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SUMMARY  

 

Problems in automated video surveillance analysis caused by illumination changes 

are explored, and solutions are presented. Controlled experiments are first conducted to 

measure the responses of color targets to changes in lighting intensity and spectrum. 

Surfaces of dissimilar color are found to respond significantly differently. Illumination 

compensation model error is reduced by 70% to 80% by individually optimizing model 

parameters for each distinct color region, and applying a model tuned for one region to a 

chromatically different region increases error by a factor of 15. A background model—

called BigBackground—is presented to extract large, stable, chromatically self-similar 

background features by identifying the dominant colors in a scene. The stability and 

chromatic diversity of these features make them useful reference points for quantifying 

illumination changes. The model is observed to cover as much as 90% of a scene, and 

pixels belonging to the model are 20% more stable on average than non-member pixels. 

Several illumination compensation techniques are developed to exploit BigBackground, 

and are compared with several compensation techniques from the literature. Techniques 

are compared in terms of foreground / background classification, and are applied to an 

object tracking pipeline with kinematic and appearance-based correspondence 

mechanisms. Compared with other techniques, BigBackground-based techniques 

improve foreground classification by 25% to 43%, improve tracking accuracy by an 

average of 20%, and better preserve object appearance for appearance-based trackers. All 

algorithms are implemented in C or C++ to support the consideration of runtime 

performance. In terms of execution speed, the BigBackground-based illumination 
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compensation technique is measured to run on par with the simplest compensation 

technique used for comparison, and consistently achieves twice the frame rate of the two 

next-fastest techniques. 
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CHAPTER 1  

INTRODUCTION 
 

 

1.1. Motivation 

Video surveillance cameras are commonplace in modern society.  They provide 

security in public transportation terminals, along national borders, and in commercial 

venues from gas stations and retail markets to banks and government buildings.  They 

monitor vehicular traffic flow for infrastructure management and are used to prosecute 

violators of traffic lights and speed limits.  They augment many homeowners’ personal 

security systems, and have been distributed throughout cities—both large and small—to 

observe and prosecute criminal offenses in public spaces. 

Instances of these applications are rapidly increasing.  According to market studies, 

as of 2009 there were an estimated 30 million surveillance cameras deployed in the 

United States alone, with the global market for surveillance cameras estimated to increase 

from $4.9 billion in 2006 to $9 billion in 2011 [1].  Many U.S. cities have deployed video 

surveillance systems to help combat crime, provide early warning for acts of terrorism, 

and improve response for public safety. 

 Chicago, IL deployed an estimated 6000 cameras in schools and public 

transit stations  [2] 

 San Francisco, CA deployed 71 cameras for low frame rate recording for 

post-event image retrieval  [2] 

 Denver, CO has a total of 259 cameras in high activity locations  [2] 

 New Orleans, LA deployed 240 wireless digital cameras at a cost of $4.5 

million for anti-crime and homeland security purposes  [3] 

 Baltimore, MD has a network of 480 cameras  [4] 



 

 2

 St. Paul, MN deployed 60 cameras in its downtown district with a $1.2 

million grant  [5] 

 Madison, WI installed 32 cameras with a $388,000 grant  [5] 

 Pittsburg, PA added 83 cameras to its network with a $2.58 million grant  [5] 

 Boston and 8 surrounding communities are one of 64 urban regions receiving 

funding under the Urban Area Security Initiative  [6] 

 

However, the benefits and appeal of such systems are not limited to major 

metropolitan areas, but are spreading into smaller municipalities as well. 

 Pittsburg, CA (pop. 60,000)  [7] 

 Newnan, GA (pop. 33,000)  [7] 

 Salisbury, MD (pop. 24,000)  [7] 

 Scottsbluff, NE (pop. 14,000)  [6] 

 Liberty, KS (pop. 95)  [6] 

 

These cameras generate a phenomenal amount of data.  Most surveillance cameras 

simply feed into monitors watched by human operators, or record video or snapshots to 

non-volatile storage and rely upon human analysts to later identify objects and interpret 

events of interest.  Human observers offer the potential of being able to respond to events 

in real time.  However, humans can easily be bored, distracted, or overwhelmed by the 

amount of data they have to process, and thereby miss important events.  As a rough 

estimate, 30 million cameras operating at 30 frames per second at color VGA resolution 

(640 x 480 pixels x 3 bytes per pixel) produces 6.6 petabits of uncompressed video per 

second.  Even with modern compression technologies, storage space for video is finite, 

and a great deal of video is eventually overwritten without being seen if some external 

alert or report does not draw attention to it.   
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Automated video surveillance has become progressively more attractive for 

monitoring environments that are tedious, difficult or dangerous for human operators to 

monitor.  With the proper algorithms and system architecture, video processors can 

devote unwavering attention to a scene and extract important information about objects 

and events that the human visual system is ill-equipped to detect.  As costs for imagers 

and computing hardware have decreased, and as computing capability has advanced to 

handle data-rich video streams, embedded video surveillance systems are poised to 

revolutionize automated surveillance applications in traffic management, point-of-access 

monitoring, and threat detection.  While many useful computer vision processes can take 

advantage of large-scale computing platforms, it is infeasible to dedicate a top-of-the-line 

machine to every surveillance camera. The cell phone, gaming and digital media 

industries have played significant roles in driving the development of such processors, 

which are capable and low-cost, yet resource limited in terms of power consumption and 

memory.  There is a compelling need to focus on developing video surveillance 

algorithms for these small-scale, low-power embedded platforms.  Combining these 

dedicated vision processors with cameras to form distributed smart sensors will give rise 

to integrated virtual surveillance environments, in which objects are constantly accounted 

for, actions are recognized, and the state of the monitored environment is 

comprehensively updated. 

Some steps toward automated video surveillance systems have already been taken.  

Chicago’s city-wide surveillance system has tested video analytics for automatically 

detecting loiterers, abandoned objects, and suspicious behavior [1], [2].  Facial 

recognition and tracking algorithms are now sufficiently advanced to provide useful 

results [1].  However, significant work in the field remains to be done.  For example, in 

2005 the Secure Border Initiative proposed a “virtual fence”—dubbed SBInet—to secure 

the border between the U.S. and Mexico.  The prototype system suffered from outdoor 

environmental factors such as camera towers swaying in wind, low data bandwidth, high 
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latency, high false positive detection rates, and difficulty correlating targets with 

geographical position in large open spaces [8]. Other problems that automated 

surveillance systems must address include sudden illumination variation, automatic 

calibration of a system to an environment, partitioning of processing effort between 

camera nodes and central stations, and integration by central stations of the information 

being distilled by camera nodes. As practical automated video surveillance systems are 

deployed, we will learn a great deal about how to synthesize vast amounts of diverse 

data—recognized and tracked objects, observations from multiple viewpoints, and 

analyses of behavior—to make decisions and take action. 

1.2. Overview of Video Processing Pipeline 

A typical video processing pipeline is shown in Figure 1, depicting some of the most 

common steps used to perform useful, modern video surveillance tasks.  The first stages 

of most surveillance algorithms involve the separation of foreground (changing regions 

of interest) from background (stationary regions or uninteresting motion) by modeling the 

background, and noting variations between the background model and the current scene.  

A variety of change detection algorithms have been proposed for this purpose [9], [10], 

[11].  Implementations of background models vary, but all are generally statistical 

representations of the persistence of image features that an application defines as 

uninteresting.  Pixels classified as foreground are further distilled into blobs or object 

representations, which are then analyzed to recognize or track objects or identify events.  

Each stage of the pipeline produces a higher level of abstraction with a more compact 

data representation. 
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Figure 1. Overview of typical video processing architecture. 
 

 

 

Illumination variation in a scene is a challenge to most background models.  As 

temporary cloud cover and artificial lights change a scene’s illumination, background 

pixels fail to match their background model counterparts and are falsely interpreted as 

foreground.  Such a surge in the number of foreground pixels often taxes downstream 

processes because object tracking or recognition routines must sift through additional 

data.  Salient foreground features can be masked by surrounding background under new 

illumination conditions, and objects of interest may be difficult to localize. Thus, real-

time performance becomes harder to maintain, and analysis of the objects of interest 

becomes less accurate (or impossible in extreme cases) because algorithms are fooled 

into thinking that changing background regions are as important as moving objects. The 

conceptual motivation behind this work is easily seen in Figure 2, which shows some 
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scenes before and after significant lighting changes. Common video surveillance 

applications, such as traffic management and municipal surveillance, operate in 

uncontrolled environments and are frequently subjected to unpredictable illumination 

variations. It is desirable for surveillance algorithms to monitor such scenes, reliably 

observe foreground objects, and filter out persistent background despite such lighting 

changes. This dissertation presents a method of compensating for sudden illumination 

changes by using reliable, dominant background features as reference points, and using 

chromatically sensitive transformations to adjust images to better resemble the scene 

under the original illumination condition. By performing this correction early in the 

process to improve change detection, the quality of subsequent processes is improved. 

 

 

 

Figure 2.  Examples of illumination changes causing perceptual problems in surveillance 
environments. 
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1.3. Problem Statement and Research Contributions 

The objective of this research is to develop effective, real-time techniques to make 

surveillance video more robust to illumination changes for automated analysis 

algorithms.  Sudden illumination changes are unpredictable events to video surveillance 

algorithms, and often cause those algorithms to falter in their “understanding” of a scene.  

These algorithms often cannot distinguish between illumination change and occlusion.  

This dissertation discusses the problem of illumination change in the context of current 

video surveillance theory, and presents and evaluates approaches for solving problems 

related to this topic.  Three contributions to the field are presented.  The first contribution 

presents a pixel clustering technique called BigBackground, which is based on chromatic 

region consistency.  This technique results in a model of large stable regions of a scene, 

making it possible to distinguish light changes from occlusions and separating surfaces 

that are likely to respond differently to a given illumination change.  The second 

contribution presents a short-term illumination compensation method based on 

BigBackground.  This approach to illumination compensation is motivated by observed 

chromatic dependence of surface responses to illumination change.  Several models for 

compensation are explored, and results are compared with other compensation 

approaches from the literature.  The third contribution expands BigBackground as a 

general approach that can be used alone or integrated into independently-developed 

techniques. Several compensation techniques are comprehensively evaluated in an object 

tracking pipeline, where interactions with kinematic and appearance-based trackers are 

explored.  Classification accuracy, tracking accuracy, runtime, and quality of object 

appearance are used as evaluation metrics.  The inclusion of these contributions into the 

standard video processing pipeline is depicted in Figure 3. 
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Figure 3. Video processing pipeline modified for illumination compensation. 
 

 

 

1.3.1 Contribution 1 

First, data are presented from a series of experiments in which color targets are 

subjected to controlled changing light conditions.  The data indicate that chromatically 

similar surfaces respond similarly to a given illumination change, while chromatically 

dissimilar surfaces respond less similarly.  This observation encourages the development 

of a color-centric illumination compensation technique to improve compensation 

accuracy.  A background model is presented (called BigBackground) that identifies large, 

stable, salient background features based on chromatic popularity within a scene.  The 

characteristics of the BigBackground (BB) model and its sensitivity to changes in input 

parameters are evaluated in terms of stability and scene coverage. 
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1.3.2 Contribution 2 

Many vision processing tasks begin by distinguishing pixels belonging to salient 

features from those belonging to static regions or uninteresting motion.  A background 

model is often used to learn the general appearance of a scene.  A pixel is then classified 

as salient if its current appearance falls outside its expected value based on past 

observations.  Sudden illumination changes occur faster than background models can 

adapt, and cause large numbers of pixels to fall outside their expected appearances.  The 

masking effect of a surge in saliently classified pixels makes it difficult (or impossible) to 

extract true objects of interest.  Illumination compensation addresses this problem by 

separating the effects of illumination change from interesting changes in the scene, and 

maintaining consistent perception of the scene.  Several approaches to illumination 

compensation have been explored.  This contribution exploits the chromaticity 

dependence of illumination change response to develop a BigBackground-based 

illumination compensation technique.  Hand-marked ground truth images are used to 

evaluate the accuracy of foreground/background classification using this technique, and 

the technique’s responses to changes in input parameters are examined.  The technique is 

compared with several approaches from the literature in terms of classification accuracy 

and runtime. 

1.3.3 Contribution 3 

The characteristics of several illumination compensation techniques are 

comprehensively examined by applying these methods to an object tracking problem.  

Two new variations of BigBackground-based illumination compensation are presented 

and tested. The first takes into account scene-wide changes in BigBackground regions 

before performing local compensation. The second applies the BigBackground concept to 

an independently developed compensation technique, demonstrating that BigBackground 

is useful as a general approach. The impact of illumination compensation on several 
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state-of-the-art tracking algorithms is evaluated.  Each tracker exploits a different set of 

features with which to establish object correspondence across frames.  Trackers using 

pure kinematics and combinations of spatial and spectral distributions are considered.  

Tracking accuracy is considered across many frames and video environments; thus this 

evaluation method is more thorough than the (commonly used) hand-picked frame 

approach of Contribution 2. 

1.4. Summary of Results 

The key results of this dissertation can be summarized as follows. 

 The effects of illumination changes on surfaces are quantitatively shown to 

depend on the chromaticities of those surfaces [13]. By customizing 

compensation models for distinct colors, model effectiveness is improved.  

Applying a model customized for one surface to a surface of different hue 

multiplies the error rate by an average factor of 15.  Mathematical model 

choice for illumination compensation has reduced impact on compensation 

accuracy when the model is customized for each chromatically distinct 

region.  

 A background model is presented that identifies large, stable scene 

components by extracting dominant chromatically self-similar regions [14]. 

These regions often cover more than 50% of a scene—and can cover over 

90%—and are 20% more stable on average than other regions in the scene. 

 An illumination compensation method based on the BigBackground concept 

is presented [14]. Compensation model parameters are customized for each 

region, allowing chromatically distinct regions to respond independently to 

the same illumination change. When used to aid foreground detection, this 

approach decreases false positives by an average of 83% compared with no 
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corrective action, and decreases false positives by 25%-43% compared with 

other compensation methods from the literature. 

 Variations of BigBackground-based illumination compensation are explored 

that demonstrate that the BigBackground concept can be integrated into 

independently developed compensation techniques, establishing 

BigBackground as a useful general methodology [15].  

 The discussed illumination compensation methods are comprehensively 

evaluated in an object tracking application [15], [16], [17]. Kinematic and 

appearance-based trackers are tested, and techniques are evaluated in terms of 

tracking accuracy and object appearance quality. The BigBackground-based 

techniques improve object tracking by an average of 20%, and produce less 

distortion in object appearance.  

1.5. Dissertation Overview 

The remainder of this dissertation is organized as follows. Chapter 2 presents the 

results of controlled experiments that test the chromatic dependency of illumination 

change effects on captured images.  These results form the foundation and motivation for 

Chapters 3 and 4. Chapter 3 introduces and characterizes a model for extracting large, 

stable, chromatically self-consistent background regions. Chapter 4 discusses previous 

work on handling illumination change, presents an illumination compensation technique 

based on the region model of Chapter 3, and compares with other popular illumination 

compensation methods.  Chapter 5 evaluates the impact of illumination compensation 

techniques on several state-of-the-art object tracking applications, each of which uses a 

different feature set for establishing correspondence. Conclusions and future work are 

discussed in Chapter 6. 
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CHAPTER 2  

CHROMATICITY DEPENDENCE OF ILLUMINATION CHANGE 
RESPONSE 

 

 

2.1. Introduction 

The wide proliferation and relatively low cost of USB web-cameras make them 

attractive sensors for inexpensive computer vision platforms. Such platforms are useful 

for many applications including video surveillance, tracking, and recognition. Algorithms 

in these applications often rely on a degree of perceptual constancy to function properly. 

They observe trends in color pixel values to learn the appearance of background, and to 

identify features of interest. Illumination change is a common problem that such vision 

algorithms must face. Changes in lighting intensity, spectrum, or physical position alter 

the appearance of otherwise unchanged pixels, and can affect how a scene is perceived. It 

is desirable to compensate for illumination changes to improve the robustness of vision 

algorithms. Before effective illumination compensation can be performed, however, it is 

necessary to quantify the effects of lighting changes on images. 

The purpose of this work is to determine the sensitivity of illumination change 

models to chromaticity, with the aim of improving illumination compensation techniques. 

Prior work in the field has discussed the problems of modeling illumination change 

globally—using one set of model parameters across the entire image—and has described 

the benefits of dividing images into arbitrary tiles. By considering each tile individually, 

the effects of spatially varying illumination and surface reflectance can be 

accommodated. This chapter considers the relationship between illumination changes and 

surface color, and demonstrates that the effectiveness of illumination models can be 

improved by segmenting an image into chromatically dissimilar regions and separately 



 

 13

computing compensations for each region. Spatial regionalization combined with 

chromatic regionalization will likely lead to additional benefits, but is not a requirement 

and such compound effects are not examined here.  

A set of color targets is illuminated by a controllable light source, and sets of images 

are taken with a web-camera under varying intensity levels and spectra. Choice of 

illumination model, chromatic regionalization of model parameters, and the web-

camera’s driver settings are examined for their effects on the effectiveness of illumination 

compensation. These controlled illumination experiments show that the choice of 

illumination model becomes less important when such chromatic regionalization is used. 

Computing illumination compensation models for each chromatic region reduces error by 

70% to 80% on average as compared to applying a global compensation model across the 

entire image. Applying a model customized for one color to a color of different hue 

results in 15 times the error of that color’s custom model. These trends can guide the 

development of computationally efficient illumination compensation techniques for 

webcam-based vision platforms. 

2.2. Related Work 

Illumination changes are generally categorized into two types: internal changes 

involve changes to the intensity or spectrum of the light source, while external changes 

result from the physical movement of the source with respect to the scene. Several studies 

have provided insight on the nature of scene response to internal illumination change. In 

particular, the choice of illumination model has received considerable attention as a 

tradeoff between computational complexity and accuracy.  

Mindru et al. [18] compare diagonal and affine transformations using linear 

regression to determine the optimal matrix and offset values.  These methods are tested 

on image sequences that featured changes in both illumination and viewing angle, with 

the conclusion that the affine transformation is generally worth taking the time to 
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compute.  The authors note that the offset values of the affine transformation are always 

significant, and that the affine transformation is especially more successful than the 

diagonal transformation in cases of extreme lighting change and is therefore worth the 

additional complexity. Gros [19] tests eight illumination models on images of a static 

scene in RGB space. A least median squares algorithm is used to find the optimum global 

parameter values for each model, and the error remaining between image pairs after 

compensation is calculated. For the case of intensity change, multiplication of the pixel 

triple by a single coefficient are found to be sufficient to account for most of the change, 

with more complicated models reducing the error marginally further. Spectral changes in 

the illumination source require models that adjust each color channel independently of 

the others. Finlayson et al. [20] show that under certain conditions, several color 

constancy theories can be achieved by a diagonal matrix transform if an appropriate 

change of basis is applied to the sensor response function. 

The experiments discussed above consider several mathematical models for 

describing illumination change. However, each model is evaluated by optimizing its 

parameters to minimize global mean square error. Such minima can surely be found, but 

this approach of pure optimization assumes that all points in the scene should respond 

similarly to an illumination change, and neglects natural factors such as surface color, 

composition, or orientation and position with respect to the light source. The work 

presented in this chapter explores the role of chromaticity in the illumination change 

response of surfaces, and provides a foundation for chromatically-oriented illumination 

compensation in color video processing. 

2.3. Experimental Setup 

This section describes the physical setup of the experiments, followed by analyses of 

the resulting data. The experiments use a fixed-focus Logitech USB webcam on a 

stationary mount, as would be used in a surveillance application. A target was 
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constructed consisting of twenty color chips (five hues with four saturations each) placed 

on a sheet of dark foamboard (Figure 4a). The color target was oriented perpendicularly 

to the camera’s optical axis, with the camera positioned 1.5 meters away. A light source 

was constructed using nine standard, independently controllable light fixtures (Figure 

4b). A plastic diffuser was used to diminish shadows, and the experiment was conducted 

in a dark room without external light sources. Lights were turned on three at a time to 

provide three consistent, discrete intensity levels. In addition, three bulb types were used 

(two incandescent, one fluorescent) to produce changes in spectrum. Bulb information is 

given in Table 1. The light source was located coaxially with and 3 meters behind the 

camera, and elevated 0.5 meters to reduce glare. A light meter was used to ensure that the 

light distribution across the target was uniform. The Scene Brightness data was collected 

for the mid-intensity condition (6 lights on), and was measured at the camera facing the 

target 1.5 meters away. 

