
ON APPLICATIONS OF PUNCTURING IN ERROR-CORRECTION
CODING

A Thesis
Presented to

The Academic Faculty

by

Demijan Klinc

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2011

ON APPLICATIONS OF PUNCTURING IN ERROR-CORRECTION
CODING

Approved by:

Professor Steven W. McLaughlin,
Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor John R. Barry
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Wenke Lee
School of Computer Science
Georgia Institute of Technology

Professor Faramarz Fekri
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 1. April 2011

ACKNOWLEDGEMENTS

The path that culminated in this work has been long, fulfilling and many times frustrating.

I have had a good fortune of having been in company of many good people and friends

whom I will be forever indebted for making my stay in Atlanta a pleasurable one.

I would like to thank my advisor Steven McLaughlin. He decided to give me an oppor-

tunity in his group and he has always been there for me, offering unconditional support. It

has been a pleasure to be around him all these years.

My deepest gratitude goes to Jeongseok Ha, with whom I have continued to collaborate

intensely during my graduate work. His friendship, positive attitude, and deep knowledge

of coding theory and computer science have inspired me, fed me with ideas and kept me

going through hard times. The 12 hour time difference between us (thank you, Skype)

has caused some difficulties, but it is safe to say that I cannot imagine finishing this thesis

without his help.

The summer I spent at IBM Research Labs was one of the most fulfilling research

experiences in my life. I had an opportunity to work on various challenging problems in

a multidisciplinary team with extremely smart and driven people. Some of the work I

performed there also forms part of this thesis and I would like to thank my mentor, Ashish

Jagmohan, and other collaborators: Carmit Hazay, Tal Rabin, and Hugo Krawczyk for

letting me be part of the team.

And my family. They have always been with me, supported me, motivated and loved

me. I could not have come to this point without them. A special acknowledgement goes to

my Dad, who took the time to read the entire thesis in great detail and provided numerous

corrections and comments to improve the overall quality.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . x

I LOW-DENSITY PARITY-CHECK CODES 1

1.1 Error Control Coding . 1

1.2 Linear Block Codes . 2

1.3 LDPC Code Fundamentals . 3

1.3.1 The Tanner Graph . 3

1.3.2 Regular LDPC Codes . 5

1.3.3 Irregular LDPC Codes . 6

1.4 Constructing of LDPC Codes . 7

1.5 Encoding LDPC Codes . 8

1.6 Decoding LDPC Codes . 8

1.6.1 Probability Domain Decoding . 8

1.6.2 Log-likelihood Domain Decoding 13

II PUNCTURED BINARY LDPC CODES . 16

2.1 Basic Ideas . 17

2.2 Criteria for Selecting Punctured Nodes 21

2.3 The Grouping Algorithm . 25

2.4 Simulation Results . 29

2.5 Layered BP Decoding for Punctured LDPC Codes 33

2.6 Concluding Remarks . 38

III PUNCTURED AND SHORTENED NON-BINARY LDPC CODES 40

3.1 Non-binary LDPC Codes . 40

3.2 The Puncturing Problem . 43

3.3 Puncturing and Shortening Over the BEC 44

3.3.1 Density Evolution Over the BEC 46

iv

3.4 Optimization of Puncturing and Shortening Distributions 48

3.4.1 Simulation Results . 49

3.4.2 Highest Achievable Rate . 54

3.5 Puncturing and Shortening at Finite (Short) Block Lengths 56

3.5.1 Puncturing Algorithm . 59

3.5.2 Shortening Algorithm . 60

3.5.3 Simulation Results . 60

3.6 Concluding Remarks . 69

IV PHYSICAL LAYER SECURITY . 71

4.1 Channel Model and Basic Notions . 71

4.2 Coding for Security . 76

4.2.1 Asymptotic Analysis . 76

4.2.2 Optimized Puncturing Distributions 81

4.2.3 Reducing SNR Loss . 81

4.2.4 Finite Block Lengths . 85

4.3 Efficient Encoding . 85

4.4 System Aspects . 88

4.5 Concluding Remarks . 90

V COMPRESSION OF DATA ENCRYPTED WITH BLOCK CIPHERS 91

5.1 Preliminaries . 92

5.2 Compressing Block-cipher Encryption . 96

5.2.1 Cipher Block Chaining . 97

5.2.2 Output Feedback . 100

5.2.3 Cipher Feedback . 101

5.2.4 Electronic Code Book . 103

5.3 Compression Performance . 106

5.4 Concluding Remarks . 108

APPENDIX A SECURITY OF THE CBC COMPRESSION SCHEME AND COM-
PRESSIBILITY OF BLOCK CIPHERS IN ECB MODE 110

REFERENCES . 121

v

LIST OF TABLES

1 Group distribution of the variable nodes, block length N = 1024. 30

2 Group distribution of the variable nodes, block length N = 4096. 31

3 The distribution of check nodes in layers. The highest level of recoverability
among the punctured variable nodes is 5. 37

4 Optimized puncturing distributions obtained via differential evolution. Mother
code is a regular (2,4), rate 0.5, LDPC code over GF(26). 50

5 Optimized shortening distributions obtained via differential evolution. Mother
code is a regular (2,4), rate 0.5, LDPC code over GF(26). 51

6 Number of zero components in the initial LLRV for a punctured symbol in
GF(26) . 58

7 The puncturing pattern achieving code rate 0.91 by levels of recoverability
of variable nodes for the considered binary and GF(26) LDPC code. 62

8 The breakdown of puncturing patterns obtained by the proposed algorithm
for the non-binary LDPC code over GF(26). Except in the bottom row, the
listed numbers indicate the number of variable nodes. 63

9 Asymptotically optimized puncturing patterns for the non-binary LDPC code
over GF(26). 64

10 The proposed shortening patterns. 67

11 Puncturing distributions optimized for security. PEe,min was set to 0.49. . . . 81

12 Optimized puncturing distributions for Rs = Rd codes and PEe,min = 0.49. . 84

13 Asymptotic and empirical attainable gaps. 88

14 Attainable compression rates for block length m = 128 bits. 108

15 Attainable compression rates for m = 1024 bits. 108

vi

LIST OF FIGURES

1 A parity-check matrix and its Tanner graph. 4

2 A length 4 cycle. 5

3 Check node message update. 11

4 Variable node message update. 12

5 A 1-SR variable node. Void and filled circles are punctured and unpunctured
variable nodes, respectively. 18

6 A 3-SR variable node. Void and filled circles denote punctured and unpunc-
tured variable nodes, respectively. 18

7 A recovery tree of a 3-SR node. Void and filled circles denote punctured and
unpunctured variable nodes, respectively. 20

8 A stopping set. The four left most variable nodes form a stopping set. . . . 20

9 The plot of the function φ(x). 25

10 Comparison between the intentionally and randomly punctured LDPC code;
the mother code has a block length of 1024. The curves from left to right
correspond to: the unpunctured mother code and the punctured codes at
rates 0.6, 0.7, and 0.8. 31

11 Comparison between the intentionally and randomly punctured LDPC code;
the mother code has a block length of 4096. The curves from left to right
correspond to: the unpunctured mother code and the punctured codes at
rates 0.6, 0.7, and 0.8. 32

12 The distribution of required number of iterations for intentional and random
puncturing over the AWGN channel at R = 0.8 and BER = 10−5. 33

13 A Tanner graph split into two check nodes layers: L1 and L2. 34

14 Layers L1 and L2 of the Tanner graph in Figure 13 and their subgraphs. . . 35

15 Recovery tree of a 3-SR node where p2, p3 ∈ L1, p4 ∈ L2, p5 ∈ L3, p1 ∈ LK+1,
and K ≥ 3. 36

16 BERs of punctured LDPC codes at code rates 0.5, 0.6, 0.7, 0.8 and 0.9 over
an AWGN channel with the maximum number of iterations set to 15. The
filled squares, unfilled circles, and unfilled squares represent the BERs of
conventional BP decoding, layered BP decoding with random layering, and
proposed layering, respectively. 38

17 The required Eb/N0 values for a BER of 10−4 at the code rate 0.9 versus the
maximum number of iterations, where the LDPC codes are the same as for
Figure 16. 39

18 Non-binary variable node with its binary representation. 41

vii

19 An example of a non-binary Tanner graph. 42

20 Symbol-wise and bit-wise puncturing. 43

21 Performance comparison between the proposed optimized codes (DiffEv),
symbol-wise shortening and puncturing (6bps), and uniform bit-wise short-
ening and puncturing (3bps). 52

22 Frame-error-rate (FER) performance of punctured LDPC codes; rates from
right to left: 0.5 (unpunctured), 0.52, 0.56, 0.58, and 0.62. The dashed lines
represent the corresponding thresholds. 53

23 FER performance of punctured LDPC codes; rates from right to left: 0.66,
0.71, 0.76, 0.83, and 0.91. The dashed lines represent the corresponding
thresholds. 54

24 FER performance of shortened LDPC codes; rates from right to left: 0.09,
0.17, 0.23, and 0.29. The dashed lines represent the corresponding thresholds. 55

25 FER performance of shortened LDPC codes; rates from right to left: 0.33,
0.38, 0.41, 0.44, and 0.47. The dashed lines represent the corresponding
thresholds. 55

26 Performance of regular rate-adaptive non-binary LDPC codes over GF(24),
GF(26) and GF(210). 56

27 Cut-off rate vs. parameter m. 57

28 Performance comparison between four differently chosen puncturing patterns
at rate 0.83. 62

29 Performance comparison between symbol-wise, asymptotically optimized, and
proposed puncturing at rates 0.62, 0.71 and 0.83 (from right to left) over the
BEC channel. 65

30 Performance comparison between symbol-wise, asymptotically optimized, and
proposed puncturing at rates 0.62, 0.71 and 0.83 (left to right) over the
AWGN channel. 65

31 Performance of punctured non-binary and binary codes at rates 0.62 – 0.91
over the BEC channel. 66

32 Performance of punctured non-binary and binary codes at rates 0.62 through
0.91 over the AWGN channel. 66

33 Performance comparison between symbol-wise, asymptotically optimized, and
proposed shortening at rates 0.23, 0.33 and 0.44 (from right to left) over the
BEC channel. 68

34 Performance comparison between symbol-wise, asymptotically optimized, and
proposed shortening at rates 0.23, 0.33 and 0.44 (left to right) over the AWGN
channel. 68

35 Performance of shortened non-binary and binary codes at rates 0.23 through
0.44 over the BEC channel. 69

viii

36 Performance of shortened non-binary and binary codes at rates 0.23 through
0.44 over the AWGN channel. 70

37 The classic Shannon model for secure communication. 71

38 The Gaussian wiretap channel. 73

39 The security gap. A typical BER vs. SNR performance curve of an error-
correction code is shown. SNRB,min is the threshold for reliability (between
Alice and Bob) and SNRE,max is the point below which Eve has a very high
error rate, typically close to 0.5. The security gap (in dB) is the SNR dif-
ference between SNRB,min − SNRE,max that must be maintained between
Bob and Eve in order to achieve both reliability and security constraints in
conditions a) and b). 75

40 Block diagram of the proposed encoder. 76

41 Density of a check-to-variable node message obtained by GA and DE when
the decoder operates below the reliability threshold. 79

42 Eve’s BER performance when operating below the reliability threshold SNRB,min

and message bits are (i) transmitted and (ii) punctured. 80

43 The performance comparison between random and optimized puncturing.
The probability PEe,min = 0.49. 82

44 SNR loss comparison between codes with Rs = Rd and Rs < Rd. 84

45 Security gap comparison between Rs = Rd and Rs < Rd codes. 85

46 BER vs. security gap at block length 2364. 86

47 Lower-triangular parity-check metrix suitable for efficient encoding. 86

48 Lossless source coding with decoder side-information. 93

49 Traditional system with compression preceding encryption. 93

50 System with encryption subsequent to compression. 94

51 Cipher block chaining. 98

52 Compressor. 99

53 Joint decryption and decoding at the receiver. It is performed serially from
right to left. 100

54 Output feedback. 101

55 Cipher feedback. 102

56 Joint decryption and decoding in CFB mode at the receiver is performed
serially from left to right. 103

57 Electronic Codebook. 104

ix

SUMMARY

This thesis investigates applications of puncturing in error-correction coding and phys-

ical layer security with an emphasis on binary and non-binary LDPC codes.

Theoretical framework for the analysis of punctured binary LDPC codes at short block

lengths is developed and a novel decoding scheme is designed that achieves considerably

faster convergence than conventional approaches. Subsequently, optimized puncturing and

shortening is studied for non-binary LDPC codes over binary input channels. Framework

for the analysis of punctured/shortened non-binary LDPC codes over the BEC channel is

developed, which enables the optimization of puncturing and shortening patterns. Insight

from this analysis is used to develop algorithms for puncturing and shortening of non-

binary LDPC codes at finite block lengths that perform well. It is confirmed that symbol-

wise puncturing is generally bad and that bit-wise punctured non-binary LDPC codes can

significantly outperform their binary counterparts, thus making them an attractive solution

for future communication systems; both for error-correction and distributed compression.

Puncturing is also considered in the context of physical layer security. It is shown that

puncturing can be used effectively for coding over the wiretap channel to hide the message

bits from eavesdroppers. Further, it is shown how puncturing patterns can be optimized for

enhanced secrecy. Asymptotic analysis confirms that eavesdroppers are forced to operate at

BERs very close to 0.5, even if their signal is only slightly worse than that of the legitimate

receivers. The proposed coding scheme is naturally applicable at finite block lengths and

allows for efficient, almost-linear time encoding.

Finally, it is shown how error-correcting codes can be used to solve an open problem of

compressing data encrypted with block ciphers such as AES. Coding schemes for multiple

chaining modes are proposed and it is verified that considerable compression gains are

attainable for binary sources.

x

CHAPTER I

LOW-DENSITY PARITY-CHECK CODES

1.1 Error Control Coding

Digital signals composed of binary digits, 0s and 1s, are used to represent and communi-

cate different types of information, like text, video, audio, pictures, etc. Unfortunately,

during storage, transmission, and processing of binary data, errors may be unintentionally

introduced — a 1 may be changed to a 0 or vice versa.

In case of data transmission, each transmitted bit is received in the presence of noise or

distortion and only an indication of the bit’s value is obtained. While the number of errors

may be relatively low, even a small number of errors can result in the data being unusable.

In order to provide a mechanism to check for errors and to correct them, binary data can be

coded to introduce carefully designed redundancy. Coding of a unit of data produces what

is commonly referred to as a codeword. Due to its built-in redundancy, a codeword often

includes more bits than the input unit of data from which the codeword was produced.

When signals arising from transmitted codewords are received and processed, the re-

dundant information included in the codeword can be used to identify and correct errors

from the received signal in order to recover the original data unit. Such error correcting

can be implemented as part of a decoding process. In the case of unrecoverable errors,

the decoding process may produce some indication that the original data cannot be fully

recovered, which can be used to initiate retransmission of the data.

While redundancy can increase the reliability of data to be stored or transmitted, it

comes at the cost of storage space and the use of valuable communications bandwidth.

Accordingly, it is desirable to add redundancy in an efficient manner to maximize the

amount of error correction capacity gained for a given amount of redundancy introduced in

the data.

1

1.2 Linear Block Codes

A block code is a proceedure for converting a sequence m = [m1, . . . ,mK] of K source bits,

called the information block, into a sequence c = [c1, . . . , cN] of N bits, called the codeword,

where N > K. The bits in the information block are also referred to as information bits.

The ratio

R =
K

N
(1)

is called code rate1.

A block code is linear if there exists a generator matrix G with K rows and N columns,

where Gij ∈ {0, 1} , such that for any m

c = mG. (2)

Block codes where the information bits always form a subset of codeword bits, i.e.

c = [m,p], are referred to as systematic. The codeword bits, which are not information

bits are called parity bits.

The set of all codewords contains exactly 2K elements, since there exist 2K information

blocks and the mapping is 1-to-1. As N > K, not every sequence of N bits will be a

codeword. If during transmission some codeword bits are flipped, the resulting c may not

be a codeword anymore. As a tool for codeword recognition we introduce a parity-check

matrix H with M rows and N columns, where Hij ∈ {0, 1}, such that

HcT = 0 (3)

is fulfilled if and only if c is a codeword2. The product of each row in H with cT checks

whether c fulfills one of M parity-check constraints. If the product is 0, the parity-check

constraint is fulfilled, otherwise it is not. Thus, c is a codeword if and only if all parity-check

constraints are fulfilled.

From Eqs. (2) and (3) we get the following relation between the generator matrix and

the parity-check matrix:

HGT = 0. (4)

1In this thesis, we sometimes refer to it as rate.
2cT denotes c transposed.

2

Example 1.1. A systematic linear block code with K = 4 and N = 7 is defined by the

following generator matrix:

G =

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

A 1 in the i-th row and j-th column indicates that the i-th bit in the information block

influences the j-th codeword bit. The first four columns build an identity matrix, making

the code systematic. Using Eq. (4) we calculate the parity-check matrix:

H =

1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

Each row represents a parity-check constraint that every codeword has to fulfill according to

Eq. (3). A 1 in the i-th row and the j-th column indicates that the j-th bit in the codeword

is involved in the i-th parity-check constraint.

A linear block code with a sparse parity-check matrix, that is a matrix with a small

number of non-zero elements, it is called a low-density parity-check (LDPC) code.

1.3 LDPC Code Fundamentals

LDPC codes were proposed in 1962 by Gallager [17], along with an elegant iterative decoding

scheme whose complexity grows only linearly with block length. They were largely forgotten

for several decades until their huge potential was discovered in the 1990s, following the

discovery of turbo codes. Most contributions in this thesis are tightly connected with

LDPC codes; therefore, it is appropriate to focus some attention on their fundamentals.

1.3.1 The Tanner Graph

Every LDPC code is uniquely specified by its parity-check matrix H or equivalently, by

means of the Tanner graph [68], as illustrated in Figure 1. The Tanner graph consists of

3

two types of nodes: variable nodes and check nodes, and edges between them. Consider an

LDPC code defined by

H =

1 1 0 1 1 1 1 0 0 0

1 0 0 1 1 0 0 1 1 1

1 0 1 0 1 0 1 0 1 1

0 1 1 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1 0 1

and its corresponding Tanner graph. Each variable node, depicted by a circle, represents

Figure 1: A parity-check matrix and its Tanner graph.

one bit of a codeword and every check node, depicted by a square, represents one parity-

check constraint. Hence, the Tanner graph contains N variable nodes and M check nodes.

The i-th variable node is connected to the j-th check node if and only if Hij = 1. If d edges

emanate from a node, variable or check node, we say that node has degree d. Since there

are no direct connection between any two nodes of the same type, the Tanner graph is said

to be bipartite. Tanner graphs can also serve as a nice visualization tool for a variety of

issues concerning LDPC codes.

A cycle is a path in the Tanner graph that begins and ends at the same node, whereby

every edge is traversed only once; the length of a cycle is the number of its edges. Usually,

the Tanner graphs of LDPC codes contain many cycles of different lengths. A cycle of

smallest length in the Tanner graph is called girth. Since Tanner graphs are bipartite, the

4

smallest cycle has length 4, like shown in Figure 2. It is desired that LDPC codes do not

have any cycles of length 4, as such codes yield poor performance.

Figure 2: A length 4 cycle.

1.3.2 Regular LDPC Codes

An LDPC code whose parity-check matrix contains the same number dv of non-zero elements

in each column and the same number dc of non-zero elements in each row, is said to be

regular or more precisely a (dv, dc) regular LDPC code. The first LDPC codes introduced

by Gallager were regular.

In a (dv, dc) regular LDPC code each codeword bit is subject to dv parity-check con-

straints and each parity-check constraint involves dc codeword bits. We say that the pair

(dv, dc) designates an ensemble of regular LDPC codes, since generally one can construct

numerous different parity-check with dv/dc non-zero elements in each column/row. Each

such parity-check matrix is called an instance of the ensemble. It is shown in [17] that best

performing regular LDPC codes have dv = 3.

The number of all non-zero elements in a parity-check matrix H of a regular LDPC

code equals Mdc (or equivalently, Ndv); hence, M/N = dv/dc and the rate of a regular

LDPC code can be expressed as

R =
K

N
=
N −M
N

= 1− M

N
= 1− dv

dc
. (5)

5

1.3.3 Irregular LDPC Codes

An LDPC code that is not regular is designated as irregular. An irregular LDPC code

can have a parity-check matrix H with different numbers of non-zero elements in each

column/row, as long as it remains sparse. An ensemble of irregular LDPC codes is defined

by the degree distribution pair

λ(x) =

dv∑
i=2

λix
i−1 (6)

ρ(x) =

dc∑
i=2

ρix
i−1, (7)

where λi is the fraction of edges emanating from variable nodes of degree i, ρi is the fraction

of edges emanating from check nodes of degree i, and dv and dc are the maximum variable

node and check node degrees, respectively. Since λi and ρi designate fractions of edges, we

say that the above degree distribution pair is from the edge perspective.

If there are N variable nodes, the number of variable nodes of degree i is

Ni = N
λi/i∑dv
j=2 λj/j

= N
λi/i∫ 1

0 λ(x)dx
,

and the total number of edges is

E = N

dv∑
i=2

λi∫ 1
0 λ(x)dx

= N
1∫ 1

0 λ(x)dx
. (8)

Alternatively, if there are M check nodes, we get

E = M
1∫ 1

0 ρ(x)dx
. (9)

By combining Eqs. (8) and (9) we get the formula for the rate of an irregular LDPC code

R = 1− M

N
= 1−

∫ 1
0 λ(x)dx∫ 1
0 ρ(x)dx

. (10)

6

Sometimes it is convenient to have variable and check node distributions from the node

perspective

Λ(x) =

dv∑
i=2

Λix
i−1 (11)

P (x) =

dc∑
i=2

Pix
i−1, (12)

where Λi and Pi are the fraction of variable and check nodes of degree i, respectively. Using

Eqs. (6) and (7) we get

Λi =
λi/i∑dv
j=2 λj/j

(13)

Pi =
ρi/i∑dc
j=2 ρj/j

. (14)

The design of irregular LDPC codes is more flexible due to the absence of constraints

and they have proved to perform much better then the regular LDPC codes [60, 61]. For

simplicity, we restrict subsequent analysis to regular LDPC codes, but the ideas that we

use can be extended for the analysis of irregular LDPC codes as well.

1.4 Constructing of LDPC Codes

There are many ways to construct a parity-check matrix H or its Tanner graph for a given

degree distribution pair. A common approach is to simply choose locations of non-zero

elements in H randomly such that it conforms to the degree distribution pair [50]. The

occurrence of 4-cycle loops can be prevented by ensuring that two columns can have at most

one non-zero element at the same location.

Randomly constructed LDPC codes of large block lengths have proved to yield im-

pressive performance [50, 9]. Unfortunately, random construction is usually not the best

approach for LDPC codes of short block lenghts. In this work we construct instances of

LDPC codes by means of the progressive edge-growth (PEG) algorithm [30]. It is a simple

but efficient algorithm for constructing a Tanner graph with a large girth in a best-effort

sense by consecutively establishing edges between variable and check nodes. A more detailed

description of the algorithm and its performance can be found in [30].

7

1.5 Encoding LDPC Codes

One of the most serious problems concerning LDPC codes is their encoder complexity. In

Section 1.2 it was shown how to calculate a codeword using a generator matrix G. Unfor-

tunately, if H is sparse, G is generally dense, meaning that it contains a significant number

of non-zero elements. As a consequence, a naive encoder implementation has complexity

quadratic in block length. Richardson et. al show that LDPC codes can be encoded with

linear complexity if H is brought to an approximate lower triangular form [62].

1.6 Decoding LDPC Codes

In this section we analyze the decoding of an LDPC code defined by its parity-check matrix

H over the additive white Gaussian noise (AWGN) channel. The transmitter uses binary

phase shift keying (BPSK) to modulate each codeword bit ci according to

xi = 1− 2ci. (15)

The modulated codeword x = [x1, . . . , xN], xi ∈ {−1, 1} is transmitted over the AWGN

channel and the receiver observes

y = x+ n, (16)

where n = [n1, . . . , nN] is the noise vector composed of N independent zero-mean Gaussian

random variables ni with variance σ2. Note that y = [y1, . . . , yN] and yi ∈ R. The receiver’s

task is to deduce which codeword c was transmitted.

1.6.1 Probability Domain Decoding

We focus on the decoding of the i-th bit ci of the codeword c. Much like optimal maximum

a posteriori (MAP) decoding of trellis codes, we compute the a posteriori probability (APP)

that ci equals 1 given the received sequence y and under condition that all constraints upon

ci are satisfied. Let us begin by considering the APP ratio

Pr[ci = 0|y, Si]
Pr[ci = 1|y, Si]

,

where Si is the event that occurs when bits in the hard decision word c̄, where c̄i = 0 if

yi > 0 and c̄i = 1 otherwise, satisfy the dc parity-check constraints involving ci. By applying

8

Bayes’ formula, we get

Pr[ci = 0|y, Si]
Pr[ci = 1|y, Si]

=
Pr[ci = 0|yi]
Pr[ci = 1|yi]

· Pr[Si|ci = 0,y]/Pr[Si]

Pr[Si|ci = 1,y]/Pr[Si]

=
Pr[ci = 0|yi]
Pr[ci = 1|yi]

· Pr[Si|ci = 0,y]

Pr[Si|ci = 1,y]
, (17)

Note that if c̄i = 0, the remaining dc − 1 bits in each of the dv parity-check constraints

involving ci must contain an even number of 1s for Si to occur. On the other hand, if

c̄i = 1, each parity-check constraint involving ci must contain an odd number of 1s. The

following Lemma will be helpful for further analysis.

Lemma 1.1. Let a = [a1, . . . , am] be a sequence of m independent bits with Pr[ai = 1] = Pi.

The probability that a contains an even number of 1s is

1

2
+

1

2

m∏
i=1

(1− 2Pi). (18)

Proof. We prove this by induction on m. If a contains an even number of 1s, the modulo-2

sum Am of all bits in a is 0. For m = 2 we have

Pr[A2 = 0] = Pr[a1 + a2 = 0]

= P1P2 + (1− P1)(1− P2)

=
1

2
+

1

2
(1− 2P1)(1− 2P2) =

1

2
+

1

2

2∏
i=1

(1− 2Pi).

