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SUMMARY 

 

Mineral dust is ubiquitous in the atmosphere and represents a dominant type of 

particulate matter by mass. Dust particles can serve as cloud condensation nuclei (CCN), 

giant CCN (GCCN), or ice nuclei (IN), thereby, affecting cloud microphysics, albedo, 

and lifetime. Despite its well-recognized importance, assessments of dust impacts on 

clouds and climate remain highly uncertain. This thesis addresses the role of dust as CCN 

and GCCN with the goal of improving our understanding of dust-warm cloud interactions 

and their representation in climate models. 

Most studies to date focus on the soluble fraction of aerosol particles when 

describing cloud droplet nucleation, and overlook the interactions of the hydrophilic 

insoluble fraction with water vapor. A new approach to include such interactions 

(expressed by the process of water vapor adsorption) is explored, by combining 

multilayer Frenkel-Halsey-Hill (FHH) physical adsorption isotherm and curvature 

(Kelvin) effects. 

The importance of adsorption activation theory (FHH-AT) is corroborated by 

measurements of CCN activity of mineral aerosols generated from clays, calcite, quartz, 

and desert soil samples from Northern Africa, East Asia/China, and Northern America. A 

new aerosol generation setup for CCN measurements was developed based on a dry 

generation technique capable of reproducing natural dust aerosol emission. Based on the 

dependence of critical supersaturation with particle dry diameter, it is found that the 

FHH-AT is a better framework for describing fresh (and unprocessed) dust CCN activity 

than the classical Köhler theory (KT). Ion Chromatography (IC) measurements 
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performed on fresh regional dust samples indicate negligible soluble fraction, and support 

that water vapor adsorption is the prime source of CCN activity in the dust.  

CCN measurements with the commonly used wet generated mineral aerosol (from 

atomization of a dust aqueous suspension) are also carried out. Results indicate that the 

method is subject to biases as it generates a bimodal size distribution with a broad range 

of hygroscopicity. It is found that smaller particles generated in the more hygroscopic 

peak follow CCN activation by KT, while the larger peak is less hydrophilic with 

activation similar to dry generated dust that follow FHH-AT.  

Droplet activation kinetics measurements demonstrate that dry generated mineral 

aerosol display retarded activation kinetics with an equivalent water vapor uptake 

coefficient that is 30 - 80% lower relative to ammonium sulfate aerosol. Wet generated 

mineral aerosols, however, display similar activation kinetics to ammonium sulfate. 

These results suggest that at least a monolayer of water vapor (the rate-limiting step for 

adsorption) persists during the timescale of aerosol generation in the experiment, and 

questions the atmospheric relevance of studies on mineral aerosol generated from wet 

atomization method. 

A new parameterization of cloud droplet formation from insoluble dust CCN for 

regional and global climate models is also developed. The parameterization framework 

considers cloud droplet formation from dust CCN activating via FHH-AT, and soluble 

aerosol with activation described through KT. The parameterization is validated against a 

numerical parcel model, agreeing with predictions to within 10% (R
2 

~ 0.98). 

The potential role of dust GCCN activating by FHH-AT within warm 

stratocumulus and convective clouds is also evaluated. It is found that under pristine 
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aerosol conditions, dust GCCN can act as collector drops with implications to dust-cloud-

precipitation linkages. Biases introduced from describing dust GCCN activation by KT 

are also addressed. 

The results demonstrate that dust particles do not require deliquescent material to 

act as CCN in the atmosphere. Furthermore, the impact of dust particles as giant CCN on 

warm cloud and precipitation must be considered. Finally, the new parameterization of 

cloud droplet formation can be implemented in regional and global models providing an 

improved treatment of mineral aerosol on clouds and precipitation. The new framework 

is uniquely placed to address dust aerosol indirect effects on climate. 



1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Clouds, Aerosol, and Climate Change 

 Clouds are a key component of the climate system and play an important role in 

controlling the Earth’s energy balance and hydrological cycle. About 60% of the Earth is 

covered by clouds that cool the Earth-atmosphere system on a global average (Lohmann 

and Feichter, 2005). Figure 1.1 shows how clouds affect the Earth’s energy balance, 

demonstrating their central role in controlling the energy distribution in the atmosphere 

and between surface-and-atmosphere. Measurements of the Earth Radiation Budget 

Experiment (ERBE) indicate that small changes in clouds macrophysical (coverage, 

structure, altitude, and mixing) and microphysical (droplet number, size, phase, 

nucleation and growth of droplets, and ice crystals) properties have significant impacts on 

climate. In addition to controlling the radiation budget, clouds also play an important role 

in controlling the moisture in the atmosphere and the availability of fresh water. 

Understanding clouds, where they occur, and their characteristics, is thought to be the key 

to understanding the climate and climate change.  
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Figure 1.1: Radiative budget of the Earth (Kiehl and Trenberth, 1997). 

 

 Together with clouds, suspended atmospheric particles (or aerosols) play an 

important role in the climate system. Due to their ability to absorb and scatter solar and 

terrestrial radiation, aerosol particles have a direct influence on the radiative energy 

balance. Furthermore, there is mounting evidence that atmospheric aerosols interact with 

the climate system and impact the hydrological cycle through changes in cloud coverage, 

cloud properties and precipitation (Collins et al., 1994, Lohmann and Feichter, 2005, 

Levin and Cotton, 2008). Certain aerosols can serve as cloud condensation nuclei (CCN) 

upon which water vapor can condense to form cloud droplets. This link between aerosol 

and cloud formation is referred as the Aerosol Indirect Effect (AIE) and is a major source 

of uncertainty in climate change predictions. The Intergovernmental Panel on Climate 

Change (IPCC) in their report from 2007 (Fig. 1.2), stated that aerosols potentially have a 



3 

 

strong cooling effect due to AIE on climate that rivals the warming influence by the 

greenhouses gases. However the level of scientific understanding was low as indicated by 

an extremely large error bar. This uncertainty in AIE originates from poorly quantified 

assessments of aerosol-cloud interactions in climate models, both global and regional 

scales. Some of these challenges include poorly understood interactions of different types 

of particulate matter with atmospheric water vapor, theoretical shortcomings in physical 

mechanisms that explain aerosol-water vapor interactions, lack of observational data (on 

sources, emissions, etc.) to complexities associated with coarse grid size of global climate 

models. Measurements have played an important role in this research, and will need to span 

for regional to global scales in order to comprehensively test climate system models. 

 Cloud droplet activation is the direct microphysical link between aerosols and 

clouds, and is at the heart of the aerosol indirect effect (Nenes and Seinfeld, 2003). 

Droplet activation in atmospheric models is often calculated from physically-based 

prognostic formulations (e.g., Feingold and Heymsfield, 1992; Abdul-Razzak et al., 

1998; Abdul-Razzak and Ghan, 2000; Cohard et al., 2000; Nenes and Seinfeld, 2003, 

Fountoukis and Nenes, 2005; Ming et al., 2006; Barahona and Nenes, 2007) that rely on 

Köhler theory (Köhler, 1936). Köhler theory considers curvature and solute effects on the 

equilibrium vapor pressure of a growing droplet, and can describe the equilibrium growth 

of a droplet as a function of ambient supersaturation. However, it is well known that 

insoluble species like dust can serve as cloud condensation nuclei (CCN), giant CCN 

(GCCN) (e.g., Rosenfeld et al., 2001; Levin and Cotton, 2008), or ice nuclei (IN) (e.g., 

DeMott et al., 2003; Field et al., 2006) thereby affecting cloud microphysics, albedo, and 

lifetime by serving as cloud condensation nuclei (CCN), giant CCN (GCCN) (e.g., 

Rosenfeld et al., 2001; Levin and Cotton, 2008), or ice nuclei (IN) (e.g., DeMott et al., 
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2003; Field et al., 2006). Despite its well-recognized importance, assessing the impacts of 

dust on clouds and climate remains uncertain due to theoretical shortcomings in current 

activation theory (Köhler theory) when applied to dust aerosol. Therefore, a thorough 

understanding of the interactions of mineral (dust) aerosol with warm clouds is of 

significant importance. 

 

 

Figure 1.2: Estimated global average radiative forcing from anthropogenic and natural 

sources. Also shown is the spatial scale, and the level of scientific understanding. 

Figure obtained from IPCC, 2007 (Forster et al., 2007). 
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1.2 Mineral Aerosols (Dust) 

 Mineral aerosols represent a dominant source of particulate matter (by mass) in 

the atmosphere. The largest global source of wind-blown dust is desert regions with 

approximately 1000 - 5000 Tg of dust particles emitted annually (Schuttlefield et al., 

2007). Major dust source regions extend from west coast of North Africa through the 

Middle East, into Central Asia and cover some of major deserts that includes the Sahara 

in Africa, deserts of Arabian Peninsula, Oman, dried lakebeds of Caspian and Aral Sea in 

Central Asia, and extending through to the Gobi and the Taklimakan in China. Outside 

the major dust sources, emissions are also observed from sources located in USA and 

Mexico in Northern America, the Great Artesian Basin of Australia, Botswana 

depressions and the Namibia Desert in Southern Africa, as well as the Sothern American 

deserts of Altiplano in Bolivia, and smaller deserts in Patagonia and in Western 

Argentina (Formenti et al., 2010). 

 Dust particles can alter the Earth’s radiation budget directly because of their 

tendency to absorb and scatter solar and infrared radiation (Sokolik et al., 2001). They 

also affect the climate indirectly by interacting with water vapor and thus affecting cloud 

properties and precipitation (Ramanathan et al., 2001). In addition, the iron content of 

dust provides an importance souces of fertizer in oceans via deposition and dissolution 

mechanism (Duce et al., 1991). Other than the climatic impacts, mineral dust also has a 

direct adverse impact on human health (e.g., Kwon et al., 2002; Perez et al., 2008) by 

acting as a carrier of micro-organisms (Kellogg and Griffin, 2006), as well as on regional 

air quality because of the visibility impairment (Prospero, 1999). 
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 Mineral dust is a complex mixture of a variety of species such as iron oxides (e.g., 

hematite (Fe2O3), goethite (FeO(OH))), carbonates (e.g., calcite (CaCO3), dolomite 

(CaMg(CO3)2)), quartz (SiO2), and clays (kaolinite (Al2Si2O5(OH)4), illite 

(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)], and montmorillonite (Na,Ca)0.33(Al,Mg)2 

(Si4O10)(OH)2·nH2O)]) (Lafon et al., 2006; Chou et al., 2008; Coz et al., 2009; Twohy et 

al., 2009). Due to differences in the parent soils, dust aerosol originating from different 

source regions can have different chemical composition. Formenti el al. (2010) suggested 

that the fraction of calcite content and the ratio of illite to kaolinite clay in mineral dust 

samples can be used as a fingerprint to identify dust from specific source areas. For 

instance, a ratio of illite to kaolinite mass fraction greater than five corresponds to dust 

from Northern Africa while a ratio of illite to kaolinite mass fraction less than two is 

representative of dust originating from Eastern Asia. 

 Mineral dust particles can remain suspended in the atmosphere for up to several 

weeks and can be transported large distances downwind from the source regions. During 

transport, dust particles (especially the carbonate fraction which can comprise up to 30% 

of the total mass), provide reaction surfaces for heterogonous and multiphase reactions 

with anthropogenic pollutants such as nitrates and sulphates (Levin et al., 1996), resulting 

in modified dust properties, such as enhanced hygroscopicity (Hatch et al., 2008). Thus 

differences in parent soils, and emission and transport processes can cause substantial 

variability in size-resolved composition and morphology of dust particles (Sokolik et al., 

2001; Jeong and Sokolik, 2007). 

 Apart from varied chemical composition, dust particles also exhibit a variety of 

complex shapes, of sizes varying from few hundred nanometers to hundreds of microns 
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that are difficult to measure or express in terms of a unique set of parameters or 

functions. Characterization of dust non-sphericity is often done by either (i) introducing a 

dynamic shape factor, χ, (defined as the ratio of drag force, FD, experienced by the non-

spherical particle to that experienced by a volume equivalent sphere when both move at 

the same velocity in the gas (e.g., DeCarlo et al., 2004), or (ii) providing an Aspect Ratio 

(AR), defined as the ratio of the longest dimension of particles to the orthogonal shortest 

length (width). Commonly, χ is obtained by tandem electrical mobility and aerodynamic 

particle sizing (e.g., DeCarlo et al., 2004; Kuwata and Kondo, 2009) and is an integrated 

measure of the three-dimensional particle shape. AR is measured with electron 

microscopy that reports two dimensional image projections of particles from which the 

longest dimension and width are determined (e.g., Kalashnikova and Sokolik, 2004). A 

number of recent studies have reported measurements of AR values for species 

considered in this study. For instance, Chou et al. (2008) report a mean AR equal to 1.7 

for Niger dust collected during the AMMA campaign, Kandler et al. (2009) report AR 

equal to 1.64 for Saharan dust collected over Spain, and Coz et al. (2009) report AR equal 

to 1.81 for African dust. These AR values are somewhat higher compared to AR equal to 

1.3 – 1.4 reported by Okada et al. (2001) for East Asian dust. AR can also vary with 

particle size (Wiegner et al., 2009). As particle size and shape are fundamental 

parameters that describe atmospheric lifetime, transport processes, as well aerosol direct 

and indirect radiative impacts, uncertainties associated with mineral dust shape further 

complicates understanding of impacts of mineral dust on the Earth system. 
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1.3 Mineral Aerosols as Cloud Condensation Nuclei 

 Mineral dust has been found to play an important role in both warm (liquid) and 

mixed-phase clouds through both direct and indirect effects. When first emitted into the 

atmosphere, mineral dust particles are often insoluble, but during the course of their 

transport (short, mid or long-range), they acquire some deliquescent material, such as 

(NH4)2SO4 (Levin et al., 1996); and become efficient Cloud Condensation Nuclei (CCN), 

upon which cloud droplets are formed through the process of activation. Changes in the 

CCN concentration affect the radiative properties of clouds, known as the “cloud albedo” 

or “Twomey” effect of aerosols (Twomey, 1974). The enhanced number of droplets is 

often accompanied by a reduction in their size, thereby affecting cloud precipitation 

efficiency. This may result in increased cloudiness, which gives rise to the so called 

“cloud lifetime” or “Albrecht” effect of aerosols (Albrecht, 1989). These effects 

combined, are known as aerosol indirect effects. 

 The ability of dust particles to serve as a CCN under atmospherically relevant 

water vapor supersaturations depends on their mineralogy, size, morphology, and 

atmospheric processing (aging). Due to differences in chemical composition of the parent 

soils, as well as the emission and transport routes of suspended dust particles, mineral 

aerosol at the source region and downwind can have different chemical composition and 

morphology, which leads to differences in solubilities and hydrophilicities (Sokolik et al., 

2001) with implications to dust CCN activation potential. Additionally, due to changes in 

precipitation patterns as a result of anthropogenic disturbances, the sizes of global arid 

regions are expected to increase by millions of hectares per year (Sheehy, 1992). All 

these factors combined makes mineral dust interaction with clouds even more 
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complicated compared to other tropospheric aerosols. Thus understanding the dust 

particle’s ability to act as CCN, and associated impacts on clouds is essential for 

improved climate change predictions. 

 Based on modeling studies, it has been suggested that mineral dust aerosol can 

contribute to up to 10% of the global CCN burden (Hoose and Lohmann, 2008), with 

contribution being much larger in desert regions and in regions affected by dust transport. 

This has been confirmed by laboratory studies that demonstrated both regional dusts as 

well as individual clays can interact with water to act as effective CCN. For example, 

Koehler et al. (2009) and Herich et al. (2009) measured CCN activation of two types of 

regional dust samples (Northern Africa and Arizona Test Dust) and several clays 

(kaolinite, illite, and montmorillonite), respectively, at water vapor supersaturation 

relevant to atmospheric conditions. These laboratory measurements provided sufficient 

evidence that fresh insoluble mineral dust aerosol, even without a significant fraction of 

soluble material, can act as a CCN at atmospherically relevant supersaturations (Seinfeld 

and Pandis, 2006). 

 The inability and/or inconsistencies in current droplet nucleation theories to 

accurately describe fresh and aged dust CCN activity, makes mineral dust aerosol as one 

of the least understood components of the climate change. A number of models as well as 

modifications to the current activation theory known as Köhler theory (KT) (Köhler, 

1936) have been proposed to describe insoluble particle CCN activity (e.g., Fletcher, 

1958; Wexler and Ge, 1998; Abdul-Razzak and Ghan, 2000; Dusek et al., 2006; Petters 

and Kreidenweis, 2007). Significant discrepancies, however, exist between reported 

laboratory measurements and results predicted by theories. This is because current 
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activation theories, when applied to dust, assume that the dust CCN activity is dependent 

solely on the soluble fraction. Furthermore, all modifications to Köhler theory, fail to 

account for the interactions between hydrophilic insoluble fraction (or dust core) and 

water vapor, even if appreciable. 

 It was suggested recently that the threshold of cloud droplet nucleation 

substantially decreases, when water vapor adsorbs onto the surface of slightly soluble or 

insoluble particles, resulting in cloud droplet formation by the process of adsorption 

activation. The CCN activity of a fresh dust particle (i.e., without any appreciable soluble 

coating) can hence be described using a different activation mechanism of physical 

adsorption. Henson (2007) showed that BET (Brunauer, Emmett and Taylor) (Brunauer 

et al., 1938) isotherms can be successfully applied to represent droplet formation by 

adsorption activation for insoluble CCN. Similarly, Sorjamaa and Laaksonen (2007) used 

the Frenkel-Halsey-Hill (FHH) multilayer physical adsorption model to describe water 

uptake as a function of relative humidity (i.e., water activity) and applied the theory to 

describe the activation of perfectly wettable and insoluble hydrophilic CCN. The new 

formulations of activation of hydrophilic insoluble CCN as described by Henson, and 

Sorjamaa and Laaksonen will be referred to as the adsorption activation theory (AT). 

 Predicting complex effects of mineral dusts on clouds and climate requires 

integrating observational knowledge into theoretical descriptions or parameterizations. 

Laboratory studies can provide data for developing and constraining parameterizations 

for the use in numerical modeling of dust impacts on clouds. However, there are many 

challenges associated with laboratory measurements such as generating mineral dust 

aerosol with a distribution that resembles the size distributions of dust plumes generated 
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in the natural source regions, simulating atmospherically relevant water vapor 

supersaturations in laboratory instruments, accurately relating the composition of mineral 

dust CCN to its CCN activation potential, identifying the role of dust processing and 

transformation in the atmosphere as a consequence of long range transport, to being able 

to encapsulate all of this information for use in climate models. 

 Similarly, global aerosol-climate models so far have paid little attention to 

mineral dust, due to their low number concentrations and reduced hygroscopicities in 

comparison to other tropospheric aerosols. Because of these complexities involved in 

dust-cloud interactions, climate models either do not include dust or if they do, these 

predictions rely on overly simplified parameterizations to treat dust activation behavior. 

To date, only a few state-of-the art global aerosol climate models include dust in the 

parameterizations. For instance, ECHAM5-HAM (Lohmann et al., 2007) treats only dust 

particles coated with sulphates and excludes the contribution of externally mixed mineral 

dust to cloud droplet number. In MIRAGE (Easter et al., 2004), SPRINTARS (Takemura 

et al., 2005), and CAM-Oslo (Storelvmo et al., 2006) model, pure mineral dust is 

assigned a soluble fraction of 13%, 14%, and 1.3%, respectively. Hence, more work is 

desired with regards to the activation of mineral aerosol to simulate realistic dust-cloud 

interactions for accurate assessment of dust aerosol indirect effect. 

 The influence of dust particles on warm clouds can be more significant if they are 

large enough to act as a giant CCN (GCCN) (defined as particles with a dry diameter 

larger than 5 μm); thus altering precipitation efficiency (i.e., promote or suppress 

precipitation). For example, some studies suggest that large salt containing mineral dust 

particles can initiate precipitation formation by broadening the droplet spectrum and 
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enhancing cloud-coalescence processes in a cloud cycle (Feingold et al., 1999; Rudich et 

al., 2002). Yin et al. (2002) used parcel model simulations to show that mineral dust 

aerosol can promote precipitation due to formation of a soluble coating on its surface, 

causing dust particle to grow to the size of a GCCN. On the other hand, Rosenfeld et al. 

(2001) and Mahowald and Kiehl (2003) found using remote sensing measurements that 

dust particles can also decrease the collision-coalescence process, thus increasing cloud 

lifetime and reducing precipitation efficiency. Van den Heever et al. (2005) investigated 

the effects of increasing GCCN concentrations from relatively clean conditions to dusty 

conditions; using measurements from the CRYSAL-FACE field campaign and noted that 

while more liquid water was produced under dusty conditions; precipitation processes 

were suppressed resulting in a reduction of total precipitation reaching the ground as 

compared to the clean case. Teller and Levin (2006) found that increasing the GCCN 

concentration led to a decrease in precipitation in clean clouds but increased precipitation 

in polluted clouds. The enhancement in precipitation from GCCN concentrations was a 

result of increased graupel production within the clouds. Additionally, dust GCCN in 

warm clouds can also result in evaporation of cloud droplets, thus decreasing the number 

of collector drops and the probability of precipitation formation commonly known as the 

Semi-Direct effect (Huang et al., 2006). Inconsistencies in size definitions of GCCN 

(Levin et al., 1996; Feingold et al., 1999) as well as confusions on the ability of pristine 

or aged dust to act as GCCN (Yin et al., 2002) complicate the current understanding of 

mineral dust, and subsequent impacts on the climate and the hydrological cycle. 
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1.4 Thesis Outline 

 The goal of this thesis is to improve our current understanding of how mineral 

aerosols affect warm clouds through serving as CCN and GCCN. The approach is shown 

in Fig. 1.3, and it integrates laboratory measurements with development of numerical 

models of dust-cloud interactions. The major objectives of this thesis include: 

1. Investigation of the importance of water vapor adsorption on hydrophilic insoluble 

mineral particles to describe cloud droplet nucleation and growth from dust aerosols. 

2. Development of a new physically-based droplet formation parameterization 

framework to describe dust activation in climate models. 

3. Perform laboratory measurements of CCN activity and droplet activation kinetics of 

regional dust samples and minerals to validate the adsorption activation theory, and to 

support the new droplet formation parameterization. 

4. Investigation of the applicability of commonly used wet generation method to mineral 

(dust) aerosols. 

5. Quantify the contribution of soluble salts in dust samples to dust CCN activity. 

6. Formulation of a unified dust activation framework to account for the effects of 

solutes to dust CCN activity. 

7. Examination of dust GCCN growth by adsorption activation mechanism in cloud 

models to address dust-cloud-precipitation linkages. 

This thesis is structured as follows. Chapter 2 provides motivation behind this 

thesis and examines the importance of including water adsorption effects when 

describing the hygroscopic and cloud condensation nuclei (CCN) behavior of mineral 

aerosol. In Chapters 3 and 4, new laboratory measurements of cloud condensation nuclei 
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(CCN) activity and droplet activation kinetics of aerosols generated (dry and wet) from 

clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and 

Northern America are presented. The premise of Chapters 3 and 4 is to expand the set of 

size resolved experimental measurements of dust (fresh and aged) CCN activity to 

constrain the role of dust in aerosol-cloud-climate interactions.  Chapter 5 presents a new 

parameterization of cloud droplet formation by including effects of adsorption activation 

within an ascending air parcel containing insoluble (but wettable) particles externally 

mixed with aerosol containing an appreciable soluble fraction. Chapter 6 examines the 

growth of dust particles acting as GCCN and its implications for cloud precipitation 

processes, considering the effects of dust mineralogy, size, and adsorption parameters. 

Finally, Chapter 7 presents major findings, implications, and directions for future work. 

 

Figure 1.3: Thesis schematic with major objectives. 
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CHAPTER 2 

MOTIVATION: IMPORTANCE OF ADSORPTION FOR CCN 

ACTIVITY AND HYGROSCOPIC PROPERTIES OF MINERAL 

DUST AEROSOL 

 

2.1 Abstract 

 This chapter uses published data on dust-water interactions to examine the 

importance of including water adsorption effects when describing the hygroscopic and 

cloud condensation nuclei (CCN) behavior of mineral dust aerosol. Adsorption activation 

theory (AT) better represents fresh dust-water interactions than Köhler theory (KT), as i) 

a consistent set of adsorption parameters can describe the hygroscopic behavior of dust 

(under both sub and supersaturated conditions), ii) the dependence of critical 

supersaturation, sc, with particle dry diameter, Ddry, is closer to observations. The long 

adsorption timescale could also contribute to the large differences observed between dry 

and wet generated dust hygroscopicity. If KT and AT are consistently applied to the same 

dust size distribution, KT predicts up to tenfold higher CCN and 40% higher droplet 

number concentration than AT. This profoundly different behavior between the theories 

suggests that both may be required for a comprehensive description of atmospheric dust 

CCN activity. 

 

Citation: Kumar, P., Nenes, A., and Sokolik, I. N.: Importance of Adsorption for CCN 

Activity and Hygroscopic Properties of Mineral Dust Aerosol, Geophys. Res. Lett., 36, 

L24804, doi:10.1029/2009GL040827, 2009.  
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2.2 Introduction 

 Mineral dust is ubiquitous in the atmosphere and represents a dominant type of 

particulate matter by mass. Dust particles can act as cloud condensation nuclei (CCN), 

giant CCN (GCCN) (e.g., Rosenfeld et al., 2001; Levin and Cotton, 2008), or ice nuclei 

(IN) (e.g., DeMott et al., 2003; Field et al., 2006) affecting cloud microphysics, albedo, 

and lifetime. Despite its well-recognized importance, assessments of dust impacts on 

clouds and climate are highly uncertain. In this study, we address the role of dust as CCN 

with the goal to provide an improved representation of dust CCN activation in the climate 

models. 

 Dust CCN activity is currently described by Köhler theory (herein KT; Köhler, 

1936), which is based solely on the contribution of the solute and curvature effects upon 

water equilibrium vapor pressure. KT implies that dust particles devoid of any solute 

would require very high ambient supersaturations (dictated by the Kelvin equation) to act 

as CCN. It is well known however that adsorption of water on insoluble particles 

(especially clays) can lead to hygroscopic growth similar to deliquescent salts (e.g., 

Schuttlefield et al., 2007). Past studies have demonstrated that calcite (CaCO3) (a mineral 

with very low solubility compared to deliquescent salts) and Arizona Test Dust (ATD) 

can interact with water vapor and adsorb multiple layers of water under subsaturated 

conditions (Gustafsson et al., 2005; Vlasenko et al., 2005; Hatch et al., 2008). This 

interaction implies that dust mixtures and individual minerals with hydrophilic insoluble 

surfaces can affect water activity of aerosol (especially when the solute fraction of 

particles is low) with largely ignored implications for predicted CCN activity. Henson 

(2007) and Sorjamaa and Laaksonen (2007) recognized this gap, and developed 
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adsorption activation theory (AT) to describe the activation of hydrophilic insoluble 

CCN. The Sorjamaa and Laaksonen (2007) formulation is based on the FHH (Frenkel, 

Halsey and Hill) adsorption model (and constrained by two adjustable parameters, AFHH, 

BFHH). Kumar et al. (2009) incorporated FHH-AT into a droplet activation 

parameterization for use in regional and global models, assuming that the aerosol 

constitutes an external mixture of “soluble” (KT) and “insoluble” (AT) particles.  

 Even if constrained by the same CCN activity or hygroscopic growth data, 

predicted CCN concentration and cloud droplet number, Nd, can differ between using KT 

and FHH-AT because: i) the relationship between particle critical supersaturation, sc, and 

dry diameter, Ddry, differs between theories, resulting in a different predicted CCN 

spectrum even if the same size distribution is used, and, ii) KT particles require 

substantially more water to activate than FHH-AT particles with the same sc (Kumar et 

al., 2009). Competition for water vapor in a cloud parcel during activation of KT particles 

can thus be more intense than for FHH-AT particles, leading to a different parcel 

maximum supersaturation, smax, and droplet number. 

 In this study, we substantiate the importance of considering water vapor 

adsorption effects on the activation of mineral dust particles. This is done by fitting 

published CCN activity and hygroscopic growth data to the KT and FHH-AT, and 

examining whether each theory can i) describe subsaturated  hygroscopic growth and 

CCN activity with one set of water-interaction parameters, and, ii) reproduce the 

observed dependence of sc with respect to Ddry. Finally, we evaluate the differences in the 

CCN number and droplet number concentrations predicted by KT and FHH-AT, using 

the consistent parameters and the same aerosol size distribution. 
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2.3 Comparison of Köhler and Adsorption Activation Theories 

 KT provides a relationship between the equilibrium vapor pressure of an aqueous 

droplet as a function of its wet diameter and exhibits a maximum value termed as critical 

supersaturation, sc, at a characteristic critical wet diameter, Dc. Particles exposed to 

ambient supersaturation above sc typically activate into cloud droplets (Nenes et al., 

2001). In KT, sc depends on the amount of solute in the dry particle, which is related to 

its chemical composition and size. Petters and Kreidenweis (2007) parameterized the 

solute term of KT in terms of a hygroscopicity parameter, κ, which was derived from the 

relationship between Ddry and sc. κ can be used to directly compare the hygroscopicity of 

aerosol over a wide range of composition, with κ  0 for completely insoluble particles 

(for which sc ~ 
1

dryD ) to κ  1.4 for the most hygroscopic atmospheric aerosol (for which 

sc ~ 
2/3

dryD ). According to KT, a constant value of κ should be able to describe both 

aerosol subsaturated water uptake (where relative humidity, RH, is below 100%) and 

predict CCN activity (RH > 100%). 

 FHH-AT is similar to KT, except that the solute term is replaced with an 

adsorption term modeled by the FHH isotherm (Crittenden and Thomas, 1998). The 

adsorption parameter BFHH, strongly affects the shape of the equilibrium curve, and 

largely determines the existence and value of sc and Dc (Kumar et al., 2009). As with KT, 

sc in FHH-AT can be related to Ddry as 
x

dryc CDs  . Particles with an appreciable soluble 

fraction follow KT, and x ~ -1.5 when κ > 0.2. In FHH-AT, x varies between -0.8 and -

1.2, depending on AFHH, BFHH (Kumar et al., 2009). 
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2.4 Evidence of Adsorption Activation 

Figure 2.1a shows published data (symbols) of sc as a function of Ddry (Koehler et 

al. 2009; Sullivan et al., 2009) for different dust types and individual mineral particles 

generated in the lab either with the use of a dry fluidized bed, or via wet atomization from 

an aqueous suspension of dust particles. The CCN activity data are fitted to a power law 

expression, 
x

dryc CDs  , from which the “experimental” exponent, xexp, is determined 

(Table 2.1). AFHH and BFHH and the corresponding exponent, xFHH, were determined from 

fitting the FHH-AT model (Fig. 2.1a, lines) to the experimental data via least squares 

minimization. The KT fits to the data (expressed in terms of κ) are given by Koehler et al. 

(2009) and Sullivan et al. (2009), from which the corresponding KT exponent, xκ, is 

computed. The values of the exponents, adsorption parameters (AFHH, BFHH), and κ 

(determined by Koehler et al., 2009, and Sullivan et al., 2009) are presented in Table 2.1. 

In Fig. 2.1b, xκ (circles) and xFHH (squares) are plotted against xexp for all dust 

samples and individual minerals. With the exception of CaCO3 and CaSO4 (calcium 

sulphate) (where xκ  -1 because of the very low κ), xκ ~ -1.5. CaCO3 (representing fresh 

unprocessed dust) and CaSO4, CaC2O4.H2O (calcium oxalate monohydrate or COH) 

(representing atmospherically processed mineral dust) are better described by FHH-AT, 

as xFHH is in perfect agreement with xexp. For wet generated ATD, Owens Lake (OL), 

Canary Island Dust (CID), and oxalic acid (C2O4H2), xFHH lies closer than xκ to the 1:1 

line. xκ for dry Saharan Dust (SD), ATD and wet Ca(NO3)2 are closer to xexp than xFHH; 

this is expected for Ca(NO3)2 because it is highly soluble (deliquescence RH = 49%; 

Fountoukis and Nenes, 2007), but not for dry ATD and SD. The large scatter (R
2
 < 0.7 
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for the sc-Ddry data for dry ATD) and potential size-dependant composition (for SD) may 

explain this. 

