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SUMMARY 

While design theories provide a foundation for representing and reasoning about design 

methods, existing design theories do not explicitly include uncertainty considerations or 

recognize tradeoffs between the design artifact and the design process. These limitations 

prevent the existing theories from adequately describing and explaining observed or 

proposed design methods.  

In this thesis, Rational Design Theory is introduced as a normative theoretical framework 

for evaluating prescriptive design methods. This new theory is based on a two-level 

perspective of design decisions in which the interactions between the artifact and the 

design process decisions are considered. Rational Design Theory consists of normative 

decision theory applied to design process decisions, and is complemented by a decision-

theory-inspired conceptual model of design.  

The application of decision analysis to design process decisions provides a structured 

framework for the qualitative and quantitative evaluation of design methods. The 

qualitative evaluation capabilities are demonstrated in a review of the systematic design 

method of Pahl and Beitz. The quantitative evaluation capabilities are demonstrated in 

two example problems. In these two quantitative examples, Value of Information analysis 

is investigated as a strategy for deciding when to perform an analysis to gather additional 

information in support of a choice between two design concepts. Both quantitative 

examples demonstrate that Value of Information achieves very good results when 
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compared to a more comprehensive decision analysis that allows for a sequence of 

analyses to be performed.  
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CHAPTER 1: MOTIVATION FOR A RATIONAL DESIGN THEORY 

Design theories provide a theoretical foundation for design and can lead to insights that 

improve the practice of design. Many theories have been proposed, both from a 

descriptive (How do people currently design?) and a normative perspective (How should 

people design?) (Finger, et al. 1989a, b).  In this dissertation, a theoretical framework is 

introduced that adopts a prescriptive perspective (Bell, et al. 1988).  It is recognized that 

normative theories can only be applied in practice by making approximations and 

simplifying assumptions.  From a prescriptive perspective the question then is: “Which 

approximations and simplifying assumptions lead to good design methods that are 

practically implementable?” 

The theoretical framework introduced in this thesis attempts to answer this question.  The 

framework, called Rational Design Theory (RDT), is inspired by decision theory.  The 

criterion for “goodness” as referred to in the question above, is rationality — a rational 

design method leads to outcomes that are consistent with the knowledge and preferences 

of the designer.   

In this chapter the motivation and requirements for this framework are introduced. In 

Section 1.1, the motivation for a new design theory is discussed. Thereafter, requirements 

for the new theory are identified in Section 1.2. The research questions and hypotheses 

addressed in this thesis are then introduced in Section 1.3. This chapter concludes with a 

look forward to the rest of the thesis in Section 1.4. 
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1.1 THE NEED FOR A NEW, RATIONAL DESIGN THEORY 

Several researchers have attempted to formalize design in a mathematical framework to 

advance the field of design. As Braha and Reich note (Braha, et al. 2003), a mathematical 

formulation for design helps design researchers to understand the limits of automating 

design tasks, develop practical guidelines for design, and create design methods and 

tools. Most theories of design that have been proposed in the past have focused on the 

classification and representation of the types of knowledge and information that are used 

in design. However, little or no guidance is provided for the manner in which this 

knowledge should be applied. Although some authors suggest possible methods or 

prescribe certain methods based on observations or computational practices, little 

justification is provided to support the choice of one particular method over another.  

A notable exception is the normative perspective advocated by researchers who think 

about design in terms of decision making.  The notion of rationality in design can be 

attributed to Myron Tribus (Tribus 1969) who proposed to include Bayesian Decision 

theory in design.  Hazelrigg (Hazelrigg 1996) further developed the idea, and from 1996 

through 2004 a series of workshops were organized on the topic of Decision-Based 

Design  culminating in an edited book on the topic (Lewis, et al. 2006a). 

This earlier work on decision making in design takes a normative perspective, specifying 

practical design methods inspired by decision theory. However, any practical 

implementation requires the introduction of assumptions and/or simplifications.  These 

assumptions and simplifications will result in a design artifact that is different from the 

artifact that would have been obtained under the ideal, exact application of the normative 

theory.  To compare practical methods of design, a framework is needed that allows us to 
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reason about the impact of approximations on both the quality of the resulting design 

artifact and on the cost of the design process used to arrive at that artifact. 

There are two different levels of decision-making in a design problem: process-related 

decisions and the artifact1 decision. It is the artifact decision that has been studied in 

detail in previous work.  It concerns the choice of an artifact that provides the best 

tradeoff (under uncertainty) between performance, cost, reliability, etc.  On the contrary, 

process decisions are concerned with the choice of the design actions that ultimately lead 

to a desirable artifact specification. 

An explicit differentiation between artifact and process decisions is crucial for a new 

theory of design and can be the source for new insights.  By modeling the interactions 

between artifact and process decisions, one can express tradeoffs between the artifact 

performance and the process performance, tradeoffs that previously could not be taken 

into account because only the artifact perspective was considered.  For example, in 

Robust Design (Taguchi 1986, Phadke 1989, Bras, et al. 1991, Bras, et al. 1993, Chen, et 

al. 1996a, Chen, et al. 1996b), one recognizes that there are uncertain factors that 

influence the performance of the artifact.  Rather than maximizing the nominal 

performance, it is then better to take the uncertainty into account and select an artifact 

that provides a good balance between nominal performance and variation around the 

nominal.  In this fashion, the possible negative consequences of uncertainty are mitigated 

by modifying the artifact.  In contrast, the designer could have adopted a process 

perspective to deal with the uncertainty.  For instance, by investing in additional 

                                                            
1 The term artifact is defined in Section 3.1: The Purpose of Design. 
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simulations or physical experiments, some of the uncertainty might have been eliminated, 

reducing the need to make the artifact robust.  Rather than investing in the artifact — 

robustness usually comes at a price — it might be more advantageous to invest in the 

process; or most likely, it would be most advantageous to find a good balance between 

investing in the process and investing in the artifact.  These tradeoffs between investing 

in the process or the artifact require a framework in which the interactions between 

artifact and process decisions are modeled explicitly.   

To clarify the discussion in this thesis, a design method must be clearly distinguished 

from a design theory.  The following terminology is adopted throughout this work: 

DEFINITION 1 A design action is an (information-processing) action undertaken 

by a designer. 

DEFINITION 2 A design process is a sequence of design actions. 

DEFINITION 3 A design method is a specification of a design process — a method 

for selecting the next design action at each step in a design process. 

DEFINITION 4 A design theory is a model of the act of designing that allows for 

interpretation, comparison and prediction of characteristics of 

design methods. 

Having established the motivation for a new design theory, requirements for the theory 

are identified in the next section.  
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1.2 REQUIREMENTS FOR A NEW DESIGN THEORY 

A design theory must meet two general requirements: adequately describe design 

processes and provide a theoretical foundation for assessing the quality of design 

methods. Most existing theories have focused on adequately describing design without 

providing a foundation for assessing the quality of design methods. To adequately 

describe design processes, a design theory must meet five requirements, as shown in 

Table 1.1. In his critique of General Design Theory, Reich identifies two requirements for 

an adequate description of design processes (Reich 1995).  He asserts that a descriptive 

model must include the generation of a specification or the ability to revise the means for 

evaluating concepts. In addition, a model of design processes must include the creative 

process of generating new concepts. Three additional requirements are identified to 

improve upon existing theories. First, the description of design processes must explicitly 

include uncertainty in the outcomes of concepts and design tasks. Also, a descriptive 

model of design processes must not limit the expression of beliefs of preferences. This 

requirement prevents the new theory from imposing arbitrary beliefs or preferences on a 

designer, which would lead to irrationality. Finally, the theory must incorporate the 

allocation of design phase resources as outcomes of design actions. Many of the existing 

theories of design do not address the resources consumption during the design process. 

Without considering this reality of design processes, a new theory cannot adequately 

capture design processes. 

Requirements 6 and 7 in Table 1.1 establish a theoretical foundation for the assessment of 

design method quality. The first requirement is that the theory must recognize a tradeoff 

between the design artifact and the design process. This is related to requirement 5 that 



   

6 
 

the theory must recognize the cost of design actions. Not only must the costs be modeled, 

but the theory must recognize that these costs are accrued in the act of improving artifact 

quality. Thus, there is a tradeoff between reducing design costs and improving artifact 

quality. The last requirement for the new theory is that it provide a means for evaluating 

design methods relative to one another. This is another requirement that is not met by 

existing design theories; however, without a means for evaluation of design methods, a 

new theory cannot provide guidance for the development of new methods and the 

improvement of existing design methods. Therefore, a new theory must provide this 

evaluation capability. 

TABLE 1.1. REQUIREMENTS FOR A NEW DESIGN THEORY 

 Requirements for a descriptive conceptual model of design 
1 Includes the generation and revision of specifications 
2 Includes the creative process of generating new concepts 
3 Explicitly includes uncertainty 
4 No limit on the expression of preferences and beliefs 
5 Incorporates the allocation of design phase resources as outcomes of design 

actions 
 Requirements for a normative framework for evaluating design methods 
6 Recognizes a tradeoff between artifact and process 
7 Provides a means of evaluating design methods relative to one another 

These requirements taken together establish the characteristics of a design theory that is 

capable of evaluating design methods. In the next section the research questions 

addressed in this thesis are presented.  

1.3 RESEARCH QUESTIONS AND HYPOTHESES 

The primary research question comes from the primary motivation of this thesis: to 

provide a theoretical framework for assessing design methods.  
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Primary Research Question: What theoretical foundation for design has explanatory 

power and enables quantitative evaluation of design methods? 

Hypothesis: Rational Design Theory, the application of normative decision theory to 

design process decision making, enables the prediction and comparison of design method 

quality. 

The primary hypothesis is that a new theory of design can provide this explanatory power 

and enable quantitative evaluation through the application of normative decision theory 

to design process decision making. Because the ideal is rationality, the new theory is 

called Rational Design Theory. To provide explanatory power the theory must enable 

qualitative evaluation of design methods. Qualitative evaluation provides the ability to 

generate hypotheses about good design methods. These hypotheses can then be tested 

through quantitative evaluation. These two aspects are addressed separately in the 

secondary research questions. 

Secondary Research Question 1: Can Rational Design Theory be used to compare design 

methods in a qualitative sense? 

In Section 3.2.3 it is explained that any design method can be broken down into the three 

elements of a decision problem: alternatives, outcomes, and preferences. When design 

methods are characterized in such a manner, they can be compared on the basis of those 

elements. For example, methods for design under uncertainty specify a representation for 

the uncertain outcomes as well as preferences concerning the outcomes. By 

characterizing these methods in terms of alternatives, outcomes, and preferences, the 

methods can be compared qualitatively. This type of comparison has been done in the 
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past (Lee, et al. 2010b). The hypothesis to answer this question seeks to provide 

organization to this type of comparison.   

Secondary Hypothesis 1: Yes, Rational Design Theory can be used to qualitatively 

compare design methods because the characterization of a design method in terms of 

alternatives, outcomes, and preferences enables the systematic identification of 

differences in the expression of alternatives, outcomes, and preferences as compared to 

the normative rational ideal. 

As mentioned above, the qualitative comparison capabilities of RDT make it possible to 

generate hypotheses about what makes a good design method. To test these hypotheses, a 

theory is needed for determining quantitatively the quality of a design method. 

Secondary Research Question 2: Does Rational Design Theory enable quantitative 

prediction of design method quality? 

Secondary Hypothesis 2: Yes, Rational Design Theory enables quantitative prediction of 

design method quality through the systematic analysis of design process decisions. 

The analysis of design process decisions with respect to rationality enables both 

qualitative and quantitative evaluation of design methods. In this thesis, these hypotheses 

are validated in the presentation of Rational Design Theory and a corresponding 

conceptual model of design in Chapter 3. Qualitative evaluation is demonstrated with a 

review of the systematic design method of Pahl and Beitz in Chapter 4. The quantitative 

evaluation ability of RDT is demonstrated in two computational examples in Chapter 5. 
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1.4 THESIS OVERVIEW AND ROADMAP 

In this chapter, the motivation for a new theory of design was presented. Requirements 

for a new design theory were identified, and research questions and hypotheses were 

presented. A new theory of design is needed because existing theories do not explicitly 

include uncertainty considerations, and they do not recognize tradeoffs between the 

design artifact and the design process. These limitations prevent the existing theories 

from adequately describing design processes and evaluating design methods.  

The thesis continues in the next chapter with a critical review of the existing theories and 

related work in Section 2.1. In addition, decision theory is reviewed in Section 2.1.8 

because it provides a theoretical foundation for Rational Design Theory. It is shown that 

although the existing theories do not meet the requirements, the application of normative 

decision theory to design process decisions is an approach capable of simultaneously 

meeting all the requirements for the new design theory. 

In Chapter 3, Rational Design Theory is introduced as an embodiment of the primary 

research hypothesis. This new theory is based on a two-level perspective of design 

decisions in which the interactions between the artifact and the design process decisions 

are considered. In RDT, it is shown that the ideal design method maximizes expected Net 

Design Utility (NDU), which is a combination of utilities of the artifact and process 

decisions. To define NDU for particular design problems, RDT is augmented by a 

descriptive conceptual model of design. The conceptual model captures the information 

state of artifact concepts in three aspects: concepts, concept predictions, and concept 

decision criteria. In addition, design actions are classified as synthesis, analysis, or 

evaluation. After presenting RDT, characteristics of good methods as identified by RDT 
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are presented. This discussion is followed by a return to the related work in design 

theory. Finally, Chapter 3 is concluded with a critical review with respect to the 

requirements for the new theory and the research questions and hypotheses.  

RDT provides a theoretical framework for the qualitative and quantitative evaluation of 

design methods. In Chapter 4, qualitative evaluation is demonstrated with a review of the 

systematic design method of Pahl and Beitz in the context of RDT. The quantitative 

evaluation capabilities of RDT are demonstrated in two example problems in Chapter 5. 

These examples serve to validate the second secondary research hypothesis that RDT 

enables quantitative evaluation of design methods. In these two examples, Value of 

Information analysis is investigated as a strategy for deciding when to perform an 

analysis to gather additional information in support of a choice between two design 

concepts. Both quantitative examples demonstrate that Value of Information achieves 

very good results when compared to a more comprehensive decision analysis that allows 

for a sequence of analyses to be performed. 

The thesis is concluded in Chapter 6 with a summary and critical review with respect to 

the research questions and hypotheses. Based on this critical review, opportunities for 

future work are identified.  
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CHAPTER 2: LITERATURE REVIEW 

Having introduced the problem in the previous chapter, related literature is reviewed in 

this chapter. In Section 2.1 related works on existing design theories are reviewed to 

establish the need for a new theory. In Section 2.1.8, an overview of decision theory is 

provided to support the development of Rational Design Theory in the next chapter. 

2.1 EXISTING DESIGN THEORIES AND RELATED WORK 

In this section several theories of design and related works are reviewed to establish the 

state of the art and the research gap. The reviewed works include Simon’s Sciences of the 

Artificial (Simon 1996), General Design Theory (Yoshikawa 1981, Tomiyama, et al. 

1987), Function-Behavior-State diagrams (Umeda, et al. 1990), Gero’s Design Prototypes 

(Gero 1990), Decision-Based Design (Hazelrigg 1996, Marston, et al. 1997, Hazelrigg 

1998, Krishnamurty 2006, Lewis, et al. 2006b), Coupled Design Process (Braha, et al. 

2003), and Concept-Knowledge theory (Hatchuel, et al. 2009). Other significant bodies 

of work in design literature such as Axiomatic Design2 (Suh 2001), the systematic design 

method of Pahl and Beitz (Pahl, et al. 1996), and the TRIZ methodology (Altshuller 

2004) are omitted from this review because they propose design methods rather than 

design theories.  

In this review, it is shown that although existing design theories provide definitions of 

design, they do not provide a means for comparing the quality of one design method to 

                                                            
2 Although the term axiom implies a theory, the independence and information axioms of Axiomatic 
Design are not fundamental truths, but rather heuristics for design decision-making. As such, we consider 
Axiomatic Design to be a design method rather than a design theory. 
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that of another. Further, existing design theories do not rigorously account for 

uncertainty, which is a driving factor in the act of design. A critical review of each theory 

is presented, highlighting the proposed definition of design and any prescriptions for 

good design methods. 

2.1.1 Sciences of the Artificial 

Although not a theory of design per se, Herbert Simon’s book “The Sciences of the 

Artificial” (Simon 1996) laid the foundation for establishing theories of design by 

highlighting the need for a scientific approach to design. He notes that designing as an 

activity is not restricted to engineers. Rather, anyone who "devises courses of action 

aimed at changing existing situations into preferred ones" is engaged in the activity of 

design. Simon discusses a curriculum for design, which is instructive for the creation of a 

scientific theory of design. He mentions several existing fields that should be included in 

the curriculum, including utility theory, statistical decision theory, and optimization 

techniques. Also mentioned are several topics for the curriculum of design, including 

imperative and declarative logics of design, heuristics for search, allocation of resources 

for search, theory and structure of design organization (particularly hierarchical systems), 

and the representation of design problems. Dasgupta revisits Simon's Science of Design 

two decades after the original publication and evaluates Simon's claims in light of recent 

work (Dasgupta 1992). He finds that many of the important points of Simon's work, 

including satisficing and bounded rationality, have not been refuted. Rather, researchers 

have elaborated on Simon's ideas and developed design tools that are based on the 

artificial intelligence paradigm introduced by Simon. 



   

13 
 

Perhaps the two most significant ideas from Simon’s work are the notions of bounded 

rationality and satisficing solutions. Bounded rationality is the idea that the limited 

cognitive ability of human decision-makers may render the process of finding the optimal 

design intractable or economically infeasible. Thus, while human decision-makers can act 

rationally for small problems, the limited processing power of the human brain (or 

computer) limits rational action for large or ill-defined problems. This limited processing 

power increases the time needed to search for and identify optimal solutions, and the 

investment in time to solve the problem often outweighs the benefits obtained by finding 

the optimal solution. Thus, bounded rationality leads to the need for satisficing solutions.  

Satisficing solutions are solutions which are not optimal but are good enough. Satisficing 

solutions or techniques for finding satisficing solutions are needed when the global 

optimum is difficult to find. The traveling salesman problem is cited as an example of 

this type of problem. The difficulty in finding satisficing solutions depends on how high 

the standards of acceptability are set, not on the size of the search space; thus, one trades 

the global optimum for a decrease in time to find a solution. In design, this may be 

manifested by accepting the best alternative among the few that have been identified, 

without searching for additional alternatives that may yield better performance.  

Satisficing is a tradeoff between design process performance and design product 

performance. This tradeoff must be made in any design process, but is often made 

arbitrarily. While the existence of bounded rationality and the need for satisficing 

solutions are not disputed, I believe that the tradeoff between design process performance 

and the performance of the designed artifact can be made more explicit. 
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2.1.2 General Design Theory 

Tomiyama and Yoshikawa define the design process as an evolution of metamodels in 

General Design Theory (GDT) (Yoshikawa 1981) and Extended General Design Theory 

(EDGT) (Tomiyama, et al. 1987). A primary motivation of Yoshikawa in creating GDT 

was to support the development of future CAD systems. Thus, it was important for the 

theory to be mathematically rigorous in addition to being sufficiently expressive. GDT 

builds on a foundation of Axiomatic Set Theory to describe the logical aspects of the 

design process. This initial theory relies on the assumption of ideal knowledge which is 

summarized in the three axioms of recognition, correspondence, and operation. The 

axiom of recognition states that all entities can be recognized by their attributes. The 

axiom of correspondence states that there is a one-to-one correspondence between the 

entity set, S’, and the set of entity concepts, S. This requires that there be infinite or 

perfect knowledge of entities. Finally, the axiom of operation states that “the set of 

abstract concepts is a topology of the set of entity concepts”. This axiom enables the use 

of set operations on concept sets. These three axioms together describe the ideal 

knowledge of design. In this ideal knowledge, designing is "a mapping of a point in the 

function space onto a point in the attribute space".  