During the first stage of data collection, the webcam’s driver is set to automatic until 

the gain, exposure, contrast, and white balance settings stabilize. This step is performed 

on a mid-intensity scene. The driver is then switched to static operation, so the same 

settings are used for all subsequent image captures. Ten images are captured for each 

intensity level and bulb type, after allowing 10 minutes between each transition to allow 

the light source to reach steady state. The second stage of data collection repeats this 

process with the driver left on automatic, allowing the webcam to adjust for each scene. 

The 10-image sequences are captured after the driver stabilizes. 
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Figure 4.  Equipment used for controlled illumination experiment. (a) Color chips arranged 
on target.  (b) Light board featuring a 3x3 arrangement of light fixtures, and detached 

diffuser. The Logitech camera is visible in the bottom right. 
 

 

Table 1. Information about the light bulbs used in controlled illumination experiments 

Type Power (W) Output (lum)
Average Scene 
Brightness (lux) Note

A Incandescent 60 630 36 Full Spectrum
B Incandescent 52 710 34 Soft White
C Fluorescent 13 825 37 Soft White  

 

2.3.1 Target Color Consistency 

Sensors based on CMOS and CCD technologies are subject to many noise sources: 

temperature fluctuations, support electronics and the digital conversion process can all 

introduce noise into the final image. These effects can cause minor differences between 

images taken of an otherwise static scene. Thus, temporal and spatial averaging steps are 

used to minimize noise effects in our analysis of illumination changes.  

The image sets are first tested for color consistency in the absence of illumination 

changes. Each set of 10 images is averaged together, and the average standard deviation 

if the images in each set is found to be less than 1.6% in RGB space. One average image 

is generated for each illumination condition, and is used in subsequent experiments. The 
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color chips shown in Figure 4a are chosen to provide manageable regions of reasonably 

consistent colors. Computations are performed on 40 x 40 pixel windows within each 

chip, chosen to exclude the text and labels visible on the chips. 

2.3.2 Model Effectiveness and Chromatic Locality 

Three mathematical models are tested for their effectiveness at illumination change 

compensation. The set of evaluated models is limited to those lowest in computational 

cost. These models are shown in Equations 1-3, where P is the 3x1 RGB pixel being 

transformed, D is a 3x3 diagonal matrix, and T is a 3x1 translation vector. Models are 

computed in RGB space. For each lighting transition, a least mean square algorithm is 

used to compute the optimum parameters (α, β, γ, x, y, and z) for each model. First the 

parameters of each model are tuned for global application across the image. The image is 

compensated by transforming each pixel by the model being tested. Then the mean 

absolute difference (MAD) is computed between the compensated image and the original. 

The calculation for MAD is shown in Equation 4, where N is the number of pixels in the 

regions being compared; R, G, and B represent the pixel components, and subscripts 1 

and 2 denote the regions being compared. Mean absolute difference is acceptable as a 

suitable metric for evaluating model performance, since the primary interest lies in 

compensation to assist downstream object detection and tracking algorithms. Next, the 

models are optimized for and applied to each of the 20 color chips in the target, and the 

MAD is computed between each pair of compensated and original chips. 

 

[ ]BGRPD γβα=*  
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Table 2 shows the average MADs for the cases of no model applied, models applied 

globally, and models customized for individual color chips. Three lighting transitions are 

tested in which three, six, and nine identical lights are turned on—for example, 

transitioning from three lights to six lights (3-6) of the same type. Data is presented for 

the webcamera driver set to static operation, and for the driver set to automatic 

adjustment. Table 3 is organized in the same fashion and shows data for changes in light 

spectrum where A (full spectrum incandescent), B (soft white incandescent), and C (soft 

white fluorescent) denote light bulb types with different spectra. 

Table 2 shows that in the case of globally calculated models, model selection has a 

significant impact on goodness-of-fit. The D*P+T model consistently results in the 

lowest error, and all three global models noticeably degrade as the magnitude of the 

intensity change increases. However, computing model parameters separately for each 

color not only achieves 70% to 80% lower error than the globally applied models, but 

also achieves a more consistent error rate regardless of the model used or the magnitude 

of the intensity change. Enabling the automatic driver measurably improves globally 

applied models, and does not significantly affect the performance of color-wise models, 

which still achieve 40% to 50% lower error than the globally computed models. This 

indicates that it is no more difficult to compensate for simultaneous changes in intensity 

and driver settings than it is to compensate for intensity change alone. Thus, from a 

steady-state point of view, it is reasonable to leave the automatic driver enabled to 

improve the camera’s dynamic range. 

To obtain the data in Table 3, images are compared that were taken under 

illumination from different light bulb types but similar intensities (e.g., 6 type A bulbs 

versus 6 type B bulbs). The Uncompensated MAD row shows that the raw image 

differences caused by spectrum changes are lower in magnitude than those caused by the 

intensity changes. However, the automatic webcamera driver does little to mitigate the 
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effects of the spectral changes. For changes in spectrum, optimizing the models based on 

chromatic region achieves 70% to 80% lower MAD error than the globally optimized 

models. Also, the global models gain little benefit from the automatic driver. 

Table 2. Effectiveness of illumination models and color regionalization on reducing 
MAD error caused by intensity changes. Number pairs 3-6, 6-9, and 3-9 denote the 
magnitude of the intensity transition (ex: transitioning from 3 bulbs to 6 bulbs of the same 
type). 

3-6 6-9 3-9 3-6 6-9 3-9
Uncompensated MAD 145.2 101.7 246.9 24.4 18.4 10.4

D*P 28.8 25.6 41.9 10.1 7.3 8.1
P+T 21.2 19.9 32.2 9.3 6.5 8.1
D*P+T 12.4 18.8 22.8 7.8 5.9 7.5
D*P 4.3 4.3 4.5 4.7 3.9 4.6
P+T 4.8 4.9 5.3 4.5 4.0 4.6
D*P+T 4.2 4.3 4.6 3.7 3.5 3.7

76% 79% 84% 52% 42% 45%

Driver Static

Avg Error Reduction

Driver Automatic

Global

Chromatic 
Regions

 

 

 

Table 3. Effectiveness of illumination models and color regionalization on reducing 
MAD error caused by spectrum changes. Letter pairs A-B, B-C, and A-C denote the bulb type 
transition (ex: transitioning from type A bulbs to the same number of type B bulbs). 

A-B B-C A-C A-B B-C A-C
Uncompensated MAD 34.7 39.6 42.6 38.5 42.0 41.7

D*P 24.5 30.7 33.9 26.9 24.3 27.5
P+T 18.6 26.3 27.5 19.8 19.3 19.1
D*P+T 17.4 23.8 25.4 18.3 17.2 17.7
D*P 9.8 8.9 6.7 10.0 8.2 8.6
P+T 5.0 5.0 5.1 5.1 4.6 4.4
D*P+T 4.1 4.3 4.5 4.4 3.9 3.8

70% 78% 81% 71% 73% 75%

Driver Static

Avg Error Reduction

Global

Chromatic 
Regions

Driver Automatic

 

 

 

2.3.3 Specificity of Model Parameters to Color 

It is observed that color-specific models achieve much better results than applying a 

model tuned to an entire image. Presumably, this effect is because a globally computed 

model is a compromise between the many colors and surfaces present in a scene. Next, 
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the degree to which the illumination model parameters are color-specific is evaluated. 

This experiment is conducted by again applying a least mean square algorithm to 

compute the optimum parameters for each of three models for each color chip in the 

target. This time, the optimum models for each chip are applied to each of the other 

chips, and the MAD error is calculated between each compensated chip and its instance 

in the original image. This demonstrates how well the model parameters for each color 

work for each of the other colors. The chip-wise results for the each transformation 

model are shown in Tables 4-7, followed by the average results over all chips for each 

model in Table 8. 

The first column in Tables 4-7 show the chip color for which each model is 

computed. The labels (G, B, P, R, and Y) indicate green, blue, purple, red, and yellow 

respectively, while the number denotes different saturations. The Self-Correct column 

shows the MAD error for the model applied to the chip for which it was optimized. The 

Similar Hue column shows the average MAD error resulting from the model being 

applied to other chips of similar hue (i.e., the model for G1 applied to G2, G3 and G4). 

The Dissimilar Hue column shows the average MAD error resulting from the model 

being applied to the remaining chips. Tables 4 and 5 show the application of each color 

chip’s transformation to the other chips during intensity changes, averaging the results for 

each bulb type. Tables 6 and 7 show the application of each color chip’s transformation 

to the other chips during spectrum changes, averaging the results for each bulb transition. 

The chip-wise data is averaged to produce the summary of Table 8. 
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Table 4. Effectiveness of color-specific illumination models on reducing the MAD error 
of various surface colors for the 3-6 intensity transition. 

Chip
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
G1 4.4 19.0 53.7 4.8 11.9 22.6 4.2 30.7 59.2
B1 4.2 12.8 53.1 4.6 9.3 25.1 4.5 10.8 31.3
P1 3.6 17.5 46.9 4.0 6.9 23.5 3.7 10.1 45.7
R1 4.2 18.3 54.3 5.6 25.3 22.6 5.4 39.2 36.1
Y1 4.0 22.7 68.9 4.5 24.8 33.8 4.1 43.7 68.7
G2 4.2 17.1 54.8 4.3 13.0 24.5 3.7 31.5 68.7
B2 3.9 10.7 44.4 4.2 9.7 24.5 3.8 20.3 71.4
P2 4.4 11.2 40.2 4.6 6.3 23.8 3.5 16.6 86.6
R2 3.5 15.7 53.8 5.0 20.6 25.7 4.5 40.1 66.7
Y2 4.5 24.9 62.2 5.1 32.4 30.4 4.4 72.1 98.3
G3 4.7 18.4 62.3 4.8 13.8 29.2 4.0 36.9 104.5
B3 3.6 13.1 47.7 4.1 16.6 35.7 3.6 43.2 124.0
P3 3.6 13.4 36.5 4.1 6.5 23.1 3.3 29.5 103.9
R3 4.1 14.3 65.2 5.3 20.1 40.4 5.2 32.5 84.7
Y3 6.4 21.1 77.9 5.7 27.3 49.7 5.3 42.4 96.8
G4 4.7 18.9 44.0 4.9 12.4 25.8 4.4 25.1 46.3
B4 3.6 10.9 41.9 4.1 9.0 27.0 3.2 25.5 112.6
P4 3.9 10.4 38.5 4.3 6.3 24.4 3.5 15.0 82.5
R4 5.3 23.8 83.0 5.7 25.7 47.3 4.9 50.9 123.7
Y4 5.2 20.0 74.2 5.5 33.3 54.1 3.9 68.7 157.6

D*P P+T D*P+T

 

 

 

Table 5. Effectiveness of color-specific illumination models on reducing the MAD error 
of various surface colors for the 3-9 intensity transition. 

Chip
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
G1 4.3 20.3 70.5 5.0 23.4 35.9 4.6 35.0 51.6
B1 4.5 17.9 70.8 5.1 9.1 41.0 5.1 8.6 39.4
P1 3.5 19.8 63.6 4.4 11.0 37.8 3.9 14.2 49.3
R1 4.5 26.6 70.2 6.2 32.3 40.5 6.0 42.5 49.7
Y1 4.1 59.6 78.3 5.2 76.7 69.5 5.0 93.1 102.3
G2 4.6 18.3 74.2 4.8 23.4 36.0 3.9 46.7 91.8
B2 4.0 16.5 61.8 3.9 8.4 39.5 3.2 22.1 88.4
P2 4.4 12.5 57.1 4.4 9.1 37.2 3.5 19.9 87.4
R2 3.6 23.8 69.5 4.9 27.2 47.2 4.3 46.7 77.3
Y2 4.5 62.4 73.1 4.8 68.8 54.0 4.4 66.1 119.2
G3 5.1 19.5 79.3 5.3 25.5 50.0 4.1 57.4 138.5
B3 3.6 24.9 71.5 4.1 11.5 43.9 3.2 44.2 146.4
P3 3.4 14.2 54.1 4.3 14.1 37.0 3.9 34.1 92.3
R3 4.6 20.8 85.8 6.2 29.8 73.3 5.6 48.8 142.8
Y3 7.5 54.5 120.9 8.3 75.3 65.0 6.3 62.5 162.6
G4 5.2 21.8 61.9 5.0 26.6 44.3 4.7 34.8 52.2
B4 3.7 16.1 59.8 4.5 8.3 43.0 3.8 23.7 118.0
P4 3.9 11.6 55.9 4.0 9.0 37.0 3.2 19.0 87.0
R4 5.8 36.2 106.1 6.8 27.4 70.3 5.7 61.6 155.8
Y4 5.8 60.5 127.2 9.6 91.8 72.1 7.2 88.7 232.9

D*P P+T D*P+T
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Table 6. Effectiveness of color-specific illumination models on reducing the MAD error 
of various surface colors averaged over all spectrum transitions for low intensity. 

Chip
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
G1 11.1 41.7 67.0 5.6 13.6 30.1 5.1 24.3 61.2
B1 5.4 8.1 33.8 5.1 6.5 28.4 4.8 8.3 40.5
P1 4.4 10.8 31.7 3.8 8.4 24.0 3.5 12.2 39.0
R1 22.6 31.1 166.8 4.7 21.9 27.9 4.6 26.2 40.7
Y1 17.6 111.0 329.8 5.7 31.9 33.3 3.0 56.0 105.1
G2 5.8 27.4 42.6 4.4 14.8 24.6 4.1 25.1 56.8
B2 4.1 8.3 32.6 3.9 6.2 26.6 3.6 13.8 51.7
P2 5.2 10.8 33.0 4.7 7.0 24.4 4.4 10.3 45.9
R2 19.1 35.9 635.6 4.2 21.6 27.5 3.4 15.1 63.8
Y2 16.6 120.0 347.1 6.3 30.7 28.1 3.9 53.4 89.9
G3 13.3 61.3 97.1 5.8 23.1 43.5 5.4 38.2 93.0
B3 4.4 10.8 36.0 4.3 8.1 29.7 4.0 32.2 105.6
P3 4.6 12.0 29.0 4.3 8.7 25.2 4.0 21.8 65.6
R3 21.5 33.4 486.5 5.5 23.4 34.2 3.9 17.7 89.2
Y3 5.8 20.5 59.4 5.1 28.3 51.7 4.6 30.1 51.7
G4 5.8 28.2 29.6 5.2 14.0 24.7 4.8 25.1 35.1
B4 4.5 7.8 32.0 4.4 6.1 26.3 3.9 19.8 86.6
P4 5.2 9.4 31.8 4.6 7.4 25.4 4.3 12.4 58.2
R4 15.3 37.2 440.7 7.3 29.3 28.0 3.3 34.3 119.8
Y4 4.3 20.2 65.2 4.9 31.3 56.3 4.4 43.1 83.5

D*P P+T D*P+T

 

 

 

Table 7. Effectiveness of color-specific illumination models on reducing the MAD error 
of various surface colors averaged over all spectrum transitions for high intensity. 

Chip
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
Self-

Correct
Similar 

Hue
Dissimilar 

Hue
G1 6.7 23.5 59.1 5.5 15.7 39.4 5.2 26.5 57.3
B1 5.9 11.3 45.4 5.7 9.4 39.0 5.4 12.7 59.2
P1 4.0 9.5 41.8 3.9 7.8 35.3 3.4 12.8 54.4
R1 12.3 51.0 88.9 7.0 25.2 41.9 6.3 38.4 52.7
Y1 7.3 95.7 77.9 6.5 66.1 47.0 4.8 71.4 121.8
G2 4.4 21.5 46.4 4.1 18.1 34.3 3.7 36.7 70.7
B2 3.3 11.6 43.1 3.3 9.6 37.4 2.9 20.2 75.8
P2 3.8 10.6 42.2 3.7 8.5 34.9 3.4 13.5 58.1
R2 9.5 49.6 147.4 5.0 24.9 50.8 4.8 35.0 51.1
Y2 7.2 121.3 105.4 5.8 70.7 44.2 4.7 73.1 112.6
G3 6.3 33.0 67.8 5.1 27.4 49.5 4.8 44.9 94.6
B3 3.5 16.3 48.3 3.5 16.2 47.4 2.9 43.2 132.2
P3 4.7 10.9 42.9 4.6 9.1 38.6 3.8 30.2 89.8
R3 19.4 123.9 506.4 6.3 35.3 73.9 5.7 34.0 110.2
Y3 6.4 55.8 69.2 6.9 63.4 61.0 5.9 46.7 103.6
G4 5.0 23.0 42.6 4.8 15.5 36.2 4.6 28.3 44.4
B4 4.4 10.6 43.1 4.3 9.3 38.1 3.6 22.9 103.9
P4 3.9 9.4 44.7 3.8 8.2 38.5 3.1 15.2 81.8
R4 11.7 87.0 363.7 6.9 24.2 48.3 5.4 45.3 142.8
Y4 5.2 56.4 70.4 5.3 70.0 72.1 4.8 70.8 179.3

D*P P+T D*P+T
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Table 8. The average MAD error of chromatically-optimized illumination models 
applied to identical, similar and dissimilar colors. Data is shown for small and large 
intensity changes, and for changes in spectrum with low intensity (3 bulbs) and with high 
intensity (9 bulbs). 

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

Self Correct 4.4 0.9 4.5 1.0 8.5 6.2 6.7 3.9

Similar Hue 22.5 14.7 27.9 17.0 41.4 41.4 41.6 37.9

Dissimilar Hue 58.1 17.7 75.6 20.4 140.4 198.5 99.8 120.0

Self Correct 5.0 1.2 5.3 1.5 5.0 0.9 5.1 1.2

Similar Hue 24.3 20.5 30.4 26.1 22.1 16.1 26.7 22.3

Dissimilar Hue 37.8 12.6 48.7 13.6 39.7 10.3 45.4 11.6

Self Correct 4.3 0.9 4.6 1.1 4.3 0.7 4.5 1.0

Similar Hue 38.0 20.7 43.5 23.2 32.4 17.5 36.1 18.9

Dissimilar Hue 90.5 41.5 104.3 48.7 82.1 32.2 89.8 36.1

D*P

P+T

D*P+T

Intensity (3-6) Intensity (3-9) Spectrum (Dim) Spectrum (Bright)

 

 

 

 

The data supports the initial hypothesis—that optimum illumination models depend 

heavily on surface color, and that even with spatially uniform lighting, globally-tuned 

models are insufficient to compensate all of the colors and surfaces in a scene. Models 

achieve low error rates when applied to the color for which they are tuned (similar to 

error in Table 3). The models work better for surfaces of similar hue than for surfaces of 

different hues. The data in Tables 4-8 demonstrate that model error decreases because the 

appearances of chromatically dissimilar surfaces are indeed changing distinctly, and not 

just because the optimization problem is less constrained with fewer pixels to fit. 

Table 8 shows the data for 3 illumination models, and for 4 separate lighting 

transitions: dim to medium intensity (3-6), dim to bright intensity (3-9), dim spectrum 

changes (transitions between 3 bulbs of each type), and bright spectrum changes 

(transitions between 9 bulbs of each type). Regardless of the illumination change type, 

corrections do well when applied to the chromatic regions for which they are calculated. 

As intensity changes increase in severity, compensation effectiveness decreases for 
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Similar Hue and Dissimilar Hue regions. Error increases by an average factor of 6 when 

chromatically optimized models are applied to colors of similar hue, and by an average 

factor of 15 when models are applied to colors of dissimilar hue. The diagonal 

transformation D*P proves most effective for Similar Hue regions during intensity 

changes, while the translation P+T is most effective for Similar Hue regions during 

spectrum changes. 

2.4. Application to Realistic Surfaces 

To test these observations on a more realistic scene with a wider diversity of 

surfaces, new sets of images are captured of a scene populated with various objects 

positioned at various angles (Figure 5). A square region was selected from each of 12 

objects in the scene (3 each of blue, red, green, and yellow). The objects differ in 

saturation and surface reflectance. Table 9 shows the results of applying each chromatic 

region’s illumination change model to similar and dissimilar chromatic regions, 

formatted similarly to Table 8. Observations drawn from previous data hold for this scene 

as well. Models applied to surfaces with Similar Hue in the scene of Figure 5 are slightly 

less effective than for the controlled surfaces of Figure 4b due to differences between 

chromatic regions in surface reflectance and orientation. 
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Figure 5.  A scene of realistic surfaces featuring a diversity of colors, surface reflectances, 
and orientations. 

