make the pGBDPXR background plasmid, QuikChange™ (Stratagene) site-

directed mutagenesis was used to insert SacII and KpnI sites into the PXR gene in 

pGBDPXR, producing the pGBDPXRSacIIKpnI plasmid. The plasmid was digested with 

SacII and KpnI, removing 500 bp of the PXR gene. A 145 bp random sequence of DNA 

was amplified from the plasmid pMSCVeGFP. The random DNA sequence was digested 
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with SacII and KpnI and ligated into the pGBDPXRSacIIKpnI plasmid between the two 

restriction sites, generating three STOP codons. The resulting plasmid was confirmed by 

sequencing and named pGBDPXRbackground (Operon, Huntsville, AL) 

To make pCMXGBDPXRLBD, the GBDPXRLBD fusion was amplified from 

pGBDPXRLBD using PCR with the following primers: GBDSacIIFor 

5’tccccgcggatgaagctactgtcttctatcgaacaag3’ and PXRNotIRev 

5'aaggaaaaaagcggccgctcagctacctgtgatgccgaac3'. The plasmid pCMXrERβ as well as the 

GBDPXRLBD cassette were digested with SacII and NotI, and ligated to create the 

pCMXGBDPXRLBD plasmid. 

2.7.3 Ligands 

 9-cis retinoic acid (MW=300.44 g/mol) was purchased from ICN Biomedicals 

(Aurora, OH). Amoxicillin (MW=365.41 g/mol) and Oxacillin (MW = 423.40 g/mol) 

were purchased from Fluka (Milwaukee, MI). Ampicillin (MW=371.4), Penicillin G 

(MW=372.48 g/mol), Cloxacillin (MW=475.9 g/mol), and Nafcillin (MW=454.5 g/mol) 

were purchased from Sigma (St. Louis, MO). Rifampicin (MW=823 g/mol) was 

purchased from Sigma (St. Louis, MO). 10 mM stocks of each ligand were dissolved in 

80% ethanol:20% DMSO and stored at 4 °C. 

2.7.4 PCR reactions 

Oligonucleotides were ordered from Operon (Huntsville, AL) with overlapping 

ends shown in Table 2.2. To create the cassette containing the randomized codons at the 

ten positions, overlap extension PCR was utilized. Through PCR, the fragments can be 

were amplified in a PCR reaction containing 100 ng of each oligo, 125 ng of each primer, 

100 mM dNTPs, and 1 µL Pfu polymerase. The PCR program was 95 °C for 2 minutes, 
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95 °C for 1 minute, 55 °C for 1 minute, 72 °C for 1 minute, repeated 30 times followed 

by 72 °C for 2 minutes. The resulting cassette was 788 bp and was gel purified using the 

Zymo Gel DNA Recovery Kit (Zymo Research, Orange, CA). 

2.7.5 Yeast Transformations 

Synthetic complete (SC) media were made as previously described [37]. Selection 

plates were made of synthetic complete media minus any of the following nutrients: 

histidine, leucine, tryptophan, adenine, and uracil. The pGBDPXR background plasmid 

was digested with SacII and KpnI and transformed with the PXR library cassette into 

PJ69-4A containing pGAD10BAACTR using the lithium acetate transformation method 

as described previously [38, 39]. Cells were plated onto synthetic complete media lacking 

leucine and tryptophan (SC-LW) and two sets of synthetic complete media lacking 

adenine, leucine, and tryptophan (SC-ALW) containing the antibiotics and incubated at 

30 °C for 3 days. The first ligand set contained the antibiotics amoxicillin, cloxacillin, 

penicillin G as well as the ligand 17-β estradiol. The second ligand set contained the 

antibiotics ampicillin, oxacillin, nafcillin, as well as 9cRA and resveratrol. 

Transformation efficiency was determined from the number of colonies on the plate per 

µg of vector DNA added to each plate. 

2.7.6 Transfection in HEK293T Cells 

The transfection assay was performed as previously described [35]. Briefly, the 

pCMXGBDPXRLBD plasmid was transfected into human embryonic kidney 

(HEK293T) cells (ATCC, USA) with a reporter plasmid p17*4TATALuc, containing 

four Gal4 response elements controlling a Renilla luciferase gene as well as the 
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pCMXβgal plasmid, containing a β-galactosidase gene under the control of a CMV 

promotor. The cationic lipid used was lipofectamine 2000 (Invitrogen, USA). 
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CHAPTER 3 

KNOCKOUT YEAST STRAIN AND PROTEIN EXPRESSION 

 

3.1 PXR is Activated by Natural and Synthetic Steroids 

Although the primary function of PXR is the removal of a large variety of 

xenobiotics from the body, PXR is also known as the steroid xenobiotic receptor (SXR) 

because of this receptor’s ability to be activated in response to naturally occurring 

steroids such as pregnenolone, progesterone, 17α-hydroxyprogesterone, cortisol, and 

other intermediates in the steroid biosynthetic pathway in mammalian cells [1-4]. This 

receptor is also activated by synthetic steroids such as pregnenolone16α-carbonitrile 

(PCN), dexamethasone, and RU486 [1, 3, 4]. As mentioned in Chapter 2, PXR, through 

interaction with steroids, mediates regulation of bile acid homeostasis [5, 6]. Thus, this 

promiscuous receptor not only functions as a xenobiotic receptor, but also plays a 

significant role in steroid metabolism [5, 6].  

In Chapter 2, when PXR was tested in the chemical complementation yeast 

selection system, this receptor was found to be constitutively active. One hypothesis for 

the observed constitutive activity of PXR in the chemical complementation is the 

presence of an endogenous yeast metabolite activating the receptor. Metabolites in yeast 

and mammalian cells vary due to the different metabolic pathways of these two 

oraganisms. Cholesterol is the primary sterol in mammalian cells, whereas ergosterol 

serves this role in Saccharomyces cerevisiae (Figure 3.1) [7-13]. 
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Figure 3.1. Structures of cholesterol and ergosterol. 
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3.2 The Ergosterol Biosynthetic Pathway in Yeast 

The yeast biosynthetic pathway from squalene to ergosterol consists of fifteen 

steps involving twelve of different enzymes (Figure 3.2) [8, 9, 11-15]. The enzymes for 

each step in this pathway, designated ERG, have been characterized [8, 11, 13]. Several 

of the ERG genes, ERG24, ERG6, ERG2, ERG3, ERG5, and ERG4, are considered 

nonessential, such that when the gene is deleted or the enzyme is inhibited, the yeast are 

still able to survive despite various side effects, such as disruption of membrane 

permeability, mating and other cellular functions [11, 13, 15, 16]. In the biosynthetic 

pathway, the ERG24 gene, encoding the sterol C-14 reductase, is the most upstream 

nonessential gene in the synthesis of ergosterol [13, 17-20]. Previous work has shown 

that the ERG24 null yeast produce an accumulation of the steroid ignosterol, a steroid not 

toxic to the yeast [13, 21].Thus, eliminating the ERG24 gene and consequently the sterol 

C-14 reductase enzyme from the biosynthetic pathway could lead to the disruption of a 

number of the steroid metabolites, perhaps removing the metabolite binding PXR. The 

hypothesis was made that by creating a new strain containing an ERG24 knockout, 

downstream metabolites would not be produced and eliminating the endogenous ligand 

activating PXR. 

3.2.1 ERG24 Knockout Design 

As the first nonessential gene in the yeast ergosterol biosynthetic pathway, 

ERG24 was chosen to be deleted from the yeast strain BAPJ69-4A [8, 22, 23]. BAPJ69-

4A, a derivative of the strain PJ69-4A, was created to contain three selective markers 

ADE2, HIS3, and URA3 as well as the lacZ gene controlled by Gal4 promoters [22-24]. 

In order to determine the effectiveness of the gene knockout, the gene is replaced with a 
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selectable marker [25, 26]. Wach et al. developed a system where the kanamycin (Kan) 

gene is used as the selectable marker to disrupt the gene of interest, rendering yeast 

resistant to geneticin [26, 27]. Geneticin is an antibiotic, that inhibits the elongation step 

of protein synthesis [28]. In order for yeast to survive in the presence of geneticin, a 

resistant gene, such as kanamycin needs to be present. If the gene of interest has been 

replaced with the Kan gene, the yeast should be able to grow in the presence of geneticin. 

Therefore, to develop the knockout strain, the ERG24 gene was replaced by a Kan 

selection marker [26, 27, 29].  

To disrupt the ERG24 gene, a cassette containing the Kan gene was constructed. 

The Kan insert cassette (KanIC) should hypothetically contain approximately 350 base 

pairs of upstream (UF) and downstream (DF) regions of the target ERG24 gene. 

Approximately 30 base pairs of the beginning and end of the ERG24 gene, and a Kan 

gene inserted in place of the remainder of the ERG24 gene (Figure 3.3). Experimentally, 

to create the cassette containing the Kan gene for the knockout strain several different 

PCR reactions were required.  

First, the genomic DNA of the BAPJ69-4A yeast strain was isolated using a 

Zymo Yeast Genomic DNA Prep Kit (Zymo Research, Orange, CA). The genomic DNA 

was used as the template in a PCR reaction to isolate the UF and DF regions of 

approximately 300-400 base pairs upstream and downstream of the ERG24 gene (Figure 

3.3A). These UF and DF PCR fragments contain 20-40 base pairs of the N-terminal and 

C-terminal ends of the ERG24 gene, respectively, as well as a 20-30 base pair sequence 

of the Kan gene (Figure 3.3A). The terminal sequences of the ERG24 gene are required  



65 
 

 

Figure 3.3. Scheme for making the cassette containing the disrupted 
ERG24 gene. (A) Upstream and Downstream flanking regions (UF and DF) 
from the ERG24 gene are made through PCR. (B) The UF and DF products are 
used in a PCR reaction with the kanamycin (Kan) gene to generate the 
complete cassette to use in the transformation to make the knockout strain. 
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 Figure 3.4. KanIC PCR products. (A) Gel showing concentration of 
KanIC PCR product. Band size should be approximately 1950 base pairs. 
(B) Gel showing concentration of KanIC from secondary PCR of product 
from gel in A. 
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so enough of the ERG24 sequence is present for homologous recombination to occur with 

the gene targeted for disruption [26, 27]. As seen in Figure 3.3B, once the  

UF and DF fragments were created, the fragments were used as primers in a PCR 

reaction with a plasmid containing the Kan gene (Figure 3.3B). The PCR reaction did not 

produce the expected KanIC cassette and therefore a different PCR reaction was 

designed. 

The goal therefore was to generate the full KanIC as a “full pot” synthesis through 

a PCR containing all the necessary components. This reaction contained the genomic 

yeast DNA, the pET28a plasmid containing the Kan gene, all primers needed to make the 

UF and DF fragments, and two the primers needed to amplify the Kan gene. Through 

PCR, the fragments can be amplified and hybridize with the complementary ends, 

producing a fragment that is approximately 1,950 base pairs. As seen in Figure 3.4A, an 

insert cassette containing the correct band size was made (Figure 3.4A). To increase the 

concentration of the KanIC, a secondary PCR reaction was performed using the KanIC as 

the template in a reaction containing the outermost primers for the full cassette and 

confirmed via sequencing (Figure 3.4B).  

3.2.2 Strain Construction and Analysis 

Prior to transforming the KanIC into the BAPJ69-4A yeast strain, the optimal 

concentration of geneticin to use for the knockout strain was determined. Previously, 

Wach et al. had assessed the optimal concentration of geneticin to be 0.2 mg/ml with the 

yeast strain [27]. To determine the optimal concentration of geneticin for BAPJ69-4A, 

the strain was grown on a rich yeast media containing yeast extract, peptone, and 

dextrose (YPD) with a range of geneticin concentrations above and below 0.2 mg/mL. A  
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Figure 3.6. Growth assay with BAPJ69-4A yeast strain in YPD media 
with increasing concentrations of geneticin. 
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YPD plate without geneticin was used as a control (Figure 3.5). The yeast should survive 

on the YPD plate and should not grow on the media with the appropriate concentration of 

geneticin required to kill the parent BAPJ69-4A strain. No growth was observed for 

BAPJ69-4A on the YPD plates containing geneticin at concentrations 0.08 mg/mL and 

above (Figure 3.5). A liquid growth assay was also performed with varying 

concentrations to confirm the optimal geneticin concentration needed to make the 

knockout strain. No growth was observed at 0.09 mg/mL geneticin, therefore this 

concentration was used in the yeast transformation with the KanIC (Figure 3.6). If 

integration of the KacIC occurs, the new strain should be able to grow on media 

containing 0.09 mg/mL geneticin. 

The KanIC containing the disrupted gene was transformed into BAPJ69-4A using 

the lithium acetate transformation protocol as previously described [30, 31]. Yeast 

transformants were grown on YPD media containing 0.09 mg/mL geneticin to determine 

if integration of the Kan gene at the ERG24 gene in the genome occured via homologous 

recombination. Seventy colonies grew on the YPD plate containing geneticin and were 

further analyzed for resistance to the antibiotic through confirming growth on a YPD 

plate containing 0.09 mg/ml geneticin. All colonies displayed growth on the YPD plate 

and approximately 25 showed growth on the YPD plate containing geneticin.  

Ten of the potential knockout strain mutants were tested for integration. A 

genomic PCR was performed on these 10 mutant strains followed by a PCR to determine 

if the KanIC was integrated based on the size of the PCR fragment. Secondary PCRs for 

the best four mutants from this result was performed. One variant, called I1, showed a 

band with the correct size, and the strain was further characterized alongside BAPJ69-4A  
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Figure 3.7 Gel of original KanIC PCR product and 
PCR cassette from genome prep of I1 potential 
knockout strain. 
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by streaking onto YPD plates with and without geneticin to confirm resistance to 

geneticin (Figure 3.7). Both strains grow on the YPD plate, as expected. BAPJ69-4A did 

not show growth on the YPD plate with geneticin, whereas I1 shows growth on the plate  

containing geneticin (Figure 3.8). However, sequencing results of the I1 fragment showed 

a hybrid of the knockout strain and the parent BAPJ69-4A strain. This can occur when 

two haploid cells mate, resulting in diploid yeast, containing two genomes [32]. In this 

case, the hypothesis is that the two strains, the parent and the knockout, mated, resulting 

in a hybrid strain containing both genomes. The complete experiment with the 

transformation of the KanIC was repeated to obtain a complete knockout strain, but no 

positive colonies were obtained.  

Despite sequencing showing I1 as a hybrid strain, the GBDPXRLBD construct 

was tested for constitutive activity in the hybrid strain. The GBDPXRLBD fusion 

plasmid (pGBDPXRLBD), containing a tryptophan marker, and the GAD:ACTR fusion 

(pGAD10BAACTR) plasmid, containing a leucine marker, were transformed into the 

hybrid strain as performed in Chapter 2 and grown on synthetic complete media lacking 

leucine and tryptophan with 0.09 mg/mL geneticin (SC-LW+geneticin), to maintain the 

ERG24 knockout containing the Kan gene. As a control, PXR was also transformed into 

the parent BAPJ69-4A strain. All colonies from the SC-LW+geneticin plate were 

streaked for constitutive activity onto a synthetic complete media lacking adenine, 

leucine, and tryptophan with 0.09 mg/mL geneticin (SC-ALW+geneticin) plate. 