In Extended General Design Theory, Tomiyama and Yoshikawa seek to consider the 

physical aspects of design in addition to the logical aspects addressed in the original 

theory. They identify the finiteness and imperfections of real knowledge as compared to 

the ideal knowledge. Real knowledge is finite because of limited storage capacity and 

finite operational speed (of the mind or computer), similar to Simon’s bounded 

rationality. In addition, there are many sources of imperfection in the real knowledge, 
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such as nonexistent entities for some abstract concepts, imperfect categorization, poor 

convergence or errors due to set-theoretic operations, mapping imperfections, and 

modeling/analysis error. Thus, in the real knowledge, designing is still a mapping from 

the function space to the attribute space, but because of finiteness and imperfections in 

the real knowledge, this mapping is accomplished through an intermediate space called 

the metamodel space. Design in the real knowledge is a stepwise process of refining these 

metamodels to meet the specifications. Because the refinement converges in the 

metamodel space, M, rather than the attribute space, T, the solution, s, is an 

approximation of the design solution. 

Reich provides a thorough review and critique of GDT and finds the assumptions of the 

theory to be too limiting to adequately describe design (Reich 1995). He asserts that no 

realistic domains have the topological structure assumed by GDT. Reich also finds that 

GDT completely ignores the creative process of adding new entity concepts to the 

domain when the specification initially reduces to the empty set. Furthermore, Reich 

asserts that the process of design includes the creation and refinement of specifications, 

which is assumed to be given and fixed in GDT. As a result, revisions of specifications to 

avoid contradictions, to make the design feasible, or to adapt to changing requirements 

are not discussed in GDT. These limitations render the conclusions of GDT inapplicable 

for practical design problems.  

One limitation not mentioned by Reich is the lack of an explicit characterization of 

uncertainty in GDT. Tomiyama and Yoshikawa allude to sources of uncertainty in the 

imperfections of real knowledge, and characterizations of imperfect knowledge of the 

design are captured in the intermediate metamodel space between the function and 
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attributes spaces. From this, they recognize that a refined metamodel is merely an 

approximation of the design solution. It is possible to improve on this representation 

through explicit characterization of the sources and impacts of uncertainty. Because 

uncertainty is a driving force in design, it is imperative to characterize uncertainty in a 

design process as completely and accurately as possible. 

2.1.3 Function-Behavior-State 

The Function-Behavior-State (FBS) diagram is proposed to establish a clear distinction 

between function and structure and to establish a mechanism for constructing and 

reasoning with hierarchical structures of entities (Umeda, et al. 1990). It is a model of 

entities, not a model of a design process; however, the authors propose to use this 

diagram to discuss advantages and disadvantages of various design methods and 

modeling techniques. A function is "a description of behavior abstracted by [a] human 

through recognition of the behavior in order to utilize it". The function of an entity is 

dependent on the view of the person and is established through the subjective F-B 

relationship. Views can denote levels of abstraction or domains such as mechanics or 

electromagnetism. Within a view, behaviors of an entity can be objectively determined 

from the state of the entity using physical laws in the B-S relationship. State is "an 

instantaneous description of an entity", which includes as an important part the structure 

of the entity. 

A significant point is that the authors note that function is a subjective, human notion, 

whereas state and behavior are objective. Thus, computers can be used to interpret 

behavior and state, but not function. The FBS diagram is helpful because it separates the 

subjective function from the objective behavior and state. Using the FBS diagram, one 
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should proceed with design by first identifying functions and then connecting these 

functions to behaviors and states. Although this seems like a good, common-sense 

process for design, little justification is provided for the method. In addition, no mention 

is made of uncertainties in function, behavior, or state, or how these uncertainties might 

be handled in a design process.  

2.1.4 Design Prototypes 

Gero describes design as a process of transforming function (F) into design description 

(D) through a series of intermediate representations, including expected behavior (Be), 

actual behavior of the structure (Bs), and structure (S) (Gero 1990). Several types of 

transformations are identified. Direct transformation from F to D is rare, but can 

sometimes be achieved through catalog design. Accordingly, the F D transformation 

only occurs in well-known domains. Translation from F to Be is a process of formulation 

or specification, in which designers detail their interpretations of the functional 

description. Analysis is the translation from S to Bs; analysis is an objective process, but 

the behaviors to be analyzed must be identified in advance. Once the F Be and S Bs 

transformations have been made, the expected and actual behaviors can be compared in a 

process of evaluation. This process determines if the synthesized structure is capable of 

meeting the expected behavior. If the structure meets the specifications, the 

transformation S D produces the design description. These transformations and 

combinations of these transformations make up the actions of design: formulation, 

synthesis, analysis, evaluation, reformulation, and production of the design description. 

Gero builds on this model of design processes and introduces the concept of design 

prototypes. Such prototypes constitute summaries of a design situation and can be reused 
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by experienced designers to save work in the formulation of new problems. These 

prototypes are not necessarily formally captured by designers, and several prototypes 

may be referenced in a single design problem. Gero also discusses routine, innovative, 

and creative design in the context of design prototypes. Routine design corresponds to the 

selection of instances of design prototypes without modification. Innovative design 

makes use of existing design prototypes, but the instances of the prototypes are adapted. 

Creative design requires the creation of new design prototypes. 

Gero’s work is important for the identification of the actions in design and the types of 

transformations that occur in design processes. However, little guidance is provided for 

the preferred sequence of these actions. Gero does allow for reformulation of the 

problem, which is important. Uncertainty, particularly in the behavior of synthesized 

structures, is not discussed. 

2.1.5  Decision-Based Design 

Decision-based design (DBD) is a body of work that recognizes the important role of 

decision-making in design (Hazelrigg 1996, Marston, et al. 1997, Hazelrigg 1998, 

Krishnamurty 2006, Lewis, et al. 2006b). The umbrella of DBD represents a collection of 

similar design strategies rather than a unified design theory. An advantage of this 

perspective is that it brings the strength of decision theory to design research; however, 

not all DBD researchers apply decision theory in their work. In particular, there is a large 

body of work based on Decision Support Problems and the Decision Support Problem 

Technique (Mistree, et al. 1990, Marston, et al. 1997, Marston, et al. 2000). These works 

prescribe design methods rather than design theories. In this review, I are more concerned 
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with the use of decision theory as a foundation for a theory of design. An overview of 

decision theory is presented in Section 2.1.8. 

The application of decision theory to design is not a straightforward problem, and 

different researchers have attacked the problem differently. For example, some authors 

advocate an enterprise-driven approach: the selection of design solutions via the 

maximization of single-attribute utility based on profit (Hazelrigg 1998, Kumar, et al. 

2006). Other works take a multi-attribute approach, such as work by Thurston and 

coauthors (Thurston, et al. 1994), Scott and Antonnson (Scott, et al. 1999), and Lewis and 

coauthors (Lewis, et al. 2006a). Despite differences in the form of the objective function, 

most decision-theoretic DBD approaches have in common several key characteristics: the 

characterization of design concepts or candidate solutions as decision alternatives, the 

explicit characterization of uncertainty (usually modeled with probabilities), and a 

customizable statement of preferences concerning artifact performance outcomes. 

Although DBD has the strong foundation of decision theory, little guidance is provided 

for assessing the goodness of one decision-based design method over another. Utility 

theory indicates that decisions should be made to maximize the expected utility of the 

decision-maker, but it is not clear how to apply this maxim to design. Decisions are made 

throughout a design process, and previous work has framed those decisions in terms of 

the designed artifact. While the application of decision theory to the artifact decision has 

highlighted some ways to improve the evaluation of concepts and the modeling of 

designer or decision-maker preferences using utility functions, expanding the scope of 

design decisions to include process resources will enable new insights regarding design 

processes. 
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2.1.6 Coupled Design Process 

Braha and Reich identify several properties of design processes that should be included in 

any mathematical model of design (Braha, et al. 2003): 

• “Design starts from some abstract specifications and terminates with a description 

of a product. 

• In design, the product specifications are gradually refined. Better understanding of 

the specifications is a by-product of design. 

• Design is an iterative, exploratory, and sometimes chaotic process. 

• Intermediate states of the design process might include conflicting specifications 

and product description. 

• Design progresses by context-dependent activities: thinking, alternatives, and 

decisions emerge from the situation as it unfolds by bringing diverse knowledge 

to bear on the present context. 

• Designers make use of diverse knowledge whether they work alone or 

collaboratively. 

• Design is about finding solutions, not (globally) optimal solutions. Designers 

generally do not receive the knowledge or resources needed to achieve 

optimality.” 

In addition, Braha and Reich note that a mathematical framework of design must have 

sufficient detail to support theoretical statements about design and to enable the 

generation of improvements to practical processes. 
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To fulfill these requirements, Braha and Reich present a mathematical framework of 

design based on closure spaces. They show that General Design Theory is a special case 

of their framework. At a basic level, design is a process of translating requirements in the 

function space into a design description in the structure space. This process is iterative in 

nature. Refinements of the requirements in the function space and, later, specifications in 

the structure space are achieved in a stepwise manner via proximal refinement. Synthesis 

occurs when requirements are matched to structure and development moves from the 

function space to the structure space. At each step, proximal refinements are selected 

from within a closure space by a generating element; a sequence of these generating 

elements is the design process.  

Extending the framework from this basic level, design descriptions exist in the Cartesian 

product of the function and structures spaces, × , and at every step in design the 

description consists of a tuple of function and structure 〈 , 〉. A refinement step can 

update one or both aspects of the description. Furthermore, refinement steps are context 

dependent, requiring the input of both function and structure. Because both are refined 

concurrently, the process is called Coupled Design. Structural descriptions consist of 

values for several measureable or observable quantities such as physical or geometrical 

quantities. Functional descriptions contain functional properties, which are behaviors that 

an artifact exhibits under certain conditions. Functional descriptions indicate the desired 

behaviors of the artifact.  

Although the authors identify many key characteristics of design, they fail to identify 

uncertainty and the reduction of uncertainty as a driver of design processes. They assert 

that imperfect, incomplete, or incorrect knowledge can be accounted for with an 
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approximate closure, and that these approximate closures may help to explain design 

failures. This, however, is a model of the impacts of uncertainty, not a means for 

explicitly modeling uncertainty itself. While analysis is discussed using the neighborhood 

concept, uncertainties in analysis are not addressed. In addition, while the authors show 

that several distinct design procedures can be modeled in their framework, they do not 

make any attempt to discuss the quality of a particular method as compared to another.  

2.1.7 Concept-Knowledge Theory 

Hatchuel and Weil present C-K theory as a general theory of design which includes new 

models of thought for creativity and innovation (Hatchuel, et al. 2009). They discuss 

design as a process of expansion of sets in the Concept and Knowledge spaces towards a 

final design which is a “decidable proposition” in the Knowledge space. They note that a 

comprehensive definition for design must incorporate two processes: mapping between 

requirements and solutions and generation of new concepts. These are achieved using the 

four C-K operators: C-C, C-K, K-C, and K-K. The knowledge-to-knowledge (K-K) 

operator represents the standard model of thought, whereas the other three operators are 

new models which are unique to design. 

Hatchuel and Weil discuss Braha and Reich's Coupled Design Process in the context of 

C-K theory and point out that the topological structure involving closure spaces of the 

Coupled Design Process is limiting because the refinement of predefined closure spaces 

can only find existing solutions through traditional thought processes rather than creative 

or innovative solutions. 
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While C-K theory does incorporate the creative aspect of design, it does not provide 

guidance concerning the goodness of one design method over another, nor does it allow 

for the explicit representation of uncertainty. 

TABLE 2.1. REQUIREMENTS ANALYSIS OF EXISTING WORK
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Includes the generation and 
revision of specifications   x  x  
Includes the creative process of 
generating new concepts      x 

Explicitly includes uncertainty x 
No limit on the expression of 
preferences and beliefs    x   
Incorporates the allocation of 
design phase resources as 
outcomes of design actions       

Recognizes a tradeoff between 
product and process       
Provides a means of evaluating 
design methods relative to one 
another       

2.1.8 Summary of Related Work 

As presented in Section 1.2, a theory of design should meet several qualifications. The 

works reviewed in this section are evaluated with respect to these requirements in this 

section. While some of the reviewed works meet some of these requirements, there is 

little existing work in which uncertainty is explicitly considered and tradeoffs between 

the artifact and process are modeled. Furthermore, most of the existing work limits the 

expression of preferences and beliefs due to a reliance on set theory. Therefore, a new 
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theory is needed to simultaneously meet all of these requirements. In the next chapter, 

Rational Design Theory is introduced as a new theory that meets these requirements. In 

the next section, an overview of decision theory is presented as a foundation for Rational 

Design Theory. 

2.2 DECISION THEORY AS A FOUNDATION FOR A NEW THEORY OF 
DESIGN 

Decision theory is a normative approach to decision-making that builds upon axiomatic 

utility theory as a foundation (Howard 1966a). The three main components of a decision 

problem are decision alternatives, outcomes, and preferences. Decision alternatives are 

the different options from which the decision maker can choose. Outcomes are tied to a 

particular decision alternative and represent the predicted consequences that will occur if 

the decision maker chooses that particular alternative. Because of uncertainty, there are 

many possible outcomes, and the outcomes are usually represented as random variables. 

In addition, there may be multiple dimensions of outcomes such as cost and various 

performance metrics. Decision makers have preferences about the outcomes associated 

with each decision alternative, and they use these preferences to determine which 

alternative is the most preferred. According to decision theory, a rational decision maker 

should choose the decision alternative with the highest expected utility, where the 

expectation is taken across all possible outcomes of a decision alternative. 

Decision analysis is a prescriptive method for implementing utility theory for 

complicated decisions (Howard 1968). The analysis is a systematic means for 

decomposing a decision problem into alternatives, outcomes, and preferences. This 

decomposition enables the systematic determination of the most preferred decision 
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alternative. The decision-maker’s beliefs about the outcomes that may occur are captured 

as (subjective) probability distributions, and his preferences concerning those uncertain 

outcomes are modeled with a utility function.  

 

TABLE 2.2. REQUIREMENTS ANALYSIS OF EXISTING WORK 
AND DECISION ANALYSIS OF DESIGN PROCESS DECISIONS 
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Includes the generation and 
revision of specifications   x  x  x 

Includes the creative process 
of generating new concepts      x x 

Explicitly includes 
uncertainty    x   x 

No limit on the expression 
of preferences and beliefs    x   x 

Incorporates the allocation 
of design phase resources as 
outcomes of design actions       x 

Recognizes a tradeoff 
between product and 
process       x 

Provides a means of 
evaluating design methods 
relative to one another       x 

As mentioned previously, it is not immediately obvious how to apply decision theory in 

design. Howard’s definition of a decision can help to identify the appropriate context for 

a design decision problem. Howard defines a decision as “an irrevocable allocation of 

resources” (Howard 1966a). Because resources are allocated when a decision is made and 

an alternative is chosen, the outcomes associated with each decision alternative should 
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reflect this allocation of resources. As has been noted in previous work(Thompson, et al. 

in press), the resources that are allocated during the design phase are design process 

resources such as manpower, computing time, and money. Traditional formulations of 

decision-based design problems do not reflect the allocation of these process resources in 

the outcomes associated with decision alternatives. Rather, the outcomes that are 

modeled in the traditional perspective are outcomes related to the artifact only, such as 

performance metrics and manufacturing costs. Taking this artifact-centric perspective 

prevents the consideration of process-artifact tradeoffs. This kind of tradeoff is essential 

for understanding the end game of design processes. 

Decision theory is an appropriate foundation for rational economic decision-making in 

the face of uncertainty. Engineering design as a process is a sequence of decisions about 

how to allocate resources to improve economic outcomes by reducing or adapting to 

uncertainty. Thus, decision theory is an appropriate foundation for a new rational theory 

of design.  Decision analysis applied to a design process (rather than the artifact) is 

evaluated with respect to the requirements for a design theory in Table 2.2. As shown in 

the table, this new approach is capable of meeting the requirements, and this approach 

provides the foundation for RDT.  

2.3 THESIS ROADMAP 

In this chapter related literature has been reviewed. First, existing design theories were 

reviewed and evaluated with respect to the requirements for a new design theory. This 

review demonstrated that no existing design theories meet the requirements put forth in 

Chapter 1. In addition, an overview of decision theory and decision analysis was 

presented. This review showed that decision analysis of design process decisions is an 
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appropriate foundation for a new design theory that incorporates economic tradeoffs 

between the designed artifact and the design process. 
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CHAPTER 3: RATIONAL DESIGN THEORY 

In this chapter, Rational Design Theory is presented as a new normative framework for 

evaluating design methods. RDT meets the requirements identified in Chapter 1 and is an 

improvement over existing design theories reviewed in Section 2.1. RDT builds upon a 

foundation of decision theory, an overview of which is presented in Section 2.1.8.  

Rational Design Theory is introduced in the next section.  Thereafter, the RDT 

conceptual model is presented in Section 3.2 as a complement to RDT. In Section 3.3, 

characteristics of good design methods are discussed. Once the new ideas have been 

clearly defined and explained, they are related to the literature in Section 3.4.   

 In Section 3.5 RDT is critically reviewed with respect to the requirements and research 

questions. The chapter concludes in Section 3.6 with a look back at the thesis roadmap. 

3.1 RATIONAL DESIGN THEORY 

3.1.1 The Purpose of Design 

I believe that a design process is sparked by the realization of the designer that his well-

being could be improved by creating a new object, process, or piece of information. The 

improvement in well-being could be direct, if the designer designs and artifact for 

personal use, or indirect, if the designer hands the artifact specification over to another 

person in return for remuneration.  The designer’s realization for potential improvement 

of well-being is tempered by the fact that a design process takes effort; thus, to begin a 

design process, a designer must have a notion that his well-being could be improved and 

that this improvement will justify the effort of the design process. For the remainder of 
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this work I refer to the products of a design process as artifacts. Some examples of 

artifacts include physical objects, works of art and literature, and processes. 

DEFINITION 5 An artifact is anything produced through “human intelligence and 

effort” (Simon 1996, Baldwin, et al. 2000). 

Given the realization of an opportunity, a designer’s purpose in undertaking a design 

process is to improve his well-being. A new artifact is the means for obtaining the 

improvement.  Since artifacts are produced through human effort and the purpose of 

design is to specify new artifacts, design is necessarily a human activity. The sequence of 

actions that comprise this activity of design is called a design process (ref. Definition 2).  

There are many possible processes to specify a new artifact. For example, instructing 

someone simply to hack away at a chunk of wood will produce a new artifact; however, 

this new artifact is unlikely to improve the designer’s well-being. To increase the 

likelihood of improving his well-being with the new artifact, it is desirable for the 

designer to take a more purposeful approach to its design. The knowledge required to 

select a particular design process over another while solving a certain design problem is 

embodied in a design method (ref. Definition 3).  The goal of RDT is to shed light on 

which design methods are better than others and why. 