 Another indication that KT may be an incomplete description of the dust CCN 

activity presents itself in the value of wet-dust κ parameters, and the implications thereof. 

If the aerosol can be considered as a mixture of a soluble salt with molar volume  ssM 

, effective van’t Hoff factor s, and volume fraction s, then 
s

s

ss

w

w

M

M





 




















 , where 

 wwM   is the molar volume of water. Assuming that the hygroscopic fraction of dust 

behaves like ammonium sulfate gives 61.0
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 (Petters and Kreidenweis, 

2007). Therefore, the dust κ parameters can be used to infer an “equivalent soluble 

volume fraction”, computed as 
61.0


 s . If KT indeed applies, then s  should reflect 

the true soluble fraction of dust. From the values of κ reported in Table 2.1, s = 0.58, 

0.65 - 1.78, and 0.43 for wet ATD, OL, and CID, respectively. Such a large soluble 

fraction in fresh dust is much larger (or even impossible if larger than unity) than the 

expected 2% soluble mass fraction in ATD (Vlasenko et al., 2005) and 3 - 37% in OL 

(Koehler, 2008). Koehler et al. (2009) attribute this enhanced hygroscopicity to 

redistribution of the soluble material among the insoluble dust cores, particularly in the 

smaller size range. Given that KT implies 
0.5 1.5~c s drys D  

, s  will have to scale with 
0.3

dryD  

for KT to yield xκ = xexp ~ -1.36. This means that s varies more than 60% over the 

diameter range (40 – 200 nm) reported in the Koehler et al. (2009) experiments, so that 

the soluble fraction at the high sc should be close to unity. This is certainly possible; the 
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hygroscopicity parameter, however, does not seem to change considerably when subsets 

of the activation data (especially in the higher supersaturation range) are separately 

considered. This implies that KT may not completely describe the CCN activity of dust, 

so that other processes, such as physisorption, could contribute to the water activity 

depression required to yield the observed CCN activity. The long equilibration time 

(minutes or more) associated with adsorption (e.g., Schuttlefield et al., 2007) may explain 

why the hygroscopicity of dry and wet generated dust are so different. The residence time 

of dust particles in the instrumentation is typically less than a minute, limiting the amount 

of water that can adsorb and bias the observed hygroscopicity below its equilibrium 

value. Wetting the dust particles prior to measurement would maximize the amount of 

adsorbed water and express the full extent of its hygroscopicity. One approach to 

modeling this system is using one value for AFHH, BFHH combined with a variable uptake 

coefficient (that is very low during formation of the monolayer, and progressively 

increases with the number of adsorbed layers). Another explanation is the swelling of the 

clays; during complete wetting, more surface area could be exposed for interaction, 

which would enhance dust hygroscopicity compared to the dry particle. Further work 

should focus on the existence and mechanism of adsorption/desorption transients.  
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Figure 2.1: (a) FHH adsorption activation fits (lines) to the observed CCN activity 

(points) for dust types presented in Table 2.1. Data obtained from Fig. 7.1 (pp. 

154) and Fig. 5 from Koehler et al. (2009) and Sullivan et al. (2009), respectively. 

“Dry” refers to dust particles generated with a fluidized bed, and “wet” refers to 

atomization from an aqueous suspension. (b) Comparison between xexp, x 

(circles) and xFHH (squares). Color scheme identical to Fig. 2.1a. Dashed lines 

represent ± 7.5% deviation from 1:1 line. 
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Table 2.1: FHH parameters for different mineral dusts and dust related compounds composites. FHH adsorption activation fits to the 

experimental CCN activity data obtained from Koehler et al. (2009) and Sullivan et al. (2009) 

Description (Acronym) Generation
*
  AFHH BFHH x xFHH xexp 

Arizona Test Dust (ATD) Dry 0.025 0.27 0.79 -1.43 -1.20 -1.39 

Arizona Test Dust (ATD) Wet 0.35 0.85 0.88 -1.49 -1.26 -1.36 

Owens Lake (OL) Wet 0.39-1.07 1.14 0.91 -1.50 -1.25 -1.36 

Canary Island Dust (CID) Wet 0.26 0.80 0.88 -1.49 -1.24 -1.33 

Saharan Dust (SD) Dry 0.054 0.42 0.83 -1.47 -1.23 -1.42 

Calcium Nitrate (Ca(NO3)2) Wet 0.51 1.13 0.90 -1.50 -1.30 -1.59 

Oxalic Acid (C2O4H2) Wet 0.50 1.02 0.90 -1.50 -1.27 -1.35 

Calcium Carbonate (CaCO3) Dry 0.0011 0.25 1.19 -1.18 -0.96 -0.96 

Calcium Sulfate (CaSO4) Dry 0.0016 0.10 0.91 -1.21 -1.02 -1.02 

Calcium Oxalate Monohydrate 

(COH or CaC2O4.H2O) 

Dry 0.048 0.57 0.88 -1.47 -1.15 -1.16 

*
“Dry” refers to dust particles generated with a fluidized bed; “Wet” refers to atomization from an aqueous solution/suspension. 
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2.5 Reconciling Dust Hygroscopicity under Subsaturated and Supersaturated 

Conditions 

 Herich et al. (2009) measured water uptake on mineral dusts and different clays 

under subsaturated (with a hygroscopicity tandem differential mobility analyzer; 

HTDMA) and supersaturated (with a cloud condensation nuclei counter; CCNc) 

conditions. The hygroscopic growth factors (GF) were measured with a HTDMA, and the 

CCN activity was measured using a CCNc. A poor correlation in experiments (deviation 

larger than  50%) was found between κ derived from the HTDMA and CCNc. Herich et 

al. (2009) attributed this to resolution limitations in the HTDMA GF. Alternatively, KT 

may not adequately represent dust-water interactions, so that a single value of κ is not 

expected to describe the subsaturated water uptake and CCN activity for mineral dust 

aerosol. If FHH is more appropriate, then one set of AFHH and BFHH (neglecting the 

potential non-equilibrium artifacts) should reproduce both subsaturated and 

supersaturated properties of mineral dust aerosol, and is attempted below. 

 Gustafsson et al. (2005) studied the subsaturated hygroscopic uptake of ATD 

particles generated from suspensions in distilled water. Surface coverages as a function of 

RH were measured using a thermogravimetric analysis, during which multilayer 

adsorption (the number of water molecule layers, θ ~ 3 – 4) were observed for RH greater 

than 50%. Under such conditions, the FHH adsorption isotherm is applicable and is fitted 

to the data. The optimal values for AFHH and BFHH are 1.16 and 0.88, respectively, versus 

0.85 and 0.88 from CCN activation experiments (Table 2.1). Vlasenko et al. (2005) 

measured subsaturated hygroscopic growth of dry ATD; fitting a FHH adsorption 

isotherm to the growth data for RH > 70% gives AFHH = 0.19 and BFHH = 0.98 (RMSE = 
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0.035), which are very close to the FHH parameters obtained from CCN activation 

experiments for the same compound (AFHH = 0.27 and BFHH = 0.79; Table 2.1). Fitting 

FHH isotherms to the Gustafsson et al. (2005) and Hatch et al. (2008) measurements for 

CaCO3 (different type from Table 2.1) gives AFHH = 0.83 - 1.00 and BFHH = 0.76. All the 

above suggests that the adsorption parameters for similar samples are indeed consistent 

across different studies. 

2.6 Impact of KT and AT on CCN and Droplet Number 

 In this section, differences in predicted CCN concentrations and droplet number 

concentrations from application of KT and FHH-AT are estimated. For this, we use a 

single-mode lognormal aerosol obtained from in-situ measurements of SD during the 

NAMMA field campaign (Twohy et al., 2009) (with geometric mean diameter, Dg = 0.10 

μm, standard deviation, σg = 1.6, and total particle concentration, N0 = 225 per cm
3
). The 

CCN spectra computed with KT and FHH-AT (using κ, AFHH, and BFHH listed in Table 

2.1 and the lognormal CCN spectra formulations of Kumar et al., 2009) are presented in 

Fig. 2.2a. For supersaturations between 0.05% and 0.5% (a range relevant for cumulus 

and stratocumulus clouds), application of KT results in 8 - 12 times larger CCN that 

when applying FHH-AT. This is a direct consequence of xκ < xFHH, which tends to yield a 

larger activation fraction for KT-derived CCN spectra. For supersaturations greater than 

0.5%, most aerosol in both distributions activate, so CCN computed by KT and FHH-AT 

converge. 

The larger CCN concentrations (at a given supersaturation) associated with use of 

KT suggests that the calculated droplet number, compared to using FHH-AT, will be 

larger. KT however requires more water to activate particles than FHH-AT (Kumar et al., 
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2009), so the competition for water vapor in the former particles is stronger, potentially 

impacting smax and Nd. For example for sc = 0.05%, the ratio of water volume at Dc in KT 

against FHH-AT ranges from 4.83 (dry ATD) to 15.43 (wet ATD). Hence for the same 

size distribution, the droplet number difference from application of each theory depends 

on two competing factors: i) the stronger competition of KT CCN for water vapor, and ii) 

the typically larger activation fraction associated with KT. These factors are 

comprehensively accounted for in droplet number calculations carried out with the 

Kumar et al. (2009) parameterization. In all droplet number calculations presented, the 

parcel is assumed adiabatic, with initial temperature, 273 K; pressure, 600 mbar; and 

updraft velocity, w ranging from 0.1 m s
-1

 to 10 m s
-1

. For each dust type, the respective κ 

and FHH parameters (AFHH and BFHH) from Table 2.1 are used. 

 Figure 2.2b shows the fraction of total CCN that activate using KT, Fκ, to that 

from FHH-AT, FFHH, as a function of parcel updraft velocity (symbols) for four different 

dust types. The corresponding parcel smax is also shown (solid lines). For wet CID and 

wet ATD, 
FHH

d

d

N

N 

 is largest (~ 1.3 - 1.4) at w ~ 0.1 m s
-1

 and approaches 1.0 for w > 1 m 

s
-1

. This is because the parcel smax < 1% for all w < 1 m s
-1

 (Fig. 2.2b), where 1
FHH

k

F

F
 

(Fig. 2.2a) and droplet differences are dominated by the larger activation fractions 

associated with KT. Similarly, 1
FHH

k

F

F
 for dry ATD and SD and w < 1 m s

-1
. However, 

for w > 1 m s
-1

, the competition of water vapor from KT particles is sufficiently strong so 

that 1
FHH

d

d

N

N 

. At very high updrafts (> 3 m s
-1

), all particles activate, and 1
FHH

d

d

N

N 

. 
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Figure 2.2: (a) Ratio of CCN spectrum given by Köhler theory to that given by FHH 

adsorption activation theory as a function of supersaturation. Numbers noted on 

each curve refer to the ratio of water volume required by KT over FHH-AT to 

activate a CCN with sc = 0.05%. (b) Ratio of parameterized activated fraction 

(points) for different dust types as a function of increasing updraft velocity in a 

cloud parcel. Also shown are the corresponding parcel smax (lines) for each dust 

type. Color scheme identical to Fig. 2.1a. Dust types defined in Table 2.1. 
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2.7 Conclusions 

 In this study, we compared Köhler theory (KT) against FHH adsorption activation 

theory (FHH-AT) when applied to the activation of mineral dust aerosol. Based on 

published data, a number of potential issues were found with KT, suggesting it may not 

fully represent CCN activity of mineral dust aerosol, since i) a consistent set of FHH-AT 

adsorption parameters can be found that describe both the subsaturated hygroscopic 

growth and CCN activity, and, ii) the critical supersaturation vs. dry diameter exponents 

determined for FHH-AT are often closer to observations, than those from KT. 

Application of KT and FHH-AT leads to the differences in predicted CCN and cloud 

droplet number concentrations, even if consistent hygroscopicity and adsorption 

parameters (i.e., derived from the same experimental data) are used. For the dust samples 

considered here, CCN concentrations can differ by a factor of 10, and results in a 40% 

difference in predicted cloud droplet number concentration. Thus, a comprehensive 

description of CCN activity of mineral dust aerosol throughout its atmospheric lifetime 

may require a combination of both KT and FHH-AT. 
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CHAPTER 3 

MEASUREMENTS OF CLOUD CONDENSATION NUCLEI 

ACTIVITY AND DROPLET ACTIVATION KINETICS OF FRESH 

UNPROCESSED REGIONAL DUST SAMPLES AND MINERALS 

 

3.1 Abstract 

This study reports laboratory measurements of cloud condensation nuclei (CCN) 

activity and droplet activation kinetics of aerosols dry generated from clays, calcite, 

quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern 

America. Based on the observed dependence of critical supersaturation, sc, with particle 

dry diameter, Ddry, we found that FHH (Frenkel, Halsey, and Hill) adsorption activation 

theory is a far more suitable framework for describing fresh dust CCN activity than 

Köhler theory. One set of FHH parameters (AFHH ~ 2.25  0.75, BFHH ~ 1.20  0.10) can 

adequately reproduce the measured CCN activity for all species considered, and also 

explains the large range of hygroscopicities reported in the literature. Based on a 

threshold droplet growth analysis, mineral dust aerosols were found to display retarded 

activation kinetics compared to ammonium sulfate. Comprehensive simulations of 

mineral dust activation and growth in the CCN instrument suggest that this retardation is 

equivalent to a reduction of the water vapor uptake coefficient (relative to that for 

calibration ammonium sulfate aerosol) by 30 - 80%. These results suggest that dust 

particles do not require deliquescent material to act as CCN in the atmosphere. 
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Citation: Kumar, P., Sokolik, I. N., and Nenes, A.: Measurements of cloud condensation 

nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples 

and minerals, Atmos. Chem. Phys., 2011 (accepted).  

 

3.2 Introduction 

Clouds are an important component of the Earth’s radiation budget and 

hydrological cycle. Even small changes in cloud properties may have significant impacts 

on climate (Collins et al., 1994). Perturbations in aerosol loadings can alter cloud 

properties, giving rise to the aerosol indirect effect on climate. Aerosol effects on clouds 

constitute one of the most uncertain components of anthropogenic climate change 

(Forster et al., 2007). Mineral aerosol (or dust) is one of the lesser understood of aerosol 

species in the study of aerosol-cloud-climate interactions. It has been well recognized that 

dust plays an important role in cold cloud processes because of its effectiveness as Ice 

Nuclei (IN) (DeMott et al., 2003; Field et al., 2006). Dust can also affect warm clouds by 

acting as Cloud Condensation Nuclei (CCN), changes of which affect their radiative 

(Twomey, 1974) and precipitation properties (Rosenfeld et al., 2001). 

In general, the ability of dust particles to serve as CCN depends on their 

mineralogy, size, morphology, and atmospheric processing. Quantitative understanding 

of the interactions of dust with water vapor is complex because of its varying source-

dependent mineralogical composition and aging during its atmospheric residence. 

Mineral aerosol may constitute of iron oxides (e.g., hematite, goethite), carbonates (e.g., 

calcite, dolomite), quartz, and clays (e.g., kaolinite, illite, and montmorillonite) (Lafon et 

al., 2006; Chou et al., 2008; Coz et al., 2009; Twohy et al., 2009). Dust particles mainly 
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originate from arid and semi-arid regions, with an annual emission of approximately 

1000 - 5000 Tg (Schuttlefield et al., 2007). Differences in parent soils, and emission and 

transport processes cause substantial variability in size-resolved composition and 

morphology of dust particles (Sokolik et al., 2001; Jeong and Sokolik, 2008). Dust 

particles can remain suspended in the atmosphere for up to several weeks and can be 

transported over large distances downwind from source regions. During their transport, 

dust particles (especially the carbonate fraction which can comprise up to 30% of the 

total mass), provides reaction sites for heterogeneous chemical reactions with 

atmospheric trace gases and pollutants (Levin et al., 1996), resulting in modified dust 

properties, such as enhanced hygroscopicity (Hatch et al., 2008). However, not all dust 

particles undergo aging (Prospero, 1999; Ganor and Mamane, 1982; Ganor and Foner, 

1996). Depending on transport routes of dust plumes and environmental conditions, dust 

particles can remain unprocessed and have the same properties as freshly emitted dust in 

source regions. Thus, it is important to understand the CCN activity of fresh dust particles 

as well as aged dust. 

To describe the CCN activity of freshly emitted dust, two phenomena must be 

accounted for: i) the effect of solute (which may be present in freshly emitted dust or 

formed during atmospheric aging), and ii) the adsorption of water on the insoluble 

component of the dust particles. The former can be accounted for by using Köhler theory 

(KT) (Köhler, 1936) and the latter with adsorption activation theory (AT) (Henson, 2007; 

Sorjamaa and Laaksonen, 2007; Kumar et al., 2009a). The formulation of Henson (2007) 

used the BET (Brunauer, Emmett and Taylor; Brunauer et al., 1938) adsorption isotherm, 

while Sorjamaa and Laaksonen (2007) used the multilayer FHH (Frenkel, Halsey and 
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Hill) adsorption isotherm with two adjustable parameters (AFHH and BFHH). Based on 

analysis of published data on dust-water interactions, Kumar et al. (2009b) showed the 

importance of including water adsorption effects when describing the hygroscopic and 

CCN behavior of mineral aerosol. The same study found that FHH particles require less 

water to activate to cloud droplets than particles activating by KT; this implies that the 

competition for water vapor by FHH particles is less intense that KT particles to form 

droplets with implications for parcel maximum supersaturation, smax, and cloud droplet 

number, Nd. Kumar et al. (2009a) addressed the need to account for adsorption activation 

in atmospheric models by developing a cloud droplet formation parameterization where 

the CCN constitutes an external mixture of soluble aerosol (that follow KT) and insoluble 

aerosol (that follow FHH adsorption activation theory, FHH-AT). Here, we report new 

measurements to further support the dust-CCN parameterization developed by Kumar et 

al. (2009a). 

Past studies have already demonstrated that both regional dusts as well as 

individual clays can interact with water and act as effective CCN. For example, Koehler 

et al. (2009) and Herich et al. (2009) measured CCN activation of two types of regional 

dust samples (Northern Africa and Arizona Test Dust) and several clays (kaolinite, illite, 

and montmorillonite), respectively, at water vapor supersaturation relevant to 

atmospheric conditions. These studies, however, parameterized the observed 

hygroscopicity using a KT framework in terms of a hygroscopicity parameter, κ (Petters 

and Kreidenweis, 2007). This approach was evaluated by Kumar et al. (2009b), who, 

after examining the relationship between sc and Ddry for the published dust samples 

suggested that FHH-AT is a better description of fresh dust CCN activity as the sc-Ddry 
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exponents determined from FHH-AT were closer to observations than from KT. 

Furthermore, no study to date has accounted for non-sphericity effects in the CCN 

activity relationships, even when it is well known that dust particles are non-spherical 

(e.g., Okada et al., 2001; Chou et al., 2008). Further, the effect of multiple charged 

particles in the electrical mobility classification for measurements of size-resolved CCN 

activity (required for determining sc and Ddry) is often addressed by removal of the 

secondary peaks in the activation curves (e.g., Lance et al., 2006; Rose et al., 2008). If 

multiply-charged particles are present in significant enough numbers (such as for dust 

CCN), this approach may not suffice causing biases in measured CCN activity towards 

higher hygroscopicity (Petters et al., 2007). A comprehensive analysis of charging 

efficiency (e.g., Moore et al., 2010) needs to be considered to avoid such biases in 

observed hygroscopicity. 

In this study, we investigate the CCN-relevant properties of clays and several dust 

samples representative of major regional dust sources. Measurements were carried out 

with a Droplet Measurement Technologies Continuous-Flow Streamwise Thermal 

Gradient CCN (CFSTGC) counter (Roberts and Nenes, 2005; Lance et al., 2006). The 

CCN activation behavior of mineral aerosols generated from Northern American, 

African, and East Asian desert soils as well as individual clays (illite and 

montmorillonite), calcite (CaCO3), and quartz (SiO2) are studied. The effects of multiple 

charging and shape (non-sphericity) on the electrical mobility sizing of particles and 

activation curves are examined. The experimental results are used to infer the dominant 

activation physics (KT or FHH-AT) and determine the appropriate adsorption parameters 

(e.g., AFHH and BFHH) that describe the hygroscopicity of fresh dust for the use in droplet 
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activation parameterizations of Kumar et al. (2009a). Finally, using the method of 

threshold droplet growth analysis (TDGA, e.g., Asa-Awuku et al., 2010; Padró et al., 

2010), potential retardations in the activation kinetics of dust (compared to calibration 

aerosol) are identified. A comprehensive simulation of dust activation in the CCN 

instrument is then performed to parameterize these kinetic delays in terms of changes in 

the effective water vapor uptake coefficient. 

3.3 Measurements and Data Analysis 

3.3.1 Regional Dust Samples and Individual Minerals 

Aerosols from regional soil samples and individual minerals/clays were generated 

and analyzed in this study. Table 3.1 provides a summary of the analyzed samples, 

including information on the location of sample collection. The soil samples were 

collected in source regions of Northern Africa and East Asia. Commercially available 

Arizona Test Dust (ATD) was used as representative of North America soil. Individual 

minerals/clays used to generate aerosol were analyzed as purchased, with no physical and 

chemical treatments to resemble atmospheric behaviors.  



43 

 

Table 3.1: Summary of Regional Dust Samples and Clays/Minerals analyzed in this 

study 

Sample Abbreviation Location/Supplier 

Dust   

Niger Niger Sahel, 13º31' N, 2º38' E 

East Asian Soil 1 Soil 1 Eastern edge of the Hexi Corridor 

East Asian Soil 2 Soil 2 South-eastern edge of the Tengger Desert 

East Asian Soil 3 Soil 3 Central Tengger Desert 

East Asian Soil 4 Soil 4 South-eastern edge of the Taklamakan Desert  

East Asian Soil 5 Soil 5 Southern edge of the Hunshandake Desert 

Arizona Test Dust ATD Powder Technologies Inc. 

Clay/Mineral   

Illite Illite Clay Mineral Society 

Ca Montmorillonite Ca Mont Clay Mineral Society 

Na Montmorillonite Na Mont Clay Mineral Society 

Calcite CaCO3 OMYA 

Quartz/Silica SiO2 GELEST 
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3.3.2 Measurements of CCN Activity 

The measurement setup consists of three sections: aerosol generation, particle size 

selection, and CCN measurement (Fig. 3.1). To generate aerosol, approximately 3 grams 

of the desired sample were placed in a 1000 ml sealed Erlenmeyer flask which is 

connected to a Burrell-Wrist Action Shaker (Model 75). Compressed filtered air is 

introduced into the flask that generates polydisperse fine aerosols by mechanical 

disintegration (“saltation”) with a distribution that resembles the size distributions of dust 

plumes generated in the natural source regions (Lafon et al., 2006). 

The dry aerosol is then sent to the electrostatic classifier for particle size selection 

(TSI Model 3080) with a Differential Mobility Analyzer (DMA, TSI Model 3081). 

Before entering the classifier, aerosols are passed through an impactor to remove 

supermicro-meter size particles (i.e., size greater than 1 μm) and then charged with a 

series of Kr-85 neutralizers. The particles are then classified in the DMA by their 

electrical mobility set by the voltage applied to the DMA. The Sheath flow rate in the 

DMA is set to 2.3 l min
-1

, and the monodisperse flow is set to 0.45 l min
-1

. The classified 

aerosol flow is mixed with filtered air and then sampled by a Condensation Particle 

Counter (CPC, TSI Model 3010), and a Droplet Measurement Technologies Continuous 

Flow Streamwise Thermal Gradient CCN (CFSTGC) chamber. 

The CPC measures the total concentration of aerosol, or condensation nuclei (CN) 

present in the monodisperse stream. The fraction of aerosol acting as CCN is measured 

by exposing particles to a constant water vapor supersaturation within the CFSTGC. This 

is done by flowing the aerosol in a cylindrical column with wetted walls upon which a 

thermal gradient, T, is applied in the axial direction. The difference in diffusivity 
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between water vapor and heat is exploited for the generation of water vapor 

supersaturation, s, which reaches maximum at the column centerline. CCN flowing along 

the column centerline are activated to cloud droplets and are counted at the exit with an 

optical particle counter (OPC). Each value of T generates a unique supersaturation 

value, which in this study varied between 0.15% and 1%. CCN activity is characterized 

by the dry activation diameter, Ddry, which corresponds to the minimum dry particle 

diameter that activates at the certain supersaturation of interest, sc. Ddry is found by 

expressing the ratio of CCN to CN concentration as a function of dry particle diameter, 

and, determining the diameter for which 50% of the classified aerosol acts as CCN. 

The calibration of the instrument supersaturation is determined from the Ddry of 

(NH4)2SO4 calibration aerosol at a given ΔT. (NH4)2SO4 aerosol was generated by 

atomizing an aqueous solution and subsequently drying the droplet stream with a series 

of silica-gel diffusion dryers. Ddry of (NH4)2SO4 is then related to s by applying Köhler 

theory, assuming that (NH4)2SO4 has a shape factor of 1.04 in the DMA (Kuwata and 

Kondo, 2009), density of 1760 kg m
−3

, surface tension of water (calculated at the average 

column temperature), molar mass of 0.132 kg mol
−1

, and osmotic coefficients calculated 

with the Pitzer activity coefficient model (Pitzer and Mayorga, 1973). A relationship 

between ΔT vs. instrument supersaturation is determined by repeating the above 

calibration procedure over a range of ΔT. This relationship is then used in all dust 

activation experiments. Calibration is repeated throughout the measurements, and 

exhibits little variability (about 5% relative uncertainty in instrument supersaturation). 

Size-resolved CCN activity is carried out using the Scanning Mobility CCN 

Analysis (SMCA) (Moore et al., 2010), where the DMA used for aerosol classification is 
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operated in scanning voltage mode. This allows the concurrent determination of aerosol 

size distribution and size-resolved CCN activity over a voltage scan cycle. In this study, 

the complete range of dry particle size (20 - 850 nm) is scanned over three minutes. The 

CFSTGC was operated at a flowrate of 0.50 l min
-1 

and a sheath-to-aerosol ratio of 10:1 

(or 7.5:1). SMCA also provides the droplet distribution of activated CCN (measured in 

the optical particle counter of the CCN instrument) as a function of their dry diameter. 

The dependence of droplet size on the supersaturation profile and dust dry particle size is 

used to study the dust activation kinetics.  
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Figure 3.1: Schematic of the experimental set-up used for size resolved CCN activation 

and droplet growth kinetics measurements. 
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3.3.3 Data Analysis Methodology 

The measurement of Ddry, and corresponding sc, is fitted with a power law 

function 
x

dryc CDs  . The experimental exponent, xexp (Kumar et al., 2009b), is then 

compared against the exponent determined from fits of KT and FHH-AT to the data. The 

appropriateness of each theory is evaluated based on its ability to reproduce xexp. 

According to KT, particles with appreciable hygroscopicity exhibit x = -3/2. In FHH-AT, 

x depends on the value of AFHH and BFHH but generally ranges between -0.80 and -1.20 

(Kumar et al., 2009a). The same fitting procedure also determines the adsorption 

parameters AFHH and BFHH (for FHH-AT), and the hygroscopicity parameter κ (for KT). 

BFHH strongly affects the shape of the equilibrium curve and largely determines 

the existence and value of sc and critical wet diameter, Dc (described as the wet diameter 

of the aerosol particle at the maximum of the equilibrium curve) (Kumar et al., 2009a). 

AFHH also affects these parameters, but to a lesser extent than BFHH. Figure 3.2 shows the 

relationship between Ddry and sc for a range of BFHH values computed at surface tension of 

water equal to 0.072 J m
-2

, temperature equal to 298.15 K, and AFHH = 2.50. Lower BFHH 

values correspond to more hydrophilic dust. As BFHH approaches 3.0, particles become 

less hydrophilic (with x  -1), which corresponds to insoluble but wettable particles that 

follow the Kelvin equation. Similarly for KT, as κ decreases from κ = 0.05 to κ = 0 (Fig. 

3.2) particles becomes less hygroscopic causing a decrease in the exponent from x = - 1.5 

to x  -1.0. It can be seen from Fig. 3.2 that the slopes determined from KT (expressed 

in terms of κ) are much steeper than those determined from FHH-AT (expressed in terms 

of BFHH). This suggests that the same particle type can exhibit two different sc-Ddry 

exponent values if described by KT or FHH-AT. 
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Droplet activation kinetics of aerosol inside CFSTGC depends on the 

supersaturation profiles, residence time, water vapor uptake coefficient, dry particle size 

(Nenes et al., 2001; Roberts and Nenes, 2005; Lance et al., 2006), as well as the theory 

used to describe the equilibrium vapor pressure for the particle (KT or FHH-AT). 

Activation kinetics can be characterized by the difference in droplet size, Dw, between 

dust CCN and (NH4)2SO4 CCN with same sc. A negative Dw implies that mineral 

aerosol exhibits retarded activation kinetics (the converse is typically not observed). This 

technique is called threshold droplet growth analysis (TDGA) and has been successfully 

used by a number of in-situ and laboratory studies (Asa-Awuku et al., 2010; Padró et al., 

2010). 

We quantitatively describe the growth of dust by simulating the process of droplet 

nucleation and growth within the CCN instrument using the comprehensive 

computational fluid dynamics model. We use the Lance et al. (2006) model, which 

numerically simulates the temporal and spatial distributions of velocity, pressure, 

temperature, and water vapor concentration throughout the growth chamber, considering 

the coupling of particle and gas phases through the release of latent heat and 

condensation/evaporation of water vapor onto the droplets. The kinetics of dust activation 

is then parameterized in terms of an effective uptake coefficient, which influences the 

mass transfer coefficient of water onto the dust CCN. Condensational growth of aerosol 

is computed based on a size-dependent mass transfer coefficient multiplied by the 

difference between gas-phase and equilibrium water vapor pressure (Nenes et al., 2001) 
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where Dp is the droplet diameter, s is the local instrument supersaturation, w is the water 

density, Mw is the molar mass of water, R is the universal gas constant, T is the average 

column temperature, 


OHP
2

is the equilibrium water vapor pressure, vH
 
is the enthalpy of 

vaporization of water,
 

'

vD  is the diffusivity of water vapor in air modified for non 

continuum effects, and '

ak  is the thermal conductivity of air modified for non continuum 

effects. Here '

vD  is defined by Fukuta and Walter (1970) as 
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where Dv is the diffusivity of water vapor in air, c is the water vapor uptake coefficient. 
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where Ma is the mean molar mass of air, ka is the thermal conductivity of air, a is the air 

density, cp is the heat capacity of air, and T is thermal accommodation coefficient (equal 

to 1.0). For insoluble CCN activating according to FHH-AT, the equilibrium 

supersaturation of the droplet, seq, is given by Kumar et al. (2009a) 
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where  is the CCN surface tension at the point of activation (Pruppacher and Klett, 

1997), Ddry is the dry CCN diameter, 
OHD

2  
is the diameter of water molecule equal to 
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2.75 Å (Kumar et al., 2009a), and AFHH and BFHH are adsorption parameters constrained 

from the activation experiments. 

The instrument model was initialized using the appropriate geometric dimensions 

and operating conditions of DMT CFSTGC (Lance et al., 2006). A computational grid of 

200 cells in the radial and 200 cells in the axial direction were used in each simulation. A 

Lagrangian approach is used to determine CCN growth in the CFSTGC by Eq. (3.1), 

assuming the particles flow along streamlines occupied by the aerosol region of the 

chamber (determined from the sheath-aerosol ratio) and grow according to the local water 

vapor saturation ratio and temperature (Roberts and Nenes, 2005;  Lance et al., 2006). 