Streaking showed growth for all colonies, confirming that PXR was still constitutively 

active in the hybrid strain (Figure 3.9). 
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Figure 3.8 Streaking BAPJ69-4A and I1 potential knockout 
strain on a YPD nonelective plate and a YPD plate containing 
0.09 mg/mL geneticin. Both yeast strains grow on the YPD plate. 
BAPJ69-4A does not show growth on the plate containing geneticin, 
whereas the potential knockout strain displays growth. 
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Figure 3.9. Streaking GBDPXRLBD in the hybrid strain and 
the BAPJ69-4A parent strain on synthetic complete media 
lacking adenine, leucine, and tryptophan containing 0.09 
mg/mL geneticin (SC-ALW+Geneticin). All PXR transformants 
in the BAPJ69-4A and the hybrid strain show growth. 
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In summary, we constructed a cassette designed to knockout the ERG24 gene in 

the strain BAPJ69-4A and replace the gene with a Kan gene to allow the yeast to grow on 

plates containing the antibiotic geneticin. A strain was engineered that grew on geneticin 

selective plates, however sequencing revealed a hybrid strain between the parent strain 

and one with the Kan gene integrated into the ERG24 gene. In addition, PXR was still 

determined to be constitutively activity in the hybrid strain. Thus, we could not determine 

if an endogenous steroid is activating PXR in chemical complementation. The next step 

was identifying the ligand binding and activating PXR. Therefore, PXR was 

overexpressed and purified from yeast to identify the ligand bound to the LBD.  

3.3 Expression and purification in yeast 

3.3.1 Yeast Expression using pESCtrp 

 To express PXR in yeast, the PXRLBD alone and the GBDPXRLBD fusion 

containing N-terminal His tags were cloned into the yeast expression plasmid pESCtrp 

using restriction enzymes NotI and SpeI, placing the PXR gene under the control of a 

Gal10 promoter. The Gal10 promoter in the plasmid can be induced with galactose [33]. 

The resulting plasmid, pESCtrpGBDPXRLBD, containing a tryptophan marker, was 

transformed into PJ69-4A with pGAD10BAACTR, containing the GAD:ACTR fusion 

protein, as before. As a control, an empty pESCtrp vector was transformed with 

pGAD10BAACTR.  

Transformants were grown to competency in synthetic complete media lacking 

leucine and tryptophan (CM-LW) media, selecting for both plasmids, and induced in 

media containing 2 % galactose overexpressing the PXR gene. After cell lysis, the 

GBDPXRLBD protein was purified using Clontech Talon ® Co2+ resin (Mountain View, 
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CA). To obtain pure protein, the soluble fraction containing all the proteins is subjected 

to a column containing the Co2+ resin. The GBDPXRLBD protein contains a histidine 

sequence, which is able to bind the cobalt resin, and pure protein is eluted. A buffer 

containing imidazole is used, where the desired 52 kDa protein is observed on a SDS-

PAGE protein gel. As shown in Figure 3.10, the protein was present in both the initial 

soluble and insoluble fractions. However, the purified and dialyzed fractions only show a 

band approximately 30 kDa. The same band was observed in the control sample 

containing the empty pESCtrp vector (Figure 3.10). Several tactics were taken to 

troubleshoot and enhance expression of PXR. Varying galactose concentrations during 

the induction time or varying growth times did not produce a protein band with the 

correct size (Data not shown).  

Yeast are not optimal organisms for overexpression of a protein, however RXR 

has successfully been expressed, purified in yeast, and tested for activation with 9cRA 

[34]. One hypothesis for the lack of a purified protein on the gel could be due to 

expression levels. Expression is strain dependent, and using galactose induction does not 

seem to suit the BAPJ69-4A strain. To troubleshoot the low expression levels, a new 

plasmid lacking galactose-dependent induction was used. 

3.3.2 Yeast Expression using pUGPD 

 The pUGPD vector, containing a glyceraldehyde 3-phosphate dehydrogenase 

(GPD) promoter, was obtained. This promoter is continually expressed, and does not 

require induction [35, 36]. The GBDPXRLBD gene was cloned into pUGPD using the 

NotI restriction site and transformed with the pGAD10BAACTR plasmid into BAPJ69-  
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Figure 3.10. Gel of protein expression using pESCtrpGBDPXRLBD vector 
with induction using galactose. 
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4A. The pUGPD empty vector with pGAD10BAACTR was used as a negative control. 

Yeast cells were plated onto synthetic complete media lacking leucine and uracil (SC-

LU), selecting for the GAD:ACTR and pUGPDGBDPXRLBD vectors. 

 To express GBDPXRLBD in the pUGPD vector, transformants were grown in 25 

mL of SC-LU media at 30 °C overnight. Various lysis mechanisms were used to 

determine which method would produce a higher overall protein yield in the soluble 

fraction. These lysis methods included different lysis buffers, varying concentration of 

zymolase, incubation times, and the use of glass beads. The protein gel with the soluble 

and insoluble fractions for each method showed similar levels of protein concentration 

for five different lysis methods (data not shown). The soluble fraction from the first lysis 

method was purified as done previously. However, low levels of protein concentration 

were observed in all fractions, and as seen in Figure 3.11, the same incorrect 30 kDa band 

is observed in the elution fraction (Figure 3.11).  

3.4 Summary and Future work 

In summary, the design of an ERG24 knockout strain used to remove the 

constitutive activity seen with PXR produced a hybrid strain. To identify the potential 

small molecule binding and activating PXR in yeast, PXR was overexpressed and 

purified from the yeast strain. Two different yeast expression plasmids were used, one 

containing a galactose inducible promoter and one with a constitutively expressed 

promoter, as well as multiple lysis methods. However, the protein concentrations 

remained low and troubleshooting did not enhance protein levels. Therefore, since PXR 

was constitutively active in chemical complementation, this receptor is not an ideal  
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Figure 3.11. Gel of purified protein from expression in yeast with 
pUGPDGBDPXRLBD. A 30 kDa artifact is indicated with the red box. 
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candidate for protein engineering. Thus, the target nuclear receptor was switched to the 

human estrogen receptor alpha (hERα). 

3.5 Materials and methods 

3.5.1 Yeast Strain 

 The yeast strain used was the BAPJ69-4A strain developed in the lab with the 

genotype MATa trp1-901 leu2-3, 112 ura3-52 his3-200 gal4∆ gal80∆ LYS2::GAL1-HIS3 

GAL2-ADE2 met2::GAL7-lacZ ho::GAL1-URA3 [22, 23]. 

3.5.2 Plasmids 

 The pGBDPXRLBD and pGAD10BAACTR plasmids are described in Chapter 2. 

The pET28a plasmid was used to obtain the kanamycin gene used in to make the 

knockout strain. Initial protein expression experiments in yeast were performed using the 

pESCTrp plasmid (Stratagene). The pUGPD vector was a kind gift from Dr. Yuri 

Chernoff’s lab (Georgia Institute of Technology, Atlanta, GA). All sequencing was 

performed at Operon (Huntsville, AL). 

3.5.3 Reagents 

CelLytic-Y yeast cell lysis/extraction reagent and the galacose were purchased 

from Sigma (St. Louis, MO). The Talon ® affinity cobalt resin was purchased from 

Clontech (Mountain View, CA). Geneticin (G418) was purchased from Sigma (St. Louis, 

MO). 

3.5.4 Primers and PCR Reactions 

The PCR reactions to obtain the upstream flanking (UF) and downstream flanking 

(DF) regions of the ERG24 gene contained 10x Pfu polymerase buffer, 100 mM dNTPs, 

100 ng of genomic DNA,  125 ng of each primer, and 1 µL Pfu polymerase. The PCR 
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program was 95 °C for 2 minutes, 95 °C for 1 minute, 61 °C and 55 °C for the UF and 

DF regions, respectively for 1 minute, 72 °C for 1 minute, repeated 25 times followed by 

72 °C for 2 minutes. These cassettes were gel purified using the Zymo Gel DNA 

Recovery Kit (Zymo Research, Orange, CA). 

The “full pot” PCR reaction contained 10x Pfu polymerase buffer, 100 mM 

dNTPs, 100 ng of genomic DNA, 50 ng of pET28a, 125 ng of each primer, and 1 µL Pfu 

polymerase. The PCR program was 95 °C for 2 minutes, 95 °C for 1 minute, 55 °C for 1 

minute, 72 °C for 2 minute, repeated 25 times followed by 72 °C for 3 minutes.  

To create pESCtrpGBDPXRLBD, the GBDPXRLBD fusion was amplified from 

pGBDPXRLBD using PCR with the following primers: GLBDNotI_HisFor 5’ 

aaggaaaaaa gcggccgc atgatg caccaccaccaccaccac3’ and PXRSpeIRev 5' 

ctagactagtctcagctacctgtgatgccgaac3'. The pESCtrp plasmid as well as the GBDPXRLBD 

cassette were digested with NotI, and SpeI and ligated to create the 

pESCtrpGBDPXRLBD plasmid. 

To create pUGPDGBDPXRLBD, the GBDPXRLBD fusion was amplified from 

pGBDPXRLBD using PCR with the following primers: GLBDNotI_HisFor 5’ 

aaggaaaaaa gcggccgc atgatg caccaccaccaccaccac3’ and PXRNotIRev 

5'aaggaaaaaagcggccgctcagctacctgtgatgccgaac3'. The plasmid pUGPD plasmid as well as 

the GBDPXRLBD cassette were digested with NotI, and ligated to create the 

pUGPDGBDPXRLBD plasmid. 

3.5.5. Transformation of KanIC 

The KanIC (6 µg) was transformed into BAPJ69-4A using the lithium acetate 

protocol [31]. Yeast cells containing the transformed KanIC were added to YPD media 
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and incubated for 3 hours at 30 °C with shaking at 300 rpm. A suspension containing 1.5 

mL of cells was transferred into a microcentrifuge tube and pelleted at 5,000 rpm for 1 

minute. One milliliter of the supernatant was removed and the cells were resuspended in 

the remaining volume. Cells were plated onto YPD plates containing 0.09 mg/mL 

geneticin and grown at 30 °C for 5 days. Colonies containing the potential ERG24 

knockout strain were streaked onto a YPD plate and a YPD plate containing 0.09 mg/mL 

geneticin and grown at 30 °C for 2 days. 

3.5.6 Expression and Purification 

Transformants containing pGBDPXRLBD and pGAD10BAACTR plasmids were 

inoculated into 5 mL of synthetic complete media lacking leucine and tryptophan SC-

LW) and grown at 30 °C overnight with shaking at 300 rpm. This overnight culture was 

used to inoculate a 200 mL culture of SC-LW media and the culture was grown to 

competency. The larger culture was pelleted by centrifugation at 4,000 rpm for 7 minutes 

and washed with water to remove all media. Cells were added to 300 mL of SC-LW 

media containing 2 % galactose as the carbon source to induce expression of the 

GBDPXRLBD gene and grown at 30 °C for 90 hours with shaking at 300 rpm. After 70 

hours of growth, an additional 1 % galactose was added to the culture. The culture was 

pelleted by centrifugation at 8,000 rpm for 15 minutes, and the cells were lysed through 

resuspension in a CelLytic-Y yeast cell lysis/extraction reagent from Sigma (St. Louis, 

MO) followed by incubation with zymolase. The cell lysate was purified using the Talon 

® affinity cobalt resin (Mountain View, CA). 

To express GBDPXRLBD in the pUGPD vector, transformants were grown in 25 

mL of SC-LU media at 30 °C overnight with shaking at 300 rpm. The 25 mL culture was 
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separated into 5 mL volumes; each lysed using a different lysis method to determine 

which would produce a higher overall protein yield in the soluble fraction. 

SDS-PAGE gels of the protein fractions used 0.05 % SDS in trisglycine buffer 

through a 12 % polyacrylamide gel with a 4 % stacking gel. 
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CHAPTER 4 

ENGINEERING NUCLEAR RECEPTORS TOWARD ANTIBIOTICS: HUMAN 

ESTROGEN RECEPTOR ALPHA 

4.1 Human Estrogen Receptor alpha 

The estrogen receptor (ER) is a member of the nuclear receptor superfamily of 

ligand-dependent transcription factors [1-4]. The two ER isotypes, ERα and ERβ, each 

play different roles in metabolic processes [1-10]. Both human ERα (hERα) and human 

ERβ (hERβ) are expressed in the breast, bone, cardiovascular system, and brain, however 

hERα is mainly expressed in the breast, uterus, and bone and therefore is involved in 

mammary gland development and bone density [1, 2]. As transcription factors, these 

receptors are also involved in many diseases, playing significant roles in osteoporosis, 

cardiovascular disease and the development of breast cancer [1, 11, 12].  

The wild-type ligand for hERα and hERβ is 17-β estradiol (E2), which mediates 

growth and differentiation. In addition to E2, hERα has been shown to activate 

transcription through a broad range of compounds, including the isoflavone genistein, 

resveratrol, bisphenol A, and the synthetic estrogens diethylstilbestrol (DES) and 

propylpyrazole (PPT) (Figure 4.1) [1, 12-17]. Both hERα and hERβ, however, have 

varying ligand specificities, despite the fact that these two estrogen receptor subtypes 

share common residues within their binding pockets [1, 14, 16, 18-21]. For example, E2 

has a higher affinity for hERα whereas the phytoestrogen genistein preferentially 

activates hERβ over hERα [7, 14, 22, 23]. The ligand binding domains have 58 % amino 

acid sequence identity, but only two residues differ within the pocket [24]. L384 in hERα 

is a methionine in hERβ and M421 in hERα is an isoleucine in hERβ. Both receptors  
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Figure 4.1. Various ligands for the human estrogen receptor alpha (hERα). 
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maintain a methionine in the pocket, suggesting the important role this amino acid plays 

in ligand activation of these two isotypes of the estrogen receptor [3]. In addition, hERa 

is known to localize in the cell membrane, leading to activation of different signaling 

pathways [25]. 

Some ligands modulate ER activity differently in varying tissues and are known 

as selective estrogen receptor modulators (SERMs) [1, 12, 26]. For example, 4-hydroxy 

tamoxifen (OHT), currently used to treat ER-positive breast cancer cells, acts as an 

antagonist in breast cancer cells, but as an agonist in bone, uterus, liver, and the 

cardiovascular system [1, 19, 27, 28]. The dual nature of this ligand adds a level of 

complexity for drug discovery and development. 

Like other nuclear receptors, hERα consists of a DNA-binding domain (DBD) 

fused to a ligand-binding domain (LBD) through a hinge region [3, 4, 7, 29]. The LBD 

folds into an α-helical sandwich containing twelve α-helices, forming a pocket of 

approximately 450 Å3 [3, 8, 30]. Upon ligand binding, the terminal helix, helix 12, is 

repositioned into an active conformation, making contacts with helices 3, 4/5, and 10/11, 

closing the ligand binding pocket (Figure 4.2) [3, 22, 31]. The ligand binding pocket 

(LBP) is formed from helices 3, 7, and 12, although residues from additional helices 

make contacts with the ligand [3, 29, 32, 33]. This conformational change allows 

coactivator proteins to bind to the LBD and recruit transcriptional machinery to turn on 

transcription [4, 34-39].  

 Ligand interaction with hERα occurs through specific hydrogen bonds as well as 

hydrophobic contacts among residues within the LBP [3, 8]. Three residues form the  
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Figure 4.2. Crystal structure of the hERα LBD with 17 β-
estradiol  (E2) (PDB 1ERE). Alpha helices are shown in blue 
and the β-sheet is shown in yellow. The ligand is shown in green 
sticks with spheres. 
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hydrogen bond contacts between hERα and E2. A glutamate in helix 3, E353, an arginine 

in helix 6, R394, and a water molecule form a network of hydrogen bonds with the 3- 

hydroxy group of E2 at one end of the pocket. Histidine 524, located in helix 11 on the 

opposite side of the pocket, also forms a hydrogen bond with the 17-hydroxy group of E2 

[3, 8, 10, 29, 31]. Additional residues in the pocket that surround the steroid ring system 

of E2 make conserved hydrophobic contacts with the ligand [8, 29]. One characteristic of 

hERα is the high sensitivity this receptor has toward E2, having a subnanomolar affinity 

for the wild-type ligand [11, 40]. Comparison of crystal structures of the LBD with a 

variety of ligands, mutational analysis, and modeling of hERα have identified important 

residues involved in ligand interaction [8, 11, 26, 29, 40-51]. These studies also 

demonstrate different residues responsible for ligand specificity and sensitivity [5, 47, 52-

57]. Understanding the ligand-receptor interactions is essential for elucidating the 

mechanism of ER activation. 