3.1.2 Rationality 

DEFINITION 6 The outcome of a design process is any modification of the state of 

the world, including the state of knowledge about potential 

artifacts, that is a consequence of executing a design process. 
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Different outcomes result in different levels of well-being.  And therefore, the designer 

who aims to improve his well-being has different preferences for different outcomes.  

According to decision theory, the designer should choose the design method that leads to 

the outcomes that are most preferred.  By definition, a rational decision maker will make 

this choice such that it is consistent with his beliefs (knowledge) and preferences. 

DEFINITION 7 Rational Behavior is decision-making behavior that is internally 

consistent, that is, consistent with the beliefs and preferences of the 

decision maker. 

Making rational decisions is difficult because it is impossible to know in advance what 

the future outcome of a given design process will be.  The future outcome is uncertain.  

Choosing among actions under uncertainty is a problem that has been studied by von 

                                                            
3 Note that other researchers have developed slightly differing sets of axioms that lead to similar 
conclusions (Marschak , Herstein, et al. , Luce, et al. , Berger).  Also note that ( , , ) are outcomes.  ( , ) are probabilities.  ≻  indicates that outcome  is preferred over outcome .  ~  indicates that 
outcomes  and  are equally preferred; the lottery “ + (1 − ) ” should be read as: “a combination of 
outcomes ,  with the alternative probabilities , 1 − .” 

1. Complete Ordering 
For any ( , ) either ≻  OR ≺  OR ~  

2. Transitivity 
For any ( , , ) if ≻  AND ≻  

THEN ≻  
3. Continuity 
For any ( , , ) such that ≻ ≻ , then for some , (0 <<1, ~ +1−  
4. Convexity 
For any ( , ) such that ≻ , then for any , (0 < < 1), ≻ + (1 − )
5. Combining ( + (1 − ) ) + (1 − ) ~ + (1 − )  

For any ( , ) , (0 < < 1) and = , 

FIGURE 3.1. AXIOMS OF VON NEUMANN-MORGENSTERN UTILITY 
THEORY (VON NEUMANN, ET AL.).3 
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Neumann and Morgenstern (von Neumann, et al. 1953).  In von Neumann-Morgenstern 

(vN-M) Utility Theory axioms of “rationality” express characteristics of preferences that 

must be satisfied. In Figure 3.1, the first vN-M axiom states that the decision maker has 

preferences over all possible outcomes, and that the decision maker is capable of 

expressing these preferences.  The second vN-M axiom states that preferences should be 

consistent and transitive.  The remaining vN-M axioms concern the consideration of vN-

M lotteries.  The third vN-M axiom states that preferences should be continuous over a 

region: any lottery with two outcomes as possibilities can be reduced to an equivalent 

certain outcome.  The fourth vN-M axiom states that preferences should be convex:  if 

something is preferable, then a larger chance of receiving it should always be preferred to 

a smaller chance.  The fifth vN-M axiom states that compound lotteries, or lotteries with 

a lottery as an outcome, can be reduced to a single lottery. 

In RDT, it is assumed that rationality is desirable and that a designer should therefore 

strive to express preferences and act in a fashion that is consistent with the rationality 

axioms of vN-M Utility Theory.  Von Neumann and Morgenstern proved that any 

decision maker whose behavior is consistent with the axioms of rationality has a real-

valued utility function that is such that the behavior of the decision maker can be 

explained as maximizing the expected value of his or her utility function.  Such utility 

functions thus provide a mathematical formalism for expressing rational behavior.  A 

designer should therefore strive to maximize his or her expected utility. 

3.1.3 Net Design Utility 

During a design process, a designer gathers and organizes information about the artifact 

to increase the likelihood that when the artifact is produced it improves his well-being. 
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Whether or not the artifact improves well-being is determined to a large extent by the 

properties4 of the artifact.  The realized properties of the specified artifact therefore 

contribute significantly to the outcome of a design process. But well-being is also 

influenced by the resources consumed during a design process. These resources are 

valuable to designers, and could be used elsewhere if not dedicated to the design process. 

Thus, all other things being equal, designers prefer to use fewer of these resources during 

a design process. In previous work in utility-based design (Thurston 1991, Thurston, et 

al. 1994, Hazelrigg 1998, Thurston 2001), the use of design-process resources has not 

been included in the utility function explicitly. To distinguish RDT clearly from a utility 

that only accounts for the artifact perspective, this combined utility is hereafter referred to 

as Net Design Utility. 

DEFINITION 8 Net Design Utility is a von Neumann-Morgenstern utility function 

that encompasses the preferences of the designer with respect to 

both artifact properties and the use of resources in the design 

process. 

3.1.4 Normative versus Prescriptive 

The explicit consideration of the cost of the design process is important because the 

designer must make decisions not only about the design artifact but also about the design 

process. When implementing normative decision theory in practice, the designer is forced 

to make some approximations. For instance, to take preferences into account 

mathematically, the designer must express his preferences in the form of a utility 

                                                            
4 A formal definition of property is provided in Section 3.2. 
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function. Determining a mathematical expression for this utility function that is perfectly 

consistent with the designer’s preferences across all possible outcomes would require 

answering an infinite number of preference elicitation questions.  This is not possible in 

practice.  The normative design theory must therefore be approximated by a prescriptive 

design method in which detailed guidance is provide on how and to what level of detail 

preferences should be elicited.  Similar approximations must be made, for instance, for 

the elicitation and mathematical expression of beliefs and for the computation of the 

expected utility (e.g., How to compute the expected value? And if by using Monte-Carlo 

simulation, then how many samples? Etc.). 

The question then is: Which prescriptive design method is best?  In the previous section, 

it was argued that one should choose a rational method. However, as soon as any 

approximations or simplifications are introduced, rationality can no longer be guaranteed.  

Although one would hope that a good approximation will result in a design artifact that 

matches the preferences and beliefs of the designer closely, it is unlikely that it will be 

fully consistent.   

This is related to the notion of Bounded Rationality introduced by Herbert Simon (Simon 

1997).  Simon uses the term ‘Bounded Rationality’ “to designate rational choice that 

takes into account the cognitive limitations of the decision maker—limitations of both 

knowledge and computational capacity” (Simon 1997).   The ultimate goal with RDT is 

not to describe how economic actors behave (as was Simon’s intent) but to prescribe how 

designers can make good decisions in practice.  Still, the recognition that there are 

bounds to rationality when considering the practical implementation of decision theory is 

important for prescriptive design methods also.  
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The purpose of Rational Design Theory is to provide a framework in which the question 

can be answered of “Which prescriptive design method is best?”  In RDT, the cost of 

implementing rational decision making is taken into account explicitly in the NDU, so 

that one can determine which methods provide a good tradeoff between the cost of the 

design process and quality of the design artifact.  An example of such an analysis can be 

found in (Thompson, et al. in press).  However, RDT itself suffers from the same 

problem as normative decision theory:  the maximization of the expected NDU requires 

significant resources and is not practically implementable, that is, not implementable as a 

practical design method. 

Instead, one should think of RDT as a framework in which practical methods can be 

evaluated and compared.  The methods being compared are prescriptive; the framework 

for comparison — RDT itself — is normative.  Comparing prescriptive methods is an 

activity that can be performed by academics at a cost much higher than is justifiable for 

solving a single design problem. To support such comparison and gain more insight into 

the specific actions in design processes, a conceptual model of design is presented next. 

3.2 A DECISION-THEORY-INSPIRED CONCEPTUAL MODEL FOR DESIGN 

To compare different design methods based on their expected Net Design Utility (NDU), 

it is necessary to adopt a conceptual model of design in which NDU can be meaningfully 

defined. RDT therefore introduces also a conceptual model that allows us to identify 

characteristics of good design methods, characteristics a method must exhibit in order to 

approach the normative ideal as defined in RDT.  Although conceptual models of design 

have been proposed by others (Yoshikawa 1981, Tomiyama, et al. 1987, Gero 1990, 

Umeda, et al. 1990, Hazelrigg 1996, Marston, et al. 1997, Hazelrigg 1998, Braha, et al. 
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2003, Krishnamurty 2006, Lewis, et al. 2006b, Hatchuel, et al. 2009), the model 

presented in this paper is different in the sense that it is consistent with utility theory and 

the notion of expected NDU. For example, some previous models do not incorporate 

uncertainty in design, and the notion of expected NDU is not meaningful unless utility is 

subject to uncertainty.  

3.2.1 A Two-Level Perspective of Design Decisions 

To decide ultimately on the selection of an artifact — an artifact decision — one must 

gather information about which artifact alternatives to consider and what the predicted 

outcomes and corresponding preferences are for these alternatives. This information 

gathering process is the result of applying a particular design method.  At each step in a 

design process, the design method prescribes which design action to perform next.  

Selecting a design action to perform is itself a decision problem.  The design method 

prescribes how to formulate and solve this decision problem. 

A very simplistic design method could prescribe to enumerate all artifact alternatives, 

predict the outcomes for all alternatives, and then choose the alternative that is most 

preferred according to some decision criterion.  For all but trivial design problems, the 

cost of enumerating and evaluating all artifact alternatives would be unacceptably large.  

Most design methods therefore consider a sequence of design actions, which together 

make up a design process.  Allowing for a sequence of design actions is advantageous 

because it enables the decision maker to consider the information obtained from previous 

actions when determining the next action of a design process. By considering more 

(relevant) information when deciding on each step of a design process, promising artifact 

alternatives can be identified more efficiently. This approach is common in practice. 
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Consider for example the design of a car.  Typically, designers will first use high-level 

abstract models of automotive powertrain concepts; based on the results obtained from 

these models, they will then refine the alternatives and focus on a smaller subset of 

alternatives for more detailed analysis. This is much more efficient than considering all 

the alternatives at a detailed level.  However, when dividing a design process into a 

sequence of design actions, the designer needs to determine which actions to take and in 

which order to take them. 

A design method defines how to choose the next action at each step of a design process.  

It is important to recognize that choosing the sequence of actions in support of an artifact 

decision involves additional decisions:  process decisions.  In decision theory, such a 

sequence of decisions is often modeled as a decision tree in which decision nodes 

(representing the choice of which action to take in a design process) are interleaved with 

chance nodes (representing, for instance, the a priori unknown outcomes of design 

analyses). In an ideal world (in which decision making is free and fully rational), one 

would explore the entire tree of possible sequences of design actions.  In such a decision 

tree, each decision node inherits the maximum expected utility of its branches, each 

branch corresponding to a design action. Thus, the utility of a particular decision 

alternative depends on the outcomes of future decisions. Practical design methods differ 

from this idealized method in the sense that only a limited number of design actions are 

considered and that the decision criterion used to choose among them is a heuristic that at 

best aims to approximate the maximization of expected utility.  Rarely is it justified to 

take the results of future decisions explicitly into account because of the large costs 
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involved.  However, the methods do share the characteristic that the choice of design 

action is based on the current state of information about the design artifact. 

This discussion inspires a two-level perspective of design decisions, depicted in Figure 

3.2. In this perspective, design process decisions are made throughout a design process to 

change the state of information of the artifact decision. In turn, the state of the artifact 

decision must be referenced when making process decisions to explore the potential 

benefits of design actions.  

 

 
FIGURE 3.2. TWO-LEVEL CONCEPTUAL MODEL OF DESIGN 

It is in the context of this two-tiered decision perspective that Rational Design Theory is 

framed. The RDT conceptual model frames the artifact decision in the context of 

concepts, concept predictions, and concept decision criteria. These three aspects 

correspond to the decision alternatives, outcomes, and preferences of the artifact decision. 

Although utility theory can be used in the artifact decision, it is not necessary to do so. 

The descriptive model of the information regarding the artifact decision is intended to be 

sufficiently general to model any decision-making process. In the higher-level process 

decision, the decision alternatives are design actions such as synthesis, analysis, and 
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evaluation. The outcomes of these action alternatives are updated information states of 

the artifact decision.  Obtaining these outcomes comes at a cost in terms of time, money, 

and other process resources. The designer has preferences about the outcomes of the 

artifact decision as well as preferences about expending resources to change the 

alternatives, outcomes, and preferences of the artifact decision. 

When practical design methods are defined within this conceptual model, RDT can be 

used to compare the methods based on expected NDU.  An example of such a 

comparison can be found in (Thompson, et al. in press).  In the next sections, the two-

level conceptual model in Figure 3.2 is further refined focusing first on the bottom layer, 

namely, the artifact decision. 

3.2.2 Describing the Artifact Decision: The Artifact Information State 

In the RDT conceptual model, the artifact decision is modeled in terms of the Artifact 

Information State (AIS). Although a structure is imposed for this information model, it is 

intentionally left as general as possible. It is intended to be sufficiently general so that 

most, if not all, design methods are supported.  

Because the goal of a design action is to gather relevant information about the design 

artifact, each design action modifies the AIS. Conversely, the AIS model also allows us 

to identify the possible actions available to a designer in the process decision. These 

actions—synthesize, analyze, and evaluate—each are manifested by a change in the AIS. 

The artifact information state consists of three aspects: the specification of concepts, 

predictions of the performance of these concepts, and an evaluation criterion to rank the 
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concepts with respect to each other. Each of these three aspects is described in terms of 

properties defined on the set of artifacts. 

3.2.2.1 Artifacts and Properties 

As noted previously, an artifact is considered to be anything produced through human 

intelligence and effort, including all human-produced physical objects and processes.  

DEFINITION 9 The artifact set, ’, is the set of all artifacts that currently exist, 

have existed in the past, or will exist in the future5. 

DEFINITION 10 A property is any descriptor of an artifact. Mathematically, a 

property is a function defined over the artifact set:  : → , with ⊂ ′ the domain of the property and with  a topological space 

that is its range.   

Examples of artifact properties are an artifact’s function, structure, or behavior, but also 

any aspect of the manufacturing process intended to produce the artifact, or any other 

uniquely defined characteristic of the artifact.  Some specific examples of properties are 

shown in Table 3.1.  In general, properties have the following characteristics: 

• A well-defined property associates a unique value with each artifact in its domain.  

Practically, it is impossible to enumerate for each artifact in the artifact set the 

corresponding property value.  Instead, one typically describes the meaning of the 

property either in words or as the result of a measurement process.  For instance, 

                                                            
5 What is considered to be an artifact in RDT is identical to the term “entity” in General Design Theory 
(GDT) (Yoshikawa 1981); the artifact set corresponds to the entity set in GDT. 
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“the mass of an artifact in kg” is a property defined for any physical object.  One 

could either assume that the semantics of the expression “the mass of an artifact in 

kg” are sufficiently precise to define the property, or one could define a 

measurement process for measuring the mass. 

• It is common that properties are defined poorly or incompletely, resulting in 

ambiguity. For instance, a designer may refer to the fuel economy of a car.  But 

unless he or she precisely defines how the fuel economy is measured, it could be 

interpreted in a variety of ways, resulting each time in a different value in the 

range, .  Although a property associates a specific value with each artifact in its 

domain, in practice, one may not be able to determine exactly what that value is 

due to limitations in our ability to observe and measure properties. 

• The domain, , of a property may not extend over the entire artifact set.  For 

instance, the property “mass in kg” is only defined for physical artifacts. 

• Because a property can be any descriptor of an artifact, there are an infinite 

number of properties.  Strictly speaking, one could argue that only a finite number 

of these properties are independent, for instance, the properties corresponding to 

the states of every elementary particle in a physical artifact, but the number of 

such properties is so large that it is still convenient to characterize it as infinite. 

In RDT, properties are used in three different ways. First, properties are used to 

characterize specific artifacts. Second, constraints on properties are used to specify 

concepts, and third, properties are used to characterize a designer’s beliefs and 

preferences about possible outcomes of concepts. These uses of properties are discussed 

in more detail in the following sections. 
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TABLE 3.1. EXAMPLES OF PROPERTIES 
Description Range Sample Values 
Mass in kg ℝ 0 kg, 50.4 kg 
Position of point A relative to axes B ℝ  (0, 1.2, 7); (-3.2, 4, 10) 
Number of engine cylinders ℤ 0, 1, 2, … 
Probability of engine failure [0,1] 0, 0.75, 1 
Plane angle between cylinders in a V 
engine ℝ 0, 0.8, π 2⁄  

Satisfies the function “convert 
rotational motion to linear motion” Boolean {0,1} 0 (false), 1 (true) 

Type of engine 
Discrete space 
of enumeration 
literals 

Internal combustion, electric-
mechanical hybrid, hydraulic-
mechanical hybrid 

3.2.2.2 Property Spaces 

DEFINITION 11 The property space, , is the collection of the topological spaces of 

all properties. Mathematically, this space corresponds to the 

Cartesian product of all the property range spaces, . 

 The property space is depicted graphically in Figure 3.3. When describing artifacts, 

designers may use a large number of properties. Thus, artifacts map into a multi-

dimensional property space.  However, not all properties are relevant in a particular 

context, and it is therefore useful to limit oneself to a finite number of properties, a 

modeling process that is typically called abstraction (Barker 2005). Mathematically, this 

abstraction corresponds to a property space projection, ′, the Cartesian product of the 

ranges of all the properties that are being considered.  For example, as shown in the 

following equation, ′, could be the Cartesian product of  Boolean properties,  

real-valued properties, and  integer-valued properties. 

 { }0,1 mb mr mzP′ = × ×  (3.1) 



   

42 
 

 

 
FIGURE 3.3. PROPERTIES AND THE PROPERTY SPACE 

Each artifact is represented by a single point in a projection of the property space that 

includes only those properties relevant to that artifact. Conversely, a point in the property 

space projection is an abstraction of possibly an infinite number of artifacts. Since only a 

finite subset of all possible properties is included in the property space projection, some 

artifacts (that differ from each other only in properties that have been abstracted away) 

map onto the same point in the property space projection.  A complete description of an 

artifact would require an infinite number of properties and is therefore not practically 

feasible. 

3.2.2.3 Concepts 

DEFINITION 12 A concept is a partial specification for a hypothetical artifact. 

Mathematically, a concept, , is defined as a subset of a property 
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First and foremost, a concept is a specification.  It specifies an alternative being 

considered in an artifact decision. At the beginning of a design process, the concepts 

being considered are often very abstract and vague. Such concepts specify very broad 

classes of products. For instance, a concept defined as “a vehicle with four wheels and an 

internal combustion engine” would encompass most of the cars and trucks on the market. 

As the design process progresses, additional properties of the artifact are specified, 

leading to concepts that specify ever smaller subsets of the property space. When the 

design process ends, the final concept selected by the decision maker tends to be defined 

in quite a bit of detail.  When the designer relinquishes control over the decision-making 

process, a concept specification can be transferred to a manufacturer or subcontractor to 

complete development and manufacture of the artifact.  At this point, the concept may be 

phrased as requirements in a contractual agreement. Note, however, that requirements in 

this context should not be interpreted as an expression of preferences. That is, 

requirements in the RDT conceptual model should be stated as follows: “To be a part of 

the concept, the artifact shall <requirement>”. Thus, the requirement only defines that 

which is included in the concept. This is opposed to the traditional statement of a 

requirement as an expression of preference, as in the following phrase: “To be 

acceptable, the artifact shall <requirement>”.  