 

 

Table 9. Average MAD error from applying three illumination models to the chromatic 
regions for which they were computed, chromatic regions with similar hue, and chromatic 
regions with dissimilar hue. Here, the models were applied to various surfaces in a realistic 
scene (Figure 5)  

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

Self Correct 4.0 1.8 4.1 1.8

Similar Hue 17.8 8.2 23.8 9.5

Dissimilar Hue 68.4 14.1 83.7 12.1

Self Correct 6.0 2.4 7.3 3.0

Similar Hue 40.1 11.8 53.8 16.9

Dissimilar Hue 68.0 12.2 93.8 16.7

Self Correct 5.5 2.3 6.7 2.9

Similar Hue 48.9 21.9 57.9 24.7

Dissimilar Hue 101.8 25.9 121.5 30.5

P+T

D*P+T

Intensity (3-6) Intensity (3-9)

D*P
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2.5. Conclusions 

This chapter shows the significance of color to illumination changes in images 

captured by low-cost webcameras. Three illumination models are evaluated for their 

effectiveness in accounting for changes in lighting intensity and spectrum. The more 

complicated D*P+T model results in the smallest error out of the three models tested. 

However, by computing model parameters independently for each chromatically distinct 

region (without necessarily dividing the image into arbitrary spatial tiles), MAD error is 

reduced by an average of 70% to 80% compared with that achieved by globally 

calculated models. Furthermore, chromatic regionalization drastically reduces the 

variation in error due to model choice. This suggests that the least computationally 

expensive model (P+T) could be chosen in some applications to improve runtime 

performance in exchange for an acceptable penalty to accuracy. It is demonstrated that 

surfaces with different hues have significantly different illumination change responses, 

and that applying a chromatically optimized model to a surface of dissimilar hue 

increases MAD error by an average factor of 15. Finally, data is presented that suggests a 

webcamera’s automatic driver does not generally increase the complexity of illumination 

corrections. The driver does not reduce illumination compensation effectiveness for 

spectrum changes, and does help stabilize images after intensity changes. 

This work explicitly tests the color dependency of illumination change in a way not 

seen in prior literature, and provides a compelling argument for using color 

regionalization in illumination modeling. The next two chapters demonstrate and evaluate 

techniques to exploit these relationships in a comprehensive compensation algorithm 

using automatic color regionalization. 
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CHAPTER 3  

BIGBACKGROUND: CHROMATIC REGIONALIZATION FOR 
LARGE BACKGROUND FEATURES 

 

 

3.1. Introduction 

Images represent large amounts of raw data.  A typical uncompressed color image 

that is 640 pixels wide and 480 pixels tall represents nearly 1 megabyte of data.  In recent 

years digital cameras have dropped in price, increased in resolution, and proliferated into 

phones and portable computing platforms.  Computers tasked with video surveillance 

algorithms must sort through this data, and are generally trying to extract a relatively 

small amount of information.  Is there an intruder?  Are people or vehicles present?  

Where are they going, and how fast are they moving?  The human visual system is adept 

at examining a scene in varying resolutions, able to pick out buildings, vehicles, and 

people.  In contrast, computers operate by carrying out mathematical and logical 

operations on very small sets of numbers, and must first approach digital images by 

examining them at the pixel level.   

Background models are important early vision algorithms in computer video 

surveillance.  They provide a means for distilling large amounts of raw image data into 

useful preliminary classifications: which pixels are important, and which can be ignored.  

Background subtraction is a form of change detection: an image of a scene’s background 

is subtracted from a new image, and non-zero pixels (or pixels for which the difference is 

sufficiently greater than zero) probably represent new, potentially interesting objects and 
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are classified as foreground. A variety of background models have been proposed, which 

are most easily separated into two broad categories:  recursive and non-recursive.  

Recursive background models use each new image to directly update the current state of 

the model.  When computing the new model, a learning rate controls how much emphasis 

is placed on the new image versus the existing background image.  Fast learning rates 

allow the model to adapt quickly, but risk improperly adapting to slowly moving 

foreground objects.  Slow learning rates resist the influence of slowly moving 

foreground, but take much longer to respond to legitimate background changes.  Because 

every frame contributes to the new model, the effects of scene features can persist 

indefinitely, though the learning rate can be such that a feature’s contribution will 

become negligible.  Non-recursive models maintain a history of the previous N frames, 

and compute a new background image based on those frames.  While different frames in 

the history may be weighted differently, rates of adaptation are determined by the size of 

the history.  Once the frames containing a particular feature have been rotated out of the 

history, that feature has no impact on the background model. 

Rapid illumination changes make background model-based change detection 

difficult because illumination changes and object occlusions are difficult to distinguish at 

the pixel level. Illumination changes can alter the appearance of the entire scene, causing 

most truly background pixels to fail to match their background models. 

While most image and video processing algorithms begin at the pixel level, the 

ultimate goal of most of these algorithms is to recognize, track, or make decisions based 

on objects or activities in the monitored environment.  Thus, an important step in 

automated video surveillance is the aggregation of pixels into larger, higher-order 
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abstractions.  Abstraction allows the machine to begin to “see” a scene in terms of its 

content, rather than in terms of individual pixels.  Content-oriented knowledge is less 

sensitive to pixel-level variations, and can be used to maintain consistent perception of a 

scene despite environmental changes. 

In this chapter, an approach is presented for extracting regional statistics that identify 

large, permanent background objects such as roads and buildings. Applications of such a 

model were suggested in the previous chapter, as it was demonstrated that chromatically 

dissimilar regions respond differently to illumination change. This approach to regional 

statistic extraction is motivated by the observation that many surveillance scenes contain 

dominant, relatively homogeneous background structures. The presented approach 

identifies such structures by determining the dominant colors in a scene, and then 

mapping where those colors occur. The BigBackground procedure is described, and its 

sensitivities to the parameters that dictate its function are explored. The BigBackground 

model is found to cover between 50% and 90% of most scenes, while BigBackground 

pixels are found, on average, to be 18% more stable than non-BigBackground pixels. 

3.2. Related Work 

Image segmentation has been explored in various forms for three decades, and is 

still an active field as new applications, computational abilities, and underlying 

mathematical frameworks are developed. Several surveys of color image segmentation 

techniques are available [21], [22], [23]. Cheng et al. [21] reviews color image 

segmentation as a combination of grayscale segmentation techniques (histogram 

thresholding, feature space clustering, edge detection and region-based techniques) with 

different color spaces. Fundamentally, segmentation algorithms identify region 

boundaries such that regions are homogeneous within themselves relative to the 
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heterogeneity across regions. The active contour approach to segmentation expresses this 

concept explicitly in the form of differential geometry [22]. Parameters such as boundary 

length, curvature, and appearance are viewed as energies, and partial differential 

equations are evolved until region boundaries settle to minimize those energies. 

Freixenet et al. [23] discuss region-based segmentation and methods for using 

edge and region information to refine initial segmentation results. In split-and-merge 

techniques, an image is subdivided into smaller subregions. Each subregion that does not 

meet the required homogeneity criteria is recursively subdivided until every subregion is 

internally consistent (in terms of edges, gradients, color, etc). Then adjacent subregions 

that share desired traits are remerged. Region growing techniques begin with seed pixels 

distributed about the image. Neighboring pixels that share certain similarities with the 

seed are merged with the seed. This approach is sensitive to initial seed placement, and a 

great deal of work on region growing techniques has focused on choosing seed points. 

Christoudias et al. [24] present the Edge Detection and Image Segmentation 

(EDISON) system, which combines segmentation and edge detection with the philosophy 

that the two operations are complements of each other. Specifically, a properly 

segmented image should feature proper edges at segment boundaries. The EDISON 

method relies on the popular mean shift algorithm to recursively localize the modes of the 

image’s color space, and incorporates a weight for each pixel that is proportional to the 

pixel’s distance to an edge. The result allows segmentation of distinct regions with weak 

boundaries separating them from their surroundings. 

An alternative segmentation procedure is presented by Felzenszwalb et al. [25]. 

The Efficient Graph-Based Image Segmentation (EGBIS) identifies distinct region 
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boundaries when appearance differences across a potential boundary are greater than the 

appearance differences within at least one of the resulting regions. This adaptive, non-

local measure of saliency aims to segment features relative to their surroundings and their 

internal consistency. 

Segmentation traditionally enforces an adjacency requirement. A region is only 

allowed to extend to its most distant direct neighbor, and associations are not made 

between non-adjacent objects of similar appearance. It is common for otherwise similar 

surfaces to be bisected by occlusions or interspersed background features and considered 

as separate regions. An image may have hundreds of distinct segments depending on 

algorithm selection, parameter adjustment, and scene complexity. Conversely, the 

adjacency requirement can also result in an oversimplification of scene features. A space 

that contains internal variation or islands of dissimilar appearance may be classified as a 

single region if the transition to a neighboring region is strong relative to the interior. 

Such variation could be due to the presence of distinctly different colors or reflectances. 

As discussed in the previous chapter, different colors tend to have different responses to 

illumination change, making their aggregation a liability to illumination change.  

Examples of the EDISON and EGBIS segmentation methods (using parameters 

suggested by the authors) are shown in Figure 6 alongside the results of the 

BigBackground identification approach that will be presented in this chapter. The number 

below each false color image indicates the number of distinct scene regions identified by 

the technique. Scenes (b)–(e) show several instances of interlaced colors that are 

aggregated into single regions by the segmentation techniques, but which appear in the 

BigBackground map as pixels belonging to interlaced (but independent) regions. Also 
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visible are spatially bisected regions of similar appearance that are treated as separate 

segments, but which BigBackground unifies. 

 

 

 

Figure 6.  Comparison of BigBackground maps with segmentation procedure results. Left to 
right: original image, BigBackground region map, EDISON segmentation, EGBIS 
segmentation. Numbers below images indicate the number of distinct regions found in the 
scene. Note that for the BigBackground maps, all pixels of the same color belong to the 
same region. For the segmentation techniques, pixels that are the same color but are 
spatially disjointed represent independent regions. 
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In this work, it is desired to obtain a model of the dominant background features 

in a scene, and to recognize similar objects as unified surfaces regardless of spatial 

orientation. Small regions with infrequently occurring colors are more likely to be 

occluded or to vary with time, making them less appealing as reference points. While 

segmentation could be used in conjunction with a minimum size constraint, a regional 

feature that inherently accounts for size, does not rely so heavily on initial conditions, and 

allows nonadjacent similar surfaces is more attractive.  

The concept of BigBackground shares some philosophical similarities with the 

frameworks of stels and locales. Stels are introduced by Jojic et al. [26] as ‘structuring 

elements’, and represent distinct regions of self-similarity within an image class.  A class 

is considered to be a set of images that share similar features, such as images of faces, or 

images of roads and power lines.  A variety of metrics can be used to distinguish between 

stels, such as pixel intensity, texture, or color.  Stels are identified by an unsupervised 

Bayesian hidden model.  For each pixel, the probability that the pixel belongs to each of 

the stels is calculated.  The primary benefit is that the same palette of stels should be 

identified for all images in the same class, regardless of differences in environmental 

factors or imaging conditions. 

The locales framework described by Drew et al. [27], [28] serves to localize features 

of interest within an image.  Statistics are calculated on a tile-by-tile basis.  The tile 

statistics may include average intensity, texture, mass, centroid, or histogram.  These 

geometric features are measured in terms of the pixels within a tile. A tile is said to 

possess a particular feature if a minimum density of the pixels within the tile have that 

feature, and a locale is defined by the envelope of tiles that share that feature.  It is not 

required that every pixel belong to a locale, nor is it necessary that locales are mutually 
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exclusive.  This contrasts with traditional segmentation, in which segmented regions do 

not overlap and every pixel belongs to a segment. 

3.3. BigBackground 

Within a scene, there are often large, stationary objects of relatively homogeneous 

color.  Buildings, roads, and tree lines are examples.  The size of these objects lends 

confidence that their appearances are unlikely to change, and that at least some portions 

of them will remain visible, even as occluding objects traverse the scene. BigBackground 

(BB) is based on the premise that these large background objects will be comprised of the 

most common colors in a scene, and therefore a relatively small color palette can be 

found which represents many of the pixels in the image.  Once the most common colors 

are identified, a map can be generated that points each pixel that matches a BB color to 

that color in the palette.  Each pixel that does match a color from that palette is said to 

belong to that color’s region.  Since each object is likely to respond to illumination 

changes uniformly over their local surfaces, it is possible to compare the colors of BB 

pixels before and after a lighting change to measure the effect on each region.  

BigBackground regions could be extracted from every frame of a video stream, but this 

would risk erroneous region extractions if large transient objects pass through the scene, 

and would be computationally wasteful because the background regions of interest are 

unlikely to change often.  To keep from incorporating transient objects in the BB model, 

and to better distinguish between changing background and occlusion, the BB algorithm 

is applied to the output of a background model such as Approximated Median, Mixture of 

Gaussians, or Multimodal Mean [29].  Multimodal Mean is chosen for this study, and is 

described in Section 3.1.  By extracting BB regions from the background model, it is 

possible to only recompute BB after significant changes occur in the background. 

The maximum component difference (MCD), rather than sum of absolute differences 

(SAD), is chosen for most of the described pixel-comparison routines.  The MCD is the 
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largest difference between two color components, as shown in Equation 5.  The SAD is 

simply the sum of the individual component differences between two pixels. 

Conceptually, the MCD is a better measure of how similar two pixels are, while the SAD 

better conveys how different two pixels are. 

 

 MCD = MAX(abs(R1-R2), abs(G1-G2), abs(B1-B2)) (5) 
 

The BigBackground model is comprised of two data structures. The first is a reduced 

color palette C0—a list of RGB colors, each of which represents a BB region. The palette 

is made of the most frequently occurring colors that satisfy a spatial density constraint. 

The second structure is a map with an entry for each pixel. Map elements are indices into 

the reduced color palette list. If a pixel in an image matches one of the reduced color 

palette colors, that pixel’s entry in the map points to the corresponding color palette 

entry, and the pixel is said to belong to the BB region. Pixels that do not match any 

palette colors are assigned null entries in the map. The process of assigning pixels to 

palette entries in the map is called “branding”. 

The process for identifying BigBackground colors is as follows. The image is 

separated into square tiles (Rsize x Rsize), and a list of the colors present in each tile is 

generated according to the following rule:  if a pixel matches any of the colors already on 

the list within a threshold, then that pixel is averaged with that color; otherwise, it is 

appended to the end of the list (Figure 7).  Once an entire tile has been evaluated in this 

way, colors that occur frequently enough (more than Rth percent of the tile area) are 

added to a global color list by the same mechanism.  If a tile color matches a global color 

within a threshold, it is ratiometrically added to the global entry; otherwise it is appended 

to the end.  Once the entire image has been processed, the global color list is sorted in 

descending order by frequency of occurrence.  The colors in the list are then converted 

from a ratiometric representation to a scalar representation: the running sum for each 
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color channel is divided by the number of times it was observed. The image is rescanned 

to determine how many pixels match each scalar color list entry, as the average colors 

may have drifted since early tiles were examined.  The list is once again sorted in order of 

descending pixel matches, and the Cnum most frequently observed colors are saved to 

form the reduced color palette C0.  The BB map is constructed by comparing each pixel 

from the background model with each entry in the color palette. Each pixel’s entry in the 

map is the C0 index of the color that best matches that pixel.  

 

 

 

 

Figure 7.  Process for identifying BigBackground.  Color list entries such as m and n consist 
of an RGB triple (denoted C) and a count of the number of times a color is observed (cnt). 

 

 

global_list = {} 
 
for each tile T in image I 

tile_list = {} 
for each pixel P in T 

for each entry k in tile_list 
if MCD(P, k.C) > MCDth 

append P to end of tile_list 
   else 
    k.C = k.C + P 
    k.cnt++ 
  
 for each entry m in tile_list 
  if (m.cnt / Rsize) > Rth 
   for each entry n in global_list 
    if MCD(m.C, n.C) > MCDth 
     append m to global_list 
    else 
     n.C = n.C + m.C 
     n.cnt = n.cnt + m.cnt 
 

// Convert to scalar // 
for each entry n in global_list 
 n.C = n.C / n.cnt 
 n.cnt = 0; 

// Rescan image // 
for each pixel P in image 

for each entry n in global_list 
 if MCD(P, n.C) < MCDth 
   n.cnt++ 
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An important feature of the BB model is that while a color must have a minimum 

density within a tile before it can be considered for inclusion into the global list, 

connectedness (direct adjacency) is not a requirement.  It is therefore possible for 

surfaces composed of interleaved colors, such as grass or brick, to be modeled by BB as 

well as well as solid homogeneous surfaces. Additionally, it is not necessary for a pixel to 

belong to any BB region. 

3.4. Stability Evaluation of BigBackground 

A study is presented that evaluates the stability of BB regions compared to the 

stability of the overall image.  BB’s behavior under different threshold values is also 

characterized.  This study uses results from BB and another background model known as 

Multimodal Mean, which is introduced fully in [29], but is briefly described here. 

Multimodal Mean models each pixel as a finite set of possible average pixel values.  

If a pixel from the current image matches within a threshold of one of its possible 

averages, that average is updated with the value of the current pixel.  The model tracks 

how frequently each mode has been observed, and how long it has been since each mode 

was observed.  The match count and average of each mode are periodically decimated to 

prevent outdated information from persisting too long after the scene has changed, and to 

avoid integer overflow.  Pixels from the current image that do not match any of their 

Multimodal Mean cells are declared foreground, and a new mode cell is created to track 

what may be the start of a new background value.  Typically, 3 or 4 modes are allowed 

per pixel. 

In this section, the relative temporal stabilities of BB pixels and non-BB pixels are 

evaluated.  Illumination change effects are considered in the next section.  Six test videos 

with no appreciable illumination changes are chosen to test BB stability.  Sample images 

from these videos are shown in Figure 8.  As part of the evaluation of BB’s stability, 

Multimodal Mean is applied to a preamble period of each test sequence.  By the end of 
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that period, Multimodal Mean produces a stable background model, and a predominance 

image is created in which each pixel assumes its own most frequently observed mean 

color.  The BB algorithm is applied to the predominance image to find the most 

dominant, sufficiently clustered colors throughout the scene.  This results in a palette of 

common colors, and any pixel that matches one of these colors within a threshold is 

mapped to that entry in the color palette.  This process is called “branding”.  Pixels which 

do not correspond to a BB color do not belong to the BB model, and are assigned an 

index of zero in the map.  BB pixels receive an index from 1 to Cnum.  For each 

sequence, after computing the predominant image and the BB model, the next 100 frames 

in the sequence are analyzed.  Each pixel in each new frame is compared with its 

corresponding pixel in the predominant image, and the number of BB and non-BB pixels 

are counted that continue to match their original predominant pixel values within an 

MCD threshold. 
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Figure 8.  Samples from the videos used in the BigBackground stability experiments.  (a) 
Shady, (b) City, (c) Biltmore, (d) Yard, (e) Courtyard, and (f) Sidewalk. 

 

 

 

The evaluation of BB stability is done in two steps.  First, the number of BB pixels 

that match their predominance values is compared with the number of non-BB pixels that 

match their predominance values.  Because both sets of pixels are compared with their 

individual values in the predominant image, and BB and non-BB serves only as a spatial 

classification, this serves as an apples-to-apples comparison that reveals if the subset of 

pixel positions identified as BB is more likely to stay consistent than the remaining 

pixels.  In the next step, the BB pixels are compared with their reduced color palette 

colors.  The non-BB pixels are still compared with their own predominance values.  

Comparing these percentages reveals how well BB pixels match when described by a 

small color palette. 
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Table 10 summarizes the average BB stability statistics as observed in six video 

sequences.  These averages are computed over 45 trials for each sequence, in which all 

combinations of the parameter choices for Cnum {5, 10, 15, 20, 25}, Rsize {8, 16, 32}, 

and Rth {10, 20, 30} are tested.  The precise effects of these parameters are described in 

the next section. 

 

 

Table 10.  BigBackground Coverage and Stability in 6 scenes.  These are the average 
results obtained from all combinations of the parameters Cnum={5, 10, 15, 20, 25}, 
Rsize={8, 16, 32}, and Rth={10, 20, 30}. 