To continue toward the goal of engineering a nuclear receptor to bind and activate 

in response to the β-lactam antibiotics, the target nuclear receptor was switched from the 

pregnane X receptor (PXR) to hERα. A rational designed library of hERα was created 

and tested in chemical complementation (Figure 4.3). As mentioned previously, chemical 

complementation uses two fusion proteins in yeast expression plasmids: the yeast Gal4 

DNA binding domain (GBD) fused to the hERα LBD, containing a tryptophan marker, 

and a plasmid containing a human coactivator fused to the Gal4 activation domain 

(GAD), containing a leucine marker (Figure 4.3). The coactivator in this system contains 

peptide motif repeats of LXXLL of the steroid receptor coactivator-1 (SRC-1). The full 

length SRC-1 coactivator is not necessary for activation to occur, therefore the smaller  
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Figure 4.3. Chemical complementation selection system. The nuclear 
receptor (NR) ligand binding domain (LBD) fused to the Gal4 DNA-
binding domain (DBD), is introduced into a yeast strain containing 
Gal4 response elements (Gal4REs) controlling expression of genetic 
selection genes. Upon ligand binding, a conformational change occurs; 
recruiting a fusion protein of the NR coactivator (CoAc) and the Gal4 
activation domain (GAD) that binds to the LBD, leading to the 
initiation of transcription of a selection marker. Gene expression occurs 
and cells survive on media with ligand.  
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coactivator peptide was used [36]. In this work, chemical complementation is used to test 

a rationally designed hERα library, as well as to test random mutagenic libraries of hERα. 

4.2 Human Estrogen Receptor Alpha Library for Antibiotics 

4.2.1 Library Design 

To engineer a hERα variant to activate transcription in response to the β-lactam 

antibiotics ampicillin, amoxicillin, penicillin G, oxacillin, cloxacillin, and nafcillin, a 

rational library was designed toward the β-lactam antibiotics. As performed with the 

library for the PXR in Chapter 2, residues in the ligand binding pocket were chosen for 

mutagenesis based on the known receptor-ligand interactions, as well as previously 

assessed knowledge about various residues in the LBP. 

Hydrophobic residues, including M343, L346, L349, A350, L384, L387, M388, 

L391, F404, M421, I424, F425, L428, and G521, that make contacts with the ligand were 

considered for mutagenesis [7, 16, 26, 29, 46]. The three known hydrogen bonding 

residues E353, R394, and H524 were not considered for mutagenesis. Mutating all 

interacting residues would result in a large library size and a complete analysis of 

mutations would not be obtainable. Therefore, within this list of contacting residues, a 

subset was chosen based on proximity to the ligand as well as to have residues located in 

the different α-helices that form the LBP and surround the ligand. The complete list of 

residues chosen to mutate were L346, L384, M388, F404, M421, I424, and L428 (Figure 

4.4). Leucine 346 is located on helix 3, L384 and M388 are located on helix 5, F404 is 

located on a β-strand, and M421, I424, and L428 are located on helix 7, thus providing 

residues from several surrounding α-helices as well as the β-sheet. 
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Figure 4.4. hERα library residues. Ligand binding pocket of the LBD with 
E2 showing residues selected for mutagenesis (PDB 1ERE). All residues 
chosen for mutagenesis in the library are shown in blue and the hydrogen 
bonding residues are shown in green. E2 is shown in yellow sticks with 
spheres.  
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The mutations that were substituted at each position were based on molecular 

modeling of the β-lactam antibiotics into the LBP of hERα. Modeling was performed 

with AutoDock Vina, using the crystal structure of the ligand binding domain of hERα  

with E2 (PDB 1ERE) [58]. As a control, E2 was modeled into the pocket (PDB 1ERE), 

producing a binding energy of -10.7 kcal/mol. When superimposed onto the crystal 

structure, the modeled E2 overlays in the same position as E2 in the crystal structure 

(Figure 4.5). Ampicillin, amoxicillin, penicillin G, and oxacillin were also modeled into 

the LBP of hERα using AutoDock Vina, producing binding energies of -7.5, -7.2, -8.5, 

and -8.1 kcal/mol, respectively (Figure 4.6). As seen in Figure 4.6, oxacillin is located in 

the opposite orientation as seen with ampicillin, amoxicillin, and penicillin G (Figure 

4.6). This is not surprising since oxacillin has the additional isoxazole ring not present in 

the other antibiotics. Moreover, the second lowest binding energy for oxacillin was 

consistent with the position of the other antibiotics (Figure 4.6). These data provided a 

theoretical orientation of the lactam ring as well as the “side chain” of each antibiotic in 

the LBP of hERα, and therefore aided in determining distances and potential interactions 

between these groups and the residues in the library. 

Figure 4.7A shows the amino acids chosen for mutagenesis in the hERα library 

(Figure 4.7A). Amino acid changes were chosen based on size and chemical 

characteristics of the substituted residue. Due to the polarity of the antibiotics, these 

residues were chosen to be mutated to amino acids with hydrogen bonding potentials, 

such as glutamine, asparagine, aspartic acid, glutamic acid, serine, histidine, and arginine 

(Figure 4.7B). In Figure 4.7B, the desired mutations at each position are indicated. The 

degeneracy of the genetic code also produces additional mutations at each residue (Figure  
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Figure 4.5 Modeling of E2 into the crystal structure of the hERα LBD with 
E2 (PDB 1ERE). All residues chosen for mutagenesis in the library are shown 
in blue and the hydrogen bonding residues are shown in green. E2 is shown in 
yellow sticks with spheres. The docked E2 is shown in pink sticks. For clarity 
only the three hydrogen bonding residues E353, R394, and H524 and the library 
residues L346, L384, and M388 are shown. 
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Figure 4.6. Modeling of hERα crystal structure with the β-lactam antibiotics 
(PDB 1ERE).  (A) The wild-type crystal structure of hERα with E2. Modeling 
with (B) E2 shown in pink C) Ampicillin shown in orange, (D) Amoxicillin 
shown in cyan, (E) Penicillin G shown in purple, and (F) Oxacillin shown in dark 
green. The crystal structure coloring is the same as in Figure 4.5. 
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4.7B). All positions in the library, except M421, had a designed mutation that included 

glutamine due to the larger volume of this amino acid, having a volume of 143.8 Å3, and 

to provide several hydrogen bonding atoms [59]. M421 was located near the lactam ring 

in the modeling results, and, more importantly, is one of the two residues in the pocket 

that differ between hERα and hERβ. M421, therefore, was only mutated to asparagine 

and tyrosine to introduce polar amino acids having the average or larger volumes of 

114.1 Å3 and 193.6 Å3. As charged amino acids, aspartic acid and or glutamic acid were 

chosen as possible mutations for L346, L384, and F404, to also introduce hydrogen 

bonding potentials into the LBP. Therefore, at L346, aspartic acid, glutamic acid, 

asparagine, glutamine, and serine were introduced and at L384, an aspartic acid, glutamic 

acid, and glutamine were introduced (Figure 4.7B). A glutamic acid and glutamine were 

introduced at F404 (Figure 4.7B). Previous work by Chockalingam and coworkers, 

proposed that M388Q could donate a hydrogen bond with the synthetic ligand 4,4’-

dihydroxybenzil (DHB) [45]. Therefore, M388 was chosen to be mutated to a glutamine. 

Serine was included at L346 and I424 to incorporate a smaller polar residue that could 

increase the volume of the pocket to accommodate the larger antibiotics. The 

combination of mutations at all the positions produces a theoretical library sizes of 8.09 x 

105and 3.98 x 106 at the amino acid level and nucleotide level, respectively (Figure 4.7B).  

4.3 Yeast Transformations 

4.3.1 Library Construction and Selection in Chemical Complementation 

As performed in Chapter 2 with the PXR library, to evaluate the hERα library, 

chemical complementation was used. A background plasmid for hERα, designated 

pGBDhERαbackground, was made to remove background contamination from the wild-
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type receptor in the library. Expression of the gene in the background plasmid produces 

three stop codons, eliminating contamination of the library with the wild-type hERα 

receptor. Next, to create the library of hERα variants, oligonucleotides containing the 

randomized mutations were combined using overlap extension PCR to generate a cassette 

with the designed mutations [60].  

The library cassette containing the randomized codons was transformed into the 

yeast with the linearized background plasmid and, via homologous recombination, yeast 

cells containing a library of variants were plated onto adenine selective media containing 

ligand sets with the β-lactam antibiotics combined. The first ligand set contained the 

antibiotics amoxicillin, cloxacillin, and penicillin G. The second ligand set contained the 

antibiotics ampicillin, oxacillin, and nafcillin. The library of variants was also plated onto 

SC-LW nonselective media to determine whether homologous recombination occurred as 

well as to determine the library size and diversity of mutations in the library. 

The transformation of the hERα library produced a library size of 2.94 x 103 

colonies and a transformation efficiency of 5.88 x 104 colonies/µg vector cassette DNA. 

Eighty-five colonies from the adenine selective plates with ligands were streaked onto 

adenine selective plates without ligand (SC-ALW), adenine selective plates with E2, and 

nonselective plates (SC-LW). Most of the variants were constitutively active, meaning 

the cells show growth on the SC-ALW plate without the presence of the exogenous small 

molecule (Figure 4.8). Streaking results, however, also showed that approximately 10 % 

of the library was not constitutively active (Figure 4.8). 
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Colonies from the hERα library that were sequenced showed that only three of the 

seven positions mutated in the library contained mutations (Table 4.1). These mutations 

occur at L346, L384, and M388, but not at F404, M421, I424, and L428, indicating that 

the first three positions are more tolerant to change than the other four positions. In 

addition, sequencing results indicate that seven out of the twelve variants contain 

mutations that were not in the library design (Table 4.1). The absence of mutation at the 

majority of the residues in the library produced poor overall sequence diversity in the 

library.  

These data suggest, however, that targeting a large group of amino acids and 

introducing multiple changes at those positions may be too ambitious to discover many 

functional protein variants. In contrast, introducing fewer changes, such as a variant with 

one to three mutations, could produce more functional receptors. The rescued and 

sequenced hERα variants from the library transformation were retransformed into yeast 

and tested for functionality in a quantitative liquid growth assay with E2 as well as the 

antibiotics.  

4.3.2 hERα Variants in Chemical Complementation 

To confirm if the variants from this library are constitutively active, dead, or 

ligand activated, a growth assay in liquid media was performed. In this liquid assay, yeast 

containing the variants are grown in a 96-well plate in selective media without ligand as 

well as with increasing concentrations of ligand (Figure 4.9). If the ligand able to bind 

and activate the nuclear receptor fusion protein (GBD:hERαLBD), the coactivator fusion 

protein (SRC-1:GAD) is recruited and growth is observed in adenine or histidine 

selective media. The hERα variants from the library were tested in a dose response with  
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Figure 4.9 Scheme of quantitative liquid assay in yeast. Yeast cells are added 
to a 96-well plate containing media without ligand and with increasing 
concentrations of ligand. The yeast are incubated with shaking at 30 °C for 48 
hours. When the ligand activates the nuclear receptor and the Coactivator:GAD 
fusion protein is recruited, the selective gene is turned on and the yeast survive. 
OD630 readings are recorded as a measure of growth in the wells. 
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E2 ranging from 10 nM to 10 µM in histidine selective media, containing synthetic 

complete media lacking histidine, leucine, and tryptophan with 10 mM 3-amino-1,2,4- 

triazole 3-AT (SC-HLW+3-AT). Due to the known leaky of expression of the HIS3 gene, 

3-AT was used to reduce basal background [61]. Variants were also tested with the target 

β-lactam antibiotic molecules. As performed in Chapter 2, Gal4, a ligand-independent 

transcription factor, was used as the positive control. 

As expected, Gal4 displays growth in the histidine selective media with and 

without ligand (Figure 4.10, green circle). Seven of the twelve variants tested displayed 

the same growth trend as wild-type hERα (pink circle), although the variants were not 

tested with E2 concentrations below 10 nM, indicating that these variants may differ from 

wild-type hERα if tested at lower concentrations of E2 (Figure 4.10). All the variants 

display approximately five fold activation (Table 4.1).Variants 3, 7, and 9 display 

decreased sensitivity toward E2, having EC50 values, based on growth, at approximately 

3 µM greater than 10 µM, and 1 µM, respectively (Figure 4.10, orange square, lavender 

diamond, and blue square, respectively).Variants 3 and 7 contain the mutation L346E and 

L346N, respectively (Table 4.1). In both variants, a hydrophobic amino acid, leucine, has 

been replaced with a polar amino acid. Variant 9 contains mutations L384E and M388L, 

indicating that the introduction of a charged amino acid into the pocket causes decreased 

sensitivity toward the wild-type ligand E2. When tested in a liquid assay with the 

antibiotics, none of the variants displayed ligand activated growth (data not shown). 

Therefore, to continue pursuing the goal of discovering a variant that is activated by the 

antibiotics, random mutagenesis approach was taken. Random mutagenesis provides the  
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Figure 4.10 Growth profiles in yeast cells with E2 for wild type hERα 
variants obtained from designed library in histidine selective media 
containing 10 mM 3-AT. Sequencing for each variant is found in Table 4.1 
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possibility of many different mutations because amino acids outside of the LBP can be 

mutated, allowing for more diverse variants. 

4.3.3 Random Mutagenesis on hERα  

Random mutagenesis methods have been developed and are currently used to 

create and discover protein variants with novel functions. Several methods of random 

mutagenesis, such as gene shuffling, provides the ability to produce variants by 

combining related DNA sequences via PCR and allowing crossovers from 

complementary ends of the similar sequences to produce novel DNA sequences [62]. In 

error prone PCR, another common random mutagenesis method, mutations are 

introduced into the DNA template through amplification performed by Taq polymerase, 

which lacks proof-reading capabilities, generating mutations in the product DNA through 

multiple rounds of amplification [63]. Error prone PCR has previously been used to 

engineer hERα variants activated by the novel synthetic molecule, 4,4’-dihydroxybenzil 

(DHB) [45]. 

Error-prone PCR using manganese chloride (MnCl2) concentrations of 20 µM, 

100 µM, and 200 µM was performed on wild-type hERα, with the hypothesis that higher 

concentrations of MnCl2 cause higher mutational rates. Manganese can be added to the 

error-prone PCR reaction mixture to increase the error rate and thereby increasing the 

overall number of mutations [63]. A greater diversity of variants can be discovered 

through having libraries that introduce different numbers of mutations. The error-prone 

PCR reaction generated cassettes with errors introduced into the hERα gene as well as a 

cassette with ends that are complementary to the background plasmid. The cassettes 

produced from the PCRs were transformed alongside the linearized background vector,  
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and cells were plated onto adenine selective plates containing the same antibiotic sets as 

used for the rational hERα library. Colonies were rescued and sequenced as before.  