A concept is a partial specification. The qualifier “partial” has been included in the 

definition for emphasis, but is strictly speaking redundant.  Regardless of how much 

detail is included in a concept definition, it is impossible for every property to be 

specified. Any property that is not explicitly constrained is considered to be left 

completely unconstrained. Consequently, although a concept may be fully specified in a 
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property space projection, ′, it always corresponds to a non-singleton subset of , the 

full property space. As a result, there is always some ambiguity in any concept 

specification.  

A concept is a specification for a hypothetical artifact.  The artifact is hypothetical in the 

sense that it may never be realized. First, the artifact is only one of many concepts under 

consideration in the artifact decision.  It may not be the concept that is ultimately selected 

by the designer and may therefore never be realized.  Second, the artifact is hypothetical 

because it may not be realizable. It is important to keep in mind that a concept is defined 

as a subset of the property space, not the artifact set.  It is only an implicit reference to a 

subset of the artifact set through the inverse mapping of the property functions.   For 

some concepts, the subset of the artifact set that maps onto the concept may be empty, 

meaning that there are no artifacts that simultaneously satisfy all property specifications. 

For example, while there are artifacts that are very light, and artifacts that are very strong, 

there are no artifacts are both very light and very strong. Therefore, the concept of an 

object that is both very light and very strong maps back through the inverse mapping to 

the empty set in the artifact space. Even if artifacts exist that map into the subset of the 

property space encompassed by a given concept, then it may still not be possible to 

realize any of them.  Limitations of current technology may exclude large portions of the 

artifact set, ’, including the portion containing the desired artifacts.  Even if a desired 

artifact is technologically feasible, it may be difficult to identify it.  The challenge of 

design is that the inverse mapping from property space to artifact set is implicit and 

cannot be easily resolved.  Even worse, it may not be verifiable whether a given artifact 

maps onto a concept given that the actual behavior of an artifact cannot be determined 
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with certainty.  This issue will be further discussed in Section 3.2.2.5 on concept 

predictions. 

3.2.2.4 Concept Refinement 

Throughout a design process, new concepts are generated as refinements of previously 

defined concepts.  As a starting point, the most general concept is defined by the empty 

specification, a complete lack of restrictions on any properties. All artifacts satisfy this 

specification, thus, the inverse property mapping applied to the empty specification maps 

it to the entire artifact set, ′.  Throughout a design process, the empty specification is 

gradually refined by restricting the values that properties are allowed to take on. This can 

happen either by further restricting properties that have already been constrained, or by 

placing constraints on additional properties, expanding the dimensionality of the property 

space projection, , as necessary.  Throughout a design process, each new concept being 

added tends to be more and more constraints, but the total number of concepts potentially 

being considered in the artifact decision expands. 

One could illustrate this by a tree in which each node represents a concept, as is shown in 

Figure 3.4. Moving from the root of the tree to the leaves corresponds to concept 

refinement: a parent-concept is subdivided into child-concepts by adding additional 

constraints in the property space projection, which results in subsets of the parent.  The 

arrows represent specialization relations. For example, the root concept, C1, in Figure 3.4 

is subdivided into two additional concepts, C2 and C3, by specifying additional 

constraints on the type of energy conversion.  As the design process progresses, the 

number of concepts (i.e., the number of nodes in the tree) grows, while each new concept 

tends to be more and more constrained.  Note, however, that adding concept refinements 
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does not eliminate the parent concepts from consideration.  At any point in a design 

process, it is possible to backtrack through the tree and start refining concepts that had 

been previously left unexplored. 

 

 

(a) (b) 
FIGURE 3.4. CONCEPT REFINEMENT DEPICTED (A) AS SUBSETS OF A ′ 

AND (B) IN A TREE STRUCTURE 

Although concept refinement often begins with functional specification, proceeds to 

behavior specification, and ends with structural specification, it is not required for 

refinement to happen in this order. Sometimes structural details may need to be specified 

early in a design process, for instance, to meet regulations or other external requirements. 

Another example is the case of variant design of an existing product. In this case it may 

make more sense to begin with the existing structural specification and specify new 

concepts by relaxing some of the constraints on structural properties. For many cases, 

specifying these structural details early in the design process reduces uncertainty in the 

artifact outcomes, which is likely to lead to an increase in the expected NDU. 
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3.2.2.5 Concept Predictions  

To determine whether a concept is worthwhile considering, it is necessary to predict the 

outcomes resulting from selecting the concept.  When selecting the concept, the intention 

is to realize an artifact based on the concept’s specifications.  For a physical artifact, one 

could hand the concept to a manufacturer and ask him to build the corresponding artifact.  

The concept predictions should reflect the designer’s beliefs about the artifact the 

manufacturer will produce.  

DEFINITION 13 A concept prediction, , for a concept, , is a mathematical 

characterization of the designer’s beliefs about the properties of the 

artifact that will be realized when the concept  is used as a 

specification. 

The concept prediction is shown graphically in Figure 3.5. Mathematically, a concept 

prediction is represented as probability triple, ( , ℱ, ), in which the property space 

projection, ′, is the sample space; the Borel -algebra, ℱ, is the set of events defined 

over the sample space; and : ℱ → [0,1] is the probability measure which maps every 

event in ℱ onto a probability expressing the designer’s belief about whether the event 

will occur.  Specifically, for a given concept, , the probability associated with an event 

defined by a subset  of the property space projection,  expresses the designer’s belief 

that the artifact produced based on the concept specification, , will have property values 

that lie within .  Practically,  can be represented by a mixed discrete-continuous, 

multivariate cumulative distribution function.  
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FIGURE 3.5. THE CONCEPT PREDICTION 

 

This definition of a concept prediction is consistent with a subjective view of 

probabilities, characterizing a decision maker’s willingness to act (de Finetti 1964, 1974).  

Since the concept prediction will be used by the decision maker to guide the selection of 

his or her actions, an operational interpretation of probability is appropriate.  Although 

the predictions are subjective, a wise decision maker will always adopt beliefs consistent 

with objective scientific knowledge. In addition, the use of probability theory to model 

predictions requires that, to avoid irrational behavior, predictions be coherent in 

accordance with Kolmogorov’s axioms (Kolmogorov 1956).  Note that since 

deterministic values are special cases of probabilistic values, they are also covered in the 

modeling formalism for concept predictions. 

Because the predictions ultimately guide the artifact decision, designers must make 

predictions about any property that contributes to a concept decision criterion6, be it a 

                                                            
6 The term concept decision criterion is defined in the next section. 
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comprehensive measure of effectiveness, an overall performance measure, or a utility. 

Although there are an infinite number of properties over which to characterize a concept, 

not all are used to predict utility of the artifact. In most product development processes 

the utility of the artifact is measured by profit. It is unnecessary and a waste of resources 

to predict the possible outcomes of properties which do not contribute to the prediction of 

artifact utility.  

Both concepts and concept predictions are defined over the property space projection, . 

However, rather than specifying values for these properties, concept predictions capture 

the possible values of the properties the realized artifact may exhibit. Both the concepts 

and their associated predictions are often expressed in terms of the same properties, but 

concepts are expressed as subsets of property space projections while concept predictions 

are expressed as probability distributions over property space projections. The predictions 

are always uncertain and/or ambiguous and differ from the concept specifications for a 

variety of reasons. 

First, there is uncertainty related to the interpretation of the concept specification by the 

manufacturer.  Because a concept represents a possibly large set of artifacts, it is not 

known which one of these artifacts will be targeted by the manufacturer. Especially for 

concepts considered in the early phases of design, the ambiguity may be large.  

On the contrary, rather than being ambiguous, a concept definition could also have been 

overly restrictive, so that the manufacturer is unable to meet all the constraints.  Again, 

the actual values of the properties obtained if one were to manufacture an artifact based 

on such a concept specification are quite uncertain. 
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In addition, we lack perfect knowledge about physics, economics, and other disciplines, 

so that future events cannot be predicted with certainty. Similarly, manufacturing 

processes cannot be perfectly controlled, resulting in some inherent uncertainty in the 

artifacts produced.  Thus, even if the concept were to refer to a unique artifact, the 

properties of that artifact could not be predicted with certainty. It is therefore crucial to 

make a clear distinction between the specified property values of the concept and the 

predicted property values of the resulting artifact. 

It is important to note that the structure of the artifact must be also be included in the 

concept prediction. The structure of the artifact is uncertain because of the ambiguity in 

the specification and variability in manufacturing processes. In other design theories, 

(e.g.,(Gero 1990)) the uncertainty in artifact structure is not recognized even when actual 

behavior of the artifact is distinguished from expected behavior.  If one were to use a 

single representation for the artifact structure, it would be impossible to distinguish 

between the specification, the prediction and the ultimate realization of the artifact 

structure. 

Predictions may be based on both models and direct elicitations of expert opinion. Early 

in a design process when there is significant ambiguity in the concepts, it may be difficult 

to formulate models of artifact behavior that are representative for the entire concept, so 

that predictions may best be directly elicited from experts. As concepts are refined and 

more properties are specified, it becomes possible to develop better and better predictions 

of the outcomes. Better predictions can be developed because the ambiguity of the large 

set of artifacts is reduced, making it possible to develop more detailed models of the 

underlying physics, economics, etc.  
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3.2.2.6 Concept Decision Criterion 

To make a selection from several specified concepts, the concepts must be ranked with 

respect to each other. Recall that concepts are the alternatives in the artifact decision. 

These alternatives must be ranked on the basis of their predicted outcomes. In the RDT 

conceptual model, the concept decision criterion is a means for comparing concepts with 

each other on the basis of predicted outcomes.  

DEFINITION 14 A concept decision criterion is a measure of the desirability of a 

concept. Mathematically, a concept decision criterion is defined by 

an evaluation function that maps a probability triple, representing a 

concept prediction, onto the real axis: : ( , ℱ, ) → ℝ. 

Early in design, the decision criterion may be an informal, direct judgment of the 

designer, such as a ranking of concepts from best to worst. As the design process 

progresses, more formal evaluation models are usually formulated that assign a score for 

each concept based on mathematical predictions of outcomes. Examples of more formal 

evaluation models are constrained optimization (Mistree, et al. 1990, Bras, et al. 1993), 

expected utility (Thurston, et al. 1994, Hazelrigg 1998), Reliability-Constrained 

Optimization (Rao 1992), and Cost-Constrained Optimization (Rao 1992).  Depending on 

the formulation of the evaluation function, the decision rule may be to take the concept 

with the maximum decision criterion value (e.g., for utility or reliability maximization) or 

the minimum decision criterion value (e.g., for cost minimization). This mapping from a 

probability triple onto the real axis is depicted in Figure 3.6.  
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FIGURE 3.6. THE CONCEPT DECISION CRITERION DEFINED BY 
EVALUATION FUNCTION,  

The concept decision criterion is real-valued, representing, for example, expected utility, 

cost, or reliability.  In the case of a strictly constraint-based evaluation, the criterion value 

is a simple true or false, meaning that the concept either does or does not meet the 

constraints. For simplicity, it is assumed that this is expressed mathematically as a 

mapping onto either the real value 1 or the real value 0. The application of the evaluation 

function is the design action known as evaluation. 

Like concept predictions, the concept decision criteria can be updated whenever the 

evaluation function is refined and reformulated throughout a design process. As 

mentioned above, decision criteria early in a design process are often informal but direct 

judgments by the designer. As the design process progresses, the evaluation model is 

often refined as a parametric function, an objective function, or a logic statement. 

Evaluation models are often specified or assumed by design methods; for instance, robust 

design methods assume an evaluation model based on a weighted sum of mean-on-target 

and minimized variation. Although evaluation models can be reformulated during a 
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design process, it is important to note that the decision criteria are linked to the evaluation 

model used to produce them. Thus, when an evaluation model is reformulated, previously 

evaluated concepts will likely need to be re-evaluated using the new evaluation function. 

3.2.2.7 Summary of the Artifact Information State 

The descriptive model of the AIS consists of three aspects: concepts, concept predictions, 

and concept decision criteria. Each of these aspects is described in terms of properties. 

Mathematically, the AIS consists of the set of all concepts that have been specified so far, 

the set of all property predictions (one multivariate random variable per concept) that 

have been generated, and at most one decision criterion per concept. This AIS is 

continually changing during a design process as concepts are added, predictions are 

generated, and those predictions are evaluated to generate decision criteria. These 

changes in the AIS are the result of design actions, which are discussed in the next 

section. 

3.2.3 Describing Design Methods as Process Decisions 

Returning briefly to the two-level perspective of design decisions, it has been argued that 

one must consider not only the artifact decision as described in the Artifact Information 

State, but also process decisions as prescribed in design methods.  

To allow for design methods to be analyzed it is necessary to frame prescriptive design 

methods as design process decision problems. That is, the selection of a design action is 

discussed in terms of alternatives, outcomes, and preferences. In this section, the decision 

analysis of design process decisions is presented as a means to qualitatively and 

quantitatively evaluate prescriptive design methods. Decision analysis is a prescriptive 
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method for implementing utility theory for complicated decisions (Howard 1968). The 

analysis is a systematic means for decomposing a decision problem into alternatives, 

outcomes, and preferences. This decomposition enables the systematic determination of 

the most preferred decision alternative. The decision maker’s beliefs about the outcomes 

that may occur are captured as (perhaps subjective) probability distributions, and his 

preferences concerning those uncertain outcomes are modeled with a utility function.  

Decision analysis is one method for applying decision theory to a complex decision 

problem. Although the RDT conceptual model does not require the use of decision 

analysis to apply decision theory, decision analysis is used here to provide order to the 

discussion. 

3.2.3.1 Alternatives: Design Actions 

The first step in modeling a decision is to identify alternatives from which to select. In a 

design process decision problem, decision alternatives are the design actions that change 

the AIS. Alternatives also include the various ways of ending design: selecting a concept 

for manufacture or project cancellation. All other design actions can be characterized as 

one of the following three classes: synthesis, analysis, and evaluation. Synthesis is the 

generation of new concepts. Analysis is the application of knowledge and beliefs to 

predict the outcomes of concepts. Evaluation is the generation of a decision criterion to 

rank concepts.  Each action impacts the AIS in its own way. 

DEFINITION 15 A synthesis action is a design action that results in the generation 

of one or more new concepts. 
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Because concepts are defined as constraints on the allowed property values, to synthesize 

is to generate constraints. Refining a concept is the addition of constraints to additional 

properties or the reduction of the extent of existing constraints. As mentioned previously, 

refinement often proceeds hierarchically, creating a tree of concepts, as depicted in 

Figure 3.4. In this figure, a vehicle concept with an internal combustion engine can be 

refined by specifying the number of cylinders in the engine, which is the addition of a 

constraint on an additional property. Or, if the number of cylinders had previously been 

specified as a range, the concept could be refined by specifying a single value for the 

number of cylinders.   

Synthesis actions change the AIS by adding concepts to the AIS. When a concept is 

refined by adding a constraint, the new concept including the additional constraint is 

added to the AIS; the old concept is not modified or removed. Maintaining these previous 

concepts and any associated predictions and criteria supports backtracking if the newly 

synthesized concept turns out to be worse than expected. At any point in a design 

process, any of the concepts can be further refined with a synthesis action. 

DEFINITION 16 An analysis action is a design action that results in a new or 

updated concept prediction.  

Some examples of analysis actions are the expression of beliefs about uncertain events, 

such as the properties of a new material, and the composition of physics-based models to 

predict artifact performance, such as a model of the mechanical behavior of that new 

material to predict the stresses in an artifact component. Analysis actions result in 

additional prediction information that can then be incorporated in the AIS. This is done 
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by updating the random variable defined over property values corresponding to the 

current concept. From a practical perspective, this transformation usually takes place 

through a sequence of models.  

DEFINITION 17 An evaluation action is a design action that results in the 

generation or updating of a concept decision criterion.  

Evaluation has two parts: establishing the preference model (defining an evaluation 

function) and computing a concept decision criterion for a specific concept by executing 

that model. Evaluation may be informal, especially early in design, but is usually 

achieved by applying a model such as an objective function or other rule. Evaluation also 

includes the act of revising an evaluation function, a process that could also be called 

reformulation. This act amounts to stating (the same) preferences in terms of other 

attributes, as it is unlikely for a designer’s preferences themselves to change. Restating 

preferences in this manner is done to make the approximation of the designer’s true 

preferences more precise as more detail is incorporated in concept specifications and 

predictions.  

Evaluation actions change the AIS by associating a scalar, deterministic criterion value 

with a concept based on the random variable prediction. In utility theory, for example, 

this is achieved with the expectation operator. An evaluation model for a constrained 

optimization could be achieved by augmenting the objective function with a penalty 

function.  
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3.2.3.2 Outcomes of Design Actions 

Having identified the decision alternatives in a design process decision problem, the 

second step of decision analysis is to predict the outcomes of these alternatives. In the 

previous section, the changes in the AIS associated with each action (synthesis, analysis, 

and evaluation) were discussed. These changes in the AIS are only one aspect of the 

outcomes of design actions. The other important aspect concerns the consumption of 

design phase resources such as time, money, manpower, and computing cost. In 

anticipation of performing a design action, designers will not know the outcome of a 

particular analysis or synthesis, and they may not know how long an action will take or 

how much money will be spent. As a result, the outcome of a design action is uncertain, 

but it is not entirely unknown. Given the type of the design action (synthesis, analysis, or 

evaluation), designers will know the manner in which the AIS will change. For example, 

a synthesis action will result in the addition of a new concept or concepts. As for the use 

of resources, while the cost may not be known with certainty, an estimate can usually be 

obtained. When models are used for analysis and evaluation actions, designers may be 

able to predict more accurately the outcomes of these actions based on knowledge of the 

models themselves. For example, in previous work, the outcomes of simultaneous 

analysis and evaluation actions were modeled and computed using Bayesian updating 

(Thompson, et al. in press). 

Even in the earliest, most informal stages of design, actions are undertaken with at least 

some beliefs about what the outcomes may be. These beliefs are what lead a designer to 

choose one design action over another, even if the beliefs are not formally captured and 

the decision process is ad hoc. Often, the motivation for a particular design action may 
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simply be to enable another design action, such as synthesizing a new concept in order to 

be able to analyze and evaluate it. While it is true that designers have beliefs about these 

outcomes, more research is needed to determine how best to elicit and structure these 

beliefs mathematically. 

3.2.3.3 Preferences about Outcomes of Design Actions 

The third step of decision analysis is to apply preferences to the predicted outcomes. As 

mentioned in the previous section, the outcomes of design actions come from two 

sources: consumption of design phase resources and changing the AIS. Designers have 

preferences about both of these aspects. Obviously, designers generally prefer lower 

consumption of resources, but there is often a tradeoff between the various types of 

resources, such as time and manpower. Designer preferences about changing the AIS are 

less intuitive. As mentioned earlier, designers generally do not have direct preferences 

about a particular state of information. Rather, designers care about the outcome of the 

artifact decision. Specifically, they prefer to maximize the benefit to be gained by 

producing an artifact. Therefore, preferences about the state of information of the artifact 

decision come directly from the artifact decision itself, assuming one were to stop 

designing and choose the best concept immediately. The utility of the state of information 

is thus the maximum of the utilities of the synthesized concepts. Although it may seem 

that few concepts have been mapped through predictions to the criterion in the early 

stages of design, designers often have informally analyzed and evaluated a concept even 

at the earliest stages. This informal assessment forms the basis for decisions about design 

actions early in a design process. 
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Because the preferences with respect to the product decision come from the evaluation of 

artifact concepts, designers do not realize the benefits of newly synthesized or analyzed 

concepts until they have been evaluated. This may make synthesis and analysis actions 

look bad initially because they seem to have only a cost and no benefit. The benefit is 

apparent when evaluating the new concepts, which often has a very small cost itself. 