The droplet diameter at the exit of the flow chamber is then compared against the 

measured droplet size distribution, following the binning scheme used in the optical 

detection of the instrument. The value of uptake coefficient is then inferred by 

minimizing the discrepancy between predicted and observed droplet distributions in 

OPC.  
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Figure 3.2: sc-Ddry lines for different values of BFHH computed at  = 0.072 J m
-2

, T = 

298.15 K and AFHH = 2.50. Dashed lines indicate κ isolines determined at above 

conditions. Also shown in black thick line is the κ = 0, Kelvin curve. The inset 

figure shows experimental exponent as function of BFHH and κ.  
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3.4 Results and Discussion 

3.4.1 Effects of Multiple Charging and Dust Particle Shapes 

3.4.1.1 Correction for Multiply Charged Particles in SMCA 

To account for the effect of multiply charged particles in the activation curves and 

observed Ddry, we assume an equilibrium charge distribution for the particles entering the 

DMA and apply a correction algorithm as described in Moore et al. (2010). The 

correction algorithm determines the contribution from the multiply charged (+2, +3, +4, 

+5 and +6 charges) particles to the total particle counts in each size bin for the CN time 

series and rebins respective contributions to its “true” size bin. The same procedure is 

applied to the CCN time series. The inversion of the CN, CCN time series determines the 

activation fraction and hence Ddry. To ensure sufficient residence time for attaining 

equilibrium charge distribution inside the Kr-85 neutralizers, we determine the number of 

neutralizers beyond which the inverted size distribution does not change. Test results 

indicate that 3 Kr-85 neutralizers in series (with a total nominal activity of 10 mCi) were 

sufficient to completely neutralize the surface charges and attain the Boltzmann 

equilibrium distribution. 

The impact of multiply charged particles is shown in Fig. 3.3, which presents the 

activation curves (with and without multiple charging corrections) at 0.30% 

supersaturation for aerosol generated from the Soil 2 sample. Ddry increases from ~170 

nm to ~247 nm upon application of the multiple charge correction. The effect on Ddry is 

further enhanced at lower supersaturations (e.g., sc = 0.15% and sc = 0.20%) that 

correspond to large particles with a pronounced probability of multiple charging. The 

uncertainty in the activation efficiency due to counting statistics uncertainty and flow rate 
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variability (expressed as error bars in Fig. 3.3) were accounted for using the procedure of 

Moore et al. (2010).  
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Figure 3.3: Activation curves for Soil 2 at sc = 0.3%. Shown are inversions without 

(blue) and with multiple charge corrections (brown). Error bars represent 

uncertainty of activation efficiency as a result of counting efficiency and flow rate 

uncertainty at different diameters.  
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3.4.1.2 Accounting for Dust Non-Sphericity 

Dust particles exhibit a variety of complex shapes that are difficult to measure or 

express in terms of a unique set of parameters or functions. Characterization of dust non-

sphericity is often done by either i) introducing a dynamic shape factor, χ, (defined as the 

ratio of drag force, FD, experienced by the non-spherical particle to that experienced by a 

volume equivalent sphere when both move at the same velocity in the gas; e.g., DeCarlo 

et al., 2004), or ii) providing an Aspect Ratio (AR), defined as the ratio of the longest 

dimension of particles to the orthogonal shortest length (width). Commonly, χ is obtained 

by tandem electrical mobility and aerodynamic particle sizing (e.g., DeCarlo et al., 2004; 

Kuwata and Kondo, 2009) and is an integrated measure of the three-dimensional particle 

shape. AR is measured with electron microscopy that reports two dimensional image 

projections of particles from which the longest dimension and width are determined (e.g., 

Kalashnikova and Sokolik, 2004). 

Here we assess the effect of dust non-sphericity in CCN activity measurements by 

considering the range of values of AR or χ reported in the literature for different types of 

mineral aerosol. A number of recent studies have reported measurements of AR values for 

species considered in this study. For instance, Chou et al. (2008) report a mean AR equal 

to 1.7 for Niger dust collected during the AMMA campaign, Kandler et al. (2009) report 

AR equal to 1.64 for Saharan dust collected over Spain, and Coz et al. (2009) report AR 

equal to 1.81 for African dust. The AR values for African soils are slightly higher 

compared to AR of 1.3 - 1.4 reported by Okada et al. (2001) for East Asian dust. AR can 

also vary with particle size (Wiegner et al., 2009). To account for this, we considered 

those values of AR that are most relevant for this study (i.e., particles less than 1µm). 
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Furthermore, the extent of non-sphericity can be affected by the aerosol generation 

method (Sullivan et al., 2010) which can give rise to very different particle morphologies 

from those generated with the dry soft-saltation technique used in this study. Some of the 

other techniques of aerosol generation include a fluidized bed (Koehler et al., 2009), dry 

dust generator (Herich et al., 2009), and atomization of a dust aqueous suspension 

(Koehler et al., 2009; Herich et al., 2009). All above factors can contribute to uncertainty 

in χ for similar aerosol types. For instances for ATD, Möhler et al. (2008) reported χ = 

1.3 while Endo et al. (1998) reported χ = 1.5. Similarly for illite, Hudson et al. (2008) and 

Möhler et al. (2008) reported χ = 1.3  0.02 and χ = 1.3 respectively. For other clays and 

minerals analyzed in this study such as montmorillonite, Hudson et al. (2008) reported χ 

= 1.11  0.03, while Hinds (1999) report a value of χ = 1.36 for quartz. 

In this study, we use the published range of dust non-sphericity. As most of the 

recent studies on African and Asian mineral dust aerosol have quantified dust non-

sphericity based on AR, we initially started with the Fuchs (1964) approach to convert 

from AR to χ assuming mineral aerosol as a spheroid. However, we found that using the 

Fuchs (1964) approach results in much lower values of χ (~ 1.007 – 1.034) than those 

determined from direct measurements of χ (~ 1.11 – 1.50). According to Davies (1979), 

sand particles composed of a mixture of different minerals have a dynamic shape factor 

of 1.3 – 1.6. Therefore, in this study non-sphericity corrections are performed for all 

species considering χ = 1.3 ± 0.2 as this covers as possible values of measured χ. Further, 

we examine the importance of this uncertainty in χ (between χ = 1.1 and χ = 1.5) for 

dust-CCN measurements by evaluating its effect on xexp and FHH parameters, AFHH and 

BFHH. 
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Size selection in this study is performed using the DMA that classifies a particle 

by its electric mobility. Electrical mobility can then be related to the physical diameter if 

the number of elementary charges per particle and χ are known (together with the 

strength of the electric field and other operational parameters in the DMA). Often χ is 

assumed unity. For mineral dust, however, χ > 1 which translates into a larger drag force 

than expected for spherical particles; when neglected, the nonsphericity would eventually 

lead to underestimation of the particle surface area. In this study, we account for dust 

non-sphericity by correcting for the surface area of the particle available for water vapor 

adsorption. This is performed by converting from electrical mobility diameter, Dm, to 

surface-area equivalent diameter, Dse, so that the CCN activity data is expressed in terms 

of the sc-Dse relationship. By converting from Ddry to Dse, the aerosol physical size is 

expressed in terms of the characteristic length responsible for controlling surface water 

vapor adsorption. Dse is determined by converting the electrical mobility diameter (Dm), 

to particle volume equivalent diameter (Dve), and from there to Dse. 

Determining Dve from Dm 

Dve is determined from Dm by iterative solution of the dynamic shape factor 

equation (DeCarlo et al., 2004) 
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where C(Dm) and C(Dve) are the slip correction factors for Dm and Dve, respectively. 

C(Dm) and C(Dve) can be approximated from the correlation of Willeke and Baron, 

(2001) 
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where λ is the mean free path of the gas molecules and Di corresponds to either of Dm or 

Dve. Application of Eq. (3.5) to determine Dve requires knowledge of χ. 

Determining Dse from Dve 

When χ is known (or estimated), the correlation of Leith (1987) is used to relate χ, 

Dse, and Dve 



















ve

se

ve

n

D

D

D

D

3

2

3

1
        [3.7] 

where Dn is the diameter of the sphere whose projected area is equal to that of the particle 

normal to the direction of flow. For the DMA, Dn = Dm, hence Eq. (3.7) can be 

rearranged to express Dse as 
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Despite involved uncertainties, accounting for dust non-sphericity provides more 

realistic representation of dust particles as well as enables us to determine non-sphericity 

effects on the physics controlling the activation of insoluble dust particles. 

3.4.1.3 Effect of Charge and Shape Correction on Dust CCN Activation 

The largest change in dry critical activation diameter from multiple charging 

corrections is observed at the point of lowest supersaturation (corresponding to the largest 

activation diameters with highest probability of multiple charging). For all species 

considered in this study (regional dusts and clays/minerals), χ = 1.3 was used to convert 

from charge corrected electrical mobility diameter, Dm to the shape corrected surface-area 



60 

 

equivalent diameter, Dse. The error bars on Dse represent the range using χ = 1.1 as the 

lower limit and χ = 1.5 as the upper limit. We found that accounting for non-sphericity 

using χ = 1.3, can result in an increase in activation diameters by up to 18 – 20% when 

converting from Dm to Dse using the procedure outlined above. Based on Fig. 3.4, as the 

final activation diameters (after including both charge and shape corrections) lie outside 

the experimental error bars (or region of experimental uncertainty) determined from the 

raw data, the essence of including the charge and shape corrections is justified and hence 

performed for all the samples studied here. 

We also found that introducing both multiple charging and shape correction 

changes the dry activation diameters significantly and hence the exponents determined 

from the sc-Ddry relationship. For example in the case of ATD, xexp = -1.23 for the 

uncorrected data; after applying charge corrections, xexp = -0.78; with shape and charge 

corrections, xexp = -0.82. This is a very large and important difference, enough to shift the 

implied activation mechanism from a regime where both FHH-AT and KT may be active 

(xexp = -1.23) to a regime where FHH-AT dominates (xexp = -0.82). This example 

emphasizes the importance of applying corrections (especially for multiple charges) for 

adequate interpretation of the activation data. 

It is also noted that the effect of particle non-sphericity must be incorporated into 

the diameter used in the Kelvin term at the point of activation if only a few monolayers 

are adsorbed at activation (Romakkaniemi et al., 2001). We find that for all regional 

samples considered in our study, the number of adsorbed water vapor monolayers layers 

range from 100 - 500 at the point of activation. This implies that at the point of 

activation, non-spherical dust aerosol has sufficiently high water coverage so that the 
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droplet shape is spherical, and, the molar volume and gas-liquid surface tension of the 

adsorbed H2O approaches that for the bulk water.  
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Figure 3.4: CCN activation curves (sc-Ddry) for ATD (χ = 1.3  0.2) showing the effect of 

including charge and shape corrections on the raw data. Blue shows curve with no 

correction, brown shows the results with charging corrections and green shows 

curve after including both charge and shape corrections. Error bars represent 

experimental uncertainty and numerical uncertainty in Ddry at same instrument 

supersaturation.  
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3.4.2 Results of Dust CCN Activation Measurements 

The CCN activation curves for dry generated dust and mineral/clay samples are 

shown in Fig. 3.5 and 3.6, respectively. CCN activity is presented in terms of dry 

activation diameter (Dse, given by Eq. 3.8) against instrument supersaturation. The CCN 

activity data (points) are fit to a power law expression from which the experimental 

exponent, xexp, is determined. The AFHH, BFHH, and corresponding exponent, xFHH, were 

determined from fitting the FHH-AT model (lines) to the experimental data via least 

squares minimization. The dry generation method used in this study did not produce 

sufficient number concentrations of particles with sizes smaller than 100 nm. Hence the 

CCN activity is restricted to supersaturations 0.7% and below (corresponding to Ddry ~ 

100 nm and above). 

Figure 3.5 clearly demonstrates that dust aerosols are CCN at atmospherically 

relevant supersaturations. It also indicates that soft saltation technique can generate 

mineral dust in the fine mode (with Ddry between 100 nm and 500 nm) which may 

contribute to CCN. The measured Ddry for different dust samples are much larger than 

expected for (NH4)2SO4, suggesting that dust has a lower CCN activation potential than 

what is expected for soluble aerosol like (NH4)2SO4. Figure 3.5 suggests that dust 

aerosols collected from different regions of the globe can have different activation 

properties which are attributed to the physical properties, morphology and the chemical 

composition of the parent soils. The CCN activity comparisons amongst different 

regional dust samples indicate that East Asian soils have a range of CCN activity 

potentials with BFHH ~ 1.1 - 1.3. In comparison, Niger Soil (representative of North 

African dust) and ATD (representative of North American dust) were found to exhibit 
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less variability, with BFHH = 1.25 - 1.28. The range in CCN activity of East Asian soils is 

most likely reflective of the compositional variability. Differences in CCN activity 

amongst samples collected in the same region likely reflect the chemical heterogeneity 

within the dust samples.  We found that the experimental data (points) can be described 

by FHH-AT fits (lines) well, with AFHH ~ 2.25  0.75 and BFHH ~ 1.20  0.10 for all dust 

types considered in this study. A direct comparison of CCN activity against data 

published in the literature is done by expressing our results (for particles of a given dry 

diameter) in terms of a hygroscopicity parameter, κ. CCN activity results for regional 

soils, and minerals and clays indicate a κ ≤ 0.05 for all samples considered in this study. 

It is also noted that the differences in values of the adsorption parameters determined in 

this study with those determined by Kumar et al. (2009b) for ATD, and likely arise from 

the application of multiple charge and dust non-sphericity corrections. Furthermore, the 

ATD experimental data used by Kumar et al (2009b) in the predictions of adsorption 

parameters were taken from Koehler et al. (2009) that used a fluidized bed to generate 

aerosols, while in this study measurements were performed using a dry generation 

technique. 

Figure 3.6 presents the CCN activity of all the minerals and clays considered. The 

activation diameters obtained for different dusts (Fig. 3.5) are within the range of those 

observed for different clays and minerals (Fig. 3.6). This suggests that dust CCN activity 

is controlled by adsorption of water onto the clay and mineral components in the dust 

samples. Comparison between CCN activities for different clays indicates 

montmorillonite (both Na and Ca rich) is more hydrophilic than illite, which agrees with 

the findings of Herich et al. (2009). Higher CCN activation potential for montmorillonite 
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can be attributed to the mineralogy of the sample; the presence of unbounded Na and Ca 

cations allows water to penetrate the interlayer molecular space, which together with 

adsorption results in the clay swelling to several times its original volume. In the case of 

illite, the interlayer space is mainly occupied by poorly hydrated potassium cations that 

prevent these clay types from expanding, thus reducing the amount of water that can 

adsorb on the surface and its CCN activation potential. 

The CCN activity of SiO2 and CaCO3 was also measured (Fig. 3.6). As expected, 

SiO2 was the least CCN active of species considered with BFHH = 1.36 versus BFHH < 1.30 

for the other clays and minerals (Table 3.2). This is because the majority of the silica 

surface does not interact strongly with water vapor since physisorption occurs primarily 

on the limited number of silanol sites (Young, 1958). We also find that the charged-

corrected activation curves in our study differ from published CCN activation data for 

CaCO3 (Sullivan et al., 2009), montmorillonite, and illite (Herich et al., 2009). For 

example, charge-corrected activation curves for clays (illite and Na-montmorillonite) 

exhibited κ = 0.02 - 0.04, versus 0.002 - 0.003 in Herich et al. (2009). In addition, 

(OMYA) CaCO3 in this study was found to exhibit multiple κ values, 0.02 at sc = 0.4% - 

0.5% and 0.003 - 0.007 at sc = 0.2% - 0.3%, higher than found by Sullivan et al. (2009) 

for (Solvay) CaCO3 (κ = 0.0011). Our results for (OMYA) CaCO3 at low sc (κ = 0.003 - 

0.007) compare well with results obtained for (Baker) CaCO3 (κ = 0.008) (Sullivan et al., 

2010). Similarly, we find a good comparison in CCN activity measurements based on κ 

values for regional dust samples considered in this study (for activation curves with and 

without multiple charging corrections) and past studies. For dry generated ATD (non-

corrected), κ = 0.04 determined in this study compares well with non-corrected κ = 0.025 
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found by Koehler et al. (2009). Similarly, a good comparison for African dust samples 

was found with charge-corrected κ = 0.023 (Herich et al., 2009) and non-corrected κ = 

0.054 (Koehler et al., 2009) determined for Saharan Dust, and charge-corrected and non-

corrected κ = 0.02 - 0.04 for Niger dust data. 

The differences cited above for CaCO3 can be attributed to factors such as 

sample-to-sample variability (as confirmed by Sullivan et al., 2010) and method of 

aerosol generation. The soft saltation technique may yield very different particles from 

studies using a custom-built dry dust generator (Herich et al., 2009) or fluidized bed 

(Koehler et al., 2009). Furthermore, the lack of charge correction (in previous studies) 

will provide activation curves sensitive to the aerosol size distribution (as it determines 

the fraction of multiply charged particles with same mobility diameter), so differences in 

the dust size distribution will lead to variable biases in Ddry. Unfortunately, absence of 

number size distributions of the CCN in the published studies precludes a conclusive 

attribution of these differences to multiple charging biases. 

Table 3.2 shows the values of the experimental exponent, determined from the sc-

Ddry data for all dust samples and individual minerals/clays. The xexp values determined in 

this study are much lower than those reported by Kumar et al. (2009b) that were 

determined from the experimental data of Koehler et al. (2009) and Sullivan et al. (2009). 

This is a result of experimental measurements performed in this study at much lower 

supersaturations, as well as the application of multiple charge and shape factor 

corrections to the activation curves that tend to further shift Ddry and xexp (as illustrated in 

Fig. 3.4). 
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In Fig. 3.7, xFHH is plotted against xexp for all dust samples and individual 

minerals/clays. For CaCO3, the value of xexp from the uncorrected sc-Ddry data equals -

0.81. The value of xexp after charge and shape correction reduces further to -0.75. As xexp 

for CaCO3 is outside the range of exponents that can be predicted by FHH-AT, xFHH 

deviates from xexp by more than 10%. For Na-montmorillonite, Ca-montmorillonite, Soil 

1 and Soil 3, xFHH is in excellent agreement with xexp suggesting that the above can be 

parameterized using FHH-AT. This suggests that the CCN activity of clays is consistent 

with multilayer adsorption activation theory. In the case of illite, SiO2, ATD, Niger, Soil 

2, Soil 4, and Soil 5, xFHH lies within the variability of xexp, suggesting that FHH-AT also 

is an excellent description of CCN activity. Considering the uncertainty observed in 

experimental exponents (Fig. 3.7), it can be argued that the dust samples considered in 

this study are in excellent agreement with FHH-AT. Furthermore, xexp for all samples are 

found to be between -0.80 and -1.20 (range relevant for adsorption activation as given by 

Kumar et al., 2009a) as well as between -0.75 (determined for CaCO3) and -0.93 

(determined for Na-montmorillonite) providing support that nucleation of freshly 

generated regional dust aerosols is controlled by water vapor adsorption on clays and 

minerals. This confirms the conclusions of Kumar et al. (2009b) that i) using the KT 

framework for parameterizing dust-CCN interactions is inappropriate, and, ii) adsorption 

effects must be included when describing the hygroscopic and CCN behavior of mineral 

aerosol. 

It can also be seen from the insert in Fig. 3.2, that for KT to predict the correct 

exponent determined from the experimental sc-Ddry relationships on dust and clays 

(shown as shaded region), the values of κ must be very low (less than 0.0005), much 
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lower than those determined in previous studies (Koehler et al., 2009; Herich et al., 2009; 

Sullivan et al., 2009). On the contrary, FHH-AT can predict experimental exponents 

obtained from dust and clays sc-Ddry relationships (Table 3.2) using a single set of values 

for AFHH and BFHH. Furthermore, the predicted water vapor uptake under sub-saturated 

conditions is very low, and can explain the very low apparent hygroscopicity measured 

(using the hygroscopic tandem DMA technique) for dust aerosol (Herich et al., 2009). 

This strongly supports that FHH-AT describes fresh dust-CCN interactions better than 

KT for the samples considered in this study. 

While the application of the shape factor corrections to CCN activation data 

changes the dry activation diameters considerably, it does so uniformly so that the 

exponent derived from the sc-Ddry relationship (hence the implied activation physics) is 

not substantially affected. This can be seen from Table 2. Applying χ = 1.3  0.2, changes 

xexp by as little as 5% from charge corrected xexp. Using χ = 1.3  0.2 has a minor effect 

on dust hydrophilicity (indicated by a small range of BFHH; Table 3.2). The omission of 

multiple-charging corrections to the activation curves, however, has a profound effect on 

the implied activation physics, as the dust appears significantly more CCN active than it 

really is. 
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Figure 3.5: CCN activation curves for different dust types presented in Table 3.1. 

Symbols show experimentally determined CCN activity and lines show FHH 

adsorption activation fits. Error bars represent measurement uncertainty in Ddry. 

Also shown in black thick line is the κ = 0, Kelvin curve. Black dashed line 

corresponds to κ = 0.05.  
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Figure 3.6: CCN activation curves for different mineral types presented in Table 3.1. 

Symbols (filled) are experimentally determined CCN activity, and lines represent 

FHH adsorption activation fits. Open symbols represent data obtained from 

Sullivan et al. (2009) and Herich et al. (2009). Color scheme of open symbols 

identical to CCN activity observed with measurements in this study. Error bars 

represent measurement uncertainty in Ddry. Also shown in black thick line is the κ 

= 0, Kelvin curve. Black dashed line corresponds to κ = 0.05.  
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Table 3.2: FHH parameters and exponent comparisons for different regional dusts and 

individual clays/minerals 

Sample AFHH BFHH xexp xFHH 

Dust         

Niger 2.94  0.06 1.27  0.02 -0.79  0.02 + (0.04) -0.87 

Soil 1 2.94  0.06 1.24  0.02 -0.84  0.02 + (0.05) -0.84 

Soil 2 2.88  0.11 1.30  0.04 -0.82  0.02 + (0.05) -0.85 

Soil 3 1.36  0.49 1.12  0.03 -0.92  0.03 + (0.05) -0.92 

Soil 4 1.82  0.39 1.13  0.02 -0.88  0.03 + (0.04) -0.89 

Soil 5 2.91  0.09 1.30  0.03 -0.78  0.03 + (0.05) -0.85 

ATD 2.96  0.03 1.28  0.03 -0.82  0.02 + (0.04) -0.83 

Clay/Mineral      

Illite 1.02  0.38 1.12  0.04 -0.92  0.03 + (0.05) -0.93 

Ca Mont 2.06  0.72 1.23  0.04 -0.88  0.02 + (0.05) -0.88 

Na Mont 1.23  0.31 1.08  0.03 -0.93  0.02 + (0.04) -0.93 

CaCO3 3.00  0.04 1.30  0.03 -0.75  0.02 + (0.05) -0.85 

SiO2 2.95  0.05 1.36  0.03 -0.82  0.03 + (0.04) -0.86 

Values in parentheses indicate change in magnitude of xexp from change in χ between 1.1 

and 1.5  
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Figure 3.7: Comparison of xexp and xFHH for dust and clay/mineral types presented in 

Table 3.1. Dashed line represents + 10% deviation from the 1:1 line. Error bars 

represent deviation in xexp due to the uncertainty in Ddry.  
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3.4.3 Droplet Growth Kinetics 

In addition to CCN activity, the optical particle counter of CFSTGC measures 

droplet sizes that can be used to explore CCN activation kinetics of mineral dust. This is 

carried out using TDGA, by comparing droplet diameter, Dw, from the sample CCN 

against that of (NH4)2SO4 calibration aerosol with same critical supersaturation and 

maintaining identical instrument conditions (flow rates, pressure, and inlet temperature). 

If the droplet sizes from mineral aerosol are smaller than that observed from calibration 

aerosol (for conditions of identical instrument supersaturation, i.e., with same sc), the 

activation kinetics of mineral dust is likely slower than the calibration aerosol. However, 

if activated droplet sizes are indistinguishable (to within experimental uncertainty) from 

(NH4)2SO4 droplet size, mineral dust exhibits the same activation kinetics as the 

reference aerosol. 

Figure 3.8 presents the droplet diameters observed at OPC that are activated from 

regional dust aerosols as a function of instrument supersaturation. For comparison, 

droplet sizes are presented for pure (NH4)2SO4 aerosol with sc equal to the instrument 

supersaturation. It is evident that droplet growth for mineral aerosol at same sc is lower 

than that determined for (NH4)2SO4 calibration aerosol. The difference in outlet size 

suggests a delay in activation kinetics as both particles are exposed to the same 

supersaturation profile during their transit through the CFSTGC. This behavior is 

consistent with the slower time scales associated with water vapor adsorption (Kumar et 

al., 2009b). A similar behavior of reduced growth is also observed for different clays and 

minerals (Fig. 3.9). 
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Reduced growth at same sc observed for the mineral aerosol inside the CFTSGC 

can be attributed to three potential factors: i) different shape of the equilibrium curve 

(FHH-AT vs. KT), ii) different mass transfer coefficient (or αc) of water vapor to the 

growing droplet, and iii) dry particle size. To compare the effect of theory (KT or FHH-

AT) used to describe equilibrium vapor pressure, we simulated droplet sizes at the exit of 

CFSTGC column for different αc and sc. Simulations suggest that the size of activated 

droplets at the exit of the growth column, originating from particles activating at same sc 

and with same αc are almost identical, suggesting that the activation theory has an almost 

negligible effect on the final droplet size (not shown). Simulations (not shown) indicate 

that dry CCN size has a negligible effect on final droplet sizes. Based on the above, the 

droplet size difference between dust CCN and (NH4)2SO4 calibration aerosol is primarily 

driven by the intrinsic activation kinetics of the aerosol (which here is parameterized as 

difference in water vapor mass transfer coefficients (hence αc)). This is consistent with a 

slower timescale associated with adsorption of additional multi-layers of water vapor 

than absorption of water from deliquesced aerosol (Seinfeld and Pandis, 2006; 

Pruppacher and Klett, 1997). 

Data shown in Fig. 3.8 can be used to infer the water vapor uptake coefficient for 

dust by simulating dust CCN growth within the CFSTGC. Figure 3.10 shows values of αc 

determined for different regional dust aerosols relative to (NH4)2SO4. Compared to 

(NH4)2SO4 calibration aerosol (that activates according to classical KT), mineral dust 

CCN grows to smaller droplet sizes that implies slower growth rate. When expressed in 

terms of αc, it corresponds to an average 50% reduction in αc. In absolute terms, if αc of 

water upon deliquesced (NH4)2SO4 aerosol is of order 0.2 (Davidovits et al., 2006), a 



75 

 

50% reduction would give αc of water upon dust ~ 0.1. The αc tends to decrease as 

instrument supersaturation increases; at the highest supersaturation, the amount of water 

adsorbed at Dc is much lower than for larger particles (low critical supersaturation). The 

kinetics of adsorption accelerates as the amount of adsorbed water increases (Pruppacher 

and Klett, 1997), so it is expected that αc would decrease with particle size. The literature 

value of (6.3 ± 0.7) × 10
-2

 determined for the water vapor uptake coefficient on mineral 

dust (Seisel et al., 2005) is in agreement with the inferred αc from the highest critical 

supersaturation (αc ~ 0.065). The diversity of inferred uptake coefficients could also be 

related to the chemical heterogeneity between samples. 

Retarded activation kinetics may have an impact on the activated droplet number 

in clouds that contain significant concentrations of dust CCN. It is shown by Nenes et al. 

(2002) that a reduced αc affects the water uptake in the early stages of cloud formation 

(since droplets do not grow as rapidly); this leads to a higher parcel maximum 

supersaturation and hence a higher cloud droplet number. The extent of the impact 

depends on the vertical velocity, CCN concentration and the relative proportion of KT to 

FHH-AT particles. A thorough assessment will be the focus of a future study.  
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Figure 3.8: Activated droplet sizes of mineral dust CCN with sc equal to the instrument 

supersaturation shown as symbols. Error bars represent experimental uncertainty 

in droplet size as observed by the OPC at same instrument supersaturation.  
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Figure 3.9: Activated droplet sizes of different minerals and clay CCN with sc equal to 

the instrument supersaturation shown as symbols. Error bars represent 

experimental uncertainty in droplet size as observed by the OPC at same 

instrument supersaturation.  
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Figure 3.10: Inferred water vapor uptake coefficients for the growth kinetics data of Fig. 

3.8 normalized to that of (NH4)2SO4 calibration aerosol as a function of different 

instrument supersaturation. Error bars represent experimental uncertainty in 

determination of water vapor uptake coefficients arising due to differences in 

droplet sizes measured by the OPC.  
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3.5  Conclusions 

In this study, the CCN properties and droplet activation kinetics of aerosol 

generated from regional dust samples and individual minerals (clays, calcite, and quartz) 

were measured. The aerosols were generated dry in the lab, and properties were measured 

using the Scanning Mobility CCN Analysis (Moore et al., 2010). Including multiple 

charge corrections significantly increased Ddry and decreased xexp. Dust non-sphericity 

was accounted for by converting from electrical mobility diameter, Dm, to surface area 

equivalent diameter such that the surface area available for adsorption can be accounted 

for. Non-sphericity corrections were accounted for by using the dynamic shape factor, χ = 

1.3  0.2 as this range covered published data for species considered in this study. It was 

found that while the application of the shape factor corrections to CCN activation data 

changes the dry activation diameters, it does so uniformly so that the magnitude of the 

exponent derived from the sc-Ddry relationship (hence the implied activation physics) is 

not substantially affected with a deviation of as low as 5%. 

The xexp for regional dust samples and mineral aerosols investigated in this study 

was found to be in excellent agreement with FHH-AT (mostly agreeing to within 10%) 

and one set of adsorption parameters (AFHH ~ 2.25  0.75, BFHH ~ 1.20  0.10). In 

contrast, KT cannot capture xexp without a hygroscopicity parameter that exhibits very 

strong size-dependence. This confirms the assessment of Kumar et al. (2009b) and further 

supports that FHH-AT provides more realistic representation of fresh dust CCN activity 

than KT. 

Using threshold droplet growth analysis, dust CCN was found to have a reduced 

growth compared to (NH4)2SO4 calibration aerosol at the same instrument 
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supersaturation. This implies slower activation kinetics of dust relative to (NH4)2SO4 

aerosol. These delays in activation by dust CCN, when parameterized in terms of the 

water vapor uptake coefficient, αc, translates to a 30 - 80% (average = 50%) reduction in 

αc (relative to the (NH4)2SO4 aerosol). 

The samples studied here are representative of major regional dust sources, and 

the adsorption activation parameters determined can be used to express their CCN 

potential in cloud droplet formation parameterizations developed by Kumar et al. 

(2009a). These parameterizations are valid for fresh dust in the dust source regions and 

for transported dust if it will not undergo significant atmospheric processing. A combined 

KT and FHH-AT framework, however, may be needed to accurately describe the CCN 

activity of aged dust, dry lakebed dust mixed with salts (e.g., Owens Lake, Texcoco, and 

Aral Sea), and more generally dust particles with significant amounts of soluble 

materials. 

A major implication of this study is that freshly-emitted dust and mineral aerosols 

can act as CCN through the effects of water adsorption alone. In some cases, 100 nm dust 

particles can exhibit comparable hygroscopicity to an organic species with  ~ 0.05 or a 

particle with (NH4)2SO4 volume fraction of 10%. Dust particles in the Giant CCN 

(GCCN) size range will exhibit much lower apparent hygroscopicity because of their 

lower surface-to-volume ratio. Whether the effects of adsorption is sufficient to make 

freshly emitted dust GCCN act as a good collector drop is an open question left for a 

future study. Nevertheless, this study reshapes the conceptual notion of dust CCN activity 

to one where freshly emitted insoluble dust particles can have an appreciable 
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hygroscopicity (that depends on their surface-to-volume ratio) which can be augmented 

through atmospheric processing. 
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CHAPTER 4 

MEASUREMENTS OF CLOUD CONDENSATION NUCLEI 

ACTIVITY AND DROPLET ACTIVATION KINETICS OF WET 

PROCESSED REGIONAL DUST SAMPLES AND MINERALS 

 

4.1 Abstract 

This study reports laboratory measurements of particle size distributions, cloud 

condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated 

aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East 

Asia/China, and Northern America. The dependence of critical supersaturation, sc, on 

particle dry diameter, Ddry, is used to characterize particle-water interactions and assess 

the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler 

theory (KT) to describe the CCN activity of the considered samples. Regional dust 

samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN 

activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays 

and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is 

consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-

AT, and displays almost identical CCN activity to dry generated dust. Ion 

Chromatography (IC) analysis performed on regional dust samples indicates a soluble 

fraction that cannot explain the CCN activity of dry or wet generated dust. A mass 

balance and hygroscopicity closure suggests that the small amount of ions (of low 

solubility compounds like calcite) present in the dry dust dissolve in the aqueous 
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suspension during the wet generation process and give rise to the observed small 

hygroscopic mode. Overall these results identify an artifact that may question the 

atmospheric relevance of dust CCN activity studies using the wet generation method. 