Seq % Branded
NonBB % 

Match BB % Match
BB % Match 

(small palette)
Shady 49.4 30.2 72.2 59.2

City 23.7 87.9 94.7 76.6
Biltmore 31.3 82.8 92.2 72.3

Yard 46.1 35.0 62.7 48.1
Courtyard 48.6 88.7 95.3 71.0
Sidewalk 58.7 50.9 66.8 60.7  

 

 

First examining the ‘NonBB % Match’ and ‘BB % Match’ columns, it is observed 

that the pixels branded as BB match their predominant image values significantly more 

often than the unbranded pixels match their predominant values.  The ‘BB % Match 

(small palette)’ column shows that when BB pixels are compared with their entry in a 

reduced color palette, the number of BB pixels that match drops by 20% or less.  The ‘% 

Branded’ column shows what percentage of pixels is identified as BB in each scene.  In 

summary, Table 10 shows that the subset of pixels identified as BB is more stable on 

average than the remaining pixels.  Using a small color palette to represent BB pixels still 

captures a very large set of the pixels that would have matched using their own custom 

models. 
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3.5. Parameter Characterization of BigBackground 

This section examines BB’s responses to variations in its thresholds and tuning 

parameters.  The process of generating the BB model depends on three major parameters:  

the number of colors allowed in the color palette (Cnum), the size of the tiles used to 

create regional color lists (Rsize), and the pixel density required for a color to be 

preserved in the global color list (Rth).  Two metrics are considered when evaluating the 

importance of these parameters:  BB coverage (what percentage of a frame’s pixels are 

classified as BB), and stability (what percentage of the BB pixels continue to match their 

predominant pixel values).  Figure 9 shows the effect of different color palette sizes on 

BB coverage.  Figure 10 shows the effect of different color palette sizes on the number of 

branded pixel matches.  The reduced color palette is formed by sorting observed average 

colors by number of matches, and creating the palette from the Cnum most popular 

colors.  By increasing Cnum, additional colors from the sorted list are included, allowing 

more pixels to match a palette color.  Also, the total coverage of BB increases.  The law 

of diminishing returns applies:  since the most frequent colors are chosen first, any new 

colors added to the palette will not contribute as many pixels as those colors that have 

come before.  Figures 9 and 10 show that as the size of the palette increases, the number 

of pixels identified as BB also increases, but the percentage of those pixels that match 

their model color over the course of the sequence tends to decrease slightly.  This 

indicates that the BB colors with the fewest member pixels (and therefore the last to be 

added to the palette) are somewhat less stable than the most popular colors. 

The parameters Rsize and Rth are observed to have very small, erratic effects on BB 

coverage and stability.  Rsize is iterated through 8, 16, and 32, while Rth is iterated 

through 10, 20, and 30.  These parameters rarely influence coverage or stability by more 

than two percent.  The direction of the change depends heavily on the scene; increasing 

Rsize increases coverage in some sequences, while decreasing coverage in others.  This 

small, erratic response suggests that Rsize and Rth can be chosen to maximize computing 
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performance.  For instance, increasing Rsize from 8 to 32 reduces the overhead of 

processing each tile, and increasing Rth from 10 to 30 places more stringent requirements 

on color density within each tile, thereby reducing the number of colors to be sorted and 

searched through in the global list.  The main tradeoff to consider when tuning BB 

parameters is BB coverage versus BB stability.  Additional pixels identified as BB tend 

to be less stable than those pixels previously identified.  Color palette sizes (Cnum) of 15 

to 20 are generally observed to capture the most significant background structures 

without capturing unnecessarily small features. Examples of predominance images and 

their BB-produced region maps are shown in Figure 11.  False colors are used to 

highlight the separation of BB regions.  Black pixels do not map to a BB color. 

After analyzing the distribution of colors in the BB palette, it is observed that several 

palette entries are occupied by colors that a human observer would call the same.  As a 

result, several significant regions in the scene are left out of the model because subtle 

color variations of a few large surfaces occupy most of the color palette entries.  It is 

desirable to obtain a chromatically diverse color palette for two reasons.  First, a diverse 

palette allows the effects of a lighting change to be observed on a wider range of surface 

types.  Second, a diverse palette is able to cover more of the scene with the BB model.  

An experiment is conducted to justify this assumption using the image sequences with 

illumination change.  The sum of absolute difference is computed between every BB 

color pair.  The sum of absolute difference is also computed between every pair of RGB 

Translation illumination compensation factors.  Measurements are made of the separation 

of the colors in the BB palette and the separation between the illumination compensations 

of those colors, and the data is organized in an XY scatter plot to observe any correlation 

(Figure 12). 
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Effect of Cnum on BB Coverage
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Figure 9.  Increasing the size of the color palette (Cnum) increases the number of pixels 
belonging to BigBackground. 

 

 

Effect of Cnum on BB Stability
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Figure 10.  The additional pixels incorporated into the BigBackground model by increasing 
Cnum match slightly less often. 
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Figure 11.  Identification of BigBackground regions. Left: Samples of Multimodal Mean 
predominant images from evaluation sequences.  Center: Color palettes.  Right:  False-
color BigBackground maps.  Each color represents a different BB region.  For these 
examples, Cnum=15, Rth=20, and Rsize=16. 
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Correlation Between Color Separation and Correction 
Separation (without Clustering)
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Figure 12.  Correlation between color separation and correction separation.  Pairs of colors 
that have a small sum of absolute difference tend to have a small SAD between their 
illumination corrections as well, indicating that the pair could possibly be treated as a 
single color for compensation purposes. 

 

 

 

It is apparent from Figure 12 that palette colors that are very close together have very 

similar compensation factors.  A strong linear relationship can be seen between color 

separation and correction separation for each sequence.  In order to improve color palette 

diversity, the following color clustering step is added to the BB color-finding algorithm: 

after producing the scalar color list, all of the colors in the list are examined, and colors 

that match within a clustering maximum component difference (ClMCD) of each other 

are organized into a single linked list.  The color palette then consists of an array of 

linked lists, rather than an array of individual colors.  The parameter ClMCD represents 

the maximum color distance allowed between similar colors.  If a pixel matches any one 

of the colors in a list, it is branded with the index of that list instead of the index of a 
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specific color.  The weighted average of each linked list of colors is used to represent the 

list for calculating illumination compensation. 

The previous experiments are repeated to observe the effect of clustering on palette 

diversity and BB coverage.  Figure 13 shows the correlation between average color 

separation and compensation separation.  Some linear trends are still present, but the 

entire mass of data points has shifted significantly up and to the right.  This signifies that 

there is now a greater difference between palette entries and their respective 

compensations, and that the palette has been chromatically diversified. 
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Figure 13.  Correlation between color group separation and correction separation after 
additional clustering.  Far fewer color pairs have SADs less than 100. 
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The stability experiment is repeated to observe the effects of clustering on BB 

coverage and relative stability.  The effects of parameters Rsize and Rth are also 

measured for the algorithm with clustering.  Table 11 shows that again, the pixels 

branded as BB match significantly more often than the remaining pixels.  Compared with 

the values in Table 10, the clustering process slightly decreases stability.  However, the 

BB model covers significantly greater image area—generally increasing by 20% or more.  

This increase in coverage more than makes up for the stability decline, and indicates that 

a greater number of pixels are being matched with nearly the same reliability.  A larger 

percentage of BB pixels also match within the reduced color palette. 

 

 

Table 11.  Stability for BB with color clustering. 

Seq % Branded
Non-BB % 

Match BB % Match
Shady 68.9 26.6 62.6
City 52.8 86.1 92.3

Biltmore 64.5 78.7 89.1
Yard 65.4 28.2 57.9

Courtyard 76.4 84.6 93.9
Sidewalk 81.8 42.9 62.8  

 

 

The next experiment examines the effects of the BB parameters Cnum, Rsize, Rth, 

and the new clustering maximum component difference threshold (ClMCD) on BB 

coverage and stability.  Figures 14 and 15 show the results for varying Cnum.  The results 

shown are the averages for each sequence over all combinations of Rth, Rsize, and 

ClMCD.  Again, a law of diminishing returns in coverage is observed, as well as slight 

decreases in the proportion of BB pixels that consistently match.  Because colors are 

added in order of popularity, subsequent palette entries contribute fewer pixels and are 

less stable than preceding entries. 
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Effect of Cnum on BB Coverage (with Clustering)

0

20

40

60

80

100

Shady City Biltmore Yard Courtyard Sidewalk

Video Sequence

P
er

ce
nt

 o
f I

m
ag

e 
C

ov
er

ed
 

by
 B

B
Cnum=10
Cnum=15
Cnum=20
Cnum=25

 

Figure 14.  The effect of increasing the size of linked list color palette size on BB coverage.  
The clustering step succeeds in increasing coverage between 20% and 40% over the non-
clustering algorithm for the test sequences. 
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Figure 15.  The effect of increasing the size of linked list color palette on BB pixel stability.  
A general decrease in stability is observed when compared to the pre-clustering stability 
measurements (in Figure 10), but the sharp increase in overall coverage more than 
compensates for the stability decline. 
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While Rsize and Rth have a negligible effect when no clustering is used, their effects 

increase in magnitude as the ClMCD threshold is increased.  The plots in Figures 16 – 21 

show the performance of different Rth and Rsize combinations for different ClMCD 

values and a constant Cnum of 20 for three representative sequences (Biltmore, Shady, 

and Courtyard).  The Rth parameter takes on values of 10, 20, and 30, while Rsize takes 

on values of 8, 16, and 32.  Increasing the ClMCD shifts the overall coverage percentage 

upward, and the match percentage downward.  However, the curves for different ClMCD 

values are not parallel, and demonstrate that as ClMCD increases, the effects of changing 

Rth and Rsize become more dramatic.  Changes in Rsize have the most dramatic impact.  

Small Rsize values—which correspond to small tile sizes during color segmentation—

lead to the greatest BB coverage.  The Rth parameter follows a similar relationship but is 

less pronounced.  Small Rth and Rsize values result in a larger number of colors in the 

global list.  A small Rsize means that the average colors found during the initial color 

search stage are more localized, and aren’t competing with other slightly different colors 

for inclusion into the global list as they would if they were in the same tile.  This process 

allows similar colors to be clustered into color groups after they have been identified and 

added to the global list.  Examples of the effects of the clustering step on BB region 

coverage and association are shown in Figure 22.  The sample images show the false-

color BB maps from Figure 11 on the left (in which no clustering was used), and new 

false-color maps produced by BB with clustering on the right. The average color palettes 

produced without and with clustering are shown in the center left and right, respectively.  

These images reveal the increase in BB coverage (as additional pixels are mapped to 

BB), as well as the improvement in perception (as similar surfaces that were previously 

regarded as separate regions are now associated with the same region). Increased 

diversity in color palette hue and shading is also observed. 
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Figure 16.  BigBackground coverage of the Biltmore sequence as a function of ClMCD, Rth 
and Rsize. 
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Figure 17.  BigBackground stability in the Biltmore sequence as a function of ClMCD, Rth 
and Rsize. 
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Shady, Cnum=20, % Coverage
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Figure 18.  BigBackground coverage of the Shady sequence as a function of ClMCD, Rth and 
Rsize. 
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Figure 19.  BigBackground stability in the Shady sequence as a function of ClMCD, Rth and 
Rsize. 
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Courtyard, Cnum=20, % Coverage
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Figure 20.  BigBackground coverage of the Courtyard sequence as a function of ClMCD, Rth 
and Rsize. 
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Figure 21.  BigBackground stability in the Courtyard sequence as a function of ClMCD, Rth 
and Rsize. 
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Figure 22.  Identification of BigBackground regions using linked-list color palette. Left: 
Samples of Multimodal Mean predominant images from evaluation sequences.  Left Center: 
Color palettes without clustering.  Right Center: Average color palettes with clustering. 
Right: False-color BigBackground maps.  Each color represents a different BB region. For 
these samples, Cnum=15, ClMCD=15, Rth=20, and Rsize=16. 
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3.6. Conclusions 

While computers must begin to examine an image pixel by pixel, it is necessary to 

view a scene in terms of its content. An important step in computer scene understanding 

is the aggregation of individual pixels into high-level spatial abstractions. This chapter 

has presented a model for representing large, stable, self-consistent background features, 

and a method for identifying these features based on chromatic dominance. Parameters 

such as tile size, minimum color density, and palette length were tested for their effects 

on BigBackground coverage and stability. It was shown that after the initial color search, 

an additional clustering step that combines similar colors into a linked list structure 

significantly increases color palette diversity and coverage. The linked list color palette 

also provides a more logical way of increasing acceptable color matches than simply 

increasing the classification threshold. BigBackground was found to comprise 50% to 

90% of several representative surveillance scenes. Pixels belonging to the 

BigBackground model were found to be 20% more stable on average than non-

BigBackground pixels. In the next two chapters, the size and stability characteristics of 

BigBackground features are exploited to form color-centric approaches to illumination 

compensation. 
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CHAPTER 4  

BIGBACKGROUND-BASED ILLUMINATION COMPENSATION 

 

 

4.1. Introduction 

Illumination variation in a scene is a challenge to most background models.  As 

temporary cloud cover and artificial lights change a scene’s illumination, background 

object pixels fail to match their background model counterparts, and are falsely 

interpreted as foreground.  Such a surge in the number of foreground pixels often taxes 

downstream processes, as object tracking or recognition routines must sift through 

additional data.  Salient features can be masked by surrounding background under new 

illumination conditions.  Thus, real-time performance becomes harder to maintain, and 

analysis of the objects of interest becomes less accurate.  It is desired for surveillance 

algorithms to monitor such scenes, reliably observe foreground objects, and filter out 

persistent background regardless of changes in illumination.  

This chapter presents a computationally efficient technique that quantifies and 

compensates for lighting variations.  This technique uses the concept of BigBackground, 

which identifies large, permanent background objects such as roads and buildings.  The 

resulting BigBackground model is used as a calibration anchor to quickly, quantitatively 

estimate the effects of lighting changes on stable regions in the scene.  These estimates 

are used to produce lighting compensation factors that can be applied to estimate the 

scene’s appearance under the original lighting condition, and to extend the useful life of 

the background model without requiring complete reinitialization. Applying an 

illumination compensation technique based on BigBackground decreases average false 

positives by 83% compared to no corrective action, and decreases average false positives 
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by 25% to 43% compared to competing compensation techniques from the literature.  

During run-time tests, the BigBackground-based algorithm performs among the fastest 

techniques tested at 15 to 20 frames per second. 

4.2. Related Work 

Several techniques have been explored for dealing with illumination changes in 

video analysis and image processing.  Some involve direct compensation to improve 

image quality, while others simply recognize if two images are of the same scene.  Online 

and offline learning systems have been employed.  A wide range of models for 

representing illumination change have been described with several degrees of reliance on 

physical properties of light.  The general goal is to transform an image of a new lighting 

condition (I2) to match the illumination condition observed in an earlier image (I1) while 

preserving the features of I2. 

 The majority of techniques used to resolve illumination change problems rely on 

color information.  Fundamental work is presented by Gros [19] as several linear and 

nonlinear transformation models are explored to account for illumination change.  Static 

scenes are observed as illumination is varied in a controlled way, and a least median 

square algorithm chooses the best coefficient values for minimizing the error between the 

original image and the image of the scene under new illumination.  For changes in 

illumination intensity (and not in spectral distribution), the multiplication of the RGB 

pixel vector by a single constant is shown to be sufficient to reduce most of the error, 

although adding a translation vector to the RGB vector (i.e., adding a scalar offset to each 

color component) is also fairly effective.  Spectral changes in the light source require 

more complicated transformations to significantly reduce error, such as multiplication of 

the RGB vector by a full 3x3 matrix.  Also, for the spectral change case, the addition of a 

translation vector decreases error better than multiplication by a constant.  Since a 
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spectral shift in the light source would cause each color channel to respond differently, 

the translation vector better accounts for such a change. 

Experiments presented by Bales et al. [13] demonstrate that the effects of 

illumination change have a significant dependence on chromaticity.  Color targets are 

subjected to controlled illumination changes, and several mathematical models are tested 

for how effectively they account for illumination changes.  All models improve in 

effectiveness when tuned individually for each color.  Furthermore, compensation 

parameters that are optimized for one color are found to remain effective when applied to 

other colors with similar hue, and rapidly lose effectiveness when applied to colors of 

dissimilar hue.  These observations on the chromatic dependency of illumination change 

response motivate the illumination compensation approach presented here. 

There are four general approaches to handling illumination change:  illumination 

invariance, physics-based and photometric stereo modeling, local area statistics, and 

spatial correction.  Illumination invariance methods attempt to formulate algorithms such 

that the data they process are not affected by illumination change.  These algorithms 

typically use edges and gradients [30], [31] or chromaticity [28], [32], [33], [34] instead 

of raw RGB pixel values.  Edges are derived from local features of a discrete 

approximation to the gradient field, which measures intensity differences between 

adjacent pixels.  While edges are often present despite illumination levels, illumination 

changes can still affect the apparent strength of an edge, and a threshold mechanism must 

be used to determine which edges are significant [30].  Several color spaces are available 

that separate color from intensity information, such as YCbCr and HSV.  Chromaticity 

values are calculated as the ratio of the intensity of a color channel to the total intensity of 

the pixel.  Chromaticity is the simplest intensity-separating color space derived from 

RGB values.  Special color spaces alone are typically insufficient for accounting for 

illumination change, because changes in light source spectrum alter the colors in the 
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scene.  They are instead used as components of more complex algorithms to provide cues 

about color stability. 

Other approaches to illumination compensation estimate a scene’s surface properties 

to estimate response to changing light conditions.  Horn [35] describes in detail the 

concepts of photometric stereo, in which a scene is decomposed into irradiance and 

reflectance components.  The irradiance map is generally assumed to be a smooth 

function, and high-frequency features are assumed to be caused by changes in reflectance 

between objects.  The primary drawback to these techniques is the requirement of a 

controlled calibration mechanism with well-defined relationships between different 

illumination conditions.  Calibration often must be computed ahead of time offline, and 

the photometric stereo process is computationally expensive.  Weiss et al. [36] extract 

intrinsic (reflectance and illumination) images by assuming a constant scene reflectance 

and time-varying illumination, and by approaching the problem as one of maximum 

likelihood estimation. In [37], Hager and Belhumeur assume a Lambertian scene and use 

at least three images of a scene under linearly-independent light source directions, from 

which albedo and surface normal can be computed.  This set of basis images can be 

linearly combined to depict the scene under a new illumination condition.   In [38], 

shadows are removed from images by computing background images for the same scene 

over different periods of time, and then decomposing these backgrounds into a 

reflectance image and a set of illumination images.  The technique presented by Wu et al. 

[39] first estimate the camera’s response function by observing the scene with several 

different camera exposure times.  Then online, two or more images of the scene are 

captured using different known exposure settings.  Assuming the scene’s illumination 

stays constant during capture, the images with different exposures can be distilled into 

radiance maps using the estimated camera response function, and then fused to form an 

image that is less sensitive to lighting fluctuation.   
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A data-driven approach by Miller et al. [40] uses a large set of images of a control 

color palette under varying lighting conditions to learn color space response.  Principal 

component analysis is used to derive the most statistically significant color transform 

pairs.  This approach does not model lighting transformation directly; instead, the 

resulting color eigenflows are used to test if two images are of the same scene under 

different illumination.  This seems to be a useful aid in scene recognition, but results are 

not given for response to occlusion.  True illumination compensation is also avoided by 

Finlayson et al. [41], where instead the goal is to identify which image regions are 

illuminated by the same light sources. An algorithm is presented to use images from a 

chromagenic camera, which takes two images of a scene—one normally and one through 

a colored filter. A physics-based reflection model is used by Makihara et al. [42] to 

estimate color transformations starting with a single reference color.  Because it is 

difficult to automatically obtain reference colors from unknown lighting conditions, the 

proposed method uses human interaction to learn color transformations.  Upon finding a 

new color pair, the algorithm updates a color transformation matrix and the algorithm 

repeats.  If the transformation does not successfully match an object in the scene with a 

reference texture image of the object, human intervention is required to facilitate the 

match, and the transformation model is updated with the new color pair. 