Sometimes designers may cease analysis of a concept after one bad result without 

formally evaluating the concept. This is again an instance of an informal evaluation on 

the basis of a single attribute. 

These two dimensions (resource consumption and artifact utility) comprise the Net 

Design Utility. Because the artifact utility is usually profit-based, it is convenient to 

combine resource consumption and artifact utility on the basis of their effect on the 

profit. This is not required, however. In accordance with decision theory, they should be 

combined based on the fundamental objective of the project decision-maker. 

3.2.3.4 Evaluating and Comparing Design Methods 

Design methods can be viewed as algorithms for making design process decisions; they 

prescribe decision rules for determining design actions or sequences of actions. Decision 

analysis can be used to evaluate these decision rules by calculation of the expected NDU. 

Methods for computing expected utility include forward simulation and backward 

induction. Both methods amount to averaging the utilities of all the possible outcomes for 

a particular alternative. This is usually achieved through a numerical simulation of 

outcomes and provides a quantitative measure of the quality of one design action over 

another. Although analytical solutions can sometimes be derived for problems with 

mathematically well-defined outcomes and preferences, analytically solving for expected 
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NDU is not possible in a general sense. Though quantitative comparison of decision 

alternatives is only possible for very specific problems, decision analysis does enable 

qualitative evaluation of design methods in a more general sense through the 

decomposition of alternatives, outcomes, and preferences. 

3.3 CHARACTERISTICS OF GOOD DESIGN METHODS 

In the previous sections, RDT was presented as the application of normative decision 

theory to decisions about design processes with the explicit inclusion of design process 

costs. In presenting this normative theory, it is acknowledged that approximations and 

assumptions are necessary in order to arrive at practical design methods, but these 

practical methods can be evaluated by comparison to the normative ideal of rationality. 

Combining the normative perspective of RDT with the decision-theory-inspired RDT 

conceptual model, it is now possible to arrive at some characteristics that good design 

methods should exhibit.  A “good design method,” is one that approaches RDT’s 

normative ideal of maximizing expected NDU. 

 

The method is a close approximation of rational decision making applied to design 

process decisions. Since RDT proposes to evaluate prescriptive methods based on 

expected NDU, any method that does not approximate normative decision theory will not 

maximize expected NDU. This does not mean that normative decision theory must be 

explicitly applied in the design method. In fact, given the significant resources necessary 

to implement normative decision theory for even small decision problems, it is unlikely 

that an application of normative decision theory would be preferred by a designer. 

Instead, heuristics or simple decision rules can be used, which will be much more 
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practical than implementing normative decision theory for each design action. The 

outcome of the heuristics or decision rules, however, should be as close as possible to the 

outcome if normative decision theory had been applied with appropriate beliefs and 

preferences. 

Heuristics to guide a design process towards maximum expected NDU.  Achieving the 

ideal of maximizing expected NDU requires negotiating a difficult trade-off.  It has been 

recognized here that making decisions about the artifact requires resources that should be 

taken into account in the assessment of the NDU.  Similarly, making decisions about a 

design process (i.e., applying a design method) also requires resources.  These resources 

again, should be accounted for in the NDU.  In (Thompson, et al. in press), the authors 

explored the selection of analysis actions in a design process in which two artifact 

alternatives and two engineering analyses were considered — a simple example to 

illustrate the use of Value of Information as a heuristic for guiding the selection of an 

appropriate analysis model for design.  From this simple example, it is clear that 

performing a complete analysis to determine which of all the possible design actions 

maximizes expected NDU at each step in a design process will require far more resources 

than is justifiable.  Therefore, a good design method will need to be based on heuristics to 

guide the selection of appropriate design actions.   

Design methods such as the systematic design method of Pahl and Beitz (Pahl, et al. 

1996) suggest that design proceeds through phases of conceptual, embodiment, and 

detailed design, each with their own set of design actions that should be considered.  

Although such heuristic guidance is useful, it is qualitative and rather vague.  The phases 

are not precisely delineated and do not translate into specific design actions.  Such design 
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methods provide heuristics in terms of the order in which high-level design actions 

should be considered (e.g., which types of constraints to add in order to refine concepts, 

or which types of analyses to perform), but no quantitative guidance for how many 

alternative concepts to consider or how detailed an analysis to perform.  Nor is it made 

clear in quantitative terms how much effort should be allocated to each phase. 

A key challenge that will need to be addressed in future work is to define more precise 

and quantitative heuristics for particular classes of design problems to help identify which 

design actions to use at each step in a design process.  The role of RDT is then to provide 

a validation framework in which the quality of the heuristics can be assessed. 

A stopping criterion based on NDU.  In previous work on design theory, it was 

suggested that design should end when a fully specified artifact has been reached 

(Yoshikawa 1981, Tomiyama, et al. 1987, Gero 1990).  From the discussion on properties 

and concepts in Section 3.2.2, it is clear that it is impossible to fully specify an artifact 

because an artifact can be characterized by an infinite number of properties.  It is 

therefore meaningless to suggest that design should end when a fully specified artifact 

has been reached.  Instead, RDT suggests that design should end when the maximum 

expected NDU has been reached, or in other words, when there are no further design 

actions that increase the expected NDU.  This point can be reached for several different 

reasons. 

Commonly, as a design process progresses, one reaches a point where the artifact has 

been specified to such a level of detail and where its performance has been predicted with 
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such a level of confidence that any further concept refinement or analysis adds little value 

— less value than the cost of refinement of analysis.  At that point, design should end. 

Another common scenario is one in which the utility of the artifact decreases as time 

progresses due to loss of market share or competitive pressures on price (Lee, et al. 

2010a).  Again, one reaches a point where a delay in the product launch would reduce the 

artifact’s utility more than the increase resulting from further design actions.  Even 

though the artifact may be far from perfect, it would be wise to discontinue further design 

actions and launch the product.  Design should end. 

Design should also end when the expected NDU of all currently considered concepts is 

less than the expected NDU of cancelling the project.  Such a point could be reached 

when analyses or tests reveal that the promising concepts that were considered previously 

do not quite live up to the expectations or are too risky. 

Finally, design could also end when a designer at an original equipment manufacturer 

(OEM) has specified all the subsystems in sufficient detail that the he or she is confident 

that suppliers will deliver implementations of the specified subsystems that, when 

integrated, produce an acceptable artifact.  If further refinement of the subsystem 

specifications costs additional resources or unnecessarily increases the cost of the 

subsystem itself beyond the benefit obtained from the artifacts performance 

improvement, then design should end.   

It is important to recognize that, in all these scenarios, design ends when a balance 

between process and artifact utility is reached.  Each time, the scenario can be explained 

in terms of maximization of expected NDU: Design should end when the benefit of each 
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possible remaining design activity in terms of improving the artifact no longer outweighs 

the negative (cost) consequences of the activity. 

An explicit consideration of uncertainty. Uncertainty in the predictions of the 

performance of design concepts is one of the factors that make design challenging.  

Comparing different design concepts and choosing appropriate design actions is difficult 

when the decision maker does not know in advance what the consequences of a particular 

choice will be.  In the RDT conceptual model, uncertainty is accounted for in the concept 

predictions in terms of random variables.  Maximizing expected NDU is then an 

expression of the decision maker’s preferences that takes into account both uncertainty 

and risk attitude. 

However, in practical design methods, using random variables and assessing utility 

functions requires resources.  This use of resources needs to be considered in the NDU.  

For instance, when predicting the overall utility of a particular artifact, one may use 

uncertainty quantification techniques such as Monte-Carlo simulation (Fishman 1996) or 

polynomial chaos expansion (Ghanem, et al. 1990). The accuracy of such uncertainty 

quantification techniques depends on the number of samples or the order of the 

approximation polynomials.  As the number of samples or the polynomial order 

increases, the accuracy improves but the required computational resources increase also.  

Depending on the context of the particular design problem, an appropriate uncertainty 

representation should be chosen, a representation that balances the cost of computation 

with the cost of under- or over-estimating the uncertainty.  The maximization of expected 

NDU can be used to guide the selection of an appropriate representation.  In future work, 

it would be interesting to create computational experiments in which design methods with 
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different uncertainty representations are compared, taking into account not only the 

benefits of more explicit uncertainty representation but also the costs of uncertainty 

quantification.  Uncertainty representations to consider could range from deterministic 

models with safety factors, to models based on first and second distribution moments, to 

general Monte-Carlo simulation, or even extensions of probability theory such as 

Dempster-Shafer theory (Shafer 1976) or imprecise probabilities (Walley 1991).  RDT 

provides a framework for comparing the quality of design methods that use these 

uncertainty representations.  According to RDT, the criterion for comparison should be 

the maximization of expected NDU. 

An explicit consideration of risk. The discussion on uncertainty is also relevant to the 

consideration of risk.  How best to represent uncertainty is determined in part by the 

consequences of the uncertain events and hence the risk involved.  In the design 

literature, risk has been considered primarily from the perspective of the artifact.  In (Lee, 

et al. 2010b), an overview is provided of how different design methods account for 

uncertainty and risk.  Robust Design (Taguchi 1986, Taguchi, et al. 1990), Risk-Informed 

Design (Tumer, et al. 2005), and Reliability-Based Design (Rao 1992) are reviewed and 

interpreted in the context of Utility Theory.  The authors demonstrate how each of these 

methods has an equivalent representation in terms of maximizing expected utility.   

However, this consideration of risk from the artifact’s perspective is too limiting.  One 

must also consider the mitigation of risk through the use of design actions, or, most 

generally, by making a trade-off between artifact and process considerations.  For 

example, when designing a car, it may be difficult to anticipate all the vibration pathways 

from the engine to the other parts of the car.  Although resonances could be avoided once 



   

66 
 

the masses and stiffnesses are known, this information is typically unavailable at the early 

stage of design.  To mitigate the risk of having to modify the car design when resonances 

are discovered in final testing, one could either invest in additional analysis process steps 

to predict the vibration parameters earlier in the design process (i.e., reduce the 

uncertainty), or one could add vibration isolation to the artifact (i.e., reduce the 

consequences).  To make a good risk mitigation decision, one should consider both 

options: reducing the uncertainty by adding process steps for additional analysis or 

testing, and reducing the impact of the uncertainty by making the artifact more robust to 

uncertainty.  Making trade-offs between these two options requires the consideration of 

NDU in which both process and artifact consequences are considered. 

Distinction between specifications and predictions.  Design information about the 

artifact is formulated in terms of properties.  In the RDT conceptual model, this is 

reflected in the Artifact Information State in which properties appear in both the concept 

specifications and in the concept predictions.  However, in design practice (and in other 

design theories), such a distinction is not always made.  For instance, in Gero’s work on 

design prototypes, a distinction is made between expected behavior (Be) and actual 

behavior of the structure (Bs)(Gero 1990); in RDT, expected behavior would correspond 

to specified behavior properties; while actual behavior of the structure is not explicitly 

considered in RDT because it cannot be known — it can only be predicted.  The 

uncertainty that exists in this prediction plays a crucial role in design and should not be 

neglected.  In addition, Gero considers only one representation of structure (S).  In RDT, 

structure is represented in terms of properties and is therefore not substantially different 
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from behavior.  Structure also should be considered in terms of both concept specification 

and concept prediction. 

If a design method is to take uncertainty and risk into account, then the predicted property 

values need to be considered rather than only the specified values.  Concepts are 

alternatives considered while exploring the design space.  When specifying a concept, 

there is no guarantee that the specified properties are actually realizable.  It may well be 

that one is exploring a dead-end in the concept tree and must backtrack.  From a risk 

management perspective, the uncertainty in the concept predictions must be taken into 

account when deciding which branches in the concept tree to explore next. 

Interpretation of requirements as concept specifications only.  In engineering design 

and especially in systems engineering, requirements are often used in a variety of 

contexts, and their meaning is often vague.  It is therefore useful to clarify how 

requirements are interpreted in RDT. In the process, it is argued that requirements should 

be interpreted only as concept specifications. 

Requirements as contractual agreements — consistent with RDT.  When an OEM 

specifies subsystems to be produced by a supplier, it provides the supplier with a 

requirements document in which the constraints on all relevant properties of the 

subsystem are specified.  This is consistent with the notion of a concept specification in 

the RDT conceptual model.  Ideally, the OEM specifies the key characteristics of the 

subsystem that affect the performance and utility of the overall system (the “whats”), 

without specifying the implementation details for how these key characteristics are 
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achieved (the “hows”). Assuming the OEM has confidence in its supplier, the predicted 

values of the subsystem properties should be within the specified property constraints. 

Derived requirements as expressions of previous design choices — consistent with RDT.  

Throughout a design process, requirements are added.  Often, implementation choices are 

expressed in terms of derived requirements.  This is consistent with concept 

specifications in terms of property constraints in the RDT conceptual model.  The derived 

requirements limit the types of system alternatives that are being considered as solutions 

— they refine or subset the parent concept.  However, it is important to recognize that 

derived requirements only reflect the concept that is currently being explored.  If it turns 

out that the current concept is infeasible or undesirable, then the “requirements” may 

need to be modified — they are thus not “required” in a strict sense. 

Requirements as expressions of preferences — not consistent with RDT.  Requirements 

are often interpreted as preferences. However, in RDT, preferences are expressed as 

relationships between concept predictions and ultimately as a concept decision criterion. 

Preferences are thus expressed as a preference or utility function, not in terms of 

constraints.  The discrepancy is due in part to the confusion as to whose preferences are 

being represented.  One could argue that requirements represent the preferences of the 

customer, while in RDT, only the preferences of the designer are considered.  These two 

are not necessarily aligned.  Clearly, if the customer provides a requirements document as 

part of a contractual agreement and will not pay for the artifact unless all the 

requirements are met, then it is in the best interest of the designer to produce an artifact 

that meets the requirements; if not, the designer will not get paid, resulting in a utility that 

is clearly less than the utility of not taking on the design project in the first place.  In this 
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case, the designer should start from a concept specification (to be further refined in the 

rest of the design process) that includes all the customer’s requirements; any artifact that 

does not map onto this concept will not result in payment by the customer.  However, 

within the set of solutions that do meet all the requirements, the designer may have 

preferences that are different from the customer’s.  Similarly, even if a solution that 

meets all the requirements exists, then a designer may refuse to take on the design project 

because it does not fit his or her preferences — the project has an expected utility that is 

less than the expected utility of not taking on the design project. 

Requirements as problem definitions — not consistent with RDT.  Continuing the 

discussion of the previous paragraph, one could interpret the requirements specified by 

the customer as the design problem definition.  But this is not consistent with RDT.  The 

problem definition in RDT is always the same: “How to maximize expected NDU?” It 

just happens that based on the customer’s requirements, the designer is compelled to look 

for NDU maximization opportunities within the scope of the concepts that reflect the 

customer’s requirements.  In the case of an in-house design effort, one may also start 

from an initial set of requirements, for instance, that result from a market analysis in 

which new product opportunities are identified.  However, it is clear then that these 

requirements are not really a problem definition, but really a first concept to be 

considered in the search for a solution that maximizes expected NDU.  They are not set in 

stone.  If it turns out that further exploration and analysis reveals that a better opportunity 

for maximizing expected NDU can be found by deviating from the initial requirements, 

then one should not hesitate to do so.  For instance, an automotive company may create a 

specification for the new car, but in the process of exploring different more detailed 
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concepts for the car, they discover that there is a better opportunity for mobility platform 

other than a car (e.g., a motorcycle or a personal transporter like a Segway), then the 

company should not hesitate to pursue this option. 

To summarize, in a good design method, requirements should be clearly distinguished 

from preferences.  They should be interpreted as initial steps towards a solution, i.e., the 

specification of concepts that are being explored in order to maximize expected NDU. 

3.4 REVISITING THE RELATED WORK 

Having presented a new theory of design, it is useful to look back on the existing 

theories. Here, each theory is revisited and reinterpreted in the context of RDT. 

3.4.1 Simon’s Sciences of the Artificial 

In his Sciences of the Artificial, Simon claims that designers must seek satisficing 

solutions because of bounded rationality (Simon 1996). Bounded rationality refers to the 

limited processing power of the human mind or computer surrogate. Because of this 

limited processing power, the time required to search a large space for the optimal 

solution is quite large. Satisficing solutions, then, are solutions which are not optimal, but 

good enough, because optimal solutions would take too long to find. In RDT, the time 

and other associated costs with searching for an optimal solution are included in the 

formulation of the design process decision. These are the design phase resources that are 

consumed with each design action. In addition, the goal in RDT is not the optimal artifact 

utility but the optimal net overall utility, which combines the utility of the artifact and the 

utility of the process. This makes explicit the tradeoff between the cost of search and the 

utility of the chosen artifact. 
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Besides the ideas of bounded rationality and satisficing solutions, Simon also suggests 

that the topics of utility theory, statistical decision theory, and optimization techniques be 

included in the curriculum of design. These fields are foundational to RDT.  

3.4.2 General Design Theory 

In General Design Theory, designing is defined as a mapping from the function space to 

the attribute space through the metamodel space (Yoshikawa 1981, Tomiyama, et al. 

1987). Because of uncertainty referred to in GDT as the “finiteness and imperfections of 

the real knowledge”, the design solution is found in the metamodel space rather than the 

attribute space, so the solution is actually an approximation of a solution. In Rational 

Design Theory, the expression of uncertainty in this mapping is made explicit with the 

inclusion of the concept prediction in the AIS. In addition, concepts can be specified in 

terms of behavior and structure in addition to specification in terms of function alone as 

in GDT. As mentioned previously, this is a departure from the traditional notions of a 

problem definition defined by functional requirements and solution described by 

structure. This change in perspective reflects the fact that the problem definition in all 

design problems is to maximize expected NDU. 

Reich argued that no realistic domains have the topological structure assumed by GDT, 

which, along with other limitations, makes the conclusions from GDT inapplicable to 

practical design problems (Reich 1995). A primary limitation of the topological structure 

assumed by GDT is the reliance on Axiomatic Set Theory to describe concepts in both 

the function and attribute spaces. This is problematic because attributes are inherently 

uncertain, so that set operations do not apply in the attribute space. However, set 

operations can be used to describe concepts effectively. In Rational Design Theory, 
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concepts are specified as a set of constraints, which designates a subset of the property 

space projection, ′. Predicted attributes of those concepts are captured as random 

variables. This enables the uncertainty in predicted attributes to be formalized 

mathematically without a reliance on axiomatic set theory. 

3.4.3 Function-Behavior-State 

The Function-Behavior-State (FBS) diagram is a model of entities that separates 

subjective function from objective behavior and state (Umeda, et al. 1990). Unlike the 

AIS in RDT, the FBS diagram does not explicitly characterize the uncertainty in the 

predicted outcomes of concepts. Umeda, Tomiyama, and Yoshikawa argue that design 

using the FBS diagram should proceed by first specifying functions and then connecting 

these functions to behaviors and states, but no justification is provided for this method. 

Their hypothesis that design should proceed in such a manner can be evaluated using 

RDT. 