For m > 2 assume that

Pr[Am = 0] =
1

2
+

1

2

m∏
i=1

(1− 2Pi)

holds; then, for m+ 1 we get

Pr[Am+1 = 0] = Pr[Am + am+1 = 0]

=
1

2
+

1

2
(1− 2 Pr[Am = 1])(1− 2Pm+1)

=
1

2
+

1

2

(
1− 2(1− Pr[Am = 0])

)
(1− 2Pm+1)

=
1

2
+

1

2

m+1∏
i=1

(1− 2Pi).

9

Suppose we know that ci is 0. A parity-check constraint involving ci will be satisfied if

among the remaining bits involved in that constraint there is an even number of 1s. On

the other hand, if ci is 1, there must be an odd number of 1s among the remaining bits.

Now consider all bits that take part in the parity-check constraints involving ci, assuming

they are statistically independent. Then the probability that all parity-check constraints

involving ci are satisfied is the product of probabilities that each parity-check constraint is

satisfied. With this fact Eq. (17) is expanded

Pr[ci = 0|y, Si]
Pr[ci = 1|y, Si]

=
Pr[ci = 0|yi]
Pr[ci = 1|yi]

·

∏
j∈Ci

1

2

(
1 +

∏
k∈Rj\{i}

(1− 2 Pr[ck = 1|yk)
)

∏
j∈Ci

1

2

(
1−

∏
k∈Rj\{i}

(1− 2 Pr[ck = 1|yk)
) , (19)

where Rj = {i : Hji = 1} is a set of indices of columns with non-zero elements in the j-th

row of H, and Ci = {j : Hji = 1} is a set of indices of rows with non-zero elements in the

i-th column of H.

The probabilities in the first fraction on the right-hand side of Eq. (19) depend solely

on yi and are thus designated as channel information. In case of the AWGN channel and

assuming a uniform source we get

Pr[ci = 0|yi] = Pr[xi = 1|yi] =
p(yi|xi = 1) Pr[xi = 1]

p(yi)

=
1
2e
−(yi−1)2/2σ2

1
2e
−(yi−1)2/2σ2 + 1

2e
−(yi+1)2/2σ2

=
1

1 + e−2yi/σ2 (20)

Now we can formulate an iterative algorithm for decoding LDPC codes, as originally pro-

posed by Gallager [17] and known as the message passing algorithm. During execution,

messages are iteratively exchanged between the neighboring nodes in the Tanner graph and

each message is associated to the codeword bit corresponding to the variable node incident

to the edge that carries the message. Effectively, the message conveys an estimate of that

bit’s most likely value along with some information about the estimate’s reliability.

A message sent from either a check or a variable node along an edge should not depend

on the message previously received along that edge. We say that only extrinsic information

10

is passed along, which is an important property of good iterative decoders. A message from

the variable node i to the check node j in the l-th iteration that carries the probability that

the i-th bit has value k, is denoted by q
(l)
ij (k). On the other hand, a message in the reverse

direction from the check node j to the variable node i in the l-th iteration that carries the

probability that the i-th bit has value k, is r
(l)
ji (k).

Initially, the variable nodes only have information about the channel output values of

their corresponding bits. Since no additional information from the neighboring check nodes

is available, they send the message

q
(0)
ij (1) =

1

1 + e−
2yi
σ2

(21)

along adjacent edges, in accordance with Eq. (20). In this case, the message gives the

probability that the bit is 1, but it could also carry the probability that that bit is 0.

Subsequently, the messages are iteratively exchanged between check nodes and variable

nodes. In each iteration, each check node receives messages from its neighboring variable

nodes, processes that information, and passes the updated message

r
(l)
ji (1) =

1

2
− 1

2

∏
k∈Rj\i

(
1− 2q

(l−1)
kj (1)

)
(22)

back to the neighboring variable nodes, as illustrated in Figure 3. Similarly, each variable

1

1 2 3

Figure 3: Check node message update.

node collects messages from its neighboring check nodes, calculates the probability that the

11

corresponding bit is 1 and sends it to the neighboring check nodes. According to Eq. (19)

1− q(l)
ij (1)

q
(l)
ij (1)

=
1− q(0)

ij (1)

q
(0)
ij (1)

∏
k∈Ci\j

(
1− r(l)

ki (1)
)

∏
k∈Ci\j

r
(l)
ki (1)

, (23)

where the message received from the check node j was left out, since the updated message

depends solely on extrinsic information, as in Eq. (22). From Eq. (23) we get

q
(l)
ij (1) =

1

1 +
1−q(0)ij (1)

q
(0)
ij (1)

∏
k∈Ci\j

(
1−r(l)ki (1)

)
∏
k∈Ci\j

r
(l)
ki (1)

. (24)

Figure 4 shows the message passing as seen from the variable node’s perspective. When

1

1 2 3

Figure 4: Variable node message update.

the variable node i receives messages from all neighboring check nodes, it calculates the

probability, Pr[ci = 1|y, Si] by taking into consideration all incoming check node messages

like in Eq. (19). If Hĉ = 0, where ĉ = [ĉ1, . . . , ĉN] and

ĉi =

 1, if Pr[ci = 1|y, Si] > 1
2 ,

0, otherwise,

or if the maximum number of iterations has been reached, the algorithm stops; otherwise,

the next iteration is started.

With this algorithm Eq. (19) converges to the maximum APP only if the messages are

statistically independent and that is the case only if the Tanner graph corresponding to H

12

is cycle-free. Unfortunately, Tanner graphs of practical codes are usually not cycle-free and

in such cases the algorithm gives an approximate solution for the APP, which still yields

very good performance.

1.6.2 Log-likelihood Domain Decoding

Up to this point, the decoder analysis has been treated in the probability domain. In Eqs.

(19), (24), and (22) there is a substantial number of multiplications, which tend to become

numerically unstable and are harder to implement in hardware as compared to additions.

In order to simplify those equations, we introduce the term

λci = log
Pr[ci = 0]

Pr[ci = 1]
, (25)

called the log-likelihood ratio (LLR). The probability distribution for a binary random vari-

able ci is uniquely specified by λci . The sign of λci indicates the most likely value of ci,

while its absolute value is a measure of certainty for that decision. In example, if Pr[ci = 0]

tends to 1 then λci tends to ∞. On the other hand, if Pr[ci = 0] = Pr[ci = 1] then λci = 0,

indicating that the value of ci is unpredictable. Both probabilities Pr[ci = 0] and Pr[ci = 1]

can be expressed by λci :

Pr[ci = 0] =
e−λci

1 + e−λci
,

Pr[ci = 1] =
1

1 + e−λci
.

Lemma 1.2. In the log-likelihood domain, the updated check node message in the l-th

iteration is given by

λ(l)
rji = 2 tanh−1

∏
k∈Rj\i

tanh

(
1

2
λ(l−1)
qkj

)
. (26)

Proof. If we rearrange Eq. (22) as

1− 2r
(l)
ji (1) =

∏
k∈Rj\i

(
1− 2q

(l−1)
kj (1)

)
(27)

and use the equality

tanh

(
1

2
λx

)
= 1− 2 Pr[x = 1],

13

we get

λ(l)
rji = log

r
(l)
ji (0)

r
(l)
ji (1)

= 2 tanh−1
∏

k∈Rj\i

tanh

(
1

2
λ(l−1)
qkj

)
.

The formula for a variable node message in the log-likelihood domain can be derived from

Eqs. (25), (24), (26), in the following way

λ(l)
qij = log

q
(l)
ij (0)

q
(l)
ij (1)

= log
Pr[ci = 0|yi]
Pr[ci = 1|yi]

+ log

∏
k∈Ci\j

r
(l)
ki (0)

∏
k∈Ci\j

r
(l)
ki (1)

= λci|yi +
∑

k∈Ci\j

λ(l)
rki
. (28)

The first term on the right hand side of Eq. (28) is the contribution from the i-th channel

output, while the second term sums contributions from the neighboring check nodes, with

the recipient of λ
(l)
qi,j excluded. For an AWGN channel with the noise variance σ2, Eq. (20)

can be used to express λci|yi as

λci|yi =
2

σ2
yi. (29)

The constant of proportionality 2/σ2 is called the channel reliability.

The LLR for the bit corresponding to the variable node i after the l-th iteration is given

by

λ(l)
ci = λci|yi +

∑
k∈Ci

λ(l)
rki
. (30)

Here, as opposed to Eq. (28), all incoming check node messages are taken into account.

After each iteration, the decoder evaluates the LLR values for each variable node and checks

all parity-check constraints by verifying the relation Hĉ(l) = 0, where ĉ(l) = [ĉ
(l)
1 , . . . , ĉ

(l)
N]

and

ĉi
(l) =

 1, if λ
(l)
ci < 0,

0, otherwise.

14

If all parity-check constraints are fulfilled or if the maximum number of iterations has been

reached, the decoder stops; otherwise, the next iteration is started.

The following is a summary of

The Message-Passing Algorithm

Step 0.0 [Initialization] λ
(0)
rji = 0 for all j ∈ {1, . . . ,M} and i ∈ Rj , λci|yi = λ

(0)
ci = (2/σ2)yi

for all i ∈ {1, . . . , N}, λ(0)
qij = (2/σ2) for all i ∈ {1, . . . , N} and j ∈ Ci, l = 0,

Step 1.0 [Check Codeword] If Hĉ(l) = 0 or l = lmax, then STOP, otherwise l = l + 1,

Step 1.1 [Check Node Update]

λ(l)
rji = 2 tanh−1

∏
k∈Rj\i

tanh

(
1

2
λ(l−1)
qkj

)

for all j ∈ {1, . . . ,M} and i ∈ Rj ,

Step 1.2 [Variable Node Update]

λ(l)
qij = λci|yi +

∑
k∈Ci\j

λ(l)
rki

and

λ(l)
ci = λci|yi +

∑
k∈Ci

λ(l)
rki

for all i ∈ {1, . . . , N} and j ∈ Ci,

Step 2.0 [Start New Loop] go to Step 1.0.

15

CHAPTER II

PUNCTURED BINARY LDPC CODES

Modern communication systems operating over time variant channels, must be capable of

adapting the rate according to the available channel state information in order to ensure

the desired system performance and maximize the throughput.

Conventional applications usually employ a variety of fixed rate coding schemes that are

well suited to the channel characteristics and meet the bit error rate (BER) requirements.

Each of the coding schemes is optimized independently for the given rate to meet the

desired performance. However, the complexity of such a system is rather high, since usually

a separate encoder/decoder pair is required for each coding scheme.

An alternate way of realizing rate adaptability is to systematically puncture a low rate

code, a so-called mother code, such that the bits of higher rate codes are a subset of the bits

of lower rate codes. This approach was introduced by Hagenauer in [24], where puncturing

was applied on convolutional codes. Its beauty lies in the fact that only one encoder/decoder

pair is needed for the entire range of rates. Furthermore, a rate-compatible coding scheme

enables the use of retransmission protocols based on incremental redundancy, such as the

type-II hybrid Automatic Repeat Request (ARQ) protocol, which can increase the system

throughput in presence of channel impairments. However, the choice of a coding scheme for

different rates is restricted by compatibility constraints.

In this chapter we analyze punctured binary LDPC codes with block lengths of order 103;

more specifically, we are interested in rate-compatible sets of punctured codes also referred to

as rate-compatible punctured LDPC codes. We present ideas for puncturing regular binary

LDPC codes proposed by Ha, Kim, and McLaughlin in [22], extend them for irregular

binary LDPC codes, and introduce some new ideas that improve the performance at higher

rates. Finally, we analyze the performance of punctured LDPC codes constructed according

to the proposed ideas and compare them to constructions based on random puncturing.

16

2.1 Basic Ideas

Puncturing of the mother code can be performed either randomly or according to puncturing

locations optimized for a given parity-check matrix. We refer to the former as random

puncturing and to the latter as intentional puncturing in the subsequent sections. By

smartly choosing sequences of bits to be punctured, we can significantly improve the code’s

performance at a wide range of rates as compared to random puncturing and we can avoid

some selections that lead to catastrophic behavior to be discussed later. We often use

Tanner graphs, where we refer to bits as variable nodes. Hence, a punctured variable node

refers to the punctured bit corresponding to its variable node in the Tanner graph.

Suppose that some variable nodes were punctured. Assuming a uniform source, the

decoder will set the LLR values of the punctured nodes to 0 at the initialization, since no a

priori information is provided. Subsequently, the decoding process is started. If a punctured

variable node receives a non-zero LLR message from one of its neighboring check nodes it is

said to be recovered, regardless of whether the message implies the correct bit value or not.

Through iterations all punctured variable nodes have to be recovered with the information

provided by the unpunctured nodes, or else the parity-check constraints can not be satisfied.

Let V = {v1, v2, . . . , vN} be the set of variable nodes and P = {p1, p2, . . . , pM} the set

of check nodes in the Tanner graph of the mother code. For the node x, we define its

neighborhood Nx as the set of all nodes that can be reached from x by traversing a single

edge; since the Tanner graph is bipartite, Nvi is a subset of P , and Npi is a subset of V .

According to Eq. (30) a punctured variable node v will be recovered when at least one

of the incoming check node messages is non-zero and by Eq. (26) the incoming check node

message λrp,v will be non-zero, if all variable nodes in Np \ {v} are either unpunctured or

recovered. Accordingly, a punctured variable node v is referred to as one-step recoverable

(1-SR) if v has at least one neighbor p, called the survived check node, such that all variable

nodes in Np \ {v} are unpunctured. The remaining check nodes from Nv are referred to as

dead check nodes (see Figure 5).

In general, a punctured variable node v is called k-step recoverable (k-SR) if it has at

least one neighbor p, called the survived check node, such that the set Np \ {v} contains

17

1-SR

Survived

check node

Dead

check node

Dead

check node

Figure 5: A 1-SR variable node. Void and filled circles are punctured and unpunctured
variable nodes, respectively.

at least one (k − 1)-SR node, while the rest are m-SR nodes, where 0 ≤ m ≤ k − 1.1

Alternatively, we say that such variable node has level of recoverability k. Note that the

maximum level of recoverability is defined as the highest level of recoverability of a punctured

node. A k-SR node, k ≥ 1, can have multiple survived check nodes, but the puncturing

algorithm proposed in this section will ensure existence of at least one survived check node

for each k-SR node. We refer to it as the guaranteed survived check node. Notice that a

k-SR node will be recovered at the k-th iteration. An example of a 3-SR node is illustrated

in Figure 6.

3-SR

Survived

check node

Dead

check node

Dead

check node

3-SR 1-SR 2-SR 2-SR 1-SR 1-SR 3-SR 1-SR 2-SR 2-SR

Figure 6: A 3-SR variable node. Void and filled circles denote punctured and unpunctured
variable nodes, respectively.

The puncturing algorithm progressively determines variable nodes to be punctured and

those to remain unpunctured. It is desirable that the punctured nodes be recovered in as

few iterations as possible. Thus, the algorithm first attempts to maximize the number of

1A 0-SR node is an unpunctured node.

18

punctured nodes that are 1-SR. When no more 1-SR nodes can be found, it proceeds with

2-SR nodes, and so on, until every node in V has been chosen to be either unpunctured or

punctured. The algorithm assigns the variable nodes to groups Gk, k ≥ 0, where k indicates

the level of recoverability of variable nodes in that group. For instance, if a variable node

is chosen to be unpunctured, it is assigned to G0, whereas if it is chosen to be punctured

such that is will be recovered at the k-th iteration, it is assigned to Gk. At any particular

stage during the execution of the algorithm, all variable nodes whose status (punctured or

unpunctured) has not yet been determined are in the group G∞. Hence, when the algorithm

starts G∞ = V , and when it stops G∞ is empty.

Consider a k-SR node v. We build a tree originating from v in the following way: v is

linked with its guaranteed survived check node c and subsequently c with all variable nodes

from the set Nc \ {v}; next, this process is repeated on every new punctured variable node

in the tree until every branch terminates with an unpunctured variable node. The resulting

tree is called the recovery tree of v. An example of a recovery tree is given in Figure 7. The

number of unpunctured nodes in the recovery tree of v will be of importance; therefore, we

denote it as S(v). If v is unpunctured, S(v) is set to 1.

Assume that v is recovered exclusively based on information received from the unpunc-

tured nodes in its recovery tree. Then define the recovery-error probability of v, denoted

Pe(v), as the probability that v is recovered with a wrong value. Although a punctured

node is not always recovered exclusively based on information from its recovery tree, Pe(v)

is helpful for selecting the best candidate for puncturing.

Some selections of punctured bits lead to a catastrophic behavior of the code. Namely,

unless the punctured bits are selected carefully, it is possible that some of them are unre-

coverable with the message-passing decoder. In other words, a fraction of punctured bits

never receives a non-zero message, regardless of the number of iterations.

Consider a set S of variable nodes such that all their neighbors are connected to at

least two variable nodes from S . Such set is called a stopping set [14].

The punctured variable nodes that comprise a stopping set are unrecoverable [14]. The

incoming messages from their neighboring check nodes are always zero—regardless of the

19

3-SR

1-SR 2-SR

1-SR 1-SR

Figure 7: A recovery tree of a 3-SR node. Void and filled circles denote punctured and
unpunctured variable nodes, respectively.

Figure 8: A stopping set. The four left most variable nodes form a stopping set.

20

number of iterations—since every neighboring check node is connected to at least two punc-

tured variable nodes; therefore, puncturing a stopping set must be strictly avoided. In the

following subsection we show how this can be done.

2.2 Criteria for Selecting Punctured Nodes

The main design goals here are to maximize the achievable rate and to ensure good perfor-

mance at high rates, which is critical according to [20]. As we will see later in this chapter,

these goals are often conflicting and call for a compromise. In this subsection we establish

some guidelines for choosing punctured variable nodes that will yield a trade-off between

the achievable rate and good performance at high rates.

Suppose we want to puncture a variable node v ∈ G∞ such that it is 1-SR. For v to

be 1-SR there must exist at least one check node p ∈ Nv whose neighborhood Np consists

of variable nodes that belong to either G0 or G∞ (i.e., of unpunctured and unassigned

variable nodes). We refer to all such check nodes as candidate check nodes and to their rows

in H as candidate rows. If such check node p exists, v is assigned to G1 and the remaining

unassigned variable nodes in Np are assigned to G0; this guarantees that v will be recovered

after the first iteration and p is designated as the guaranteed survived check node of v.

It is important to observe that assigning v to G1 causes the size of G0 to increase by the

size of the set Np ∩G∞, designated as |Np ∩G∞|. This number will prove useful; therefore,

we denote it as rweff(p) and call it the effective row weight of p. Since we want to maximize

the achievable code rate or equivalently, minimize the size of G0, we choose the check node

with the minimal effective row weight among the candidate check nodes. A similar approach

can be applied to k-SR nodes.

Observe that if v has degree d, the number of check nodes that can serve as guaranteed

survived check nodes to another 1-SR variable node is decreased by up to d. Namely, the d

check nodes in Nv are already connected to 1-SR variable node v; therefore, no other 1-SR

variable node in their neighborhoods can be recovered by them. It can happen that a check

node is connected to several 1-SR (or k-SR) nodes, but is a guaranteed survived check node

to none of them. Hence, suppose that a check node from Nv \ {p} serves as a guaranteed

21

survived check node to another 1-SR node; then, there will remain only d−1 fewer candidate

check nodes. As the size of G1 is to be maximized, the decrease of candidate check nodes

should be minimal. Towards this goal, we introduce effective column weight cweff(v) of a

variable node v, equal to the number of candidate check nodes in Nv. The variable nodes

with the lowest effective column weight are given priority, so that the decrease of candidate

check nodes is minimal.

For further insight it is useful to focus on the recovery error probability Pe of a punctured

variable node. In the following we show how Pe is calculated over the binary symmetric

channel (BSC) and the AWGN channel.

Theorem 1. Recovery error probability of a variable node v ∈ Gk over the BSC with a

crossover probability e is

Pe(v) =
1− (1− 2e)S(v)

2
. (31)

Proof. We prove this by induction on k. For k = 0 and v ∈ G0, we have

Pe(v) =
1− (1− 2e)

2
= e,

which is true, since v is unpunctured. Moreover, for k = 1 and v ∈ G1,

Pe(v) =
1− (1− 2e)dp−1

2
, (32)

since all remaining variable nodes in the recovery tree of v are in G0 and therefore Eq. (18)

applies. Assume that for 0 ≤ m ≤ k and any v ∈ Gm Eq. (31) holds; then, for k + 1 and

v ∈ Gk+1,

Pe(v) =
1−∏dp−1

j=1

(
1− 2Pe(γj)

)
2

,

where γj are variable nodes from the set Np \ {v} and p is the guaranteed survived check

22

node of v. Since each γj belongs to one of the groups Gm, 0 ≤ m ≤ k, we have

Pe(v) =
1−∏dp−1

j=1

(
1− 21−(1−2e)S(γj)

2

)
2

=
1−∏dp−1

j=1 (1− 2e)S(γj)

2

=
1− (1− 2e)

∑dp−1

j=1 S(γj)

2

=
1− (1− 2e)S(v)

2
.

Observe that the recovery error probability of a punctured variable node over the BSC

grows with the number of unpunctured variable nodes in its recovery tree. In fact, the same

holds for the AWGN channel, but before we prove it, we briefly summarize some earlier

work.

The probability density function (PDF) of a check node message2 can be approximated

with a Gaussian distribution over the AWGN channel [10]. For output symmetric channels3

the variance σ2 and the mean of the check node message PDF mu are related by σ2 = 2mu,

which is preserved through iterations. Thus, if statistical properties of a check node message

PDF through iterations are of interest, it is sufficient to follow the mean mu, called the

updated mean, of its Gaussian PDF. After any iteration the bit error probability can be

calculated from the message PDF using the Q-function.4

On output symmetric channels the bit error probability of a message-passing decoder

does not depend on the transmitted codeword [60]. Consequently, it can be assumed without

any loss of generality that the all-zero codeword is transmitted. In such case, the growing

updated mean results in a decrease of the bit error probability.

According to [10] the updated mean mu(v) is given by

mu(v) = φ−1

(
1−

dp−1∏
i=1

(
1− φ(mvi)

))
, (33)

2The messages are assumed to be in the log-likelihood domain.
3A channel is output symmetric if p(yi = q|xi = 1) = p(yi = −q|xi = −1), where xi is an input bit and

yi is the channel output of that bit.
4A more in-depth analysis of the variable and check node message PDFs can be found in [60, 61, 10].

23

where mvi is the mean of the Gaussian PDF of the message from a variable node incident

to that check node,

φ(x) =

1− 1√

4πx

∫
R

tanh
u

2
e
−(u−x)2

4x du, if x > 0

1, if x = 0,

and φ−1(x) is the inverse function of φ(x).

Let mu0 be the mean of the LLR of the channel output, let Q(·) be the Q-function.

Theorem 2. Recovery error probability of a variable node v ∈ Gk over the AWGN channel

is given by

Pe(v) = Q(
√
mu(v)/2), (34)

where

mu(v) = φ−1

(
1−

[
1− φ(mu0)

]S(v)
)
. (35)

Proof. The proof is by induction on k. For k = 1, the updated mean mu(v) of a message,

which recovers a punctured variable node v ∈ G1 is given by φ−1(1− [1− φ(mu0)]dp−1)) =

φ−1(1 − [1 − φ(mu0)]S(v))), as mγj = mu0 if γj ∈ G0. Assume that for 1 ≤ i ≤ k and any

v ∈ Gi, Eq. (35) holds. Then, for k + 1 and v ∈ Gk+1

mu(v) = φ−1

(
1−

dp−1∏
j=1

[
1− φ(mγj)

])
.

Since for all γj belong to Gi, where 0 ≤ i ≤ k, and mγj = mu(γj), we have

mu(v) = φ−1

(
1−

dp−1∏
j=1

[
1− φ(mγj)

])

= φ−1

(
1−

dp−1∏
j=1

[
1− φ(mu0)

]S(γj)
)

= φ−1

(
1− [1− φ(mu0)]

∑dp−1

j=1 S(γj)

)
= φ−1

(
1−

[
1− φ(mu0)

]S(v)
)
,

where dp is a degree of the guaranteed survived check node of v, γj are variable nodes in

Np \ {v}, and γj ∈ Gm for 0 ≤ m ≤ k.

24

The graph of the function φ(x) is shown in Figure 9. As S(v) increases, so does the

argument to the φ−1 function in Eq. (35); in effect, the updated mean decreases, and the

recovery error probability Pe(v) increases. Consequently, in the process of choosing variable

nodes to be punctured, those with lower S(v) are preferred. Since in most cases S(v) grows

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x

φ(x)

Figure 9: The plot of the function φ(x).

with the level of recoverability of v, the first goal is to maximize the size of G1. When no

more 1-SR nodes are found, the number of 2-SR nodes is maximized, and so on, until no

more variable nodes can be punctured.

The algorithm based on this discussion, called the grouping algorithm, is introduced

next.

2.3 The Grouping Algorithm

Having established the selection criteria for choosing the most appropriate variable node

to be punctured, we start by presenting the grouping algorithm and afterwards we give a

short explanation to each step. In each algorithm loop one variable node is chosen, which

has the lowest effective row weight (to maximize G0), the lowest effective column weight

(to maximize the size of Gk), and the lowest recovery error probability.

25

The Grouping Algorithm

Step 0 [Initialization] For a given M ×N parity-check matrix H, set k = 1, R∞ = P =

{p1, p2, . . . , pM}, G0 = ∅, G1 = ∅, G∞ = V = {v1, v2, . . . , vN}, S(vi) = 1 for all

1 ≤ i ≤ N .

Step 1 [Group Variable Nodes] Form Gp∞ = Np ∩G∞ for each p ∈ R∞.

Step 2 [Find Check Nodes With Minimal Effective Row Weight] Make a subset

R∞,min of R∞ such that for all p ∈ R∞,min, rwmin
eff = rweff(p) ≤ |Gp∞| = rweff(p′) for

every p′ ∈ R∞.

Step 3.0 [Group Check Nodes] Make Rv∞ = Nv ∩R∞ for all v ∈ Gp∞, and p ∈ R∞,min.

Step 3.1 [Find Best Check Nodes] Find a subset R∗∞,min of R∞,min, such that for all

p∗ ∈ R∗∞,min, there exists a v ∈ Gp∗∞ such that |Rv∞| = cwmin
eff = cweff(v) ≤ |Rv′∞| =

cweff(v′) for every v′ ∈ Rp∞ and p ∈ R∞,min.