Table 4.2 shows sequencing for variants, numbered 13-18, which were produced 

from the transformation of the error-prone PCR libraries with 20 µM, 100 µM, and 200 

µM MnCl2 (Table 4.2). Table 4.2 also shows which concentration of MnCl2 was used to 

obtain that variant. Overall, these variants have one or two mutations located outside the 

binding pocket. Interestingly, variants 15 and 16, containing the mutations L462Q and 

L462P, respectively, have a mutation at the same position (Table 4.2). Overall, none of 

the variants rescued from the error prone library using 200 µM MnCl2 provided clean and 

reliable sequencing, and consequently this concentration of MnCl2 was determined to be 

too high to produce functional hERα variants. Variants 13-18 all contain one mutation, 

except variant 17, which has the silent mutation P406P in addition to the G442R 

mutation, indicating that 20 µM MnCl2 or 100 µM MnCl2 does not produce the expected 

lower or higher number of mutations. 

Although the sequencing from the first set of error-prone libraries produced 

mutational diversity, additional methods to vary the sequence space when performing 

error prone PCR can be performed to provide different mutational options. One method is 

to vary the concentrations of the dNTPs in the dNTP mixture for the PCR reaction. 

Analysis of the nucleotide changes in previous hERα variants produced from a PCR 

reaction with equal concentration of dNTPs showed higher substitutions to cytosine and 

guanine and many to adenine, with few changes to thymine. Therefore, an additional 

error-prone PCR was performed on wild-type hERα using 40 µM MnCl2 and  a dNTP 

mixture containing different concentrations of the dNTPs, specifically, 45 % thymine, 25 
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% adenine, 15 % guanine, and 15 % cytosine. This library was transformed and colonies 

were rescued and sequenced. Variants 19-25 in Table 4.2 are from the error-prone PCR 

with the biased dNTP mixture (Table 4.2). Many of the variants contain two to three 

mutations, located throughout the protein as seen in the previous error prone libraries 

(Table 4.2). Conversely, variant 19 has seven mutations, one of which is a silent 

mutation. Interestingly, variants 20 and 21 have a mutation at L346 and L384, 

respectively, both positions that were chosen to mutate in the rationally designed library.  

Analysis of the nucleotide substitutions for variants 19-28 shows more mutations 

to thymine, which is not surprising since the dNTP mixture included 45 % thymine. 

Mutation to adenine, guanine, and cytosine were equal among the variants, indicating a 

preference for substitutions to guanine and cytosine, especially since the dNTP mixture 

contained the lowest concentrations of guanine and cytosine. In summary, the error-prone 

PCR reaction with varying concentrations of dNTPs produced mutational diversity and 

varying numbers of mutations within each variant. 

Both the rational and random mutagenesis libraries did not produce a variant able 

to activate transcription in response to the β-lactam antibiotics. Therefore, the next 

approach was to determine if the variants that displayed different activation profiles with 

E2 than wild-type hERα could be used as a starting template to generate a variant 

activated by the antibiotics. As seen in Figure 4.10, variants 3 (L346E) and 9 

(L384E;M388L) displayed decreased sensitivity toward E2, having EC50 values of 3 µM 

and 1 µM, respectively, whereas wild type has an EC50 with E2 at 300 pM (Figure 4.10). 

While these variants have some activation toward E2, they are significantly less sensitive 

to E2 than wild-type hERα. Therefore, error-prone PCRs using 40 µM MnCl2 and a  
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Figure 4.11 Growth profiles in yeast cells with E2 for wild type hERα 
variants obtained from random mutagenesis in histidine selective 
media containing 10 mM 3-AT. Sequencing for each variant is found in 
Table 4.2. 
 



112 
 

dNTP mixture containing 45 % thymine, 25 % adenine, 15 % guanine, and 15 % 

cytosine, as done with wild-type hERα, were performed on variants 3 and 9. The libraries 

were transformed into yeast and plated onto selective media containing the antibiotics. 

Variants 26-28 have two or three additional mutations to the template variant. 

Interestingly, variant 28, produced from the error prone PCR with 40 µM MnCl2 using 

variant 9 (L384E;M388L) as the template, displayed decreased E2 sensitivity. Variant 13 

has the mutation L454F, however this variant was produced from the error prone PCR 

with 20 µM MnCl2 and wild-type hERα as the template. 

All the variants obtained from the random mutagenesis on hERα and variants 3 

and 9 were tested in the liquid quantitation growth assay in yeast. Figure 4.11 shows a 

dose response with E2 concentrations ranging from 10 nM to 10 µM (Figure 4.11). As 

previously mentioned, this analysis is to determine if the variants are ligand activated or 

constitutively active. This assay does not include E2 concentrations low enough to 

compare the variants to the 300 pM EC50 value for wild-type hERα. More significant 

variants can then be tested at lower concentrations E2 as well as with the β-lactam 

antibiotics. Half of the variants tested were constitutively active and the remainder had 

fold activations ranging from approximately 1.6 to 7.7-fold (Table 4.2). Some variants 

displayed the same growth levels as wild-type hERα, showing growth at 10 nM (Figure 

4.11). Many variants have very high basal levels in the media without ligand and were 

therefore considered constitutively active (Table 4.2).  

Three variants, 19, 20, and 27, show decreased sensitivity toward E2 (Figure 

4.11). The decreased sensitivity for variant 19 may be due to the significantly higher 

number of mutations in this variant (Table 4.2). Variant 20 has one mutation in the 
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binding pocket, which could be one reason for the influence on activity toward E2. 

Interestingly, variant 26 was made from the template containing the mutation L346E. As 

previously mentioned, L346E was chosen for random mutagenesis because this variant 

had significantly reduced sensitivity toward E2. The mutations introduced from the error-

prone PCR, specifically L308S and A546A, caused variant 26 to become constitutively 

active (Table 4.2 and Figure 4.11). The random mutagenesis libraries provide multiple 

hERα variants containing a wide variety of mutations, however when tested in a liquid 

assay with the antibiotics, none of the variants display ligand activated growth (data not 

shown).  

4.4 Summary and Future Work 

To engineer a nuclear receptor to be activated by the β-lactam antibiotics, a 

library of hERα variants using rational design based on molecular modeling analysis with 

the β-lactam antibiotics was created and tested in chemical complementation. No variants 

were discovered that were activated by the antibiotics. Random mutagenesis, therefore, 

was performed on hERα, producing functional variants with diverse mutations, however, 

as with the rational library, none of the variants showed ligand activated growth with the 

antibiotics. 

The rational library produced three variants that contain a point mutation at 

residue L346: L346M, L346V, and L346E. When tested in the liquid quantitation assay 

in yeast, the variant L346E displayed decreased sensitivity to E2. L346M, however, 

maintained wild type activity with E2. Structurally, L346 is located on helix 3, one of the 

helices involved in forming the LBP and therefore influences ligand binding (Figure 

4.12) [5, 8]. Multiple crystal structures of the hERα LBD also show that L346 makes  
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Figure 4.12. Ligand binding pocket of the crystal structure of the hERα 
LBD bound to 17 β-estradiol (E2) showing residue L346 (PDB 1ERE). 
L346 is shown in blue and the hydrogen bonding residues are shown in green. 
E2 is shown in yellow sticks with spheres.  
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hydrophobic contacts with the ligand in the pocket [26, 29, 46, 48, 64]. Due to the 

marked differences in activity toward E2, this position was saturated to investigate the 

role this residue has in ligand binding and activity. The characterization of position 346 

will be discussed in the next chapter. 

4.5 Materials and methods  

4.5.1 Plasmids and Primers 

The plasmid pGBDhERαLBD was previously cloned [65]. Primers containing a 

NheI site at the 5’ end and SpeI site at the 3’ end were designed to amplify the ERαLBD 

fusion gene (containing residues 301-595 of ERα) from the pSG5-HEGO vector. The 

gene was ligated into the pGBDRXR vector using the NheI and SpeI restriction enzymes.  

The yeast expression vector containing GAD fused to a peptide of the SRC-1 

coactivator, designated pGAD10BALXXLLSRC-1, was previously made [65]. Primers 

containing a BglII or a NotI site were used to amplify the SRC-1 fragment (residues 594-

821 of SRC-1) containing three LXXLL motif repeats from the pGAD10BASRC-1 

vector constructed previously [66]. The yeast expression vector pGAD10BAACTR was 

digested with restriction enzymes BglII and NotI and ligated with the SRC-1 fragment 

with the LXXLL motifs to generate the pGAD10BALXXLLSRC-1 plasmid [65, 66]. 

To make the pGBD hERαLBD background plasmid, QuikChange™ (Stratagene) 

site-directed mutagenesis was used to insert SacII and KpnI sites into the hERα gene in 

pGBD hERαLBD, producing the pGBD hERαLBDSacIIKpnI plasmid. The plasmid was 

digested with SacII and KpnI. A 145 bp random sequence of DNA was amplified from 

the plasmid pMSCVeGFP. The random DNA sequence was digested with SacII and KpnI 

and ligated into the pGBD hERαSacIIKpnI plasmid between the two restriction sites, 
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generating three STOP codons. The resulting plasmid was confirmed by sequencing and 

named pGBDhERαbackground (Operon, Huntsville, AL). 

To make pCMXGBDhERαLBD, the GBDhERαLBD fusion was amplified from 

pGBDhERαLBD using PCR with the following primers: GBDSacIIFor 5’ 

tccccgcggatgaagctactgtcttctatcgaacaag 3’ and NotIrev 5’ 

tcagactggcagggaaacccgccggcgaaaaggaaaa3’. The plasmid pCMXrERβ as well as the 

GBDhERαLBD cassette were digested with SacII and NotI, and ligated to create the 

pCMXGBDhERαLBD plasmid. The plasmid was confirmed by sequencing (Operon, 

Huntsville, AL). 

4.5.2 Ligands 

 17-β estradiol (MW= 272.4 g/mol) was purchased from MP Biomedicals (Aurora, 

OH). Amoxicillin (MW=365.41 g/mol) and Oxacillin (MW = 423.40 g/mol) were 

purchased from Fluka (Milwaukee, MI). Ampicillin (MW=371.4), Penicillin G 

(MW=372.48 g/mol), Cloxacillin (MW=475.9 g/mol), and Nafcillin (MW=454.5 g/mol) 

were purchased from Sigma (St. Louis, MO). 10 mM stocks of each ligand were 

dissolved in 80% ethanol:20% DMSO and stored at 4°C. 

4.5.3 Creating Designed hERα library 

Oligonucleotides were ordered from Operon (Huntsville, AL) with overlapping 

ends. To create the cassette containing the randomized codons, overlap extension PCR 

was utilized. Through PCR, the fragments were amplified in a PCR reaction containing 

100 ng of each oligo, 125 ng of each primer, 100 mM dNTPs, and 1 µL Pfu polymerase. 

The PCR program was 95 °C for 2 minutes, 95 °C for 1 minute, 55 °C for 1 minute, 72 

°C for 1 minute, repeated 30 times followed by 72 °C for 2 minutes. The resulting 
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cassette was 896 bp and was gel purified using the Zymo Gel DNA Recovery Kit (Zymo 

Research, Orange, CA). 

The yeast transformation was performed using the lithium acetate transformation 

method and as previously described [67, 68]. 

4.5.4 Error-Prone PCR 

 The plasmid pGBDhERαLBD was used as the template DNA for error-prone 

PCR random mutagenesis using ERPCR1For 5’ ggtcaaagacagttgactgtatcgc 3’ and 

ERPCR8Rev 5’ gcctcccccgtgatgtaatact 3’ primers. The PCR reaction contained 0.5 µM 

of each primer, 500 µM dNPTs, 7 nM MgCl2, 250 ng of template DNA, 1x Taq buffer, 

and Taq polymerase (Promega), and varied concentrations of MnCl2. The PCR program 

was 95 °C for 1 minute, 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C for 1 minute, 

repeated 20 times followed by 72 °C for 2 minutes. The resulting cassette was gel 

purified using the Zymo Gel DNA Recovery Kit (Zymo Research, Orange, CA). 

4.5.5 Yeast Transformation 

The yeast transformation was done using the lithium acetate method as performed 

in Chapter 2 and as previously described [67]. 

4.5.6 Liquid Yeast Growth Assay 

The yeast growth assay was performed as previously described [67]. Briefly, 

transformants are grown overnight in nonselective media containing synthetic complete 

media lacking leucine and trypophan (SC-LW) at 30 °C with shaking at 300 rpm. Yeast 

are added to 96-well plates containing selective media without ligand and with increasing 

concentrations of ligand in a 4:1 ratio of media to yeast. Plates are incubated for 48 hours 
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at 30 °C with shaking at 170 rpm. Optical density readings at 630 nm (OD630) are taken 

at 0, 24, and 48 hours as a measure of growth. 

4.5.7 Modeling hERα using Autodock Vina 

The protein was prepared using AutoDockTools to add polar hydrogens and 

Gasteiger charges to set the partial charge property of each atom. The ligands were 

prepared using ChemBioDraw Ultra 11.0 and ChemBio3D Ultra 11.0 (Cambridge Soft, 

USA) and minimized using MMFF94 force fields [69]. Ligands were modified in 

AutoDockTools by adding Gasteiger charges to set the partial charge property of each 

atom. AutoDock Vina was used to perform the docking simulations using the default 

parameters [58]. 
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CHAPTER 5 

CHARACTERIZATION OF L346 IN HUMAN ESTROGEN RECEPTOR 

ALPHA: DETERMINING TRANSCRIPTIONAL ACTIVATION WITH 

STEROID LIGANDS 

5.1 Previous Mutational Analysis on Human Estrogen Receptor Alpha 

As mentioned in Chapter 4, a significant amount of research has been reported on 

the human estrogen receptor alpha (hERα), specifically in terms of understanding the 

structural mechanism of activation as well as important ligand-receptor interactions [1-

10]. For example, Aliau et al. mutated H524 to alanine, one of the hydrogen bonding 

residues in hERα, which caused a reduced level of activation toward 17-β estradiol (E2), 

confirming the significant interaction between H524 and the 17-hydroxy group on E2 

[11]. In another study, Kim et al. mutated D351, a residue involved in coactivator binding 

and antagonist interaction, to a lysine as well as a leucine, causing significantly reduced 

E2 activation and eliminating coactivator interaction [6]. Studies similar to these 

determine the importance of specific residues or regions within various α-helices and 

have aided in understanding receptor activation. 

Directed protein evolution on hERα has resulted in changed ligand specificity, 

providing insight into the effect of different residues on ligand binding and activation [1, 

2, 10, 12, 13]. For example, E353, one of the hydrogen bonding residues in the pocket, 

has altered specificity toward androgens when mutated to a glutamine, demonstrating the 

significant role one position has on ligand affinity [1]. Some residues, such as L536 and 

Y537 were shown to interact differently with the ligand in agonist versus antagonist 

bound crystal structures [10, 14]. Additionally, different point mutations at Y537 have 
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resulted in receptors that have a range of constitutive activity [14]. Further investigation 

of the residues involved in ligand activation, however, is necessary to fully understand 

the role of individual amino acids in the pocket.   

A rational library for hERα was previously designed and assessed in Chapter 4. 

The goal was to engineer a hERα variant to activate transcription in response to the β-

lactam antibiotics ampicillin, amoxicillin, penicillin G, oxacillin, cloxacillin, and 

nafcillin. Amino acid residues from different α-helices surrounding the ligand in the LBP 

were mutated in the hERα library (Figure 5.1). Transformation of the library of mutations 

produced three variants, L346M, L346V, and L346E, containing a single point mutation 

at the same position. More importantly, variant L346E displayed significantly decreased 

sensitivity toward E2, showing that a point mutation at position 346 can significantly 

affect ligand interaction and activation of the receptor.  