Statistics computed locally about individual pixels provide a computationally 

inexpensive approach to illumination compensation.  In [43], Young et al. propose two 

compensation models.  In the first (called the first-order model), the average intensity is 

calculated for a window centered about each pixel in I1 and I2.  The size of the window 

influences how large and small features are compensated differently, and generally 

ranges from 3 x 3 to 31 x 31 pixel squares.  In the second model (called the second-order 

model), both the local averages and standard deviations are used.  The first and second-

order models are given in Equations 6 and 7, respectively.  Here,  I1 ¯  and  I2 ¯  represent the 

mean pixel value within the window centered about (x, y) in the original image and in the 
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image being compensated.  The standard deviations for the same windows are given by 

σ1 and σ2.  This second-order model is also proposed by Lu et al. [44] for block-based 

illumination compensation in multi-view video coding.  Instead of computing statistics 

for windows centered about each pixel, the statistics are computed for each fixed-size 

macroblock, and then applied to all of the pixels within that macroblock to reduce 

computational cost. 
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A third method based on local statistics is presented by Kamikura et al. [45] with the 

intended application of illumination compensation for video coding.  The approach can 

also be applied to compensating surveillance video, and the motion estimation factors can 

be omitted.  A pixel-wise affine transformation is used of the type shown in Equation 8.  

The gain and offset parameters (c and d, respectively) are chosen to minimize mean 

square error, with the optimal solution given by Equation 9.  The statistics used to 

calculate c and d are given in Equation 10.  Again, I1 and I2 are the originally illuminated 

image and the currently illuminated image, respectively, while R is the region over which 

the statistics are calculated and N is the number of pixels in region R.  A single (c, d) pair 

for the entire image is chosen by calculating pairs for all of the tiles in the image, and 

choosing the pair that occurs most frequently. 

An illumination change is modeled by observing changes in the pixels of an image, 

but such changes can be caused by either illumination or occluding objects.  The 

drawback to local area statistics techniques is the implicit assumption that each pixel in I2 

should match its corresponding pixel in I1. These methods make no distinction between 

persistent background pixels or pixels belonging to occluding objects, so the resulting 
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compensations tend to drive all pixels towards their appearance in image I1.  Also, tiles or 

regions that contain significantly different surfaces can result in averages that fail to 

properly compensate either surface. 
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The technique described by Suau et al. [46] also uses first and second order statistics, 

but computes these statistics over multiple tile resolutions and fuses the results.  For each 

tile resolution, the image is divided into equal numbers of horizontal and vertical tiles, 

and the mean and variance of each tile’s luminance channel are computed.  Bilinear 

interpolation expands these statistics into matrices with the original image’s dimensions.  

The original image is then mean-variance normalized toward a target illumination 

average and standard deviation level, as given in Equation 11, where Y is the original 

luminance channel, Y’ is the compensated luminance channel, L is the number of 

resolutions, Mk is the bilinearly interpolated mean image for resolution k, Vk is the 

bilinearly interpolated variance image for resolution k, and μ0 and σ0 are the target mean 

and standard deviation levels, respectively.  This approach is presented as a preprocessing 

step and is used in conjunction with a Mixture of Gaussians background model.  Rather 
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than compensate a new image to more closely resemble an image depicting the original 

illumination condition, all images are normalized toward a preset ideal illumination 

condition defined by μ0 and σ0.  The multiresolution aspect of the method reduces the 

technique’s sensitivity to tile size selection, and it is stated that all of the resolutions used 

must be larger than the objects of interest in the observed scene.  However, the extra 

passes required for each resolution and the bilinear interpolation steps significantly 

increase the computational complexity of the process.  Because only the intensity channel 

is compensated, there is not a mechanism for handling changes in light source spectra. 
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Another illumination compensation method that exploits local area statistics is given 

by Vijverberg et al. [47].  Rather than compensate the image directly, this technique uses 

histogram analysis to tailor the thresholds used for foreground/background classification.  

Laplacian, Gaussian, and two-component Gaussian models are considered, and the model 

is chosen that best describes the distribution of background difference pixels (the 

difference between the background image and the current image).  The mean μk and 

standard deviation σk from the best-fitting model are used to derive the classification 

threshold of Equation 12, where k denotes the component of a multimodal background 

model, Δ(x,y) is the background difference, and Tk=MAX(Tmin, 1.5σk).  This technique is 

intended for global illumination changes, and, as described, does not include a 

mechanism for handling partial changes. 
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Spatial correction methods attempt to adjust localized lighting effects to achieve a 

smoother, more balanced reflectance function.  Skin tone is a commonly exploited 

reference color for balancing illumination across faces to improve facial recognition [48], 

[49], [50].  Block-based histogram equalization is used in [48] to improve contrast, 

followed by the categorization of the type of illumination present in the scene.  Then an 

illumination compensation model is applied that corresponds to that lighting condition.  

Skin color distributions are studied in [49] under several lighting conditions in the YCrCb 

color space, and proposes a correction to red component saturation to improve skin color 

segmentation in strong light.  In [50], skin color is identified in faces in the first frame. 

This color is used to track humans in the remaining video.  The appearance of skin under 

new illumination conditions is compensated for by the application of a skin reflectance 

model, which consists of the reflectance coefficient of skin as a function of incident light 

wavelength.     

The work in [51], [52], and [38] focuses on correcting particular types of 

illumination variation. Static glare removal is considered in [51].  Grayscale background 

images are computed as the median of a window of 10 frames.  Background differencing 

is used between the current and previous background models.  The algorithm identifies 

regions which have increased in brightness and are brighter than the average grayscale 

value of the image.  Pixels that meet these requirements are classified as static glare.  The 

technique presented in [52] uses separate daytime and nighttime background models of a 

scene. These images are segmented based on illumination and motion, and the results are 

fused to produce an illumination-enhanced night image in which the effects of artificial 

lights are reduced.  Principal component analysis is used in [38] to estimate the 

illumination image and time-varying reflectance images of a scene.  The estimated 

components are then used to cancel out illumination changes.  The illumination image is 

computed from the input image directly rather than from a background model to avoid 

detecting transient shadows as movement.  These techniques address spatial intra-frame 
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illumination variation rather than time-varying inter-frame variation.  The goal for intra-

frame correction is to modify regions within a scene to make it appear more uniformly 

illuminated by a distant, diffuse source, removing artifacts that result from the locations 

and orientations of objects with respect to the light source.  Inter-frame compensations 

maintain constancy during temporal lighting changes. 

4.3. Approach 

As discussed by Horn [35], an observed scene radiance F is proportional to the 

product of the reflectance R of the scene surfaces and the irradiance E striking the scene 

(13).   
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These functions generally depend on the point (x,y) being considered in the scene 

and on the relative angles between the light source, the surface, and the observer as in 

(14).  Here, the general change in the appearance of a scene F due to a change in 

illumination is described as functions of changes in intensity (I), spectrum (ω), or 

incident and observed azimuth (θi, θo) and elevation (φi, φo) with respect to the scene.   
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The observer (the camera) is stationary for most surveillance applications, and 

because we are concerned only with internal illumination changes we assume that the 

light source is also stationary (or is moving sufficiently slowly that it can be 

approximated as stationary). Therefore, the dependence of the scene change on changes 

in the relative positions of the source and observer can be removed (15). Changes in the 

observed scene S are then due to changes in illumination intensity and spectrum applied 
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to the reflectance of the scene, which accounts for the surface properties of each point 

(including color). 
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Compensation methods that rely on local pixel statistics tend to base a pixel’s 

compensation on the average change of nearby pixels within a window. This approach 

approximates all surfaces as responding equally to a given illumination change and takes 

the form of (16), or (17) if the model has separate parameters for each color channel to 

accommodate spectrum changes.  Here the average illumination change is taken over the 

window or region containing the pixel (x,y) being compensated. 
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Experiments presented in [13] demonstrate the dependence of illumination change 

response on surface color.  Surfaces of significantly different color are shown to respond 

differently to the same illumination change, and compensation models are shown to be 

much more effective when optimized for individual colors. This data suggests that 

compensation models of the form of (16) and (17) may work acceptably for regions 

comprised of the same surface, but will begin to fail for windows containing dissimilar 

surfaces (particularly dissimilar hues). We propose an illumination compensation model 

in which scene changes depend on intensity and spectrum changes as well as surface 

color C, as defined in (18). The C term represents only surface color, which is a 

significant but easier to compute component than a full description of a surface’s 

reflectance properties. 
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4.4. BigBackground as an Illumination Anchor 

The results in the preceding chapter show that BB can be relied upon as a relatively 

stable set of pixels.  Here it is demonstrated that this characteristic can be used as a point 

of reference for calculating illumination changes.  As illumination changes in a scene, the 

new values of BB pixels can be compared with their values from the BB color palette and 

the average effect on each of those color regions can be quantified.   

The general approach is to detect prevalent changes in the BB regions of an image, 

identify which changes are due to changes in illumination, and from that data, formulate a 

mathematical operation that will transform pixels from the current image into something 

closer to what was observed in images before the lighting change.   

The most computationally efficient means of observing changes in a BB region is to 

find the region’s new average pixel value.  A foreground object that obscures part of a 

background region would tend to pull the region’s average color away from the true 

background color.  Therefore, one of the conditions in Equation 19 must be met before a 

BB pixel is allowed to contribute to its region’s new average color, where Hx and Sx 

denote the pixel’s Hue and Saturation, respectively. The subscript x can take on values of 

1 to denote a pixel in the original lighting condition, or 2 to denote a pixel in the new 

lighting condition being compensated.   
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The thresholds used in these rules were determined empirically, and are constant for 

all sequences.  If only hue comparisons are made without the saturation condition, many 

false mismatches were encountered in dark and gray-colored regions, such as asphalt and 



 

 67

concrete.  If one of these conditions is met, there is a reasonable probability that the pixel 

indeed represents the same BB region, but is being observed under different illumination.  

In that case, the pixel’s RGB values contribute to the region’s new average color.  If the 

hues or saturations are too different, the pixel is considered likely to be a temporary 

occluding object, and does not contribute to the region’s average color.  To summarize, 

all of the pixels that belong to the same BB region and that satisfy one of the rules in 

Equation 19 are averaged together, thereby computing the BB region’s new average color 

under a potentially new lighting condition. 

Knowing each BigBackground region’s original appearance (under the original 

lighting condition) and new color (under a new lighting condition) forms the basis for our 

approach to illumination compensation.  For each BB region, the parameters for a 

compensation model are independently computed.  The sequences used for evaluation, 

address the issue of local lighting effects are presented next, and four possible 

compensation models are evaluated. 

4.5. Video Test Set 

Ten image sequences featuring significant occlusion and illumination change were 

captured to evaluate the algorithms discussed.  Sequences were captured using off-the-

shelf USB webcameras at 30 frames per second with 640 x 480 pixel resolution.  Table 

12 describes the important features of the test sequences used.  Samples of the video 

sequences are shown in Figures 23 and 24.  The first column shows the scene before a 

lighting change, the second column shows the scene after a lighting change, and the third 

column shows the desired ground truth images of ideal foreground/background 

segmentation.  The ground truth images are generated by hand, where white pixels 

represent ideal foreground and black pixels represent ideal background. 
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Table 12.  Properties of Test Sequences with Illumination Change 

Sequence Lighting Change Foreground Objects Background Behavior 

Backyard1 Large Distant vehicles Rural, yard, treeline 

Backyard2 Large Distant vehicles Rural, yard, treeline 

Ford1 Partial, large Mid-range vehicles Urban, buildings 

Ford2 Partial, small Mid-range vehicles Urban, buildings 

RecCenter Very small Mid-range pedestrian Indoors, desaturated 

TechSquare1 Small Mid-range vehicles Urban, buildings 

TechSquare2 Small Mid-range vehicles Urban, buildings 

Roadside Moderate Close vehicles Rural, field, treeline 

Bank Large Close vehicles Building, parking lot 

ParkingLot Moderate Distant vehicles Parking lot, desaturated 
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Figure 23.  Samples 1-5 of illumination change sequences used for ground truth evaluation. 
Left to right: Initial image, post-lighting change image, and hand-marked ground-truth 
image from the sequences used to evaluate illumination compensation methods.  Top to 
bottom: Backyard1, Backyard2, Ford1, Ford2, and RecCenter. 
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Figure 24.  Samples 6-10 of illumination change sequences used for ground truth 
evaluation. Left to right: Initial image, post-lighting change image, and hand-marked 
ground-truth image from the sequences used to evaluate illumination compensation 
methods.  Top to bottom: TechSquare1, TechSquare2, Roadside, Bank, and ParkingLot. 
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4.6. Local Illumination Changes 

Some video scenes feature global lighting changes, in which the entire visible scene 

responds to new illumination fairly evenly.  However, in many cases, rolling cloud cover 

or small lamps being turned off and on result in local lighting changes.  Sources of 

illumination might vary with intensity across a scene, resulting in different lighting 

transformations from one side of the scene to the other.  Different objects with similar 

surfaces may be oriented differently with respect to the light source, thereby responding 

differently to the same lighting change.  To better accommodate these cases, the image is 

segmented into square tiles.  New region averages are then computed for each BB region 

that appears within each tile.  Each tile is treated independently, so the transformations 

within each tile are the best fit for the local lighting conditions.  As observed in the 

Relative Operating Characteristic (ROC) plot in Figure 25, larger tile sizes (up to the 

limit of treating the entire image as one large tile) tend to lead to higher false positive 

rates, incidentally increasing the true positive rates as more pixels are classified as 

foreground.  Data points corresponding to smaller tile sizes tend toward the left axis of 

the plot.  This effect is more visible in the sample images of Figure 26.  The Ford2 

sequence features a sharp partial illumination change in the back half of the image.  

Global compensation without tiling results in large portions of false foreground.  The 

Techsquare1 sequence features an illumination change that is more spatially uniform, so 

while tiling does improve quality in some areas, the effect is less pronounced.  Using a 

very small tile size can result in aperture artifacts:  such a small portion of the image is 

examined at one time that even occluding objects are driven into the background.  For the 

scene types tested here, a tile size of 32 pixels per side responds well to local effects 

without masking occlusions irrecoverably.  The optimal value will depend somewhat on 

the relative sizes of the objects of interest. 
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Figure 25.  An ROC plot showing the effects of different tile sizes (8, 16, 32, and 80 pixels 
per side) on foreground/background classification accuracy.  The data points shown were 
computed from ten video sequences using classification thresholds of 5, 7, 10, and 15. 

 
 
 
 

 
Figure 26.  Sample images from the Ford2 (left) and TechSquare1 (right) test sequences, 
illustrating classification results when the illumination compensation tile size is 8 pixels per 
side (top), 32 pixels per side (middle), and full image (bottom).  For these sequences, 
Cnum=15, Rsize=16, Rth=10, and MCDth=7. 
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4.7. Illumination Model Selection 

As described in [19], several transformation models are available for dealing with 

illumination change.  This section experimentally determines which model is most 

effective for exploiting BB features to perform illumination compensation. In this 

investigation, four transformation models are explored for accuracy and consistency.  

These models are chosen as the best balance between accuracy and computational cost.  

More complex models tested in [18] and [19] are able to account for the illumination 

changes of more pixels, but the increase in accuracy is small compared to the extra 

number of operations required.  Of the four methods examined here, the first method 

treats illumination changes purely as translation operations, and computes the difference 

between the current BB region average and the original BB region color.  The second 

method calculates the ratio of the original region color to the new average color.  This 

treats illumination change as a gain operation, and applies a multiplier to member pixels 

of a given BB region.  The third method, like the first, is translation-based, but the 

original colors and the averages are first converted to HSI space where the differences are 

calculated.  Correcting pixels in a new image thus requires converting that pixel to HSI 

space, adding the corresponding region’s average HSI differences, and converting back to 

RGB.  The fourth method is similar in form to the second, but again operates in HSI 

space.  Pixels and region averages are converted to HSI, the ratios between the new 

region averages and the original region averages are calculated and applied to each pixel, 

and the result is converted back to RGB space.  The derivations of the models’ 

parameters from BB are summarized in Table 13, where the subscript i denotes the 

BigBackground region under consideration; R, G, and B denote the color channels of the 

BB average color regions; and α, β, and γ denote the compensation parameters for each 

color channel.  The subsequent application of these models to pixels belonging to BB is 

shown in Table 14, where the subscript i again denotes the BB region to which the pixel 
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and compensation parameters belong.  Non-BB pixels are compensated with the 

parameters corresponding to the BB region with the hue that best matches the pixel. 

 

 

Table 13.  Computing illumination compensation models parameters. 
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Table 14.  Application of illumination compensation models to pixels belonging to BB. 

RGB Translation Pi’ = (αi+R, βi+G, γi+B) = PRGB + TRGB 

RGB Gain Pi’ = (αiR, βiG, γiB) = D* PRGB 

HSI Translation Pi’ = (αi+H, βi+S, γi+I) = PHSI + THSI 

HSI Gain Pi’ = (αiH, βiS, γiI) = D*PHSI 
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The four compensation models are evaluated in terms of how well image I2 is 

segmented into foreground and background after the compensation is applied.  A 

representative image that contains a significant amount of foreground occlusion is chosen 

from each sequence, and a corresponding ground truth image is generated by hand-

labeling the proper classification of each pixel.  The automatically segmented 

compensated image is compared with the ground truth.  Pixels that are labeled as 

background in the ground truth image and as foreground in the segmented image are 

counted as false positives.  Pixels that are labeled as foreground in the ground truth image 

and as background in the segmented image are counted as false negatives.  These are 

converted to percentages by dividing the false positives by the true number of 

background pixels, and dividing the false negatives by the true number of foreground 

pixels.  An ROC curve is presented in Figure 27 which shows the false positive rate on 

the x-axis, and the true positive rate on the y-axis.  To produce the data points for this 

curve, each of the compensation models is tested using all combinations of tile sizes {8, 

16, 32, 80} and maximum component difference thresholds {5, 7, 10, 15}.  Of the four 

models, the RGB Translation model most consistently yields the lowest false positive 

rates, which are the artifacts that must be minimized during illumination changes.  The 

behavior of each model can be observed in some sample scenes in Figure 28.  False 

positive and false negative rates are shown in Figures 29 and 30, respectively; these plots 

show the relative performance of the models for parameters set to Cnum=15, Rsize=32, 

Rth=20, MCDth=7, and tile size=16.  In the Ford2 and Roadside sequences in particular, 

one can observe how the gain and HSI models leave considerably more foreground noise 

than the RGB Translation model.  Due to the averaged nature of how compensations are 

computed from the BB color regions, the multiplicative models tend to overcompensate 

many pixels during significant lighting changes.  Small variations in the pixels being 

transformed are amplified outside the range of the classification threshold.  Also, 

compensations performed in the HSI color space occasionally suffer from hue and 
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saturation artifacts, and produce exaggerated colorizations of some tiles that could cause 

problems in downstream processes.  Therefore RGB Translation is used in the remaining 

experiments. 
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Figure 27.  ROC plot for four mathematical models for illumination compensation.  The data 
points shown were computed from ten test sequences, sweeping MCDth over {5, 7, 10, 15} 
and tile size over {8, 16, 32, 80}.  The RGB Translation model stays more consistently 
concentrated in the low false positive range, which are the errors that must be minimized 
during illumination changes. 
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Figure 28.  Sample images of foreground/background classification for four illumination 
compensation models.  Left to right: Ford2, Techsquare2, and Roadside sequences.  Top to 
bottom: RGB Translation, RGB Gain, HSI Translation, and HSI Gain.  These samples were 
processed with Cnum=15, Rsize=16, Rth=10, MCDth=7. 
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Figure 29.  Comparison of four compensation models in terms of false positives / true 
negatives.  The RGB Translation technique consistently achieves the lowest false positive 
rate. 
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Figure 30.  Comparison of four compensation models in terms of false negatives / true 
positives. 
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4.8. Comparison to Other Methods 

In this section, the BB-based illumination compensation method is compared to the 

illumination compensation techniques described in [43], [44], [45], and [46] in terms of 

accuracy and execution time.  These techniques are chosen for comparison because they 

are of similar structure and complexity to the novel approaches presented. They do not 

require extensive calibration, do not rely on assumptions about the scene environment or 

light sources, and are not designed around models for compensating specific targets (such 

as faces).  Data used for compensation is extracted directly from pixels near the regions 

of interest.  

4.8.1 Accuracy Comparison 

In this experiment, the settings shown in Table 15 are used for the BB process.  To 

make results more comparable, the competing methods are coded to calculate correction 

statistics for each fixed tile, and to apply those corrections to all pixels in the tile rather 

than recalculating statistics for a new window centered about each pixel.  True and false 

positive rates are used for method evaluation, and are shown succinctly in the ROC plots 

of Figure 31.  Data points on the ROC plot are generated by applying the five described 

compensation methods to 10 video sequences, and sweeping maximum component 

difference thresholds and tile sizes through several combinations (MCD = 5, 7, 10, 15; 

tile size = 8, 16, 32, 80).  The top plot of Figure 31 compares the proposed method with 

the 1st-order and 2nd-order techniques.  The bottom plot compares the proposed method 

with the MinMSE and multiresolution techniques. 