Step 3.2 [Make a Set of Ordered Pairs] Build a set of ordered pairs O = {(p∗1, v∗1), (p∗2,

v∗2), . . . , (p∗n, v
∗
n)}, where p∗i and v∗i are check nodes and variable nodes with cwmin

eff and

rwmin
eff , respectively. If there are multiple ordered pairs with the same variable node

v∗ ∈ Gp∗∞, pick one of them randomly and remove the remaining ones, so that each

variable node is represented at most once in O.

Step 3.3 [Find The Best Pair] Let W(p∗, v∗) =
∑

v∈Np∗\{v∗} S(v). Pick a pair (p∗, v∗)

from O such that W(p∗, v∗) ≤ W(p∗i , v
∗
i), for all 1 ≤ i ≤ n. If there are multiple such

pairs, pick one randomly,

Step 4 [Update] Set Gk = Gk ∪ {v∗}, G0 = G0 ∪
(
Gp
∗
∞ \ {v∗}

)
, G∞ = G∞ \ Gp

∗
∞, R∞ =

R∞ \Rv∗∞, S(v∗) =W(p∗, v∗),

Step 5.0 [Check Stop Condition] If |G∞| = 0, then STOP,

Step 5.1 [Decision] If |R∞| ≥ 1, go to Step 1,

26

Step 5.2 [Set New R∞ and Increment k] Set k = k+1, R∞ = {pi : all pi, 1 ≤ i ≤M, for

which rweff(pi, G∞) > 0}, and go to Step 1.

Initialization with k = 1 indicates that the algorithm starts by puncturing 1-SR variable

nodes. Sets R∞ and G∞ initially contain all check nodes and variable nodes, respectively.

Throughout the algorithm R∞ contains check nodes that have no neighbors in Gk and at

least one in G∞. In effect, R∞ contains indices of candidate check nodes or rows. For all

variable nodes S(v) is set to 1, the value for unpunctured nodes, and will be updated for

each unassigned node chosen for puncturing.

In step 1, sets Gp∞ are built for every p ∈ R∞, such that Gp∞ contains all unassigned

variable nodes connected to the check node p. The effective row weight of p is determined

by |Gp∞|. The algorithm searches for check nodes with the lowest row weight and stores

them in R∞,min. In the following steps, only unassigned variable nodes connected to R∞,min

are considered as candidates for puncturing in order to ensure smallest possible increase of

G0.

Beside minimizing G0, it is desired that Gk be maximized and that the chosen punc-

tured node have minimal recovery error probability. The algorithm reduces the number

of candidate variable nodes by choosing those with the lowest effective column weight in

steps 3.0 and 3.1; this will cause the number of candidate check nodes (or the size of R∞)

to decrease minimally. In step 3.0 the set Rv∞ is built for each candidate variable node v,

containing check nodes connected to v and represented in R∞,min. The effective column

weight of v equals |Rv∞|. Check nodes that are connected to candidate variable nodes with

the lowest effective column weight form the set R∗∞,min.

To organize the remaining candidate variable nodes the set O of ordered pairs (p∗, v∗)

is built, where p∗ is the check node with the lowest effective row weight among check nodes

in Nv∗ and v∗ is the candidate variable node with the lowest effective column weight. It

may happen that v∗ is connected to more than one check node with the lowest effective

row weight; in such case, one of those check nodes is chosen randomly ensuring that no two

ordered pairs in O share a v∗.

27

In step 3.3, the candidate variable node v∗ from the ordered pair (p∗, v∗) with the

minimal number of unpunctured nodes in its recovery tree, here denoted by W(p∗, v∗), is

chosen for puncturing, while its guaranteed survived check node is p∗. If there are multiple

candidate variable nodes with the lowest W(p∗, v∗), one of them is chosen randomly.

Subsequently, in step 4 the algorithm updates some sets and variables to ensure correct

operation in the next loop: the chosen variable node v∗ is added to Gk while the remaining

unassigned variable nodes connected to p∗ are set to remain unpunctured and assigned to

G0. All previously unassigned variable nodes connected to p are removed from G∞, and

the number of unpunctured nodes in the recovery tree S(v∗) is set to W(p∗, v∗).

In steps 5.0–5.2 it is checked if there are any remaining unassigned variable nodes. If none

is found, no additional variable nodes can be punctured and the algorithm stops; otherwise,

a search for additional k-SR nodes is performed by checking the number of elements in R∞.

If R∞ contains at least one check node, additional k-SR variable nodes can be found, and a

new loop is started without incrementing k. In the opposite case, k is incremented by one

and the algorithm starts searching for (k + 1)-SR nodes. Before the new loop is started, a

new set R∞ is built to ensure the correct calculation of the effective column weight in the

subsequent loops.

When the algorithm stops, every variable node belongs to one of the sets (also called groups)

Gi, 0 ≤ i ≤ K, where K designates the maximum level of recoverability. These groups form

a set

G = {G0, G1, . . . , GK}.

The maximum achievable rate Rmax is now expressed as

Rmax =
R0

1−∑K
i=1 |Gi|/N

, (36)

where R0 is the rate of the mother code and N is the block length. For an increasing

sequence of desired rates, R0 ≤ R1 ≤ . . . ≤ RL ≤ Rmax, let Pi be the set of variable nodes

that are punctured to achieve rate Ri. The Pi is required to contain

|Pi| =
⌊
N(Ri −R0)

Ri

⌋
(37)

28

variable nodes. To achieve Rmax variable nodes are punctured as determined by the grouping

algorithm, thus Pmax = G \ {G0}; however, to achieve rates between R0 and Rmax only a

fraction of the nodes in G \ {G0} has to be punctured. Note that Pi must be a subset

of Pj if Ri < Rj for the codes are to be rate-compatible. The question is, how the sets

P1, P2, . . . , PL should be determined.

Intuitively, we decide to puncture variable nodes from the lower indexed groups first.

If only a fraction of nodes from a certain group should be punctured to achieve a given

rate, we give priority to those with most survived check nodes. For example, suppose that

G was built such that |G0| = 600, |G1| = 200, |G2| = 100, |G3| = 50 and |G4| = 20, and

we require sets P1 and P2 such that |P1| = 250 and |P2| = 310. Then 250 variable nodes

have to be punctured to achieve R1. We start by puncturing variable nodes in G1 and since

|G1| < |P1|, P1 will contain all variable nodes from G1. The remaining 50 are chosen from

G2 with priority given to the variable nodes with a higher number of survived check nodes.

When determining the number of survived check nodes, we assume that variable nodes in

G3 and G4 are in G0, as they will not be punctured to achieve R1. Similarly, to achieve

R2 we puncture all nodes from P1, the variable nodes from G2 that are not in P1, and 10

nodes from G3.

2.4 Simulation Results

In this section we discuss the performance of LDPC codes when they are punctured using

two approaches: intentionally, according to the grouping algorithm, and randomly. We con-

sider irregular punctured LDPC codes with a mother code of rate 0.5 and the comparisons

between the two approaches will be drawn at block lengths 1024 and 4096.

Each mother code is constructed with the PEG algorithm using a variable node degree

distribution from [20]

λ(x) = 0.25105x+ 0.30938x2 + 0.00104x3 + 0.43853x9.

Subsequently, each mother code is punctured to achieve rates 0.6, 0.7, and 0.8. First, we

analyze the group distribution of the randomly chosen punctured nodes and compare it to

the group distribution of the intentionally punctured nodes. The Tables 1 and 2 summarize

29

the results for block lengths N = 1024 and N = 4096, respectively, where the distributions

for achieving the rate 0.8 are shown.

Table 1: Group distribution of the variable nodes, block length N = 1024.
Group Intentional Random Group Intentional Random

G0 640 640 G7 0 32

G1 315 70 G8 0 20

G2 62 58 G9 0 14

G3 7 42 G10 0 10

G4 0 43 G11 0 4

G5 0 38 G12 0 2

G6 0 51 G13 0 0

The punctured variable nodes obtained by intentional puncturing require considerably

less iterations to recover than those obtained by random puncturing. While 3 iterations suf-

fice to recover all punctured variables nodes for intentional puncturing, random puncturing

requires 12, or 4 times as many. Moreover, if the mother is code is punctured intentionally,

most of the punctured nodes are 1-SR—almost 80 %. On the other hand 80 % of the

punctured nodes are almost uniformly distributed in groups from G1 to G6 when punctured

randomly. Since the higher level of recoverability usually results in a higher recovery error

probability, the intentionally punctured LDPC code is expected to perform better.

In Figure 10 the performance of intentional and random puncturing of the mother code

with a block length of 1024 is compared over the AWGN channel. At the rate 0.6, the

number of punctured variable nodes is 170 and intentional puncturing performs better with

a margin of 0.15 dB at the BER of 10−5. As the rate increases the performance gap between

intentional and random puncturing grows steadily. At the rate 0.8 the number of punctured

variable nodes is 384 and the gap reaches 1 dB at the BER of 10−5.

Next, we evaluate the performance at block length 4096, shown in Figure 11. Again,

the performance gap between intentional and random puncturing steadily grows with the

increasing rate. At the rate 0.6 the gap is smaller than 0.1 dB at the BER of 10−5, at 0.7

it rises to 0.2 dB, and at the highest rate of 0.8, where the number of punctured variable

nodes is 1536, the gap between intentional and random puncturing reaches 0.9 dB.

Another important aspect is the number of iterations required for successful decoding.

30

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

10−5

10−4

10−3

10−2

10−1

E b/N 0

B
E

R

intentional puncturing
random puncturing

Figure 10: Comparison between the intentionally and randomly punctured LDPC code;
the mother code has a block length of 1024. The curves from left to right correspond to:
the unpunctured mother code and the punctured codes at rates 0.6, 0.7, and 0.8.

Table 2: Group distribution of the variable nodes, block length N = 4096.
Group Intentional Random Group Intentional Random

G0 2560 2560 G7 0 146

G1 1209 221 G8 0 94

G2 292 200 G9 0 58

G3 35 195 G10 0 25

G4 0 210 G11 0 5

G5 0 192 G12 0 1

G6 0 189 G13 0 0

Inspection of the group distribution of punctured variable nodes reveals how many iterations

are required for all punctured variable nodes to be recovered. However, a punctured variable

node may be recovered with a wrong value and then additional iterations will be required

to correct the error. In Figure 12 the distribution of required numbers of iterations for

intentional and random puncturing at the rate 0.8 and BER of 10−5 is shown, where we

observed the fraction of codewords (percentage-wise) successfully decoded with respect to

31

1.5 2 2.5 3 3.5 4 4.5

10−5

10−4

10−3

10−2

10−1

E b/N 0

B
E

R

intentional puncturing
random puncturing

Figure 11: Comparison between the intentionally and randomly punctured LDPC code;
the mother code has a block length of 4096. The curves from left to right correspond to:
the unpunctured mother code and the punctured codes at rates 0.6, 0.7, and 0.8.

the number of iterations. The results for intentional puncturing and random puncturing

were observed at Eb/N0 = 3.6 dB and Eb/N0 = 4.5 dB (both at BER = 10−5), respectively.

LDPC codes obtained by random puncturing require 3–4 more iterations on average for

successful decoding.

When applying the algorithm, random selections are made at various stages if there

are multiple best candidates. Accordingly, the final group distribution generally depends

on the random seed used to initialize the algorithm; however, in our tests we saw only

small differences. It is interesting to check the highest achievable rate when puncturing is

performed according to the grouping algorithm. By and large, the lower the size of G0, the

higher the achievable rate. The algorithm was applied to the mother code of block length

4096 multiple times with different random seeds and the lowest size of G0 that we obtained

was 2500. Hence, the maximum number of punctured nodes was 1596, which results in the

highest achievable rate of 0.82.

32

Number of iterations

0 10 20 30 40

C
as

es
 [%

]

0.00

0.05

0.10

0.15

0.20

0.25
intentional puncturing
R=0.8, Eb/No=3.6
random puncturing
R=0.8, Eb/No=4.5

Figure 12: The distribution of required number of iterations for intentional and random
puncturing over the AWGN channel at R = 0.8 and BER = 10−5.

It is useful to note that the highest achievable rate can be increased by limiting the size

of groups Gk, k ≥ 1 during the execution of the algorithm. In the extreme case, the size

of each group Gk, k ≥ 1, can be limited to 1 and achievable rate will reach the maximum.

Unfortunately, the performance at higher rates is degraded significantly due to higher levels

of recoverability of punctured variable nodes.

2.5 Layered BP Decoding for Punctured LDPC Codes

The previous section revealed that punctured LDPC codes generally require more decoding

iterations that unpunctured codes. In actual applications this can pose a serious problem as

slower convergence results in higher power consumption and longer latency. In this section

we show how convergence of punctured LDPC codes can be significantly accelerated using

a carefully designed layering scheme for the layered BP algorithm proposed in [29, 74, 36].

The layered BP algorithm is a modification of the conventional BP algorithm described

in Section 1.6.2, where the check nodes are divided in subgroups called layers and each

33

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

H =

: variable node

: check node

L1 L2
p1 p2 p3 p4 p5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 13: A Tanner graph split into two check nodes layers: L1 and L2.

iteration is broken into multiple subiterations. More specifically, the layered BP decoding

divides the Tanner graph of an LDPC code into subgraphs, such that each subgraph con-

sists of a set of check nodes and all their neighboring variable nodes. Each check node

appears in exactly one subgraph, while variable nodes may appear in multiple subgraphs.

The conventional decoding iteration is split into multiple subiterations, such that in each

subiteration the check node and variable node updates are calculated in one subgraph. The

decoding then progresses sequentially through subgraphs by performing message updates

subiteration by subiteration. A parity-check test over the entire codeword is performed at

the end of each subiteration. Figures 13 and 14 show an example of a Tanner graph split

into subgraphs. Layered BP algorithm yields faster decoding convergence but it does not

improve the BER when the maximum number of iterations is large enough. In practical

communication systems the maximum number of iterations is limited and faster decoding

convergence results in better BER performance.

In [36], “random” and “bimodal” layering of check nodes is studied for unpunctured

regular LDPC codes. The performance differences between the layerings were shown to be

only marginal. On the other hand, when an LDPC code is punctured, significant perfor-

mance gains are achievable by a careful layering selection. In the following, we explain how

a good layering structure can be obtained.

We propose an approach where check nodes are layered based on levels of recoverability

of neighboring puncturing variables nodes as follows. If a check node is a survived check

node to a k-SR punctured variable node, it is assigned to the layer Lk, where 1 ≤ k ≤ K.

34

C1

V1

C2

V2 V3 V4 V5 V6 V7

C3 C4 C5

V2 V3 V4 V5 V6 V7 V8 V9 V10

p1 p2

p3 p4 p5

v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 v2 v3 v4 v5 v6 v7

Figure 14: Layers L1 and L2 of the Tanner graph in Figure 13 and their subgraphs.

By upper bounding k with K we assume that the maximum level of recoverability is K.

All remaining check nodes, i.e. those that do not recover any punctured variable nodes, are

assigned to the last layer LK+1. When a high percentage of variable nodes are punctured,

the layer LK+1 may not contain any check nodes.

The example in Figure 15 shows how a 3-SR node is recovered under layered BP decoding

with the proposed layering of check nodes. In the first subiteration the check nodes p2 and

p3 (both in L1) recover 1-SR variable nodes v10 and v13; in the second subiteration the check

node p4 recovers 2-SR variable node v14; now all neighbors except v15 of p5 have non-zero

LLRs, and in the third subiteration v15 will be recovered by p5.

If the layers from L1 to LK+1 are processed in ascending order, all punctured variable

nodes are recovered in the first iteration. Hence, it is ensured that the punctured variable

nodes get involved in the decoding process very quickly, which results in faster convergence.

What follows is an algorithm for determining the layer for each of M check nodes.

35

: punctured node
3-SR node

2-SR node

1-SR node

1-SR node

Layer K+1 Layer 1

Layer 1 Layer 2

Layer 3

: variable node
: check node

v1 v2 v3 v4 v5 v6

v7 v8 v9 v9 v10 v11

v12 v13 v14

v15

c1 c2

c3 c4

c5p5

p3 p4

p1 p2

Figure 15: Recovery tree of a 3-SR node where p2, p3 ∈ L1, p4 ∈ L2, p5 ∈ L3, p1 ∈ LK+1,
and K ≥ 3.

[Loop] For each check node p ∈ P :

Step 1 [Find maximum level of recoverability] Find the highest level of recoverability

among variables nodes in Np and denote it is k.

Step 2 [Assign layer] If 1 ≤ k ≤ K, assign p to layer Lk, otherwise assign it to layer

LK+1.

Note that the layering is performed based on levels of recoverability of punctured variable

nodes at the highest considered code rate. For all intermediate code rates, the layering

remains unchanged.

To verify the effectiveness of the this layering scheme we construct an LDPC mother

code with the degree distribution pair (from [10])

λ(x) = 0.30780x+ 0.27287x2 + 0.41933x6 and

ρ(x) = 0.4x5 + 0.6x6

36

with a code rate 0.5 and block length 2000. The mother code is punctured using the previ-

ously described grouping algorithm to obtain code rates 0.6, 0.7, 0.8, and 0.9. Information

about the obtained check node layering is shown in Table 3. Notice that the highest level

of recoverability among the punctured variable nodes is 5 and each check node serves as a

survived check node to one punctured variable node, hence there is no layer L6.

Table 3: The distribution of check nodes in layers. The highest level of recoverability
among the punctured variable nodes is 5.

Proposed Random1 Random2

Layer 1 222 200 222

Layer 2 244 200 244

Layer 3 178 200 178

Layer 4 178 200 178

Layer 5 178 200 178

We compare the proposed layering with random layering. In one case we create ran-

dom layering with uniform layer sizes and in the other, the layer sizes we match those

from the proposed layering. The performance of these two random layerings is virtually

indistinguishable; therefore, they are represented by a single curve in the following figures.

Figure 16 shows the simulation results over an AWGN channel with the maximum

number of iterations set to 15. The performance improvement of the proposed over random

layering increases with the growing code rate. This behavior is to be expected, for as the

number of punctured bits grows higher, the proposed layering has an increasing effect on the

speed of their recovery. At the code rate 0.9 the Eb/N0 gain over layered BP decoding with

random layering and conventional BP decoding is around 0.7 dB and 0.8 dB at the BER

of 10−4, respectively. The proposed layering outperforms random layering at all considered

code rates, including the unpunctured mother code. As a result, the check node layering

can stay unchanged over all code rates, which further decreases implementation complexity.

Also of interest is the performance gain at different maximum numbers of iterations.

Figure 17 shows the required Eb/N0 values for achieving BER of 10−4 at the code rate

0.9 for the maximum numbers of iterations ranging from 10 to 20. When the maximum

number of iterations is set to 10 the gain of the proposed layering is 1.3 dB and 1.5 dB

over layered BP decoding with random layering and conventional BP decoding, respectively.

37

0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

E b/N 0

B
E

R

BP
random LBP
proposed LBP

Figure 16: BERs of punctured LDPC codes at code rates 0.5, 0.6, 0.7, 0.8 and 0.9 over an
AWGN channel with the maximum number of iterations set to 15. The filled squares, un-
filled circles, and unfilled squares represent the BERs of conventional BP decoding, layered
BP decoding with random layering, and proposed layering, respectively.

The performance improvements are reduced to about 0.5 dB when the maximum number

of iterations is set to 20.

2.6 Concluding Remarks

In this chapter we discussed punctured binary LDPC codes and proposed a grouping algo-

rithm that can be used to design rate compatible punctured LDPC codes at short block

lengths. The algorithm is based on the assertion that the performance of punctured LDPC

code improves as the level of recoverability of punctured nodes decreases. The concepts of a

recovery tree and a recovery error probability are introduced to facilitate the analysis. The

proposed puncturing is shown to perform considerably better than random puncturing and

the improvements are more pronounced at smaller block lengths. It is worth noting that the

ideas behind the grouping algorithm inspired additional research, i.e. [75, 57, 71, 35, 65],

which in some cases resulted in additional performance gains.

38

10 11 12 13 14 15 16 17 18 19 20
5

5.5

6

6.5

7

7.5

maximum numb er of i terations

E
b
/
N

0

BP
random LBP
proposed LBP

Figure 17: The required Eb/N0 values for a BER of 10−4 at the code rate 0.9 versus the
maximum number of iterations, where the LDPC codes are the same as for Figure 16.

We also discussed a solution to slow decoding convergence of punctured LDPC codes.

A simple and efficient algorithm is proposed that finds good check node layerings under

the layered BP decoding, and yields faster decoding convergence then both layered BP

decoding with random layering and conventional BP decoding. This claim is confirmed by

simulation results over the AWGN channel. The proposed idea is particularly useful when

the maximum number of iterations of LDPC decoders is limited due to practical reasons.

39

CHAPTER III

PUNCTURED AND SHORTENED NON-BINARY LDPC CODES

3.1 Non-binary LDPC Codes

The main premise in Chapter 2 is that puncturing can be effectively used to obtain a set

of well-performing rate-compatible binary LDPC codes. In this chapter we investigate if

we can do better. At first glance one might be tempted to think that there is not much

need to explore LDPC codes of higher order. The binary LDPC codes are proven to achieve

capacity on the BEC channel and were shown to come very close for many others. However,

these results only apply at very long block lengths, which are not practical. At practical

block lengths, up to a few thousand bits, LDPC codes of higher order, also referred to as

non-binary LDPC codes, were shown to perform better [12].

The fundamental difference between binary and non-binary LDPC codes is in that non-

binary LDPC codes are defined over Galois fields (GF) with more than two elements, while

the parity-check matrix of a non-binary LDPC code is still sparse. The following is an

example of a parity-check matrix corresponding to an LDPC code over GF(16).

H =

2 1 0 6 9 3 11 0 0 0

13 0 0 6 4 0 0 15 8 1

7 0 3 0 12 0 2 0 5 14

0 4 9 2 0 10 0 14 9 0

0 12 1 0 0 10 15 6 0 4

Its Tanner graph is constructed in the same manner as in the binary case; except that for

each edge we also need to specify the corresponding non-zero element from H, called the

edge multiplier.

While encoding stays basically the same as with binary codes (with the exception that

the arithmetic is over a higher order GF), the decoding algorithms are generally considerably

more complex. This complexity may have been the principal reason that initially, non-binary

40

LDPC codes did not gain much acceptance with the research community and industry.

Over the last few years, the advent of new decoding algorithms with reduced complexity,

e.g. [2, 13, 72] and a better understanding of the design [30, 4, 59] have rekindled interest

in non-binary LDPC codes. Also, empirical evidence [30] shows that best performing non-

binary LDPC codes are sparser than binary codes and generally have uniform variable

node (degree 2) and concentrated check node degree distributions. These properties help

to further alleviate the cost in implementation complexity.

A Galois field of the form GF(2m), where m is a positive integer, is called a binary

extension field. We can define a bijective mapping ψ from GF(2m) into (GF(2))m, which

maps elements (or symbols) of GF(2m) into binary m-tuples. Using ψ each element in

GF(2m) can be transmitted over a binary input channel by transmitting its corresponding

binary m-tuple. In effect, each non-binary variable node in a Tanner graph gets an extension

that accounts for its binary representation, as illustrated in Figure 18. The square node

non-binary
variable node

ψ mapping

binary variable nodes

Thursday, December 16, 2010

Figure 18: Non-binary variable node with its binary representation.

represents the mappings ψ and ψ−1, ψ for the messages to binary variable nodes and ψ−1

for the messages to non-binary variable nodes. With this extension, a Tanner graph of a

non-binary LDPC code looks the example in Figure 19.

In this chapter, we analyze non-binary LDPC codes over binary extension fields and

their performance over binary input channels. Of particular interest is their ability to

adapt the coding rate to different channel conditions with a single encoder/decoder pair

41

Thursday, December 16, 2010

Figure 19: An example of a non-binary Tanner graph.

by using puncturing. In addition, we will examine a method called shortening, used to

obtain lower-rate codes from a mother code. To shorten a mother code means to choose

a subset of message-carrying variable nodes and to set them to a predetermined value, for

instance 0. Shortened variable nodes are known in advance to both the transmitter and the

receiver; hence, there is no need to transmit them. Notice that if we shorten Ks out of K

message-carrying variable nodes in an LDPC code with N variables nodes, the code rate

becomes

Rs =
K −Ks

N −Ks
, (38)

which is smaller than the rate R = K/N of the unpunctured mother code.

It is interesting to note that a fair amount of empirical results indicate that non-binary

LDPC codes over GF(q), particularly when q ≥ 32, perform best when their variable node

degree distribution is regular with degree 2 [30]. With this in mind, we restrict our analysis

to regular non-binary LDPC codes with a variable node degree 2 throughout this chapter.

42

3.2 The Puncturing Problem

The puncturing problem in the previous chapter was to determine variable nodes to be

punctured for best performance. The grouping algorithm can be applied for puncturing

non-binary LDPC codes as well, if the incidence matrix of the non-binary Tanner graph is

used as the parity check matrix. The algorithm would determine the variable nodes to be

punctured and we would puncture all bits in their binary representations.

However, the puncturing problem with non-binary codes used over binary-input chan-

nels gains another degree of freedom. In addition to choosing variable nodes to puncture,

it must be decided which bits in their binary representations should be punctured. For

example, in a non-binary LDPC code over GF(16) assume we have to puncture four bits

(see Figure 20). One approach is to choose one variable node and puncture all four bits

in its binary representation. Alternatively, we can choose two variable nodes and puncture

only two bits per variable node. Or choose three variable nodes and puncture two bits on

one variable node, and two bits on the remaining two. In all these cases four bits would be

punctured.

or

or

symbol-wise
puncturing

bit-wise
puncturing

bit-wise
puncturing

Friday, December 17, 2010 Figure 20: Symbol-wise and bit-wise puncturing.

43

We define the puncturing pattern to be the set of all bits and variable nodes that are set

to be punctured. If at least one bit of a variable node is punctured, we say that that variable

node is in the puncturing pattern. A variable node is said to be punctured entirely, if all bits

in its binary representation are punctured, or partially, if only some are punctured. If all

variable nodes in a puncturing pattern are punctured entirely, we say the code is punctured

symbol-wise, otherwise it is punctured bit-wise. Further, we define the notion of puncturing

depth, which is used for each variable node individually and indicates how many bits in

its binary representation were punctured. For instance, if 3 bits of a variable node were

punctured, we say that the symbol’s puncturing depth is 3. Analogous definitions can be

used for shortening as well.