Structurally, L346 is located on helix 3, one of the helices involved in forming the 

ligand binding pocket (LBP) [15-17]. Most of the structural analysis previously 

performed has been focused on helix 12, as well as 10/11 and 7 [5, 10, 14, 18, 19]. Some 

work has been done on the role of helix 3 and helix 5 [20-22]. Previously, mutations in 

helix 3 of the androgen receptor (AR) have proven useful in understanding androgen 

insensitivity in the male reproductive system [23]. Several crystal structures of the 

mineralocorticoid receptor (MR) have shown the importance of residues in helix 3 in a 

hydrogen bond network with the ligand [24]. In addition, among the steroid receptors, an 

interaction occurs between an alanine on helix 3 and a leucine on helix 5. For example, 

A350 in helix 3 contacts L387 in helix 5 in the estrogen receptor, indicating an important 

role interactions with helix 3 have on receptor activation [16].  
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Figure 5.1. The LBP of the crystal structure of hERα with 17 β-estradiol 
(E2) (PDB 1ERE). The different α-helices are colored cyan, orange, green, 
pink, blue, and red, for 3, 5, 6, 7, 10/11, and 12, respectively. The β-sheet is 
shown in purple. Hydrogen bonds are shown as black dotted lines. E2 is 
shown in yellow sticks. Surrounding residues are shown in sticks. 
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As a residue located on helix 3, studies on the effect of L346 on ligand binding 

would provide additional information on the involvement of helix 3 in ligand interaction 

[5, 7, 17]. Multiple crystal structures of the hERα LBD show that L346 makes 

hydrophobic contacts with the ligand in the pocket (Figure 5.2) [4, 9, 16, 25, 26]. In 

addition, the leucine at position 346 is fully conserved among the androgen receptor 

(AR), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid 

receptor (MR), all steroid receptors within the nuclear receptor superfamily [26]. 

Moreover, D’Ursi et al. showed that L346 made contacts with a variety of docked 

polychlorinated compounds, maintaining that L346 can interact with ligands having 

different structures [4]. 

A recent study by Shadnia and coworkers developed an algorithm to determine 

energy based interactions between proteins or enzymes with their respective ligands or 

substrates [8]. The work performed by Shadnia and coworkers discovered a series of 

amino acid residues in the pocket of hERα with significant molecular interactions with 

E2, designated as force interactions [8]. The known hydrogen bonding residues E353, 

R394, and H524 had some of the highest force interactions. Furthermore, two other 

residues with high force interactions were L346 and L387, providing additional support 

for the importance of L346 in ligand interaction [8]. As a result of the previous analyses 

on L346 and the marked differences in activity toward E2 amongst the three variants 

containing a mutation at position 346 and to investigate the role this residue has in ligand 

binding and activity, L346 was saturated via site-directed mutagenesis using primers 

containing codons for each different amino acid and tested in yeast as well as mammalian 

cells. 
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Figure 5.2. Image of the crystal structure of the hERα LBD bound to 
E2, showing the ligand binding pocket (PDB 1ERE). E2 is shown in 
yellow sticks with spheres. The three hydrogen bonding residues are 
shown in green sticks. Hydrogen bonds are shown as black dotted lines. 
The distances between the beta carbon of L346 and carbon 11 and 12 of 
the steroid ring of E2 are shown as purple dotted lines with the distances 
indicated. 
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5.2 Analysis of L346 Variants 

5.2.1 L346 Variants in Chemical Complementation 

All twenty variants containing the different mutations at position 346 were 

transformed into yeast to test in the chemical complementation yeast assay with E2. As 

mentioned in Chapter 4, chemical complementation uses two fusion proteins, a plasmid 

containing the yeast Gal4 DNA binding domain (GBD) fused to the hERα LBD, 

containing a tryptophan marker, and a plasmid containing a human coactivator fused to 

the Gal4 activation domain (GAD), containing a leucine marker. The coactivator in this 

system contains peptide motif repeats of LXXLL of the steroid receptor coactivator-1 

(SRC-1). As previously mentioned, in the liquid assay, yeast containing the variants are 

grown in a 96-well plate in selective media without ligand as well as with increasing 

concentrations of ligand.  

The twenty hERα variants were tested in a dose response with E2 ranging from 10 

nM to 10 µM in histidine selective media (SC-HLW+3-AT). As a positive control, Gal4, 

a ligand-independent transcription factor, was used, and displays growth with and 

without the presence of ligand (Figure 5.3A, olive green square). Ligand activated growth 

was observed for all variants except L346D, L346R, and L346P, displaying a specific 

trend in sensitivity toward E2 based on the type of mutation (Figure 5.3A-C). The 

observed pattern showing different levels of sensitivity toward E2 can be separated into 

three different categories. In general, variants with the large and hydrophobic amino acids 

isoleucine, phenylalanine, tryptophan, methionine, and valine display similar sensitivity 

toward E2 as the wild type leucine (Figure 5.3A, purple triangle, green diamond, orange  
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Figure 5.3. Growth profiles in PJ69-4A yeast cells with E2 for wild type 
hERα and L346 variants in histidine selective media containing 10 mM 
3-AT. (A) Gal4, wild type hERα, L346M, L346F, L346W, L346I, and 
L346V. (B) L346 Y, L346C, L346T, L346A, and L346Q. (C) L346S, 
L346H, L346K, L346E, L346G, L346N, L346R, L346G, and L346P. 
 



133 
 

  

 



134 
 

square, blue diamond, and maroon hexagon, respectively). The EC50 values for the 

hydrophobic substitutions range from approximately 300 pM to 6 nM, with wild-type 

having an EC50 value of 0.33 nM (Table 5.1). For example, variants with the larger 

hydrophobic amino acids, phenylalanine and methionine, show sensitivity similar to 

wild-type leucine, having EC50 values of 1.68 nM and 0.19 nM, respectively (Figure 

5.3A, green diamond and blue triangle, respectively).  

Polar or small amino acids display decreased sensitivity, having EC50 values of 

approximately 17 nM, 72 nM, 48 nM, 321 nM, and 399 nM, for tyrosine, threonine, 

cysteine, alanine, and glutamine, respectively (Figure 5.3B and Table 5.1). In this 

category, for example, tyrosine has the lowest EC50, most likely due to the larger volume; 

however, the polar hydroxyl group causes this amino acid to have a higher EC50 than the 

first category (Figure 5.3B, pink circle). The fold activations for both the larger 

hydrophobic as well as the polar and small amino acids are approximately 7-fold (Table 

5.1).  

Lastly, charged and smaller amino acids show the lowest sensitivity toward E2, 

having EC50 values of 2.8 µM, 8.5 µM, 3 µM, and 3 µM for serine, histidine, lysine, and 

glutamic acid, respectively (Figure 5.3C, pink circle, blue triangle, green diamond, and 

orange square, respectively, and Table 5.1). L346 mutated to glycine and asparagine have 

EC50 values greater than 10 µM (Figure 5.3C, purple triangle, maroon hexagon, 

respectively, and Table 5.1). The fold activations for the charged and smaller amino acids 

are lower than the larger hydrophobic and polar amino acids, ranging from 2 to 6-fold 

(Table 5.1).To determine if the significant variation of sensitivity toward E2 seen in yeast 
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was consistent as well as to observe whether the results display the three distinct levels of 

activation, these variants were next tested in mammalian cell culture. 

5.2.2 L346 Variants in HEK293T Mammalian Cells 

To assess whether the variants containing the mutations at position 346 displayed 

the same activation levels as the growth levels observed in the yeast assay, all twenty 

variants were tested in mammalian cell culture. The variants comprising the Gal4 DBD 

fused to the hERα LBD were cloned into the mammalian expression plasmid pCMX, 

containing a CMV promoter, using SacII and NotI restriction sites. This plasmid, 

pCMXGBDhERαLBD, was transfected alongside a reporter plasmid containing Gal4 

response elements controlling a luciferase gene (p17*4TATALuc), as previously 

described [27].  

The same activation profiles occur in mammalian cells with the different variants 

as were seen in chemical complementation (Figure 5.4A-C). The three categories of 

sensitivity toward E2 are consistent, displaying the trend where position 346 favored 

hydrophobic bulkier amino acids and have a lower tolerance for smaller or charged 

amino acids. The EC50 values for the hydrophobic substitutions range from 

approximately 150 pM to 5 nM, more specifically 0.15 nM, 1.4 nM, 1.2 nM, 2.2 nM, 0.6 

nM, and 4.6 nM, for wild-type hERα, isoleucine, phenylalanine, tryptophan, methionine, 

and valine, respectively (Table 5.1). The polar or small amino acids have EC50 values 

slightly higher than those observed in yeast, however the trend is the same (Table 5.1). 

L346 mutated to tyrosine, threonine, cysteine, alanine, and glutamine, have EC50 values 

of 42 nM, 139 nM, 55 nM, 392 nM, and 678 nM, respectively (Table 5.1). In the last  
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Figure 5.4. Activation profiles in HEK293T mammalian cells with E2 for wild 
type hERα and L346 variants. (A) Wild type hERα, L346M, L346F, L346W, 
L346I, and L346V. (B) L346 Y, L346C, L346T, L346A, and L346Q. (C) 
L346S, L346H, L346K, L346E, L346G, L346N, L346R, L346G, and L346P. 
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category, the charged amino acids, serine, histidine, lysine, glutamic acid, asparagine, and 

glycine have EC50 values greater than 10 µM (Table 5.1).  

Interestingly, one difference observed between wild-type L346 and all the 

variants is the basal level of activity. Wild-type leucine has higher basal, thus leading to a 

significantly lower fold activation than the variants. For example, wild-type leucine has a 

fold activation of 8±2 with E2, whereas L346F has a fold activation of 56±9 (Table 5.1). 

The higher fold activations are consistent among all the variants except L346N and 

L346G, which have 4±0 and 9±0 fold activation, respectively (Tablel 5.1). The higher 

basal level for wild-type hERα, however, is not surprising due to the conserved amino 

acid at this position among the steroid receptors, perhaps indicating an evolutionarily 

significant role of the biophysical chemistry of that area of the pocket. 

Thus far, the yeast data and the mammalian assays show the tolerance for 

different types of mutations at position 346, with a preference for larger hydrophobic 

residues. Activation occurs with the smaller and polar amino acid substitutions, with little 

to none seen for the charged amino acids. In addition, these results also demonstrate the 

preference for the wild-type amino acid leucine at position 346, thus indicating the 

significant influence an evolutionarily conserved residue has on receptor-ligand 

interactions. More importantly, both the yeast data and the mammalian data confirm that 

a single point mutation causes drastic changes in the sensitivity of hERα toward the wild-

type ligand E2. Therefore to determine if the same difference in activity was seen with 

additional ligands, these variants were tested with a variety of steroids, which have a 

similar core structure as E2, but different functional groups. The hypothesis was that 

changing the chemical nature of the amino acid at position 346 would cause the variant to 
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bind another steroid. Due to the response seen in yeast and mammalian cells toward E2 

for L346D, L346R, and L346P, these three variants were not included in further analyses. 

5.3 Activation with Additional Steroid Ligands 

As previously mentioned, ER, AR, PR, GR, and MR belong to the same steroid 

receptor subgroup in the nuclear receptor superfamily [28, 29]. Classically, the estrogen 

receptor is believed to be the ancestral steroid receptor, however, AR, PR, GR, and MR 

bind 3-keto steroids, whereas ER binds the 3-hydroxy steroid (Figure 5.5) [30]. Genome 

mapping and phylogenetic analyses have determined that the ancestral vertebrate ER 

diverged into the current ERα and ERβ isotypes [30]. These studies also show that 

evolutionarily, AR and PR diverged from an ancestor that bound androgens, while MR 

and GR came from a receptor that bound corticoids [30]. The wild-type ligands for AR, 

PR, and GR include testosterone, progesterone, cortisol, and corticosterone [30]. The 

steroid receptors are also known to have high ligand specificity toward each wild-type 

ligand, thereby allowing each receptor to regulate distinct metabolic pathways [1, 2, 31]. 

As mentioned in Chapter 4, however, mutations within these various steroid receptors 

have resulted in altered steroid receptor specificity [1, 5, 31]. Several L346 variants 

displayed different activation profiles with E2 than wild-type hERα. For example, since 

L346E had drastically reduced sensitivity toward E2, perhaps this variant would have 

enhanced activity toward other steroid molecules. Therefore, due to these differences, the 

L346 variants were tested in HEK293T cells with 10 µM testosterone, progesterone, 

cortisol, and corticosterone, the wild-type ligands for the steroid receptors AR, PR, and  
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Figure 5.5. Structures of steroids tested with L346 variants in HEK293T 
mammalian cells.   
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GR, respectively (Figure 5.5). The hypothesis was that the variants containing amino 

acids with different substitutions at position 346 could be activated by these similar 

steroid ligands. 

5.3.1 Activity in Mammalian Cells with Steroid Receptor Ligands and Androstanols 

Wild-type hERα was activated by testosterone, having 9-fold activation, 

consistent with literature values (Figure 5.6A,B and Table 5.2) [2]. Variants L346I, 

L346F, L346W, and L346M have 1, 7, 3, and 4-fold activations with testosterone, 

respectively (Table 5.2) No activation was observed for wild-type hERα with 

progesterone, cortisol, and corticosterone (Figure 5.6BC). All other L346 variants were 

not activated by any of the four steroids, confirming the known high ligand specificity of 

the steroid receptors (Figure 5.6B,C).  

All L346 variants except L346D, L346R, L346P, and L346N were tested in 

HEK293T cells at 10 µM for all the other steroids, specifically androstanol and the 

androstanol derivatives androsterone and 5α androstan-3,17-dione (Figure 5.5) [32, 33]. 

Androstanol is a testosterone metabolite as well as a ligand for both the pregnane X 

receptor and the constitutive androstane receptor [34, 35]. These ligands maintain the 

steroid ring system, however, contain different substituents than testosterone, 

progesterone, cortisol, and corticosterone (Figure 5.5). Structurally, androstanol and 

androsterone maintain the hydroxy group at the 3-carbon position, but do not have the π 

ring system in the A ring of the steroid as with E2 (Figure 5.5). In addition, the hydroxy 

group at carbon 17 is a 17-deoxy or 17-keto group in androstanol or androsterone, 

respectively (Figure 5.5). In addition, these functional groups are smaller than those on  
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Figure 5.6. Activation profiles for L346 variants in HEK293T mammalian 
cells with (A) no ligand and with 10 µM of (B) Testosterone and 
Progesterone and (C) Cortisol and Corticosterone. 
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Figure 5.7. Activation profiles for L346 variants in HEK293T mammalian 
cells with 10 µM ligand for (A) E2 (B) Androstanol, Androsterone, and 
5α-androstan-3,17-dione and (C) Estrone and Hexestrol. 
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progesterone, cortisol, and corticosterone making them more similar in structure to E2 

and therefore providing ligands that could activate the L346 variants. 

As a control, the variants were also tested with 10 µM E2, displaying activation 

levels consistent with those in Table 5.1 (Figure 5.7A and Table 5.4). Only wild-type  

hERα and variants L346I, L346F, L346W, and L346M showed activation with 

androstanol, androsterone, and 5α androstan-3,17-dione, confirming the preference of a 

hydrophobic residue at position 346 (Figure 5.7B). Wild-type hERα displayed fold 

activations of 18-fold, 24-fold, and 18-fold for androstanol, androsterone, and 5α 

androstan-3,17-dione, respectively (Table 5.3). Fold activations for variants L346I, 

L346F, L346W, and L346M for are 27, 24, 11, and 17-fold activations for androstanol, 

respectively (Table 5.3). With slightly less fold-activations, L346I, L346F, L346W, and 

L346M displayed 15, 18, 9, and 6-fold activations for 5α androstan-3,17-dione, 

respectively (Table 5.3). Of these three ligands, androsterone displayed the highest level 

of activation, which could be as a result of maintaining the 3-hydroxy group as well as 

having a polar substituent at carbon 17 (Figure 5.5). L346I, L346F, L346W, and L346M 

displayed fold activations of 40, 42, 30, and 35-fold for androsterone (Table 5.3). In 

summary, these data show the ability for hydrophobic amino acids, which have properties 

similar to the wild-type leucine, at position 346 to display some level of activation toward 

different steroid ligands. However, the varying levels of activation toward these ligands 

in comparison to the natural ligand E2 demonstrates that even slight differences in the 

structures of the steroids affects activity, specificity, and sensitivity of the receptor [36].  