 

Table 15.  Settings used when comparing BB compensation to other methods.  These 
parameters do not affect the other compensation methods. 

Cnum 15 
ClMCD 15 

Rth 20 
Rsize 32 
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Figure 31.  ROC plots for five illumination compensation techniques.  Data was generated 
by processing ten test sequences and sweeping MCDth over {5, 7, 10, 15} and tile size {8, 
16, 32, 80}.  For the Multiresolution technique, the following four resolution sets were 
tested: {2, 4, 8, 16}, {4, 8, 16, 32}, {8, 16, 32, 80}, and {2, 4, 8, 16, 32, 80}. 
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For the BB-based method and the 1st Order, 2nd Order, and MinMSE methods, 

foreground/background classification is performed using the maximum component 

difference of the three color channels for each pixel.  The multiresolution compensation 

method [46] is implemented here using the YCbCr color space.  Because it does not 

compensate for changes in light source spectrum, full-color pixel comparisons lead to 

very high false positive rates.  Therefore, foreground/background classification is 

performed using only the intensity of each pixel (i.e., (R+G+B)/3).  The values for μ0 and 

σ0 were set to 128 and 40, respectively, as suggested by the authors. 

When no compensation is applied, the false positive rate is often greater than 90%.  

The BB-based compensation technique results in less than 20% false positives, and 

performs especially well compared to the other methods during extreme lighting changes.  

By decreasing Rsize to 8 and Rth to 10 to improve BB coverage, the false positive rate is 

kept below 10%.  However, this generally comes at the expense of a 10% to 20% 

increase in false negatives.  Sequences RecCenter, TechSquare1, and TechSquare2 

feature slight changes in intensity, resulting in fewer false positives for all five methods.  

Figure 32 shows examples of the foreground/background segmentation achieved using 

each compensation method.  The most useful conclusions are drawn from the 

combination of Figures 31 and 32.  While the local area statistic approaches presented in 

[43], and [44] typically have high true positive rates, the unpredictable number of 

remaining false positives presents a challenge to subsequent processes.  The techniques 

from [45] and [46] have wide variability in both false positives and true positives.  For 

the purposes of illumination compensation, where widespread false positives cause the 

most difficulty, the consistently low rates of false positives produced by the BB-based 

technique is a more useful operating range on the ROC curve.  While fewer true positives 

are produced, enough remain that in the absence of distracting false positives, objects of 

interest can be found more easily. 
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Figure 32.  Segmentation results for illumination compensated scenes.  Left to right: 
Backyard2, Ford1, TechSquare2, and Roadside sequences.  Top to bottom: Original scene, 
Ground Truth, BB-based, MinMSE, First-order, Second-order, and Multiresolution 
compensation methods.  For these examples, the parameters used were MCD=7, 
illumination tile size = 32, Rth=10, Rsize=8. 
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4.8.2 Execution time comparison 

Each compensation method was coded in the C programming language, and 

executed on a PC running Ubuntu 10.04 and equipped with a 3.4 GHz Pentium D and 

1GB of RAM.  The same coding style was used for each algorithm, so while additional 

optimizations may be possible to improve absolute frame rate, this serves as a useful 

comparison for relative performance.  Each trial—consisting of a combination of test 

sequence, compensation method, and tile size—is run 3 times; the standard deviation for 

each trial set is measured to be less than 2 ms.  Data collection and file I/O processes are 

not included in these measurements.  The average runtimes (in frames per second) are 

shown in Figure 33 for each sequence and method.  Each runtime represents the average 

of nine trials: three trials for each of three tile sizes (8, 16, 32).  The remaining 

parameters during this experiment were set to Rth=20, Rsize=16, and Cnum=15. 

The execution time of the BB-based compensation method is on par with—and 

occasionally about 10% faster than—that of the first-order method.  The proposed 

method consistently runs at more than twice the frame rate achieved by the second-order 

and Min MSE methods.  The multiresolution method performs two passes through an 

image and bilinearly interpolates two statistics matrices per resolution, generally 

requiring 2-3 seconds per frame.  All of the compared methods require considerable use 

of floating point calculations, while the BB-based method primarily uses integer 

arithmetic.  Because the same number of pixels is processed regardless of tile size, larger 

tile sizes (and therefore fewer tiles) reduce the overhead incurred by processing each new 

tile.  Finally, the BB-based compensation method requires slightly more time to execute 

for scenes with lower BB coverage, since non-BB pixels require a search of the color 

palette to find the closest color match. 
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Runtimes of Four Compensation Methods
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Figure 33.  Runtime performance (in frames per second) of five illumination compensation 
techniques. 

 

 

4.9. Conclusions 

This chapter has used BigBackground, a stable feature identifier based on chromatic 

similarity, as a set of reference points with which to compute illumination compensation 

corrections. BigBackground employs the hypothesis that large, stable regions can be 

identified by the most popular colors in the scene.  Experiments show that pixels 

identified as BigBackground are more stable than non-BigBackground pixels, and that 

the process of clustering similar colors across image tiles improves the efficiency of the 

color palette and allows the model to account for large percentages of scenes. 

Experiments show that the BigBackground model is effective at quantifying illumination 

changes by using simple RGB translation to account for those changes.  Multiple 

cameras, multiple points of view, complex physical models, and special training sets are 

not used.  False positives—the primary complications to change detection caused by 

illumination changes—are greatly reduced in foreground/background classification 
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compared to competing algorithms.  Applying an illumination compensation technique 

based on BigBackground decreases average false positives by 83% compared to no 

corrective action, and decreases average false positives by 25% to 43% compared to other 

compensation techniques from the literature.  Resulting foreground/background images 

possess less clutter and feature better isolated and well-defined objects of interest.  In 

addition, the execution time of the proposed technique is measured to be similar to a 

simple first-order, tile-oriented compensation approach, and is less than half of the time 

spent by second-order and multiresolution techniques. 

When the local statistics-based compensation methods from the literature work well, 

they are effectively (but inadvertently) taking advantage of the BigBackground 

characteristic. When the processing tile is small enough that it contains a uniform 

homochromatic surface, its pixels are likely to respond similarly to illumination changes 

as observed in the experiments of Chapter 2. Thus a single compensation model tuned for 

all of the pixels in the tile works well. It is when the processing tile contains surfaces of 

multiple colors—either adjacent or interlaced—that such methods are most likely to fail. 

Due to the tile-based approach for local compensation, the BigBackground-based 

technique can sometimes dissolve the interior of an object if a tile is completely enclosed 

by the object and the object satisfies one of the hue and saturation conditions. In the next 

chapter, a variation of BigBackground-Based illumination compensation is introduced to 

mitigate this effect. The previously discussed compensation techniques are applied to an 

object tracking problem for more thorough evaluation, and to determine the effects of 

illumination compensation on appearance-based tracking mechanisms. 
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CHAPTER 5  

EFFECTS OF ILLUMINATION COMPENSATION ON OBJECT 
TRACKING 

 

 

5.1. Introduction 

Object tracking is a popular application for video processing, and is often called for 

in traffic management and pedestrian surveillance systems. An important first step in 

many object tracking pipelines is change detection: separating foreground (changing 

regions of interest) from background (stationary regions or uninteresting motion). 

Background models are used to statistically represent uninteresting aspects of the scene, 

and are subtracted from current images. Foreground pixels are aggregated together to 

form ‘blobs’ or objects, which are analyzed for similarities with previously observed 

objects for tracking. Accurate change detection is extremely challenging in scenes that 

experience illumination changes. As temporary cloud cover obscures the sun or artificial 

lights are turned on and off, the appearance of the entire scene changes and often causes 

otherwise unchanged background features to be misinterpreted as foreground. Salient 

moving objects then become lost in the clutter of false foreground. 

This chapter demonstrates the effectiveness of various illumination compensation 

techniques on high-level tracking algorithms. Previously investigated methods are 

described for recognizing large, chromatically consistent regions (called BigBackground) 

in the scene, and for exploiting these regions as reference points in a compensation 

technique for illumination changes. Building upon previous work presented in [14], the 

concept of BigBackground is expanded into a general class of approaches by considering 

two variations of BigBackground-based illumination compensation. The first variation 

integrates a global measurement of a scene’s response to illumination change into the 
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local compensation process. The second variation integrates the BigBackground concept 

into the second-order compensation technique used by Young et al. [43] and Lu et al. 

[44]. It is demonstrated that in addition to the compensation techniques designed 

specifically for BigBackground, the BigBackground concept can be usefully combined 

with independent techniques.  

In video tracking pipelines that rely on change detection for object localization, there 

are two points at which illumination compensation can affect algorithm performance.  

First, the compensated image can improve change detection accuracy. Second, if the 

compensated image is passed to an appearance-based tracking algorithm, that algorithm 

will extract a compensated version of an object’s appearance descriptor. Both influences 

of illumination compensation on the tracking process are examined here, and 

BigBackground-based approaches are found to achieve a favorable balance of false 

foreground elimination and object appearance preservation. The compensation technique 

that integrates a global view of illumination change with locally-performed adjustment is 

found to increase the accuracy rate of foreground detection by an average of 16% over 

the purely local approach, with negligible effect on the false positive rate. 

Compensation method performance is evaluated in an object tracking problem with 

eight test sequences. Three tracking mechanisms are demonstrated: one based purely on 

kinematics, and two that rely on different appearance models of objects of interest. These 

trackers are characterized on scenes with constant illumination. During illumination 

change events, the BB-based compensation techniques improve tracking accuracy by an 

average of 20% over other compensation methods for each tracking approach. Because 

real-time embedded systems are of interest here, the algorithms described are designed 

with low computational cost in mind. Evaluation sequences are captured with stationary, 

inexpensive USB webcameras that are generally oriented orthogonally to the plane of 

motion. 
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5.2. Related Work 

A general survey of object tracking techniques is provided by Yilmaz et al. [53]. The 

described approaches are motivated by a variety of applications, and are suited for 

tracking many different object types depending on the problem domain. Trackers have 

been presented that focus on specific types of traffic, such as vehicles or pedestrians.  

Several point detection mechanisms have been proposed for producing trackable 

feature sets, such as SIFT points [54], [55], SURF points [56], and multiresolution critical 

points [57], [58].  These points are often fed into particle or other statistical filters. 

The mean-shift algorithm has received considerable attention in the last decade as a 

segmentation-oriented tracking mechanism. Originally proposed by Comaniciu et al. 

[59], mean-shift tracking uses some feature space (such as color, texture, or edges) in 

which to describe the object model. An iterative gradient ascent algorithm is employed to 

minimize the Bhattacharyya distance between the target model and the candidate region 

observed in the scene. Classical mean-shift tracking requires that an object’s boundaries 

spatially overlap between consecutive frames. It is also necessary to provide the 

algorithm ahead of time with models of the objects to be tracked, or to include a means 

for detecting objects of interest so the model can be formed from the first observation. 

These limitations have been addressed by recent work such as [60], which tracks fast-

moving objects or objects in low frame rate video with multiple kernels, and [61], which 

tracks objects by considering all of a blob’s fragments (if any) and using a voting strategy 

to determine the fragment that best describes the object.  In an environment that may 

contain multiple objects with unknown appearances, a foreground object detection 

mechanism is best used to detect and learn the appearance of a new object upon its first 

instance. This approach has the additional advantage of reducing the search space to a 

short list of objects. 

Computationally-sensitive trackers have been described that first identify blobs by 

background modeling and change detection, and then distinguishing each blob with a 
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small, simple set of figures such as kinematic principles [17], object-strip color [62], or 

spectral distribution [63]. These approaches are attractive because their features are 

efficient to compute, and they have inherently manageable search spaces. 

The work in this chapter focuses on the common surveillance applications of 

pedestrian and vehicular traffic tracking. Because gesture recognition and object 

orientation are not needed in this case, complex object representations such as skeletons, 

articulated and geometric shapes are unnecessary. For computational efficiency, a center 

of mass representation is preferred in conjunction with a kinematic tracking mechanism. 

The algorithm described by Apewokin et al. [17] is used as a representative kinematic 

tracker. This tracker is inspired by principles of motion correspondence that are well-

described by Rangarajan and Shah [64]. Maximum velocity and small velocity change 

constraints are exploited to establish correspondence between blobs. Trackers based on 

object-strip color [62] and a spatio-spectral model [63] are also implemented to observe 

the effects of illumination compensation on appearance-based tracking descriptors. The 

general processing framework used here consists of background subtraction, 

morphological erosion, blob formation, and blob tracking. As mentioned by Masoud and 

Papanikolopoulos [65], this framework approach is preferable for its efficiency and 

versatility. 

Object tracking algorithms commonly exploit assumptions such as constant 

illumination to make the tracking problem tractable. In real applications, such 

assumptions are often violated [53]. This chapter examines the application of novel 

illumination compensation techniques to several video sequences featuring significant 

illumination change, and evaluates the effectiveness of the techniques on three modern 

tracking algorithms. 
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5.3. Approach 

The concept of BigBackground (BB) is based on the observation that most 

surveillance scenes contain large, stationary, chromatically self-similar regions such as 

buildings, sidewalks, roads, and treelines. The BB algorithm recognizes these regions by 

identifying the most common colors in the scene. It is then possible to construct a small 

color palette that represents a relatively large proportion of the scene, and map which 

pixels are likely to belong to large, stationary objects. 

This dissertation proposes an approach to handling illumination change based on 

using BB as a calibration anchor. BigBackground identifies large stable regions that are 

likely to change only due to illumination, and allows occlusions to be differentiated from 

illumination changes. The effects of illumination change are then quantified by 

comparing BB regions, while the effects of transient occluding objects are prevented 

from corrupting the compensation. The different responses of differently colored surfaces 

to a given illumination change are accommodated in the model by customizing the 

compensation parameters for each BB region. 

Several adaptive background models have been proposed such as Mixture of 

Gaussians [12], Multimodal Mean [29], and sliding window-based techniques [11].  

Adaptation is necessary to avoid having to restart the system due to subtle appearance 

changes or uninteresting motion.  The rate at which these models adapt is critical. A 

model must adapt slowly to avoid prematurely absorbing transient salient objects that 

would then cease to be detected. It is assumed that slowly-varying illumination—such as 

that caused by the sun’s natural progression across the sky—would be absorbed into the 

background model. The proposed methodology improves algorithm response to sudden 

illumination changes, and assists during the transition period either until the background 

model has adequate time to adapt, or the illumination condition reverts to its previous 

state. 
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The video processing pipeline used here is shown in Figure 34. Illumination 

compensation is applied to incoming images to improve change detection accuracy. 

Pixels are then classified as foreground or background, and blobs of foreground pixels are 

located for tracking. Three tracking algorithms from the literature are considered—each 

of which relies on a different set of features for establishing correspondence—and the 

effects of illumination compensation techniques on those features are evaluated. The 

background and BB models adapt during a preamble period of N frames, and remain 

constant for the duration of the sequence. 

 

 

 

 

Figure 34: Overview of object tracking processing pipeline with illumination compensation. 
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5.4. BB-based Illumination Compensation 

Changes in illumination can drastically change the appearance of a scene and can 

cause surveillance vision algorithms to falter in their recognition of the features being 

observed. Many adaptive background models have been developed that can eventually 

acclimate to environmental changes. However, the adaptation rates of such models must 

generally be small to prevent premature adaptation to transient occlusions. It is desirable 

to efficiently compensate for illumination variation for robust scene understanding. 

Moreover, it is desirable to base such compensation on reliable visual cues extracted from 

salient features in the scene itself, rather than to simply use average changes from 

neighboring pixels.  

The next section demonstrates that it is useful to exploit the stability of BB for an 

illumination compensation model.  Three variations of BB-based illumination 

compensation are discussed here: the first is a simple offset technique first described in 

[13].  The second is a variation that considers the global appearance of BB before 

computing local compensations.  The third is a hybrid in which the second-order model 

used by Young et al. [43] and Lu et al. [44] is applied separately to each BB region. 

5.4.1 Offset Compensation 

As discussed in Chapter 4, after reviewing literature in which illumination models 

are explored [18], [19], and after evaluating our own models [14], a computationally 

efficient RGB translation compensation model is chosen. A translation (or offset) value is 

computed for each color component, and the offset is added to the pixel being 

compensated. The goal is for the transformed pixel to match the pixel’s appearance under 

the original lighting condition. 

The offset value is calculated as follows. The process is performed on a tile-by-tile 

basis to accommodate localized lighting changes such as partial cloud cover. Within each 

tile, a new color palette C1 is calculated by averaging all of the qualifying pixels 
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belonging to the same BB region. A pixel qualifies to be included in the average if it 

meets one of the criteria in (20), where Hx and Sx denote the pixel’s hue and saturation, 

respectively. The subscript x takes on a value of 1 to denote a pixel in the original 

lighting condition, or a value of 2 to denote a pixel in the new lighting condition. 
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The saturation and hue thresholds, TS and TH, were chosen empirically to be 12% 

and 8%, respectively, and have been found to be effective on a wide range of scenes. If 

hue alone is checked, a large number of false mismatches are identified in unsaturated 

regions, such as pavement and concrete. If a pixel does not meet one of these criteria, 

there is a high likelihood that the pixel belongs to an occluding object and should not 

contribute to the compensation process. 

 

 

rulesHue/Sat satisfy     ][),(         

  ),(1][

02

x
21

andiCyxI

yxI
N

iC
tile tile

yi

∈∀

= ∑∑
 (21) 

 

Once the new average color palette C1 is calculated within a tile (21), the 

compensation offset for each region is calculated by subtracting the new average from the 

region’s original BB color, as given by the reduced color palette C0. The compensation 

parameter is thus the difference between the original and new color palettes. The offset is 

added to all pixels within the tile that belong to that BB region as shown in (22), where 

C0 denotes the original BB color palette, C1 denotes the color palette for the BB regions 

in the image being compensated, and ix,y denotes the color palette index of pixel (x,y). 
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The process is repeated for each tile in the image. The compensated image is then ready 

for additional processing, such as foreground/background classification. 
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5.4.2 Globally-Aware Compensation 

In the previously discussed technique, tiles that are completely covered by 

homogeneous desaturated foreground objects can sometimes be dissolved into the 

background. The tile-by-tile approach is effective at handling spatial variations in 

illumination response, but is so localized that foreground objects can be over-

transformed. In this globally aware variation, we exploit the largeness of BB to help 

discern foreground objects from background. Rather than compare pixels from a new 

illumination condition with the BB colors of the original condition in a single step, in 

which changes in appearance could be due to illumination or occlusion, we divide the 

decision process into two stages. First we learn how the BB colors across the scene have 

changed with illumination by computing the average color of each region, yielding the 

new global color palette CG. Considering such a large area reduces the influence of 

occluding objects on the result. Then within each tile we compare individual pixels from 

the new image with the colors of CG to determine which tile pixels should contribute to 

the local color palette C1 (23).  Corrections are then calculated and applied as defined in 

(22). 
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5.4.3 Hybrid Compensation 

The hybrid compensation method combines the chromatic discrimination of BB with 

the second-order compensation formula. Rather than computing RGB offsets for each BB 

region, the mean and standard deviation of each BB region are computed tile by tile and 

(24) is applied. This demonstrates the effects of chromatic separation on a traditional 

compensation approach, and addresses the problem of applying local area statistics 

models to regions containing multiple disparate surfaces. 
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5.4.4 Analysis 

The ROC plot of Figure 35 compares the two new BB-based variations with the 

original offset compensation in terms of false positive rates and true positive rates. The 

Global variation maintains an even tighter distribution around zero false positives than 

the original offset technique, and produces a larger lobe near the top of the true positive 

axis. Table 16 shows the changes in true positive and false positive rates for each method 

(BB-Global and BB-Hybrid) compared with its original counterpart (BB Offset and 2nd 

order, respectively). True positives are correctly identified foreground pixels. False 

positives are background pixels that are misclassified as foreground. Note that these 

numbers represent differences between percentages, not percentages of percentages. A 

ΔTPR of 12% represents a 12% increase in the number of correctly identified foreground 

pixels. The BB-Global algorithm increases true positives by an average of 16% with 

negligible impact on false positives, thus providing more complete object silhouettes. The 

BB-Hybrid algorithm reduces true positives by 16%, but reduces false positives by 25%. 