3.3 Puncturing and Shortening Over the BEC

The most powerful method for design and performance analysis of LDPC codes is density

evolution [60], which tracks the average probability density function of messages during the

decoding process and is computationally very intense. In [20] it was used to design asymp-

totically optimal puncturing distributions for binary LDPC codes. Unfortunately, density

evolution proves to be computationally too intense for non-binary LDPC codes over most

channels. An exception is the binary erasure channel (BEC), where the density evolution

can be reduced to tracking of a single parameter [59], and thus becomes computationally fea-

sible. We extend the results in [59] to account for puncturing and shortening and introduce

a framework that enables optimization of puncturing/shortening distributions for a wide

range of rates via differential evolution, an non-linear optimization technique introduced

in [67]. We show that symbol-wise puncturing is generally results in poor performance.

Instead, while some variable nodes may be punctured entirely, most of them should be

punctured only partially to achieve best performance.

It is worth reminding that, asymptotically, non-binary LDPC codes do not outperform

binary LDPC codes over the BEC, as binary LDPC codes achieve capacity both when

unpunctured [49] and punctured [58]. Nevertheless, for binary LDPC codes many results

obtained over the BEC channel provided useful insight into their behavior over general

44

memoryless symmetric channels [63]. We anticipate that similar would apply to non-binary

LDPC codes.

In order to describe puncturing distributions we define m+ 1-tuples

πi = [πi,0 πi,1 · · · πi,m] (39)

for each distinct degree i in a variable node degree distribution, where πi,j denotes the

fraction of variable nodes of degree i and puncturing depth j. For a given set of πi’s and

for a mother code of rate R, the overall fraction of punctured bits p(0) is given by

p(0) =
1

m

dv∑
i=2

Λi

m∑
j=1

j πi,j . (40)

The new increased rate after puncturing is then

Rp =
R

1− p(0)
. (41)

Similarly, to describe shortening distributions we define m+ 1-tuples

σi = [σi,0 σi,1 · · · σi,m] (42)

for each distinct degree i in a variable node degree distribution, where σi,j denotes the

fraction of variable nodes of degree i and shortening depth j. For a given set of σi’s and

for a mother code of rate R the overall fraction of shortened bits is given by

s(0) =
1

m

dv∑
i=2

Λi

m∑
j=0

j σi,j . (43)

The new decreased rate after shortening is then

Rs =
R− s(0)

1− s(0)
. (44)

The Gaussian binomial coefficients, used in the next subsection, are defined as follows

[
m

k

]
=

 1, if k = 0 or k = m,∏k−1
l=0

2m−2l

2k−2l
, otherwise.

(45)

This Gaussian binomial coefficient is the number of subspaces of dimension k of a vector

space over the field GF(2m).

45

3.3.1 Density Evolution Over the BEC

For non-binary LDPC codes over the field GF(2m) a message sent over an edge in the

Tanner graph is a vector with 2m components, where the i-th component is the probability

that the variable node connected to the edge is the i-th element of the non-binary field. As

was observed in [59], density evolution for these codes is greatly simplified over the BEC

channel.

Suppose an m-bit symbol is transmitted over the BEC, where k bits are erased while the

remaining m−k bits are received error-free. From receiver’s point of view any combination

of bits at k erased positions is possible; therefore, the decoder sees each of the 2k possible

combinations as equally probable. We say that a message has dimension k if it has 2k non-

zero components. All the remaining 2m−2k components then have probability 0. It is shown

in [59, Lemma 4.2] that in a belief propagation decoder over BEC all non-zero components

of a message have equal probabilities through all iterations; therefore, it suffices to track

the dimension of a message through iterations and density evolution can be expressed by

means of a (m+ 1)-dimensional recursion. The remainder of this subsection is a summary

of results in [59].

Let P
(l)
v (k, r) be the probability that, in l-th iteration, a randomly chosen message

emanating from a variable node of degree r after permutation due to an edge multiplier has

dimension k. Further, let P
(l)
c (k, r) be the probability that, in l-th iteration, a randomly

chosen message emanating from a check node of degree r, after permutation due to an edge

multiplier, has dimension k. Then there are the following recursive relationships between

probabilities on the check node side

P (l)
c (k, 3) =

k∑
i=0

P (l)
v (i)

k∑
j=k−i

Ac(m, i, j, k, l) (46)

P (l)
c (k, r) =

k∑
i=0

P (l)
c (i, r − 1)

k∑
j=k−i

Ac(m, i, j, k, l) (47)

with

Ac(m, i, j, k, l) =

[
m−i
m−k

][
i

k−j
][

m
m−j

] 2(k−i)(k−j)P (l)
v (j) (48)

46

and P
(l)
v (j) is the average over the variable node degree distribution λ(x)

P (l)
v (j) =

dv∑
i=2

λiP
(l)
v (j, i) (49)

The probability P
(l)
c (k, r) is initially evaluated for two incoming variable node messages

in Eq. (46) and thereafter, if a check node’s degree is higher than 3, P
(l)
c (k, r) for each

additional incoming variable node message is calculated recursively according to Eq. (47).

Suppose we want to find out the a probability that the dimension of a sum of two messages

is k; if the first message has dimension i, i ≤ k, the dimension j of the second message must

satisfy k− i ≤ j ≤ k. The term Ac(m, i, j, k, l) denotes the probability that the 2j non-zero

components of the second message are arranged such that the sum of two messages has

dimension k.

On the variable node side the equations for the probabilities in (l + 1)-th iteration are

P (l+1)
v (k, 2) =

m∑
i=k

(
m

i

)
εi(1− ε)m−i

m−i+k∑
j=k

Av(m, i, j, k, l) (50)

P (l+1)
v (k, r) =

m∑
i=k

P (l+1)
v (i, r − 1)

m−i+k∑
j=k

Av(m, i, j, k, l) (51)

where

Av(m, i, j, k, l) =

[
i
k

][
m−i
j−k
][

m
j

] 2(i−k)(j−k)P (l)
c (j) (52)

and P
(l)
c (j) is the average over the check node degree distribution ρ(x)

P (l)
c (j) =

dc∑
i=2

ρiP
(l)
c (j, i)

The probability that the initial message from a variable node has dimension k equals

P (0)
v (k) =

(
m

k

)
εk(1− ε)m−k.

For a given degree distribution pair (λ(x), ρ(x)), the threshold εth is the maximum

erasure probability ε on the BEC channel, for which

lim
l→∞

P (l)
v (0) = 1

lim
l→∞

P (l)
v (k) = 0 for all 1 ≤ k ≤ m.

47

3.4 Optimization of Puncturing and Shortening Distributions

We investigate puncturing and shortening of non-binary LDPC codes in the asymptotic

sense (for very long block lengths) over the BEC channel. As we will use density evolution

to evaluate performance, the equations of Section 3.3.1 have to be modified to account for

puncturing and shortening.

Let us start with puncturing. Suppose an m-bit symbol has puncturing depth p. The

dimension of the corresponding message will initially be p or higher if some of the m − p

transmitted bits are erased. With systematic puncturing, the probability that an initial

message from a variable node is of a certain dimension depends on that nodes’ degree.

Consequently, the recursion in Eqs. (50) and (51) must be performed for each variable node

degree separately. For a group of nodes of degree d this recursion becomes

P
(l+1)
v,d (k, 2) =

m∑
i=k

P
(0)
v,d (i)

m−i+k∑
j=k

Av(m, i, j, k, l) (53)

P
(l+1)
v,d (k, r) =

m∑
i=k

P
(l+1)
v,d (i, r − 1)

m−i+k∑
j=k

Av(m, i, j, k, l) (54)

where P
(0)
v,d (i) is the probability that the initial message from a randomly chosen variable

node of degree d has dimension i. We have

P
(0)
v,d (k) =

k∑
i=0

(
m− i
k − i

)
πd,iε

k−i(1− ε)m−k, (55)

where πd,0 = 1−∑m
i=1 πd,i denotes the fraction of unpunctured variable nodes of degree d.

The initial message will have dimension i if p bits are punctured and i − p bits are erased

on the channel for any 0 ≤ p ≤ i. Puncturing also changes Eq. (49) to

P (l)
v (j) =

dv∑
i=2

λiP
(l)
v,i (j, i) (56)

Next, we investigate shortening. Suppose an m-bit symbol has shortening depth s; then,

at initialization in the decoder s bits are guaranteed to be known and the dimension of the

initial message can be at most m − s. Similarly as above, the recursion in Eqs. (50) and

(51) must be performed for each variable node degree separately, where for shortening we

have

48

P
(0)
v,d (k) =

m−k∑
i=0

(
m− i
k

)
σd,i ε

k(1− ε)m−i−k, (57)

and σd,0 = 1 −∑m
i=1 σi,p denotes the fraction of unshortened variable nodes of degree d.

The probability P
(l)
v (j) is obtained according to Eq. (56).

The optimization of the puncturing distribution is carried out as follows. For a given

regular mother code with degree distribution pair λ(x) = x, ρ(x) = xdc−1 of rate R and the

desired fraction of punctured bits p(0), maximize the threshold

max
π2

εth,

subject to constraints ∑m
i=1 i π2,i

m
= p(0) and

m∑
i=1

π2,i ≤ 1.

Similarly, for a given fraction of shortened bits s(0), the optimization problem is to

maximize the threshold

max
σ2

εth,

subject to constraints ∑m
i=1 i σ2,i

m
= s(0) and

m∑
i=1

σ2,i ≤ 1.

3.4.1 Simulation Results

We proceed to investigate the performance of rate-adaptive non-binary LDPC codes de-

signed with the proposed framework and compare it with some alternate design approaches.

We choose a regular LDPC code over GF(26) with degree distribution pair λ(x) = x, ρ(x) =

x3 and optimize its puncturing and shortening distributions over a range of rates from 0.091

to 0.909. Recall that non-binary LDPC codes are believed to perform best when all their

variable nodes have degree 2; hence, the choice for the mother code.

We vary fractions of punctured and shortened bits p(0) and s(0) from 0.05 to 0.45 in

steps of 0.05, and optimize distributions for each fraction with differential evolution [67].

The results, together with all thresholds, are given in Tables 4 and 5.

For comparison, we design rate-adaptable codes using two alternate approaches: one

where we puncture/shorten the mother code symbol-wise (6 bits per symbol), and the

49

T
a
b

le
4
:

O
p

ti
m

iz
ed

p
u

n
ct

u
ri

n
g

d
is

tr
ib

u
ti

on
s

ob
ta

in
ed

v
ia

d
iff

er
en

ti
al

ev
ol

u
ti

on
.

M
ot

h
er

co
d

e
is

a
re

gu
la

r
(2

,4
),

ra
te

0.
5,

L
D

P
C

co
d

e
ov

er
G

F
(2

6
).

p
(0

)
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

ra
te

0
.5

0.
52

63
0.

55
56

0.
58

82
0.

62
50

0.
66

67
0.

71
43

0.
76

92
0.

83
33

0.
90

91

π
2
,1

0.
00

0
00

0
.0

07
22

0.
22

89
1

0.
51

85
0

0.
76

52
8

0.
88

67
7

0.
58

87
5

0.
31

50
2

0.
07

77
3

0.
00

04
1

π
2
,2

0.
00

0
00

0
.0

00
68

0.
00

06
4

0.
00

79
8

0.
00

34
6

0.
01

41
2

0.
31

19
5

0.
57

75
1

0.
80

03
1

0.
74

11
6

π
2
,3

0.
00

0
00

0
.0

02
65

0.
00

07
4

0.
00

00
9

0.
00

03
9

0.
00

03
0

0.
00

07
0

0.
00

39
4

0.
00

11
5

0.
10

91
5

π
2
,4

0.
00

0
00

0
.0

00
47

0.
00

01
0

0.
00

04
3

0.
00

14
8

0.
00

11
1

0.
00

08
1

0.
00

03
3

0.
00

01
1

0.
00

26
7

π
2
,5

0.
00

0
00

0
.0

00
80

0.
00

02
8

0.
00

08
2

0.
00

03
4

0.
00

00
9

0.
00

04
5

0.
00

01
1

0.
00

00
9

0.
00

00
5

π
2
,6

0.
00

0
00

0
.0

46
26

0.
06

09
7

0.
05

99
1

0.
06

98
4

0.
09

65
3

0.
09

66
2

0.
10

27
1

0.
11

95
5

0.
14

64
8

%
p

u
n

ct
.s

y
m

b
.

0
.0

0
5.

81
29

.1
6

58
.7

7
84

.0
8

99
.8

9
99

.9
3

99
.9

6
99

.8
9

99
.9

9

ε t
h

0
.4

7
46

0.
44

89
0.

41
85

0.
38

47
0.

34
74

0.
30

54
0.

25
61

0.
20

02
0.

13
66

0.
06

07

50

T
a
b

le
5
:

O
p

ti
m

iz
ed

sh
o
rt

en
in

g
d

is
tr

ib
u

ti
on

s
ob

ta
in

ed
v
ia

d
iff

er
en

ti
al

ev
ol

u
ti

on
.

M
ot

h
er

co
d

e
is

a
re

gu
la

r
(2

,4
),

ra
te

0.
5,

L
D

P
C

co
d

e
ov

er
G

F
(2

6
).

s(
0
)

0
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
0.

45

ra
te

0
.5

0.
47

37
0.

44
44

0.
41

18
0.

37
50

0.
33

33
0.

28
57

0.
23

08
0.

16
67

0.
09

09

σ
2
,1

0.
00

0
00

0
.0

12
81

0.
01

02
9

0.
00

59
9

0.
00

60
0

0.
00

18
9

0.
00

28
4

0.
00

15
8

0.
00

01
7

0.
00

03
0

σ
2
,2

0.
00

0
00

0
.0

86
12

0.
10

06
9

0.
32

99
9

0.
24

67
0

0.
16

03
6

0.
04

05
2

0.
00

47
1

0.
00

01
5

0.
00

03
6

σ
2
,3

0.
00

0
00

0
.0

32
98

0.
12

43
5

0.
06

99
3

0.
22

82
0

0.
39

05
6

0.
56

57
9

0.
69

00
1

0.
65

23
2

0.
51

28
4

σ
2
,4

0.
00

0
00

0
.0

03
15

0.
00

24
7

0.
00

42
8

0.
00

38
5

0.
00

06
1

0.
00

37
0

0.
00

38
4

0.
10

97
3

0.
28

93
3

σ
2
,5

0.
00

0
00

0
.0

00
51

0.
00

02
6

0.
00

10
2

0.
00

00
0

0.
00

06
4

0.
00

37
0

0.
00

05
3

0.
00

02
3

0.
00

05
8

σ
2
,6

0.
00

0
00

0
.0

00
15

0.
00

06
9

0.
00

03
4

0.
00

01
0

0.
00

00
0

0.
00

04
2

0.
00

01
6

0.
00

04
1

0.
00

00
4

%
sh

or
t.

sy
m

b
.

0
.0

0
13

.5
7

23
.8

7
41

.1
5

48
.4

9
55

.4
1

61
.3

6
70

.0
8

76
.3

0
80

.3
5

ε t
h

0
.4

74
6

0.
49

98
0.

52
76

0.
55

90
0.

59
43

0.
63

45
0.

68
08

0.
73

49
0.

79
77

0.
87

27

51

other where we puncture/shorten bit-wise uniformly, so that each punctured/shortened

symbol has puncturing/shortening depth 3. The gap to capacity of these codes is shown in

Figure 21.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

co de rate

g
a
p

to
ca

p
a
ci

ty
(∆

ε
)

symbolwise
bitwise
optimized

Figure 21: Performance comparison between the proposed optimized codes (DiffEv),
symbol-wise shortening and puncturing (6bps), and uniform bit-wise shortening and punc-
turing (3bps).

Symbol-wise puncturing and shortening result in poor performance. The overall fraction

of punctured symbols is minimized, but the high uncertainty in the decoder has unfavorable

consequences, especially at high puncturing fractions. The highest achievable rate with a

positive threshold is barely over 0.7. On the other hand, spreading punctured and short-

ened bits improves performance. Gains are present at both ends of the code rate range.

Nevertheless, the best performance is achieved with optimized puncturing and shortening

distributions, where a small gap to capacity is maintained over the entire range of considered

code rates.

There is always a notable fraction of variable nodes that are punctured entirely, while

the remaining bits are spread over the remaining variable nodes so that their depth is small.

52

For p(0) of 0.25 and higher, the puncturing pattern is spread over all variable nodes (see

row “% punct. symbs” in Table 4). The nonuniformity of the puncturing pattern can be

seen as an irregular structure imposed on a regular LDPC code that results in significant

improvements in performance.

To verify the results in Tables 4 and 5, we designed a regular (2,4) LDPC code over

GF(26) with a block length of 20000 symbols (or 120000 bits), punctured/shortened it

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
10−3

10−2

10−1

100

er asure probabi l i ty

F
E

R

Figure 22: Frame-error-rate (FER) performance of punctured LDPC codes; rates from
right to left: 0.5 (unpunctured), 0.52, 0.56, 0.58, and 0.62. The dashed lines represent the
corresponding thresholds.

according to optimized puncturing distributions, and simulated the resulting performance

over the BEC channel1. The results along with the calculated thresholds are presented

in Figures 22—25. The simulated performance matches well with analytical results at all

considered code rates.

Performance variation depending on the field size is shown in Figure 26, where the Galois

fields GF(24), GF(26) and GF(210) are considered. Mother code performance improves with

1Maximum number of iterations was 130.

53

0.05 0.1 0.15 0.2 0.25 0.3
10−3

10−2

10−1

100

erasure probabi l i ty

F
E

R

Figure 23: FER performance of punctured LDPC codes; rates from right to left: 0.66,
0.71, 0.76, 0.83, and 0.91. The dashed lines represent the corresponding thresholds.

size of the field until GF(26) and then starts declining again. In fact, the mother code has a

lower threshold over GF(210) than over GF(24). While performance of unpunctured codes

does not always improve with the increasing field size [59], it appears that that the code’s

ability to recover from optimized puncturing improves with the field size. When puncturing

is used the gap to capacity very quickly drops to values around 0.02 over the field GF(210).

3.4.2 Highest Achievable Rate

The cut-off rate, which is the highest achievable rate that can be achieved by means of

puncturing, was analyzed for punctured binary LDPC codes in [58]; it was observed that

performance degrades considerably when the rate approaches the cut-off rate. In Figure 27

we investigate the cut-off rate for punctured non-binary LDPC codes over the BEC, where

we find that it can be improved significantly if the code is punctured bit-wise instead of

symbol-wise. For symbol-wise puncturing the cut-off rate does not depend on the field

dimension m. On the other hand, for bit-wise puncturing the cut-off rate rises steadily with

54

0.65 0.7 0.75 0.8 0.85 0.9
10−3

10−2

10−1

100

erasu re p robabi l i ty

F
E

R

Figure 24: FER performance of shortened LDPC codes; rates from right to left: 0.09,
0.17, 0.23, and 0.29. The dashed lines represent the corresponding thresholds.

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66
10−3

10−2

10−1

100

erasure probabi l i ty

F
E

R

Figure 25: FER performance of shortened LDPC codes; rates from right to left: 0.33,
0.38, 0.41, 0.44, and 0.47. The dashed lines represent the corresponding thresholds.

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.015

0.02

0.025

0.03

0.035

0.04

0.045

co de rate

g
a
p

to
ca

p
a
ci

ty
(∆

ε
)

GF(24)
GF(216)
GF(264)

Figure 26: Performance of regular rate-adaptive non-binary LDPC codes over GF(24),
GF(26) and GF(210).

growing m. Most likely this behavior can be attributed to higher flexibility of available

puncturing depths that can be imposed upon individual symbols. Once more, the irregular

structure of the punctured code imposed by bit-wise puncturing proves to be beneficial.

3.5 Puncturing and Shortening at Finite (Short) Block Lengths

Non-binary LDPC codes with very long block lengths are not well suited for most practical

applications due to intolerable cost in implementation complexity and delay. Moreover, the

benefit of using non-binary over binary LDPC codes is most pronounced at short block

lengths. Experience from binary LDPC codes shows that using asymptotically optimized

punctured distributions for codes with short block lengths does not result in good perfor-

mance. It is much better to design specialized puncturing algorithms that are applied to

specific instances (not ensembles) of LDPC codes in order to determine the best puncturing

locations.

56

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

m

c
u

t
-o

ff
ra

te

bitwise
symbolwise

Figure 27: Cut-off rate vs. parameter m.

Similar conclusions hold for non-binary LDPC codes as well. In this section we pro-

pose algorithms for puncturing and shortening of non-binary LDPC codes with short block

lengths and show that they consistently outperform puncturing/shortening according to op-

timized puncturing distributions and that rate-compatible non-binary LDPC codes exhibit

a performance superior to that of rate-compatible binary LDPC codes. The evaluations will

be performed on two common channel models: BEC and AWGN.

Consider a non-binary LDPC code over GF(2m) over a binary input channel. The

messages in a message-passing decoder for non-binary LDPC codes are vectors with q = 2m

components that characterize the probability for each of q symbols. Since the sum of

all components equals 1, q − 1 components are sufficient to characterize the probability

distribution. Following [72], for a random variable v over GF(2m) define its log-likelihood

ratio vector (LLRV) as

L(v) = [L(v = α1), . . . , L(v = αq−1)],

57

where q = 2m and

L(v = αi) = ln
Pr[v = αi]

Pr[v = 0]
.

We will use a message-passing decoder algorithm in the log-likelihood domain introduced

by Wymeersch et al. [72], where messages exchanged between variable and check nodes are

LLRVs.

Assume that a non-binary LDPC code is punctured. In Chapter 2, we referred to a

punctured variable node as recovered after it received the first non-zero message from one

of its neighboring check nodes. With non-binary codes, where messages are vectors (not

scalars), we need to be more specific. A punctured non-binary variable node will be called

k-SR, if the first LLRV without zero components from one of its neighboring check nodes

arrives in the k-th iteration. The notions of level of recoverability and maximum level of

recoverability now apply analogously to Chapter 2.

Consider a variable node with value 0 in GF(2m) that is represented by an all-zero

binary sequence of length m. This sequence is punctured before it is transmitted over a

noiseless channel; that is, all transmitted bits are observed perfectly at the receiver. If p

out of m bits are punctured, the initial LLRV at the receiver for this variable node will have

2p − 1 components with value 0, one for each symbol whose binary representation has 1’s

at the punctured locations. In effect, the number of zero components in the initial LLRV

grows exponentially with the number of punctured bits per symbol (see Table 6).

Table 6: Number of zero components in the initial LLRV for a punctured symbol in GF(26)
punctured bits per symbol 1 2 3 4 5 6

zero components 1 3 7 15 31 63

For instance, consider an LDPC code over GF(26). Puncturing 5 bits in a symbol rather

than all 6 reduces the number of zero components in the initial LLRV from 63 to 31, while

reducing the number of punctured bits per symbol from 2 to 1 only slightly reduces the

number of zero components. Decreasing the number of punctured bits per variable node

decreases the initial uncertainty the decoder; yet, it also increases the number of partially

punctured variable nodes. There seems to be a tradeoff between the overall number of

58

punctured variable nodes (entirely or partially) and the initial uncertainty of the punctured

variable nodes in the decoder.

3.5.1 Puncturing Algorithm

Our observations in numerous experiments with short block length non-binary codes over

BEC and AWGN channels indicate that puncturing many bits in symbols with high levels

of recoverability has increasingly detrimental effects on performance. The observations also

suggest that at intermediate rates, where we have the flexibility, bit-wise puncturing should

be employed rather than symbol-wise puncturing.

Therefore we propose a two-step puncturing algorithm: in the first step, symbols subject

to puncturing are selected using the grouping algorithm. Subsequently, the punctured bits

are spread over the symbols that were chosen in the first step. A more detailed description

is as follows:

Step 1 [Symbol Grouping] It is important that punctured symbols are recovered as

quickly as possible. Toward this end the grouping algorithm from Section 2.3 is applied

on the incidence matrix of a given non-binary Tanner graph to choose variable nodes

to be punctured. The algorithm starts by searching for 1-SR nodes and attempts to

maximize their number; when no more 1-SR nodes can be found, it proceeds with

2-SR nodes, and so on, until every variable node is set to be either punctured or

unpunctured.

Step 2 [Bitwise Spreading at Intermediate Rates] At the highest code rate there

is not much flexibility as all variable nodes chosen in Step 1 must be punctured

entirely. At intermediate rates puncturing is spread bit-wise over symbols chosen in

Step 1. The symbols with low levels of recoverability are more resilient to puncturing;

therefore, they are assigned higher puncturing depths then those with higher levels of

recoverability. The puncturing depth should be kept uniform over all symbols with the

same level of recoverability. If the intermediate puncturing patters are required to be

rate-compatible, some additional care is needed at intermediate rates, but generally

this is done fairly easily.

59

3.5.2 Shortening Algorithm

We proceed to show how the rate can be lowered by shortening information bits. Let K be

the number of variable nodes carrying information symbols, N the number of all variable

nodes, Ks the number of shortened variable nodes, and m the number of bits per symbol.

Then the rate after shortening Rs is given by

Rs =
m(K −Ks)

N −Ks
. (58)

Much like puncturing, shortening non-binary LDPC codes gains a degree of freedom:

shortening depth. We will show that bit-wise shortening yields better performance than

symbol-wise shortening. Shortened bits should be spread over all variable nodes carrying

information bits such that the number of shortened bits per information variable node is

as uniform as possible. Assuming that mKs bits need to be shortened, the shortening

algorithm is as follows:

Step 1 [Spread] a = bmKs/Kc, i1 = mKs −K · a, i2 = K − i1;

Step 2 [Randomize] Randomly choose i1 information variable nodes and shorten a + 1

bits on each of them;

Step 3 [Shorten] Shorten a bits on the remaining i2 information variable nodes.

This strategy closely follows asymptotically optimal shortening distributions from Ta-

ble 5, except that here the shortened bits are spread only over K information symbols

(which simplifies encoding). The asymptotically optimal shortening distributions some-

times demand that more than K symbols be shortened, which requires additional work to

ensure that encoding remains feasible.

3.5.3 Simulation Results

To verify the effectiveness of the proposed algorithms for puncturing and shortening over

short block lengths, we design a system that supports code rates ranging from 0.23 to 0.91.