5.3.2 Activity in Mammalian Cells with Estrone and Hexestrol 



145 
 

  

 



146 
 

Since most of the variants were not activated by testosterone, progesterone, 

cortisol, and corticosterone, or the androstanol compounds, two steroid ligands known to  

interact with ER were chosen to test in mammalian cells. The L346 variants were tested 

with the estrogen hormone, estrone, and the non-steroidal ER ligand hexestrol in 

HEK293T cells with 10 µM of each ligand [37, 38]. Estrone maintains the π ring system 

in the A ring as E2 as well as the 3-hydroxy group, but has a ketone at carbon 17 (Figure 

5.5). Hexestrol also has the same A ring hydroxyl group as E2, but does not have the core 

steroid structure (Figure 5.5).  

These data show that the activation levels were more similar to those seen with 

E2. With estrone, L346 mutated to isoleucine, phenylalanine, tryptophan, methionine, 

valine, tyrosine, threonine, cysteine, alanine, and glutamine all show activation levels 

comparable to wild-type hERα (Figure 5.7C). Fold activations, however, are significantly 

higher for the variants than wild-type hERa, ranging from 15-fold to 74-fold for L346 

variants mutated to isoleucine, phenylalanine, tryptophan, methionine, valine, tyrosine, 

threonine, cysteine, alanine, and glutamine, whereas wild-type hERα only has a 8.7-fold 

activation, due to the higher basal levels previously mentioned (Table 5.4). A significant 

decrease in fold activation occurs at L346S, having a fold-activation of 9-fold (Table 

5.4). L346H, L346K, and L346G were not activated by estrone (Figure 5.7C and Table 

5.4). 

Hexestrol activation levels display a similar trend as estrone, with slightly higher 

fold activations (Table 5.4). L346 mutated to isoleucine, phenylalanine, tryptophan, 

methionine, valine, tyrosine, threonine, cysteine, alanine, and glutamine, serine, and 

histidine had fold activations ranging from 18.7-90.5-fold, whereas wild-type had a 11-  
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fold activation (Table 5.4). L346K, L346E, and L346G displayed very low activation, 

having fold activations of approximately 5-fold (Figure 5.7C and Table 5.4). These data 

demonstrate the importance of maintaining the phenolic A-ring, although more ligands 

would need to be tested for additional validation. Both estrone and hexestrol also confirm 

the trend that charged amino acids are not preferred at position 346. 

5.3.3 Activity in Mammalian Cells Adrosterone and 17-α Estradiol 

Since androsterone showed the highest level of activation among the three 

androstanol steroids tested, the variants containing the hydrophobic mutations, wild-type 

hERα, L346I, L346F, L346W, L346M, and L346V, were analyzed in a dose response 

with this ligand alongside 17-α estradiol (17αE2) to determine sensitivity levels toward 

these two ligands. Moreover, we wanted to confirm the preference for a hydrophobic 

amino acid at position 346. Wild-type hERα displayed the lowest EC50 value toward 

17αE2, having an EC50 of 3.25 nM, although due to the basal level of expression, the fold 

activation of 10±0 was lower than the other variants containing a hydrophobic amino acid 

Figure 5.8 and Table 5.5). L346I, L346F, L346W, L346M, and L346 V displayed EC50 

values of 12.33 nM, 32.81 nM, 53.58 nM, 10.62 nM, and 26.73 nM, respectively (Figure 

5.8 and Table 5.5). L346I, L346F, L346W, L346M, and L346V have fold activations 

ranging from 18-fold to 95-fold (Table 5.5). 

Wild-type hERα, L346I, L346M, L346F, and L346W displayed some activation 

toward androsterone (Figure 5.9). Wild-type hERa has an EC50 value at 7.2 µM, whereas 

L346I, L346M, L346F, and L346W had EC50 values greater than 10 µM (Table 5.5). The 

fold activations for wild-type hERα, L346I, L346M, L346F, and L346W are 4, 4, 11, 6,  
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Figure 5.8. Activation profiles in HEK293T mammalian cells with 17 α-
estradiol (17αE2) for wild type hERα and L346 variants containing 
hydrophobic substitutions. 
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Figure 5.9. Activation profiles in HEK293T mammalian cells with 
androsterone for wild type hERα and L346 variants containing hydrophobic 
substitutions. 
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and 14-fold, respectively (Table 5.5). The variant L346V was not activated by 

androsterone (Figure 5.9 and Table 5.5). As previously mentioned, these data confirm the 

ability for hydrophobic amino acids at position 346 to display some level of activation 

toward different steroid ligands.  

5.4 Summary and Future Work 

Sequencing from the rational library in Chapter 4 revealed three variants 

containing a single point mutation at residue L346: L346M, L346V, and L346E. These 

variants were tested in a dose response with E2 in liquid growth assays in yeast.  

Variant L346E displayed significantly decreased sensitivity toward E2, having an EC50 

value of 3 µM, whereas wild type has an EC50 value of 0.3 nM, based on growth (Figure 

5.3A). L346V also had slightly decreased sensitivity toward E2 having an EC50 value 

around 6 nM, based on growth. L346M, however, maintained wild type activity with E2.  

Therefore, to expand on the role this residue plays on the interaction between 

hERα and the ligand, this position was saturated and all variants were tested in yeast and 

mammalian cells with E2. The activation profiles in yeast and mammalian cells displayed 

a specific trend. Hydrophobic bulkier amino acids had activation levels similar to the 

wild-type leucine, whereas variants containing polar or smaller amino acids, specifically 

L346Y, L346T, L346C, L346A, and L346Q had decreased sensitivity toward E2. The 

variants with charged or smaller amino acids, L346S, L346H, L346K, L346E, L346N, 

and L346G had significantly decreased sensitivity toward E2. 

When tested in HEK293T cells with additional steroid and non-steroidal ligands, 

similar activation profiles were observed. Wild-type hERα and variants L346I, L346F, 

L346W, and L346M showed activation with the steroids androstanol, androsterone, and 
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5α androstan-3,17-dione, also confirming the importance of a hydrophobic amino acid at 

position 346. All other variants were not activated by this set of steroid ligands. When 

tested with estrone or the non-steroidal ligand hexestrol, the charged amino acids had 

little to no activity toward these two ligands.  

Lastly, the variants containing hydrophobic amino acid mutations were tested in a 

dose response with androsterone and 17αE2 in HEK293T cells. With androsterone, wild-

type hERα had an EC50 around 7 µM toward androsterone whereas the variants 

containing the hydrophobic amino acids were activated by androsterone at approximately 

10 µM, displaying the preference for wild-type leucine. In summary, the analysis with the 

additional steroid ligands confirms the preference toward the wild-type leucine as well as 

hydrophobic amino acids at position 346. More importantly, this work shows how a point 

mutation at position 346 significantly affects ligand activation.  

5.5 Materials and methods  

5.5.1 Plasmids and Primers 

The plasmids pGBDhERαLBD, pGAD10BALXXLLSRC-1, pGBDhERαLBD 

background plasmid, and pCMXGBDhERαLBD were made as described in Chapter 4. 

All single mutants were generated through QuikChange™ (Stratagene) site-directed PCR 

on pGBDhERαLBD or pCMXGBDhERαLBD using the forward primer 5’ agcttcgatgat 

gggcttannnaccaacctggcagaca 3’ and reverse primer 5’ 

tgtctgccaggttggtnnntaagcccatcatcgaagct 3’, each containing the different codons for each 

amino acid at the indicated nnn location. 

5.5.2 Ligands 
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 17-β estradiol (MW=272.4 g/mol) was purchased from MP Biomedicals (Aurora, 

OH). Androstanol was purchased from BIOMOL (Plymouth Meeting, PA). Androsterone 

(MW=290.44 g/mol) and 5α androstan-3,17-dione (MW=288.42 g/mol) were a kind gift 

from Dr. Andreas Bommarius (Georgia Institute of Technology, Atlanta, GA). Estrone 

(MW=270.4 g/mol) and 17-α estradiol (MW=272.4 g/mol) were purchased from Sigma 

Aldrich (St. Louis, MO). 10 mM stocks of each ligand were dissolved in 80% 

ethanol:20% DMSO and stored at 4°C. 

5.5.3 Liquid Yeast Growth Assay 

The yeast growth assay was performed as described in Chapter 4 and as 

previously described [39]. Briefly, transformants are grown overnight in nonselective 

media containing synthetic complete media lacking leucine and trypophan (SC-LW) at 30 

°C with shaking at 300 rpm. Yeast are added to 96-well plates containing selective media 

without ligand and with increasing concentrations of ligand in a 4:1 ratio of media to 

yeast. Plates are incubated for 48 hours at 30 °C with shaking at 170 rpm. Optical density 

readings at 630 nm (OD630) are taken at 0, 24, and 48 hours as a measure of growth. 

5.5.4 Transfection Assay in HEK293T Cells 

Transfections with HEK293T cells (ATCC, USA) were performed as previously 

described [27]. Briefly, the plasmid containing wild-type hERα, pCMXhERαLBD, as 

well as the variants containing the L346 mutants were transfected with the reporter 

plasmid p17*4TATALuc, containing four Gal4 response elements controlling a Renilla 

luciferase gene as well as the pCMXβgal plasmid, containing a β-galactosidase gene 

under the control of a CMV promoter. The cationic lipid used was lipofectamine 2000 

(Invitrogen, USA).  
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CHAPTER 6 

NEGATIVE CHEMICAL COMPLEMENTATION WITH ANTAGONISTS 

6.1 Genetic Selection and Negative Chemical Complementation 

Genetic selection systems have been demonstrated to be powerful tools for 

discovering and deciphering protein-protein interactions and small molecule-protein 

interactions [1-8]. One such system, chemical complementation, was developed as a 

selection assay for deciphering small molecule receptor interactions and can be used for 

applications such as drug discovery or protein engineering [3-5, 9, 10]. Due to their 

significant involvement in diseases, approximately 10-15% of the pharmaceutical drugs 

currently on the market are targeted toward nuclear receptors either as agonists or 

antagonists [11]. As previously mentioned, agonists are small molecule ligands that bind 

and activate the nuclear receptor LBD through inducing the proper conformational 

change, and antagonists are small molecule ligands that do not cause the proper 

conformational change to occur, recruiting corepressors (CoR) to associate with the LBD 

and repressing transcription [12, 13]. Both agonists and antagonists play significant roles 

in nuclear receptor regulation, hence the importance for drug discovery in nuclear 

receptor based diseases.  

To assess nuclear receptor antagonists for drug discovery purposes, a yeast strain, 

called BAPJ69-4A, previously developed in our lab, as an extension of the chemical 

complementation selection system, called negative chemical complementation was 

utilized [14]. BAPJ69-4A contains Gal4 REs controlling expression of the URA3 gene 

[14, 15]. The URA3 gene codes for the enzyme orotidine-5’-phosphate decarboxylase, 

responsible for the production of uracil in the uracil biosynthetic pathway [16]. 
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Figure 6.1. 5’Floroorotic acid (5’FOA) is converted to 5’Fluorouracil 
(5’FU) when the URA3 gene is expressed. 
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 Previously, Vidal et al. developed a reverse-two hybrid selection assay using the URA3 

gene to analyze small molecule inhibitor-protein interactions [17]. If the URA3 gene is 

expressed in media containing 5’fluoorotic acid (5’FOA), the enzyme orotidine-5’-

phosphate decarboxylase converts 5’FOA into the toxin 5-fluorouracil (5’FU), leading to 

cell death (Figure 6.1) [17]. With positive selection, in media lacking uracil, two 

associating partners, such as the nuclear receptor fusion protein and the coactivator 

(CoAc) fusion protein, would lead to the positive effect of cell growth. Conversely, in 

positive selection two dissociating partners, where the nuclear receptor and the 

coactivator fusion protein do not interact, would lead to the negative effect of cell death. 

In negative chemical complementation, like chemical complementation, the Gal4-

DBD (GBD) is fused to the nuclear receptor LBD and the nuclear receptor coactivator 

(CoAc) is fused to the Gal4 activation domain (GAD). When an agonist activates the 

nuclear receptor in selective media lacking uracil and the URA3 gene is activated, the 

yeast survive (Figure 6.2A). As a result, in positive selection novel drugs or functional 

protein variants can be discovered through the survival of the yeast. In negative selection 

on uracil selective media containing 5’FOA, activation of transcription of the URA3 gene 

through an agonist binding the LBD would lead to cell death (Figure 6.2B). Therefore, 

for protein-protein interactions or protein-ligand interactions, cell survival or cell death 

can be regulated based on the media used. Negative chemical complementation, 

therefore, can be used as a high throughput selection method for nuclear receptor drug 

discovery and protein and enzyme engineering.  
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A new Saccharomyces cerevisiae strain, containing three selective markers 

ADE2, HIS3, and URA3 as well as the lacZ gene controlled by Gal4 promoters was 

previously developed [14]. In this work, the retinoid X receptor (RXR) was characterized 

in negative chemical complementation with the wild-type agonist 9-cis retinoic acid 

(9cRA). The human estrogen receptor alpha (hERα) was also tested with the wild-type 

agonist 17-β estradiol (E2) in negative chemical complementation. Negative chemical 

complementation was also evaluated through analysis of hERα with the selective 

estrogen receptor modulator (SERM) 4-hydroxytamoxifen (OHT) (Figure 6.3) [12, 18, 

19]. OHT is currently used as an antagonist for the estrogen receptor in breast cancer 

therapy [19]. A potent antagonist, ICI 182,780, also known as Fulvestrant, was also 

chosen to test with hERα in negative chemical complementation (Figure 6.3) [20]. 

Fulvestrant (Faslodex®) is recommended as treatment of breast cancer after OHT 

becomes ineffective [19]. 

Negative chemical complementation, like chemical complementation, can also be 

used as a tool for protein engineering. Chemical complementation has previously been 

used to engineer novel ligand-receptor pairs, selecting for nuclear receptor variants able 

to bind and activate transcription in response to small molecule ligands [10, 21]. One 

common limitation to yeast two-hybrid systems like chemical complementation, 

however, is the production of false-positives [17, 22, 23]. As observed with the pregnane 

X receptor (PXR) and the human estrogen receptor alpha (hERα) libraries in Chapters 2 

and 4, many of the variants obtained were constitutively active. Therefore, one approach 

toward overcoming the constitutive activity in chemical complementation was to modify  
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Figure 6.3. Structures of the SERM 4-hydroxytamoxifen (OHT) and 
antagonist ICI 182,780 (Fulvestrant). OHT is currently used as an 
antagonist for the estrogen receptor in breast cancer therapy. Fulvestrant is 
a more potent antagonist used for OHT resistant breast cancer. 
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the current chemical complementation transformation, such that constitutively active 

receptors would be eliminated from the library. To do this, 5’FOA selective media was 

used to remove the constitutively active variants through expression of the URA3 gene. 

Two applications for negative chemical complementation, therefore, were tested. 

This system can be used in a high throughput method to discover novel small molecule 

ligands as potential drugs for nuclear receptors. RXR and hERα were tested in negative 

chemical complementation with agonist ligands. More importantly, hERα was tested with 

the current drugs OHT and Fulvestrant to assess the use of this system for drug discovery 

of potential antagonists in the future. Additionally, negative chemical complementation 

was used toward protein engineering, through using 5’FOA selective media to remove 

constitutively active variants as well as engineer functional hERα variants. 