3.4.4 Gero’s Design Prototypes 

Gero argues that design is a process of transforming function into the design description 

through a series of intermediate representations, including the expected behavior, the 

actual behavior of the structure, and the structure itself (Gero 1990). The transformations 

between these representations are the design actions of formulation, synthesis, analysis, 

evaluation, reformulation, and production of the design description. Gero’s expected 

behavior is derived from the function in the action of formulation. The behavior of the 

structure is derived from the structure in the action of analysis. The expected behavior 

and the behavior of the structure are compared in the action of evaluation to determine if 

the given structure meets the expected behavior. New structures are synthesized based on 



   

73 
 

the comparison of the expected and actual behavior. Conversely, new expected behaviors 

can be generated in the action of reformulation also by comparing expected and actual 

behaviors.  

The fundamental difference between Gero’s work and RDT is the problem definition. In 

RDT, the objective is to maximize expected NDU, and concepts are specified in terms of 

function, structure and behavior as suggested solutions to meet this objective. In Gero’s 

work, the function and expected behavior are interpreted as a statement of the problem, 

while the structure is a statement of the solution to the problem. A difference between the 

expected behavior and the behavior of the structure is recognized, but as RDT 

demonstrates, there should also be a distinction between the expected structure and the 

actual structure.   

Each of Gero’s representations and design actions has a counterpart in the RDT 

conceptual model, although the representations and actions are organized differently. 

Analysis is the same action in the RDT conceptual model as in Gero’s work, the 

transformation from structure to actual behavior of the structure; however, in the RDT 

conceptual model analysis transforms specified function, behavior, and structure into 

predicted function, behavior, and structure, not only specified structure into predicted 

behavior. Thus, Gero’s structure is contained in the concept specification in the RDT 

conceptual model, and Gero’s actual behavior is represented in the prediction in the RDT 

conceptual model. Gero’s function and expected behavior are also represented in the 

concept specification in the RDT conceptual model. As mentioned above, Gero’s work 

lacks the distinction between specified and actual function and structure, which are 

captured in the concept prediction in the RDT conceptual model. Gero’s formulation and 
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reformulation actions are the generation of expected behavior either directly from the 

function (formulation) or through analysis and evaluation (reformulation). In the RDT 

conceptual model this is equivalent to the formulation of the evaluation function which 

generates a concept decision criterion from a concept prediction. It is essentially a 

statement of what constitutes a preferred artifact concept.  The comparison of the 

expected behavior to the actual behavior is evaluation. This is the same action in the RDT 

conceptual model, but is not necessarily achieved by comparison of desired to actual 

behavior alone. In the RDT conceptual model, evaluation can be performed on the basis 

of function, structure, and behavior.  

One action mentioned by Gero not explicitly discussed in the RDT conceptual model is 

the generation of the design description. The design is characterized in the concept 

specification, and the specification is expressed as a set of constraints on property values. 

While this characterizes the concept, it may not necessarily be expressed in the form of 

engineering drawings or CAD files. Drawings and CAD files are tools which reduce the 

ambiguity in the understanding of the concept specification between the designer and the 

manufacturer. The generation of such documents is a synthesis action which may or may 

not be undertaken by the designer during a design process. The decision to undertake this 

action must depend on the degree of reduction in uncertainty afforded by the generation 

of the documents and the cost of that generation.  

Gero builds on his model of design processes to propose design prototypes which are 

essentially reusable models of elements of the design representation. Similarly, in the 

context of RDT, aspects of the AIS and the models used to generate portions of that AIS 

can be reused from one project to another to avoid rework.  
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3.4.5 Decision-Based Design 

As mentioned in Section 2.1.5, Decision-Based Design is a collection of methods 

inspired by the notion that design is a series of decisions. This realization enables the use 

of decision theory as a foundational theory for design. RDT builds on previous work (e.g. 

(Hazelrigg 1996, Marston, et al. 1997, Hazelrigg 1998, Krishnamurty 2006, Lewis, et al. 

2006b)) by restating the design problem as a series of decisions about the design process. 

By changing the context in this manner, tradeoffs can be made between the cost and 

benefit of the various design actions through the maximization of expected NDU.  

Decision theory also inspires the structure of the AIS in the RDT conceptual model as 

consisting of three aspects: concepts, concept predictions, and concept decision criteria. 

These aspects correspond to the decision elements of alternatives, outcomes, and 

preferences, but with respect to the artifact decision rather than the design process 

decision. This structure provides a means to organize the information generated in design, 

which in turn enables comparison of design methods. 

3.4.6 Coupled Design Process 

Braha and Reich describe design as a process of translating product requirements in the 

function space into a design description in the structure space (Braha, et al. 2003). Their 

work assumes a method that starts by stating desired outcomes in the context of 

functional properties. In RDT concepts can be specified in terms of function, but it is not 

required to do so. Desired artifact outcomes are expressed in the evaluation action that 

translates a concept’s prediction into its criterion. In addition, Braha and Reich do not 

explicitly model uncertainty in their framework. They discuss approximate closures as a 
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means for explaining design failures due to uncertainty, whereas in RDT uncertainty is 

explicitly accounted for in the prediction associated with each concept.  

3.4.7 Concept-Knowledge theory 

Concept-Knowledge theory is proposed as a model of design which accounts for 

creativity and innovation (Hatchuel, et al. 2009). The goal is to translate a concept, which 

is initially an undecidable proposition, into knowledge, a decidable proposition. This 

involves both the mapping between requirements and solutions and the generation of new 

concepts. The RDT conceptual model captures the generation of new concepts in the 

synthesis design action, which adds new concepts to the AIS. However, in RDT, the 

desired outcomes of the artifact are expressed in an evaluation model, which transforms a 

concept prediction into a concept decision criterion. This transformation can be stated in 

terms of requirements formulated as property constraints, but it is not necessary to 

express desired outcomes in this manner. Other methods for expressing desired artifact 

outcomes include utility functions and objective functions. Because requirements are not 

necessary, the notion of a design solution which meets requirements is not part of RDT. 

Design does not end when a solution is found; rather, design should end when the cost of 

all possible design actions outweighs the potential benefits of those actions. 

3.5 CRITICAL REVIEW OF RDT 

To validate the proposed theory, RDT is evaluated in the following section with respect 

to the requirements and research questions set forth in Chapter 1. Thereafter, the 

strengths and weakness of RDT are discussed. 
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3.5.1 Meeting the Requirements  

In Chapter 1, seven requirements were identified for an explanatory theory of design. In 

Section 2.1 existing theories were reviewed and it was found that none of the existing 

theories of design simultaneously meet all seven requirements. Decision theory was 

reviewed in Section 2.1.8 and the decision analysis of design process decision was 

identified as a means for simultaneously satisfying all requirements. These findings and 

the requirements are repeated in Table 3.2. Having presented RDT in this chapter, the 

requirements are revisited here to establish whether or not they have been met by this 

new theory. 

TABLE 3.2. REQUIREMENTS ANALYSIS OF EXISTING WORK 
AND DECISION ANALYSIS OF DESIGN PROCESS DECISIONS 

Requirement 
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Includes the generation and 
revision of specifications   x  x  x 

Includes the creative process 
of generating new concepts      x x 

Explicitly includes 
uncertainty    x   x 

No limit on the expression 
of preferences and beliefs    x   x 

Incorporates the allocation 
of design phase resources as 
outcomes of design actions       x 

Recognizes a tradeoff 
between product and 
process       x 

Provides a means of 
evaluating design methods 
relative to one another       x 
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The first and second requirements are that the theory should include the generation and 

revision of specifications and the creative process of generating new concepts. In RDT 

the creative process of generating new concepts is captured in the design action synthesis. 

This action results in the addition of new concepts to the AIS and comes at the cost of 

design phase resources. The action synthesis is a design process decision alternative that 

can be applied at any point in the design process. Whether or not synthesis is a good 

action to take at any point in time can be evaluated using decision analysis.  

The generation and revision of specifications is interpreted to refer to the generation and 

revision of evaluation functions. This is also enabled by RDT. As discussed in Section 

3.2.3.1, the action evaluation includes both the formulation and application of an 

evaluation function to generate a concept decision criterion from a concept prediction. 

Like synthesis, this action can be applied at any point in a design process, as long as there 

is a concept prediction to be evaluated.  

The third requirement is that the theory should explicitly include uncertainty. Decision-

based design was the only body of work in the review that met this requirement. Since 

RDT is also based on decision theory, RDT includes the explicit characterization of 

uncertainty, but unlike traditional DBD, RDT includes uncertainty in both the prediction 

of the concept and the prediction of outcomes associated with design actions. Thus, RDT 

includes the explicit characterization of uncertainty in the artifact and the design process. 

This characterization of uncertainty enables risk to be considered throughout the design 

process. 
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In a similar vein, DBD was the only body of work in the review that met the requirement 

of placing no limits on the expression of preferences and beliefs. Again RDT inherits this 

benefit of decision theory. Unlike methods which prescribe forms for uncertain inputs 

and objective functions, the structure of the AIS places no restriction on the expression of 

beliefs and preferences in the artifact decision. Likewise, no restrictions are placed on the 

expression of beliefs and preferences with respect to the process decision.  

The fifth requirement is that the theory should include the allocation of design phase 

resources as outcomes of design actions. This requirement was inspired by Howard’s 

definition of a decision. As discussed in Section 3.2.3.2, there are two aspects to the 

outcomes of design actions: changes in the AIS and the consumption of design phase 

resources. In RDT, these outcomes are included in the decision analysis of design process 

decisions.  

Building on the fifth requirement, the sixth requirement is that the theory should 

recognize a tradeoff between the artifact and the design process. Meeting the fifth 

requirement is one aspect of this requirement as well, because the design phase resource 

consumption must be included in the decision formulation in order to consider the 

tradeoff. To fully recognize the tradeoff, the theory must also include the benefits to be 

gained from producing the design artifact. In RDT, these two aspects comprise the Net 

Design Utility. By including both of these aspects in the formulation of the NDU, RDT 

recognizes this tradeoff. 

The last requirement is that the theory should provide a means for evaluating design 

methods relative to one another. This requirement is met in RDT by the analysis of 



   

80 
 

design process decisions. Since a design method prescribes a way to make design process 

decisions, analyzing those decisions enables both the comparison of design methods and 

the evaluation of those methods with respect to the rational ideal. The qualitative 

comparison is enabled by the decomposition of the decision itself, which allows 

individual elements of each decision problem to be compared to one another. The 

quantitative comparison is achieved by solving for the alternative with the highest 

expected NDU. 

Having demonstrated that RDT meets all the requirements identified in Chapter 1, the 

next step is to revisit the research questions. This is done in the next section. 

3.5.2 Answering the Research Questions 

The primary research question addressed in this thesis is “what theoretical foundation of 

design has explanatory power and enables quantitative evaluation of design processes”. 

The primary hypothesis is that RDT meets these qualifications. This primary hypothesis 

is decomposed into two secondary research questions addressing the qualitative and 

quantitative comparison abilities of RDT.  

The qualitative comparison abilities of RDT are enabled by the the systematic 

decomposition of the design process decision into alternatives, outcomes, and 

preferences. In the RDT conceptual model, the artifact decision is decomposed into 

concepts, concept predictions, and concept decision criteria. These correspond to the 

alternatives, outcomes, and preferences of the artifact decision, and are captured in the 

Artifact Information State. The alternatives in the process decision are the design actions 

of synthesis, analysis, and evaluation. The outcomes of these alternatives are updated 
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information about the artifact decision and the cost associated with performing the design 

action. The preferences with respect to these outcomes constitute the Net Design Utility. 

Providing this structured means for representing a design process decision allows for the 

comparison of design processes and design methods on the basis of their elements. For 

example, by placing methods such as robust design and reliability-based design in the 

context of RDT, one sees that although both are methods for design under uncertainty, 

the two strategies differ in the structure of the evaluation function for design concepts and 

may differ in the representation of predictions of design outcomes. A similar analysis, 

although conducted in the context of utility theory rather than in the context of RDT, was 

conducted by Lee and coauthors (Lee, et al. 2010b). Specifically, robust design assumes 

an evaluation function of a weighted sum of the mean and variance of key performance 

metrics. Reliability-based design, on the other hand can take one of two forms: cost-

constrained reliability maximization or reliability-constrained cost minimization. Both of 

these forms of the evaluation function are distinctly different from a weighted sum of the 

mean and variance of performance metrics. 

The quantitative comparison abilities RDT are enabled by the quantitative analysis of 

design process decisions. Given two or more very specific sequences of design actions, 

one can compute the sequence with the maximum expected NDU. This capability is 

demonstrated in more detail in Chapter 5. Returning to the robust design versus 

reliability-based design example above, these two methods can be quantitatively 

evaluated for a specific designer’s beliefs and preferences concerning a particular design 

scenario. Such a quantitative analysis would indicate whether robust design or reliability-

based design more closely approximate rational behavior for that designer. 
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3.5.3 Strengths and Weaknesses of RDT 

Although RDT has been shown to meet the requirements and satisfactorily answer the 

research questions, there are definitely strengths and weaknesses of the theory. The 

strengths of the theory stem from meeting the requirements. Specifically, RDT is an 

improvement over existing design theories because it enables the comparison of design 

methods while recognizing tradeoffs between the process and the artifact and while 

explicitly accounting for uncertainty. The foundation of decision theory enables RDT to 

be capable of representing any sequence of design actions and any AIS without limitation 

of the expression of preferences or beliefs. This means that RDT can be used to analyze 

any design process, regardless of whether the process is successful in practice. 

However, these strengths come at a price. While RDT is sufficiently general to apply to 

any design method, it may not be immediately obvious how to allocate a particular 

activity to an action in RDT or how to categorize pieces of information in the AIS. 

Representing a design process in the context of RDT requires both knowledge of the 

design process or method and a working knowledge of RDT and decision theory.   

Furthermore, the application of decision analysis to design process decisions can be a 

cumbersome process. Quantitative comparison especially requires often significant 

computational resources to achieve results for even a small problem. I expect that this can 

be improved in the future with more practice applying decision analysis to design process 

decisions and with improvements in computational tools for computing expected utilities 

of design actions.   



   

83 
 

3.6 THESIS ROADMAP 

In this chapter Rational Design Theory was presented and evaluated with respect to the 

requirements and research questions. It was found that RDT meets the requirements and 

also provides the answer to the primary research question. In the next chapter, a review of 

the systematic design method of Pahl and Beitz is presented to demonstrate the 

qualitative evaluation capabilities of RDT. Thereafter, in Chapter 5, two example 

problems are presented to demonstrate the quantitative comparison of design methods 

enabled by RDT.  

  



   

84 
 

CHAPTER 4: A REVIEW OF THE SYSTEMATIC DESIGN METHOD OF 
PAHL AND BEITZ IN THE CONTEXT OF RDT 

In Engineering Design: A Systematic Approach, Gerhard Pahl and Wolfgang Beitz 

present a four phase approach to design garnered from extensive study of existing design 

practice (Pahl, et al. 1996). Because of its basis in design practice, and the extensive use 

of the work as a text for design education, the approach, which will from now on be 

referred to simply as Pahl and Beitz (P&B) has become a standard method in design 

research. As such, the interpretation and description of P&B in the context of RDT is 

useful both to build confidence in the comprehensiveness of RDT as a design theory and 

to further explain RDT to readers who are already familiar with P&B. Thus, in this 

chapter, the phases and activities of P&B will be discussed in the context of RDT. First, 

an overview of P&B is provided including presentation of keywords in the P&B 

methodology and explanation of a diagram of the P&B method in Section 4.1. Next, the 

tasks of P&B are discussed in the context of the RDT conceptual model in Section 4.2. In 

this section, each task of P&B is represented as a change or changes to the Artifact 

Information State. Finally, a discussion is presented in Section 4.3 in which the 

characteristics of good design methods identified in Section 3.3 are discussed relative to 

P&B.   

4.1 OVERVIEW OF THE SYSTEMATIC DESIGN METHOD PROPOSED BY 
PAHL AND BEITZ 

In P&B, design activities are divided into four phases: Planning and Clarifying the 

Task, Conceptual Design, Embodiment Design, and Detail Design. The input to the 

approach is the Task, which is determined by the market, company, and economy. 



   

85 
 

Proceeding through the four phases of design leads to the identification of the design 

solution. In this section, an overview of the method is presented. Keywords in the P&B 

method are introduced in Section 4.1.1. Thereafter, a diagram of the method is presented 

and each phase of the method is discussed in detail in Section 4.1.2. A brief commentary 

on the method concludes this section in Section 4.1.3. 

4.1.1 Keywords in P&B 

P&B makes use of specialized terminology for key design activities and milestones. 

Before proceeding through a description of the whole method, these keywords are 

introduced for clarification. Throughout this chapter, keywords from P&B are denoted by 

boldface type, while keywords in RDT are denoted by italics. 

• Principal Solution: the outcome of the conceptual design phase and the input to 

the embodiment design phase; a preliminary solution which may take the form of 

a function structure, circuit diagram, flow chart, line sketch, or scale drawing. 

• Concept Variants: proposed design solutions in the conceptual design phase; 

concept variants consist of several working principles and working structures 

intended to achieve desired functions. 

• Function:  “the general input/output relationship of a system whose purpose is to 

perform a task”; usually defined with a verb and a noun such as “increase 

pressure”; functions are derived from conversions of matter, energy, and 

information (aka signals).  
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• Function Structure:  a “meaningful and compatible combination of sub-

functions into an overall function”. Function structures are usually depicted as 

block diagrams. 

• Working Principle: the interrelationship between the physical effect and the 

geometric and material characteristics of a solution; identifying the working 

principle is the first step towards implementation of a solution. Working 

principles must be found for each sub-function in the overall function.  

• Working Structure: the combination of several working principles to fulfill the 

overall task. Working structures can be depicted using circuit diagrams, flow 

charts, line drawings and sketches. 

• Construction Structure: a representation of the principal solution that is more 

concrete than the working structure; the construction structure incorporates 

information about production, assembly, transport, etc.. 

• Preliminary Layout(s): the general arrangement, component shapes and 

materials of the proposed design solution, determined in a provisional sense; 

during embodiment design several preliminary layouts are proposed and 

evaluated; a primary preliminary layout is an intermediate milestone in the 

embodiment design phase on the way to the definitive layout. 

• Definitive Layout: a more definitive arrangement of components, shapes, and 

materials of the proposed design solution that facilitates a “clear check of 
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function, durability, production, assembly, operation and costs”; The definitive 

layout is the output of the embodiment design phase. 

• Requirements List: The requirements list is the output of the Planning and 

Clarifying the Task phase.  It is also sometimes called the design specification. 

The requirements list defines what is acceptable to the customer in the form of 

demands and wishes, where demands must be met and wishes are preferred but 

not required. In the evaluation stage, demands are used to screen out variants that 

do not meet demands in a selection process, whereas wishes are considered during 

evaluation of variants that meet the demands.  

With the exception of the Requirements List, each of these keywords describes the 

design solution, or an element of the design solution, at a point along the transformation 

from Task to Solution. The Requirements List describes elements of the design 

solution, but also characterizes the design problem.  

4.1.2 Discussion of P&B by Phase 

A diagram of the full P&B method is given in Figure 4.1 below, reproduced from Figure 

3.3 in the text. Each phase of the method is then described in more detail. 