For a representative of non-binary LDPC codes we choose a regular (2, 4) mother code over

60

GF(26) with a block length of 142. Since each symbol in GF(26) is represented by 6 bits,

transmitting one unpunctured codeword over a binary input channel requires 852 channel

uses. As its binary competitor, we choose the irregular binary LDPC code from [70] with a

block length of 852 and the degree distribution pair:

λ(x) = 0.25105x+ 0.30938x2 + 0.00104x3 + 0.43853x9,

ρ(x) = 0.63676x6 + 0.36324x7.

Parity check matrices for binary and non-binary codes were generated using the Pro-

gressive Edge Growth (PEG) algorithm [30]. The edge multipliers for the non-binary code

were chosen randomly from all non-zero GF(64) elements for each edge and the number of

maximum iterations in all simulations was set to 50. The proposed algorithms for punctur-

ing and shortening are evaluated on BEC and AWGN channels and compared against two

puncturing/shortening approaches:

• symbol-wise: puncturing and shortening are performed symbol-wise. The symbols sub-

ject to shortening are chosen randomly among the independent (information) symbols,

while punctured symbols are chosen according to the grouping algorithm (applied to

the incidence matrix of the non-binary code);

• asymptotically optimized: puncturing/shortening patterns are obtained using the asymp-

totically optimized distributions from Section 3.4.1.

We address puncturing first. We created a puncturing pattern that achieves the code

rate 0.91 for both codes using the algorithm from [22]. The group distribution is shown in

Table 7.

In order to evaluate our puncturing approach we design four puncturing patterns at

the code rate 0.83 and evaluate their performance over the AWGN channel. In the first

puncturing pattern, punctured bits are chosen at random; in the second, puncturing is per-

formed symbol-wise according to [22]; in the third, the punctured bits are selected randomly

among variable nodes selected in Step 1; and in the fourth, puncturing is performed using

the proposed algorithm in Section 3.5.1.

61

Table 7: The puncturing pattern achieving code rate 0.91 by levels of recoverability of
variable nodes for the considered binary and GF(26) LDPC code.

Level of Recoverability Binary GF(26)

unpunctured 468 78

1 200 48

2 66 12

3 55 4

4 36 /

5 23 /

6 4 /

all 852 142

2 2.5 3 3.5 4 4.5

10−3

10−2

10−1

100

E s/N 0

F
E

R

random
symbol−wise
bit−wise random after Step 1
proposed

Figure 28: Performance comparison between four differently chosen puncturing patterns
at rate 0.83.

Figure 28 shows the results. Observe that puncturing bits randomly is not a good ap-

proach as it yields poor performance and at high rates some puncturing patterns may pro-

duce unrecoverable symbols. This motivates the decision that spreading is to be performed

only over symbols that are guaranteed to be recovered quickly. Symbol-wise puncturing

according to [22] ensures that all punctured bits are recovered quickly, which results in

a significantly improved performance. Random bit-wise puncturing after Step 1 performs

62

worse than symbol-wise puncturing, while the best performance is achieved by the proposed

puncturing algorithm and thus, our approach is validated.

Next we evaluate performance of the proposed puncturing algorithm at intermediate

code rates 0.62, 0.71, and 0.82. At the highest considered rate of 0.91 all symbols must be

punctured entirely; therefore, both the proposed puncturing algorithm and the symbol-wise

puncturing yield the same puncturing pattern. The puncturing patterns obtained by the

proposed puncturing algorithm for each rate are given in Table 8.

Table 8: The breakdown of puncturing patterns obtained by the proposed algorithm for
the non-binary LDPC code over GF(26). Except in the bottom row, the listed numbers
indicate the number of variable nodes.

Level # of punct. bits 0.62 0.71 0.83 0.91

1-SR 6 42 48
5 48 6
4 24
3 24

2-SR 6 12
5 12
3 6

3-SR 6 4

total punct. bits 168 258 342 384

For example, at the rate 0.62, instead of puncturing 168/6 = 28 variable nodes entirely,

the bit-wise pattern is spread over all 1-SR variable nodes. As the required number of

punctured bits is small, puncturing variable nodes of higher levels of recoverability is not

necessary. In contrast, at rates 0.71 and 0.83, where the number of required punctured bits

was higher, puncturing is spread over 2-SR variable nodes as well, while at the highest rate

of 0.91 all variable nodes are punctured symbol-wise.

Asymptotically optimized puncturing patterns were derived from data in Table 4 and

their group distribution is shown in Table 9. In most cases, either the majority or all

variable nodes are subject to puncturing.

Simulation results over the BEC are presented in Figure 29. The proposed punctur-

ing consistently outperforms both symbol-wise and asymptotically optimized puncturing

at all considered rates. There is no clear winner between symbol-wise and asymptotically

63

Table 9: Asymptotically optimized puncturing patterns for the non-binary LDPC code
over GF(26).

Level 0.62 0.71 0.83 0.91

0-SR 22 0 1 0

1-SR 108 90 27 7

2-SR 11 40 34 21

3-SR 1 12 35 23

4-SR 26 14

5-SR 12 13

6-SR 6 13

7-SR 1 13

8-SR 9

9-SR 9

10-SR 9

11-SR 8

12-SR 3

total punct. bits 168 258 342 384

optimized puncturing, as at rates 0.62 and 0.71 asymptotically optimized puncturing per-

forms better, while at 0.83 symbol-wise prevails. To achieve rate 0.83, a significant number

(342) of bits needs to be punctured; therefore, choosing punctured bits according to the

asymptotically optimized distribution without an effort to maintain the maximum level of

recoverability low results in bad performance. Symbol-wise puncturing picks locations as

to maintain the maximum level of recoverability low and, in effect, improves performance.

The proposed puncturing algorithm maintains a low maximum level of recoverability and

spreads the puncturing pattern over more symbols to reduce uncertainty in the decoder,

which results in best performance.

Almost identical results are obtained over the AWGN channel, and they are shown in

Figure 30. It is interesting to note that symbol-wise puncturing appears to be the worst

choice when the overall number of punctured bits is low. At levels when heavy spreading is

not likely to result in high maximum level of recoverability, puncturing all bits in a binary

representation results in significant performance loss and should be avoided.

We also compare the best performing punctured non-binary LDPC codes with their

binary counterparts at rates 0.62 through 0.91. The puncturing patterns for binary codes are

chosen according to the grouping algorithm described in Section 2.3. The results presented

64

0.05 0.1 0.15 0.2 0.25 0.3 0.35

10−3

10−2

10−1

100

erasu re p robabi l i ty

F
E

R

symbolwise
optimized distribution
proposed algorithm

Figure 29: Performance comparison between symbol-wise, asymptotically optimized, and
proposed puncturing at rates 0.62, 0.71 and 0.83 (from right to left) over the BEC channel.

−1 0 1 2 3 4

10−3

10−2

10−1

100

E s/N 0

F
E

R

symbolwise
optimized distribution
proposed algorithm

Figure 30: Performance comparison between symbol-wise, asymptotically optimized, and
proposed puncturing at rates 0.62, 0.71 and 0.83 (left to right) over the AWGN channel.

65

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10−3

10−2

10−1

100

erasure probabi l i ty

F
E

R

binary
non−binary

Figure 31: Performance of punctured non-binary and binary codes at rates 0.62 – 0.91
over the BEC channel.

−1 0 1 2 3 4 5 6 7 8

10−3

10−2

10−1

100

F
E

R

E s/N 0

binary
non−binary

Figure 32: Performance of punctured non-binary and binary codes at rates 0.62 through
0.91 over the AWGN channel.

66

in Figures 31 and 32 confirm that non-binary codes outperform binary codes on both BEC

and AWGN channels. In most cases the gain of non-binary codes increases with rate,

except at rate 0.91, where the punctured non-binary code outperforms the binary only at

low to moderate erasure probabilities over the BEC channel. Over the AWGN channel the

non-binary code at rate 0.91 outperforms the binary code by a margin of roughly 1.5 dB

(measured at FER of 10−3).

Next we turn to shortening. As we did earlier we evaluate the proposed shortening

algorithm by comparing it with symbol-wise and asymptotically optimized shortening. The

shortening patterns for rates 0.23, 0.33, and 0.44 obtained with the proposed algorithm are

shown in Table 10.

Table 10: The proposed shortening patterns.
codes # of short. bits 0.23 0.33 0.44

binary 6 bits 50 35 14

6 bits
5 bits 16

GF(26) 4 bits 55
3 bits 68
2 bits 3 13
1 bit 58

total short. bits 300 210 84

The performance comparison over the BEC channel is shown in Figure 33. The pro-

posed shortening performs best at all rates, even though at rate 0.44, where the number of

shortened bits is low, all approaches perform very similarly. As the rate decreases (and the

number of shortened bits increases), the gains exhibited by the proposed algorithm become

more pronounced. Notice the very bad performance of symbol-wise shortening at rate 0.23,

which indicates that symbol-wise shortening is bad at low rates.

Similar conclusions are valid over the AWGN channel, based on plots shown in Figure 34.

At the lowest rate of 0.23 the proposed shortening achives a gap of almost 1 dB over the

other two approaches.

Finally, we compare how the best shortened non-binary codes compare against their

binary counterparts, where shortening on the binary mother code is performed randomly

67

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

10−3

10−2

10−1

100

erasure probabi l i ty

F
E

R

symbolwise
optimized distribution
proposed algorithm

Figure 33: Performance comparison between symbol-wise, asymptotically optimized, and
proposed shortening at rates 0.23, 0.33 and 0.44 (from right to left) over the BEC channel.

−7 −6 −5 −4 −3 −2 −1

10−3

10−2

10−1

100

E s/N 0

F
E

R

symbolwise
optimized distribution
proposed algorithm

Figure 34: Performance comparison between symbol-wise, asymptotically optimized, and
proposed shortening at rates 0.23, 0.33 and 0.44 (left to right) over the AWGN channel.

68

over the information bits. Their performance over the BEC and AWGN channels is shown

in Figures 35 and 36. Again, the non-binary codes significantly outperform the binary

ones and the gain increases with decreasing rate. At the lowest considered rate of 0.23

performance gap is roughly 1 dB over the AWGN channel.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

10−3

10−2

10−1

100

erasure probabi l i ty

F
E

R

binary
non−binary

Figure 35: Performance of shortened non-binary and binary codes at rates 0.23 through
0.44 over the BEC channel.

3.6 Concluding Remarks

It was demonstrated that non-binary LDPC codes are worthy of more attention despite the

higher complexity of their decoding algorithms. Punctured or shortened, they significantly

outperform the binary LDPC codes at short block lengths, which are of most practical

interest.

Puncturing and shortening problems attain a new degree of freedom: in addition to se-

lecting variable nodes, puncturing/shortening depth for each variable node must be chosen.

We developed a framework for asymptotic analysis of punctured and shortened non-binary

LDPC codes over the BEC channel and optimized puncturing and shortening distributions

in order to achieve better performance. The results show that symbol-wise puncturing

69

−7 −6 −5 −4 −3 −2 −1

10−3

10−2

10−1

100

E s/N 0

F
E

R

binary
non−binary

Figure 36: Performance of shortened non-binary and binary codes at rates 0.23 through
0.44 over the AWGN channel.

and shortening do not perform well, while optimized bit-wise spreading of the punctur-

ing/shortening pattern noticeably improves performance.

Based on these conclusions we designed custom algorithms for puncturing and shortening

non-binary LDPC codes with short block lengths that outperform both symbol-wise and

asymptotically optimized puncturing and shortening. The algorithms are applied to specific

instances of LDPC codes (as opposed to ensembles), such that structural properties of each

considered Tanner graph can be taken into account when choosing punctured and shortened

bits. The performance of proposed algorithms at short block lengths was verified over BEC

and AWGN channels, where it was shown that the algorithms perform well and significantly

outperform binary LDPC codes.

Finally, it is worth noting that rate-compatible punctured non-binary LDPC codes can

be applied in distributed compression systems, where presently their binary counterparts are

often the coding scheme of choice. The superior error-correction performance of non-binary

LDPC codes is expected to result in increased compression gains.

70

CHAPTER IV

PHYSICAL LAYER SECURITY

In previous chapters we have investigated puncturing error-correction coding as a means

for increasing the code rate. Here, we examine puncturing in a different setting. We focus

on security and show that puncturing can be very effective for providing a high level of

data security at the physical layer, which in conventional communication systems is left

unsecured. After a short review of basic principles in physical layer security we proceed

to show that well-performing codes for physical layer security can be designed by using

puncturing.

4.1 Channel Model and Basic Notions

Consider the model depicted in Figure 37. There are three persons involved: Alice tries to

send a message M to Bob, while Eve is eavesdropping on their communication. In order

!"#$%&'()&#$%&'(

*+,#&(-$.(

!/&(

0(1(0-(
2(

3(3(

Figure 37: The classic Shannon model for secure communication.

to secure the message from Eve, Alice encodes M into the ciphertext X using the secret

key K. Bob has access to the secret key K and uses it to decipher X. Eve, on the other

hand, is assumed to have full knowledge about the encoding and the decoding process, but

she does not have access to the secret key K and thus cannot obtain M directly. Shannon

71

proposed [64] that the secrecy of ciphertext X be evaluated in information-theoretic terms.

More specifically, he proposed that a ciphertext X be considered perfectly secure if the

mutual information I(M ;X) between M and X equals 0. Then, we have

H(M/X) = H(M), (59)

where H(M/X) is the entropy of M given X, also referred to as equivocation, and H(M)

is the entropy of M . Eq. (59) means that Eve does not obtain any information about M

by observing ciphertext X.

Shannon proved that communication in perfect secrecy in this setting is possible only

if H(K) ≥ H(M) [64]. An example of a perfectly secure scheme is the one-time pad, for

which Eve who does not have access to the secret key is provably unable to extract any

information about the message. Unfortunately, the one-time pad scheme only translates

the problem of sharing a message to sharing a secret key. To circumvent this difficulty,

a variety of cryptographic algorithms were invented that employ shorter secret keys, but

rely on unproved mathematical assumptions and limited computational resources at Eve

for secrecy.

Observe that Shannon’s model on Figure 37 assumes that Bob’s and Eve’s observations

of the transmitted ciphertexts are identical. In many cases that assumption is not realistic

due to the stochastic nature of many communication channels. A few decades after Shan-

non’s work it was shown in [73, 56, 11] that information theoretically secure communication

is possible exclusively by means of coding at the physical layer if Eve has a worse channel

than Bob. These works assumed a slightly weaker measure of secrecy from Shannon’s: in-

stead of the absolute value of mutual information, they require that the mutual information

rate

1

n
I(M ;X) (60)

goes to 0, as n, the number of bits in X, goes to infinity.

Equivocation and equivocation rate at Eve are established metrics for information the-

oretic security [6], but they are difficult to analyze and measure on noisy coded sequences,

72

especially at finite block lengths. That may be one of the main reasons that no practi-

cal code constructions at finite block lengths for secure communication exist at this point.

The existing code constructions [69, 51] based on the insight provided from information

theoretic proofs do not directly apply to continuous channels, like the Gaussian wiretap

channel. To get around this problem, the BER over message bits, which is much easier to

analyze and measure, is used as a measure for security. For example, if Eve observes data

through a channel with BER close to 0.5 (the errors are i.i.d.), then she would not be able

to extract much information about the message. It should be noted at the outset that BER

is a different metric than the equivocation; therefore, this work does not address informa-

tion theoretic security, but rather physical layer security. Nevertheless, it is argued that a

high BER at Eve is useful and can, possibly in conjunction with standard cryptographic

techniques, deliver improved resilience against eavesdropping.

!"#$%&'()*+,(
#-.""&/(0(

)*+,(
#-.""&/(1(

2&#$%&'(

2&#$%&'(

)/3#&(4$5(

!6&(

7(8(9(

:(

74(

7!(

;(

;(

Figure 38: The Gaussian wiretap channel.

Consider the Gaussian wiretap model in Figure 38. Alice wants to transmit an s-bit

message M s to Bob. She uses an error-correction code to encode M s to an n-bit codeword

Xn and transmits it over an AWGN channel to Bob. Eve listens to the transmission over

a noisier, independent AWGN channel and tries to reconstruct the message M s. Let an

average BER over the Bob’s estimate M̂ s
B be PBe and let an average BER over the Eve’s

estimate M̂ s
E be PEe . It is desired that PBe be sufficiently low to ensure reliability and that

PEe be high. If PEe is close to 0.5 and the errors are IID, then Eve will not be able to

extract much information from the received sequence Zn. Thus, for fixed PBe,max(≈ 0) and

73

PEe,min(≈ 0.5), it must hold that

(a) PBe ≤ PBe,max (reliability),

(b) PEe ≥ PEe,min (security).

Let SNRB,min, or the reliability threshold, be the lowest signal-to-noise ratio for which

(a) holds. This parameter has been subject to considerable scrutiny, because it constitutes

one of the main performance metrics associated with error-correction codes. In this chapter

we will be interested in another threshold, the security threshold SNRE,max, which we define

as the highest SNR for which (b) holds. In other words, the security threshold tells us when

an error-correction code fails miserably. Rather than investigating the absolute values of

these two thresholds, we will focus on their ratio SNRB,min/SNRE,max, which we call the

security gap and which can alternatively be expressed in dB by taking the logarithm of the

ratio. Thus, the size of the security gap in dB (see Figure 39) tells us the minimum required

difference between Bob and Eve’s SNRs for which secure communication in our context is

possible. Note that conventional error-correction codes require large (> 20 dB) security

gaps when PEe,min > 0.4. Our objective is to design a coding scheme that exhibits a small

security gap.

The main idea is to hide data from Eve by means of puncturing. Instead of transmitting

message bits, they are punctured in the encoder and must be deduced from the channel

observations of the transmitted bits at the decoder. If the receiver (Eve) has a low SNR,

the channel observations are expected to be very noisy; therefore, the reconstruction of

punctured message bits is expected to be hard.

Binary LDPC codes are chosen as the coding scheme for two reasons: (i) their excellent

error-correction performance and (ii) availability of powerful tools for asymptotical analysis

of bit-wise MAP decoders both below and above the reliability threshold. Bob and Eve are

assumed to use the belief propagation decoder, which is asymptotically equal to the bit-wise

MAP decoder and hence very powerful. It will be shown that transmitting messages over

punctured bits can significantly reduce security gaps and can thus be efficiently used for

increased security of data. Security gaps as low as few dB are sufficient to force Eve to

74

!"#$%"&

%"'()*&

%"+(,-+"&

%"'()*&

./0&

1
2
0
&

!"#$%(34&',5&

!"#$%&'() !"#*%&+,)

-$.%&+,)

-*.%&'()

Figure 39: The security gap. A typical BER vs. SNR performance curve of an error-
correction code is shown. SNRB,min is the threshold for reliability (between Alice and Bob)
and SNRE,max is the point below which Eve has a very high error rate, typically close to
0.5. The security gap (in dB) is the SNR difference between SNRB,min − SNRE,max that
must be maintained between Bob and Eve in order to achieve both reliability and security
constraints in conditions a) and b).

operate at BER above 0.49. The suggested coding scheme can be employed as a standalone

solution or in conjunction with existing cryptographic schemes that operate on higher layers

of the protocol stack.

Choosing a mother code is an important part of the design process. It will be seen that

for some choices the excellent security gap performance comes with a significant increase

in the reliability threshold SNRB,min (compared to an unpunctured code), which in effect

results in higher power consumption. Even though the main focus of this chapter is to

design codes with small security gaps, we will show measures that can be taken to keep the

increase in the reliability threshold low.

If an LDPC code is punctured, some of its variable nodes are not transmitted. One way

of describing how a binary LDPC is punctured is by means of a puncturing distribution

π(x) =
∑dv

i=2 πix
i−1, where πi denotes the fraction of variable nodes of degree i that are

punctured [20]. A puncturing distribution in this form is useful for an asymptotic analysis

of punctured LDPC codes, as we have seen in Chapter 3. Recall that p(0) denotes the

fraction of all punctured bits, so that p(0) =
∑dv

i=2 Λiπi.

75

Let s be the number of message bits, let k be the dimension of an LDPC code, and let

n be the number of bits transmitted over the channel. Define the secrecy rate as Rs = s/n

and the design rate as Rd = k/n. Usually, in error-correction coding, the number of message

bits s is equal to the dimension k of an error-correction code and thus Rs = Rd. However, in

this chapter all messages are transmitted exclusively over the punctured bits; therefore, it

may occur that s < k and, in effect, Rs < Rd. In such cases, the unpunctured independent

bit locations of a codeword are set randomly by dummy bits as depicted in Figure 40.

!"#$%&'()*'

+,#,-"*%-'

.%/-0,'

1234''

,#0%$,-'
3/#0*/-,-'

!"#$%"&'(#)*"%&

Figure 40: Block diagram of the proposed encoder.

In the following we focus on the design of secure LDPC codes in the asymptotic case

and show how puncturing distributions can be optimized to significantly reduce security

gaps. Some results for secure LDPC codes at finite block lengths are reported as well.

4.2 Coding for Security

The use of puncturing for improved data security is investigated in this section. The main

objectives are to provide a better sense of the level of security that the proposed coding

scheme delivers by analyzing the BER over (punctured) messages bits and to show how

codes with small security gaps can be designed. It is assumed that the decoding algorithm

is belief propagation and the analysis is asymptotic, where belief propagation decoding is

equivalent to bit-wise MAP decoding [63].

4.2.1 Asymptotic Analysis

The analysis is performed with density evolution (DE) [60, 61], which is known for its accu-

rate asymptotic analysis of the belief propagation decoder. One may be tempted to perform

76

the analysis using the Gaussian approximation (GA) [41], a computationally less demand-

ing alternative to DE; however, while GA was shown to perform well around and above the

reliability threshold, approximation errors can be considerable when decoder is operating

below the reliability threshold. To overcome this problem the analysis is performed with

DE.

The calculation of the average BER performance over punctured bits with DE is now

briefly discussed. According to [61] the density P` of the message from a variable node to

a check node in the `-th iteration for an unpunctured code is given by

P` = P0 ⊗
∑
i≥2

λi(Q`)
⊗(i−1), (61)

where P0 is the initial message density based on channel observations, the operator ⊗

denotes convolution, and Q` is the density of messages from a check node to a variable node

in the `-th iteration. If the code is punctured according to the puncturing distribution π(x),

the initial message density P π0 equals

P π0 =
∑
i≥2

λi
(
(1− πi)P0 + πi∆0

)
, (62)

where ∆0 is the Dirac delta function δ(x). By substituting P0 in Eq. (61) with P π0 we

obtain the density P` for punctured codes

P` =
∑
i≥2

λi((1− πi)P0 + πi∆0)⊗ (Q`)
⊗(i−1)

= P0 ⊗
∑
i≥2

λ
(1−π)
i (Q`)

⊗(i−1) +
∑
i≥2

λπi ∆0(Q`)
⊗(i−1), (63)

where λ
(1−π)
i = (1 − πi)λi, λπi = πiλi. The first and second term in Eq. (63) are densities

of messages emanating from unpunctured and punctured variable nodes, respectively.

The punctured variable nodes get recovered during the decoding process if they receive

at least one non-zero message from neighboring check nodes. The probability that a variable

node message in the `-th iteration is zero can be calculated recursively using

P`(0) =
∑
i≥2

λπi
(
1−

∑
j≥2

ρj(1− P`−1(0))j−1
)i−1

,

77

and P0(0) =
∑

i≥2 λ
π
i . Assuming that punctured nodes do not form a stopping set, all nodes

eventually get recovered and thus P`(0) tends to zero. Of most interest is the behavior of

densities in the steady state, where all punctured bits are recovered.

The averaged bit error probability over the punctured variable nodes in the `-th iteration

is

P π,(`)e =

∫ 0−

−∞
Φ(x)dx+

1

2
Φ(0),

where

Φ(x) =
1∑

i≥2 Λπi

∑
i≥2

Λπi (Q`)
⊗i,

and Λπi , πiΛi. The bit error probability is evaluated with the discretized density evolution

method [8].

Figure 41 shows the density of a check-to-variable message in the steady state, when the

decoder is operating below the reliability threshold. Note that estimates for the value of

punctured variable nodes depend exclusively on the incoming check node messages, as no

channel value is available to the decoder. The check node density is not well approximated by

the Gaussian distribution [10]. A spike is seen at 0, followed by a sharp falloff. Consequently,

Eve’s ability to reconstruct the message is overestimated by GA. As will be shown, the

security gaps when calculated accurately with DE are even smaller than the estimates from

GA.

The effectiveness of hiding message bits by means of puncturing is demonstrated on an

example. A mother code of rate 1/2 with the degree distribution pair:

λ1(x) = 0.25105x+ 0.30938x2 + 0.00104x3 + 0.43853x9, (64)

ρ1(x) = 0.63676x6 + 0.36324x7 (65)

is punctured randomly according to

π(x) = 0.4x+ 0.4x2 + 0.4x3 + 0.4x9, (66)

The overall fraction of punctured bits p(0) is 0.4 and all punctured bits are assumed to

carry messages; therefore, Rs = p(0)/(1 − p(0)) = 2/3. The unpunctured mother code has

78

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40

LLR

D
e
n
si

ty

GA
DE

Figure 41: Density of a check-to-variable node message obtained by GA and DE when
the decoder operates below the reliability threshold.

Rd = 1/2, while the punctured code has Rd = k/(2k(1− p(0))) = 5/6. Since Rs and Rd are

not equal for the punctured code, we must randomly set k − s = n/6 variable nodes in the

encoder.

For comparison, we consider an unpunctured LDPC code with Rs = Rd = 2/3 and

degree distribution pair1

λ2(x) = 0.17599x+ 0.40223x2 + 0.42178x9 (67)

ρ2(x) = 0.61540x10 + 0.38460x11. (68)

Eve’s BER over message bits for these two codes are shown in Figure 42. Observe Eve’s

BER as her SNR decreases from the reliability threshold. If the message bits are punctured,

Eve’s BER increases much faster with the growing gap to the reliability threshold than it

does when the messages are transmitted. For instance, for PE
e,min set to 0.40, 0.45 and 0.49,

1Most degree distribution pairs in this Chapter were obtained at
http://lthcwww.epfl.ch/research/ldpcopt/

79

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

gap to threshold [dB]

E
v
e
’s

B
E

R

messages transmitted
messages punctured (GA)
messages punctured (DE)

Figure 42: Eve’s BER performance when operating below the reliability threshold
SNRB,min and message bits are (i) transmitted and (ii) punctured.

the security gaps amount to 0.6 dB, 1.8 dB and 4.1 dB, respectively. In contrast, if the

message bits are transmitted over the channel, the security gaps are considerably larger at

14 dB, 20 dB and 34 dB, respectively. These results manifest the benefits of protecting the

message bits by puncturing. They show that small security gaps are sufficient to force Eve

to operate at relatively high BERs even if she has the capability of using a bit-wise MAP

decoder.