6.2 Negative Chemical Complementation with Agonists  

As previously mentioned, in positive selection with uracil selective media, when 

an agonist activates the nuclear receptor leading to activation of the URA3 gene, the yeast 

survive (Figure 6.2A). In negative selection with uracil selective media containing 

5’FOA, activation of the URA3 gene leads to the formation of 5’FU and cell death 

(Figure 6.2B). 

6.2.1 Negative Chemical Complementation with RXR 

As mentioned in Chapters 2, 4, and 5, prior to testing the nuclear receptors in 

yeast, the plasmids were transformed into BAPJ69-4A. The yeast expression plasmid 

containing the Gal4 DNA binding domain (GBD) fused to the RXR LBD (pGBDRXR), 

containing a tryptophan marker, was co-transformed with a plasmid containing a 

coactivator fusion protein. The activator for thyroid hormone and retinoid receptors 
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(ACTR), a nuclear receptor coactivator, is fused to the Gal4 activation domain (GAD) on 

a yeast expression plasmid with a leucine marker. As a positive control, a plasmid 

containing the holo Gal4 gene (pGBT9Gal4), containing a tryptophan marker, was 

utilized. The transformants were then tested in negative chemical complementation in 

synthetic complete media lacking uracil (SC-ULW) and SC-ULW media containing 

5’FOA. 

As expected, Gal4 displays growth in the uracil selective media, but no growth is 

observed in the uracil selective media containing 5’FOA, due to the production of 5’FU 

(Figure 6.4, closed orange diamond and open orange diamond, respectively). RXR 

displays a dose response in positive selection with uracil selective media containing 

9cRA, with an EC50 value of approximately 300 nM, based on growth (Figure 6.4, closed 

cyan square). In uracil selective media containing 5’FOA, cell death is observed at higher 

concentrations of 9cRA as a result of expression of the URA3 gene, showing a negative 

effect from the association of the two fusion proteins caused by the presence of the ligand 

(Figure 6.4, open cyan square). At the highest concentration of 9cRA (10 µM), no growth 

is observed (Figure 6.4, open cyan square). These data are consistent with previous work 

[14]. 

6.2.2 Negative Chemical Complementation with hERα 

 Next, hERα was tested in the BAPJ69-4A strain in uracil selective media and 

uracil selective media containing 5’FOA with E2 concentrations ranging from 10 µM to 1 

pM of E2. The plasmid containing the fusion of the GBD with the hERαLBD alongside 

the fusion of the GAD with coactivator were transformed into BAPJ69-4A. The  
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Figure 6.4 Negative chemical complementation assay with RXR and Gal4 
in uracil selective media and uracil selective media containing 5’FOA. 
Activation profiles for RXR in uracil selective media with 9cRA showing an 
EC50 value of 300 nM. In uracil selective media containing 5’FOA with 9cRA, 
cell death occurs at the same concentration as growth is seen in the uracil 
selective media without 5’FOA. 
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Figure 6.5. Negative chemical complementation assay with hERα. In 
uracil selective media with E2 hERα shows agonist activation with E2 as low 
as 10-12 M. In uracil media containing 5’FOA, hERα shows cell death with 
increasing concentrations of E2 displaying an IC50 value of 5 nM.  
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coactivator in this case consists of repeats of the peptide LXXLL of the steroid receptor 

coactivator-1 (SRC-1). As mentioned in Chapter 4, SRC-1 peptide motifs were shown to 

be effective in activating transcription, therefore the smaller coactivator peptide was 

chosen for analysis with hERα [24].  

Gal4 displays growth in the uracil selective media without ligand and no growth 

is observed in the uracil selective media containing 5’FOA, consistent with the data seen 

in Figure 6.4 (Figure 6.5, pink circle and green diamond, respectively). As expected, in 

the uracil selective media, cells containing hERα show growth with the wild-type agonist 

E2 at concentrations as low as 1 pM, having a 3-fold activation (Figure 6.5, blue 

diamond). Conversely, in uracil selective media containing 5’FOA, cell death is observed 

as the concentration of E2 increases (Figure 6.5, orange square). Basal growth levels are 

observed in the uracil selective media without E2, due to the low expression levels seen 

with the URA3 gene in the absence of a transcription factor [17, 25, 26].  

Both RXR and hERα confirm the functionality of the URA3 gene in uracil 

selective media and 5’FOA selective media with an agonist. BAPJ69-4A had not, 

however, been tested in negative chemical complementation with an antagonist. 

6.3 Negative Chemical Complementation with Antagonists: Applications in Drug 

Discovery 

6.3.1 hERα Analysis with the SERM 4-Hydroxytamoxifen 

An antagonist for RXR was not readily available, therefore, the wild type hERα 

was tested in negative chemical complementation with the SERM OHT, an ER antagonist 

currently used to treat breast cancer [18]. When testing an antagonist in the liquid assay, 

the yeast are grown in selective media with a constant concentration of the E2 agonist 
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with increasing concentrations of the antagonist. Structurally, the binding of the 

antagonist displaces the agonist, resulting in an inactive conformation of the nuclear 

receptor, leading to the recruitment of corepressors [27-29]. In negative chemical 

complementation using the BAPJ69-4A yeast strain, therefore, cell death is expected in 

uracil selective media in the presence of an antagonist due to lack of expression of the 

URA3 gene (Figure 6.6A). Whereas, in uracil selective media containing 5’FOA, cell 

growth is expected because the toxic compound 5’FU is no longer being produced 

(Figure 6.6B). 

When tested with OHT in the uracil selective media with hERα displays a dose 

response with an EC50 value of approximately 10 µM, indicating that, in chemical 

complementation, OHT is acting as an agonist (Figure 6.7, closed blue triangle). In 

addition, when tested in uracil selective media containing 5’FOA with OHT, cell death 

occurs at the higher concentrations of OHT, confirming the agonist activity of OHT in 

the yeast system (Figure 6.7, open blue triangle). As previously mentioned, OHT is a 

SERM, meaning this compound can function as either an agonist or antagonist depending 

on the tissue-type [19]. Therefore, to determine if OHT functioned as an agonist in the 

presence of E2, hERα was tested with OHT in negative chemical complementation with a 

constant concentration of 300 pM E2, the known in vitro EC50 value for hERα [30]. 

When 300 pM E2 is added to the uracil selective media with various concentrations of 

OHT, growth is observed for hERα at all concentrations of OHT, also indicating that 

OHT is not functioning as an antagonist (Figure 6.8, closed cyan square). In addition, 

Figure 6.8 also shows an additive effect of agonist activity is seen in the uracil selective  
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Figure 6.7. Negative chemical complementation activation profiles for 
hERα and Gal4 in uracil selective media with OHT. In uracil selective 
media with OHT, hERα shows agonist activity with an EC50 of 10 µM. In 
selective media containing 5’FOA with OHT, cell death occurs at higher 
concentrations of OHT for hERα. 
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Figure 6.8. Negative chemical complementation activation profiles for 
hERα and Gal4 in selective media with 300 pM E2 with increasing 
concentrations of OHT. In uracil selective media containing 300 pM E2 
and increasing concentrations of OHT, hERα shows growth at all 
conditions (closed cyan square). Activation profile for hERα in uracil 
selective media containing 5’FOA and 300 pM E2 with increasing 
concentrations of OHT showing cell death at higher concentrations of 
OHT (open cyan square). An additive affect is seen with the two agonists 
present in the media shown by the lower growth level.  
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media with 5’FOA containing a constant concentration of 300 pM E2 showing less 

growth than the uracil selective media only with OHT, as shown in  Figure 6.7 (Figure 

6.8, open cyan square). OHT could be functioning as an agonist because only one 

coactivator is used in the chemical complementation system, as opposed to a combination 

of coactivators found in mammalian cells. In summary, OHT functioned as an agonist in 

yeast and therefore did not show ligand activated growth in uracil selective media 

containing 5’FOA, a necessary component for antagonist drug discovery using negative 

chemical complementation. 

6.3.2 hERα with the Antagonist Fulvestrant 

 Fulvestrant has a much stronger affinity for ER than OHT, and is used to treat 

OHT resistance breast cancers [20, 31]. Moreover, Fulvestrant has a similar affinity for 

ER as E2, and therefore, when treating breast cancer, competes with E2 [31]. The goal 

was that, as a more potent antagonist, Fulvestrant would function as an antagonist in the 

yeast system. As shown in Figure 6.6B, the desired effect is cell growth in uracil selective 

media containing 5’FOA selective media in the presence of an antagonist. 

6.3.2.1 hERα in HEK293T Mammalian Cell Culture with Fulvestrant 

To assess the antagonistic ability of Fulvestrant with the GBD-hERαLBD 

construct, hERα was tested with Fulvestrant in HEK293T mammalian cells (Figure 6.9). 

hERα shows activity when tested with E2, having an EC50 of 17 pM (Figure 6.9, pink 

circle). When tested with Fulvestrant in the presence of 300 pM E2, hERα activity is 

inhibited with an IC50 of 50 pM, confirming the strength of Fulvestrant as an antagonist 

(Figure 6.9, blue triangle).  

6.3.2.2 hERα in Yeast with Fulvestrant 
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Figure 6.9. Gal4DBD-hERαLBD fusion protein in HEK293T cells with E2 
and Fulvestrant. hERα is activated by E2 having an EC50 value of 17 pM and 
inhibited by Fulvestrant with an IC50 of 50 pM.  
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Figure 6.10. Negative chemical complementation with hERα and Gal4 in 
BAPJ69-4A. Uracil selective media with 300 pM E2 and increasing 
concentrations of Fulvestrant show antagonist activity (blue diamond). Uracil 
selective media containing 5’FOA with 300 pM E2 and increasing 
concentrations of Fulvestrant show no growth above basal (orange square).  
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Due to the agonist response with OHT in negative chemical complementation, 

Fulvestrant was tested with hERα. In uracil selective media containing 300 pM E2 and  

increasing concentrations of Fulvestrant, antagonistic activity is seen, showing cell death 

with higher concentrations of Fulvestrant (Figure 6.10, blue triangle). These data confirm 

that Fulvestrant functions as an antagonist in uracil selective media. In 5’FOA selective 

media, however, cell growth in the presence of an antagonist, as hypothesized in  

Figure 6.6B, should be observed. On the other hand, in 5’FOA selective media, no 

growth is observed above basal, indicating cell survival as would be expected with an 

antagonist (Figure 6.10, orange square). One hypothesis for the inability of the yeast to 

show growth above basal with of the addition of antagonist, is that the yeast are surviving 

on the small amount of uracil present in the 5’FOA media, thus the yeast could 

potentially efflux the ligands out of the cells, since the small molecule is not needed for 

survival. In summary, hERα in the negative chemical complementation selection system 

showed cell death in the presence of an antagonist in uracil selective media. However, in 

5’FOA selective media, cell growth was not observed in the presence of an antagonist 

above basal growth.  

6.4 Using Negative Chemical Complementation for Protein Engineering 

Another application of negative chemical complementation is to subject protein 

libraries to selection for protein engineering. Unlike chemical complementation, negative 

chemical complementation has an advantage of removing eliminating constitutively 

active variants using the 5’FOA selective media because the constitutively active variants 

would lead to activation of the URA3 gene, producing the toxic 5’FU compound. 

Therefore hERα was tested in negative chemical complementation with the goal of  
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 Figure 6.12. Activation profiles in yeast for hERα variants M342I, 26 (T347A, 
R352K, F367Y, V392I, I510V) and 28 (N359I, L378V, G390D) in uracil 
selective media with E2.  
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removing constitutively active variants as well as produce functional ligand activation 

receptors.  

As mentioned in Chapter 4, error-prone PCR, one method of random mutagenesis 

that introduces mutations into a gene, can be used for protein engineering. Error-prone 

PCR was performed on hERα and the cassette was transformed into competent yeast cells 

with the linearized background plasmid. The transformed cells were then incubated in 

uracil selective media containing 5’FOA to remove constitutively active variants (Figure 

6.11). After the three hour incubation period, the yeast were plated onto uracil selective 

plates containing 5’FOA with 300 pM E2 and potential antagonists for hERα (e.g. 

Fulvestrant) as well as uracil selective plates with potential agonists and incubated at 30 

°C for 4 days. A plate with synthetic complete media lacking leucine and tryptophan (SC-

LW) was also used to assess the library size.  

The transformation produced a library size of 1.68 x 103. Thirty-six mutants total 

grew on the uracil selective plates and the uracil selective plates containing 5’FOA. All 

were streaked for constitutive activity onto uracil selective plates (SC-ULW) and SC-LW 

nonselective plates. Only 5 of the colonies analyzed were constitutively active. Several 

colonies were rescued and sequenced (Table 6.1). Three variants were discovered that 

display ligand activated growth with E2 (Figure 6.12). One variant, M342I, had the same 

growth levels as wild-type, whereas the other two variants, 26 and 28, displayed 

decreased sensitivity toward E2 (Figure 6.12, blue triangle, green diamond, and orange 

square, respectively). This method removed approximately 90 % of the constitutively 

active variants, but many of the variants tested were non-functional. 

6.5 Nuclear Receptors and Corepressors 
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Previous yeast two-hybrid systems have been developed and successfully used to 

engineer proteins with novel functions [6, 32, 33]. This work and the data shown in 

previous chapters demonstrate how chemical complementation and negative chemical 

complementation, using the PJ69-4A and BAPJ69-4A strains, respectively, can be used 

for protein engineering. In addition, both chemical complementation and negative 

chemical complementation are useful for positive selection with agonists, providing an 

effective tool for the advancement of drug discovery. To use negative chemical 

complementation toward the advancement of antagonist drug discovery, therefore, the 

system was modified by using corepressor proteins instead of the current CoAc:GAD 

fusion protein. Two examples of corepressors that nuclear receptors interact with are the 

silencing mediator of retinoid and thyroid hormone receptors (SMRT) and the nuclear 

receptor corepressor (NCoRI) [28, 34, 35]. As mentioned in Chapter 1, in the absence of 

ligand, most nuclear receptors are bound to corepressor proteins. Corepressors are also 

able to associate with nuclear receptors when antagonists are bound, due to the altered 

conformation of the receptor in the presence of antagonist [12, 28, 36].  

Both PJ69-4A and BAPJ69-4A show ligand activated growth in positive selection 

as seen in this chapter as well as Chapters 2, 4, and 5. Growth above basal was not 

observed in the negative selection system using uracil selective media with 5’FOA with 

an antagonist (Figure 6.10, orange square). Therefore, the goal was to change the system 

back to a positive selection method, where gene activation results in growth.  

In the new system, corepressors are fused to the activation domains to allow cell 

growth in the presence of an antagonist. The yeast corepressor TUPI will also be tested in 

the modified negative chemical complementation system to determine the effects a yeast  
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repressor has on cell growth and cell death. TUPI has previously been used to inhibit 

transcription in yeast in a two-hybrid system [37-39]. Here, the design of the negative 

chemical complementation corepressor selection system and the work done to date on 

this project is discussed. 

6.5.1 Developing Negative Chemical Complementation with Corepressors 

Several fusion proteins were used in the modified negative chemical 

complementation selection system (Figure 6.13). Figure 6.13 shows the current chemical 

complementation system using the human CoAc:GAD fusion construct as one option to 

regulate transcription of the selective gene (Figure 6.13). Three additional coregulator 

fusion proteins for use in chemical complementation are shown with different 

combinations of the yeast and human coactivators and corepressors (Figure 6.13). The 

second construct combines the human coactivator ACTR and yeast repressor TUPI, 

which can be used as a control to assess transcriptional repression using a yeast repressor. 