4.1.2.1 Planning and Clarifying the Task 

The first phase of P&B is Planning and Clarifying the Task. The Task is the input to 

this phase, and the output of this first phase is the Requirements List. Activities in this 

phase include analysis of the market and company situation, search and selection of 

product ideas, formulation of the product proposal, clarification of the task, and the 

elaboration of the Requirements List.  The clarification of task activity is the 
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specification of requirements to be fulfilled by the product and constraints on the design 

in as much quantitative and qualitative detail as possible.  

4.1.2.2 Conceptual Design 

Having elaborated the Requirements List, the next phase of P&B is Conceptual Design. 

The output of this phase is the Principal Solution. Activities include identification of the 

essential problems, establishment of Function Structures, the search for Working 

Principles and Working Structures, the combination of these Working Principles and 

Structures into Concept Variants, and the evaluation of these Variants against 

technical and economic criteria. Variants which do not meet the demand requirements 

are eliminated, and the remaining Variants are evaluated by application of wish 

requirements. Although the Requirements List encompasses both technical and 

economic criteria, evaluation in the conceptual design phase is focused more on the 

technical rather than economic factors. 

One or more Principal Solutions may be identified during this phase. These preliminary 

solutions are represented using Function Structures, block or circuit diagrams, flow 

charts, or preliminary drawings. Often, preliminary form design and material selection 

must be performed to assess technical and economic criteria to compare Concept 

Variants, although this level of detail is not strictly required in the conceptual design 

phase. 
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4.1.2.3 Embodiment Design 

After identifying the Principal Solution(s), one proceeds at a more concrete level with 

Embodiment Design. The output of Embodiment Design is the Definitive Layout. An 

intermediate milestone is the identification of one or more preliminary layouts. Another 

term for layout is the Construction Structure.  Leading up to the Preliminary Layout, 

the goal is to develop the Construction Structure. This is achieved through preliminary 

form design, material selection, and analysis; selection of the best Preliminary Layouts; 

refinement and improvement of these layouts; and evaluation of the selected Preliminary 

Layouts with respect to technical and economic criteria. These steps result in the 

selection of one or more Preliminary Layouts. Transitioning from the Preliminary 

Layouts to the Definitive Layout is a process of refining the Construction Structure. 

This is accomplished through the elimination of weak spots, checking for errors, 

disturbing influences and minimum costs, and preparation of a preliminary parts list and 

production and assembly documents. These documents constitute the description of the 

Definitive Layout. A critical component of the embodiment design phase is the 

evaluation of the economic viability of the project. Only projects which are financially 

feasible should be continued into the Detail Design phase. 

4.1.2.4 Detail Design 

The final phase of P&B is Detail Design. In this phase the Definitive Layout is made 

more concrete through the development of the production documentation. This is 

achieved through the elaboration of detailed drawings and parts lists; the generation of 

complete production, assembly, transport, and operating instructions; and thorough 

checking of all documents. 
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4.1.2.5 Iteration and Rework 

In addition to the activities within specific phases, Pahl and Beitz identify three crucial 

activities that span multiple phases. These activities may necessitate a return to activities 

in a previously completed phase, possibly leading to iteration and rework. The activities 

are shown at the right side of the overview figure and include the optimization of the 

principal; optimization of the layout, forms, and materials; and optimization of the 

production.  Optimization of the principal spans Planning and Clarifying the Task, 

Conceptual Design, and Embodiment Design up to the preliminary layout. 

Optimization of the layout, forms, and materials spans Conceptual Design, 

Embodiment Design, and Detail Design. Optimization of the production encompasses 

Conceptual design, Embodiment Design and Detail Design.  In addition to these 

optimization activities, information is continuously generated and captured in an adapted 

Requirements List. This is shown at the left side of the overview figure. 

4.1.3 Commentary on P&B 

The P&B method includes several iterations of a selection procedure. This procedure 

includes two steps: elimination and preference. First, concepts are eliminated which are 

not internally consistent, do not satisfy demand requirements, or are unlikely to be 

technically or economically feasible. The remaining concepts are then ranked in order of 

preference as formalized by wishes in the requirements list. Only the most preferred 

concepts are taken forward to the next steps of the method. Suggested procedures for 

evaluating concepts include arbitrary value functions, weighted sums of evaluation 

criteria, and normalization and ranking procedures. In these procedures there is little if 

any explicit consideration of uncertainty.  
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The P&B approach is intended to be comprehensive; however, some common design 

activities are not specifically identified in the overview of the method because the timing 

of these activities may vary from project to project. Two examples of these common 

design activities are prototyping and sub-contracting. Designers are expected to use their 

expertise to adapt the step-by-step approach when appropriate. Although the full 

approach is beneficial in original design to prevent overlooked details, some steps of the 

approach can often be skipped or shortened in the case of adaptive design.  

4.2 P&B IN THE CONTEXT OF THE RDT CONCEPTUAL MODEL 

All design processes consist of information processing activities. As discussed in Chapter 

3, in the RDT conceptual model these activities are characterized as synthesis, analysis, 

or evaluation by the resulting changes in the Artifact Information State. Recall that the 

AIS is a conceptual model of design information in the context of concepts, concept 

predictions, and concept decision criteria. Concepts are incomplete descriptions of 

hypothetical artifacts, expressed as constraints on the property space. Concept predictions 

characterize the designer’s beliefs about the outcomes of the proposed concept, expressed 

as probability distributions over a property space projection. Concepts are ranked on the 

basis of their predictions using concept decision criteria, which are generated by 

application of an evaluation function. Synthesis is the generation of new concepts, 

analysis is the generation of concept predictions, and evaluation is the generation of 

concept decision criteria.  

Each activity identified in P&B generates information that can be captured in the AIS.  

These activities are discussed by phase in Sections 4.2.1 through 4.2.5. A short summary 

is presented in Section 4.2.6. As discussed above, each of the keywords of P&B 
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characterize the design solution, with the exception of the Requirements List which 

characterizes elements of the design solution and elements of the design problem. 

Because these keywords characterize the design solution, they are all represented as 

concepts in the AIS. The elements of the Requirements List which characterize the 

design solution are also represented as concepts in the AIS, while the elements of the 

Requirements List that characterize the design problem are captured in the evaluation 

function which generates the concept decision criteria in the AIS.  

P&B as a process is a transformation of information from one representation of the 

design solution to another, such as the transformation from the Preliminary Layout to 

the Definitive Layout in Embodiment Design. Accordingly, in the RDT conceptual 

model, most activities in P&B are represented as synthesis actions which generate 

concepts. In fact, the analysis of P&B in the context of RDT reveals that P&B offers little 

guidance on analysis and evaluation in the design process, other than acknowledging that 

these are critical activities that must be performed. While this may appear to be a 

deficiency of P&B, it is understandable given the general nature of the method. Analysis 

and evaluation activities are highly problem-dependent; thus, it is nearly impossible to 

provide guidance on how to conduct these activities in a general sense.  

In each of the next sections, a table is presented showing the representation of P&B tasks 

in the RDT conceptual model. The following abbreviations are adopted in these tables: 

Abbreviations for changes to AIS: 

• C: concept 

• CP: concept prediction 
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• CDC: concept decision criterion 

• EF: evaluation function 

Abbreviations for Type of design action: 

• S: synthesis 

• A: analysis 

• E: evaluation 

TABLE 4.1. REPRESENTING “PRODUCT PLANNING AND CLARIFYING 
THE TASK” IN THE RDT CONCEPTUAL MODEL 

 P&B activity RDT description Change to 
AIS 

Type of 
Design 
Action 

1 Analyze the market and 
company situation 

Elicit beliefs about desired 
properties, company 
capabilities, market 

CP, EF A, E 

2 Find and select product 
ideas 

Generate concepts for 
satisfying EF; Elicit 
beliefs concerning concept 
predictions; Apply EF to 
concepts to generate 
concept decision criteria. 

C, CP, CDC S, A, E 

3 Formulate a product 
proposal 

Refine selected concepts 
in terms of desired artifact 
properties 

C S 

4 Clarify the task Refine concept for 
demands; Refine 
evaluation function for 
wishes 

C, EF S, E 

5 Elaborate a 
Requirements List 

Refine concept in 
solution-neutral terms 

C S 

4.2.1 Product Planning and Clarifying the Task 

An appropriate name for the first phase of P&B in the context of the RDT conceptual 

model might be “Defining the Evaluation Function”. This phase is about gathering and 

formalizing information about desired artifact properties and the relationships between 

artifact properties, company capabilities, customer preferences, revenue, and costs. A 
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profit model can be constructed using this information to allow for the determination of 

preferred artifact properties. In P&B, a set of desired artifact properties is selected as a 

product idea, and these properties are formulated in a solution-neutral manner in the 

requirements list. Each of the steps of this phase of P&B are described in the context of 

RDT in Table 4.1. 

As discussed in Chapter 3, some requirements are a statement of preference (wishes) 

while others define concepts (demands). Thus, wish requirements which express 

preference are captured in the RDT conceptual model as a formulation of an evaluation 

function, whereas demand requirements which define product concepts are captured as 

concepts in the RDT conceptual model. The mapping of the requirements list from P&B 

to the RDT conceptual model is not clear cut because while concepts and preferences are 

distinguished in RDT, they are confounded in the P&B requirements list. 

4.2.2 Conceptual Design 

The conceptual design phase is the first of several synthesis-analysis-evaluation loops in 

P&B. In this phase the goal is to transform the Requirements List into the Principal 

Solution. Initially, concepts are refined in terms of function and then working 

principles and working structures. Concepts are first refined and optimized on an 

element-wise basis to find working principles to fulfill each function. Then, these 

elements are combined into full concept variants that fulfill all of the desired functions.  

These combined concepts are then analyzed and evaluated in order to select the most 

promising ones for further development in the next phase of design. Each of these steps 

are presented in Table 4.2. 
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The advice of P&B for conceptual design is to break the design process into sub-

problems by function. The design process is facilitated by solving a series of smaller, 

simpler design problems and combining the solutions into a solution to the larger design 

problem. This is likely to be a preferred process when an innovative solution is needed 

for a complex design scenario.  

TABLE 4.2. REPRESENTING "CONCEPTUAL DESIGN" IN THE RDT 
CONCEPTUAL MODEL 

 P&B activity RDT description Change to 
AIS 

Type of 
Design 
Action 

1 Identify essential 
problems 

Refine concepts in terms of 
“essential problem” 

C S 

2 Establish function 
structures 

Refine concepts in terms of 
function 

C S 

3 Search for working 
principles and 
working structures 

Iteratively: 
• refine concepts in terms of 

working 
principles/structures,  

• elicit concept predictions 
for the refined concepts,  

• evaluate the refined 
concepts. 

C, CP, CDC S, A, E 

4 Combine and firm up 
into concept variants 

Merge concepts and predict 
their outcomes 

C, CP S, A 

5 Evaluate against 
economic and 
technical criteria 

Evaluate merged concepts 
per evaluation function to 
generate CDC 

CDC E 

Conceptual design is about identifying the mechanisms for the design artifact. In this 

phase designers determine how each of the functions will be fulfilled by the artifact. The 

form and materials of the artifact are determined in the next phase, Embodiment Design.  

4.2.3 Embodiment Design 

The Embodiment Design phase incorporates additional synthesis-analysis-evaluation 

loops to determine the form, layout, and materials of the design solution. In the first loop, 
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the preliminary layouts are determined by generating, analyzing, and selecting among 

concepts that specify a general form and layout and particular materials. These 

preliminary layouts are then refined and analyzed in the next two iterations, after which 

the best is chosen as the definitive layout. In the transformation from preliminary 

layout to definitive layout, two loops are performed. First, the concepts are analyzed and 

evaluated with respect to technical and economic criteria, which in the RDT conceptual 

model is captured in the evaluation function. After identifying the most promising of 

these concepts, new refined concepts are generated. These refined concepts are expected 

to improve the performance by eliminating weak spots. The refined concepts are then 

analyzed and evaluated to select the most promising as the definitive layout. In the final 

step of this phase, the chosen concept is further specified by preparing initial production 

and assembly documents. Each of these steps are interpreted in the context of RDT in 

Table 4.3. 

4.2.4 Detail Design 

In the final phase of P&B, the definitive layout is transformed into the design solution by 

specifying and documenting the concept in detailed production and assembly documents. 

These steps are intended to reduce ambiguity about the concept between the designer and 

manufacturer or other supplier. As shown in Table 4.4, in the context of the RDT 

conceptual model, this phase consists mostly of synthesis, as the chosen definitive layout 

is specified in greater and greater detail as refined concepts. The final step of this phase, 

checking all documents, requires some analysis and evaluation to determine if the refined 

concept indeed optimizes the evaluation function.   
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TABLE 4.3. REPRESENTING "EMBODIMENT DESIGN" IN THE RDT 
CONCEPTUAL MODEL 

 P&B activity RDT Description Change to 
AIS 

Type of 
Design 
Action 

1 Preliminary form 
design, material 
selection and 
calculation 

Generate form and material 
concepts, predict outcomes, 
generate/update concept 
decision criteria

C, CP, CDC S, A, E 

2 Select best preliminary 
layouts 

Generate/update concept 
decision criteria 

CDC E 

3 Refine and improve 
layouts 

Generate refined concepts 
from selected concepts 

C S 

4 Evaluate against 
technical and 
economic criteria 

Generate/update concept 
decision criteria 

CP, CDC A, E 

5 Eliminate weak spots Generate refined concepts 
to eliminate weak spots 

C S 

6 Check for errors, 
disturbing influences 
and minimum costs 

Analyze and Evaluate 
refined concepts 

CP, CDC A, E 

7 Prepare preliminary 
parts lists and 
production and 
assembly documents 

Refine concepts to include 
parts lists, drawings, 
assembly documents, etc. 

C S 

     
     
TABLE 4.4. REPRESENTING "DETAIL DESIGN" IN THE RDT CONCEPTUAL 

MODEL 
 P&B activity RDT Description Change 

to AIS 
Type of 
Design 
Action 

1 Elaborate detail 
drawings and parts lists 

Generate refined concepts 
represented by drawings and 
parts lists 

C S 

2 Complete production, 
assembly, transport, 
and operating 
instructions 

Generate refined concepts 
represented by assembly, 
transport, and operating 
instructions 

C S 

3 Check all documents Predict outcomes and evaluate 
to verify that the refined 
concepts represented in the 
documents correspond to the 
Design Solution as specified 
in the Requirements List 

CP, CDC A, E 
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4.2.5 Other Design Activities: 

The four phase-spanning activities of P&B encompass all aspects of the RDT conceptual 

model, as shown in Table 4.5. Each of the optimization activities consist of synthesis-

analysis-evaluation loops focusing on a particular aspect of the artifact. In the 

optimization of the principle, the focus is on identifying and improving the mechanisms 

for achieving the desired functions. The shapes and substance of the artifact are addressed 

in the optimization of the layout, forms, and materials. Finally, the process for realizing 

the artifact is the focus in the optimization of the production. Throughout the P&B 

method, the requirements list is updated to incorporate selected concepts and to reflect 

changes to the evaluation function. The incorporation of selected concepts is a process of 

synthesis, while changes to the evaluation function represent reformulation. 

TABLE 4.5. REPRESENTING P&B PHASE-SPANNING ACTIVITIES IN THE 
RDT CONCEPTUAL MODEL 

P&B Phase-Spanning 
Activity 

RDT Description Change 
to AIS 

Type of Design 
Action 

Optimization of the 
principle 

Generate, analyze and 
evaluate concepts in terms 
of Working Principle 

C, CP, 
CDC 

S, A, E 

Optimization of the layout, 
forms and materials 

Generate, analyze, and 
evaluate concepts in terms 
of the layout, forms, and 
materials 

C, CP, 
CDC 

S, A, E 

Optimization of the 
production 

Generate, analyze, and 
evaluate concepts in terms 
of production and 
assembly plans 

C, CP, 
CDC 

S, A, E 

Adapt the requirements 
list 

Update the Requirements 
List to reflect selected 
concepts; Adapt the 
Evaluation Function to 
reflect changes to the 
value proposition 

C, EF S, A, E 
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4.2.6 Summary of P&B in the Context of RDT 

By viewing each activity of P&B in the context of the RDT conceptual model, several 

conclusions come to light. First, it is evident that most of the P&B activities are synthesis 

actions representing the generation of new concepts. This is not surprising, as designers 

must propose many ideas in order to find a concept that is likely to add value. One also 

sees that each phase of P&B involves one or more synthesis-analysis-evaluation loops to 

“select” a concept for further refinement. These loops focus on different aspects of the 

design solution, namely the principle, the layout, and the production. Thus, the P&B 

approach is essentially a heuristic for incrementally refining concepts from an initial 

abstract task through increasingly detailed representations. 

Although the method does direct designers to analyze and evaluate concepts, P&B does 

not give much guidance about how to do so. This is expected because the method is 

intended to be general. Designers who use the method are expected to apply their 

expertise to identify and execute appropriate analyses to facilitate evaluation of concepts. 

Thus, P&B is not helpful for determining which analyses to undertake, how many 

analyses to perform, how many concepts to evaluate, or when to stop concept refinement. 

The answers to these questions are problem- and designer-dependent, and will vary 

greatly from one problem to the next. What guidance is given regarding evaluation and 

selection of concepts prescribes a two-pronged selection approach of elimination of 

unsuitable concepts followed by evaluation with respect to wish requirements. This 

procedure imposes a structure on the preferences of the designer that may be 

incompatible with his actual preferences. In addition, the evaluation procedures suggested 

by P&B such as arbitrary value functions, weighted sums of evaluation criteria, and 
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normalization and ranking, have been shown to be subject to logical inconsistencies 

which can lead to irrational choice (Hazelrigg 2003). 

Perhaps the most confusing outcome of this analysis is the interpretation of the 

requirements list in the context of the RDT conceptual model. The requirements list 

incorporates two types of information: concepts that are proposed as potential artifacts, 

and preferences that characterize the desired properties of the artifact. Characterizing a 

preference as a concept is possible and perhaps even beneficial at times, but to do so 

constitutes a tradeoff between the design process and the designed artifact which should 

be made consciously by designers. 

4.3 THE CHARACTERISTICS OF GOOD DESIGN METHODS EMBODIED BY 
P&B 

In Chapter 3, seven characteristics of good design methods were identified by combining 

the normative perspective of RDT with the decision-theory-inspired RDT conceptual 

model. In this context, a “good” design method is one that approaches the RDT ideal of 

maximizing expected Net Design Utility. Having reviewed the systematic method of 

P&B in the preceding sections, the P&B method as a whole is evaluated in this section 

with respect to these six characteristics. Throughout this section, the question under 

consideration is: “How does the P&B method meet the characteristics of a good design 

method as identified by Rational Design Theory?”.  

Characteristic 1: The method is a close approximation of rational decision making 

applied to design process decisions. 
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While a particular implementation of P&B could be evaluated for consistency with 

rational decision-making, it is impossible to evaluate the method as a whole. This is 

because P&B does not specify how to analyze and evaluate concepts, which as mentioned 

earlier, is not feasible in a general sense. In addition, rational decision-making is defined 

within the context of a particular designer’s beliefs and preferences. What can be 

evaluated in a general sense is whether or not following P&B necessarily leads to 

inconsistency and irrationality.  