While not apparent from Figure 42, it must be noted that the increased security is lever-

aged at the expense of an increased reliability threshold SNRB,min. As we mentioned earlier,

some of the independent variable nodes need to be set randomly in Bob’s encoder when

Rs < Rd; thus, we use an LDPC code with design rate Rd, but messages are transmitted

at a lower rate Rs. Consequently, an unpunctured code with all independent bits used for

messages is expected to have a lower reliability threshold. In our example, the reliability

threshold SNRB,min for the unpunctured code is −0.48 dB, whereas for the punctured code

80

it is 2.28 dB; an increase of 2.76 dB. In the following, we refer to the difference in SNRB,min

between a punctured code and an unpunctured code with the same Rs as SNR loss.

4.2.2 Optimized Puncturing Distributions

A natural question at this point is whether lower security gaps are achievable by optimizing

the puncturing distribution for security instead of using a random one. To get an answer,

a mother code with the degree distribution pair in Eqs. (64) and (65) is punctured in two

different manners: (i) randomly, and (ii) according to a puncturing distribution optimized

to minimize the security gap and obtained with differential evolution [67]. The optimized

puncturing distributions are given in Table 11.

Table 11: Puncturing distributions optimized for security. PEe,min was set to 0.49.

p(0) 0.10 0.25 0.33 0.40

secrecy rate Rs 0.11 0.33 0.50 0.67

π2 0.1073 0.3105 0.4930 0.5519

π3 0.1310 0.0010 0.0004 0.1378

π4 0.8703 0.0121 0.1170 0.4765

π10 0.0015 0.6639 0.6400 0.5814

security gap [dB] 4.346 4.086 4.034 4.386

The performance comparison between random and optimized puncturing is shown in

Figure 43, where 4 different puncturing fractions are considered: 0.10, 0.25, 0.33, and 0.40,

which correspond to secrecy rates 0.11, 0.33, 0.50, and 0.67, respectively. SNR loss at each

considered rate is depicted as well.

The benefit of optimized puncturing distributions for security is most pronounced at

high secrecy rates. The gains over random puncturing of up to 0.4 dB were achieved, a

considerable improvement at asymptotic block lengths. The security gap can be reduced

at expense of lower secrecy rate; however, reducing the secrecy rate below 0.43 in this case

may not be reasonable due to negative effects on the security gap and SNR loss.

4.2.3 Reducing SNR Loss

The SNR loss translates into higher power consumption at the transmitter and here we de-

scribe how the SNR loss can be reduced for systems subject to stringent power consumption

81

0.11 0.33 0.5 0.66
3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

r ate (Rs)

se
c
u

ri
ty

g
a
p

[d
B

]

0.11 0.33 0.5 0.66
2.1

2.8

3.5

4.2

4.9

5.6

6.3

7

7.7

8.4

S
N

R
lo

ss
[d

B
]

SNR loss, optimized punct.
SNR loss, random punct.
sec. gap, optimized punct.
sec. gap, random punct

Figure 43: The performance comparison between random and optimized puncturing. The
probability PEe,min = 0.49.

constraints.

Two main factors that cause the SNR loss are puncturing loss and rate loss. Puncturing

loss occurs due to inferior performance of punctured codes as compared to unpunctured

codes, as observed in [20, 58, 39], but can generally be kept relatively low (< 1 dB). On

the other hand, rate loss occurs when Rs < Rd, that is when the number of message bits

transmitted per codeword is smaller than the dimension of a code.

While empirical evidence in [20, 58] suggests that puncturing loss cannot be prevented,

rate loss can be eliminated completely by codes with Rs = Rd. For this purpose we design

secure LDPC codes by using mother codes with design rates 0.10, 0.25, 0.33, and 0.40,

where all independent variable nodes are punctured in order to achieve equality Rs = Rd.

Since neither Rs nor Rd should be higher than 1 the rate of the mother code must not

exceed 0.5.

The degree distribution pairs for these mother codes (listed in the same order as above)

82

are

λ3(x) = 0.551251x+ 0.203119x2 + 0.0917565x4 + 0.00428x6 + 0.01705x7 +

0.09970x8 + 0.03284x9, (69)

ρ3(x) = x2 (70)

λ4(x) = 0.38961x+ 0.199689x2 + 0.110605x3 + 0.00971174x4 + 0.290384x9, (71)

ρ4(x) = 0.8x3 + 0.2x4 (72)

λ5(x) = 0.334539x+ 0.242082x2 + 0.054702x3 + 0.0000052x4 + 0.368671x9, (73)

ρ5(x) = x4 (74)

λ6(x) = 0.29445x+ 0.257133x2 + 0.448417x9, (75)

ρ6(x) = x5 (76)

(77)

We optimize puncturing distributions to minimize the security gap, while making sure

that Rs equals Rd. The puncturing fractions p(0) for above listed degree distribution pairs

are fixed at 0.10, 0.25, 0.33, and 0.40, respectively, and the corresponding secrecy rates Rs

are 0.11, 0.33, 0.50, and 0.67. The new optimized puncturing distributions are given in

Table 12.

The new codes are compared in Figure 44 with the punctured codes from Section 4.2.2,

which were derived from a mother code with rate 0.5. Note that for those codes Rs < Rd

and rate loss is non-zero. It is seen that the SNR loss is significantly reduced when the code

does not suffer rate loss. At most rates the SNR loss is kept below 1 dB, while with Rs < Rd

codes it ranged from 4 dB to 8 dB. For codes with no rate loss, the SNR loss increases with

the increasing secrecy rate. These losses are incurred by puncturing and increase with the

increasing fraction of punctured bits p(0), much like it was observed in [20, 58].

83

Table 12: Optimized puncturing distributions for Rs = Rd codes and PEe,min = 0.49.

p(0) 0.10 0.25 0.33 0.40

secrecy rate Rs 0.11 0.33 0.50 0.67

π2 0.1370 0.2619 0.3589 0.5105

π3 0.0015 0.0014 0.0063 0.0013

π4 — 0.0002 0.0818 —

π5 0.0003 0.0424 0.3594 —

π7 0.0093 — — —

π8 0.0021 — — —

π9 0.0003 — — —

π10 0.0013 0.9916 0.9993 0.7992

security gap [dB] 9.992 6.644 4.906 4.2193

0.11 0.33 0.5 0.66
0

1

2

3

4

5

6

7

8

r ate (Rs)

S
N

R
lo

s
s

[d
B

]

Rs = Rd
Rs < Rd

Figure 44: SNR loss comparison between codes with Rs = Rd and Rs < Rd.

The Rs = Rd codes are superior in terms of power consumption, while the Rs < Rd

codes have smaller security gaps for most considered rates, as is shown in Figure 45, where

all security gaps are measured for PEe,min = 0.49. These results indicate there is a trade-off

between the SNR loss and the security gap.

84

0.11 0.33 0.5 0.66
3

4

5

6

7

8

9

10

11

r ate (Rs)

s
e
c
u
r
it

y
g
a
p

[d
B

]

Rs = Rd
Rs < Rd

Figure 45: Security gap comparison between Rs = Rd and Rs < Rd codes.

4.2.4 Finite Block Lengths

The performance of codes from Figure 42 is evaluated for random puncturing at finite

block lengths and presented in Figure 46, where the number of message bits is 1576, the

number of transmitted bits in each block is 2364 and PBe,max is set to 10−5. With random

puncturing, security gaps as low as a few dB are attainable for PEe,min = 0.4. Since at

finite block lengths Tanner graphs of LDPC codes usually have cycles, belief propagation

decoding does not yield exact bit-wise MAP probabilities of codeword bits. Nevertheless,

the belief propagation was shown to exhibit excellent performance.

4.3 Efficient Encoding

It is shown in [62] that encoding in linear time is possible for many LDPC codes; but the

assumption is that any variable node can be chosen to carry the message, which is not true

for the specific case considered here. This section addresses the encoding problem and shows

that efficient encoding is possible if messages are transmitted in the proposed manner.

85

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

gap in dB between Bob and Eve

E
v
e
’s

B
E

R

messages punctured
messages transmitted

Figure 46: BER vs. security gap at block length 2364.

The main result in [62] states that any LDPC code whose matrix can be brought into

the form shown in Figure 47 by means of row and column permutations is encodable with

complexity O(n + g2), where g is referred to as gap. Efficient encoding is very closely

n− d− ggd

m− g

g

1

1

1

1

1

(1− �th)n �thn

Figure 47: Lower-triangular parity-check metrix suitable for efficient encoding.

86

related to code’s ability to recover from erasures over the BEC. For an LDPC code with the

degree distribution pair (λ(x), ρ(x)), let εth(λ, ρ) denote its BEC threshold and r(λ, ρ) =

1− (
∫ 1

0 ρ(x) dx/
∫ 1

0 λ(x) dx) its rate. It was shown that using their greedy algorithm A,

g =
(
1− r(λ, ρ)− εth(λ, ρ)

)
n (78)

is achievable asymptotically for large n. Sometimes, smaller gaps are attainable if triangu-

lation is performed on the transpose of the parity check matrix. In that case the attainable

gap becomes

g(T) =
1− εth(ρ, λ)

1− r(ρ, λ)
n. (79)

Note that in a transposed parity-check matrix the degree distributions of variable and check

nodes are interchanged.

If puncturing is random the greedy algorithm A from [62] can be applied directly, and

then, if the mother code’s BEC threshold is close to capacity, the achievable gap g is small

and the code is efficiently encodable. On the other hand, if puncturing is not random the

analysis from [62] has to be modified, as the choice of variable nodes that carry messages is

not random anymore.

Assume that messages are transmitted over punctured nodes and the puncturing pat-

tern is given by π(x). This pattern restricts parity-check matrix columns that may be

permuted to achieve the triangular structure to only unpunctured variable nodes. The

methods from [62] must be applied to the residual parity-check matrix left after deleting

the columns that correspond to punctured bits. Let (λres(x), ρres(x)) be the degree distri-

bution pair of the residual parity-check matrix and Λres,i the fraction of variable nodes of

degree i. Then

Λres,i =
(1− πi)Λi∑dv
j=2(1− πj)Λj

(80)

and

λres,i =
iΛres,i∑dv
j=2 jΛres,j

. (81)

The average check node degree after puncturing is

dc,res =
1−∑dv

i=2 πiλi

(1− r(λ, ρ))
∑dv

i=2 λi/i
. (82)

87

In general, the residual check node distribution is not deterministic. This difficulty is

circumvented by assuming that the distribution is close to uniform and comprised of two

terms at most. Then, the residual check node distribution from the node perspective is

given by

Pres(x) =
(
1− bdc,resc

)
· xbdc,resc +

(
dc,res − bdc,resc

)
· xbdc,resc+1, (83)

while from the edge perspective it is

ρres(x) =
P ′res(x)

P ′res(1)
, (84)

where P ′res(x) denotes the derivative of Pres(x). With the residual degree distribution the

attainable gaps g and g(T) are given by

g =
(
1− r(λres, ρres)− εth(λres, ρres)

)
(1− p(0))n (85)

and

g(T) =
1− εth(ρres, λres)

1− r(ρres, λres)
(1− p(0))n. (86)

Table 13 lists the encoding gaps for optimized puncturing distributions from Table 11. The

asymptotic results for g(T) were verified using a mother code with the block length 100000

bits. These empirical results are close to the analytical ones, and the slight deviation can

be attributed to the crude assumption of uniformity of the residual check node degree

distribution.

Table 13: Asymptotic and empirical attainable gaps.
p(0) g g(T) empirical

0 0.0298n 0 10−5n

0.1 0.0321n 0 10−5n

0.2 0.0304n 0 10−5n

0.3 0.0379n 0.0036n 0.0089n

0.4 0.0553n 0.0137n 0.0162n

4.4 System Aspects

The proposed coding scheme operates on the physical layer of the protocol stack and can

be viewed as a first step towards a somewhat unconventional bottom-up architecture for

88

secure communications. In traditional cryptography the physical layer merely provides the

higher layers with a virtually error-free channel abstraction, and it is argued that stronger

levels of secrecy are achievable by redesigning the channel coding modules according to the

aforementioned security metrics. Intuitively it is to be expected that a noisy ciphertext is

more difficult to break than its error-free counterpart. At BER close to 0.5 there is little

correlation left between the signals observed by the eavesdropper and the original message.

To break the cipher she would have to guess both the key and the random error sequence

introduced by the channel, which leads to a significant increase in the search space while

performing cryptanalysis.

Ultimately, a wireless link should be at least as difficult to eavesdrop as an Ethernet

cable, so that the attacker would have to gain physical access to the channel at very close

proximity to be able to acquire information bearing signals. Even if this threshold is ex-

ceeded, the attacker would still have to break hard cryptographic primitives. In other

words, the proposed coding scheme does not necessarily replace cryptography, yet it adds

one more layer of protection that is targeted at the lower and possibly most vulnerable

stage of wireless devices.

While wiretap codes, whose practical construction is still elusive for most cases of in-

terest, would use part of the rate to confuse the eavesdropper and to achieve information-

theoretic security (at least asymptotically), the proposed LDPC codes can be readily imple-

mented to induce higher BER at the eavesdropper with a controlled reduction of the rate

of communication.

One could argue that cryptographic primitives such as the Advanced Encryption Stan-

dard (AES) are designed for the worst case in which the eavesdropper acquires an error-free

ciphertext. In applications, such as RFID systems and wireless sensor networks, where

strong ciphers like AES are too costly computationally, the proposed codes for security can

be combined with lightweight ciphers, while still ensuring sufficient levels of confidentiality.

Thus, joint design of channel codes and cryptographic primitives emerges as a worthwhile

line of research [25, 26].

89

4.5 Concluding Remarks

In this chapter an alternate approach to the design of error-correction codes for the Gaussian

wiretap channel is explored. Instead of equivocation, which is believed to be challenging to

analyze and measure, we choose BER over message bits at the eavesdropper as the security

metric given that a bit-wise MAP decoder is available. We define the security gap as a

measure of separation between the reliability and security thresholds of an error-correction

code and propose codes that minimize the security gap. These codes exhibit a very sharp

increase in BER toward 0.5 as the signal deteriorates, which prevents eavesdroppers from

extracting the message even if wiretapped signal is only slightly weaker than that of the

intended receiver.

In proposed punctured LDPC codes all message bits are communicated exclusively over

punctured bits. The asymptotic analysis shows this to be effective as it yields security gaps

as small as a few dB, which is a significant improvement over conventional error-correction

codes or uncoded transmission. It is worth noting that puncturing the messages creates

a non-systematic code. We conjecture that most non-systematic error-correction codes

would exhibit good security gap performance, but asymptotic analysis of bit-wise MAP

decoders is hard for many types of error-correction codes. The benefit of the proposed

LDPC coding scheme is in that it can be effectively analyzed using existing tools and

therefore reliable assessment can be made about the eavesdropper’s performance above and

below the reliability threshold.

The proposed codes are encodable in linear time and can be effectively applied to practi-

cal, finite-block length systems. While in some cases such codes can be used as a stand-alone

security solution, it is perhaps more prudent to view them as an addition to the existing

layered approach, which adds security to the traditionally unsecured physical layer.

90

CHAPTER V

COMPRESSION OF DATA ENCRYPTED WITH BLOCK CIPHERS

This chapter examines the interesting problem of compressing encrypted data that is solved

using error-correction codes; in a slight departure from previous chapters puncturing finds

no application here.

Traditionally in communication systems, data from a source are first compressed and

then encrypted before transmission over a channel to the receiver. While in many cases

this approach is befitting, there exist scenarios where there is a need to reverse the order

in which data compression and encryption are performed. For example, consider a network

of low-cost sensor nodes that transmit sensitive information over the internet. The sensor

nodes need to encrypt data to hide it from potential eavesdroppers, but they may not be

able to perform compression as that would require additional hardware and thus higher

implementation cost. On the other hand, the network operator that is responsible for

transfer of data to the recipient wants to compress the data to maximize the utilization of

its resources. It is important to note that the network operator is not trusted and hence

does not have access to the key used for encryption and decryption. If it had the key, it

could simply decrypt data, compress and encrypt again.

We focus on compression of data encrypted with block ciphers, such as the Advanced

Encryption Standard (AES) [54] and Data Encryption Standard (DES) [55], which operate

on inputs of fixed length and serve as important building blocks that can be used to construct

secure encryption schemes.

For a fixed key a block cipher is a bijection, therefore input and output have the same

entropy. It follows that it is theoretically possible to compress the source to the same level

as before encryption; however, in practice, encrypted data appears to be random and the

conventional compression techniques do not yield desirable results. It was long believed that

encrypted data are practically incompressible. A surprising paper [31] breaks that paradigm

91

and shows that the problem of compressing one-time pad encrypted data translates into the

problem of compressing correlated sources, which was solved by Slepian and Wolf in [66]

and for which practical and efficient codes are known. Compression is practically achievable

due to a simple symbol-wise correlation between the key (one-time pad) and the encrypted

message. However, when the correlation is more complex, as in the case of block ciphers,

the approach to Slepian-Wolf coding utilized in [31] is not directly applicable.

Here we investigate if data encrypted with block ciphers can be compressed without

access to the key. We show that block ciphers in conjunction with the most commonly used

chaining modes in practice (e.g., [34, 15]) are practically compressible for some types of

sources. To our knowledge this is the first work to show that substantial compression gains

can be achieved for cryptographic algorithms like AES and DES when they are used in non-

stream modes. In particular, this work offers a solution to the open problem formulated

in [32, Sec. 3.3].

5.1 Preliminaries

We begin with a standard formal definition of an encryption scheme as stated in [33].

A private-key encryption scheme is a triple of algorithms (Gen,Enc,Dec), where Gen

is a probabilistic algorithm that outputs a key K chosen according to some distribution

that is determined by the scheme; the encryption algorithm Enc takes as input a key

K and a plaintext message X and outputs a ciphertext EncK(X); the decryption algo-

rithm Dec takes as input a key K and a ciphertext EncK(X) and outputs a plaintext

DecK(EncK(X)) = X. It is required that for every key K output by Gen and every

plaintext X, we have DecK(EncK(X)) = X.

In private-key encryption schemes of concern to us in this chapter, the same key is

used for encryption and decryption algorithms. Private-key encryption schemes are divided

in two categories: stream ciphers and block ciphers. Stream ciphers encrypt plaintext one

symbol at a time, typically by summing it with a key (XOR operation for binary alphabets).

In contrast, block ciphers accomplish encryption by means of nonlinear mappings on input

blocks of fixed length; common examples are AES and DES. Block ciphers are typically

92

not used as a stand-alone encryption procedure; instead, they are combined to work on

variable-length data using composition mechanisms known as chaining modes or modes of

operation, as described in Section 5.2.

We proceed with a formulation of the source coding problem with decoder side-information

illustrated in Figure 48. Consider random variables X (termed the source) and S (termed

the side-information), both over a finite alphabet and with a joint probability distribution

PXS . Let a sequence of independent n realizations of (X,S) be denoted by {Xi, Si}ni=1 .

Source

Compress
X C(X)

S

Decompress
X

Figure 48: Lossless source coding with decoder side-information.

The problem at hand is to losslessly encode {Xi}ni=1, with {Si}ni=1 known only to the

decoder. In [66], Slepian and Wolf showed that for sufficiently large block length n, this can

be done at rates arbitrarily close to the conditional entropy H(X|S). Practical Slepian-Wolf

coding schemes use constructions based on good linear error-correcting codes [1, 18, 48].

Source

Compress Encrypt

Key (K)

X C(X) Y

Decompress Decrypt

Key (K)

X C(X)

Encoder

Decoder

Figure 49: Traditional system with compression preceding encryption.

We are interested in systems that perform both compression and encryption, wherein

the compressor has no access to the key. In such systems encryption is performed after

93

Source

Encrypt Compress

Key (K)

X Y C(Y)

Joint Decryption

and
Decompression

Key (K)

X

Encoder

Decoder

Figure 50: System with encryption subsequent to compression.

compression as depicted in Figure 49. This is a consequence of the traditional view which

considers encrypted data hard to compress without knowledge of the key. In [31] a system

similar to that of Figure 50 is considered instead, but with the order of encryption and

compression reversed, while only the encryptor has access to the key. The authors consider

encryption of a plaintext X using a one-time pad scheme with a finite-alphabet key (pad)

K, to generate the ciphertext Y using

Yi , Xi ⊕Ki.

This is followed by compression, which is agnostic of K, to generate the compressed cipher-

text C(Y).

The key insight underlying the approach in [31] is that the problem of compression in this

case can be formulated as a Slepian-Wolf coding problem. In this formulation the ciphertext

Y is cast as a source, and the shared key K is cast as the decoder-only side-information. The

joint distribution of the source and side-information can be determined from the statistics

of the source. For example, in the binary case with a uniformly distributed Ki and Xi with

Pr[Xi = 1] = p, we have

Pr(Yi 6= k|Ki = k) = p. (87)

The decoder has knowledge of K and the source statistics. It uses this knowledge to

94

reconstruct the ciphertext Y from the compressed message C(Y), and to subsequently

decrypt the plaintext X. This formulation is leveraged in [31] to show that exactly the

same lossless compression rate, H(X), can be achieved asymptotically by the system shown

in Figure 50, as by the one in Figure 49, and all the while maintaining information-theoretic

security.

The one-time pad and stream ciphers, while convenient for analysis, are not the only

forms of encryption in practice. In fact, the prevalent method of encryption uses block ci-

phers, thus an obviously desirable extension of the technique in [31] would be to conventional

encryption schemes such as AES. Attempting to do so, however, proves to be problematic.

The method in [31] leverages the fact that in a one-time pad encryption scheme there exists

a simple symbol-wise correlation between the key K and the ciphertext Y , as seen in Eq.

(87). For block ciphers such as AES no such correlation is known. Any change in the plain-

text is diffused in the ciphertext and quantifying the correlation (or the joint probability

distribution) of the key and the ciphertext is believed to be computationally infeasible.

In the remainder of this chapter, we show to how circumvent this problem by exploiting

the chaining modes popularly used with block ciphers and present methods for compressing

data encrypted with block ciphers without knowledge of the key. As in [31], the proposed

methods are based on the use of Slepian-Wolf coding.

To begin we define the notion of a post-encryption compression (PEC) scheme which is

used throughout this chapter:

Definition 5.1. Let E = (Gen,Enc,Dec) be an encryption scheme with plaintext domain

X and ciphertext range Q, and let P be a probability distribution over X . Let C be a

compression function defined over Q, and D a (possibly probabilistic) decoding function with

the property that for any key K generated by Gen, DK(C(EncK(X)) = X with probability

1− δ. Then the pair (C,D) is said to be (E ,P, δ)-PEC scheme.

Note that in this definition D is given access to the encryption key while C operates

independently of the key. Both C and D may be built for a specific plaintext probability

95

distribution P, for only in such case may correct decoding be guaranteed with high prob-

ability. We often assume that P is efficiently samplable, which means that there exists an

efficient randomized algorithm whose output distribution is P. The probability of error δ is

taken over the choice of X and the choice of random coins if D is randomized. To simplify

notation, we shall omit the (E ,P, δ) designation if evident from the context, and use the

term PEC scheme.

PEC schemes may be tailored to a specific cipher, but most often, one is interested in

schemes that can simultaneously support different ciphers, such as AES and DES, or even

an entire family of encryption schemes. Since all PEC schemes presented in this chapter

work with any block cipher, we say that they are generic. A generic PEC scheme cannot

be tailored to the specific details of particular ciphers but rather handles ciphers as black

boxes. That is, the decoder D does not need to know the specifics of the encryption scheme

nor its encryption/decryption key. It suffices that D has access to a pair of encryption

and decryption oracles, denoted by Enc and Dec, that provide D with encryptions and

decryptions, respectively, for any plaintext or ciphertext queried by D.

5.2 Compressing Block-cipher Encryption

As opposed to stream ciphers, such as the one-time pad, block ciphers are highly nonlinear

and the correlation between the key and the ciphertext is, by design, hard to characterize.

If a block cipher operates on each block of data individually identical inputs will produce

identical outputs. While this weakness does not necessarily enable an unauthorized user

to decipher an individual block, it can reveal valuable information; for example, about

frequently occurring data patterns. To address this problem various chaining modes, also

called modes of operation, are used in conjunction with block ciphers. The idea is to

randomize each plaintext block by using a randomization vector derived from previous

encryptor inputs or outputs. This randomization prevents identical plaintext blocks from

being encrypted into identical ciphertext blocks.

Consider a sequence of plaintext blocks Xn = {Xi}ni=1, where each block Xi is drawn

from the set Xm = {0, 1}m. Assume that the blocks Xi are generated by an i.i.d. source

96

with a probability distribution PX and encrypted with a block-cipher based private-key

encryption scheme (Gen,Enc,Dec). In most cases of interest, block-cipher based encryption

schemes use an initialization vector (IV) that is drawn uniformly at random from Xm by

the encryption algorithm EncK . Let the encryption algorithm be characterized by the

mapping EncK : (Xm)n → Xm × (Xm)n. For the sequence of plaintext blocks Xn at input

the encryption algorithm generates EncK(Xn) = {IV,Yn}, where Yn = {Yi}ni=1 denotes a

sequence of ciphertext blocks Yi in Xm. The problem at hand is to compress EncK(Xn)

without knowledge of K.

The remainder of this section is devoted to a description of compression schemes for

various chaining modes used in conjunction with block ciphers. Initially, we turn attention

to the cipher block chaining (CBC) mode, which is the most common mode of operation used

with block ciphers (such as in Internet protocols TLS and IPsec). Afterwards, we discuss the

output feedback (OFB) mode and the cipher feedback (CFB) mode, where compression is

a relatively straightforward extension of the methods described in [31]. Lastly, we consider

the electronic code book (ECB) mode, where our treatment provides fundamental insight

into the feasibility of compression of data compressed with block ciphers without chaining.

5.2.1 Cipher Block Chaining

The most common mode of operation is CBC. Depicted in Figure 51, block ciphers in

CBC mode are employed as the default mechanism in widespread security standards such

as IPSec [34] and TLS/SSL [15] and hence it is a common method of encrypting internet

traffic.