When an agonist activates the nuclear receptor, the ACTR:TUPI fusion is recruited and 

transcription of the URA3 gene is repressed by the TUPI leading to cell death. The third 

construct consists of the human corepressor NCoRI fused to the yeast GAD (Figure 

6.13). In this system, when an antagonist binds the nuclear receptor, the nuclear receptor 

changes to the inactive conformation, thus allowing the human corepressor, NCoRI, to 

associate with the LBD. The GAD can turn on transcription of the selective gene, 

resulting in ligand activated growth where the ligand is an antagonist. As a control, the 

final construct contains both corepressors, having NCoRI fused to TUPI (Figure 6.13). 

As previously mentioned, when an antagonist binds, the NCoRI will associate with the 

LBD. This brings TUPI into proximity with the DNA, causing repression of transcription. 
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As mentioned above, the current negative chemical complementation system only 

shows basal growth levels, not the expected increase in dose response above basal, in  

uracil selective media with 5’FOA in the presence of an antagonist (Figure 6.14A). The 

objective of the modified system is to return to a system with ligand-dependent growth, 

where the ligand is an antagonist. As seen in Figure 6.14B, in the presence of an 

antagonist, the NcoRI:GAD fusion protein will associate with the nuclear receptor. Since 

the corepressor is fused to the GAD, in uracil selective media, the GAD will recruit yeast 

transcriptional machinery to turn on the selective URA3 gene and the yeast will survive 

(Figure 6.14B). The aim, therefore, is to use the NCoRI:GAD fusion protein in the 

system to cause ligand activated growth with an antagonist. 

Conversely, the CoAc:TUPI fusion protein previously made in our lab has ACTR 

as the coactivator [40]. With the ACTR:TUPI construct as the coregulator protein, in the 

presence of an agonist in uracil selective media, the hypothesis is that cell death would 

occur as a result of ACTR being recruited and the TUPI yeast respressor turning off 

transcription of the URA3 gene. In 5’FOA selective media with an agonist, however, 

repression of the URA3 gene would inhibit formation of 5’FU, and allow the yeast to 

survive on the small amount of uracil present in the 5’FOA media.  

6.5.1.1 hERα with ACTR:TUPI in Negative Chemical Complementation with E2 

Gal4 and hERα were tested in negative chemical complementation with the 

ACTR:TUPI fusion protein in uracil selective media as well as uracil selective media 

with 5’FOA with increasing concentrations of E2. As a control, the Gal4 and hERα with 

the SRC-1:GAD fusion protein was tested in the same conditions. As previously seen 

with hERα and the SRC-1:GAD fusion protein, ligand activated growth or cell death is  
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Figure 6.15. Negative chemical complementation with hERα and Gal4 
with the CoAc:TUPI fusion protein in BAPJ69-4A. (A) hERα with 
CoAc:GAD displays cell growth in uracil selective media with E2 and cell 
death in uracil selective media containing 5’FOA (orange line). These data 
are consistent with Figure 6.5. (B) hERα with CoAC:TUPI  in uracil selective 
media with displays decreased cell growth (blue line), indicating some 
repression through the TUPI fusion protein. In uracil selective media 
containing 5’FOA, cell death is observed. 
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observed in uracil selective media and uracil selective media with 5’FOA, respectively 

(Figure 6.15A, blue diamond and orange square, respectively). Gal4 displays growth with 

and without ligand in uracil selective media and does not grow in uracil selective media 

containing 5’FOA (Figure 6.15A, pink circle and green diamond, respectively). Gal4 

growth levels are consistent among all coregulator constructs. When tested with the 

ACTR:TUPI construct in uracil selective media with E2, hERα shows ligand activated 

growth, however, the growth levels are reduced by approximately 50 %  in comparison to 

the growth observed with the SRC-1:GAD construct (Figure 6.15B, blue triangle). This 

indicates that TUPI is leading to some repression in the negative chemical 

complementation system, but the expected complete cell death does not occur. In uracil 

selective media with 5’FOA, the expected result for hERa with the ACTR:TUPI 

construct is for the yeast to survive on the small amount of uracil present in the 5’FOA 

media, showing basal growth levels with and without ligand. As seen in Figure 6.15B, 

basal cell growth is observed without E2 ligand, and cell death is observed with the 

addition of E2 to the media (Figure 6.15B, orange square). The cell death in the presence 

of E2 could be due to the agonist turning on expression of the URA3 gene independent of 

the interaction with the ACTR:TUPI protein, by perhaps indirectly recruiting yeast 

coactivators. This indicates that perhaps the human coactivator is capable of indirectly 

recruiting yeast coactivators to initiate transcription. In conclusion, the ACTR:TUPI 

coregulator fusion protein decreases cell growth levels by approximately half the level 

seen with the SRC-1:GAD in the presence of an agonist in uracil selective media, but 

does not fully turn off transcription. 

6.5.1.2 hERα with ACTR:TUPI in Negative Chemical Complementation with Fulvestrant 
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To compare repression with the ACTR:TUPI construct to the previous results 

using the SRC-1:GAD construct with the antagonist Fulvestrant in uracil selective media 

containing 300 pM E2, hERα with ACTR:TUPI was assessed using the same media 

conditions. In the presence of an antagonist, the ACTR:TUPI coregulator protein would 

not interact with the nuclear receptor. Cell death is not observed with increasing 

concentrations of Fulvestrant, as was observed with the SRC-1:GAD coregulator in 

Figure 6.10 (Figure 6.16, blue triangle). The observed cell growth could occur through 

yeast transcriptional coactivators causing transcription of the selective gene independent 

of the ACTR:TUPI fusion protein.  

In uracil selective media with 5’FOA, hERα with the ACTR:TUPI is consistent 

with the SRC-1:GAD system in Figure 6.10, showing basal growth levels with and 

without the presence of antagonist (Figure 6.16, orange square). Interestingly, one 

additional difference between the coactivator with TUPI and the coactivator with GAD is 

the type of human coactivator. The TUPI construct contains ACTR, whereas the GAD 

construct contains the SRC-1 peptide motifs. Thus far, a coregulator protein containing 

the SRC-1 peptide motifs fused to the TUPI has not been made. The constant growth seen 

in Figure 6.16 with the ACTR:TUPI construct, therefore, may be due to the fact that the 

coactivator is ACTR instead of the SRC-1 peptide motifs. Therefore, hERα with the 

ACTR:GAD construct was tested in uracil selective media with 300 pM E2 and 

increasing concentrations of Fulvestrant. In contrast to the antagonistic effect seen with 

hERα with the SRC-1:GAD construct, hERα with ACTR:GAD does not display cell 

death as a result of the antagonist, indicating the influence of the different coactivator in 

the yeast system (Figure 6.17, blue triangle). In uracil selective media with 5’FOA, hERα  
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Figure 6.16. Negative chemical complementation with hERα and Gal4 in 
BAPJ69-4A with ACTR:TUPI construct. hERα in uracil selective media 
with 300 pM E2 and increasing concentrations of Fulvestrant does not 
display cell death (blue triangle) as was observed with the CoAc:GAD 
fusion protein in Figure 6.10. In uracil selective media containing 5’FOA 
with 300 pM E2 and increasing concentrations of Fulvestrant  hERα does not 
display above basal (orange square).  
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Figure 6.17. Negative chemical complementation with hERα and Gal4 in 
BAPJ69-4A with GAD:ACTR construct. hERα in uracil selective media 
with 300 pM E2 and increasing concentrations of Fulvestrant does not show 
the expected antagonistic activity (blue triangle) as was observed with the 
CoAc:GAD fusion protein in Figure 6.10. In uracil selective media containing 
5’FOA with 300 pM E2 and increasing concentrations of Fulvestrant hERα 
shows basal growth levels (orange square).  
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with the ACTR:GAD, basal growth levels are seen, consistent with ACTR:TUPI and 

SRC-1:GAD in 5’FOA selective media (Figure 6.17, orange square). As previously 

mentioned, this is most likely due to the yeast surviving on the uracil present in the 

5’FOA media. 

6.5.1.3 hERα with NCoRI:GAD in Negative Chemical Complementation with 

Fulvestrant 

The focus of assessing hERα with corepresors toward antagonist drug discovery 

was to test hERα in negative chemical complementation with the NCoRI:GAD fusion 

protein. As previously mentioned, cell growth in the presence of an antagonist had not 

been observed in the negative chemical complementation system. As seen in Figure 

6.14B, the expected result with the NCoRI:GAD construct in uracil selective media with 

an antagonist is cell growth as a result of the antagonist bound nuclear receptor recruiting 

the corepressor and the GAD turning on expression of the URA3 gene (Figure 6.14B).  

hERα with NCoRI:GAD was next tested in uracil selective media as well as 

5’FOA selective media containing 300 pM E2 with increasing concentrations of 

Fulvestrant. Cell death, not the expected cell growth, is observed for hERα in uracil 

selective media containing E2 with and without antagonist (Figure 6.18, blue triangle). 

The cell death could be occurring because the NCoRI:GAD fusion protein is not 

associating with the nuclear receptor and therefore the GAD is not in proximity to turn on 

expression of the URA3 gene. Furthermore, the NCoRI protein has not been tested for 

proper expression or folding in yeast. As previously seen, basal growth levels are 

observed for hERα in uracil selective media containing 5’FOA (Figure 6.18, cyan  
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Figure 6.18. Negative chemical complementation with hERα and Gal4 
with the NCoRI:GAD fusion protein in BAPJ69-4A. hERα with 
NCoRI:GAD in uracil selective media with 300 pM E2 and increasing 
concentrations of Fulvestrant do not display ligand dependent-growth (blue 
triange). Uracil selective media containing 5’FOA with 300 pM E2 and 
increasing concentrations of Fulvestrant show basal growth with and 
without the antagonist ligand ligand (cyan square). 
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square). In this case, the yeast do not need the NCoRI:GAD construct to turn on the 

URA3 gene and therefore, the cells survive on the uracil present in the 5’FOA media 

(Figure 6.18, cyan square). In summary, ligand-dependent growth with an antagonist was 

not observed with hERα using the NCoRI:GAD construct. 

6.6 Summary and Future Work 

The goal was to assess negative chemical complementation for drug discovery 

and protein engineering applications. RXR and hERα were tested in uracil selective 

media and 5’FOA selective media with the agonist ligands 9cRA and E2, respectively. 

Both displayed cell growth in uracil selective media and cell death in FOA selective 

media. hERα was next tested with the SERM OHT and the antagonist Fulvestrant to 

assess negative chemical complementation with current drugs. OHT functioned as an 

agonist, also displaying cell growth in uracil selective media and cell death in 5’FOA 

selective media. When hERα was tested in uracil selective media containing 300 pM E2, 

the yeast displayed cell death with increasing concentrations of the antagonist 

Fulvestrant. However, in uracil selective media containing 5’FOA with 300 pM E2, 

growth above basal was not observed in uracil selective media with increasing 

concentrations of the antagonist. Both methods allow selection of small molecule-protein 

and protein-protein interactions, which can be used for drug discovery. 

Negative chemical complementation was then tested to be used for protein 

engineering applications. Although the method using incubation in 5’FOA media 

removed most constitutively active variants as well as produced ligand activated variants, 

the system is inefficient in generating large libraries of functional protein variants. 
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To use negative chemical complementation toward antagonist drug discovery, the 

system was modified to use corepressor proteins as opposed to the current coactivator 

system. hERα with the CoAc:TUPI construct displayed some growth repression in uracil 

selective media with E2, but the cell death was not complete. When hERα was tested 

with the NCoRI:GAD construct in uracil selective media containing 300 pM E2, the yeast 

did not display cell growth in the presence of the antagonist Fulvestrant. Therefore, the 

current system with the corepressors cannot be used for antagonist drug discovery. The 

absence of cell growth could be due to improper folding of the NCoRI protein within the 

yeast. An additional method to continue toward obtaining growth in the presence of an 

antagonist, however could be to use additional corepressors, such as SMRT, instead of 

NCoRI. 

 

6.7 Materials and methods 

6.7.1 Strains  

The genotype of the BAPJ69-4A strain is MATa trp1-901 leu2-3, 112 ura3-52 

his3-200 gal4∆ gal80∆ LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ ho::GAL1-

URA3 [14, 15]. 

6.7.2 Plasmids and PCR Reactions 

pGBDhERaLBD and pGAD10SRC-1LXXLL  plasmids were made as described 

in Chapter 4. 

The plasmid pGBDhERαLBD was used as the template DNA for error-prone 

PCR random mutagenesis as described in Chapter 4. The PCR reaction contained 0.5 µM 

of each primer, 500 µM dNPTs, 7 nM MgCl2, 250 ng of template DNA, 1x Taq buffer, 
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and Taq polymerase (Promega), and 20 µM MnCl2. The PCR program was 95 °C for 1 

minute, 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C for 1 minute, repeated 20 

times followed by 72 °C for 2 minutes.  

A plasmid containing the human coactivator ACTR and yeast repressor TUPI, 

designated pTupACTR, was previously engineered in our lab [40]. To make the 

pGADNCoRI plasmid, QuikChange™ (Stratagene) site-directed mutagenesis was used to 

insert a PacI site into pGAD10BASRC-1LXXLL plasmid previously made in our lab to 

generate the pGADSRC1LXXLLPacI plasmid [14]. The mouse NCoRI gene was 

amplified from YEmNCoRI using PCR with the following primers: NCoRIPacIFor 5’ 

ccttaattaaatgtcaagttcaggttatcctccca 3’ and NCoRINotIrev 5’ aaggaaaaaagcggccgc 

tcagtcgtcactatcagacagtgtctc 3’ yielding a cassette approximately 1800 bp. The plasmid 

pGADSRC1LXXLLPacI as well as the NCoRI cassette were digested with PacI and 

NotI, and ligated to create the pGADNCoRI plasmid. The plasmid was confirmed by 

sequencing (Operon, Huntsville, AL). 

6.7.3 Ligands 

 17-β estradiol (MW= 272.4 g/mol) was purchased from MP Biomedicals (Aurora, 

OH). Tamoxifen (371.5 g/mol) and Fulvestrant (MW=606.77 g/mol) were purchased 

from Sigma-Aldrich (St. Louis, MO). 9-cis retinoic acid (MW=300.44 g/mol) was 

purchased from ICN Biomedicals (Aurora, OH). 10 mM stocks of each ligand were 

dissolved in 80% ethanol:20% DMSO and stored at 4°C.  

6.7.4 Liquid Yeast Growth Assay 

The yeast growth assay was performed as done  in chapter 4 and as previously 

described [10]. For uracil selective media containing, 5’FOA, a solution of 0.2 % w/v 
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5’FOA was added to selective media in a 1:1 ratio to produce media containing 0.1 % 

w/v 5’FOA as the final concentration, as previously described [41]. 

6.7.5 Yeast Transformation using 5’FOA 

Competent cells were transformed with the cassette containing from the error-

prone PCR product and the linearized background vector using the lithium acetate 

method [42]. The transformed cells were then grown in uracil selective media containing 

5’FOA at 30 °C with shaking at 300 rpm until the cell density (OD600) was 

approximately 0.68, indicating that the cells were in exponential growth. Cells were then 

plated onto uracil selective plates containing 5’FOA with 300 pM E2 and either 

Fulvestrant or other potential hERα antagonists and uracil selective plates with potential 

agonist ligands and incubated at 30 °C for 4 days. A plate with synthetic complete media 

lacking leucine and tryptophan (SC-LW) was also used to assess the library size.  

6.7.6 Transfection in HEK293T Cells 

 The transfection assay was performed as in Chapter 5 and as previously described 

[43]. 
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