Based on a threshold droplet growth analysis, wet generated mineral aerosols 

display similar activation kinetics compared to ammonium sulfate calibration aerosol. 

Finally, a unified CCN activity framework that accounts for concurrent effects of solute 

and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts. 

 

Citation: Kumar, P., Sokolik, I. N., and Nenes, A.: Measurements of cloud condensation 

nuclei activity and droplet activation kinetics of wet processed regional dust samples and 

minerals, Atmos. Chem. Phys. Discuss., 2011 (submitted). 

 

4.2 Introduction 

The ability of aerosols to act as cloud condensation nuclei (CCN) can be 

characterized based on their size, chemical composition, and the level of water vapor 

supersaturation in ambient clouds. The mineral aerosol (or dust) has been recognized as 

an important atmospheric specie because of its ability to act as CCN, giant CCN (GCCN) 

(e.g., Rosenfeld et al., 2001; Levin and Cotton, 2008), or ice nuclei (IN) (e.g., DeMott et 

al., 2003; Field et al., 2006). Despite its well recognized importance, mineral aerosol 

poses a challenge in atmospheric models due to its compositional complexity, non-

sphericity and atmospheric lifetime leading to poorly quantified dust-cloud interactions. 

Mineral aerosol originates mainly from arid and semi-arid desert regions of the 

world (e.g., Sahara, Taklamakan, and Gobi) and consists of clays (e.g., kaolinite, illite, 
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and montmorillonite), carbonates (e.g., calcite, dolomite), iron oxides (e.g., hematite, 

goethite) and quartz (Lafon et al., 2006). Dust particles are often transported over long 

distances downwind from their source regions. During their transport, dust particles 

undergo atmospheric processing to form soluble species (like sulfates) on the dust surface 

(e.g., Levin et al., 1996) that have important impacts on dust CCN activity (Kelly et al., 

2007). 

Two classes of theory have been proposed to describe the CCN activity of mineral 

aerosol:  Köhler theory (KT) (Köhler, 1936), where hygroscopicity is driven by the 

amount of solute in the dust, and, by more recent FHH (Frenkel, Halsey, and Hill) 

adsorption activation theory (AT) (Sorjamaa and Laaksonen, 2007; Kumar et al., 

2009a,b) that explicitly considers the effect of water vapor adsorption on the dust surface. 

Almost all published experimental studies on CCN activity of fresh dust (e.g., Koehler et 

al., 2009; Herich et al., 2009) parameterize laboratory observations using the KT 

framework on the assumption that dust CCN activity is controlled solely by the amount 

of soluble salts in the mineral aerosol, with the insoluble fraction not affecting water 

activity. However, studies that measured soluble ions composition on dust samples 

collected from various dust source regions (e.g., Song et al., 2004; Radhi et al., 2010) 

indicated negligible amounts of soluble salts. In a recent study, Kumar et al. (2010) 

compared the power law exponent derived from the experimental sc-Ddry relationship 

with those determined from FHH-AT and KT, and suggested that FHH-AT is a better 

representation than KT for CCN activity of dry generated dust devoid of a soluble 

fraction. However, Kumar et al. (2009a) found that KT applies for dusts with a 

considerable salt fraction such as those generated from dry lakebed mixed with salts (e.g., 
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Owens Lake; Koehler et al., 2009) or mineral dust exposed to considerable cloud 

processing or aging (Levin et al., 1996). Based on this, Kumar et al. (2009a) suggested 

combining KT and FHH-AT to comprehensively describe CCN activity of mineral 

aerosol (with droplet nucleation occurring via both adsorption and solute effects) 

throughout its atmospheric lifetime. To account for adsorption activation CCN in 

atmospheric models, Kumar et al. (2009b) developed a cloud droplet formation 

parameterization where the CCN constitutes an external mixture of soluble aerosol (that 

follow KT) and insoluble aerosol (that follow FHH-AT). 

Recent laboratory measurements of CCN activity of dust and calcium minerals 

(Hatch et al., 2008; Koehler et al., 2009; Herich et al., 2009; Sullivan et al., 2009), 

subsaturated hygroscopicity measurements (Gustafsson et al., 2005; Vlasenko et al., 

2005; Herich et al., 2009), size distributions and chemical reactivity (Hudson et al., 2008; 

Gibson et al., 2006), and ice cloud particle nucleation (e.g., Koehler et al., 2009) have 

utilized the well-established technique of generating aerosol via atomization from an 

aqueous dust suspension. Recently, Sullivan et al. (2010), however, suggested that wet 

atomization of calcium minerals with considerably low solubility in water (typical of 

mineral aerosol composition) can induce artifacts in the dust properties to the point where 

they may not represent dust aerosols in the atmosphere. This has not been explored for 

atmospheric dusts and minerals or clays. 

In this study, CCN activity and droplet activation kinetics measurements of 

regional dust and mineral aerosol generated by wet atomization technique are performed 

to quantify biases introduced in the observed CCN activity and physical properties of 

dusts, and selected minerals and clays. Contribution of the soluble salts present in fresh 
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dust samples to dust CCN activity is also investigated. The results obtained here are then 

compared against properties of fresh dust dry generated by a soft-saltation technique 

(Kumar et al., 2010). The effect of wetting dust and mineral samples in aqueous solution 

to generate aerosol and its implication to particles number size distributions, CCN 

activation, and droplet activation kinetics is provided in sections 4.5.1, 4.5.2, and 4.5.3, 

respectively. The contribution of soluble salts to dust CCN activity is also evaluated in 

section 4.5.4. Finally, section 4.6 discusses implications for dust-warm cloud interactions 

and presents a new CCN activity framework that combines both solute and water vapor 

adsorption effects for dust-cloud interactions. The conclusions and summary of this work 

is presented in section 4.7. 

4.3  Experimental Methods 

4.3.1 Regional Dust Samples and Individual Minerals 

Aerosols from regional soil samples and individual minerals/clays were generated 

and characterized in this study. Niger soil collected from the Sahel source region 

(13
o
31N, 2°38E) was used as representative of African dust. Asian soil samples were 

collected from five different East Asia (China) desert locations (Soil 1, eastern edge of 

the Hexi corridor; Soil 2, south-eastern edge of the Tengger Desert; Soil 3, central 

Tengger Desert; Soil 4, south-eastern edge of the Taklamakan Desert; Soil 5, southern 

edge of the Hunshandake Desert). Commercially available Arizona Test Dust was also 

used in measurements. Analyzed individual minerals included several clays (kaolinite, 

illite, and montmorillonite) and calcite. These minerals were aerosolized as purchased, 

with no subsequent treatment prior to atomization. 
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4.3.2 Measurements of CCN Activity and Droplet Activation Kinetics 

The laboratory setup employed to characterize the CCN activity and droplet 

activation kinetics of the regional dust samples is described in detail by Kumar et al. 

(2010) and Padró et al. (2010) and briefly summarized here. Aerosol is generated by 

atomization of a dust-water suspension containing 2.0  0.4 gram of regional dust 

(mineral/clay) in 100 ml of high purity DI (18 q-grade) water. The atomized droplets are 

then dried by passing through two silica gel diffusion dryers that maintain a relative 

humidity less than 5%. The resulting polydisperse dry aerosol is then passed through a 1 

µm impactor and a series of Kr-85 bipolar chargers to achieve an equilibrium charge 

distribution. The aerosol is then sent to a Differential Mobility Analyzer (DMA, TSI 

Model 3081) that classifies and size-selects the aerosol based on their electrical mobility. 

The aerosol sample flow rate of 1.0 l min
-1

 is used with a sheath flow rate of 5 l min
-1

 to 

select particle sizes up to 500 nm in electrical mobility diameter. The classified aerosol is 

then mixed with filtered air before being split into two streams. One stream is sent to a 

Condensation Particle Counter (CPC, TSI Model 2010) that measures Condensation 

Nuclei (CN) concentration. The second stream is sent to a Droplet Measurement 

Technology (DMT) Continuous Flow Streamwise Thermal Gradient Chamber (CFSTGC; 

Roberts and Nenes, 2005; Lance et al., 2006) to measure the fraction of aerosol that act as 

a CCN for supersaturations ranging between 0.2% and 1.0%. The CCN instrument 

supersaturation was calibrated with (NH4)2SO4 aerosol using the procedure described by 

Kumar et al. (2010). 

CCN activation curves, aerosol size distribution and droplet size distributions are 

obtained using Scanning Mobility CCN Analysis (SMCA) (Moore et al., 2010). SMCA 
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relies on the principle of continuously scanning DMA voltage over time to determine 

particle size based on electrical mobility. During SMCA, the supersaturation in the 

CFSTGC is maintained constant (between 0.2% and 1.0%) with aerosol flow rate set to 

0.5 l min
-1

 and sheath-to-aerosol ratio of 10:1. 

CCN activity is expressed in terms of minimum dry diameter, Ddry of particles 

that activate into cloud droplets at a critical supersaturation, sc. Ddry is determined by 

fitting a sigmoid curve to the experimentally determined CCN to CN concentration ratio 

with respect to dry particle diameter. Dry critical diameter, Ddry is then the diameter for 

which 50% of the particles activate at sc equal to the instrument supersaturation. The 

contribution from larger multiple charged particles (in this study, up to +3) are accounted 

for using the approach of Moore et al. (2010). 

Droplet activation kinetics for dust CCN is also inferred using SMCA. This is 

done by comparing the droplet size, Dw, at the optical particle counter (OPC) of CFSTGC 

for particles generated from regional dusts with that from calibration (NH4)2SO4 aerosol 

with sc equal to instrument supersaturation. The calibration is used as a standard of 

activation kinetics. If Dw is lower than the calibration, the dust may be subject to kinetic 

retardations. This technique is called ―Threshold Droplet Activation Kinetics (TDGA)‖, 

and has been successfully used in a number of in-situ and laboratory studies (Bougiatioti 

et al. 2009; Padró et al., 2010, Kumar et al., 2010). As the comparison is made against 

(NH4)2SO4 aerosol that activates according to KT, uncertainty is introduced in the 

determination of activation kinetics by TDGA, (owing to the difference in critical wet 

diameter between KT and FHH-AT particles). However, if retarded activation kinetics 

suggested by TDGA is not due to differences in activation physics, a computational fluid 
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dynamics model of the CCN instrument (Kumar et al., 2010) can be used to 

comprehensively simulate the growth of CCN and appropriately account for size shifts 

from differences in KT and FHH-AT. Any residual droplet size difference can be 

attributed to delayed activation kinetics and parameterized as changes in the water vapor 

uptake coefficient, c. 

4.3.3 Soluble Ions Measurements 

4.3.3.1 Particle Sample Collection 

A 12 stage Micro Orifice Uniform Deposition Impactor (MOUDI, Model 110, 

MSP Corp.) was used to collect dry generated and size-resolved particles to determine 

their soluble fraction. The stage cuts of MOUDI are 18.0, 10.0, 5.6, 3.2, 1.8, 1.0, 0.56, 

0.32, 0.18, 0.1, and 0.056 μm aerodynamic diameter, plus an after filter (< 0.056 μm). 

The flowrate of the MOUDI is set to 30 l min
-1

. The collection substrates used in the first 

11 stages include 47 mm Aluminium foil disks (0.001˝, regular strength Reynolds wrap). 

A thin layer of Heavy-Duty Silicone Spray (MSP corp.) is applied to the foil substrates to 

minimize particle bounce. The substrates were weighed before and after the sampling 

using weighing scale (OHAUS Corp., AR0640) to determine the mass of dust deposited 

at each impactor stage. To ensure sufficient mass for composition measurements, sample 

collection is done for several hours, and grouping of substrates was performed. Stages 

corresponding to aerodynamic diameters greater than 1.0 μm were grouped and will be 

referred to as coarse mode. Aerosol particles collected at stages with aerodynamic 

diameters equal to and less than 1.0 μm will be referred to as fine mode. 

The dry aerosol collected in the MOUDI was generated following Kumar et al. 

(2010). Approximately 10 - 15 grams of the desired sample was introduced in the 1000 
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ml sealed Erlenmeyer flask attached to a Burrell-Wrist Action Shaker (Model 75). 

Compressed filtered air is introduced into the flask that generates polydisperse fine 

aerosols by mechanical disintegration (saltation) with a distribution that resembles the 

natural size distributions of dust particles generated in source regions (Lafon et al., 2006). 

4.3.3.2 Ion Chromatography Analysis 

After particle collection, the substrates were placed in a Nalgene HDPE bottle 

with 20 - 24 ml of 18 q-grade deionized (DI) water for extraction. Each bottle was 

sonicated and heated in a water bath (at ~ 60°C, Padró et al., 2010) for 75 minutes. The 

solution was then allowed to cool for 3 hours and filtered through a 0.45 μm pore syringe 

filter to remove the insoluble particles suspended in solution. 

The concentration of major ions in the filtered extract solution was measured with 

Ion Chromatography (IC, Dionex Model DX500). The IC used in this study has two 

channels allowing concurrent measurements of anions and cations. Anions were 

measured using an AS11 column, an ASRS ultra-suppressor, and a gradient elute of 

sodium hydroxide. Cations were determined using a CS12 column and CSRS ultra-

suppressor and methanesulfonate acid eluent. Anions measured included acetate (C2H3O2
-

), chloride (Cl
-
), formate (HCOO

-
), nitrate (NO3

-
), nitrite (NO2

-
), oxalate (C2O4

2-
) and 

sulfate (SO4
2-

). The cations measured were ammonium (NH4
+
), calcium (Ca

2+
), potassium 

(K
+
) and sodium (Na

+
). The ion concentrations obtained from IC measurements were 

then used as input for the ISORROPIA-II thermodynamic equilibrium model (Fountoukis 

and Nenes, 2007) to predict the mixture of inorganic salts present in the samples. 
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4.4 Experimental Analysis 

To describe the CCN activity of dust particles, two phenomena must be accounted 

for: i) the effect of adsorption of water vapor on the insoluble dust particles represented 

by the adsorption activation theory (AT) (Kumar et al., 2009a,b), and, ii) the effect of 

solute (which may be present in freshly emitted dust or formed during atmospheric aging) 

represented by the Raoult effect in Köhler Theory (KT) (Köhler, 1936). 

4.4.1 Adsorption Activation Theory (AT) 

The AT used here is developed with the multilayer FHH adsorption isotherm 

model (Sorjamaa and Laaksonen, 2007; Kumar et al., 2009a,b) and contains two 

adjustable parameters (AFHH and BFHH) that describe the contribution of water vapor 

adsorption on CCN activity. AFHH, BFHH are determined by least squares fitting of the 

observed sc, Ddry to the maxima of the FHH-AT water vapor equilibrium curves 

(Sorjamaa and Laaksonen, 2007; Kumar et al., 2009b) 

FHHB

OH

dryp

FHH

pw

ww

D

DD
A

DRT

M
s















 


2
2

4




      [4.1] 

where s is the supersaturation, Ddry is the dry CCN diameter, 
OHD

2
 is the diameter of 

water molecule (equal to 2.75 Å, Kumar et al., 2009b), Dp is the droplet diameter, w is 

the CCN surface tension at the point of activation (Pruppacher and Klett, 1997), w is the 

water density, Mw is the molar mass of water, R is the universal gas constant, and T is the 

average column temperature. The value of BFHH is a measure of the particle 

hydrophilicity with lower BFHH values corresponding to a more hydrophilic particle. As 

BFHH increases, particles become less hydrophilic and resemble insoluble (but wettable) 

particles that follow the Kelvin equation (Kumar et al., 2010). Kumar et al. (2010) found 



97 

 

that the CCN activity of dry generated aerosols from regional dust samples considered in 

this work, are well described by FHH-AT with AFHH = 2.25  0.75 and BFHH = 1.20  

0.10. 

4.4.2 κ-Köhler Theory (κ-KT) 

The CCN activity of an aerosol particle with appreciable amounts of solute can be 

described using Köhler theory (KT). In this study, solute effects are parameterized using 

the hygroscopicity parameter, κ, approach (Petters and Kreidenweis, 2007) that 

collectively accounts for the density, molar mass, and dissociation effects of solute on 

water activity (the Raoult term in the Köhler equation). The κ can be used to directly 

compare the hygroscopicity of aerosol over a wide range of composition, with κ → 0 for 

completely insoluble material to κ → 1.4 for NaCl (the most hygroscopic of atmospheric 

aerosol species). 

When κ > 0.2, κ can be obtained from sc-Ddry pairs given by the following 

approximate expression 
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 , sc is the instrument supersaturation, and Ddry is the minimum dry 

particle activation diameter at sc. Lower values of κ (e.g., κ < 0.05) that are more relevant 

to the dust sc-Ddry experimental relationships are calculated from the numerical solution 
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All studies on dust CCN activation, with the exception of Kumar et al. (2010), 

have parameterized dust CCN activity using the κ-KT approach, implicitly assuming that 

CCN activity of dust is governed by its small soluble fraction. 

4.5 Results and Discussion 

4.5.1 Size Distributions 

Figure 4.1a compares the particle number size distribution of aerosols generated 

from the Niger dust sample (brown squares) and Soil 2 (blue circles). Size distributions 

were generated using either the dry soft-saltation method (open symbols) described in 

Kumar et al. (2010) or the wet atomization method (solid symbols). While both 

generation methods produce particles with a unimodal size distribution (Fig. 4.1a), the 

sizes of particles are significantly different. For instance, wet generated Niger dust 

(brown curve) has a mean diameter of ~ 40 nm while dry generated dust peaks at ~ 450 

nm. Similar differences are observed for Soil 2 (blue curve) where median diameters are 

41 nm and 400 for wet and dry generated dust, respectively. This demonstrates that 

particles generated via wet atomization technique can be up to ten times smaller than 

those generated by the dry saltation technique.  

In the case of ATD, the wet atomization method generated a bimodal dry size 

distribution (Fig. 4.1b) with a dominant first peak centered at a modal diameter of ~ 35 

nm, and a second peak with reduced number concentration centered at a modal diameter 

~ 240 nm. For comparison, the number size distribution for ATD generated by the dry 

technique (Fig. 4.1b) produces a peak centered at ~ 340 nm. This suggests that the second 

observed peak in the wet generation method could be primarily dust particles internally 

mixed with material from the first hygroscopic peak. Similar behavior was also observed 
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for kaolinite particles (Fig. 4.1b). Dry and wet generated size distributions are provided 

as inset in Fig. 4.1b; bimodal distribution with peaks at ~ 34 nm and ~ 300 nm are seen. 

For dry generated kaolinite aerosol, however, a unimodal distribution is observed with a 

peak centered at ~ 500 nm. A similar behavior in terms of the bimodal distribution with 

the dominant smaller peak and minor bigger peak was observed by Sullivan et al. (2010) 

for the Solvay calcite system. 

Like in the case of ATD and kaolinite, a bimodal size distribution is observed for 

wet generated illite and CaCO3 particles (Fig. 4.1c). However, the relative strength of 

both modes is reversed, with the peak at ~ 37 nm diameter being less prominent than that 

observed at ~ 160 nm. Similarly for wet generated CaCO3 aerosol (solid blue circle), the 

minor and major peaks were centered at ~ 33 nm and ~ 200 nm, respectively. Dry 

generated illite (open brown) and CaCO3 (open blue) aerosols exhibit a unimodal size 

distribution with a mean diameter ~ 460 nm and ~ 250 nm, respectively. 

Most commonly found clay minerals in regional dust samples are kaolinite, illite, 

and montmorillonite (Usher et al., 2003). Depending on the aluminosilicate layer-layer 

interactions (charge-countering cations, van der Waals forces, or hydrogen bonds), clays 

can be classified as swelling or non-swelling (Farmer, 1974). Illite and kaolinite are non-

swelling clays because of strong inter-ionic and hydrogen bond interactions that prevent 

expansion in the presence of water. In contrast, montmorillonite can contain unbounded 

Na
+
 and Ca

+
 ions that can hydrate in the presence of water and make clays swell. The 

differences in interactions of water with the internal clay structure may lead to large 

changes in the particle size distributions for montmorillonite clay (Na-rich and Ca-rich) 

generated via the wet atomization and dry soft-saltation techniques (Fig. 4.1d). It can be 
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also inferred that swelling (montmorillonite) and non-swelling (illite and kaolinite) clays 

produce the systems with different particle-water interactions in aqueous solutions. This 

difference in water interaction is also consistent with previous studies on hygroscopicity 

measurements where water uptake ability of montmorillonite was found to be similar to 

that of the zeolite sample that contains internal pores for water adsorption (Schuttlefield 

et al., 2007). Observed differences in water interactions also manifest as differences in 

CCN activity between swelling and non-swelling clays (shown in Sect. 4.5.2.2).  



101 

 

  

  
 

Figure 4.1: Particle number size distribution measured by the SMPS system via dry generated and wet generated techniques for (a) 

Niger Soil and East Asian Soil 2, (b) ATD and Kaolinite, (c) Illite and CaCO3 and (d) Montmorillonite (Na-rich and Ca-rich).  
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4.5.2 CCN Activation Results 

4.5.2.1 Regional Dust Samples 

The dust CCN activity (sc versus Ddry) measured for wet generated dust aerosol is 

presented in Fig. 4.2. The KT fits to the experimental data are shown with solid lines. For 

comparison, the CCN activation curves for dry generated dust (open symbols) are also 

shown with their corresponding FHH-AT fits. It is evident that the wet generated 

particles were significantly more CCN active than those generated from the dry soft-

saltation technique. For all wet samples, κ ranges between 0.15 - 0.61, which is 

considerably higher than the equivalent κ (= 0.05) for dry generated dust (Kumar et al., 

2010). Increased hygroscopicity after wetting is consistent with previous studies on dust-

CCN activity that used similar wet generation techniques (e.g., Koehler et al., 2009; 

Herich et al., 2009). 

It can be seen that within experimental uncertainty, xexp for all dust types (with the 

exception of ATD) is about -1.5. This suggests that KT provides a good framework for 

representing CCN activity in this case. The hygroscopicity parameter, κ, for Niger, Asian 

and ATD samples were found to be slightly below that of (NH4)2SO4 (κ = 0.61). In the 

case of ATD, a bimodal size distribution was obtained (Fig. 4.1b). While performing 

CCN activation measurements on wet generated ATD aerosol, almost all particles of the 

second peak activated (with an activation fraction ~ 1.0). Therefore, in this analysis we fit 

a sigmoid curve to the experimental points of activation fraction generated from the 

dominant first mode. Results indicated that the CCN activity of wet generated ATD can 

be parameterized with κ = 0.40 (compared to κ < 0.05 for dry generated ATD). As xexp is 

expected to range between -0.8 (corresponding to FHH-AT) and -1.5 (corresponding to 
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KT), the unusual xexp (equal to -2.15) for ATD can be a consequence of sparingly soluble 

species such as CaSO4 (Padró and Nenes, 2007), a strong size-dependant composition or 

activation physics (AT vs. KT). 

Kumar et al. (2009a, 2010) showed that the value of xexp can be used to infer the 

mechanism that dominates particle-water interaction (i.e., adsorption or solute). xexp ~ -

1.5 indicates that the solute effect dominates (hence KT applies), while xexp between -0.8 

and -1.2 indicates the dominance of the water vapor adsorption effect (hence FHH-AT 

applies). When this is applied to the wet generated data, it is seen from Table 4.1 that xexp 

differs significantly from those determined by dry generation (Kumar et al., 2010). For 

almost all wet generated regional dust aerosols, xexp is ~ -1.5 (with the exception of ATD; 

Table 4.1), while a much lower xexp ~ -(0.9 ± 0.2) was observed for dry generated dust 

aerosol. Thus FHH-AT describes fresh dry dust-CCN activation, while KT describes wet 

generated dust CCN activity. An xexp ~ -1.5 and κ ~ 0.4 correspond to an aerosol mostly 

composed of soluble salt. The IC analysis, however, shows negligible amounts of soluble 

salts present in the dust (Section 4.5.4). This, together with the very small size of the 

particles generated confirms that the process of wet generation for mineral aerosol leads 

to particles that do not resemble the dust suspended in the atomizer (likely composed of 

soluble salts leached off the original dust), hence the measured physical and chemical 

properties are likely subject to significant artifacts. A possible explanation for differences 

in activation mechanisms between dry and wet generated dust is provided in section 

4.5.4. 
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4.5.2.2 Individual Minerals and ATD Samples 

The CCN activation curves for wet generated illite, ATD, kaolinite and 

montmorillonite aerosols are shown in Fig. 4.3. Two sets of CCN activation data were 

obtained for illite and calcite, reflecting the size-dependent change in composition 

confirmed by the presence of bimodal size distribution (Fig. 4.1c) and double activation 

curve (Fig. 4.3a). A similar behavior was observed for kaolinite and ATD (activation 

curves shown in Fig. 4.3b). However for kaolinite and ATD, the CCN data (sc-Ddry 

relationships) could only be determined from the dominant first peak. This is because for 

kaolinite, too few particles were generated in the minor second peak, while for ATD, 

almost all particles of the second peak activated with an activation fraction of ~ 1.0. For 

swelling montmorillonite clays (both Na-rich and Ca-rich), only one set of activation data 

points was obtained as a unimodal size distribution (Fig. 4.1d) that produced broad 

activation curves (Fig. 4.3c). This is consistent with the broad size distributions obtained 

for wet generated montmorillonite aerosol (Fig. 4.1d). 

Figure 4.4 presents the CCN activity for wet generated calcite and clays 

considered in this study (solid and open squares). For comparison, the CCN activity for 

dry generated minerals (open triangles) is also shown. For samples with evident multi-

modal activation, the most hygroscopic mode can readily be parameterized by κ-KT, 

while the second peak is well parameterized by FHH-AT and is in agreement with the 

CCN activity of dry generated species. This suggests that the particles generated in the 

second peak of wet distributions may be closer to the dry generated aerosol as discussed 

below. The intrinsic hygroscopicity, κint (Sullivan et al., 2010) of a limited solubility 

compound such as CaCO3 is equal to 0.97. This value compares well with κ = 1.0 for the 
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more hygroscopic wet generated CaCO3 peak (Fig. 4.4) and provides a potential cause for 

the more hygroscopic KT-like CCN activation data for wet generated regional dusts. 

Table 4.2 shows the values of the experimental exponent, xexp, determined from 

measurements of the sc-Ddry relationships for individual minerals and clays generated by 

wet atomization method. Here κ was obtained by fitting κ-KT to the CCN activation data 

corresponding to the more hygroscopic peak and adsorption parameters (AFHH and BFHH) 

determined from fitting FHH-AT to the less hydrophilic peak. Similar to wet generated 

regional dust aerosol, clays and calcite yield κ approaching values characteristic of 

soluble inorganic salts (with κ for the first peak of CaCO3 being as high as 1.0). The xexp 

from the sc-Ddry relationship from the CCN activation of the fist peak is also ~ -1.5 (Table 

4.2). This suggests that particles generated in the more hygroscopic peak follow 

activation according to KT. The xexp from the sc-Ddry data of the less hydrophilic peak is 

much lower and closer ( 10%) to xexp determined from dry generated dust that follow 

FHH-AT. Furthermore, BFHH obtained from wet generated dust is 1.20  0.20. This value 

is similar to BFHH equal to 1.20  0.10 for dry generated dust (Kumar et al., 2010). This 

relates to the process of reversible water vapor adsorption on dust, and represents the fate 

of the dust particle in the atmosphere if it is subjected to multiple evaporation/activation 

cycles. 
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Figure 4.2: CCN activation curves for different dust types considered in this study. Solid 

symbols refer to wet generated CCN activity and solid lines show κ-KT fits. Open 

symbols refer to dry generated CCN activity and dashed line are FHH adsorption 

activation fits (Data obtained from Kumar et al., 2010). Also shown in black 

dashed lines are κ-KT lines. 
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Figure 4.3: CCN activation curves for wet generated (a) Illite at supersaturation equal to 

0.5% (open blue square) and supersaturation equal to 0.3% (open brown square), 

(b) ATD (open blue square) and Kaolinite (open brown circle) at supersaturation 

equal to 0.2%, and (c) Na-Montmorillonite and Ca-Montmorillonite at 

supersaturation equal to 0.3% (open blue square) and supersaturation equal to 

0.55% (open brown circle). Also shown in dashed lines are normalized particle 

number size distributions for wet generated sample. The sigmoid curve (thick 

line) is fit to CCN activation data points. 
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Figure 4.4: CCN activation curves for different mineral and clays types considered in 

this study. Solid and open square (■, □) symbols refer to wet generated CCN 

activity and dashed lines show κ-KT fits. Open triangle (Δ) refers to dry generated 

CCN activity and solid lines are FHH adsorption activation fits (obtained from 

Kumar et al., 2010). 
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Table 4.1: CCN activation results – experimental exponents, and hygroscopicity 

parameter (κ) for regional dust samples generated from wet atomization method 

Soil xexp κ xexp* 

Niger -1.63 0.26 -0.79  0.02 + (0.04) 

Soil 1 -1.63 0.39 -0.84  0.02 + (0.05) 

Soil 2 -1.56 0.48 -0.82  0.02 + (0.05) 

Soil 3 -1.71 0.34 -0.92  0.03 + (0.05) 

Soil 4 -1.73 0.44 -0.88  0.03 + (0.04) 

Soil 5 -1.53 0.17 -0.78  0.03 + (0.05) 

ATD
+
 -2.16 0.40 -0.82  0.02 + (0.04) 

* represents experimental exponent determined from dry generation method (Kumar et 

al., 2010). Values in parentheses indicate change in magnitude of xexp from change in χ 

between 1.1 and 1.5.  
+ 

Two peaks were observed for ATD. Values here represent experimental results from the 

first peak.
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Table 4.2: CCN activation results – experimental exponent, hygroscopicity parameter 

(κ), Adsorption parameters (AFHH, BFHH) for clays and calcite sample generated 

from wet atomization method 

Mineral xexp κ AFHH BFHH xexp* 

Illite (Peak 1) -1.63 0.58   -0.92  0.03 + (0.05) 

Illite (Peak 2) -0.60  3.00 1.27 -0.92  0.03 + (0.05) 

Kaolinite -1.57 0.47    

Ca Mont -0.76  1.09 1.04 -0.88  0.02 + (0.05) 

Na Mont -0.99  0.87 1.00 -0.93  0.02 + (0.04) 

CaCO3 (Peak 1) -1.46 1.00   -0.75  0.02 + (0.05) 

CaCO3 (Peak 2) -0.89  1.74 1.22 -0.75  0.02 + (0.05) 

* represents experimental exponent determined from dry generation method (Kumar et 

al., 2010). Values in parentheses indicate change in magnitude of xexp from change in χ 

between 1.1 and 1.5
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4.5.3 Droplet Activation Kinetics 

TDGA is used to study the CCN activation kinetics of wet dust and is based on 

comparing Dw measured by the OPC at the base of CFSTGC for the sample CCN against 

that of (NH4)2SO4 calibration aerosol. If droplet sizes (Dw) from dust CCN are smaller 

than those from calibration aerosol (with same sc and for identical conditions of 

instrument supersaturation), this suggests that mineral aerosol may experience slower 

growth during their residence time in the instrument. However, if activated droplet sizes 

are indistinguishable (within experimental uncertainty) from (NH4)2SO4 data, wet 

generated mineral aerosol would exhibit activation kinetics similar to (NH4)2SO4 

calibration aerosol. 

Activated droplet sizes obtained for the wet generated regional dusts are shown in 

Fig. 4.5. Droplet sizes similar to those generated by (NH4)2SO4 aerosol were observed. 