In the CBC mode each plaintext block Xi is randomized prior to encryption, by being

XOR-ed with the ciphertext block Yi−1 corresponding to the previous plaintext block Xi−1

to obtain X̃i. The ciphertext block Yi is generated by applying the block cipher with key

K to the randomized plaintext block X̃i according to

Yi = BK
(
Xi ⊕ Yi−1

)
, (88)

where Y0 = IV and BK : Xm → Xm is the block cipher mapping using the key K. At the

97

X1

Block cipher

X2 Xn

Y1

K K K

IV

Block cipher Block cipher

. . .

X1

~ X2

~

Y2 Yn

Xn

~

IV

Figure 51: Cipher block chaining.

output of the encryption algorithm we have EncK(Xn) = (IV,Yn).

Notice that, contrary to OFB and CFB modes, ciphertext blocks in Yi are not ob-

tained by a bitwise XOR operation, but rather as outputs of highly nonlinear block ciphers;

therefore, the compression methods from [31] cannot be applied directly in CBC mode.

The key insight underlying the proposed method for compression can now be described.

While the statistical relationship between the key K and the ciphertext block Yi is hard

to characterize, the joint probability distribution of the randomization vector Yi−1 and the

block cipher input X̃i is easy to characterize, as it is governed by the probability distribution

PX of the plaintext block Xi. For example, in the i.i.d source case considered here, Yi−1 and

X̃i are related through a symbol-wise model governed by PX . This correlation induced by

the chaining mode can be exploited to allow compression of encrypted data using Slepian-

Wolf coding, as we will now show.

Let (CCBC, DCBC) be a Slepian-Wolf code with encoding rate R and block length m.

Denote the Slepian-Wolf encoding function as CCBC : Xm → {1, . . . , 2mR}, and the Slepian-

Wolf decoding function as DCBC : {1, . . . , 2mR} × Xm → Xm. The proposed compression

method is illustrated in Figure 52. The input to the compressor is EncK(Xn) = (IV,Yn).

Since Yi is in Xm, the length of the input sequence in bits is (n+1)m log |X |. The compressor

applies the encoding function CCBC to IV and each of the first n − 1 ciphertext blocks

independently, while the n-th block is left unchanged. Thus, the output of the compressor is

98

Compressor
IV, Y1, Y2, … Yn-1, Yn C(IV), C(Y1), C(Y2)

… C(Yn-1), Yn

Compressor

Figure 52: Compressor.

the sequence (CCBC(IV), CCBC(Y1), . . . CCBC(Yn−1), Yn). The length of the output sequence

is nmR+m log |X | bits and the compressor factor

(n+ 1) log |X |
nR+ log |X |

is achieved, which tends to log |X |/R for large n. Note that the compressor does not need

to know the key K and that this approach yields a compressed IV, which by itself (when

there is no chaining) is incompressible; therefore, no performance loss is inflicted by the

uncompressed last block.

A diagram of the proposed joint decompression and decryption method is shown in

Figure 53. The received compressed sequence is decrypted and decompressed serially, from

right to left. In the first step Yn, which is received uncompressed, is decrypted using the

key K to generate X̃n. Next, Slepian-Wolf decoding is performed to reconstruct Yn−1

using X̃n as side-information, and the compressed bits CCBC(Yn−1). The decoder computes

Ŷ , DCBC(CCBC(Yn−1), X̃n), such that Ŷ = Yn−1 with high-probability if the rate R is high

enough. Once Yn−1 has been recovered by the Slepian-Wolf decoder, the plaintext block

can now be reconstructed as Xn = Yn−1⊕ X̃n. The decoding process now proceeds serially,

with Yn−1 decrypted to generate X̃n−1, which then acts as the new side-information; this

continues until all plaintext blocks are reconstructed.

For large m, it follows from the Slepian-Wolf theorem that the rate R required to ensure

correct reconstruction of the (i− 1)-th block with high probability is given by

R =
1

m
H
(
Yi−1|X̃i

)
=

1

m
H
(
Yi−1|Yi−1 ⊕Xi

)
=

1

m
H
(
Yi−1, Yi−1 ⊕Xi|Yi−1 ⊕Xi

)
=

1

m
H
(
Yi−1, Xi|Yi−1 ⊕Xi

)
=

1

m
H
(
Xi|Yi−1 ⊕Xi

)
≤ 1

m
H(Xi). (89)

99

Xn

Decryption
K

Xn-1

Decryption
K

…

X1

Decryption

Slepian-Wolf

Decoder

K

IV

Yn C(Yn-1) C(Yn-2) C(IV)

Yn-1 Yn-2

Xn-1

~ Xn

~ X1

~

Slepian-Wolf

Decoder

Slepian-Wolf

Decoder

Figure 53: Joint decryption and decoding at the receiver. It is performed serially from
right to left.

As IV is drawn uniformly at random, Yi is uniformly distributed for all i. Consequently,

the inequality R ≤ 1
mH(Xi) in Eq. (89) becomes equality R = 1

mH(Xi).

In practice, as will be seen later, the block cipher input length m is typically small. In

this case, the rate R is a function of PX , the block cipher input length m, the acceptable

decoding error probability, and the non-ideal Slepian-Wolf codes used.

5.2.2 Output Feedback

The setup depicted in Figure 54 is called output feedback (OFB) mode. Plaintext blocks

in Xi are not directly encrypted with a block cipher. Rather, the block cipher is used to

sequentially generate a sequence of pseudorandom blocks K̃n = {K̃i}ni=1 which serve as a

one-time pad to encrypt the plaintext blocks. At the output of the encryption algorithm

we get EncK(Xn) = (IV,Yn).

Notice that each block K̃i is statistically independent of plaintext blocks; therefore, the

OFB mode is analogous to the one-time pad encryption scheme and Yn can be compressed

in the same manner as in [31]. Most importantly, due to statistical independence between

100

Block cipher

Y1

K

IV

. . .

X1

IV

Block cipher

Y2

K

X2

Block cipher

Yn

K

Xn

K1
~

K2
~

Kn
~

Figure 54: Output feedback.

K̃n and Xn the block length of Slepian-Wolf codes that are used to compress Yn can be

chosen arbitrarily. The IV is uniformly distributed and therefore incompressible.

Formally, the compression and decompression algorithms can be described as follows.

Let (COFB, DOFB) be a Slepian-Wolf code with encoding rate R and block length nm. The

Slepian-Wolf encoding function is denoted as COFB : (Xm)n → {1, . . . , 2mnR}, and the

Slepian-Wolf decoding function as DOFB : {1, . . . , 2mnR} × (Xm)n → (Xm)n. Given an

output sequence EncK(Xn) = (IV,Yn) from the encryptor, compression is achieved by

applying the encoding function COFB to Yn, so that at the output we get (IV, COFB(Yn)).

Note that the function COFB does not require knowledge of K.

Decompression and decryption are performed jointly. The receiver gets (IV, COFB(Yn))

and since it knows the secret key K, it generates the sequence of pseudorandom blocks

K̃n using IV. Subsequently, it applies the decoding function DOFB to (COFB(Yn), K̃n) and

recovers Yn. The original sequence of plaintext blocks Xn then equals K̃n ⊕Yn.

By the Slepian-Wolf theorem, the compression rate approaches entropy of the source

asymptotically in nm. Thus, even for finite m the rate still approaches entropy for large n.

5.2.3 Cipher Feedback

Next, we discuss the cipher feedback (CFB) mode depicted in Figure 55. Similarly to

OFB, the plaintext blocks are not subjected to block cipher encryption and Yn is obtained

101

by XOR-ing plaintext blocks Xn with pseudorandom blocks K̃n. At the output of the

encryption algorithm we get EncK(Xn) = (IV,Yn).

Block cipher

Y1

K

IV

. . .

X1

IV

Block cipher

Y2

K

X2

Block cipher

Yn

K

Xn

K1
~

K2
~

Kn
~

Figure 55: Cipher feedback.

However, in CFB mode the pseudorandom blocks K̃n are not independent of Xn as

they were in OFB. If the block cipher using a secret key K is characterized by the bijective

mapping BK : Xm → Xm, then each block K̃i depends on the preceding plaintext block

Xi−1 according to

K̃i = BK(Xi−1 ⊕ K̃i−1), (90)

where X0 equals IV.

Due to statistical dependence between K̃n and Xn, the proposed compression algo-

rithm for CFB mode operates on individual ciphertext blocks Yi, rather then on all blocks

in Yn at once as in OFB mode. Without this distinction, the joint decompression and

decryption as proposed in [31] would not be possible. Let (CCFB, DCFB) be a Slepian-

Wolf code with encoding rate R and block length m. The Slepian-Wolf encoding function

is denoted as CCFB : Xm → {1, . . . , 2mR}, and the Slepian-Wolf decoding function as

DCFB : {1, . . . , 2mR}×Xm → Xm. Then compression is achieved by applying the encoding

function CCFB to each of the ciphertext blocks in Yn individually, giving a compressed

representation of EncK(Xn) as (IV, CCFB(Y1), . . . , CCFB(Yn)). Here again CCFB does not

102

require knowledge of K.

Joint decompression and decryption, depicted on Figure 56 is performed sequentially

from left to right, since decryption of the ith ciphertext block requires knowledge of the

(i−1)th plaintext block. Initially, IV is mapped to K̃1 by the block cipher, then the decoder

X2

…

X1

Block Cipher

Slepian-Wolf

Decoder

K

CCFB(Y2) IV

K1

~

CCFB(Y1)

Y1

Block Cipher

Slepian-Wolf

Decoder

K

K2

~

Y2

Xn

CCFB(Yn)

Block Cipher

Slepian-Wolf

Decoder

K

Kn

~

Yn

Figure 56: Joint decryption and decoding in CFB mode at the receiver is performed
serially from left to right.

function DCFB is applied to (CCFB(Y1), K̃1) to obtain Y1, and now the first plaintext is

obtained according to: X1 = K̃1 ⊕ Y1. Subsequently, Y1 is mapped to K̃2, the same

process is repeated to obtain X2, and so on until all remaining plaintext blocks {Xi}ni=3 are

recovered.

In contrast to OFB mode, this compression scheme is generally optimal only if m is very

large. For finite m, the compression is generally suboptimal, even for very large n.

5.2.4 Electronic Code Book

As we have seen, ciphertexts generated by a block cipher in OFB, CFB, and CBC modes

can be compressed without knowledge of the encryption key. The compression schemes that

we presented rely on the specifics of chaining operations and a natural question arises as to

103

what extent can the output of a block cipher be compressed without chaining, i.e. when a

block cipher is applied to a single block of plaintext. This mode of operation, depicted in

Figure 57, is called the electronic code book (ECB) mode.

X1

Block cipher

X2 Xn

Y1

K K K

Block cipher Block cipher . . .

Y2 Yn

Figure 57: Electronic Codebook.

Since a block cipher with fixed key is a permutation, the entropy of a ciphertext is the

same as the entropy of a plaintext. In effect, compression in ECB mode is theoretically

possible, but the question is, whether it is possible to design a generic and efficient post-

encryption compression scheme such as for other modes of operation.

We claim the answer to this question is negative, except for some low-entropy distri-

butions or very low compression rates (e.g., compressing a ciphertext by only a few bits).

For a given compressed ciphertext C(Yi) the decoder cannot do significantly better than to

operate in one of the following two exhaustive decoding strategies:

(1) enumerate all possible plaintexts in decreasing order of probability and compute a

ciphertext for each plaintext until the ciphertext Yi that compresses to C(Yi) is found;

(2) enumerate all ciphertexts that compress to C(Yi) and decrypt them to find the original

plaintext Xi.

We show that a generic compression scheme that compresses the output of a block cipher

and departs significantly from one of the two strategies can be converted into an algorithm

104

that breaks the security of the block cipher. In other words, a scheme that compresses the

output of a secure block cipher either requires an infeasible amount of computation, i.e.

as much as needed to break the block cipher, or it must follow one of the two exhaustive

strategies. If (C,D) is a PEC scheme that follows any of the above exhaustive strategies,

we say that (C,D) is an exhaustive PEC scheme.

The following result on the compressibility of block ciphers in ECB mode can now be

stated.

Theorem 3. Let B be a secure block cipher1, let E = (Gen,Enc,Dec) be an encryption

scheme, where Gen chooses K uniformly from K and Enc = BK , Dec = B−1
K , and let

P be an efficiently-samplable plaintext distribution. Let (C,D) be a (E ,P, δ)-PEC scheme.

If (C,D) is generic for block ciphers, then (C,D) is either exhaustive or computationally

infeasible (or both).

The proof of Theorem 3 is given in Appendix A.2, which also includes more details on

the computational bounds that were omitted in Theorem’s statement for simplicity. The

following remarks are worth noting:

(a) The exhaustive strategies are infeasible in most cases, but for very low-entropy plain-

text distributions or for very low compression rates these strategies can be efficient.

For example, consider a plaintext set X of 1,000 uniformly distributed 128-bit values.

One can compress the output of a 128-bit block cipher applied to this set by truncat-

ing the ciphertext to 40 bits. Using a birthday-type bound it can be shown that the

probability of two values in X being mapped to the same ciphertext is about 2−20.

Hence, the exhaustive strategy (1) would succeed in recovering the correct plaintext

with probability 1 − 2−20. In general, the compression capabilities of this strategy

will depend on the guessing entropy [53, 7] of the underlying plaintext distribution.

Another compression method is to drop some bits of the ciphertext and let the de-

coder search for the original ciphertext until the correct plaintext is recovered, as in

the strategy (2). This assumes that the dropping some bits allows for almost-unique

1For the definition of a secure block cipher see Appendix A.1.

105

decodability. The fact that these exhaustive compression strategies can be efficient

for some plaintext distributions shows that Theorem 3 cannot not exclude existence

of efficient generic coding schemes for some plaintext distributions.

(b) Ciphertext compression is theoretically possible. If efficiency is not of concern, one

could consider a brute-force compression algorithm that first breaks the block cipher

by finding its key2, uses the key to decrypt, and then compresses the plaintext. If

several blocks of plaintext are compressed sequentially, they can be re-encrypted by the

compression algorithm resulting in an effective ciphertext compression. This method

might be impractical, but it shows that the existence of generic compressors can be

ruled out only if the PEC scheme is subject to computational constraints. Moreover,

the above method could work efficiently against an insecure block cipher (in which

case the key can found efficiently), and this confirms that both efficiency and security

are essential to our result.

(c) Theorem 3 holds for generic compressors that do not use the internals of an encryption

algorithm or the actual key in the (de)compression process. It does not rule out the

existence of good PEC schemes for specific secure block ciphers, like for instance AES.

To achieve compression, though, the PEC scheme would have to be contingent on the

internal structure of a block cipher.

5.3 Compression Performance

Codes used to compress stream ciphers can have arbitrary block lengths, since the method

itself does not directly impose any constraints on the block length. On the other hand,

the compression methods proposed for CFB and CBC mode must operate block-wise, since

decompression occurs serially and depends upon the preceeding decompressed block. In

effect, the block length of Slepian-Wolf codes must be equal to the block cipher input

length m.

2This can be done by exhaustive search based on a known plaintext-ciphertext pair or (for suitable
plaintext distributions) by decrypting a sequence of encrypted blocks and finding a key which decrypts all
blocks into elements of the underlying probability distribution.

106

Efficiency of the Slepian-Wolf compression depends on the performance of underlying

Slepian-Wolf codes and it was shown in [27, 28] that it approaches entropy with O(
√

logn
n),

which is considerably slower than O(1
n) of arithmetic coding. It follows that for efficient

Slepian-Wolf compression the block length of Slepian-Wolf codes must be long.

Slepian-Wolf codes over finite block lengths have non-zero FERs, which implies that the

receiver will occasionally fail to recover EK(Xi−1) correctly. Such errors must be dealt with

on the system level, as they can result in catastrophic consequences due to error-propagation

to subsequent blocks. In the following it is assumed that as long as FER is low enough, the

system can recover efficiently, for instance by supplying the uncompressed version of the

erroneous block to the receiver. The compression performance will therefore depend on the

target FER.

We consider a binary i.i.d. source with a probability distribution Pr(X = 1) = p and

Pr(X = 0) = 1 − p, which produces plaintext bits. A sequence of plaintext bits is divided

into blocks of size m, which are encrypted and compressed as described in Section 5.2. The

receiver’s task is to reconstruct EK(Xi−1) from X̃i and side information C(EK(Xi−1)). For

the considered source Slepian-Wolf decoding is equivalent to error-correction over a binary

symmetric channel (BSC) and thus the underlying codes should yield a FER that is lower

or at most equal to the target FER over the BSC. Compression efficiency can be evaluated

using two methods:

(a) fix probability p and determine the compression rate of a Slepian-Wolf code that

satisfies the target FER; or

(b) pick a well-performing Slepian-Wolf code and determine the maximum probability p

for which target FER is satisfied.

We use LDPC codes and evaluate compression performance according to method (b). In our

simulations we use two LDPC codes, of which the first yields compression rate 0.5 and has

degree distribution pair λ(x) = 0.3317x+ 0.2376x2 + 0.4307x5, ρ(x) = 0.6535x5 + 0.3465x6

and the second yields compression rate 0.75 and degree distribution pair λ(x) = 0.4249x+

0.0311x2 +0.5440x4, ρ(x) = 0.8187x3 +0.1813x4. Both codes are constructed with the PEG

107

algorithm. Belief propagation is used for decoding and the maximum number of iterations

is set to 100.

Table 14: Attainable compression rates for block length m = 128 bits.
Target FER Compression Rate p Source Entropy

10−3 0.50 0.026 0.1739

10−4 0.50 0.018 0.1301

10−3 0.75 0.068 0.3584

10−4 0.75 0.054 0.3032

Simulation results for block lengths of 128 and 1024 bits are shown in Tables 14 and 15,

respectively. First, consider the current specification of the AES standard [52], where m

is 128 bits. At FER of 10−3 the binary source to be compressed to rate 0.5, can have the

probability p of at most 0.026, where its entropy equals 0.1739. The large gap between

the achievable compression rate and the entropy is a consequence of a very short block

length. Note that for a fixed compression rate the maximum probability p decreases with

the decreasing target FER.

Table 15: Attainable compression rates for m = 1024 bits.
Target FER Compression Rate p Source Entropy

10−3 0.50 0.058 0.3195

10−4 0.50 0.048 0.2778

10−3 0.75 0.134 0.5710

10−4 0.75 0.126 0.5464

An increase in block length to 1024 bits results in a considerable improvement in per-

formance (see Table 15). For instance, at FER = 10−3 and compression rate 0.5, the source

can now have probability p up to 0.058. In future block cipher designs one could consider

longer block sizes, in order to allow for better post-encryption compression.

5.4 Concluding Remarks

We considered compression of data encrypted with block ciphers without knowledge of the

key. Contrary to the widespread belief that such data are practically incompressible, we

show that compression can be attained. Our method is based on the Slepian-Wolf coding

and hinges on the fact that chaining modes widely used with block ciphers introduce a

108

simple symbol-wise correlation between successive blocks of data. Further, we showed there

exists a fundamental limitation to compressibility of data encrypted with block ciphers

when no chaining mode is employed.

Some simulation results are presented for binary memoryless sources. The results, while

still far from theoretical limits, indicate that considerable compression gains are practi-

cally attainable with block ciphers, and improved performance can be expected with future

increase of block sizes.

109

APPENDIX A

SECURITY OF THE CBC COMPRESSION SCHEME AND

COMPRESSIBILITY OF BLOCK CIPHERS IN ECB MODE

In this appendix chapter we use standard techniques in the cryptographic literature to prove

that the compression schemes proposed in Chapter 5 do not compromise the security of the

original encryption scheme. We also show that there exists a fundamental limitation to

the compression capability when the input to the block cipher is applied to a single-block

message without chaining as in ECB mode (see Section 5.2.4).

A.1 Some Definitions from Cryptography

For completeness, we recall some standard definitions from cryptography that are used in

this paper. See [33] for details. These definitions assume a fixed computational model over

which time complexity is defined.

Definition A.1 (Block Cipher). A block cipher B with block size m is a keyed family

{BK}K∈K where for each K, BK is a permutation over m bits1 and K is the set of all

possible keys.

The security of a block cipher is defined via the notion of indistinguishability. Ideally, we

would like the behavior of a block cipher to be indistinguishable by computational means

from that of a purely random permutation over m bits. However, since a block cipher is a

much smaller family of permutations than the family of all permutations, the above is not

fully achievable. Yet, if we restrict our attention to “computationally feasible distinguishers”

then we can obtain a meaningful notion of security applicable to actual block ciphers such

as AES.

Hence, the main ingredient in such definition is that of a distinguisher. A distinguisher

Dist is defined as a randomized algorithm with oracle access to two m-bit permutations

1By a permutation over m bits we mean a deterministic bijective function over {0, 1}m.

110

Enc and Dec where Dec = Enc−1. Dist can make arbitrary queries to the oracles and

eventually outputs a single bit 0 or 1. We consider the runs of Dist in two cases: When the

oracles are instantiated with a truly random permutation and when instantiated with a block

cipher (i.e., with the functions BK and B−1
K where K is chosen with uniform probability

from the set K). Let PREAL be the probability that Dist outputs a 1 when the oracle was

instantiated with B, where PREAL is computed over all random coins of Dist and all choices

of the key for B. Further, let PRP be the probability that Dist outputs a 1 when the oracle

was instantiated with a random permutation, where PRP is computed over all random coins

of Dist and all permutations Enc. Intuitively, we can think of Dist as trying to decide if

the oracles are instantiated with a random permutation or with a block cipher; hence, a

distinguisher is considered successful if the difference |PREAL − PRP |, which is referred to

as the advantage, is non-negligible. Formally, this leads to the following definition.2

Definition A.2 (Block Cipher Security). A block cipher B is called (T, ε)-secure if no

distinguisher Dist that runs in time T has advantage larger than ε.

This definition tries to capture the idea that, for secure block ciphers, even distinguishers

that have the ability to run for extremely large time T , say T = 280, gain only negligible

distinguishing advantage, say ε = 2−40. In other words, for any practical purpose the

quality of the block cipher is as good as if it was instantiated by a “perfect cipher” (purely

random permutation).

A secure block cipher by itself does not constitute a secure private-key encryption scheme

due to its deterministic nature. Namely, two identical plaintexts are mapped into two

identical ciphertexts, therefore valuable information about data patterns can be leaked to

eavesdroppers. Rather, secure block ciphers are used as building blocks that can be used

to construct private-key encryption schemes that eliminate this vulnerability. Note that a

secure private-key encryption scheme must be probabilistic or stateful.

Toward a formal definition of a secure encryption scheme, consider the following exper-

iment:

2This definition corresponds to the notion of strong pseudorandom permutation [3].

111

Definition A.3 (CPA Indistinguishability Experiment). Consider an adversary A and an

encryption scheme (Gen,Enc,Dec). The chosen plaintext attack (CPA) indistinguishability

experiment ExptcpaA is defined as follows:

1. a key k is generated by running Gen;

2. the adversary A has oracle access to EncK(·), and queries it with a pair of plaintexts

X0, X1 of the same length;

3. the oracle randomly chooses a bit b← {0, 1} and returns the ciphertext q ← EncK(Xb),

called the challenge, to A;

4. the adversary A continues to have oracle access to EncK(·) and is allowed to make

arbitrary queries. Ultimately it makes a guess about the value of b by outputting b′;

5. the output of the experiment, ExptcpaA , is defined to be 1 if b′ = b, and 0 otherwise. If

ExptcpaA = 1, we say that A succeeded.

Definition A.4 (Private-Key Encryption Security). A private-key encryption scheme (Gen,Enc,Dec)

is called (T, ε)-indistinguishable under chosen plaintext attacks (or CPA-secure) if for every

adversary A that runs in time T ,

Pr
[
ExptcpaA = 1

]
<

1

2
+ ε,

where the probability is taken over all random coins used by A, as well as all random coins

used in the experiment.

A.2 Proof of Theorem 3

The proof of Theorem 3 is by contradiction. We assume a generic PEC scheme (C,D) that

departs in some noticeable way (later made more precise by means of the parameter ε)

from the exhaustive strategies when it is applied to a block cipher B. Subsequently, we

show how to use such a PEC scheme to build a distinguisher Dist that distinguishes with

advantage strictly larger than ε between the block cipher B and a random permutation, in

contradiction to the security of B.

112

For simplicity, and without loss of generality, we assume thatD does not make redundant

queries to Enc or Dec. Namely, no query X to Enc or query Y to Dec is repeated in a run.

If X was output by Dec (resp., Y output by Enc) it is not entered into Enc (resp., into

Dec). In addition, if the decoded output from D is X, we assume that X was either input

to Enc or output by Dec. If D does not follow these rules, it can be modified to do so.

For X ∈R P 3 and Y = Enc(X), assume that C(Y) is passed as input to D. We say

that D decodes correctly if it queries either X from Enc or Y from Dec during its run. In

other words, D is not required to have the ability to identify the correct plaintext, which

simplifies our presentation without weakening our results. On the contrary, it shows that

even if such a relaxed decoding requirement is acceptable, the lower bound we prove still

holds.

Finally, note that the formulation of the theorem assumes that the plaintext distribution

P is efficiently samplable. This assumption is used in an essential way in our proof, though

the efficiency requirement from the P sampler is very weak. In addition, we assume that,

for a given compressed ciphertext C(Y), one can sample uniformly from the set YC(Y) =

C−1(C(Y)), which is the set of all ciphertexts mapped by C to C(Y). Additional discussion

related to this assumption is given after the proof.

The proof of Theorem 3 uses the following lemma.

Lemma A.1. Let T be a time-bound parameter, let B be a (T, ε)-secure block cipher and let

E = (Gen,Enc,Dec) be an encryption scheme, where Gen chooses K ∈R K and Enc = BK ,

Dec = B−1
K . Let P be a plaintext distribution samplable in time T/4 and let (C,D) be a

generic (E ,P, δ)-PEC scheme. Then either (C,D) runs in time that exceeds T/4 (and hence

is infeasible4) or the following holds:

(i) Let X ∈R P and Y = Enc(X). Consider a run of D on input C(Y) in which D

queries Enc(X), and let X ′ be a random element drawn from P independently of X. Then,

the probability that D queries Enc(X ′) before Enc(X) is at least 1/2− ε/(1− δ).

3We use X ∈R P to denote that X is chosen at random according to the probability distribution P.
4For secure block ciphers, a distinguisher should not be able to attain more then a negligible advantage

even if it runs for extremely large time T , say T = 280 (see Appendix A.1). Thus, a PEC scheme that runs
in time T/4 would be considered infeasible.