The decrease in false positives makes reduces the likelihood that important features will 

be lost among surrounding background noise. Sufficient foreground remains to identify 
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objects despite the reduction in true positives; because a significant problem for the 2nd 

Order technique in these sequences is the masking of objects by surrounding false 

foreground, the BB-Hybrid method presents an improvement over 2nd Order 

compensation in most cases. 
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Figure 35. ROC plot comparing new BB-based compensation methods to the original Offset 
method.  To produce these points, compensation tile sizes were swept across {8, 16, 32, 
80}, and the MCD threshold was swept across {5, 7, 10, 15}. The same sequences were 
used as in [14]. 
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Table 16.  Relative Improvements of New Illumination Compensation Techniques 

ΔTPR ΔFPR ΔTPR ΔFPR
Backyard1 2234 303154 12% -1% -10% -36%
Backyard2 7639 247904 11% 0% -22% -23%

Ford1 12086 111284 -4% -3% -18% -24%
Ford2 13900 265766 7% 4% -17% -29%

TechSquare1 13083 292587 27% 0% -17% 11%
Roadside 13003 223092 26% 1% -11% -38%

Bank 52562 241432 34% 2% -16% -35%
AVG 16% 0% -16% -25%

BB-Global vs. BB-Offset BB-Hybrid vs. 2nd Order
Sequence FG Pixels BG Pixels

 

 

 

 

 
The sample images shown in Figures. 36, 37, and 38 give a more detailed look at 

how the BB-Hybrid and 2nd order techniques compare. It can be observed in all three 

figures that BB-Hybrid compensation reduces false foreground pixels, (particularly in 

Figures 36 and 37), and simultaneously preserves the solidity and original appearance of 

the objects in the color images. The images of Figures 39, 40, and 41 compare the BB-

Global variation with the original offset compensation. The BB-Global method produces 

stronger silhouettes and noticeably preserves object appearance, reducing the 

translucency that results from overcompensation. 
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Figure 36. Ford1 sequence examples of foreground masks and compensated images 
produced by (a) 2nd order compensation and (b) BB-Hybrid compensation. 

 

 

 
Figure 37. Backyard sequence examples of foreground masks and compensated images 
produced by (a) 2nd order compensation and (b) BB-Hybrid compensation. 
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Figure 38. Techsquare1 sequence examples of foreground masks and compensated images 
produced by (a) 2nd order compensation and (b) BB-Hybrid compensation. 

 

 

 

 
Figure 39. Bank sequence examples of foreground masks and compensated images 
produced by (a) Offset compensation and (b) BB-Global compensation. 
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Figure 40. Roadside sequence examples of foreground masks and compensated images 
produced by (a) Offset compensation and (b) BB-Global compensation. 

 

 

 

 

 
Figure 41. Techsquare2 sequence examples of foreground masks and compensated images 
produced by (a) Offset compensation and (b) BB-Global compensation. 
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5.5. Blob Formation 

After illumination compensation, change detection is performed to classify pixels as 

foreground (salient) or background. Regions of high spatial foreground density are 

classified as objects of interest by scanning for peaks in horizontal and vertical 

histograms. The number of foreground pixels is counted in each row and column as 

defined in (25), where F(x,y) is the foreground mask.  
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After obtaining the histograms, the row counts are scanned for contiguous runs of 

MinYSize or more rows of at least RowTotalTH foreground pixels. Column counts are 

scanned for contiguous runs of MinXSize or more rows of at least ColTotalTH 

foreground pixels. An example of this process is shown in Figure 42. The third row has 

only three foreground pixels. Because the RowTotalTH = 4, this row does not contribute 

to the run of Y1. Every X,Y combination corresponds to the location of a potential blob. 

Each subregion (in this case, (X1,Y1) (X1,Y2), (X2,Y1), and (X2,Y2)) is then rescanned 

to discover if any blobs are masking each other. The (X2,Y1) blob will be ignored when 

it is scanned individually because its horizontal size is less than MinXSize. The (X1,Y1) 

blob will be ignored because its row totals will be less than RowTotalTH. In this 

example, only the (X2,Y2) blob will survive for tracking. The thresholds RowTotalTH, 

ColTotalTH, MinXSize, and MinYSize can be adjusted based on the size and geometry 

of the objects of interest. 
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Figure 42. Example of blob-forming process. The number of foreground pixels is counted 
for each row and column. These counts are examined for long runs of high counts. This 
process is repeated for each identified region to determine if one blob is masking another, 
or if high counts are due to many individual small blobs. 

 

 

5.6. Tracking Techniques 

The effects of illumination change compensation techniques are observed on three 

tracking mechanisms chosen from recent literature. The considered trackers do not rely 

on prior information about the targets of interest, and use change detection and blob 

formation to locate and track new targets. In this framework, correspondence is 

established by searching lists of new and previously observed objects instead of spatially 

searching around the positions of previously observed objects. 

Three tracking methods are implemented for comparison. The kinematic tracking 

algorithm presented by Apewokin et al. [17] relies solely on object position and velocity. 

Two appearance-based tracking algorithms that use different appearance descriptors: the 

object-strip color descriptor presented by Zhang et al. [62], and the spatio-spectral 

probability presented by Tavakkoli et al. [63]. The kinematic tracker does not rely on 

appearance information, and therefore benefits from illumination compensation only in 

object detection. This approach provides a contrast with the appearance-based trackers. 

Each tracker operates by comparing a list of objects extracted from the current image 
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with a historical list of objects previously observed. Upon establishing a correspondence 

between an object in each list, the historical list is updated with current information. 

Objects in the historical list that have not been observed in 10 frames are pruned. 

5.6.1 Kinematic Tracking 

A low-cost implementation of a kinematic tracking algorithm [17] is chosen as a 

representative appearance-apathetic tracking approach with which to demonstrate the 

impact of illumination compensation. This tracker models objects as centers-of-mass. 

Maximum velocity and small velocity change constraints are employed to achieve 

correspondence between blobs.  

Object tracking information is maintained in two lists: one list for short-term 

tracking between three consecutive frames (t, t-1, and t-2), and one list for long-term 

tracking over tens of frames. Short-term tracking is performed first. Objects observed in 

frame t are matched to objects from frames t-1 and t-2 that minimize change in speed. If 

an object is unobserved in a previous frame such that speed is unknown, then distance 

traveled is minimized. The long-term tracker is then used to match objects that were 

previously occluded. Inertia (persistence of an object to travel in one direction) is used to 

break ties between objects that are close together. No predictions are made of future 

object positions; correspondences are established based solely on observed positions. 

5.6.2 Object-Strip Color Tracking 

Zhang et al. [62] introduce object-strip color (OSC) features as a basis for 

establishing object correspondence. Blobs of interest are located by background 

subtraction, and each blob is vertically divided into strips of predetermined size. Each 

blob is represented by a one-dimensional vector of the average hues of its constituent 

strips. This formulation is shown in (26), where w is the object width, d is the strip size, h 

is the object height, (xmin, ymin) is the top left corner of the object bounding box, and i 
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is the index into the strips that comprise the object. Correspondence is established 

between blobs by maximizing the correlation coefficient between object-strip color 

vectors (27). OSC vectors of different lengths are shifted against each other to find the 

optimum match point for the pair. The OSC feature incorporates color and spatial 

distribution information, while requiring less computational effort than full color 

histograms. In this implementation, each new object is compared with each previously 

observed object. The pair with the highest correlation coefficient is associated together 

and removed from consideration, and the process is repeated with the next-highest match. 
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5.6.3 Spatio-Spectral Tracking 

Appearance-based correspondence is also used in the spatio-spectral tracking (SST) 

proposed in Tavakkoli et al. [63].  This technique uses a first-order statistical estimation 

of each object’s photometric appearance as a descriptor for establishing correspondence. 

Each object is modeled as separate upper and lower halves to accommodate bimodal 

object appearance (particularly in the case of pedestrians). The YCbCr color space is used 

to separate color from intensity. A Gaussian probability distribution is assumed, and the 

mean and covariance matrix of each color component is computed for the upper and 
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lower halves of each object. Thus each object is modeled as a set of four parameters: 

<MU, SU> and <ML, SL> as in (27) where ρ is the covariance between the two 

components. 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= 2

2

      
Cb  S; M

CrCrCb

CrCbCb

Cr σσρσ
σρσσ

μ
μ

 (28) 

 
When an object is detected in a new image, it is tested for the probability that it is 

associated with each previously observed object. The probability that each pixel of the 

new object belongs to a previously observed object’s bivariate pdf is calculated (20).  The 

average of all of these pixel probabilities is taken, and correspondence is established 

between each new object and the previous object that yielded the highest probability. 
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The full tracking algorithm includes steps for collision detection and resolution, and 

Kalman filtering of future position estimates. As the primary interests of this chapter are 

the effects of illumination change and compensation on tracking appearance descriptors, 

only the appearance-based correspondence component is replicated here. 
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5.7. Experiments and Results 

For this study, the baseline performance of the trackers on video sequences with 

constant illumination is first established. The effects of illumination change on tracking 

success rate are demonstrated, followed by the evaluation of the proposed methods for 

illumination change compensation as well as four methods from the literature. Each 

method is evaluated using both automotive traffic and pedestrian traffic environments. 

5.7.1 Evaluation Method and Baseline 

The video sequences used to test the algorithms in these experiments were captured 

in a variety of environments. In each environment, video was taken of pedestrian or 

vehicular traffic during stable lighting conditions and during illumination changes. By 

establishing the tracking algorithm’s baseline performance on these stable lighting 

sequences, we demonstrate that the chosen background model and change detection 

method properly detect objects of interest, and that this tracker is suitable for these 

environments under nominal conditions. When the sequences featuring illumination 

change are tested with the compensation techniques, the variable is illumination change, 

and not the environments or traffic characteristics. 

Tracking results are checked for accuracy by a human observer. A ground truth of 

how each object should be tracked is established ahead of time. The following rules are 

used to evaluate tracking accuracy. 

 

(1) The center of mass must fall somewhere within the object’s silhouette. 

(2) The object’s bounding box must not exceed 2X the object’s size. 

(3) During occlusions, one of the occluding objects’ ID labels must be used. 

(4) After an occlusion, the objects’ original ID labels must be restored. 

(5) If an object’s blob becomes fragmented, at least one ID label must carry over 

from the prior frame. 
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The baseline performance of the tracking algorithms are given in Table 17, Table 18, 

and Table 19. The trackers are also tested with illumination compensation turned off. In 

the absence of illumination change, clear object silhouettes are obtained from background 

subtraction and the tracker is able to successfully establish correspondence for each 

object across the scene. This data also shows that in the absence of illumination change, 

the compensation techniques do not significantly harm tracking quality. 

 

 

Table 17. Baseline Accuracy for Kinematic Tracker 

None BB-Offset BB-Global BB-Hybrid MinMSE 1st 2nd MultiRes
CarsA 100% 96% 98% 99% 99% 99% 100% 100%
CarsB 100% 100% 100% 100% 90% 100% 100% 99%
CarsC 100% 96% 93% 100% 100% 100% 100% 93%
PedA 100% 100% 100% 100% 97% 94% 92% 97%
PedB 97% 100% 97% 97% 81% 95% 89% 100%
AVG 99% 98% 98% 99% 93% 98% 96% 98%  

 
 
 
 

Table 18. Baseline Accuracy for OSC Tracker 

None BB-Offset BB-Global BB-Hybrid MinMSE 1st 2nd MultiRes
CarsA 92% 89% 90% 93% 92% 96% 98% 90%
CarsB 100% 97% 100% 100% 78% 100% 100% 87%
CarsC 100% 93% 93% 100% 88% 85% 85% 95%
PedA 100% 100% 100% 100% 94% 86% 89% 94%
PedB 95% 89% 89% 86% 92% 92% 97% 97%
AVG 97% 94% 94% 96% 89% 92% 94% 93%  

 
 
 
 

Table 19. Baseline Accuracy for SST Tracker 

None BB-Offset BB-Global BB-Hybrid MinMSE 1st 2nd MultiRes
CarsA 92% 87% 92% 92% 88% 91% 92% 92%
CarsB 100% 99% 100% 100% 90% 100% 100% 90%
CarsC 100% 92% 93% 100% 99% 88% 91% 95%
PedA 100% 94% 100% 100% 97% 81% 81% 97%
PedB 97% 100% 100% 92% 95% 89% 89% 97%
AVG 98% 94% 97% 97% 94% 90% 91% 94%  
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5.7.2 Test Sequences 

Samples of the eight test sequences used in these experiments are shown in Figure 

43, depicting six distinct environments that vary in terms of traffic type, direction of 

travel, and apparent size. In total, over 500 frames containing objects are processed to 

provide a more thorough evaluation than hand-picking ground truth images. The 

vehicular sequences Cars1 and Cars2 feature less extreme intensity changes, and each 

technique allows successful tracking of at least a few objects over several frames. 

However, the remaining sequences exhibit relatively strong intensity changes. The 

sequences PETs1 and PETs2 are taken from the publicly available PETs 2001 Dataset 3 

[66], which features pedestrian traffic and illumination change caused by cloud cover. 

These are challenging due to the relatively small size and greater number of the 

pedestrians being tracked. 

The objective is to compensate illumination changes that are strong enough to 

preclude the tracking of objects in uncompensated images. For the sequences used, object 

tracking is not possible without compensation because false foreground completely 

masks the objects of interest. It is demonstrated in Figure 44 that simply adjusting the 

segmentation threshold is insufficient to accommodate illumination changes. Eight video 

sequences featuring illumination change are processed, and the maximum component 

difference (MCD) threshold used to classify foreground and background is swept among 

{25, 50, 67, 75, 83, 100}. No illumination compensation is used. Two types of errors 

occur in blob recognition. If the threshold is too low for the environment, background 

pixels are erroneously classified as foreground and will mask the true objects. If the 

threshold is too high, foreground pixels are erroneously classified as background and the 

object’s silhouette is dissolved. Dotted lines represent the percentage of blobs that are not 

recognized due to dissolving. Solid lines represent the percentage of blobs that are not 

recognized due to masking. Because there are no ranges of thresholds for which most 
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objects are reliably recognizable, classification threshold adjustment alone cannot solve 

the illumination change problem. 

 
 
 

 

 

Figure 43. Samples of image sequences used in tracking evaluation before and after 
illumination changes: (a) Cars1, (b) Cars2, (c) Cars3, (d) Ped1, (e) Ped2, (f) Ped3, (g) PETs1, 
and (h) PETs2. 
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Figure 44. Variation in object identification errors during illumination changes as a function 
of MCD threshold. Dotted lines denote the percentage of blobs dissolved into the 
background due to a high MCD threshold. Solid lines denote the percentage of blobs 
obscured by surrounding false foreground. 

 
 
 
 
 

Table 20. Parameters Used for Methods and Sequences 

Cars Peds PETs
BB-based MCDth 10 10 10
BB-based Tilesize 40 40 20

BB-based blob size {20, 20} {10, 35} {10, 20}
MinMSE MCDth 7 15 10
MinMSE Tilesize 20 20 20

MinMSE blob size {20, 20} {10, 35} {10, 20}
1-, 2-Order MCDth 20 15 15
1-, 2-Order Tilesize 8 8 8

1-, 2-Order blob size {20, 20} {10, 35} {10, 20}
MultiRes MCDth 20 20 20
MultiRes Tilesize {320, 160, 80 40} {320, 160, 80 40} {320, 160, 80 40}

MultiRes blob size {20, 20} {10, 35} {10, 20}  
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5.7.3 Tracking Accuracy 

The BB-based illumination change compensation techniques are compared with four 

other approaches from the literature. The two techniques discussed by Young et al. [43] 

use the mean (referred to as 1st order) and mean and standard deviation (referred to as 2nd 

order) of windows of pixel values. These statistics are calculated for the image being 

compensated and the image depicting the desired illumination condition. The technique 

described by Kamikura et al. [45] likewise computes parameters over windows of pixels 

to minimize the mean-squared error for the pixels in each window. The technique 

described by Suau et al. [46] adjusts interpolated mean and variance values toward target 

mean and variance values across multiple resolutions and fuses the results. Because this 

technique only adjusts the intensity channel and does not manipulate color components, 

grayscale foreground detection is used for this case. These techniques are chosen for 

comparison because they are of similar structure and complexity to the proposed 

methodology. Extensive calibration is not required, no assumptions about the 

environment or light source are used, and data used for compensation is extracted directly 

from pixels near the region of interest. 

The BB-based techniques and the techniques from the literature do not all have the 

same optimum operating points. Several combinations of illumination compensation and 

blob-forming parameters were tested, and only the best results from each method are 

shown. Wide ranges of classification thresholds (values of 5-20) and compensation tile 

sizes (8, 10, 16, 20, 32, 40, 80) were tested. The BB-based approaches function best with 

large tile sizes to better observe BB. In early experiments [16], 1st and 2nd order 

techniques were tuned to maintain solid object silhouettes, and suffered from excessive 

false foreground. However, by making the tile size very small (a value of 8) and the 

classification threshold large (values of 15-20), the 1st order and 2nd order techniques are 

able to suppress false foreground noise at the expense of object solidity.  Small tile sizes 

are required for these techniques to prevent compensating many disparate surfaces at 
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once. Blob-forming size constraints are adjusted to discriminate blobs from background 

clutter for each traffic type. Compensation and blob-forming parameters for each 

technique and sequences are shown in Table 20. Each compensation technique is run 

identically for all tracking algorithms to produce consistent foreground masks. Tracking 

algorithm parameters are constant for all compensation techniques. 

 

 

Table 21. Kinematic Tracking Accuracy During Illumination Changes 

Sequence BB-Offset BB-Global BB-Hybrid MinMSE 1st 2nd MultiRes
Cars1 94% 95% 98% 86% 60% 63% 95%
Cars2 96% 98% 98% 93% 92% 88% 97%
Cars3 99% 99% 100% 96% 92% 85% 76%
Ped1 98% 100% 91% 5% 30% 37% 63%
Ped2 88% 94% 94% 76% 88% 80% 0%
Ped3 100% 100% 100% 0% 88% 83% 0%

PETs1 87% 83% 96% 20% 92% 93% 83%
PETs2 74% 76% 92% 19% 92% 89% 71%
AVG 93% 94% 97% 62% 82% 79% 73%  

 
 
 
 

Table 22. OSC Tracking Accuracy During Illumination Changes 

Sequence BB-Offset BB-Global BB-Hybrid MinMSE 1st 2nd MultiRes
Cars1 84% 93% 88% 73% 63% 56% 63%
Cars2 70% 74% 71% 60% 78% 64% 54%
Cars3 91% 86% 84% 72% 75% 75% 62%
Ped1 81% 100% 49% 5% 40% 51% 35%
Ped2 72% 74% 78% 48% 58% 46% 0%
Ped3 100% 100% 83% 0% 92% 92% 0%

PETs1 47% 30% 43% 16% 37% 45% 33%
PETs2 53% 50% 45% 21% 39% 50% 34%
AVG 74% 74% 69% 46% 62% 59% 43%  
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Table 23. SST Tracking Accuracy During Illumination Changes 

Sequence BB-Offset BB-Global BB-Hybrid MinMSE 1st 2nd MultiRes
Cars1 90% 94% 95% 88% 63% 57% 70%
Cars2 87% 91% 89% 88% 82% 80% 83%
Cars3 98% 95% 93% 90% 83% 80% 73%
Ped1 93% 100% 81% 9% 19% 28% 53%
Ped2 88% 94% 88% 50% 78% 78% 0%
Ped3 100% 100% 88% 0% 50% 63% 0%

PETs1 62% 78% 75% 18% 79% 82% 74%
PETs2 68% 74% 87% 21% 89% 87% 66%
AVG 86% 90% 88% 58% 73% 72% 63%  

 

 

5.8. Analysis 

The results of the tracking experiments are shown in Tables 21, 22, and 23, in which 

all combinations of compensation techniques and tracking algorithms are tested. The BB-

based compensation techniques improve the accuracy of the kinematic tracker by 10% to 

30% over other compensation techniques. The Min MSE method tends to 

overcompensate foreground objects into the background, resulting in fragmented 

silhouettes and inconsistent blob positions. The 1st and 2nd order methods are able to 

resolve most objects, but are still unable to sufficiently reduce false foreground in the 

Ped1 sequence. The multiresolution method handles mild illumination changes, but also 

produces excessive false foreground during extreme changes. Because the BB-Global 

technique does not appreciably affect false positive classification, and because the BB-

Offset technique is often capable of resolving objects, the kinematic tracker shows little 

difference between them. The benefit of the BB-Global technique’s improved object 

appearance is indicated in the SST appearance-based tracker. The BB-based 

compensation techniques tend to decrease in accuracy in the PETs sequences as 

pedestrians move farther from the camera, occupy fewer pixels, and blend in with the 

desaturated road surface. 
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Variations in performance are more pronounced in the appearance-based trackers. 