This suggests that wet generated dust aerosol exhibits activation kinetics similar to 

(NH4)2SO4. In some cases, droplets generated from wet dust aerosol appear to grow 5% 

larger compared to pure (NH4)2SO4 aerosol. Given the 0.5 µm uncertainty (associated 

with the binning scheme) of the OPC, this larger size is statistically insignificant. A 

similar behavior was also observed for clays and calcite wet generated (Fig. 4.6). The 

CCN number concentrations in the experiments (either calibration or dust activation) was 

at most ~ 1000 - 1500 cm
-3

 at Ddry (and definitely less than 5000 cm
-3

) so that water vapor 

depletion effects on CCN concentration and wet droplet diameter are negligible (Lathem 

and Nenes, 2010) and thus not attributing to increased droplet sizes for dust CCN. 

The results presented here suggest that the activation kinetics of wet generated 

dust is distinctly faster than for dry generated dust (expressed by a 30 - 80% reduction in 
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effective water vapor uptake coefficient relative to (NH4)2SO4 aerosol). This result 

suggests that dust particles that already have been wetted in the atomizer have sufficient 

water coverage to display rapid activation kinetics. It is possible that the wet generated 

aerosol is not aggressively dried; it may therefore retain a few monolayers of water on its 

surface and accelerate the rapid re-condensation of water in the CFSTGC (as the water 

uptake, hence growth kinetics, becomes progressively more rapid with amount of 

adsorbed water; Kumar et al., 2009a). Rapid activation kinetics is expected for particles 

primarily composed of soluble salt (which correspond to the high κ particles in Fig. 4.2 

and 4.4). 

Faster activation kinetics of wet generated dust (compared to dry dust) would 

imply that the fresh dust in the source regions would behave differently to cloud 

processed dust downwind of its source region that has undergone multiple 

activation/evaporation cycles. This would also mean that fresh and cloud processed dust 

would behave differently even when exposed to the same levels of cloud supersaturation. 

This is of significance for both Saharan and Asian dusts given that large regions of the 

world are affected by their mid- and long-range transport. Whether a fresh or cloud 

processed dust has more significant impact on cloud droplet number would also depend 

on activation physics and time scales of cloud formation. These issues are further 

addressed in section 4.6. 
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Figure 4.5: Activated droplet sizes of wet generated mineral dust CCN with sc equal to 

the instrument supersaturation. Error bars represent variability in droplet sizes as 

measured by the OPC at same instrument supersaturation. Dashed lines represent 

 0.25 μm variability in (NH4)2SO4 droplet sizes.  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0 1.5 2.0 2.5 3.0 3.5 4.0

In
s
tr

u
m

e
n

t 
S

u
p

e
rs

a
tu

ra
ti

o
n

 [
%

]

Average Droplet Diameter measured by OPC [μm] 

Niger Soil 1

Soil 2 Soil 3

Soil 4 Soil 5

ATD (NH4)2SO4



115 

 

 
 

Figure 4.6: Activated droplet sizes of wet generated clays and calcite CCN with sc equal 

to the instrument supersaturation. Error bars represent variability in droplet sizes 

as measured by the OPC at same instrument supersaturation. Dashed lines 

represent  0.25 μm variability in (NH4)2SO4 droplet sizes.  
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4.5.4 Contribution of Soluble Ions to Hygroscopicity 

Previous studies on the dust CCN activity (Koehler et al., 2009; Herich et al., 

2009) attributed increased hygroscopicity of the wet generated dust aerosol to the 

presence of soluble salts on dust particles. Kumar et al. (2009a) raised doubts to this 

based on the slope of the sc-Ddry relationship. Sullivan et al. (2010) confirmed this for 

calcite as a negligible mass fraction of soluble salts in calcite aerosol was found using 

ICP and SEM-EDX. Here we further address this issue by examining the soluble fraction 

of the regional dust and clay samples and relating it to dust CCN activation. 

The IC analysis was performed on the ATD, Niger, Soil 4, and Soil 5 samples as 

they represent the important dust source regions. For fine (≤ 1 μm) and coarse (>1 μm) 

samples, the ionic concentration obtained from IC (in terms of mg l
-1

) is converted to dry 

ionic mass composition (based on the amount of DI water used to prepare the aqueous 

extracts) and converted to a mixture of salts, each with a mass fraction xi by applying the 

ISORROPIA-II model (Fountoukis and Nenes, 2007) as described in Padró et al. (2010). 

The volume fraction of substance i, εi, is computed as follows 




j

j

ii
i

x

x
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[4.4] 

where j refers to all substances present in the aerosol (soluble and insoluble). Table 4.3 

contains information on the properties (molar mass, Ms, density, s, and hygroscopicity 

parameter, κ) of salts that may be present in the mineral aerosol. 

A closure analysis for κ was performed by comparing the measured κCCN against 

predictions (κmix) using a volume-average mixing rule (Petters and Kreidenweis, 2007) 


i

iimix 

         

[4.5] 
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where i refers to all soluble salts. 

For all of the eight samples analyzed in this study, an excess of cations was found, 

with Ca
2+

 being the most dominant unbalanced cation. Since IC analysis did not measure 

CO3
2-

, we postulate that all of the excess cations were balanced by CO3
2-

, resulting in 

carbonate salts in the form of CaCO3. This is consistent with findings of Claquin et al. 

(1999) that show calcite to make up to 30% of the dust composition. Table 4.4 shows the 

inferred volume fractions of soluble salt and insoluble species from ISORROPIA-II along 

with the corresponding hygroscopicity parameter (κ) determined using Eq. (4.5). It can be 

seen from Table 4.4 that the inferred κmix for all samples is much smaller than that 

determined from the observed CCN activity of dry generated dust aerosol. This confirms 

that the presence of soluble fractions alone cannot explain hygroscopicity observed in the 

original dust samples, further supporting that the CCN activity observed by Kumar et al. 

(2010) for dry generated dust aerosol originated from water vapor adsorption onto the 

insoluble dust surface. 

It was previously suggested by Koehler et al. (2009) that the presence of soluble 

contaminants in dust can be attributed to enhanced hygroscopicities in CCN activation 

measurements performed on wet generated dust aerosol. For the above statement to hold 

true for the dust samples analyzed in this study, dust and mineral aerosols would have to 

be composed of  25 - 80% by volume of soluble salts like (NH4)2SO4 (κ = 0.61) to 

display κ of ~ 0.2 – 0.5 (Table 4.1 and Table 4.2). However, IC analysis performed on all 

eight samples did not reveal significant amounts of soluble salts in the bulk samples with 

a soluble volume fraction of less than 1% (Table 4.4). Sullivan et al. (2010) provided a 

possible explanation regarding the presence of particles produced in the first peak of 
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calcite and ATD, and attributed those to a mixture of parent mineral particles plus 

secondary calcium bicarbonates, calcium hydrates as well as contributions from other 

undetected impurities that may have formed amorphous precipitates (given that we 

observe substantially smaller aerosol than in dry generation, it is likely that parent 

mineral particles are seldomly present). It may also be possible that slightly soluble 

compounds (such as CaCO3) can form metastable aerosol (e.g., Raymond and Pandis, 

2002; Padró and Nenes, 2007) due to insufficient drying inside the diffusion dryers so 

that all of the material is available for solvation. This has been seen in our measurements, 

where assuming CaCO3 is fully soluble yields κ ~ 0.97 (vs. observed κCCN ~ 1.0 and xexp 

~ -1.5). This suggests that the same behavior may also be occurring in regional dust 

samples when dissolved in water resulting in a high value of κ. It can be also argued that 

presence of dissolved soluble contaminants in the DI water can also result to the 

formation of the first hygroscopic peak. However, results from IC performed on DI water 

(blank sample) indicated negligible presence of dissolved ions impurities. For instance, 

the concentration of Na
+
, K

+
 and NH4

+
 was below the detection limit, while the 

concentration of Ca
2+

 was lower by a factor of 10
3
 when compared to the IC results of 

dust samples. Similarly for anions, the only concentration detected by IC was for SO4
2-

 

and that was again lower by a factor of ~ 300 – 2,000. Therefore, residual ions in pure DI 

water are an unlikely contributor to the observed hygroscopicity of the first peak. 

The analysis performed above questions the atmospheric relevance of CCN 

activity experiments using wet generated dust, and the usage of κ-KT for parameterizing 

its hygroscopicity. It also supports the approach of Kumar et al. (2009a,b, 2010) of using 

the exponents derived from the scale dependence of sc on Ddry to reveal the dominant 
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activation physics. Since that large-mode aerosol (whenever present during wet 

generation) closely matches the activation behavior of dry generated dust, we postulate 

that wetting of fresh dust does not irreversibly change its CCN activity. The activation 

kinetics however can be accelerated with dust cloud cycling. 
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Table 4.3: Properties of inorganic salts potentially extracted from regional soil samples. 

Properties obtained from Padró et al. (2010) 

Salt Chemical Formula Molar Mass (g mol
-1

)  (g cm
-3

) κ 

Sodium Nitrate NaNO3 84.99 2.25 0.88 

Sodium Sulphate Na2SO4 142.04 2.68 0.85 

Sodium Bisulphate NaHSO4 120.06 2.74 0.82 

Sodium Chloride NaCl 58.44 2.16 1.40 

Ammonium Chloride NH4Cl 53.49 1.52 1.46 

Ammonium Nitrate NH4NO3 80.04 1.50 0.64 

Ammonium Sulphate (NH4)2SO4 132.14 1.77 0.60 

Ammonium Bisulphate NH4HSO4 115.11 1.79 0.53 

Calcium Sulphate CaSO4 136.14 2.32 0.01 

Calcium Nitrate Ca(NO3)2 164.00 1.82 0.40 

Calcium Chloride CaCl2 110.98 2.15 0.70 

Potassium Sulphate K2SO4 174.27 2.66 0.69 

Potassium Bisulphate KHSO4 136.17 2.24 0.59 

Sodium Carbonate Na2CO3 105.98 2.54 1.30 

Ammonium Carbonate (NH4)2CO3 96.09 1.50 0.84 

Potassium Carbonate K2CO3 138.20 2.29 0.90 

Calcium Carbonate CaCO3 100.08 2.71 0.001 
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Table 4.4: Soluble volume fraction (εs), insoluble volume fraction (εs), and inferred 

hygroscopicity parameter (κ) for mineral dust aerosol samples. Uncertainties in 

volume fractions are estimated to being less than 0.3% 

Sample εsoluble εinsoluble κmix 

ATD – Coarse 0.007 0.993 0.003 

ATD – Fine 0.009 0.991 0.004 

Niger – Coarse 0.004 0.996 0.001 

Niger – Fine 0.003 0.997 0.001 

Soil 4 – Coarse 0.014 0.986 0.003 

Soil 4 – Fine 0.086 0.914 0.016 

Soil 5 – Coarse 0.003 0.997 0.001 

Soil 5 – Fine 0.003 0.997 0.002 
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4.6 Implications for Dust - Warm Cloud Interactions 

Droplet activation in large-scale atmospheric models is often calculated from 

physically-based prognostic parameterizations (e.g., Abdul-Razzak and Ghan, 2000; 

Ming et al., 2006; Nenes and Seinfeld, 2003, Kumar et al., 2009b) that rely on solving the 

supersaturation balance equation (for a 1-D parcel) to determine parcel maximum 

supersaturation, smax. The smax corresponds to the point where droplet activation 

terminates in the cloud, and occurs when supersaturation generated from expansion 

cooling balances supersaturation depletion from condensation of water vapor on pre-

existing aerosol particles. The level of smax in clouds depends on the competition between 

CCN for available water vapor that is required to activate CCN to cloud droplets. 

Kumar et al. (2009a) found that the volume of water required by particles to 

activate to cloud droplets at a given supersaturation can vary significantly between KT 

and FHH-AT. This behavior is also shown in Fig. 4.7 which compares the ratio of water 

volume at the critical wet diameter, Dc, required by KT over FHH-AT for 

supersaturations between 0.05% and 0.6%. The AFHH, BFHH, and κ used in Fig. 4.7 are 

representative of dust samples analyzed in this study and by Kumar et al. (2010). It can 

be seen from Fig. 4.7 that for a particle to activate by KT, up to 15 times more water 

volume is required for activation compared to particles activating via FHH-AT at the 

same critical supersaturation. A high value of water volume at Dc implies that large 

amount of water vapor would be required by the CCN to form a cloud droplet. Integration 

over the entire CCN population would increase competition for water vapor, lead to a 

decrease in smax, and cause a decrease in cloud droplet number, Nd. 
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Based on the above, it becomes clear that the choice of activation theory can have 

a strong impact on smax and Nd. For an externally mixed population of KT and FHH-AT 

particles, the treatment of Kumar et al. (2009b) is sufficient. However, during 

atmospheric transport, fresh dust undergoes aging and acquires soluble species like 

(NH4)2SO4 on its surface (Levin et al., 1996). Similarly, dust generated from dry dust 

lake beds (or playas) are known to contain significant amounts of soluble salts (Pratt et 

al., 2010). The presence of such soluble salts on dust surface can affect water-particle 

interactions with implication to the dust CCN activity. Below, we address the effect of 

soluble salts on dust surface to droplet equilibrium behavior. 

We adopt a shell-and-core model with the core representing insoluble dust and 

shell consisting of a layer of soluble salt. Based on laboratory dust CCN activation 

measurements, Kumar et al. (2010) found typical fresh dust sizes to range between 100 

and 500 nm. As ageing occurs, it is expected that dry particle size will increase; therefore 

in our approach we consider a core-shell model where the insoluble core does not go 

below 50 nm (a lower limit of fresh dust). The water vapor saturation ratio, S, of an 

aerosol particle in equilibrium with surrounding water vapor can be expressed as 

(Seinfeld and Pandis, 2006) 
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where aw is the water activity of the particle, γw is the activity coefficient for water, and 

other parameters as defined above. The exponential in Eq. (4.6) is commonly referred to 

as the curvature or the Kelvin effect. For a completely insoluble aerosol particle like fresh 

dust, aw, is controlled by the adsorption of the water vapor on the insoluble surface such 



124 

 

that Eq. (4.6) reduces to Eq. (4.1) (when adsorption is modeled using the FHH adsorption 

isotherm). 

Given that the water adsorbed on the surface must be in equilibrium with the 

surrounding aqueous phase and the water vapor in the gas, the aw that accounts for both 

the Raoult and adsorption effects is given as 

)( fxa ww          
[4.7] 

where xw is the mole fraction of water in the droplet and represents water activity 

depression due to solute effects. f() represents water vapor adsorption effect on aw, 

where  is the number of water monolayers adsorbed on the dry particle core. 

xw is related to the mole fraction of the soluble salt, xs, as 
sw xx 1 . Invoking the 

dilute approximation gives 
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x  , where ns is the moles of solute, nT is the total 

moles in the aqueous phase, and nw is the moles of water in the droplet. Therefore, 
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[4.8] 

where ρs, Ms, and υ are density, molecular mass and effective van’t Hoff factor of the 

solute, respectively. Vs and Vw are the volume of the salt and water in the aqueous phase, 

respectively. 

For a given insoluble volume fraction, εi and diameter of the dust core, Dcore, the 

size of the dry particle, Ddry, can be estimated as 

3/1/ icoredry DD 
        

[4.9] 
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The volume of the soluble fraction, εs, is available as 
is  1 . Therefore, the 

volume of the soluble fraction, Vs, can be defined as 

3

6
dryss DV 













        
[4.10] 

Substituting Vs from Eq. (4.10) into Eq. (4.8) and expressing Vw = VT - Vi where 

Vw is the volume of water in droplet, VT is the droplet volume and Vi is the volume of the 

insoluble core gives 
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Substituting the hygroscopicity parameter, κ, as
ws

ws
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  into Eq. (4.11) gives
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Kumar et al. (2009a) defined surface coverage, , as the number of monolayers of water 

adsorbed on the particle. As water vapor is adsorbed only on the dry insoluble core,  is 

given as 
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where dryi D3/1 is the diameter of the insoluble core and OHD
2

 is the diameter of the water 

molecule. According to Kumar et al. (2009a),  FHHB

FHHAf


 exp)( . Substituting 

into Eq. (4.12) gives 
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Thus combined aw can be obtained using Eq. (4.7), (4.11) and (4.13) as 
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Substituting aw from Eq. (4.14) into Eq. (4.6), assuming ideality (γw = 1) and 

expanding the exponential and taking the first order terms gives 
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[4.15] 

where s is the equilibrium supersaturation defined as s = S - 1. 

Equation (4.15) represents water vapor supersaturation over an aerosol particle 

(consisting of insoluble core with a soluble coating) in equilibrium with the surrounding 

water vapor. As Eq. (4.15) is specific to an aerosol particle with a finite insoluble core 

but variable soluble coating, it reduces to Eq. (4.1) for a completely insoluble particle as 

εi  1. In this study, Eq. (4.15) will be referred to as the Unified Dust Activation 

Framework. 

Figure 4.8 shows the relationship between dry diameter, Ddry, and critical 

supersaturation, sc, for different insoluble volume fractions, εi, computed for κ = 0.10, 

average adsorption parameters of fresh dust (AFHH = 2.25, BFHH = 1.20), surface tension 

of water, w = 0.072 N m
-1

, and temperature, T = 298.15 K. It can be seen from Fig. 4.8 

that as the insoluble volume fraction, εi, of the dry aerosol decreases from 1.0 to 0.5, the 

threshold of cloud droplet nucleation on pre-existing aerosol particles increases 

significantly. Furthermore, as εi starts decreasing from 1.0, the exponent derived from the 
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sc-Ddry relationships changes from -0.85 (representative of FHH-AT) and starts 

approaching that of the completely soluble particle with exponent equal to -1.50 (shown 

by inset Table in Fig. 4.8). This implies that the activation mechanism changes from a 

FHH-AT regime (-1.25 < exponent < -0.85) to the regime where both KT and FHH-AT 

may be applicable with exponent between -1.25 and -1.50. 

Figure 4.9 shows the effect of εi on the magnitude of derived exponent for three 

different values of κ equal to 0.1, 0.61, and 1.0 computed at AFHH = 2.25 and BFHH = 1.20. 

It can be seen that as i  starts decreasing from 1.0, the magnitude of the exponent also 

starts changing from -0.85 (representative of FHH-AT) and starts approaching that of KT 

with exponent equal to -1.5. The effect of different solute type (representative of different 

κ) to aw, and its corresponding, εs (= 1 – εi), to the derived exponent is also addressed by 

Fig. 4.9. It can be seen that as κ increases from 0.1 (representative of dust containing 

oxidized organics) to 0.61 (representative of dust containing (NH4)2SO4), even a small 

decrease in εi can cause an appreciable change in the exponent magnitude, with 

implications to particle water interactions. Similar behavior is seen when going from κ = 

0.61 to κ = 1.0. The results shown in Fig. 4.8 and Fig. 4.9 further substantiate the findings 

by Kumar et al. (2009a, 2010) that CCN activity of fresh dust (εs ~ 0.0) can be 

parameterized by FHH-AT and suggested a combined framework may be required to 

describe CCN activity of dust with a significant soluble fraction. 

The proposed unified framework (Eq. 4.15) is evaluated against experimental 

measurements of CCN activity of Canary Island Dust (CID) and Owens Lake (OL) dust 

samples that are known to contain high concentration of soluble salts as high as 37% by 

mass in Owens Lake (Reheis, 1997) and about 14% sulphates and 5% Calcium-rich salts 
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by volume in dust samples collected around Canary Island (Kandler et al., 2009). Kumar 

et al. (2009a) found xexp equal to -1.33 and -1.36 for CID and OL that could not be 

reconciled by KT or FHH-AT alone. A revised analysis of the exponents for CID and OL 

dust based on approximate salt volume fractions determined from the literature 

demonstrates that the unified approach (Eq. 4.15) can be used to reconcile such 

exponents (also shown in Fig. 4.9). A thorough assessment of the framework world 

require size resolved composition and CCN activation measurement of dust samples with 

significant solutes and is left to be addressed by future studies.  
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Figure 4.7: Ratio of water volume required by KT over FHH-AT to activate CCN as a 

function of supersaturation. Simulations are performed with values of adsorption 

(AFHH, BFHH) and κ for average dust aerosol. Dashed lines represent simulation 

representing upper and lower limit of dust relevant adsorption parameters. 
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Figure 4.8: sc−Ddry lines for different values of εi computed at w = 0.072 N m
−1

, T = 

298.15 K, AFHH = 2.25, BFHH = 1.20, κ = 0.01. The inset table shows theoretical 

exponent associated with sc-Ddry lines shown in the main figure. 
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Figure 4.9: Derived theoretical exponent as a function of εi for different values of κ 

computed at AFHH = 2.25 and BFHH = 1.20. Also shown are data points for Canary 

Island Dust and Owens Lake dust (data obtained from Kumar et al., 2009a).  
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4.7 Conclusions 

In this study, the CCN properties and droplet activation kinetics of aerosol wet 

generated from regional dust samples and individual minerals (clays, calcite, and quartz) 

were measured. The aerosols were generated wet in the lab, and properties were 

measured using the Scanning Mobility CCN Analysis (Moore et al., 2010). Measurement 

of dust size distributions indicated unimodal distributions for regional dust samples with 

particle sizes observed as low as 40 nm. These measurements demonstrate that particles 

generated via wet atomization are up to ten times smaller those generated by the dry soft-

saltation technique. For most minerals (ATD, calcite, illite, and kaolinite) a bimodal dry 

size distribution was obtained. Comparisons with the number size distribution generated 

by the dry technique suggests that the second observed peak in the wet generation method 

could be a consequence of the external mixture containing more hygroscopic particles 

and the less hydrophilic particle mode. Montmorillonite clays were found to behave 

differently when mixed with water as a unimodal size distribution was obtained with the 

wet generation technique. This difference in patterns of number size distribution between 

montmorillonite (unimodal) and illite, kaolinite (bimodal) is related to the aluminosilicate 

layer-layer interactions. 

Measurements of dust CCN activity indicated that the wet generated particles 

were significantly more CCN active than those generated from the dry soft-saltation 

technique with κ ranging between 0.15 – 0.61. For almost all wet generated regional dust 

aerosols, xexp is ~ -1.5 (with the exception of ATD), while a much lower xexp ~ -(0.9 ± 0.2) 

was observed for dry generated dust aerosol. Ion Chromatography (IC) analysis 

performed on regional dust samples indicates negligible soluble fractions. The expected 
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hygroscopicity from this composition was much lower than observed for both wet and 

dry generated aerosol. All together, these results confirm that the presence of soluble 

fractions alone cannot explain fresh dust CCN activity, and the effects of water vapor 

adsorption must be included to comprehensively describe the CCN activity of dry dust. 

These results also question the atmospheric relevance of past studies that used mineral 

dust aerosol generated with the wet atomization method. 

Based on threshold droplet growth analysis, we found that wet generated dust 

aerosol does not exhibit delayed activation kinetics. This behavior of similar activation 

kinetics for wet generated dust (compared to (NH4)2SO4) is different from that  observed 

for dry generated mineral aerosol that exhibits retarded activation kinetics and a reduced 

effective water vapor uptake coefficient (by 30 - 80%) that  is consistent with longer 

timescale associated with adsorption than absorption. 

To account for the CCN activity of dust containing soluble salt fraction, we 

propose a new framework of CCN activation that accounts for concurrent effects of 

solute and water vapor adsorption. This unified framework is based on the core-and-shell 

model and describes equilibrium supersaturation as a function of adsorption parameters, 

hygroscopicity parameter of the soluble fraction, size of the dry particle, and insoluble 

and soluble volume fractions. As expected, the framework predicts that as εi decreases, 

xexp changes from -0.85 (FHH-AT limit) and to -1.50 (KT limit). The new framework 

predicts values of xexp consistent with published CCN activity of playa salts that tend to 

contain a substantial soluble fraction. 

An important finding of this study is that the process of wet generation tends to 

generate hygroscopic particles that are not representative of the parent dust. Therefore, 
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published work showing an augmented CCN activity from wetting may be affected by an 

artifact induced by the wet generation method. The method, however, can still generate a 

less hydrophilic peak, with a size and degree of hydrophilicity similar to dry generated 

dust; this implies that the process of wetting and drying of dust particles may not 

irreversibly change its hydrophilicity. The wet generation method however can still be 

used to explore the dependence of xexp on AFHH, BFHH and soluble volume fraction if the 

size-dependent composition of the particles generated can be measured, and will be the 

subject of future study. 
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CHAPTER 5 

PARAMETERIZATION OF CLOUD DROPLET FORMATION FOR 

GLOBAL AND REGIONAL MODELS: INCLUDING ADSORPTION 

ACTIVATION FROM INSOLUBLE CCN 

 

5.1  Abstract 

 Dust and black carbon aerosol have long been known to have potentially 

important and diverse impacts on cloud droplet formation. Most studies to date focus on 

the soluble fraction of these particles, and overlook interactions of the insoluble fraction 

with water vapor (even if known to be hydrophilic). To address this gap, we developed a 

new parameterization framework that considers cloud droplet formation within an 

ascending air parcel containing insoluble (but wettable) particles externally mixed with 

aerosol containing an appreciable soluble fraction. Activation of particles with a soluble 

fraction is described through well-established Köhler theory, while the activation of 

hydrophilic insoluble particles is treated by “adsorption-activation” theory. In the latter, 

water vapor is adsorbed onto insoluble particles, the activity of which is described by a 

multilayer Frenkel-Halsey-Hill (FHH) adsorption isotherm modified to account for 

particle curvature. We further develop FHH activation theory and find i) combinations of 

the adsorption parameters AFHH, BFHH which yields atmospherically-relevant behavior, 

and, ii) express activation properties (critical supersaturation) that follow a simple power 

law with respect to dry particle diameter. 
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 Parameterization formulations are developed for sectional and lognormal aerosol 

size distribution functions. The new parameterization is tested by comparing the 

parameterized cloud droplet number concentration against predictions with a detailed 

numerical cloud model, considering a wide range of particle populations, cloud updraft 

conditions, water vapor condensation coefficient and FHH adsorption isotherm 

characteristics. The agreement between parameterization and parcel model is excellent, 

with an average error of 10% and R
2 

~ 0.98. A preliminary sensitivity study suggests that 

the sublinear response of droplet number to Köhler particle concentration is not as strong 

for FHH particles. 

 

Citation: Kumar, P., Sokolik, I. N., and Nenes, A.: Parameterization of cloud droplet 

formation for global and regional models: including adsorption activation from insoluble 

CCN, Atmos. Chem. Phys., 9, 2517 - 2532, 2009, www.atmos-chem-

phys.net/9/2517/2009/. 

 

5.2  Introduction 

 It is well established that atmospheric aerosols are often hydrophilic, and can 

serve as Cloud Condensation Nuclei (CCN), upon which cloud droplets are formed 

through the process of activation. Changes in CCN concentration affect the radiative 

properties of clouds, known as the “cloud albedo” or “Twomey” effect of aerosols 

(Twomey, 1974). The enhanced number of droplets is often accompanied by a reduction 

in their size, there by affecting cloud precipitation efficiency. This may result in 

increased cloudiness, which gives rise to the so called “cloud lifetime” or “Albrecht” 

effect of aerosols (Albrecht, 1989). Combined, these “aerosol indirect effects” on clouds 
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perturb the Earth’s radiative budget and constitute one of the most uncertain components 

of anthropogenic climate change (Forster et al., IPCC, 2007). 

Cloud droplet activation is the direct microphysical link between aerosols and 

clouds, and is at the heart of the indirect effect (Nenes and Seinfeld, 2003). Droplet 

activation in atmospheric models is calculated from parameterizations whose 

sophistication ranges from empirical correlations (relating aerosol mass or number 

concentration to cloud droplet number concentration) to physically-based prognostic 

formulations (e.g., Feingold and Heymsfield, 1992; Boucher and Lohmann, 1995; 

Gultepe and Isaac, 1996; Abdul-Razzak et al., 1998; Abdul-Razzak and Ghan, 2000; 

Cohard et al., 2000; Nenes and Seinfeld, 2003, Fountoukis and Nenes, 2005; Ming et al., 

2006; Barahona and Nenes, 2007). All physically-based parameterizations developed to 

date rely on Köhler theory (Köhler, 1936), which considers curvature and solute effects 

on the equilibrium vapor pressure of a growing droplet. Most often, this equilibrium 

curve exhibits a maximum in supersaturation known as critical supersaturation, sc, at a 

critical wet droplet diameter, Dc.  According to Köhler theory, when a particle is exposed 

to supersaturation above sc for long enough to exceed Dc, it is in unstable equilibrium and 

can nucleate a cloud droplet. For atmospherically-relevant conditions of cloud formation, 

it is sufficient to say that a particle acts as a CCN when is exposed to supersaturation 

above sc (Nenes et al., 2001). 

 Insoluble atmospheric particles, like mineral dust and soot, can also act as 

efficient cloud condensation nuclei (e.g., Seisel et al., 2005), if they acquire some amount 

of deliquescent material, such as (NH4)2SO4. The threshold of nucleation substantially 

decreases when water interacts (adsorbs) onto slightly soluble particles giving rise to the 
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process of adsorption activation (Sorjamaa and Laaksonen, 2007; Henson, 2007). Henson 

(2007) showed that a number of existing adsorption models (e.g., Fletcher, 1958; Wexler 

and Ge, 1998) for slightly soluble and insoluble particles can be successfully applied to 

represent droplet formation from adsorption activation. Similarly, Sorjamaa and 

Laaksonen (2007) used the Frenkel-Halsey-Hill (FHH) multilayer physical adsorption 

model to describe water uptake as a function of relative humidity (i.e., water activity) and 

applied the theory to describe the activation of perfectly wettable and insoluble 

hydrophilic CCN. As with Köhler theory, adsorption of water can result in equilibrium 

curves with a critical supersaturation of atmospheric relevance (Henson, 2007; Sorjamaa 

and Laaksonen, 2007). 

 To date, there is no parameterization framework that can concurrently treat the 

competition of insoluble and soluble CCN in the cloud droplet formation process; this 

gap is addressed in this study. This new activation parameterization builds upon the 

frameworks of Nenes and Seinfeld (2003), Fountoukis and Nenes (2005) and Barahona 

and Nenes (2007) to include the effects of adsorption activation, based on the formulation 

of Sorjamaa and Laaksonen (2007). The insoluble particles (referred to in this study as 

FHH particles) are considered to be externally mixed with hydrophilic deliquescent 

particles (referred to as Köhler particles) all of which compete for water vapor in a cloud 

updraft, thus allowing for the comprehensive treatment of kinetic limitations, chemical 

effects (i.e., slow water vapor condensation and surface tension depression) and 

entrainment effects on cloud droplet formation. 

 A brief discussion of FHH adsorption activation and Köhler theory is given in 

section 5.3. Section 5.4 describes the formulation of the new parameterization for 
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sectional and lognormal representation of the aerosol size distribution. An evaluation of 

the parameterization by comparing against predictions of a numerical cloud parcel model 

is done in section 5.5. Section 5.6 provides insight into the competition effects of FHH 

with Köhler particles. Finally, section 5.7 summarizes the major achievements of this 

chapter. 

5.3  Theory of Adsorption Activation 

 A number of adsorption isotherm models exist to describe the process of 

physisorption of gas-phase species onto solid surfaces, such as Langmuir (Langmuir, 

1916), BET (Brunauer, Emmet and Taylor) (Brunauer et al., 1938), and FHH (Frenkel, 

Halsey and Hill) (e.g., Lowell et al., 2004) isotherms. The Langmuir isotherm is the first 

and perhaps the most studied adsorption model developed until to date. However, it is 

limited to describing the adsorption of a monolayer of water vapor, and hence it is not 

applicable to atmospheric particles (where the vapor pressure is high enough to form 

multiple layers of water vapor adsorbed onto the CCN). BET and FHH adsorption 

isotherm models were developed to treat multilayer adsorption, and have been explored 

to study adsorption activation, or, the process of cloud droplet formation from adsorption 

of water vapor onto insoluble particles (e.g., Henson, 2007; Sorjamaa and Laaksonen, 

2007). 
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5.3.1  FHH Adsorption Theory 

FHH adsorption theory (Sorjamaa and Laaksonen, 2007) describes the process of 

adsorption activation in which the water vapor saturation ratio, S, of an insoluble particle 

in equilibrium with surrounding water vapor can be expressed as 
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where w is the activity of the water in the particle, σw is the surface tension at the 

particle-gas interface, Mw is the molar mass of water, R is the universal gas constant, T is 

the temperature, ρw is the density of water, and Dp is the equivalent particle diameter. The 

exponential in Eq. (5.1) is commonly referred to as the curvature, or Kelvin effect. For 

irregularly shaped insoluble particles (such as dust), curvature along the surface varies, 

hence it cannot be described in terms of a single characteristic particle diameter. In this 

study, we consider only the average curvature, as expressed by the equivalent particle 

diameter. Furthermore, the insoluble particle surface is completely wettable (i.e., the 

contact angle between the particle and water is zero), resulting in a uniform distribution 

of water molecules over the particle surface. In the limit of a monolayer, water forms a 

contiguous film, and its activity, w , can be written as )exp( FHHB

FHHw A




(Sorjamaa and Laaksonen, 2007); substitution in Eq. (5.1) then gives 
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where AFHH, BFHH are empirical constants, and Θ is the surface coverage (defined as the 

number of adsorbed water molecules divided by the number of molecules in a monolayer, 

i.e., the number of adsorbed layers of water). AFHH characterizes interactions of adsorbed 
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molecules with the aerosol surface and adjacent adsorbate molecules (i.e., those in the 

first monolayer). BFHH characterizes the attraction between the aerosol surface and the 

adsorbate in subsequent layers; the smaller the value of BFHH, the greater the distance at 

which the attractive forces act (Sorjamaa and Laaksonen, 2007). AFHH and BFHH are 

compound-specific and determined experimentally. AFHH has been experimentally found 

to range from 0.1 to 3.0 while BFHH ranges from 0.5 to 3.0 (Sorjamaa and Laaksonen, 

2007). 