113

(ii) Let X ∈R P and Y = Enc(X). Consider a run of D on input C(Y) in which

D queries Dec(Y), and let Y ′ be an element drawn uniformly from YC(Y) = C−1(C(Y)).

Then, the probability that D queries Dec(Y ′) before Dec(Y) is at least 1/2− ε/(1− δ).

We first show how the Lemma A.1 suffices to prove Theorem 3.

Proof of Theorem 3. For case (i), the probability that X is queried first is within ε/(1− δ)

of the probability that X ′ is queried first, where the latter is the probability of querying a

plaintext that bears no information (the run of D is independent of X ′). Assuming that

δ < 1/2, we get ε/(1 − δ) < 2ε and since ε is negligible (say 2−40) so is 2ε. This implies a

plaintext-exhaustive strategy by D. Similarly, for case (ii), the probability that the value

Y is computed first is within ε/(1− δ) of the probability that an independent Y ′ ∈R YC(Y)

is computed first. This implies a ciphertext-exhaustive strategy by D.

Proof of Lemma A.1. First, consider the error-free case, i.e. δ = 0. We show that if (C,D)

runs in time less than T/4 and conditions (i), (ii) do not hold, we can build a distinguisher

(see Appendix A.1) that runs in time at most T and distinguishes between B and a random

permutation with an advantage larger than ε, in contradiction to the security of B. A

distinguisher interacts with oracles Enc and Dec and its goal is to identify whether the

oracles are instantiated with the real block cipher B or with a random permutation. For

clarity, we represent the output 0 from Dist by the symbol rp (Dist decided that the oracles

are instantiated with a random permutation) and the output 1 by real (Dist decided that

the oracles are instantiated by the block cipher B).

We build a distinguisher Dist that uses the scheme (C,D) and responds to the encryp-

tion and decryption queries made by D with its Enc/Dec oracles. When Enc is a random

permutation, (C,D) may run much longer than when Enc is B. Thus, to bound the time

complexity of Dist, we set a time limit T ′ = T/4, such that if the total time of (C,D)

exceeds T ′, Dist stops as well. As we show below, the parameter T ′ is chosen as T/4 to

ensure that the total running time of Dist is no more than T .

114

Initially, Dist chooses X ∈R P and receives the value Y = Enc(X) from its Enc oracle.

It computes C(Y) and passes it as input to D. In addition, Dist chooses an independent

X ′ ∈R P and independent Y ′ ∈R YC(Y). It is assumed that Y ′ can be sampled within time

T/4. Subsequently, Dist monitors the queries to Enc/Dec as requested by D and reacts to

the following events:

1. if X is queried from Enc, stop and output real;

2. if X ′ is queried from Enc, stop and output rp;

3. if Y is queried from Dec, stop and output real;

4. if Y ′ is queried from Dec, stop and output rp.

5. if the run of (C,D) exceeds T ′, stop and output rp

It is possible that multiple such events take place in one run of D, for instance both X

and X ′ may be queried from Enc. In such case Dist stops as soon as it identifies first such

event.

Let PREAL and PRP be defined as in Appendix A.1. We evaluate the advantage of

Dist, namely, the difference |PREAL − PRP |. First, consider a run of Dist when Enc/Dec

are instantiated by a random permutation. The behavior of (C,D) depends on Y which is

chosen at random and independently of X and X ′, therefore the run is independent of both

X and X ′. In effect, the probability that X is queried before X ′ is exactly 1/2. Similarly,

if Y is queried from Dec, the behavior of D depends on C(Y), while both Y and Y ′ have

the same probability to be the chosen as the preimage of C(Y). Therefore, the probability

that Y precedes Y ′ is exactly 1/2. It follows that Dist outputs real with probability at

most 1/2 (exactly 1/2 for the X and Y cases and with probability 0 if Dist exceeds time

T ′), i.e., PRP ≤ 1/2.

Now, consider a run of Dist when Enc/Dec are instantiated by a block cipher B and

its inverse, respectively. Assume, for contradiction, that (C,D) stops before time T ′ and

either (i) the probability that X ′ is queried before X is strictly less than 1/2 − ε or (ii)

115

the probability that Y ′ is queried before Y is strictly less than 1/2− ε. It follows that the

probability that Dist outputs rp is strictly smaller than 1/2−ε, therefore PREAL > 1/2+ε.

Thus, Dist distinguishes with advantage |PREAL − PRP |, which is strictly larger than

ε. The running time of Dist is upper-bounded by T : it includes three samplings (of X,X ′

and Y ′), each assumed to take at most T/4 time, and the work of (C,D) which Dist runs

for total time T/4 at most. In all, we have built a distinguisher against B that runs time

T and has advantage larger than ε in contradiction to the security of the block cipher B.

Assume now that δ > 0. When a positive probability of error for D is allowed, it can

occur that D stops before time T ′ and before Dist sees X,X ′, Y or Y ′. To deal with this

situation, we add a clause to the specification of Dist saying that if (C,D) stops before

time T ′ and before seeing any of the values X,X ′, Y, Y ′, then Dist chooses a random bit b

and outputs real if b = 1 and rp if b = 0. We slightly increased the probability that X ′ is

queried before X (or Y ′ before Y) in the block cipher case, however it is still negligibly far

from 1/2. The proof is now a straightforward extension of the case when δ = 0.

Remark. The proof of Lemma A.1 assumes that the set YC(Y) is samplable in time T/4.

While this assumption is likely to hold, we note that it is enough to know the size of YC(Y).

In such case, rather than sampling YC(Y), the events 3) and 4) in the proof are replaced

with the following one: if the number of queries to Dec performed by D exceeds |YC(Y)|/2

before Y is queried, stop and output rp.

We now sketch the proof of the theorem when none of the above conditions holds, namely

when YC(Y) is of unknown size and not samplable in time T/4. Assume that (C,D) performs

noticeably better than the exhaustive strategies when the Enc/Dec oracles are instantiated

with the block cipher B. Then it must hold that (C,D) runs noticeably faster when the Enc

and Dec oracles are instantiated with the block cipher B than with a random permutation,

for the exhaustive strategies are optimal for a random permutation (as shown above). Using

this (assumed) discrepancy between the runs of (C,D) over B and the runs of (C,D) over a

random permutation, we can build a distinguisher against B in contradiction to the security

of B. In the following, we formalize this discrepancy and outline the construction of the

116

distinguisher, where some straightforward details are omitted.

For any plaintext X let TB(X) denote the runtime of (C,D) on input X when Enc/Dec

oracles are instantiated with the block cipher B. Further, let TR(X) denote the runtime

of (C,D) on input X when Enc/Dec oracles are instantiated with a random permutation.

We assume that there is a known time bound T0 such that TB(X) < T0 for all X (we relax

this assumption below) and there exists a non-negligible ε such that Pr[TB(X) < TR(X)] ≥

1/2 + ε. The probability is over all choices of X and all random coins of (C,D). Further,

it is over all key choices for B for TB and over all random permutations for TR. We build

a distinguisher Dist as follows:

1. Choose X ∈R P and run (C,D) using the input oracles. If time T0 is exceeded, stop

and output rp, otherwise proceed to Step 2.

2. Let T1 denote the running time of (C,D) in step (1). Run (C,D) again on X (same

X as in step 1)) but this time ignore the given Enc/Dec oracles. Instead, answer

queries from (C,D) with a random permutation. If time T1 is exceeded then output

real, otherwise output rp.

We have the following:

• If the Enc/Dec oracles are instantiated with B, step (1) always completes and in step

(2) real is output with the probability that equals Pr[TR(X) > TB(X)], which is at

least 1/2 + ε.

• If the Enc/Dec oracles are instantiated with a random permutation, real is output

only if TR(X) ≤ T0 and the runtime on X in step (2) exceeds the runtime on X in step

(1). The probability of the latter is at most 1/2 since both runs are over a random

permutation.

Thus, Dist will output real with probability at least 1/2 + ε when the oracles are instan-

tiated with B, while it will output real with probability at most 1/2 when the oracles are

instantiated with a random permutation. It follows that Dist is a (T, ε)-distinguisher for

B where T = 2T0 since in each of the steps (1) and (2) Dist runs time at most T0.

117

Note that the requirement that TB(X) < T0 for all X can be relaxed such that the joint

probability of TB(X) < T0 and TB(X) < TR(X) is at least 1/2 + ε.

A.3 Security of the CBC Compression Scheme

In this section we formally prove that compression and decompression operations that we

introduced on top of the regular CBC mode do not compromise security of the original

CBC encryption. The proof follows standard techniques in the cryptographic literature,

showing that any efficient attack against secrecy of a PEC scheme can be transformed into

an efficient attack against the original CBC encryption.

We start by formalizing the notion of security of a PEC scheme as a simple extension of

the standard definition of chosen plaintext attack (CPA) security recalled in Appendix A.1.

The essence of the extension is that in the PEC setting the adversary is given access to a

combined oracle (EncK +C)(·) which first encrypts the plaintext and then compresses the

resultant ciphertext.

Definition A.5 (CPA-PEC Indistinguishability Experiment). Consider an encryption scheme

(Gen,Enc,

Dec) and a PEC scheme (C,D). The CPA-PEC indistinguishability experiment Exptcpa−pecA

is defined as follows:

1. a key K is generated by running Gen;

2. the adversary A has oracle access to (EncK +C)(·), and queries it with a pair of test

plaintexts X0, X1 of the same length;

3. the oracle randomly chooses a bit b ← {0, 1} and returns the compressed ciphertext

c← (EncK + C)(Xb), called the challenge, to A;

4. the adversary A continues to have oracle access to (EncK + C)(·) and is allowed to

make arbitrary queries. Ultimately it makes a guess about the value of b by outputting

b′;

118

5. the output of the experiment, Exptcpa−pecA , is defined to be 1 if b′ = b, and 0 otherwise.

If Exptcpa−pecA = 1, we say that A succeeded.

Definition A.6 (Post-Encryption Compression Security). A PEC scheme (C,D) is called

(T, ε)-indistinguishable under chosen plaintext attacks (CPA-PEC-secure) if for every ad-

versary A that runs in time T ,

Pr
[
Exptcpa−pecA = 1

]
<

1

2
+ ε,

where the probability is taken over all random coins used by A, as well as all random coins

used in the experiment.

We now formulate the security of our CBC compression scheme by the following theorem.

Theorem 4. Let E = (Gen,Enc,Dec) be a CBC encryption scheme that is (T, ε)-indistinguishable

under chosen plaintext attacks, let P be an efficiently-samplable plaintext distribution, and

let (C,D) be a (E ,P, δ)-PEC scheme. Then (C,D) is (T/TC , ε)-indistinguishable under

chosen plaintext attacks, where TC is an upper bound on the running time of C.

Proof. Our proof employs a reduction to the security of E . Specifically, we show that if

there exists an adversary AC that runs in time T/TC and is able to distinguish between

two compressed encryptions, then there exists an adversary AE that runs in time T and

compromises the security of E . Note that the latter implies a break of security of the

underlying block cipher using the well-known result by Bellare et al. [3].

Assume, for contradiction, the existence of such an adversary AC . We construct an

adversary AE as follows. AE invokes AC and emulates its oracle (EncK +C)(·). That is, for

every queryX made byAC , AE uses its oracle EncK(·) to compute EncK(X). Subsequently,

it applies the compression algorithm C on EncK(X) and forwards C(EncK(X)) to AC .

When AC outputs the two test messages X0, X1, AE outputs these messages to its own

oracle EncK(·). Let c∗ denote the challenge ciphertext that its oracle returns. AE computes

c = C(c∗) and forwards c to AC . When AC outputs a bit b′, AE outputs the same value.

Given that AC makes at most T/TC queries and that the running time of C is upper-

bounded by TC , AE ’s running time is at most T . Let 1
2 + ε denote the probability that AC

119

distinguishes successfully in its game. Clearly, it holds that AE distinguishes successfully in

its game with the same probability, which is in contradiction to the security of E .

120

REFERENCES

[1] Aaron, A. and Girod, B., “Compression with side information using turbo codes,”
in IEEE Data Compression Conf., pp. 252–261, 2002.

[2] Barnault, L. and Declercq, D., “Fast decoding algorithm for ldpc codes over
gf(2q),” in Proc. International Symposium on Information Theory (ISIT), 2003.

[3] Bellare, M., Desai, A., Jokipii, E., and Rogaway, P., “A concrete security
treatment of symmetric encryption: Analysis of the DES modes of operation,” in IEEE
Proc. of 38th Annual Symp. on Foundations of Computer Science, 1997.

[4] Bennatan, A. and Burshtein, D., “Design and analysis of nonbinary ldpc codes for
arbitrary discrete memoryless channels,” IEEE Transactions on Information Theory,
vol. 52, pp. 549–583, Feb 2006.

[5] Blake, I. F., Seroussi, G., and Smart, N. P., Eliptic Curves in Cryptography.
Cambridge University Press, 2000.

[6] Bloch, M. and Barros, J., Physical Layer Security: From Information Theory to
Security Engineering. Cambridge University Press, to be published.

[7] Cachin, C., Entropy Measures and Unconditional Security. PhD thesis, ETH Zürich,
1997.

[8] Chung, S., On the Construction of Some Capacity-Approaching Coding Schemes. PhD
thesis, Massachusetts Institute of Technology, 2000.

[9] Chung, S., Jr, G. F., Richardson, T., and Urbanke, R., “On the design of
low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE Commu-
nications Letters, vol. 5, pp. 58–60, Feb 2001.

[10] Chung, S., Richardson, T., and Urbanke, R., “Analysis of sum-product decoding
of low-density parity-check codes using a gaussian approximation,” IEEE Transactions
on Information Theory, vol. 47, pp. 657–670, Feb 2001.

[11] Csiszar, I. and Korner, J., “Broadcast channels with confidential messages,” IEEE
Transactions on Information Theory, vol. 24, pp. 339–348, May 1978.

[12] Davey, M. and MacKay, D., “Low-density parity check codes over gf(q),” IEEE
Communications Letters, vol. 2, pp. 165–167, Jun 1998.

[13] Declercq, D. and Fossorier, M., “Decoding algorithms for nonbinary ldpc codes
over gf(q),” IEEE Transactions on Communications, vol. 55, pp. 633–643, Apr 2007.

[14] Di, C., Proietti, D., Telatar, I. E., Richardson, T. J., and Urbanke, R. L.,
“Finite-length analysis of low-density parity-check codes on the binary erasure chan-
nel,” IEEE Transactions on Information Theory, vol. 48, pp. 1570–1579, Jun 2002.

121

[15] Dierks, T. and Rescorla, E., “The TLS protocol – version 1.2,” in RFC 5246, Aug.
2008.

[16] ElGamal, T., “A public-key cryptosystem and a signature scheme based on discrete
logarithms,” in CRYPTO ’84, pp. 10–18, Springer-Verlag (LNCS 196), 1984.

[17] Gallager, R. G., Low-density parity-check codes. MIT Press, 1963.

[18] Garcia-Frias, J., “Compression of correlated binary sources using turbo codes,”
IEEE Communications Letters, vol. 5, pp. 417–419, Oct. 2001.

[19] Gentry, C., “How to compress Rabin ciphertexts and signatures (and more),” in
CRYPTO ’04, pp. 179–200, Springer-Verlag (LNCS 3152), 2004.

[20] Ha, J., Kim, J., and McLaughlin, S., “Rate-compatible puncturing of low-density
parity-check codes,” IEEE Transactions on Information Theory, vol. 50, pp. 2824–2836,
Nov 2004.

[21] Ha, J., Klinc, D., Kwon, J., and Mclaughlin, S. W., “Layered BP decoding
for rate-compatible punctured LDPC codes,” IEEE Communications Letters, vol. 11,
pp. 440–442, May 2007.

[22] Ha, J., Kim, J., Klinc, D., and McLaughlin, S. W., “Rate-compatible punctured
low-density parity-check codes with short block lengths,” IEEE Transactions on Infor-
mation Theory, vol. 52, pp. 728–738, Feb 2006.

[23] Ha, J. and Klinc, D., “Low-density parity-check codes with rate adaptability,”
Telecommunications Review, pp. 823–836, Dec 2006.

[24] Hagenauer, J., “Rate-compatible punctured convolutional codes (RCPC codes),”
IEEE Transactions on Communications, vol. 36, pp. 389–400, Apr 1988.

[25] Harrison, W. K. and Mclaughlin, S. W., “Physical-layer security: Combining
error control coding and cryptography,” in Proc. IEEE International Conference on
Communications, (Dresden, Germany), 2009.

[26] Harrison, W. K. and Mclaughlin, S. W., “Tandem coding and cryptography on
wiretap channels: EXIT chart analysis,” in Proc. International Symposium on Infor-
mation Theory (ISIT), (Seoul, South Korea), 2009.

[27] He, D., Lastras-Montaño, L., and Yang, E., “A lower bound for variable rate
Slepian-Wolf coding,” in IEEE Inter. Symp. on Info. Theory, (Seattle, WA), July
2006.

[28] He, D., Lastras-Montaño, L., and Yang, E., “On the relationship between re-
dundancy and decoding error in Slepian-Wolf coding,” in IEEE Information Theory
Workshop, (Chengdu, China), Oct. 2006.

[29] Hocevar, D. E., “A reduced complexity decoder architecture via layered decoding,”
in SIPS, pp. 107–112, 2004.

[30] Hu, X., Eleftheriou, E., and Arnold, D., “Regular and irregular progressive edge-
growth Tanner graphs,” IEEE Transactions on Information Theory, vol. 51, pp. 386–
398, Jan 2005.

122

[31] Johnson, M., Ishwar, P., Prabhakaran, V., Schonberg, D., and Ramchan-
dran, K., “On compressing encrypted data,” IEEE Trans. Signal Processing, vol. 52,
pp. 2992–3006, Oct. 2004.

[32] Johnson, M., Wagner, D., and Ramchandran, K., “On compressing encrypted
data without the encryption key,” in Proc. of the Theory of Crypto. Conf., (Cambridge,
MA), Feb. 2004.

[33] Katz, J. and Lindell, Y., Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2007.

[34] Kent, S. and Seo, K., “Security achitecture for the internet protocol,” in RFC 4301,
Dec. 2005.

[35] Kim, J., Ramamoorthy, A., and Mclaughlin, S., “The design of efficiently-
encodable rate-compatible ldpc codes,” IEEE Transactions on Communications,
vol. 57, pp. 365–375, Feb 2009.

[36] Kim, S. H., Analysis of quasi-cyclic low-density parity-check codes and protograph
codes. PhD thesis, Seoul National University, Seoul, Korea, 2006.

[37] Klinc, D., Ha, J., Kim, J., and McLaughlin, S. W., “Rate-compatible punctured
low-density parity-check codes for ultra wide band systems,” in Proc. Global Telecom-
munications Conference (GLOBECOM), (St. Louis, MO), Nov 2005.

[38] Klinc, D., Ha, J., and Mclaughlin, S. W., “On rate-adaptability of nonbinary
LDPC codes,” in Proc. 5th Intern. Conf. on Turbo Codes and Related Topics, (Lau-
sanne, Switzerland), Sep 2008.

[39] Klinc, D., Ha, J., and Mclaughlin, S. W., “Optimized puncturing and shortening
distributions for nonbinary LDPC codes over the binary erasure channel,” in Proc.
Allerton Conference on Communication, Control, Computers, (Monticello, IL), Oct
2008.

[40] Klinc, D., Ha, J., and Mclaughlin, S. W., “Puncturing and shortening non-binary
LDPC codes,” journal paper in preparation, 2011.

[41] Klinc, D., Ha, J., Mclaughlin, S. W., Barros, J., and Kwak, B.-J., “LDPC
codes for physical layer security,” in submitted for publication, 2009.

[42] Klinc, D., Ha, J., Mclaughlin, S. W., Barros, J., and Kwak, B.-J., “LDPC
codes for physical layer security,” in Proc. Global Telecommunications Conference
(GLOBECOM), (Honolulu, HI), Dec 2009.

[43] Klinc, D., Ha, J., Mclaughlin, S. W., Barros, J., and Kwak, B.-J., “LDPC
codes for the gaussian wiretap channel,” in Proc. Information Theory Workshop (ITW),
(Taorimina, Italy), Oct 2009.

[44] Klinc, D., Ha, J., Mclaughlin, S. W., Barros, J., and Kwak, B.-J., “LDPC
codes for the gaussian wiretap channel,” accepted for publication in IEEE Transactions
on Information Forensics and Security, 2011.

123

[45] Klinc, D., Hazay, C., Jagmohan, A., Krawczyk, H., and Rabin, T., “On com-
pression of data encrypted with block ciphers,” submitted to IEEE Trans. Info. Theory.

[46] Klinc, D., Hazay, C., Jagmohan, A., Krawczyk, H., and Rabin, T., “On com-
pression of data encrypted with block ciphers,” in Proc. Data Compression Conference,
(Snowbird, UT), Mar 2009.

[47] Kwon, J., Klinc, D., Ha, J., and Mclaughlin, S. W., “Fast decoding of rate-
compatible punctured LDPC codes,” in Proc. IEEE International Symposium on In-
formation Theory (ISIT), (Nice, France), Jun 2007.

[48] Liveris, A., Xiong, Z., and Georghiades, C., “Compression of binary sources with
side information at the decoder using LDPC codes,” IEEE Communications Letters,
vol. 6, pp. 440–442, Oct 2002.

[49] Luby, M., Mitzenmacher, M., Shokrollahi, M., and Spielman, D., “Efficient
erasure correcting codes,” IEEE Transactions on Information Theory, vol. 47, pp. 569–
584, Mar 2001.

[50] MacKay, D. J. C., “Good error-correcting codes based on very sparse matrices,”
IEEE Transactions on Information Theory, vol. 45, pp. 399–431, Mar 1999.

[51] Mahdavifar, H. and Vardy, A., “Achieving the secrecy capacity of wiretap channels
using polar codes,” in Proc. International Symposium on Information Theory (ISIT),
(Austin, TX), 2010.

[52] Mao, W., Modern Cryptography: Theory and Practice. Prentice Hall, 2003.

[53] Massey, J. L., “Guessing and entropy,” in IEEE Inter. Symp. on Info. Theory, (Seat-
tle, WA), June 1994.

[54] of Commerce/National Institute of Standards, U. D. and Technology,
“Advanced encryption standard (AES),” in FIPS PUB 197, Nov. 2001.

[55] of Standards, N. B., Data Encryption Standard (DES). U.S. Department of Com-
merce, Washington D.C, 1977.

[56] Ozarow, L. and Wyner, A. D., “Wire-tap channel II,” AT&T Bell Laboratories
technical journal, vol. 63, pp. 2135–2157, Dec 1984.

[57] Park, H. Y., Kang, J. W., and Kim, K. S., “Efficient puncturing method for rate-
compatible low-density parity-check codes,” IEEE Transactions on Wireless Commu-
nications, vol. 6, pp. 3914–3919, Nov 2007.

[58] Pishro-Nik, H. and Fekri, F., “Results on punctured low-density parity-check codes
and improved iterative decoding techniques,” IEEE Transactions on Information The-
ory, vol. 53, pp. 599–614, Feb 2007.

[59] Rathi, V. and Urbanke, R., “Density evolution, thresholds and the stability condi-
tion for non-binary ldpc codes,” IEE Proceedings Communications, vol. 152, pp. 1069–
1074, Dec 2005.

124

[60] Richardson, T. and Urbanke, R., “The capacity of low-density parity-check codes
under message-passing decoding,” IEEE Transactions on Information Theory, vol. 47,
pp. 599–618, Feb 2001.

[61] Richardson, T. and Urbanke, R., “Design of capacity-approaching irregular low-
density parity-check codes,” IEEE Transactions on Information Theory, vol. 47,
pp. 619–637, Feb 2001.

[62] Richardson, T. and Urbanke, R., “Efficient encoding of low-density parity-check
codes,” IEEE Transactions on Information Theory, vol. 47, pp. 638–656, Feb 2001.

[63] Richardson, T. and Urbanke, R., Modern Coding Theory. Cambridge University
Press, 2008.

[64] Shannon, C., “Communication theory of secrecy systems,” Bell Systems Technical
Journal, vol. 29, pp. 656–715, Jan 1949.

[65] Shi, C. and Ramamoorthy, A., “Design and analysis of e2rc codes,” IEEE Journal
on Selected Areas in Communications, vol. 27, pp. 889–898, Aug 2009.

[66] Slepian, D. and Wolf, J., “Noiseless coding of correlated information sources,”
IEEE Trans. Info. Theory, vol. 19, pp. 471–480, July 1973.

[67] Storn, R. and Price, K., “Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces,” Journal of Global Optimization, vol. 11,
pp. 341–359, Dec 1997.

[68] Tanner, M., “A recursive approach to low complexity codes,” IEEE Transactions on
Information Theory, vol. 27, pp. 533–547, Sep 1981.

[69] Thangaraj, A., Dihidar, S., Calderbank, A. R., McLaughlin, S. W., and
Merolla, J. M., “Applications of ldpc codes to the wiretap channels,” IEEE Trans-
actions on Information Theory, vol. 53, pp. 2933–2945, Aug 2007.

[70] Tian, T. and Jones, C., “Construction of rate-compatible ldpc codes utilizing infor-
mation shortening and parity puncturing,” EURASIP Journal on Wireless Communi-
cations and Networking, no. 5, 2005.

[71] Vellambi, B. N. and Fekri, F., “Finite-length rate-compatible ldpc codes: A novel
puncturing scheme,” IEEE Transactions on Communications, vol. 57, pp. 297–301,
Feb 2009.

[72] Wymeersch, H., Steendam, H., and Moeneclaey, M., “Log-domain decoding of
ldpc codes over gf (q),” in Proc. IEEE International Conference on Communications,
2004.

[73] Wyner, A. D., “The wire-tap channel,” The Bell System Technical Journal, vol. 54,
pp. 1355–1387, Oct 1975.

[74] Yeo, E., Pakzad, P., Nikolic, B., and Anantharam, V., “High throughput low-
density parity-check decoder architectures,” in Proc. IEEE International Conference
on Communications, pp. 3019–3024, 2001.

125

[75] Yue, G., Wang, X., and Madihian, M., “Design of rate-compatible irregular repeat
accumulate codes,” IEEE Transactions on Communications, vol. 55, pp. 1153–1163,
Jun 2007.

126