The overall accuracy of the OSC tracker is lower than that of the other two. The OSC 

appearance descriptor is relatively sensitive to the exact foreground mask used to 

calculate the average hue vector. Even without occlusions, the IDs associated with object 

pairs tend to exchange frequently and interrupt tracking continuity. This effect is shown 

in Figure 45, where the colored tags used to indicate identity have been manually 

annotated with numbers for clarity in grayscale. The BB-Global compensation technique 

is used and produces well-defined blobs and low background noise, yet identification 

labels are traded among objects several times. The BB-Hybrid method suffers from this 

effect more than the BB-Global method. Objects of interest are sufficiently localized, but 

the presence of false objects in the background provides the means for the OSC feature to 

lose reliability. The other tracking techniques frequently prove capable of maintaining an 

accurate track on objects of interest despite the presence of false objects. The SST 

approach—though more computationally intensive due to frequent evaluation of the 

bivariate distribution function—is considerably more stable even without the 

implementation of its collision detection component, and performs similarly to the 

kinematic tracker. 

 

 

 

 

Figure 45.  Example of OSC tracker mistakenly trading identities between well-defined 
objects during the Cars2 sequence. Colored tags and numbers indicate identities as chosen 
by tracker. (a) Frame 519, (b) Frame 520, (c) Frame 528, (d) Frame 530. Images were 
captured at 1 fps. 



 

 115

 

Figure 46. Examples of object appearance in Cars2 sequence after each compensation 
technique. (a) BB-Global, (b) BB-Hybrid, (c) Min MSE, (d) 1st Order, (e) 2nd Order, and (f) 
Mutiresolution. 

 

 

 

 

Figure 47. Examples of object appearance in PETs1 sequence after each compensation 
technique. (a) BB-Global, (b) BB-Hybrid, (c) Min MSE, (d) 1st Order, (e) 2nd Order, and (f) 
Mutiresolution. 
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Figure 48. Multiresolution compensation tracking failure. In some instances, the 
multiresolution compensation technique results in tracking failure because false 
foreground prevents adequate object location, as shown here. (a) Original background 
image, (b) compensated background image, (c) compensated new image, and (d) 
foreground mask produced by comparing intensities of (c) with those of (b). 

 

 

The samples in Figures 46 and 47 demonstrate the difficulties some appearance-

based trackers may have with different compensation approaches. The BB-Global 

method was used to compensate all of these images for blob extraction, but the 

appearance in each image is due to the regular corresponding compensation method. The 

outputs of BB-based methods are shown in (a) and (b), and reveal objects with generally 

smooth, solid appearance.  The MinMSE output is shown in (c), and clearly indicates a 

tendency to over-optimize the compensated image. This type of transformation can 

actually increase the magnitude of correspondence metrics used for tracking, depending 

on the appearance of the background behind the objects being tracked. To a lesser degree, 

the 1st order and 2nd order compensation methods also blend objects into the background 

and desaturate their features. Object appearance is fragmented due to differences in 

compensation factors across tiles. The multiresolution compensation method causes the 

least appearance distortion, and actually improves contrast in these examples. However, 

its tracking accuracy is consistently among the lowest of the compensation techniques 

because it often obscures objects with false foreground. Recall that this technique does 

not transform one image to look more like another, but rather transforms images toward a 

common mean and variance distribution. Therefore when using it for illumination 

compensation, we first compensate the background model with the same parameters for 
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use in change detection.  As shown in Figure 48, the processed background model (b) and 

the processed post-illumination change image (c) differ significantly in appearance, 

resulting in widely distributed false foreground (d). 

As previously mentioned, the 1st Order and 2nd Order techniques leave excessive 

false positives in the background, making it difficult to resolve true objects. When 

classification thresholds are increased and tile sizes are decreased to reduce false 

positives, object solidity is compromised. Compared at this operating point, the BB-

Hybrid technique actually improves foreground object silhouettes and prevents them 

from being drastically dissolved into the background. The BB-Hybrid technique offers a 

more consistent balance between true positive and false positive classification. 

It is logical to compensate an illumination-shifted image and use the result 

throughout the remainder of the processing pipeline. Next the adverse effects that such 

compensation processes may have on appearance-oriented tracking are considered. The 

BB-Global compensation technique is used to preprocess the input to change detection 

and blob formation. The resulting blob locations and foreground masks are passed to the 

OSC and SST trackers. However, the trackers receive raw, uncompensated image from 

which to extract object appearance. Tracking accuracy from this configuration is seen in 

Table 24. Comparing with the BB-Global columns of Tables 22 and 23, accuracy is 

improved; since blob and foreground pixel locations are constant, it can be inferred that 

the improvement is due to the trackers extracting more consistent descriptors from 

untransformed images. 
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Table 24. Tracking Accuracy for Raw Images 

BB-Global Raw BB-Global Raw
Cars1 93% 95% 94% 99%
Cars2 74% 88% 91% 95%
Cars3 84% 92% 95% 99%
Ped1 100% 100% 100% 100%
Ped2 68% 76% 94% 96%
Ped3 100% 100% 100% 100%

PETs1 30% 64% 78% 78%
PETs2 48% 58% 70% 80%
AVG 73% 85% 90% 93%

OSC SST
Sequence

 

 

 

5.9. Execution Time Comparison 

This section considers the relative execution speeds for the illumination 

compensation techniques and the tracking algorithms. Each of the discussed algorithms 

was implemented in C or C++. Testing was done on a PC running Ubuntu 10.04 and 

equipped with a 3.4 GHz Pentium D and 1GB of RAM.  The same coding style was used 

for each algorithm, so while additional optimizations may be possible to improve 

absolute frame rate, this serves as a useful comparison for relative performance. Data 

collection and file I/O processes were not included in these measurements. Because the 

tracking sequences consist of several hundred frames instead of a few hand-picked 

frames as in Chapter 4, trials are not repeated and averaged. Each compensation 

technique used the same parameters that produced its optimum tracking results in 

Sections 5.7 and 5.8. The average runtimes (in milliseconds) are shown in Figure 49 and 

Table 25 for each method.  In addition to pure runtime, an additional effort metric is also 

considered which takes the ratio of runtime (in milliseconds) to tracking accuracy rate (in 

percent). This gives a sense of how much effort is expended for each compensation 

technique per correct tracking result. 
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Figure 49. Comparison of runtimes and effort figures of compensation techniques. 
 

 

Table 25. Average runtimes and effort figures for compensation techniques. 
Runtime (ms) Effort (ms/accuracy)

BB-Offset 42.7 47.0
BB-Global 100.1 108.6
BB-Hybrid 185.8 193.6
1st Order 87.6 128.1
2nd Order 133.4 189.2
MinMSE 112.8 451.1
Multires 1616.0 2010.2  

 

 

Because the Multiresolution technique has such a large runtime, the y-axis of the bar 

graph in Figure 49 is truncated at 600 ms for readability. The trends are similar to those 

observed in Section 4.8.2. For the tracking sequences, the BB-Offset technique runs in 

half the time of the 1st Order technique (the next-fastest performer). The BB-Global 

variation requires an extra pass through the image to determine the mean scene-wide 

appearance of each BB region, incurring a 100% penalty over BB-Offset as coded. This 

could be optimized at the expense of memory usage by storing global and local results 
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during a single image pass. The BB-Hybrid technique, which resulted in a significant 

accuracy improvement over the 2nd Order method, also requires about 40% more time to 

execute than the 2nd Order method since the 2nd Order computations are essentially being 

repeated for each BB region. In terms of effort, the BB-based methods achieve low error 

rates and thus cost less per correct tracking result. Considering this perspective makes up 

for the increase in BB-Hybrid runtime, placing it on fairly even footing with the 2nd Order 

technique. Due to their lower accuracy rates, the MinMSE and Multiresolution 

techniques have substantially higher effort costs than their pure runtimes suggest. 

Table 26 shows the runtimes in microseconds for the tracking methods applied to 

each tracking sequence. The runtimes of single tracking function calls were often smaller 

than the operating system could resolve, so each tracker was run 1000 times and the 

resulting accumulated time was divided by 1000. The architecture of the evaluation 

processing pipeline distills video information into short, compact lists of objects for 

trackers to analyze. Tracking performance is therefore sensitive to object list formation, 

and relative runtime increases sharply as the object lists get longer (e.g., if illumination 

variations or background changes cause false object detections). For this experiment, all 

images were compensated by the BB-Global technique. Because the same compensation 

method and blob forming settings were used for each tracker, each tracker received 

identical lists of blobs to analyze.  

The kinematic tracker requires the least overhead per object, relying solely on 

position information that is stored in the object list data structure. The object-strip color 

approach must compute an OSC descriptor for each object list entry by scanning the 

pixels that make up the object. The conversion to the HSI is relatively cheap. 

Correspondence is established by a one-dimensional convolution-like function between 

OSC vectors. The OSC tracker takes an order of magnitude longer to run than the 

kinematic tracker. The spatio-spectral tracker also scans the pixels that make up each 

object, but uses a costly floating-point bivariate Gaussian probability function to evaluate 
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correspondence likelihoods. While it achieves 15% greater tracking accuracy on average 

than the OSC tracker, the SST tracker requires an average of 50 times longer to run than 

the kinematic method and 3 times longer to run than the OSC method. 

 

 

Table 26. Average runtimes (in microseconds) of tracking algorithms. 

kin osc sst
Cars1 1.1 43.3 196.4
Cars2 2.4 64.9 294.4
Cars3 1.1 25.0 112.8
Ped1 3.1 46.9 153.6
Ped2 2.3 25.2 86.2
Ped3 1.0 7.9 34.5

PETs1 6.8 40.5 138.8
PETs2 6.6 29.4 93.0
AVG 3.0 35.4 138.7

 

 

5.10. Conclusions 

Illumination changes can drastically alter the appearance of a scene, making it 

difficult to distinguish objects from background noise during change detection. 

Illumination compensation algorithms improve the quality of change detection, and 

transform the visual appearance of interesting objects in the process. It is desirable to 

transform the image so objects of interest can be reliably located while preserving the 

visual features that distinguish those objects from each other. Four illumination 

compensation techniques and three object tracking algorithms from the literature were 

implemented for the purpose of exploring illumination compensation effects on object 

tracking problems. 

In addition to examining the effects of the RGB translation compensation technique 

(BB-Offset) on tracking methods, this chapter has presented two new variations of 

illumination compensation based on the BigBackground model. The first variation (BB-
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Global) improves the offset technique introduced in Chapter 4 by incorporating scene-

wide illumination change measurements into the local compensation model. The second 

variation (BB-Hybrid) demonstrates that the BigBackground approach can be applied to 

the benefit of other independently developed techniques.  

By obtaining a global sense of BigBackground regions’ responses to illumination 

change and incorporating this information into the compensation model, true positive 

detection is improved by an average of 16% over an earlier BigBackground-based 

approach with negligible impact on false positive rates. In addition to producing more 

coherent object silhouettes, the global approach better preserves the visual appearance of 

those objects. In contrast, several compensation techniques from the literature tend to 

dissolve objects, making their appearance a function of the background that they occlude. 

Appearance-based trackers then have less reliable object descriptors with which to 

perform correspondence. When the illumination compensation algorithms are applied to 

three tracking methods, the BigBackground-based techniques result in a 20% average 

increase in tracking accuracy for each tracker. The hybridization of BigBackground and 

the 2nd-order compensation method reduces distracting false positives by an average of 

25% and improves tracking accuracy by an average of 15% over 2nd-order compensation 

alone. Finally, it is demonstrated that while BigBackground-based techniques cause less 

appearance distortion than other compensation approaches, improved appearance-based 

tracking accuracy can be achieved by using illumination compensated images for object 

location and extracting appearance descriptors from the raw, uncompensated images. 

This work has demonstrated the benefits of using stable, chromatically diverse 

background features as reference points for illumination change compensation in object 

tracking processes. 
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CHAPTER 6  

CONCLUSION 
 

 

This dissertation has investigated problems in surveillance video analysis caused by 

illumination changes, and has presented solutions to improve analysis resilience to these 

problems. Controlled experiments yielded insight into the underlying responses of scenes 

to temporal lighting variations. Models and methods were developed to quantify and 

compensate for lighting variations in a manner consistent with those observations. The 

novel methods were compared with prior art across several dimensions of evaluation, 

from pixel-level classification accuracy to high-level object tracking accuracy. 

Experiments used video sequences captured by low-cost webcameras in a wide range of 

realistic surveillance environments. Algorithms were developed and implemented in C. 

First, experiments with a controllable light source and color targets demonstrated 

that surfaces of significantly different hue have different responses to a given change in 

illumination. Also, several illumination models from the literature were shown to achieve 

different degrees of effectiveness when optimized globally for a scene, but all achieved 

similar effectiveness rates when optimized for each chromatically distinct region. These 

effects were also observed in a staged scene containing realistic surfaces at non-uniform 

orientations, and formed the basis for a novel approach to temporal illumination 

compensation. 

Second, the BigBackground model was developed for representing large, stable, 

chromatically distinct background features. An algorithm was presented that extracts 

these background features by finding the dominant colors in the scene, clustering similar 

colors into a reduced color palette, and mapping relevant pixels to palette entries. The 
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BigBackground model was evaluated in terms of scene coverage and stability, and its 

responses to input variation was characterized. 

Third, the stability and chromatic diversity traits of the BigBackground model were 

used as reference points for measuring the effects of illumination change. Differences in 

BigBackground region appearance before and after a lighting change were applied to 

transform the post-illumination change image to appear as it would under the original 

lighting condition. Effectiveness was measured in a change detection application since 

change detection often produces vast amounts of false foreground during lighting 

variations. Ground truth images were chosen for several sequences, and were hand-

marked for correct foreground/background classification. BigBackground-based 

compensation was compared with several techniques from the literature. 

Fourth, two variations of BigBackground-based illumination compensation were 

presented. The first variation improved the original technique by incorporating global 

measurements, while the second variation demonstrated the integration of the 

BigBackground philosophy into an independently-developed compensation method. 

These new techniques, along with the previously discussed methods, were evaluated in an 

object tracking pipeline in which objects were tracked during and after illumination 

changes. Counting foreground and background pixel classification rates told an 

incomplete story, as it did not convey what types and sizes of errors could be tolerated by 

downstream processes. Object tracking provided a framework for evaluating 

compensation effects on practical, high-level analyses over many hundreds of frames, 

and thus was a more comprehensive evaluation method than comparing ground truth 

frames (though studying this low-level behavior was a necessary first step).  
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6.1. Summary of Results 

The main results of this dissertation are summarized here. 

6.1.1 Chromatic sensitivity of scene response to illumination change 

 The effects of illumination changes on surfaces are quantitatively shown to 

depend on the chromaticities of those surfaces [13].   

 Customizing compensation models for distinct colors improves model 

effectiveness by reducing SAD error by 70% to 80%.  Applying a model 

customized for one surface to a surface of different hue multiplies the error 

rate by an average factor of 15, while applying such a model to other surfaces 

of similar hue only increases the error rate by an average factor of 4 to 6. 

 Choice of the mathematical model used for illumination compensation has 

reduced impact on compensation accuracy when the model is customized for 

each chromatically distinct region.  

6.1.2 BigBackground: dominant chromatic feature extraction 

 A background model is presented that identifies large, stable scene 

components by extracting dominant chromatically self-similar regions [14]. 

These regions often cover more than 50% of a scene—and can cover over 

90%—and are 20% more stable on average than other regions in the scene. 

6.1.3 BigBackground-based illumination compensation 

 Compensation model parameters are customized for each BigBackground 

region, allowing chromatically distinct regions to respond independently to 

the same illumination change. A simple RGB Translation model is shown to 

be more effective than models based on gain or the HSI color space [14]. 
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 When used to aid foreground detection, this approach decreases false 

positives by an average of 83% compared with no corrective action, and 

decreases false positives by 25%-43% compared with other compensation 

methods from the literature. 

6.1.4 Expansion of BigBackground concept to versatile methodology 

 A variation of BigBackground-based compensation that incorporates global 

measurements of scene change increases true positive foreground detection 

by an average of 16% with negligible impact on false positive classifications 

(compared with the original, solely-local technique). Object silhouettes are 

more solid and object appearance is better preserved [15]. 

 The BigBackground concept is integrated into an independent second-order 

compensation method from the literature. The resulting hybrid exhibits less 

sensitivity to the foreground/background classification threshold than the 

original second-order technique. False positive rates are decreased an average 

of 25%, greater than the 16% decrease in true positive rates. The hybrid 

technique also preserves object appearance better than the second-order 

technique [15]. 

6.1.5 Effects of illumination compensation on object tracking mechanisms 

 Kinematic and appearance-based trackers are tested, and the discussed 

compensation techniques are evaluated in terms of tracking accuracy and 

object appearance quality over several hundred frames [15], [16], [17].  

 The BigBackground-based techniques improve object tracking by an average 

of 20% for each tracking approach, and produce less distortion in object 

appearance. 
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 Appearance-based tracking accuracy is increased by 3% to 12% by using 

BigBackground-based illumination compensation to localize objects, and 

then extracting appearance descriptors from the uncompensated image. 

6.2. Future Work 

Future work will consider the BigBackground model and related illumination 

compensation techniques over long time scales by considering the usefulness of the BB 

model for handling long-term illumination changes, and identifying when illumination 

changes occur and how that information might be used to update or extend the life of the 

BB model. It is desirable to avoid repeating the computation of illumination 

compensations, and instead rely on some easily computed metric to indicate when a 

model may need to be reinitialized or adapted. This work will examine how long a set of 

compensations can be reused before they no longer accurately reflect the lighting 

condition. It will also present techniques for using the illumination models to determine 

when significant background changes have occurred, signaling the need to update an old 

background model. The extraction of patterns in illumination changes over long time 

scales would allow recurring changes to be anticipated. 

A problem related to long term adaptation is the interaction between camera and 

surveillance algorithm. Surveillance cameras have controls for gain, exposure, contrast, 

and white balance that can often be set statically, or dynamically to accommodate 

changing conditions. When set dynamically, these parameters allow the camera to 

provide the most information per pixel. However, on-the-fly adjustment may also 

compound the effects of lighting changes, or introduce new artifacts. It will be necessary 

for video analysis algorithms and camera controllers to interact. Timing of camera 

recalibration events will need to be coordinated to minimize disruptions to algorithms, 

while setting parameters to maximize the types of data sought by those algorithms. 
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Another area of future work is to apply architectural considerations to the presented 

material. The methods presented here can be optimized and evaluated for low-cost, 

resource-constrained platforms. In such systems, tradeoffs between memory usage and 

scene coverage by the reduced color palette would be more pronounced. Because the 

BigBackground model and the compensation techniques consider image tiles 

independently, there are opportunities for the exploitation of parallelism on multi-core 

and many-core platforms.  

Graphics processing units (GPUs) have long been used to hardware-accelerate 

lighting effects when rendering artificial scenes, and thus may also be useful for quickly 

performing detailed transformations for illumination compensation in scene analysis. As 

shown in Chapter 2, considering chromatically distinct regions independently during an 

illumination change greatly improves the accuracy of the illumination model. Future 

work may produce techniques for extracting a model of the illumination source itself by 

observing distinct colors for their individual responses to illumination changes and 

measuring the differences in those responses. These observations might also be used to 

determine the nature of the illumination source (incandescent, fluorescent, or halogen or 

exterior sunlight) and of the illumination change (binary on/off such as interior lighting, 

or filtered in the case of outdoor cloud cover). The illumination source model could be 

applied across an image to reverse illumination changes as a more general, geometrical 

transformation that GPUs are well-suited to perform. 

This dissertation presented one approach for identifying reliable features based on 

color clustering. Other approaches based on traditional color segmentation techniques, 

analysis of optical flow, or some combination may also provide useful features with 

which to partition illumination changes and are worth investigating. An approach that 

efficiently incorporates natural feature boundaries might eliminate the need for tiling and 

reduce tile-induced artifacts. 



 

 129

 Finally, the applicability of BigBackground can be extended by integrating it with 

other independent compensation methods to improve resilience to illumination change, 

and by viewing it as a property akin to center of mass or texture and including it in a stel 

[26] or locale [27] type framework. There are also opportunities for exploring other 

applications of BB as a general salient feature set beyond the realm of change detection 

and surveillance, such as image registration or understanding scenes observed by moving 

cameras. 
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