 Equation (5.2) expresses S in terms of Dp and Θ. However, Θ can be expressed in 

terms of Ddry and Dp as (Sorjamaa and Laaksonen, 2007) 
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where Ddry is the dry particle diameter and OHD
2

 = 2.75 Ǻ is the diameter of a water 

molecule adsorbed on the particle surface. Substituting Eq. (5.3) into Eq. (5.2), expressed 

in terms of equilibrium supersaturation, s = S – 1, gives an equation that depends only on 

Dp, 
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 The activation behavior of particles following FHH theory can be rationalized by 

analyzing the derivative of s with respect to Dp 
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where the first and second terms in the right hand side of Eq. (5.5) correspond to the 

contribution due to Kelvin and adsorption effect, respectively. If BFHH is large enough, 

both terms in Eq. (5.5) can become equal for a characteristic wet diameter, Dc, so that

0

 cp DDpdD

ds . Under such conditions, FHH particles behave much like those following 

Köhler theory, with a characteristic maximum s (the critical supersaturation, sc) at the 

critical wet diameter Dc. sc is determined by solving 
pdD

ds
= 0 so Eq. (5.5) becomes 
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 Numerically solving Eq. (5.6) gives Dc, which can then be substituted in Eq. (5.4) 

to obtain sc. Figure 5.1a presents equilibrium curves for combinations of AFHH, BFHH that 

exhibit a maximum sc and its corresponding Dc. 

 If BFHH is small enough so that left hand side of Eq. (5.6) is larger than zero for all 

values of Dp, then the derivative of the equilibrium curve is dominated by the adsorption 

term and the particle either (a) is always in stable equilibrium with the environment, i.e., 

the particles never activate into cloud droplets, or, (b) spontaneously activate at RH less 

than 100% (depending on the asymptotic value of s at very large Dp). Figure 5.1b 

presents examples of such curves, the equilibrium supersaturation does not exhibit a 

maximum, but rather asymptotes to a value, s∞, less than zero. If the ambient relative 

humidity is such that s < s∞, the particle is always in stable equilibrium with the 

environment. Conversely, if s > s∞, the particle spontaneously activates into a cloud 

droplet (even for a relative humidity less than 100%). Such phenomena (i.e. deliquescent 
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clays) have not been observed hence this region of parameter space is considered 

irrelevant for the atmosphere. 
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Figure 5.1: Equilibrium curves for a FHH-type particle of 100 nm dry diameter, and 

combinations of AFHH, BFHH that represent (a) atmospherically-relevant behavior, 

and, (b) spontaneous activation (for RH < 100%). 
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5.3.2  Activation characteristics of Köhler and FHH Particles 

 The activation of particles containing soluble material is described by Köhler 

theory (Köhler, 1936; Seinfeld and Pandis, 2006) in which equilibrium supersaturation is 

given by 

3
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 . Here ns are the moles of solute in the particle and 

ν is the effective van’t Hoff factor of the solute. The sc and Dc for Köhler particles are 

then given by 
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 The above analytical expressions for sc and Dc neglect the insoluble CCN fraction 

in the denominator of the second term on the right hand side of Eq. (5.7), also known as 

“Raoult” term and should not be used for particles with very small soluble fractions (e.g., 

Khvorostyanov and Curry, 2007). 

 For FHH particles, it is important to know of the range of AFHH and BFHH which 

give equilibrium curves with a maximum (like in Fig. 5.1a) and therefore are potentially 

relevant for the atmosphere. This is done by determining the range of AFHH, BFHH, and 

Ddry for which a solution to Eq. (5.6) exists, for the reported range for AFHH and BFHH (0.1 

- 3.0 and 0.5 - 3.0, respectively; Sorjamaa and Laaksonen, 2007), and, Ddry between 0.03 
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μm and 150 μm. When a solution for Dc is found, we normalize it with Ddry to express the 

growth required for FHH particles to activate into cloud droplets. 

 Figure 5.2 shows contour plots of Dc/Ddry for the Ddry equal to 0.25 μm and 20 μm. 

Depending on the existence and value of Dc/Ddry, each plot of Fig. 5.2 can be divided into 

three separate regions: “Region 1” (area filled with purple color, corresponding to BFHH < 

0.6 - 0.7 for any value of AFHH), where equilibrium curves are like in Fig. 5.1b and a Dc 

could not be found. “Region 2” (corresponding to 0.7 < BFHH < 1.0), where equilibrium 

curves resemble those of Fig. 5.1a, for Dc/Ddry > 2. Finally, “Region 3” (area filled with 

red color, corresponding to BFHH > 1.0), where equilibrium curves resemble those in Fig. 

5.1a, and Dc/Ddry < 2. Figures 5.2a and 5.2b, are very similar, despite that they 

correspond to particles with two orders of magnitude difference in dry particle size. This 

suggests that Dc/Ddry has a weak dependence on Ddry. Furthermore, most of the 

atmospherically-relevant combinations of AFHH and BFHH lie in “Region 3”, the value of 

Dc/Ddry lies between 1 - 2. Given that the size of activated droplets at the cloud parcel smax 

are typically much larger than Ddry (Nenes and Seinfeld, 2003), this implies Dp >> Dc for 

FHH particles at smax. This is an important observation that facilitates the computation of 

the condensation rate of water, required in the development of the droplet activation 

parameterization (Section 5.7). Another implication is that the amount of water required 

to activate FHH particles is often much smaller than for Köhler particles of same Ddry 

(Table 5.1) or same sc (not shown). 

 The most appropriate activation theory for a particle depends on the relative 

importance of adsorption vs. solute on water activity. The theory that gives the lowest sc 
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will, in general, be the most appropriate. A quantitative evaluation requires an extensive 

set of simulations and will be the focus of a future study. 

  



 152 

Table 5.1: Comparison of critical to dry particle diameter for FHH and Köhler particles 

 

 

 

 

 

 

 

 

 

 

 

 

a
 Dc calculated from Equation (5.6), AFHH = 0.68, BFHH = 0.93, OHD

2
= 2.75 Ǻ 

b
 Dc calculated from Equation (8b), ν = 3, σw = 0.072 N m

-1
, Mw = 18.0 g mol

-1
, 

424 )( SONHM = 132.14 g mol
-1

, ρw = 1000 kg m
-3

 

The results are provided for (NH4)2SO4 

  

dryD (μm)   aFHHdryc DD /  
  bKohlerdryc DD /  

0.01 1.81 3.13 

0.025 1.86 4.80 

0.05 1.91 7.00 

0.075 1.93 8.53 

1.00 2.13 31.31 

2.50 2.23 49.48 

5.00 2.30 70.01 

7.50 2.32 85.75 

10.00 2.38 99.02 

15.00 2.44 121.27 

20.00 2.48 140.03 
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Figure 5.2: Dc/Ddry contours as a function of AFHH and BFHH for (a) Ddry = 0.25 μm and 

(b) Ddry = 20 μm. 

(a) 

(b) 
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5.4  Formulation of Activation Parameterization 

 The aerosol activation parameterization is based on the cloud parcel framework, 

in which a parcel of air containing an external mixture of Köhler and FHH particles is 

lifted and cooled. When supersaturation develops, droplets begin forming (by the process 

of activation) up to the point where supersaturation generation from cooling balances 

depletion from condensation water; this corresponds to the point of maximum parcel 

supersaturation, smax, and is where droplet activation ceases. If the CCN spectrum (i.e., 

the number of CCN as a function of ambient supersaturation) and smax are known, the 

droplet number, Nd, in the parcel can be computed as the number of CCN that activate at 

smax (Nenes et al., 2001). The new parameterization provides a formulation to determine 

both smax and Nd. Since sectional and lognormal representations of the aerosol particle 

size distribution are most frequently used in the models, formulations are developed for 

both. 

5.4.1  Sectional Representation of CCN Spectrum 

 The sectional representation uses discrete size classes (bins or sections) for the 

aerosol distribution. Each section can have its own chemical composition. If the aerosol 

mixture is composed of k populations (i.e., aerosol types), then a separate binning is 

assigned to each type. The cumulative size distribution is then determined by summing 

over all the populations (Nenes and Seinfeld, 2003) 
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where m is the section of population l that contains particles of size d with bin size limits 

l

lmpD 1)(,   and 
l

lmpD )(, , and Nm(l),l is the aerosol number concentration of section m. 
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 The aerosol critical supersaturation distribution function, )(sns

l
, is then 

determined by mapping the aerosol particle size distribution onto supersaturation 

coordinates (Nenes and Seinfeld, 2003), 
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where sc,i(l) and sc,i(l)-1 are the critical supersaturations corresponding to the boundaries of 

section i and population l,  and Ni(l),l is the concentration of CCN between sc,i(l) and sc,i(l)+1. 

The CCN spectrum, F
s
(s), is then obtained by integration of n

s
(s΄) from s΄= 0 to s΄= s: 

  
 



 




































k

l

k

l

li

j
l

lic

l

lic

l

lic

llilj

s

s

l

s

ss

ss
NNdssnsF

1 1

1)(

1 1)(,)(,

1)(,

),(,

0

')'()(  [5.12] 

 The relationship between 
l

lics )(,  and 
l

lmpd )(,  depends on the theory used for 

describing activation. For Köhler particles, Eq. (5.8) is used, while for FHH particles, the 

procedure outlined in section 5.3.1 is used. 

5.4.2  Lognormal Representation of CCN Spectrum 

 A lognormal distribution is often expressed as sum of several lognormal functions 

(or “modes”) 
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where σi and Dg,i are the geometric standard deviation and median diameter, respectively, 

for the i
th
 lognormal mode, and nm is the number of lognormal modes in the size 

distribution. Assuming each mode (or population) has uniform chemical composition, a 
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power law function can be used to express 
igdry DD ,/  in terms of a critical supersaturation 

ratio, 
igss ,/ , 

x

igig
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s
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  [5.14]                                                                                                                  

where s and sg,i are critical supersaturations of CCN with dry diameter Ddry and Dg,i  

respectively, and x is an exponent that depends on the activation theory used. For 

particles following Köhler theory, x = -3/2 (Fountoukis and Nenes, 2005), while for FHH 

particles, x depends on AFHH and BFHH (see section 5.4.3). 

 The aerosol critical supersaturation distribution function, n
s
(s), can then be 

calculated as follows (Fountoukis and Nenes, 2005) 
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where the negative sign in the right hand side of Eq. (5.15) has been applied to reflect 

that sc decreases as Ddry increases. Implicit is the division of Ddry with 1 μm to 

nondimensionalize the argument in ln Ddry. Substituting 
igdry DD ,/  from Eq. (5.14) into 

Eq. (5.13) gives 
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 Differentiating Eq. (5.14) also gives 

xsds

Dd dry 1ln
  [5.17]                                                                                                                 

 Substituting Eq. (5.16) and Eq. (5.17) into Eq. (5.15) gives 
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 The CCN spectrum, )(sF s  is then obtained by integration of n
s
(s΄) from s΄= 0 to 

s΄= s 
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 [5.19]                                                                

 Equation (5.19) is the generalized form of a CCN spectrum for the lognormal 

particle size distribution, and the value of x encompasses the physics behind the aerosol-

water vapor interaction (i.e., Köhler or FHH). For x = -3/2 (Köhler particles), Eq. (5.19) 

reduces to the formulation given by Fountoukis and Nenes, (2005) 
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5.4.3 Relating sc with Ddry for FHH particles 

In determining the value of x in Eq. (5.14) for FHH particles, we computed 

numerically the ratio of s/sg,i (using the procedure in section 5.3.1) for a wide range of 

Dg,i (0.03 m – 10 m), Ddry (0.05 m – 0.8 m), and AFHH and BFHH (10 different 

combinations as shown in Table 5.2). As can be seen in Fig. 5.3, for given values of AFHH 

and BFHH, s/sg,i and Ddry/Dg,i, exhibit a power-law dependence. This dependence holds for 

the entire range of Dg,i and Ddry considered. Power law fits to these calculations can then 

be used to describe x as a function of AFHH and BFHH, some results of which are shown in 

Fig. 5.4. For each AFHH, x has a maximum at BFHH ~ 1.3 - 1.4, while x is always negative, 

varying from -1.2 to -0.8, depending on the value of AFHH. 
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 Multivariate least squares regression was performed on the activation data for all 

the conditions in Table 5.2 to determine an analytical relationship between x, AFHH and 

BFHH 
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where P1, P2, P3, P4, P5 are fitting parameters, and are given in Table 5.3. Equation (5.21) 

reproduces the fitted x data with a root mean square error of 0.00996 (Fig. 5.4). 

 Equation (5.14) suggests that sc of FHH particles can be written as 
x

dryc CDs  ; C 

is a constant that depends on AFHH and BFHH and is numerically equal to the critical 

supersaturation of a particle of a reference dry diameter. In this study, the reference 

diameter is taken to be 0.1 m; C is then determined by computing sc (Section 5.3.1) over 

a range of AFHH and BFHH. This is presented in Fig. 5.5 where C (shown as symbols) are 

plotted together with a multivariate least squares regression to the following function 

(shown as lines) 
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where C is expressed in μm
-x

, and k, l, m, n, p are fitting constants given in Table 5.4. 

Equation (5.22) reproduces the fitted data with a root mean square error of 0.034. 
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Table 5.2: Cloud formation conditions considered in this study 

Property Values 

αc 0.042, 0.06, 1.0 

V (m s
-1

) 0.1, 0.5, 1.0, 5.0, 10.0 

Tparcel (K) 298 

Pparcel (mbar) 900 

(AFHH  , BFHH) 

combinations considered 

for FHH particles 

(0.25 , 2.00) , (0.50 , 1.00) , (0.50 , 1.75) , (0.68 , 0.93) ,  

(0.75 , 2.00) , (0.85 , 1.00) , (1.00 , 2.00) , (1.50 , 1.50) ,  

                           (2.00 , 1.00) , (2.00 , 2.50) 

Soluble Fraction 

properties 

Species considered: (NH4)2SO4 

Soluble Mass Fraction, ε: 0.5 

Density, ρ: 1760 kg m
-3

 

Van’t Hoff Factor, ν: 3 

Molar Mass: 0.132 kg mol
-1
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Figure 5.3: Plot of ln(s/sg,i) versus ln(Ddry/Dg,i) for (a) Dg,i = 0.03 μm, (b) Dg,i = 0.1 μm, 

and (c) Dg,i = 10.0 μm. 
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Figure 5.4: Exponent x for FHH particles as a function of BFHH for different values of 

AFHH. Shown are values computed using the procedure of section 5.3.1(symbols) 

and the functional fit (line), given by Eq. (5.21). 
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Table 5.3: Fitting parameters in Eq. (5.21) 

AFHH P1 P2 P3 P4 P5 

AFHH ≤ 0.5 -0.01061 -0.101038 4.6382 0.89161 -0.05708 

0.5 < AFHH ≤ 1.5 -0.02848 -0.124812 9.4907 0.87878 -0.06849 

1.5 < AFHH -0.05994 -0.185129 16.2757 0.86681 -0.11858 
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Figure 5.5: Constant C (μm
-x
), which relates sc of FHH particles to Ddry as 

x

dryc CDs  . C 

is presented for the atmospherically-relevant range of BFHH and AFHH; shown are 

calculations using the procedure of section 5.4.3 (symbols) and the functional fit 

(line), given by Eq. (5.22). 
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Table 5.4: Fitting parameters in Eq. (5.22) 

AFHH k l m n p 

AFHH ≤ 0.5 0.211 4.038 0.849 4.156 19.835 

0.5 < AFHH ≤ 1.5 0.398 6.706 0.994 7.039 19.742 

1.5 < AFHH 0.656 8.270 1.364 8.739 19.705 
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5.4.4 Computation of smax and Nd 

The smax in a cloud corresponds to the point where supersaturation generation 

from cooling balances depletion from condensation of water vapor, as well as 

characterizes the point where droplet activation terminates. For a non-adiabatic 

(entraining) cloud parcel ascending with constant velocity V, smax can be determined from 

the solution of the following equation (Barahona and Nenes, 2007) 
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where Dp(τ) is the size of CCN when exposed to s = sc,  is the time where the parcel 

supersaturation exceeds the CCN critical supersaturation, 
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vw , ΔHv is the latent heat of 

condensation of water, g is the acceleration due to gravity, T is the temperature of the 

parcel, Mw is the molar mass of water, Ma is the molar mass of air, cp is the heat capacity 

of air, p
s
 is the water saturation vapor pressure, p is the ambient pressure, e is the 

entrainment rate of dry air into the parcel (m
-1

), and T΄ and RH are the ambient 

temperature and fractional relative humidity, respectively and R is the universal gas 

constant . G in Eq. (5.23) is given by 
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where ka is the thermal conductivity of air, and '

vD  is the water vapor mass transfer 

coefficient from the gas to droplet phase corrected for non-continuum effects (calculated 
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as discussed in section 5.4.5). For an adiabatically rising parcel, e = 0, and hence Eq. 

(5.23) can be simplified to, 
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where Ie(0,smax) is the “condensation integral”, given by 
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Calculation of Ie(0,smax) is detailed in section 5.4.6, which is then substituted in 

Eq. (5.25) and subsequently solved for smax. The number of cloud droplets that form in 

the parcel is 

)( maxsFN s

d   [5.27] 

5.4.5 The water vapor mass transfer coefficient 

It is well known that the mass transfer coefficient of water vapor onto droplets 

(otherwise known as the effective diffusivity), '

vD , varies with particle size (Fukuta and 

Walter, 1970), 
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where
vD is the water vapor diffusivity in air, and c  is the water vapor uptake 

coefficient. The c is a kinetic parameter, expressing the probability of water vapor 

molecules of being incorporated into droplet upon collision. However, processes other 

than accommodation can control the condensation of water vapor (e.g., dissolution 

kinetics, Asa-Awuku and Nenes, 2007). Thus, c  can be used to express collectively all 
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related processes in terms of an effective uptake coefficient. Neglecting to account for the 

size dependency in '

vD  results in overestimating water vapor condensation in the initial 

stages of cloud formation (Feingold and Chuang, 2002; Nenes et al., Fountoukis and 

Nenes, 2005; Ming et al., 2006), which can lead to an underestimation of smax and Nd. 

An analytical form of the condensation integral cannot be derived by substituting 

Eq. (5.28) into Eq. (5.24).  Instead, Fountoukis and Nenes (2005) suggested to use an 

average mass transfer coefficient, avevD , , for the growing droplet population. Assuming 

that c  is constant for all CCN, and lowpD ,  and bigpD ,  express the upper and lower size of 

droplets responsible for the condensation of water vapor (hence mass transfer), avevD ,  can 

be expressed as (Fountoukis and Nenes, 2005) 
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where
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. Based on numerical simulations for a wide range of values 

of conditions, Fountoukis and Nenes, (2005) suggest mD bigp 5,   and 

 0.5,207683.0min 33048.0

,


clowpD   where Dp,low is given in μm. 

5.4.6 Computing the condensation integral Ie(0,smax) 

To compute the condensation integral (Eq. 5.26), we first express it as the sum of 

two terms. The first one gives the contribution from particles that follow Köhler theory, 

),0( maxsIK , whereas the second one from FHH particles, ),0( maxsIFHH  

),0(),0(),0( maxmaxmax sIsIsI FHHKe   [5.30] 
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Using the population splitting approach of Nenes and Seinfeld (2003), ),0( maxsIK

is calculated as 

),(),0(),0( max2,1,max ssIsIsI partKpartKK   [5.31] 

where ),0(1, partK sI  corresponds to Köhler CCN that, at the instant of parcel maximum 

supersaturation, either do not strictly activate (Dp << Dc), or experience significant 

growth beyond their critical diameter (Dp >> Dc). The ),( max2, ssI partK
corresponds to 

CCN that have not grown significantly beyond their critical diameter and for which 


max

2)(2

t

p sdtGD


  (Nenes and Seinfeld, 2003). Calculations of the partitioning 

supersaturation, spart, and ),0(1, partK sI  and ),( max2, ssI partK
 for sectional and lognormal 

size distribution formulations are presented in detail by Nenes and Seinfeld (2003), 

Fountoukis and Nenes (2005), and Barahona and Nenes (2007), and are not repeated 

here. 

),0( maxsIFHH  in Eq. (5.30) represents the contribution of FHH particles to the 

condensation integral. According to section 5.3.2, Dc/Ddry < 2 for most atmospherically-

relevant combinations of AFHH and BFHH, and is much smaller that (Dc/Ddry) for Köhler 

particles with similar dry diameters. Compared to FHH particles, Köhler particles may 

require 8 to 125000 times more water (i.e., 2 to 50 times more in diameter) to become 

activated (Table 5.1). Given that all activated droplets at smax grow to much larger sizes 

than their dry diameter, and that Dc ~ Ddry for FHH particles, hence Dp >> Dc, i.e. 


max

2)(2

t

p sdtGD


 , and the corresponding condensation integral is 



 169 

 
max max max

1/2 1/2

2 2

max max max max

0 0

1
(0, ) 2 ( ') ' 2 ( ) ( ') '

2

s t s

s s

FHHI s Gs G sdt n s ds Gs G s s n s ds
V






   
         

  

 

[5.32] 

where s() is parcel supersaturation at time  and  
maxt

sdt


 in Eq. (5.32) is evaluated using 

the lower bound of Twomey (1959) (Nenes and Seinfeld, 2003). 

For sectional representation of aerosol size distributions, ),0( maxsIFHH  is 

computed by substituting Eq. (5.11) into Eq. (5.32), and performing the integration as 

follows 
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where imax is the boundary closest to smax. 

For lognormal representation of aerosol size distribution, ),0( maxsIFHH  is 

computed by substituting Eq. (5.18) into Eq. (5.32), and integrating 
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where 

i

x
ig ss

u
ln2

)/ln(

1

max,

max



 . In the case of multiple lognormal modes, the right-hand 

side of Eq. (5.34) is summed over all lognormal modes. 
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5.4.7 Using the Parameterization 

The parameterization algorithm is illustrated in Fig. 5.6, and consists of two steps. 

First, Eq. (5.25) is numerically solved for smax using the bisection method 

  01),0(),(),0(
2

maxmax2,1,  sIssIsI
V

FHHpartKpartK

a

w




   [5.35] 

where the condensation integral is substituted with the desirable formulation (sectional or 

lognormal). Physical properties are evaluated at the cloud base conditions for adiabatic 

updrafts (i.e., e = 0). For entraining parcels (i.e., e > 0), properties are evaluated at the 

critical entrainment rate following the procedure of Barahona and Nenes (2007). Once 

smax is determined, Nd is obtained from Eq. (5.27). 
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Figure 5.6: Parameterization Algorithm. C1, C2, f1(s), f2(s) depend on the aerosol 

representation (sectional, lognormal) and are defined in Nenes and Seinfeld 

(2003). 
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5.5  Evaluation of the parameterization 

5.5.1  Method 

We first test the sectional formulation against the lognormal formulation to show 

the equivalence between the two. Then, we evaluate the accuracy of the parameterization 

by comparing the predicted droplet number concentration and maximum supersaturation 

against the numerical parcel model of Nenes et al. (2001) (modified to include FHH 

particles) for a wide range of size distributions representative of global aerosols. 

5.5.2  Evaluation of the involved parameters 

Nenes and Seinfeld (2003), Fountoukis and Nenes (2005) and Barahona and 

Nenes (2007) have extensively evaluated the parameterization for aerosol composed of 

only Köhler particles. Therefore, the focus of this evaluation is on the performance of the 

parameterization when FHH particles are externally mixed with Köhler particles, 

considering a wide range of AFHH, BFHH, water vapor accommodation coefficient, αc, and 

parcel updraft velocity, V. The values of αc and V were selected to represent typical 

conditions encountered in low - level cumulus and stratocumulus clouds of marine and 

continental origin (Pontikis et al., 1987; Conant et al., 2004; Meskhidze et al., 2005; Peng 

et al., 2005, Fountoukis et al., 2007). In total, 6600 different simulations were performed 

(see Table 5.2, 5.5, and 5.6). 

For this comparison, we selected four Whitby (1978) trimodal size distributions, 

namely marine, clean continental, average background, and urban (Table 5.5). In 

addition, we selected four aerosol distributions that are representative of ambient dust 

(Jeong and Sokolik, 2007), the properties of which are given in Table 5.6, and are C04 

(Clarke et al., 2004), D87 (D’Almeida, 1987), O98 (Hess et al., 1998), and W08 
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(Wiegner et al., 2008). As expected, the distributions given by Whitby have smaller 

median diameters in comparison to typical dust distributions. For each aerosol size 

distribution, we consider a parcel of externally mixed Köhler and FHH particles, allowing 

the proportion to vary from 0% (pure Köhler particles) to 100% (pure FHH particles) by 

number. For each FHH particle, we assume 100% of the mass is insoluble with activating 

properties given by AFHH and BFHH. Each Köhler particle has a 50% soluble (NH4)2SO4 

and 50% insoluble material by mass. AFHH was varied between 0.25 to 2.0, while BFHH 

from 0.93 to 2.50. The parcel pressure and temperature were 900 mbar and 298 K, 

respectively, and droplet concentration was computed at 350 m above the cloud base. 
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Table 5.5: Whitby (Whitby, 1978) Aerosol lognormal size distributions used in this study 

 Nuclei Mode Accumulation Mode Coarse Mode 

Aerosol Type Dg1 σ1 N1 Dg2 σ2 N2 Dg3 σ3 N3 

Marine 0.010 1.6 340 0.070 2.0 60 0.62 2.7 3.1 

Continental 0.016 1.6 1000 0.068 2.1 800 0.92 2.2 0.72 

Background 0.016 1.7 6400 0.076 2.0 2300 1.02 2.16 3.2 

Urban 0.014 1.8 106000 0.054 2.16 32000 0.86 2.21 5.4 

Dgi is the median diameter (μm), Ni is the number of dry particles (cm
-3

), and σi is the 

geometric standard deviation of the i
th 

mode. 
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Table 5.6: Aerosol lognormal size distributions used in this study that are representative of mineral dust aerosol (see Jeong and 

Sokolik, 2007) 

 Mode 1 Mode 2 Mode 3 Mode 4 

Size Distribution Dg1 σ1 MF1% Dg2 σ2 MF2% Dg3 σ3 MF3% Dg4 σ4 MF4% 

C04 (Clarke et al., 2004) 0.69 1.46 1.8 1.77 1.85 69.4 8.67 1.50 28.8 - - - 

D87 (D’Almeida, 1987) 0.16 2.10 1.0 1.40 1.90 95.3 9.98 1.60 3.7 - - - 

O98 (Hess et al., 1998) 0.14 1.95 3.4 0.78 2.00 76.1 3.80 2.15 20.5 - - - 

W08 (Wiegner et al., 2008) 0.078 2.2 2.93 0.495 1.7 0.81 1.40 1.9 31.53 6.50 1.7 64.73 

Dgi is the median diameter (μm), σi is the geometric standard deviation, and MFi % is the percentage mass fraction of dry 

particles of the i
th 

mode. Particle number concentration was calculated from percentage mass fraction by assuming a total mass 

equal to 4000 μg m
-3 

and particle density equal to 2.5 g cm
-3 

in the first three distributions. For Wiegner et al. (2008), number 

concentration was converted to percentage mass fraction of dry particles in each mode.  
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5.5.3  Comparison of sectional against lognormal formulation 

The sectional formulation is evaluated against the lognormal formulation by 

comparing Nd predicted by the application of each formulation to the activation of 

lognormal aerosol size distributions shown in Tables 5.5 and 5.6. In applying the 

sectional formulation, 75 sections per mode were used to discretize the lognormal 

distributions. The intercomparison is shown in Fig. 5.7, which depicts the parameterized 

Nd using the sectional versus the lognormal formulation. Figure 5.7a compares Whitby 

(1974) aerosol size distributions, for αc = 0.042, AFHH equal to 0.68, and BFHH equal to 

0.93 while Fig. 5.7b shows comparisons for αc = 0.06, AFHH equal to 2.00, and BFHH equal 

to 1.00. An excellent agreement between the two formulations is obtained for all cases 

considered (R
2
 = 0.9998 and R

2
 = 0.998), suggesting both formulations are equivalent. 
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Figure 5.7: Droplet number concentration, Nd (m
-3

), predicted by the sectional and the 

 lognormal formulations for Whitby (1978) distributions and for the cloud 

 formation conditions of Table 5.2. Results are shown for (a) c = 0.042, and AFHH 

 = 0.68 and BFHH = 0.93 and (b) c = 0.06, and AFHH = 2.00 and BFHH = 1.00. 

 Dashed lines represent  25% deviation. 
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5.5.4  Comparison of sectional parameterization with parcel model 

5.5.4.1 Whitby aerosol distribution 

Figure 5.8 shows that the predicted droplet number from parameterization closely 

follows the predicted droplet number from the parcel model for all conditions of Table 

5.2, thus indicating that there are no regions with systematic biases in the predictions 

(Fig. 5.8a: average relative error: 0.37%  16%, and, Fig. 5.8b: average relative error: 

0.15%  17%). Figure 5.9 shows the comparison for the predicted droplet number 

between the parameterization and the parcel model for individual Whitby (1978) 

distributions. An excellent agreement is apparent, with an average relative error of less 

than 10% (Table 5.7). The only exception is the case of the marine aerosol size 

distribution, where a minor systematic overprediction in parameterized Nd is observed. 

According to Barahona and Nenes (2007), this systematic bias results from an 

underestimation of the droplet size that causes a consequent underestimation of surface 

area available for water vapor condensation. This forces an underestimation of the 

condensation integral, thereby resulting in an overestimation in smax, and hence Nd. 
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Figure 5.8: Droplet number concentration, Nd (m
-3

), predicted by parameterization and 

 the parcel model for Whitby (1978) distributions, for the cloud formation 

 conditions of Table 5.2. Results are shown for (a) c = 0.042, and AFHH = 0.68 

 and BFHH = 0.93 and (b) c = 0.06, and AFHH = 2.0 and BFHH = 1.0. Dashed 

 lines represent  25%  deviation. 
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Figure 5.9: Droplet number concentration, Nd (m
-3

), predicted by parameterization and the parcel model for Whitby (1978) 

 distributions, (a) Background, (b) Marine, (c) Continental, and (d) Urban, for the cloud formation conditions of Table 5.2. 

 Results are shown for c = 0.042 and five different combination of AFHH and BFHH. Dashed lines represent  25% deviation.  
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Table 5.7: Droplet number agreement between the parameterization and parcel model, 

for each aerosol type and conditions in Table 5.2 

Aerosol Type Relative Error (%) Standard Deviation 

Whitby Background (Whitby, 1978) + 5   12 

Whitby Marine (Whitby, 1978) - 20   10 

Whitby Continental (Whitby, 1978) + 2   6 

Whitby Urban (Whitby, 1978) + 7   17 

C04 (Clarke et al., 2004) + 2  5 

D87 (D’Almeida, 1987) + 8  12 

O98 (Hess et al., 1998) + 2  15 

W08 (Wiegner et al., 2008) + 4.5  25 
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5.5.4.2 Dust size distribution 

To test the applicability of this new parameterization to distributions 

representative of dust, we performed an extensive analysis on droplet number predictions 

comparisons between this parameterization and the parcel model on aerosol distributions 

suggested by C04 (Clarke et al., 2004), D87 (D’Almeida, 1987), O98 (Hess et al., 1998) 

and W08 (Wiegner et al., 2008) for the cloud conditions of Table5.2. 

Figure 5.10 shows predictions of droplet number concentration for all conditions 

of parcel updrafts, uptake coefficients, and for different dust distributions, assuming AFHH 

equal to 0.68, and BFHH equal to 0.93. A good agreement is observed between 

parameterization and the parcel model for different updrafts and αc = 0.042 (Fig. 5.10a), 

αc = 0.06 (Fig. 5.10b), and, αc = 1.0 (Fig. 5.10c). The agreement is best at high updrafts 

(5 m s
-1

, 10 m s
-1

); at low updrafts (0.1 m s
-1

, 0.5 m s
-1

) overprediction by the 

parameterized Nd was observed. This is because of the overprediction in maximum parcel 

supersaturation, smax (Fig. 5.11), from an underprediction in droplet size, as explained in 

section 5.5.4.1. The best performance is seen using the W08 (Wiegner et al., 2008) dust 

distribution (Fig. 5.11d). This may be attributed to smaller median diameters for the W08 

(Wiegner et al., 2008) distribution in comparison to the much larger fraction of particles 

greater than 1 micron present in the C04 (Clarke et al., 2004), D87 (D’Almeida, 1987), 

and O98 (Hess et al., 1998) distributions. 

Figure 5.11 compares parcel maximum supersaturation, smax, between the parcel 

model and the parameterization for three different values of accommodation coefficients. 

At low values of αc, a greater overprediction in smax is observed. This consequently 

results in overprediction in the number of activated droplets, and manifests because of the 
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underestimation of surface area available for water vapor condensation for the largest size 

of CCN as explained in section 5.5.4.1. However, this overestimation in cloud droplet 

number becomes important only for very large values of smax that are not found in clouds. 

Inspite of this overprediction in the cloud droplet number, we find that the average 

relative error for all dust representative distributions (Table 5.6) is well below 10% 

(Table 5.7). 
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Figure 5.10: Droplet number concentration, Nd (m
-3

), predicted by the parameterization 

 and the parcel model for the dust size distributions of Table 5.6, and the cloud 

 formation conditions of Table 5.2. Results are shown for AFHH = 0.68 and BFHH = 

 0.93 and (a) c = 0.042, (b) c = 0.06, and (c) c = 1.0. Dashed lines represent  

 25% deviation. 
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Figure 5.11: Parcel maximum supersaturation, smax, predicted by the parameterization and the parcel model, for the V, c conditions 

 of Table 5.2, and dust size distributions of (a) C04 (Clarke et al., 2004), (b) D87 (D’Almeida, 1987), (c) O98 (Hess et al., 

 1998), and (d) W08 (Wiegner et al., 2008) for AFHH = 0.68 and BFHH = 0.93 in all simulations. Dashed lines represent  50% 

 deviation.  
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5.6 On the competition of FHH with Köhler particle for water vapor 

In this section, we provide a first evaluation of the potential impact of adsorption 

activation on cloud droplet number. For this, it is assumed that the aerosol is an external 

mixture of Köhler and FHH particles, both of which are described with a single-mode 

lognormal size distribution obtained from in-situ measurements during the NAMMA 

campaign (Twohy et al, 2009). The geometric mean diameter, Dg, and standard deviation, 

σg, were identical for both particle types (Dg = 0.10 μm, σg = 1.6); the total concentration 

of Köhler particles were maintained constant in all simulations, equal to 225 cm
-3

, while 

the concentration of FHH particles was varied from 22.5 to 2250 cm
-3

. The Köhler 

particles were assumed to be composed of pure (NH4)2SO4, while size-resolved activation 

data of Arizona Test dust (Twohy et al, 2009) were used to constrain values of AFHH, 

BFHH (through least squares fitting to Eq. 5.14) for the FHH particles. In all simulations 

presented, the updraft velocity in the cloud parcel is set to 0.5 m s
-1

, and initial pressure 

and temperature are 298 K and 900 mbar, respectively. 

Figure 5.12 shows the predicted total cloud droplet number (blue curve) as a 

function of FHH to Köhler particle concentration ratio. Also shown are the contribution 

of Köhler (cyan curve) and FHH (green curve) particles to the droplet number, as well as 

the maximum supersaturation (red curve) that develops in the parcel. At low FHH/Köhler 

concentration ratio, all of the droplets in the cloud parcel originate from the Köhler 

particles. As the number concentration of FHH particles increases, the number of droplets 

from adsorption activation increases; the resulting competition for water vapor depresses 

smax and slightly decreases the droplet number forming from Köhler particles. The 

competition effect however of FHH particles water vapor is weaker compared to similar 
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effects from Köhler particles (Ghan et al., 1998), because the amount of water required 

for activation of the former (Dc/Ddry ~ 1) is much smaller than for the latter (Dc >> Ddry). 

As a result, droplet number responds much more strongly to increases in FHH aerosol 

number than for Köhler aerosol. A thorough quantification requires a comprehensive 

investigation and will the subject of a future study. 
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Figure 5.12: Predicted total number of cloud droplets (blue curve) as a function of FHH 

 to Köhler particle concentration ratio, for the conditions describes in section 5.6. 

 Also shown are the contribution of Köhler (cyan curve) and FHH (green curve) 

 particles to the droplet number, as well as the maximum supersaturation (red 

 curve) that develops in the parcel. 
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5.7 Summary 

This study presents a new parameterization of cloud droplet formation for an 

external mixture of soluble particles that activate according to Köhler theory, and, 

completely insoluble, wettable particles that form droplets through adsorption activation 

(following FHH adsorption theory). This new parameterization is the first of its kind and 

is built upon previous work of Nenes and Seinfeld (2003), Fountoukis and Nenes (2005), 

and Barahona and Nenes (2007). 

Formulation of the parameterization is developed for sectional and lognormal 

representations of the aerosol size distribution. To facilitate the analytical development of 

the parameterization, we have further developed FHH activation theory by i) determining 

the combinations of AFHH and BFHH for atmospherically-relevant behavior, and, ii) linking 

critical supersaturation with dry diameter using a simple power law expression, 

determined from numerical solutions to the FHH equilibrium curves. 

The parameterization is tested by comparing predictions of droplet number and 

smax against detailed cloud parcel model simulations. The evaluations are performed for a 

range of updraft velocities, water vapor uptake coefficients, ambient temperature, relative 

humidity, parameters of aerosol size distributions, and AFHH and BFHH. The 

parameterization closely follows the parcel model simulations with a mean relative error 

varying between 2% and 20% depending on aerosol distribution type with an average 

relative error of 10% and R
2
 ~ 0.98. 
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CHAPTER 6 

ADSORPTION ACTIVATION OF DUST GIANT CLOUD 

CONDENSATION NUCLEI (GCCN): IMPLICATIONS FOR CLOUD 

MICROPHYSICS 

 

6.1 Abstract 

The growth of dust giant cloud condensation nuclei (GCCN) by adsorption 

activation mechanism within low-level stratocumulus and deep convective clouds is 

evaluated by its ability to act as a collector drop. It is found that under pristine aerosol 

conditions, dust GCCN has the potential to act as collector drops compared to polluted 

aerosol conditions for both cloud types investigated here. Biases introduced in dust 

GCCN growth by Köhler theory (KT) activation are discussed, and compared against 

those with adsorption activation theory (AT). The effect of dust hydrophilicity on dust 

GCCN growth is also assessed, and is found to effect cloud microphysics of 

stratocumulus clouds, with negligible impact on convective clouds. We also explore 

water vapor accommodation properties associated with dust aerosol and find negligible 

impact on GCCN size. The major conclusion of this study is that dust GCCN growth by 

AT under clean aerosol conditions may affect dust aerosol-cloud-precipitation linkage 

with implications to microphysical evolution of stratocumulus and convective clouds. 
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Citation: Kumar, P., Sokolik, I. N., and Nenes, A.: Adsorption activation of dust giant 

cloud condensation nuclei (GCCN): Implications for cloud microphysics, (manuscript in 

preparation). 

 

6.2 Introduction 

The impact of aerosol on precipitation is one of the largest sources of 

uncertainties in climate change modeling (Levin and Cotton, 2008). The uncertainties are 

caused by a number of factors ranging from aerosol concentration, size and chemical 

composition, type of clouds that are involved (e.g., warm, mixed-phase, or ice) to 

processes that influence precipitation formation. Any mechanism that affects the 

precipitation efficiency ranging from cloud droplet formation to drizzle production is thus 

of significant importance. 

The cloud droplet formation process depends on the concentration of atmospheric 

aerosols that have the ability to serve as cloud condensation nuclei (CCN), upon which 

water vapor can condense to form a cloud droplet. This phenomenon can increase the 

cloud albedo, and is commonly referred to as the first aerosol indirect effect (Twomey, 

1977). High CCN concentrations can further enhance the production of more but smaller 

cloud droplets, resulting in increased cloud lifetime and its consequent effect on reduced 

precipitation. This effect is known as the second aerosol indirect effect (or the cloud life 

time effect; Albrecht, 1989). Due to their small size and relative abundance in the 

atmosphere, the role of CCN to droplet formation and its consequent effect on 

precipitation has been a focus of many studies (e.g., Rosenfeld, 1999, 2000; Andreae et 

al., 2004). However, much less understood is the effect of giant cloud condensation 

nuclei (GCCN) on cloud droplet nucleation and drizzle formation. In literature, GCCN is 
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vaguely defined as particles with dry particle diameter greater than 5 µm and are 

considered equally important due to their effect on cloud microphysics and precipitation. 

Amongst atmospheric aerosols, mineral dust represents the dominant fraction of 

particulate by mass in the atmosphere. Due to its large size compared to other 

tropospheric aerosols, mineral dust is one of the major sources of natural coarse mode 

aerosol in the atmosphere (Kouimtzis and Samara, 1995). However, there still exists a big 

gap in the understanding of mineral dust as a GCCN. 

The influence of dust CCN on warm clouds can be more significant if they are 

large enough to act as a GCCN thus altering precipitation efficiency (i.e., promote or 

suppress precipitation). Some studies suggest that large salt containing dust particles can 

initiate precipitation formation by broadening the droplet spectrum and enhancing cloud-

coalescence processes in a cloud cycle (Feingold et al., 1999; Rudich et al., 2002). Yin et 

al. (2002) used parcel model simulations to show that dust GCCN can promote 

precipitation due to formation of a soluble coating on particle surface, causing dust 

GCCN to grow by collection. On the other hand, some satellite-based studies (e.g., 

Rosenfeld et al., 2001; Mahowald and Kiehl, 2003) suggested that dust particles can also 

decrease the collision-coalescence process, thus increasing cloud lifetime and reducing 

precipitation efficiency. 

A number of studies have also addressed the impact of the GCCN concentrations 

on precipitation efficiency. Van den Heever et al. (2006) investigated the effects of 

increasing GCCN concentrations from relatively clean conditions to dusty conditions, 

using measurements from the CRYSAL-FACE field campaign. Their study concluded 

that while more liquid water was produced under dusty conditions, precipitation 
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processes were suppressed resulting in a reduction of total precipitation reaching the 

ground compared to the clean case. Teller and Levin (2006) found that increasing GCCN 

concentration led to a decrease in precipitation in clean clouds but increased precipitation 

in polluted clouds. The enhancement in precipitation from GCCN concentrations was a 

result of increased graupel production within the clouds. Additionally, dust GCCN in 

warm clouds can also evaporate cloud droplets, thus decreasing the number of collector 

drops and the probability of precipitation formation. This effect is commonly known as 

the Semi-Direct effect (Huang et al., 2006). Inconsistencies in defining size of GCCN 

(Levin et al., 1996; Feingold et al., 1999) as well as confusions on the ability of pristine 

or aged dust to act as GCCN (Yin et al., 2002) further complicate the understanding of 

dust-cloud-precipitation interactions, and their subsequent impacts on the climate and the 

hydrological cycle. 

It has been well recognized that dust originating from major desert regions (e.g., 

Sahara, Gobi, and Taklamakan) can be transported large distances with implications to 

aerosol and cloud properties. Saharan dust from northern Africa can travel across the 

Atlantic Ocean (Karyampudi, 1979; Karyampudi et al., 1999) and can affect parts of 

Barbados as well as the eastern and southeastern parts of the United States (Li et al., 

1996; Savoie and Prospero, 1997). Prospero (1999) also concluded based on the 23 years 

record that large concentrations of Saharan dust are transported from North Africa into 

Florida every year with daily concentrations ranging from 10 – 100 µg m
-3

. Similarly, 

significant amounts of Saharan dust were also observed across the Eastern Mediterranean 

into Europe during the circulation period of the year (Kallos et al., 2007). In turn, Asian 

dust can also travel across the Pacific Ocean, regularly affecting Hawaii and the western 
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United States (Perry et al., 1999; Sassen, 2002). Thus it is important to quantify the 

interactions of dust with different cloud types that are encountered along the route of dust 

transport, and their consequent effects on cloud dynamics and precipitation. 

One such campaign that focused on understanding the interactions of aerosols 

with low level stratocumulus clouds was the Atlantic Stratocumulus Transition 

Experiment (ASTEX) (Albrecht et al., 1995) that was conducted off the northwest coast 

of Africa. As this location coincides with the major transport route of Saharan dust to 

Europe and southeastern United States, appreciable amounts of dust embedded in lower 

levels of shallow clouds were detected during ASTEX (Clarke et al., 1996; Chazette et 

al., 2001). Thus low level marine stratocumulus clouds observed during the ASTEX 

campaign provide an ideal framework to investigate the interaction of dust GCCN with 

cloud and its effect on cloud dynamics. The relevance of this case study to dust GCCN-

cloud interactions is further substantiated by the impact of stratocumuli on boundary 

layer (BL) dynamics through the vertical distribution of heat and water vapor (Paluch and 

Lenschow, 1991; Feingold et al., 1996; Stevens et al., 1998), and because of the modest 

amounts of precipitation from such clouds to the Earth’s surface. 

More recently during the Cirrus Regional Study of Tropical Anvils and Cirrus 

Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE) (Jensen et al., 2004) over 

the Florida peninsula, high aerosol concentrations associated with the transport of 

Saharan dust were observed (DeMott et al., 2003; Sassen et al., 2003). Majority of studies 

associated with dust during CRYSTAL-FACE have focused on understanding the effects 

of dust as Ice Nuclei (IN) during cirrus clouds formation; with only a few addressing the 

impact of dust as CCN and GCCN (Van Den Heever et al., 2006; Toon, 2003). Therefore, 
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CRYSTAL-FACE provides another ideal case study to evaluate the impacts of long-

range transport dust GCCN at high altitudes on the deep convective clouds. 

In this chapter, the effect of dust GCCN on droplet growth and its implications to 

cloud precipitation processes will be addressed. The growth of dust GCCN is simulated 

using a trajectory ensemble model (TEM) approach of Stevens et al. (1996) that employs 

a large eddy simulation (LES) of a cloud field coupled with a cloud parcel model. The 

effect of adsorption activation on the dust GCCN growth within the low level 

stratocumulus and deep convective clouds is investigated considering ASTEX and 

CRYSTAL-FACE campaigns, respectively. This study focuses on the examination of the 

efficiency of dust GCCN to precipitation processes by studying the effects of mineral 

aerosol FHH adsorption parameters (AFHH and BFHH), sensitivity to the dry GCCN size, 

and the effective water vapor uptake coefficients. 

The chapter is organized as follows. Section 6.3 describes the TEM model and the 

steps of GCCN growth calculations. In section 6.4, some details on TEM simulations 

used in this study are provided. Section 6.5 presents the results of simulations. Finally, 

section 6.6 summarizes major findings of this work. 

6.3 TEM Model 

The growth of dust GCCN within a cloud type is simulated using the trajectory 

Ensemble model (TEM) approach of Stevens et al. (1996). The TEM employs a large 

eddy simulation (LES) of a cloud field to obtain a set of Lagrangian trajectories that 

captures the variability of thermodynamic properties and dynamics within the cloud. The 

time evolution of the parcel thermodynamic state is then used to drive a parcel model; 

which computes the liquid water content, water vapor supersaturation profiles, parcel 
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temperature, and activation and droplet growth of GCCN in the parcel. A horizontal 

ensemble average GCCN size throughout the boundary layer is calculated. 

6.3.1 TEM Model Equations 

Each trajectory contains information that characterizes the thermodynamic state 

of a material point as it is advected through a flow field. The information contained in 

each trajectory includes time, t, position coordinates, x, y, and z, pressure, P, potential 

temperature in moist air, θl, and the total (liquid and vapor) water mass mixing ratio, wt. 

The time step between two consecutive trajectory points is 2 seconds. All material points 

are initially taken below cloud level to ensure that their initial liquid water content 

(LWC) is approximately zero. The tendencies of x, y, z, P, θl, and wt are calculated by the 

finite difference between two consecutive time steps. 

The information on parcel temperature, T, is not directly available from the 

trajectories and is computed from θl as 
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where ΔHv is the latent heat of vaporization of water, Cp is the molar heat capacity of air, 

wl is the liquid water mass mixing ratio, P
o

 is the reference pressure equal to 1000 mbar, 

and R is universal gas constant. Equation (6.1) is solved for T as 
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The rate of change T with t is calculated from Eq. (6.2) as 
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where 
dt

d l  and 
dt

dP
 in Eq. (6.3) are approximated using 

t

l




and 

t

P




 from the trajectory 

output. 

Parcel water vapor supersaturation, S, is calculated from the water vapor mass 

mixing ratio, wv (Seinfeld and Pandis, 2006) as 

v

w

o

a

v

v w
MP

PM

w

w
S 

*
        

[6.4] 

where *

vw  is the saturation water vapor mixing ratio, Mw and Ma are the molar masses of 

water and air respectively. wv is calculated from the conservation of water in the parcel as 
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The liquid condensation rate is given as (Seinfeld and Pandis, 2006) 
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where Ni is the number of droplets in each size class, i per unit mass of air, ρw is the 

density of water, and Dpi is the droplet diameter of each size class. 

The growth of GCCN is determined by solving the droplet growth/evaporation 

rate equation given by (Seinfeld and Pandis, 2006) 
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where Dpi is the droplet diameter, s is the parcel supersaturation, w is the water density, 

Mw is the molar mass of water, R is the universal gas constant, T is the average parcel 

temperature, 


OHP
2

is the equilibrium water vapor pressure, vH is the enthalpy of 

vaporization of water, '

vD  is the diffusivity of water vapor in air modified for 

noncontinuum effects, and '

ak  is the thermal conductivity of air modified for non-

continuum effects. Here '

vD  is defined as (Fukuta and Walter, 1970) 
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where Dv is the diffusivity of water vapor in air and c is the water vapor uptake 

coefficient. '

ak  is given by 
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where Ma is the mean molar mass of air, ka is the thermal conductivity of air, a is the air 

density, cp is the heat capacity of air, and T is thermal accommodation coefficient (equal 

to 1.0). 

The non-modified water vapor diffusivity, Dv, and the thermal conductivity of air, 

ka, are given by 
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For insoluble dust GCCN activating according to FHH-AT, the equilibrium 

supersaturation of the droplet, seq, is given by Kumar et al. (2009) 

FHHB

OH

dryp

FHH

pw

ww
eq

D

DD
A

DRT

M
s















 


2
2

4




     [6.13] 

where w is the CCN surface tension at the point of activation (Pruppacher and Klett, 

1997), Ddry is the dry CCN diameter, 
OHD

2
 is the diameter of water molecule equal to 

2.75 Å (Kumar et al., 2009), and AFHH and BFHH are adsorption parameters constrained 

from the activation experiments (Kumar et al., 2010). 

To summarize, parcel T is calculated using Eq. (6.2) from initial conditions of θl, 

P and wt assuming that wl is negligible. The initial S is calculated using Eq. (6.4). The 

initial Dpi is calculated using Eq. (6.8), assuming the aerosol is in equilibrium with S. 

6.3.2 Calculation of Supersaturation Profiles 

The supersaturation profiles associated with each trajectory set are derived using a 

parcel model initialized with a prescribed set of CCN distributions, constrained by the 

thermodynamic information contained in trajectories. In this study, two sets of 

supersaturation histories, one characteristic of a pristine environment (marine size 

distribution of Whitby, 1978) and another representing polluted environments (urban size 

distribution of Whitby 1978) were derived for each LES trajectory set. Table 6.1 contains 

information on CCN distribution parameters. A simple aerosol chemical composition of 

(NH4)2SO4 is assumed for the aerosol size distribution while calculating the 

supersaturation profiles. Using (NH4)2SO4 aerosol chemical composition to represent 

clean and urban aerosol conditions is explained below. 
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Ideally, the supersaturation profiles should be generated using size distributions 

that are typical of the mineral dust aerosol and activation being described by FHH-AT. 

However, since two extreme CCN conditions (pristine vs. urban) are considered with 

activation being described by KT, the resulting competition for water vapor will be more 

intense between KT particles that between FHH-AT particles of same size (Kumar et al., 

2009). Therefore, it is unlikely that the ideal cloud supersaturation levels will lie outside 

of the two cases and hence the approach should suffice. 

 

Table 6.1: Aerosol size distributions from Whitby (1978) used in this study 

 Nuclei Mode Accumulation Mode Coarse Mode 

Aerosol Type Dg1 σ1 N1 Dg2 σ2 N2 Dg3 σ3 N3 

Marine 0.010 1.6 340 0.070 2.0 60 0.62 2.7 3.1 

Urban 0.014 1.8 106000 0.054 2.16 32000 0.86 2.21 5.4 

Dgi is the median diameter (μm), Ni is the number of dry particles (cm
-3

), and σi is the 

geometric standard deviation of the i
th 

mode. 
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6.3.3 Calculations of GCCN Growth 

The model algorithm illustrating the procedure used in calculating the growth of 

GCCN within a cloud field is presented in Medina and Nenes (2004), and hence it is only 

briefly described here. The Lagrangian trajectories obtained from LES simulations 

together with information of CCN size distribution are used as inputs into the cloud 

parcel model to derive supersaturation history for each trajectory set. Dust GCCN with a 

certain composition (given by AFHH and BFHH) is introduced into the cloud field and 

grows according the Eq. (8). The effect of small scale local fluctuations on individual 

droplets is neglected. The droplet is allowed to traverse the cloud field, and horizontally 

averaged GCCN size is then calculated to represent the average vertical profiles of 

GCCN size. 

6.4 Simulation Setup 

6.4.1 Stratocumulus Clouds 

The Lagrangian trajectories of cloud fields observed during the ASTEX 

Campaign were used as representative of low level stratocumulus clouds. The trajectories 

describe two marine stratocumulus cloud simulations namely ASTEX-1 and ASTEX-2 

under conditions observed during the campaign. ASTEX-1 represents a non-precipitating 

cloud, while ASTEX-2 is a heavily drizzling cloud. The stratocumulus clouds considered 

here cover the entire simulation domain (2.8  2.8 km
2
) and persist for the duration of the 

simulation time (Zhu et al., 2004). 500 trajectories covering 1 hour of simulation time 

were derived for each cloud type. Output was saved every 2 seconds. Important 

characteristics of each cloud have been described in detail by Medina and Nenes (2004) 
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and are not repeated here. However, we note that both clouds are energetic enough to 

maintain droplets of sizes up to 80 µm in diameter. 

6.4.2 Deep Convective Clouds 

Trajectories representing deep convective clouds observed during CRYSTAL-

FACE were used to study the interaction of long-range transported African dust GCCN 

with high level clouds. This cloud field covered only 22% of the 6.0  6.0 km
2

 of the 

simulation domain and dissipated on the time scale of ~ 30 minutes. The 61 convective 

trajectories covering 30 minutes of simulation time were used and the output was saved 

every 10 seconds. 

6.4.3 Composition and Size of GCCN 

Mineral aerosol representing GCCN is considered with properties given by the 

adsorption parameters AFHH and BFHH. Kumar et al. (2010) found on average for dusts, 

AFHH = 2.25 ± 0.75 and BFHH = 1.20 ± 0.10. Therefore in this study, we explore the 

sensitivity to the range of  0.75 for AFHH and  0.10 for BFHH relevant to mineral aerosol. 

We also consider several initial dry dust GCCN diameters (1 µm, 2.5 µm, 5 µm, and 10 

µm) to test the sensitivity of GCCN growth to its initial dry size. The chosen size range is 

representative of dust sizes expected to be found in low level stratocumulus and deep 

convective clouds. Finally, the effect of water vapor mass transfer uptake coefficient, αc, 

on the growth of GCCN is also explored. Kumar et al. (2010) suggested that αc, for dust 

aerosol is 30 – 80% lower than what is expected for (NH4)2SO4. Hence, simulations are 

designed to test GCCN growth sensitivity with αc equal to 0.1, 0.042, and 0.025.  
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6.5 Simulation Results 

6.5.1 Comparison of Cloud Types Scenarios 

Important characteristics associated with each cloud observed and simulated 

during ASTEX-1, ASTEX-2, and CRYSTAL-FACE are shown in Fig. 6.1. It can be seen 

from Fig. 6.1a that LWC (liquid water content) in the ASTEX-2 case is ~ 0.8 g m
-3

, 

which is higher than that observed for ASTEX-1 with LWC ~ 0.4 g m
-3

. This is 

consistent with cloud types observed during the campaign, with ASTEX-2 representative 

of heavily drizzling cloud, and ASTEX-1 representing non-drizzling cloud. It can be also 

seen that ASTEX-1 has a higher cloud base (~ 400 m) compared to ASTEX-2 with cloud 

base at ~ 200 m. Figure 6.1a also shows the LWC profile for CRYSTAL-FACE that is 

representative of a deep convective cloud. It can be seen that CRYSTAL-FACE has a 

cloud base at ~ 400 m and extends much higher up to as high as 2200 m. 

The characteristic supersaturation profiles derived for the clean and polluted 

environments that will be investigated in this study are also shown in Fig. 6.1. 

Supersaturation profiles generated for the two conditions derived for stratocumulus 

clouds during ASTEX-1 are shown in Fig. 6.1b. It can be seen that the derived 

supersaturation profile (used to drive GCCN growth in the parcel model) for the clean 

case exhibits a higher supersaturation than for the polluted case. This is expected and is a 

consequence of increased competition effects for the amount of available water vapor 

(Nenes et al., 2001) in polluted aerosol conditions that lead to lower supersaturations in 

clouds relative to the clouds observed in pristine environments. It is also noted that this 

reduction in cloud water vapor supersaturation is expected to decrease the overall driving 

force for GCCN growth, thereby reducing the possibility of dust GCCN to grow and 
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become efficient collector drop in polluted clouds compared to pristine clouds. This is 

also discussed briefly in section 6.5.2. Similar behavior with lower cloud water vapor 

supersaturation associated with polluted environments for ASTEX-2 and CRYSTAL-

FACE is also observed (not shown).  
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Figure 6.1: (a) LWC profiles observed during ASTEX-1, ASTEX-2, and CRYSTAL-

FACE. (b) Simulated cloud water vapor supersaturation profiles in clean and 

polluted aerosol conditions during ASTEX-1.  
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6.5.2 Effect of Dry Size on Dust GCCN Growth 

The analysis presented here and in following sections is performed to address the 

effect of adsorption activation on dust GCCN growth. In terms of the microphysical 

evolution of the cloud, the size of GCCN inside the cloud field is of importance because 

GCCN larger than 40 µm can act as effective collector drops (Feingold et al., 1999). 

Figure 6.2 presents the average growth of dust GCCN with dry sizes of 1 µm, 2.5 

µm, 5 µm, and 10 µm under pristine (dashed lines) and polluted (solid lines) conditions 

for cloud types observed during ASTEX-1 (Fig 6.2a), ASTEX-2 (Fig 6.2b), and 

CRYSTAL-FACE (Fig 6.2c). Simulations shown in Fig. 6.2 are performed for AFHH = 

2.25 and BFHH = 1.20; adsorption parameters representative of dust aerosol (Kumar et al., 

2010). Simulations suggest that as GCCN dry size increases, the resulting GCCN droplet 

size inside the cloud field also increases. This implies that dust aerosols with dry sizes 

between 1 µm to 10 µm (and greater) representative of coarse mode dust can grow by 

adsorption activation mechanism, and possess potential to reach sizes of 40 µm or greater 

in the presence of sufficient water vapor supersaturation levels. This confirms that the 

dust GCCN can affect the aerosol-cloud-precipitation linkage in both low level 

stratocumulus clouds and deep convective clouds. This result is of significant importance 

as it confirms that fresh dust entrained in boundary layer interacting with low level 

stratocumulus clouds or long-range transported dust interacting with deep convective 

clouds can affect the cloud microphysics with implications to precipitation efficiency. 

It can be also seen from Fig. 6.2 that for all three cases of ASTEX-1, ASTEX-2, 

and CRYSTAL-FACE, the resulting GCCN droplet sizes under pristine conditions are 

significantly greater than the simulated sizes for the polluted environments. This is 
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consistent with greater supersaturation levels observed in pristine conditions (Fig. 6.1b) 

and explains the difference in observed droplet growth. Furthermore, for simulations 

representative of pristine conditions, the dust GCCN can grow to sizes greater than the 

threshold size of 40 µm in ASTEX-2 (Fig. 6.2b). This implies that dust GCCN, with BFHH 

equal to 1.20 and with a dry size as low as 1 µm can act as an efficient collector drop in 

clouds representative of low level heavy-drizzling marine stratocumulus type. A similar 

behavior is also observed under pristine condition of ASTEX-1, where dust GCCN grows 

to up to 35 - 38 µm, and much higher than those simulated under polluted conditions of 

ASTEX-1. As 40 µm is only an approximate indicator of collector drops and can vary 

from cloud to cloud, it can be assumed that for certain low level stratocumulus clouds 

even a droplet size of up to 35 µm may be efficient to make GCCN an efficient collector 

drop. This implies that dust GCCN when present under clean conditions, may have the 

potential to change the cloud from a non-precipitating to precipitating state. This also 

suggests that Niger dust (BFHH = 1.27), representative of African dust embedded in low 

level marine stratus clouds observed during ASTEX, can serve as collector drop with 

implications to precipitation. 

Figure 6.2c shows that dust GCCN can grow to sizes greater than 40 µm under 

pristine conditions of CRYSTAL-FACE for BFHH equal to 1.20 representative of fresh 

dust aerosol. As dust ages during long-range transport, it is expected to become more 

hydrophilic. This implies that aged Niger dust GCCN would grow to sizes greater than 

(40 µm) those simulated for pristine conditions of CRYSTAL-FACE and can also affect 

cloud microphysics of deep convective clouds. Furthermore, the increased collector drop 

potential of dust GCCN under clean conditions of deep convective clouds can also affect 
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ice and graupel formation in ice and mixed phase clouds respectively, with more water 

being retained in liquid phase. 

Simulations performed for polluted conditions of ASTEX-1, ASTEX-2, and 

CRYSTAL-FACE indicate that dust GCCN growth is inhibited with observed maximum 

size much lower than the critical threshold of 40 µm in both (low level) stratocumulus 

and (high level) convective clouds. This implies that for low level marine stratocumulus 

clouds (drizzling or non-drizzling) embedded with high CCN concentrations (of dust or 

other aerosol types) observed off northwest coast of Africa, or deep convective clouds 

associated with long-range transport of African dust, dust GCCN if present may not 

affect drizzle formation by serving as a collector drop, for conditions considered in this 

study. 
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Figure 6.2: Average growth of dust GCCN with AFHH = 2.25 and BFHH = 1.20 for (a) 

ASTEX-1, (b) ASTEX-2, and (c) CRYSTAL-FACE. Solid and dashed lines 

represent polluted and pristine aerosol conditions, respectively.  
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6.5.3 Effect of CCN Concentration and Activation Physics on Dust GCCN Growth 

All studies to date on dust GCCN cloud precipitation linkages address the affect 

of dust GCCN activation and its subsequent growth by Köhler Theory (KT; Köhler, 

1936). However, based on the dependence of critical superstation with dust dry diameter, 

Kumar et al. (2010) found that FHH-AT is a better description of fresh dust CCN 

activity. Therefore, this study also addresses the effect of activation physics on the 

growth of dust GCCN, and its implications to cloud precipitation efficiency. 

Figure 6.3 presents simulations for the average growth of dust GCCN of dry sizes 

equal to 1 µm, 2.5 µm, 5 µm, and 10 µm activated by FHH-AT (dashed lines) and by KT 

(solid lines) for clean and polluted conditions for cloud types observed during ASTEX-1 

(Fig 6.3a, 6.3d), ASTEX-2 (Fig 6.3b, 6.3e), and CRYSTAL-FACE (Fig 6.3c, 6.3f). 

Simulations are performed for AFHH = 2.94 and BFHH = 1.27, representative of adsorption 

parameters determined for Niger dust aerosol (Kumar et al., 2010). The KT activation in 

ASTEX-1 an ASTEX-2 is parameterized by the hygroscopicity parameter, κ (Petters and 

Kreidenweis, 2007) equal to 0.02 for Niger dust (Kumar et al., 2010). It can be seen from 

Fig. 6.3 that dust GCCN growth is different under polluted and clean conditions for the 

same cloud type. For instance, under relatively clean conditions observed during 

ASTEX-1 (Fig. 6.3a), ASTEX-2 (Fig. 6.3b), and CRYSTAL-FACE (Fig. 6.3c), growth 

of GCCN by FHH-AT produces droplets of sizes almost equal to or greater than 40 µm. 

However, dust GCCN growth is inhibited under polluted conditions (Fig. 6.3d, 6.3e, 6.3f) 

with droplet of sizes much lower than 40 µm being simulated. This suggests that dust 

GCCN under polluted conditions may not affect precipitation efficiency, but if present in 

pristine environment, dust GCCN can serve as collector drops and increase precipitation 
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efficiency. These results of increased precipitation efficiency by dust GCCN in clean 

environments are consistent with the findings of Rosenfeld et al. (2001) and Van den 

Heever et al. (2006) that dust suppressed precipitation efficiency under conditions with 

enhanced CCN concentrations. 

It can be also seen in Fig. 6.3 that activation by KT or FHH-AT has different 

effects on the dust GCCN growth in clouds with identical supersaturation levels (or 

identical CCN concentrations). For instance, under pristine conditions of ASTEX-1 (Fig. 

6.3a) and ASTEX-2 (Fig. 6.3b), dust GCCN growth by KT has a relatively smaller 

impact on precipitation efficiency with observed GCCN droplet sizes for Niger dust 

either smaller or of the same order as those predicted when growth is described by FHH-

AT. This implies that if dust GCCN activates by KT, it may incorrectly inhibit GCCN 

growth under clean conditions with implications to reduced precipitation efficiency. The  

impact of activation physics is more pronounced under polluted environments (Fig. 6.3d, 

6.3e) where dust activation by KT can make GCCN droplets size appear larger than what 

they actually should be when activated by FHH-AT. For instance, simulations performed 

on stratocumulus clouds under polluted conditions of ASTEX-2 indicated that dust 

GCCN if activated by KT can increase precipitation efficiency by inaccurately growing 

dust GCCN to sizes of efficient collector drops. This is contradictory to findings by 

previous studies, and confirms the inappropriateness of using KT to represent the dust 

GCCN activation. In addition, as GCCN dry size increases from 1 μm to 10 μm, the 

impact of KT to dust GCCN growth is more pronounced than FHH-AT. This is because 

as the dry size of the dust GCCN increases, the corresponding solute volume fraction (for 

KT) increases, but surface area to volume ratio (for FHH-AT) decreases. This can be seen 
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in Fig. 6.3e, where the observed droplet sizes of dust GCCN activated by KT are 

inaccurately simulated to be as large as 40 µm with implications to cloud precipitation 

processes. 

In this study, we also address the effect of KT and FHH-AT on dust GCCN 

growth in deep convective clouds observed during CRYSTAL-FACE. Simulations 

performed (not shown) for Niger dust using KT (with κ = 0.02) and dust GCCN of dry 

sizes equal to 1 µm, 2.5 µm, 5 µm and 10 µm under pristine and polluted conditions of 

CRYSTAL-FACE indicated negligible growth. Therefore, simulations were repeated 

with κ = 0.03, and are compared against those by FHH-AT as shown in Fig. 6.3c and 

6.3f. Based on the results (Fig. 6.3c, 6.3f), it can be concluded that if dust activates 

according to KT (i.e. parameterized using κ representative of fresh dust), dust GCCN 

should not affect cloud precipitation efficiency (and cloud microphysics) in convective 

clouds under both polluted and pristine environments. However, when dust GCCN 

activation is described with FHH-AT, it is found that under pristine conditions (Fig. 

6.3c), dust GCCN can increase precipitation efficiency. These results are consistent with 

previous studies on dust GCCN in CRYSTAL-FACE clouds (e.g., Van den Heever et al., 

2006), suggesting that dust particles can promote precipitation under pristine conditions. 

Furthermore, the analysis performed here also questions previous studies on dust GCCN 

effect on cloud microphysics, with activation described by KT.  
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Figure 6.3: Average growth of dust GCCN with AFHH = 2.25 and BFHH = 1.20 for (a,d) ASTEX-1, (b,e) ASTEX-2, and (c,f) CRYSTAL-

FACE. Top and bottom panels correspond to pristine and polluted aerosol conditions, respectively. Solid and dashed lines refer to 

growth by KT and FHH-AT, respectively. κ = 0.02 for (a), (b), (d), (e), and κ = 0.03 for (c), (f).    
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6.5.4 Effect of BFHH on Dust GCCN Growth 

The adsorption parameter BFHH controls the hydrophilicity of dust GCCN. Based 

on laboratory measurements of dust CCN activity, Kumar et al. (2010) found BFHH equal 

to 1.20  0.10 for mineral aerosol, with lower BFHH values corresponding to a more 

hydrophilic dust. As non-drizzling marine stratocumulus clouds are most ubiquitous in 

the atmosphere, the effect of BFHH on the dust GCCN growth required to translate cloud 

from a non-drizzling to a precipitating state is investigated in this section. The effect of 

BFHH on the dust GCCN growth in clean condition observed during ASTEX-1 is 

simulated and is shown in Fig. 6.4a. It can be seen that as BFHH decreases from 1.30 to 

1.10, the resulting driving force for condensational growth in Eq. (8) increases 

consequently. This results in larger wet size of the dust GCCN in cloud for BFHH = 1.10 

when compared to less hydrophilic dust GCCN (with BFHH = 1.30) for the same dry 

diameter. A similar behavior of increasing hydrophilicity with decreasing BFHH is also 

observed for polluted environments of ASTEX-1 as well as clean and polluted conditions 

of ASTEX-2 (not shown). The effect of BFHH on dust GCCN droplet size is also explored 

under the clean and polluted conditions observed during CRYSTAL-FACE. Consistent 

with the above results, an increase in GCCN droplet size with a reduction in BFHH value 

was found under both clean (not shown) and polluted conditions (Fig. 6.4b) of 

CRYSTAL-FACE. 

The data shown in Fig. 6.4a suggest that in low level marine clean stratocumulus 

clouds, a 10 µm dust GCCN can act as an efficient collector drop (by growing to droplet 

size ~ 40 µm) when BFHH is reduced from 1.30 to 1.10. Consequently, this can change the 

cloud microphysics and dynamics of low level stratocumulus cloud from a non-
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precipitating to precipitating state. A comparison of BFHH values for different regional 

soils representative of global dust regions reveals that certain Asian soils (with BFHH ~ 

1.10 – 1.20) can act as more efficient collector drops compared to African dust (BFHH = 

1.27) and Arizona Test dust (BFHH = 1.28). Furthermore, these results demonstrate that 

BFHH has a negligible effect on the precipitation efficiency of deep convective clouds 

(CRYSTAL-FACE). This is because under clean conditions, less hydrophilic dust GCCN 

with BFHH = 1.30 can grow to a droplet size greater than 40 µm, while more hydrophilic 

dust GCCN with BFHH = 1.10 is unable to grow in excess of 40 µm under polluted 

conditions. The results in this section imply that dust particles from different source 

regions most likely have different impacts on precipitation efficiency when interacting 

with low level stratocumulus clouds and should be parameterized appropriately by 

regional models. Whether or not the effect of varying dust BFHH on dust-cloud interaction 

has an impact on global precipitation cycle remains to be answered by future studies.  
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Figure 6.4: Average growth of dust GCCN (a) ASTEX-1: clean condition (b) 

CRYSTAL-FACE: polluted condition. Solid and dashed lines refer to dry size 

equal to 5 µm and 10 µm, respectively.  
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6.5.5 Effect of Water Vapor Mass Transfer Coefficient on Dust GCCN Growth 

Kumar et al. (2010) found that mineral dust exhibits a 30 – 80% lower water 

vapor mass transfer coefficient, αc, compared to ammonium sulfate aerosol based on dust 

kinetics measurements. Thus, the effect of αc on dust GCCN growth is also investigated 

in this study. The effect of αc to condensational growth in Eq. (8) is introduced into '

vD  as 

given by Eq. (9). A higher αc implies a reduced water vapor mass transfer resistance and 

that translates to an increase in dust GCCN droplet size. 

Figure 6.5 presents simulations for the average growth of dust GCCN of dry sizes 

of 5 µm and 10 µm for clean conditions observed during ASTEX-1. Simulations are 

performed for AFHH = 2.25 and BFHH = 1.20, and for different values of αc: 0.042 

(representative of (NH4)2SO4 aerosol), 0.025 (representative of dust aerosol) and 0.1 

(upper limit of (NH4)2SO4 aerosol). It can be seen from Fig 6.5 that αc does not have an 

appreciable impact on dust GCCN growth and consequently reduces the GCCN droplet 

size by less than 5%. A similar behavior of reduced droplet size is also observed for 

polluted conditions of ASTEX-1 as well as clean and polluted conditions of ASTEX-2 

and CRYSTAL-FACE (not shown). These results suggest that the reduced αc for dust 

GCCN does not have an appreciable effect on the activation kinetics of a single dust 

particle when present in shallow stratocumulus or deep convective clouds. Whether 

reduced dust αc affects water vapor competition in CCN populations consisting of both 

KT and FHH particles requires further quantification.  
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Figure 6.5: Average growth of dust GCCN during ASTEX-1 with clean condition. Solid 

and dashed lines refer to dry size equal to 5 µm and 10 µm, respectively. 

Simulations are performed for AFHH = 2.25 and BFHH = 1.20.  
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6.6 Conclusions 

In this study, the effect of adsorption activation on the growth of dust GCCN 

within a low level stratocumulus and deep convective clouds was investigated using the 

trajectory ensemble model (TEM) approach of Stevens et al. (1996). Three different 

trajectories, two representing shallow stratocumulus (non-drizzling and heavily drizzling) 

observed during ASTEX and one representative of deep convective clouds during 

CRYSTAL-FACE were used to study the interaction of dust GCCN with low and high 

level clouds, respectively. Furthermore, two different aerosol conditions - one typical of 

clean and other polluted environment - were simulated for each of three cloud cases to 

study the behavior of dust GCCN growth in two contrasting environments. 

The ability of dust GCCN to affect cloud microphysics was assessed by its 

effectiveness to act as collector drops. In our approach, we used a threshold diameter of 

40 µm to classify dust GCCN as a collector drop. Simulations demonstrated that dust 

GCCN with dry sizes equal to 1 µm and above can activate and grow by adsorption 

mechanism. The results also indicated that under sufficient water vapor supersaturations, 

dust GCCN can serve as collector drops in both low and high level stratocumulus and 

convective clouds, respectively. 

This study shows that the conditions to exceed the threshold of 40 µm was a 

function of cloud supersaturation history (i.e., whether dust GCCN were present under 

pristine or polluted conditions). Simulations indicated that under pristine conditions, dust 

GCCN has potential to act as efficient collector drops in both stratocumulus and 

convective clouds. However under polluted conditions, dust GCCN growth was inhibited, 

implying that dust particles in polluted environments may have a reduced effect on cloud 
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precipitation efficiency. A comparison of simulations derived for ASTEX-1 (typical of 

non-precipitating stratocumulus cloud) in pristine and polluted conditions indicated that 

dust GCCN when present under clean conditions, may have the potential to change the 

cloud from a non-precipitating to precipitating state. This result is of significant 

importance and illustrates that dust GCCN may be influencing the microphysical 

evolution of clouds to a greater extent that previously assumed by climate models. 

The impact of activation physics on the growth of dust GCCN was also 

investigated in this study. Different droplet sizes were observed when dust GCCN growth 

was represented by KT and FHH-AT. Simulation performed for stratocumulus clouds 

indicated that under polluted condition of ASTEX-2, dust GCCN activated by KT can 

increase precipitation efficiency by inaccurately growing dust GCCN to sizes of efficient 

collector drops. On the other hand, results for dust GCCN activation by KT incorrectly 

reduced precipitation efficiency by inhibiting dust GCCN growth under clean conditions. 

The impact of activation physics on dust GCCN growth was more pronounced in 

CRYSTAL-FACE (deep convective clouds), with simulation indicating that dust GCCN 

growth was inhibited under both clean and polluted conditions when activation was 

represented by KT. However, dust GCCN was found to serve as an effective collector 

drop under clean conditions when activated by FHH-AT. The latter is expected and has 

been observed by previous studies. These results indicate that activation physics has 

strong implications to dust aerosol-cloud-precipitation linkages in stratocumulus and 

convective clouds. 

The effect of BFHH on the dust GCCN growth was also examined in this study. 

Simulations indicated that as dust hydrophilicity was increased (by decreasing BFHH), 
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resulting dust GCCN droplet sizes were found to increase. The impact of decreasing BFHH 

on cloud microphysics was more profound for clean stratocumulus clouds that could be 

transformed from a non-precipitating to drizzle forming cloud in the presence of dust 

GCCN. The results also demonstrated that BFHH has a negligible effect on the 

precipitation efficiency of polluted deep convective clouds (CRYSTAL-FACE) as 

droplet sizes were much lower than the threshold size even as BFHH value was reduced. 

The results imply that dust particles from different source regions may have different 

impacts on precipitation efficiency when interacting with low level stratocumulus clouds 

and should be parameterized appropriately by regional models. 

Finally, the effect of αc on dust GCCN growth was also addressed and was found 

to have a negligible impact on dust GCCN activation kinetics for conditions observed 

during ASTEX-1, ASTEX-2, and CRYSTAL-FACE. Whether reduced dust αc affects 

water vapor competition in GCCN populations consisting of both KT and FHH particles 

is left for future study. 
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CHAPTER 7 

CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS 

FOR FUTURE WORK 

 

7.1 Conclusions 

This thesis addresses the role of dust as CCN and GCCN with the goal of 

improving our understanding of dust-warm cloud interactions, and their representation in 

regional and global climate models. Chapter 2 examined the importance of water vapor 

adsorption effects to dust aerosol hygroscopicity and CCN activity, and explored a new 

thermodynamic approach to describe cloud droplet activation from hydrophilic dust 

particle by combining multilayer Frenkel-Halsey-Hill (FHH) physical adsorption 

isotherm and curvature (Kelvin) effects. 

A new method of aerosol generation from insoluble mineral particles for CCN 

activation measurements was developed in this thesis (see Chapter 3). This new method 

is based on the soft-saltation technique, and generates mineral aerosol with a distribution 

that resembles the size distributions of dust plumes generated in the natural source region. 

FHH adsorption activation theory (FHH-AT) was corroborated by measurements of CCN 

activity of aerosols dry generated from clays, calcite, quartz, and desert soil samples from 

Northern Africa, East Asia/China, and Northern America in Chapter 3. Based on the 

dependence of critical supersaturation, sc, with particle dry diameter, Ddry, the 

appropriateness of FHH-AT and well-established Köhler theory (KT) to mineral dust 

aerosol was quantified. The experimental exponent, xexp, derived from the measured sc-
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Ddry relationship for (fresh and unprocessed) regional dust samples and mineral aerosols 

was found to be in excellent agreement with FHH-AT (within 10%), with one set of 

adsorption parameters (AFHH ~ 2.25  0.75, BFHH ~ 1.20  0.10) that adequately 

reproduced the measured CCN activity for all species considered, and also explained the 

range of dust-water interactions reported in the literature. The correction to dust CCN 

activity due to multiply charged particles and dust non-sphericity was also applied. 

Including multiple charge corrections significantly increased Ddry and decreased xexp. 

Dust non-sphericity corrections were performed by using the dynamic shape factor, χ = 

1.3  0.2, as this range accounted for values for dust reported in the literature. Dust non-

sphericity corrections involved correcting for surface area available for water vapor 

adsorption. This was done by converting from electrical mobility diameter to surface area 

equivalent diameter. It was found that while the application of the shape factor 

corrections to CCN activation data changes the dry activation diameters, it does so 

uniformly so that the magnitude of the exponent derived from the sc-Ddry relationship 

(hence the implied activation physics) is not substantially affected with a deviation as low 

as 5%. 

In Chapter 4, measurements of CCN activity and number size distributions of 

aerosol wet generated (from atomization of a dust aqueous suspension) from mineral 

samples (clays and regional soils used in Chapter 3) were reported. Number size 

distributions obtained from wet generated dust samples indicated unimodal distributions 

with particle sizes that were up to 10 times smaller those generated by dry technique. For 

wet generated clays and mineral aerosol, bimodal number size distributions were 

obtained for kaolinite, illite, calcite, while a unimodal distribution was observed for 
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montmorillonite clay. Based on the comparisons with the number size distribution 

generated by the dry technique, it was suggested that the second observed peak in the wet 

generation method could be a consequence of the external mixture containing more 

hygroscopic smaller particles and the less hydrophilic bigger particles. Measurements of 

the CCN activity indicated that the wet generated dust particles were significantly more 

CCN active than those generated from the dry soft-saltation technique with κ ranging 

between 0.15 - 0.61. For almost all wet generated regional dust aerosols, xexp is ~ -1.5 

(with the exception of ATD), while a much lower xexp ~ -(0.9 ± 0.2) was observed for dry 

generated dust aerosol. For wet generated clays and mineral aerosols, measurement 

indicated that smaller particles generated in the more hygroscopic peak follow CCN 

activation by KT, while the larger peak is less hydrophilic with activation similar to dry 

generated dust that follow FHH-AT. This confirmed that FHH-AT describes fresh (and 

unprocessed) dry dust-CCN interactions, while KT is suitable for describing wet 

generated (processed) dust CCN activity. 

The appropriateness of FHH-AT to fresh dust-CCN activation measurements was 

further substantiated by Ion Chromatography (IC) measurements of regional dust samples 

which indicated negligible soluble fractions. A comparison of κCCN, the hygroscopicity 

parameter determined from dry dust CCN activation measurements with κmix, 

hygroscopicity inferred from theory demonstrated that the inferred κmix for all considered 

samples was much smaller than the κCCN. These results confirmed that the presence of 

soluble fractions alone cannot explain fresh dust CCN activity, and support that water 

vapor adsorption is the prime source of CCN activity in the fresh dust. 
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Based on threshold droplet growth analysis (Chapters 3 and 4), dry generated dust 

CCN was found to have a reduced growth compared to (NH4)2SO4 aerosol at the same 

instrument supersaturation. This implies slower activation kinetics of fresh dust relative 

to ammonium sulfate aerosol. These delays in activation by dust CCN, when 

parameterized in terms of the water vapor uptake coefficient, αc, translated to a 30 - 80% 

(average = 50%) reduction in αc (relative to the ammonium sulfate aerosol). Wet 

generated mineral aerosols, however, display similar activation kinetics to ammonium 

sulfate. This is consistent with longer time scales associated with adsorption than 

absorption. 

The collected fresh dust CCN activation data were used to develop a new 

parameterization framework of cloud droplet formation for regional and global climate 

models by including the effect of adsorption activation on insoluble dust CCN. The new 

parameterization presented in Chapter 5 considers cloud droplet formation within an 

ascending air parcel containing insoluble (but wettable) particles activating by FHH-AT, 

externally mixed with aerosol population containing an appreciable soluble fraction with 

activation described through KT. This new parameterization is the first of its kind for 

insoluble CCN such as dust and is developed for sectional and lognormal representations 

of the aerosol size distribution. To facilitate the analytical development of the 

parameterization, we further developed FHH-AT by i) determining the combinations of 

AFHH and BFHH for atmospherically-relevant behavior, and, ii) linking sc with Ddry using a 

simple power law expression determined from numerical solutions to the FHH 

equilibrium curves. The parameterization was tested by comparing predictions of droplet 

number, Nd, and parcel maximum supersaturation, smax, against detailed cloud parcel 
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model simulations. The evaluations were performed for a range of updraft velocities, 

water vapor uptake coefficients relevant to dust CCN, ambient temperature, relative 

humidity, parameters of aerosol size distributions, and AFHH and BFHH. The 

parameterization closely followed the parcel model simulations with a mean relative error 

varying between 2% and 20%, depending on aerosol distribution type with an average 

relative error of 10% and R
2
 ~ 0.98. 

In this thesis, we also proposed a new unified framework of dust CCN activation 

that accounted for concurrent effects of solute and adsorption on dust (see Chapter 4). 

The framework is based on a core-and-shell model and describes equilibrium 

supersaturation as a function of adsorption parameters, hygroscopicity parameter of the 

soluble fraction, the size of the dry particle, and the insoluble and soluble volume 

fraction. An analysis into the framework revealed that as insoluble volume fraction 

decreased, the xexp changed from -0.85 (FHH-AT limit) and to -1.50 (KT limit). The new 

framework is ideally suited to describe the CCN activity of aged dust, dry lakebed dust 

mixed with salts (e.g., Owens Lake, Texcoco, and Aral Sea), and more generally dust 

particles with significant amounts of soluble materials. 

Finally, the ability of dust GCCN to affect cloud microphysics by adsorption 

activation mechanism was examined in Chapter 6. This was performed by assessing the 

effectiveness of dust GCCN to act as collector drops within low level stratocumulus and 

deep convective clouds using a trajectory ensemble model (TEM) approach. Results 

demonstrate that dust GCCN with dry sizes equal to 1 µm and above activate through 

water vapor adsorption to become collector drops. It was found that under pristine aerosol 

conditions, dust GCCN acted as collector drops in both shallow stratocumulus and deep 
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convective clouds. However under polluted aerosol conditions, dust GCCN growth was 

inhibited. Furthermore, the impact of activation physics on the dust GCCN growth was 

investigated.  The results show that different droplet sizes were observed when dust 

GCCN activation was represented by KT and FHH-AT. The effect of BFHH on the dust 

GCCN growth was also examined, and it was found that as dust hydrophilicity increased 

(by decreasing BFHH), resulting dust GCCN droplet sizes also increased. It was also 

shown that the reduced water vapor accommodation properties associated with dust 

aerosol had negligible impact on activation kinetics of dust GCCN growth within 

stratocumulus and convective clouds. 

7.2 Implications 

The results of this thesis confirm that dust particles do not require deliquescent 

material to act as CCN in the atmosphere. One major implication is that freshly emitted 

dust and mineral aerosols can act as CCN through the effects of water adsorption alone. 

Conclusions support that FHH-AT provides a more realistic representation of fresh dust 

CCN activity than KT in the atmosphere. 

The samples investigated in this thesis (see Chapter 3) are representative of major 

regional dust sources, and the adsorption activation parameters determined can be used to 

express their CCN activation potential in the cloud droplet formation parameterization 

presented in Chapter 5. These parameterizations are valid for fresh dust in the dust source 

regions and for transported dust, if it will not undergo significant atmospheric processing. 

In some cases, 100 nm dust particles can exhibit comparable hygroscopicity to an organic 

species with  ~ 0.05 or a particle with ammonium sulfate volume fraction of 10%. 
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An important finding is that the process of wet generation for mineral aerosol 

leads to significant artifacts in measurements of physical and chemical properties with 

implications to dust CCN activity (see Chapter 4). These results question the atmospheric 

relevance of recent studies on mineral dust aerosol generated with the wet atomization 

method. The method however, still generates a less hydrophilic peak, with the degree of 

hydrophilicity similar to dry dust, implying that the process of wetting and drying of dust 

particles do not have a major affect on its hydrophilicity. This contradicts some of the 

previous studies that tend to show wetting makes dust a better CCN (and likely to some 

degree is an experimental artifact). 

Faster activation kinetics of wet generated dust compared to dry dust would imply 

that the fresh dust at its source region and cloud processed dust downwind of its source 

region would behave differently when exposed to the same levels of supersaturation. This 

carries important implications for both Saharan and Asian dusts, given that large regions 

of the world are affected by their mid- and long-range transport. Whether a fresh or cloud 

processed dust has more significant impact on cloud droplet number would also depend 

on activation physics and time scales of cloud formation. 

Another major conclusion of this thesis is that the activation physics carries 

important implications for cloud droplet number determined from mineral aerosol, even if 

consistent hygroscopicity and adsorption parameters (i.e., derived from the same 

experimental data) are used. In certain cases applicable to dust, CCN concentrations can 

differ by a factor of 10, which may result in up to a 40% difference in predicted cloud 

droplet number concentration between the two theories (see Chapter 2). 
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An equally important implication of adsorption activation to dust GCCN growth 

is that under clean conditions, dust GCCN may have the potential to change a marine 

stratocumulus cloud from a non-precipitating to precipitating state. Furthermore, the 

activation of dust GCCN by FHH-AT in deep convective clouds under pristine 

environments can affect dust-cloud-precipitation linkages with impacts on precipitation 

efficiency. This result introduces strong implications associated with dust aerosol indirect 

effect, as earlier studies have assumed dust activation by KT and found negligible effects 

on convective clouds. These results are of significant importance and suggest that dust 

GCCN may be influencing the microphysical evolution of clouds to a greater extent that 

previously assumed by climate models. 

An important contribution made by this thesis to understanding aerosol-cloud-

climate interactions is that the new FHH-AT framework provides an ideal platform for 

describing hydrophilic properties of tropospheric aerosols other that mineral dust such as 

(insoluble) volcanic ash in climate models. This has been recently demonstrated by 

Lathem et al. (2011) who found that the ash-water interactions in water vapor 

supersaturated environments associated with volcanic eruptions can be parameterized by 

FHH-AT with adsorption parameters similar (but less hydrophilic) to dust aerosol. The 

adsorption parameters determined can be used in atmospheric models with the end goal 

to improve predictions of ash microphysics, transport and impacts of volcanic aerosols. 

An equally important contribution of this thesis is that the new cloud droplet 

parameterization framework has already been incorporated in both regional (COSMO-

ART) and global (NASA-GMI) climate models to address dust aerosol indirect effects. 

The incorporation of the new parameterization framework provides, for the first time, the 
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most comprehensive treatment of dust aerosol in climate models. Preliminary results 

obtained from NASA-GMI study indicate up to a 15% change in cloud droplet number 

concentration from dust activation by FHH-AT (Karydis et al., 2011). Similarly, the 

contribution of Saharan dust to cloud droplet activation by FHH-AT over Western 

Europe is being accounted for in the regional climate model, COSMO-ART (Bangert et 

al., 2011). 

7.3 Recommendations for future work 

An important recommendation is that the experiments must be designed to 

examine the strong size dependence of mineral aerosol to CCN activity. The current dry 

generation technique is based on the soft-saltation method that generates fine mineral 

aerosol by shaking the soil sample (present in all possible size ranges) using the wrist-

action shaker. The technique should be modified such that soil samples can be separated 

between the fine and coarse mode aerosol, and using the fine and coarse mode dust 

separately to generate mineral aerosol CCN. This would allow us to determine any 

possible size dependence on dust CCN activity. Any differences observed can then be 

related to differences in mineralogy between the fine and coarse mode for the soil 

samples collected at the source region. Furthermore, the information collected can be 

used in regional models to parameterize cloud droplet nucleation from regional soils. It is 

also proposed to simulate droplet activation in the CCN instrument (CFSTGC) at 

supersaturations less than 0.1%. This would allow us to experimentally evaluate droplet 

nucleation behavior of dust particles in sizes representing the lower size spectrum of the 

coarse mode dust aerosol. 
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It is recommended to measure morphology of mineral aerosol. This should be 

pursued by performing simultaneous measurements of dynamic shape factor (χ) or 

Aspect Ratio (AR). Performing shape measurements would provide more appropriate 

values required to correct for dust non-sphericity in CCN activation diameters for mineral 

aerosol. 

Experiments should also be designed to examine the effect of residual water 

(potentially present on particle surface) to dust CCN activation measurements. Such 

measurements can be performed by introducing fresh (dry) dust into a chamber saturated 

with water vapor, and then passing the moist aerosol stream through a heated chamber 

that can operate at different relative humidity (RH). By operating chamber at RH between 

5% and 95%, and then measuring the CCN activity downstream of this heated chamber, 

the effect of residual water coverage on dust CCN activation can be investigated. These 

measurements would enable constraining the effects of stochastic nature of dust CCN 

inside the cloud as it undergoes multiple activation/evaporation cycles. 

The effect of RH on dust CCN can also be investigated using Environmental 

Scanning Electron Microscopy (ESEM). ESEM is used to collect data on hygroscopic 

transformation of individual particles when exposed to RH between 5 - 100%. These 

measurements will determine the minimum RH at which spontaneous growth of water 

over particles occurs, which is indicated by the quick disappearance of particle images 

and blurring on the entire field-of-view. These measurements will indicate critical RH at 

which the first onset of water vapor monolayer is observed and will provide evidence for 

water vapor adsorption of mineral aerosol. 
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Experiments should also examine the possible dependence of the residence time 

in the CFTGC. The residence time of a particle exposed to controlled water vapor 

supersaturation depends on the aerosol flow rate through the instrument. The residence 

can be increased by the decreasing the flow through the instrument to investigate the 

effect of long equilibration time scales associated with adsorption process. 

A number of previous studies have observed coatings of soluble species like 

sulphates on dust aerosol (Levin et al., 1996; Pratt et al., 2010). CCN experiments should 

also be designed to elucidate the role of soluble material on the activation of processed 

mineral aerosol. This would require a modified dust aerosol generation setup to enable 

heterogeneous chemistry to occur, for instance, between the calcite in dust aerosol and 

the reactive gaseous specie such as sulphates. Such measurements can provide 

information on the role of various coatings and the potential for gas phase reactions on 

the surface of these particles to alter cloud droplet nucleation ability of dust. Coatings 

should try to reproduce realistic conditions in the atmosphere of reactive gaseous species 

to get an accurate prediction of dust aging. An example would be Saharan dust mixed 

with substantial sulfate amounts that is observed over the Eastern Mediterranean. It is 

also proposed to utilize these measurements to verify the unified dust activation 

framework proposed in this study (see Chapter 4) for dust aerosol with a coating of 

soluble salt. 

The parameterization of cloud droplet formation from mineral aerosol developed 

in this thesis is suitable to treat an external mixture of aerosol consisting of soluble 

Köhler and insoluble FHH-AT particles. It is proposed to extend the parameterization 

framework to account for the effects of aged dust or dust coated with sufficient solutes. 
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This may be possible by including the unified dust activation framework in cloud droplet 

activation parameterization to quantify the contribution of dust with soluble species to 

cloud droplet activation. 

It is also well established that Asian dust can undergo long-range transport across 

the Pacific Ocean, and has been observed over parts of Hawaii. Hence, it is proposed to 

extend and investigate the effect of adsorption activation on the growth of dust GCCN 

representative of Asian dust. This can be performed by using cloud trajectories typical for 

clouds observed over parts of Hawaii to generate supersaturation profiles, and using 

adsorption parameters representative of Asian dust aerosol to drive GCCN growth in the 

cloud parcel model. 

Furthermore, it is proposed to combine dust adsorption activation with cloud 

precipitation parameterizations to simulate the effect of dust aerosol on the cloud 

precipitation efficiency. This approach will provide a more comprehensive understanding 

of dust aerosol-cloud-precipitation linkages. 
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