As noted previously, some of the selection and evaluation procedures suggested by Pahl 

and Beitz have been shown to lead to irrational choice. However, the authors include the 

caveat that designers should use their expertise to adapt the method for their particular 

context. If evaluation and selection procedures are used that appropriately reflect the 

designer’s beliefs and preferences, the method will not necessarily lead to irrational 

choice. Thus, when applied correctly, the P&B approach can be a framework for rational 

design process decision-making. To do so, any aspect of P&B that is not necessary or 

beneficial for a particular design problem should be omitted by the designer. For 

example, P&B for variant design may require extensive conceptual design to identify a 

novel solution using an existing platform, but the embodiment and detail design phases 

may be shortened because of the reuse of the platform. With appropriate adaptation for 

particular design problems, P&B may be an adequate approximation of rational decision-

making applied to design process decisions.  

Characteristic 2: Heuristics to guide a design process towards maximum expected 

NDU.   

Characteristic 3: A stopping criterion based on NDU. 



   

103 
 

Characteristic 4: An explicit consideration of uncertainty.  

Characteristic 5: An explicit consideration of risk.  

P&B provides guidance concerning the order of high-level decision-making in a design 

process, but, as mentioned in Chapter 3, this guidance is of a qualitative nature. 

Characteristics 2-5 require more specific quantitative guidance than is provided in such a 

general method. NDU in particular, is closely tied to a given design problem and the 

beliefs and preferences of the designer. Therefore, a general method such as P&B is not 

likely to be able to provide such tailored guidance. 

Evaluation with respect to Characteristics 4 and 5 also requires more detail than is 

provided in a general method such as P&B. Since P&B does not indicate how to analyze 

and evaluate alternatives, the method does not prohibit explicit consideration of 

uncertainty and risk. But the method does not require their explicit consideration either. 

The method does direct designers to check for “disturbing influences” during the 

embodiment design phase, but this refers only to the artifact and not to uncertainties and 

risks in the design process itself.  

Consideration of risk: risk consideration is implicit in the heuristic of gradually refining 

concept. You don’t want to invest in details before establishing a promising architecture. 

Characteristic 6: Distinction between specifications and predictions.   

A distinction between specifications and predictions is not explicitly required in P&B, 

but one is not prevented from distinguishing between them either. Since there is not much 

guidance given on how to perform analysis and evaluation of concepts, P&B does allow 
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for such a distinction when selecting concepts for further refinement. In fact, the authors 

seem to implicitly acknowledge the potential for discrepancy between specified and 

actual performance in the steps of embodiment design because the designer is directed to 

“check for errors, disturbing influences, and minimum costs”. Acknowledging a 

distinction between specifications and predictions is one identified characteristic that 

could be incorporated into the P&B method without loss of generality.  

Characteristic 7: Interpretation of requirements as concept specifications only.  

The P&B Requirements List is not consistent with RDT because it contains preference 

information, often referred to as the problem definition, in addition to concept 

specifications. As mentioned in Chapter 3, the problem definition in RDT is always the 

same: maximize expected NDU. The P&B Requirements List is only consistent with 

this problem definition if all requirements are considered as concept specifications.  

Recall that in the RDT conceptual model, all synthesis actions result in the addition of 

new concepts to the AIS. The Requirements List in P&B is a representation of chosen 

concepts only. To be consistent with the RDT notion of concept specification, a 

Requirements List would be needed for each concept considered during the design 

process.  

 

Even though the P&B method does not meet the identified characteristics of good design 

methods in a general sense, it has nevertheless been widely and successfully used in 

practice. In fact, the method itself was created from a survey of best practices in industry. 

Part of the problem in evaluating P&B with respect to these characteristics is the general 
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nature of the method; i.e., there is too much loss of detail in abstracting away the 

specifics to evaluate the design process decision-making. The success and popularity of 

P&B indicates that the guidance, though qualitative in nature, does provide substantial 

help to designers. One probable advantage of following such a method is that it reduces 

the number of possible design actions to consider when making decisions about the 

design process. In the time that it would take to consider a possibly infinite number of 

design actions, a designer can implement many steps of P&B and be much closer to 

achieving some utility from generating a new artifact.  

4.4 THESIS ROADMAP 

In this chapter, the P&B design method has been reviewed and evaluated in the context of 

RDT and its accompanying conceptual model. The analysis with respect to the RDT 

conceptual model reveals that most of the activities in P&B are synthesis actions 

specifying more and more detail about the selected concepts. In each phase a different 

type of information is considered to transform a nebulous task into a detailed design 

solution. Several synthesis-analysis-evaluation loops are employed to successively refine 

first the principle, then the layout, and finally the production of the design solution. 

Although analysis and evaluation are indicated several times throughout the method, little 

specific guidance is provided on how to perform those activities. This lack of specific 

guidance is attributed to the general nature of the method, and the authors indicate that 

designers should use their expertise and domain knowledge to appropriately particularize 

P&B for individual design problems. 

The evaluation of P&B with respect to the identified characteristics of good design 

methods is inconclusive. This is because many of the characteristics call for explicit and 
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quantitative guidance and P&B is too general of a method to provide such detail. 

However, there are no structural limitations within P&B that prevent a particular 

implementation of P&B from meeting the identified characteristics. When appropriately 

adapted for particular designers and design problems, P&B is likely to meet many of the 

identified characteristics, but this cannot be shown in a general sense. To demonstrate the 

evaluation of specific design methods, two example problems are presented in the next 

chapter. These examples demonstrate the quantitative evaluation capabilities of RDT. 
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CHAPTER 5:  QUANTITATIVE APPLICATIONS OF RATIONAL   
DESIGN THEORY: TWO EXAMPLES 

Having presented Rational Design Theory in the previous chapter, the quantitative 

evaluation and comparison abilities of RDT are demonstrated in this chapter. In two 

separate examples, decision analysis is applied to the design process decision of whether 

or not to gather additional information about an uncertain parameter. In each example, 

the available alternatives are compared using decision analysis of a decision tree that 

incorporates all sequences of the available design actions. In addition, the design method 

of using Value of Information (VoI) analysis to determine the next step is evaluated by 

comparing the results of the VoI method with the results of the more comprehensive 

decision analysis. The examples and ensuing discussion in this chapter serve to validate 

the second secondary hypothesis that RDT enables the quantitative comparison of the 

quality of design methods (H2). 

In the next section, some background information relevant to both examples is presented. 

The first example involving a manager’s decision between two product proposals is 

presented in Sections 5.2 and 5.3. The second example of material selection in a pressure 

vessel design is presented in Section 5.4. For each example, the available alternatives are 

first compared to one another using decision analysis of a full decision tree with all 

possible sequences of design actions. Thereafter, the results of that analysis are compared 

to the predictions given by Value of Information analysis. In Section 5.5 a short 

discussion is presented to compare and contrast the results from both examples. The 

chapter concludes in Section 5.6 with a return to the thesis roadmap. 
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5.1 BACKGROUND INFORMATION FOR BOTH EXAMPLES 

Both examples presented in this chapter involve a decision about gathering more 

information in design. In each example two concepts have been specified, their outcomes 

have been predicted, and those outcomes have been evaluated. The design actions 

available to the designers are (1) analysis coupled with evaluation and (2) ending design 

with the selection of one or the other concept. In considering the analysis/evaluation 

alternative, the designer must make a tradeoff between reducing the uncertainty in the 

concept predictions and expending resources to do so. In previous work, design 

researchers have studied this tradeoff between the artifact and the design process using 

Value of Information Theory.  Thus, in these examples the decision rule of pursuing the 

analysis with the largest value of information is evaluated. An overview of Value of 

Information and related work in design is presented next in Section 5.1.1. Thereafter, 

some details of the mathematical formulation common to both examples are presented in 

Section 5.1.2. 

5.1.1 Value of Information Analysis 

The basic premise of the value of information is that the improvement in decision-making 

ability afforded by additional information can be valued by comparing the decision 

outcomes with and without the additional information. Howard was the first to introduce 

value of information and used the concept to determine the optimal number of samples to 

refine the parameters of a known probability distribution (Howard 1965, 1966b). 

Building on this foundation, Matheson used value of information to determine which 

sources of information to consult for a particular decision problem (Matheson 1968).  
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The value of a particular information source is inherently linked to the decision situation, 

specifically, the decision alternatives and the information sources under consideration. 

For a particular decision, the value of information is zero if the information does not 

result in any change in the optimal decision alternative; it is positive otherwise. Given 

that the value of information is only useful before the decision is made while the true 

value of the information can only be determined after all uncertainties are resolved, one 

can only calculate the expected value of information. The expected value of perfect 

information (EVPI) can be used if the information source resolves all uncertainty, but 

usually one must settle instead for the expected value of imperfect information (EVII) 

(Clemen 1996). This is computed by taking the expectation over the remaining 

uncertainty. The EVII is then simply the difference between the expected utility with the 

added information and the expected utility without the added information, as summarized 

in the following equation, 

 ( ) ( ) ( )| | 0,E E E E ,, yy x y y x y x a x ax yυ π π = −   (5.1) 

where y is the message received from the information source, x is the state of the world, 

ay is the action taken with the new information, a0 is the action taken without the new 

information, and π is the payoff function (Lawrence 1999).   

Within the design community, Radhakrishnan and McAdams use value of information for 

model selection (Radhakrishnan, et al. 2005). They proposed to incorporate the costs of 

design as a function of the levels of abstraction in the models; however, they do not 

provide a method for computing the value of information associated with a particular 

model. Panchal and coauthors use the value of information to guide decision-making on 
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model refinement in design (Panchal, et al. 2008). They propose a value-of-information-

based approach for stepwise refinement of simulation models by considering both 

variability and imprecision in the model, since imprecision can be improved with refined 

models whereas variability is inherent. Demonstrating their approach on a pressure vessel 

example and an example of the design of a multifunctional material, the authors note that 

the marginal improvement of each step of simulation refinement decreases as refinement 

progresses; however, the authors do not explicitly include the cost of the development of 

the new simulation models in their approach. It seems reasonable to assume that 

increasingly refined simulation models will cost more to develop and execute, quickly 

overshadowing the marginal improvement in decision-making ability.  

Value of information theory is also used in design with respect to the collection of 

information in support of an artifact decision; however, the process-related information 

collection decision is viewed as a separate sub-decision from the artifact decision. Ling 

and coauthors argue for this separated approach in an example on the design of a pressure 

vessel with unknown material strength (Ling, et al. 2005, Ling, et al. 2006). They use 

imprecise probabilities to separately model the imprecision and variability in material 

strength. Assuming that the true material strength is normally distributed but with 

unknown parameters, they conduct a computational experiment referencing an 

omniscient supervisor to bound the value of information of additional material strength 

samples. A decision policy is needed to resolve this bound on the value of information in 

order to make the decision concerning whether or not to gather the information. Schlosser 

and Paredis take a similar approach using imprecise probabilities and probability bounds 

analysis in the design of an electric vehicle (Schlosser, et al. 2007). Using a model with 
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multiple sources of uncertainty, they use optimization to find the amount of additional 

information that should be acquired for each uncertain parameter. Although they improve 

upon Ling and coauthors’ work by considering multiple sources of information at once, 

they assume that the additional information reduces intervals for each uncertain 

parameter around stationary mean values. Due to this assumption and the symmetrical 

payoff function used, the large value of information predicted by their optimization is not 

realized because the decision regarding the number of batteries does not change.  

Bradley and Agogino propose the Intelligent Real Time Design methodology (Bradley, et 

al. 1994). Their method incorporates expected utility decision-making and the value of 

information to guide information collection in the component selection process in which 

components are selected from a catalog using an uncertain evaluation function. IRTD 

both enables the selection of the best component and provides bounds on the value of 

reducing each of several sources of uncertainty.  Wood and Agogino build upon this 

work to develop Decision-Based Conceptual Design (DBCD), a normative methodology 

for navigating the design space in conceptual design while considering the value of 

information (Wood, et al. 2005). In their method, existing design data is used to populate 

a design space while also incorporating uncertainty in the artifact alternatives represented 

therein. Demonstrating with an example of motor selection, they use expected value to 

decide when to narrow the range of values for design parameters and the expected value 

of perfect information to determine when to refine the objective function (i.e., the 

evaluation model). Like other work based on value of information theory, DBCD does 

not compare the cost of new information to the benefits of the new information to 

determine in an absolute sense if the new information is worth the cost. Rather, DBCD 
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guides designers towards areas of the design space that maximize the expected value of 

perfect information. This approach is appropriate only if one assumes that “do nothing” is 

not a decision alternative available to the designer. 

In many of the previous studies, the decision to gather more information in support of a 

design decision is seen as a separate sub-decision. As such, the information acquisition 

decisions are formulated separately from artifact parameter decisions (Wood, et al. 2005, 

Ling, et al. 2006). This perspective can be further improved by formulating the decision 

problem in terms of the design process. If gathering additional information is indeed an 

alternative available to the designer, then that alternative should be included along with 

artifact parameter alternatives, not formulated as a separate sub-decision. Thus, the 

information gathering and design decisions are considered concurrently as one decision 

problem. This can be accomplished by formulating the decision in terms of the design 

process rather than the designed artifact and including information-gathering tasks as 

decision alternatives. This approach provides a richer understanding of the decision 

problem because it enables the consideration of multiple information-gathering tasks at 

once as well as sequences of information-gathering tasks. In addition, the direct 

comparison of artifact parameter alternatives and information gathering alternatives in a 

single decision problem provides an absolute measure of the value of the information 

gathering tasks. To achieve this direct comparison, it is necessary to associate a cost with 

the information gathering alternatives. 

5.1.2 Modeling Beliefs about Outcomes of Design Analysis Activities 

In both examples in this chapter, analysis/evaluation alternatives are considered, hereafter 

referred to as Analyze alternatives. To predict the outcomes of the Analyze alternatives, 
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the designer must express her beliefs about the outcome of the material test as well as 

how the outcome of the test will impact her beliefs about the true strength of the material. 

Both analyses have two important characteristics: cost and quality. Cost is defined in 

dollars and impacts the realized profit. The quality is given as a margin of error. It is 

assumed that the result of the analysis is the true value of the parameter plus a random 

error term, where the random error term is also distributed normally and has a mean of 

zero. The margin of error is interpreted as 3σ. This relationship is shown in the following 

equation, 

 ( ),  ~ 0,p p Nα αε ε σ= +  (5.2) 

where pα is the analysis result in parameter units, p is the true parameter value, ε is the 

random error term, and σα is the standard deviation of that error term. 

In both examples, the designer’s prior beliefs are modeled as normal distributions. 

Normal distributions are assumed in order to simplify the computation of posterior 

distributions conditional on the outcome of the analyses. To incorporate the designer’s 

prior beliefs with the result from the analysis, Bayes' Theorem is used to compute 

posterior probabilities. The analysis enables the designer to update her prior knowledge 

about the parameter. In Bayesian terms the prior knowledge is called the prior 

distribution and the updated knowledge is called the posterior distribution. Due to the 

properties of the normal distribution, the posterior probability is also normally 

distributed, however the mean varies as a function of the value from the analysis, . The 

derived mean and standard deviation of the posterior probability are shown in the 

following equation, 
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pf p N α α α
α α

α α

σ σ µ σ σ
σ σ σ σ=

 +
 + + 

 (5.3) 

where  is the variance of the prior distribution of artifact concept A and µa is the mean 

of the prior distribution of artifact concept A.  

The purpose of these examples is to illustrate how decision analysis of design process 

decisions can provide insight into rational design practice by analyzing the tradeoff 

between design phase costs and overall profit. Although these are simplified examples for 

clarity of presentation, there are many similar scenarios of design process decision-

making that can be analyzed in a similar manner. Other scenarios include selecting a 

number of samples to create a surrogate model of artifact performance and deciding 

whether to perform physical experiments or build physical prototypes. These examples 

are not intended to be a general approach for all types of design process decisions; rather, 

they are intended to showcase the possibilities of decision analysis for learning about 

good design process decision-making. The defining characteristics of the examples are a 

choice between two concepts with uncertain outcomes, an analysis that can be performed 

to reduce the uncertainty of either concept with known cost and quality, and a preference 

model based on profit.  

Some may argue that the assumption of an analysis with known cost and quality is 

unrealistic. In the context of this work, an analysis is a source of information that changes 

the beliefs of the decision maker.7 Although the cost of an analysis may be uncertain, a 

                                                            
7 This definition establishes an analysis as an information source in agreement with the definition of 
information adopted by Ling, Aughenbaugh, and Paredis in (Ling, et al. 2006). Their definition of 
information differs from that of Lawrence (Lawrence 1999). 
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deterministic cost of analysis is used here as a first step. As for the known quality of the 

analysis, I believe that designers undertake steps in a design process with some 

expectation about the outcomes. As such, designers can formulate those beliefs about the 

outcomes of analyses as subjective probabilities.  

5.2 MANAGER’S DECISION EXAMPLE: ONE ANALYSIS 

A manager has been presented with two preliminary product proposals and must 

decide which project to fund.  The expected earnings of the first product are within 

$7M of a mean of $8M. The second product is expected to earn $15M plus or minus 

$10M. Thus the manager has a choice between modest earnings with lower 

uncertainty and higher earnings with more uncertainty. 

The marketing team is available to analyze the product proposals to provide 

improved estimates on the expected earnings. From experience, the manager has 

found that the earnings projection from the marketing analysis is usually within 

$1.25M of the value that is actually achieved, but the marketing analysis has 

significant costs. Assigning the marketing team to analyze either one of the product 

proposals will cost the manager $33,000.   

Given this situation, the manager must decide whether to simply select one of the 

products using the information at hand or spend additional money to gather more 

information. It is assumed that the manager must choose one and only one product 

proposal to fund. 

This business scenario is similar to many engineering design decisions. For example, in 

the design of a new car model the design team will want to estimate the gas mileage of 
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the new vehicle. One could assume that the profit on the car model is correlated linearly 

with the gas mileage. The team is considering physical testing or computer simulations to 

more accurately determine the gas mileage of the car concepts. As another example, 

consider a team designing a pressure vessel.  Two new materials are available to use, but 

the estimated strengths of these materials vary considerably. Given that the company will 

make a greater profit from a stronger pressure vessel, the team wants to select the 

material with the greater strength. Physical testing of the new materials can be performed, 

but the costs in terms of both time and money are significant. 

5.2.1 Decision Analysis of the Manager’s Decision 

The first step in decision analysis is to identify the decision alternatives. The manager has 

four alternatives: Select product A, select product B, analyze product A, and analyze 

product B. Selecting either product represents ending design an proceeding with that 

product’s proposal. Analyzing either product means that the designer orders the 

marketing to provide an improved estimate of the earnings and he can delay his decision 

between the two products until after the test results are in. Thus, each analysis alternative 

is followed by another decision after receiving the analysis result. The decision 

alternatives of these subsequent decisions are the same as the first decision with the 

exception that it is assumed the designer will not analyze a product twice.  

The second step of decision analysis is to predict the outcomes of each decision 

alternative. These outcomes reflect the beliefs of the designer about the actual earnings of 

each product. The manager has beliefs about the product earnings based on his 

experience and the values reported from the product proposals. Because the true earnings 

are uncertain, a range of possible outcomes are possible. The manager formulates his 
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beliefs about the earnings as normal probability distributions. The resulting overlapping 

probability distributions are shown graphically in Figure 5.1. As shown, the expected 

value of product A is somewhat smaller than the expected value of product B. However, 

the variation in product A is less than the variation in product B. The overlap in the two 

distributions indicates that there are possible outcomes in which product A may result in 

greater earnings than product B, even though the expected value of product B is higher. 

From this initial look, it appears that selecting product B is the preferred alternative; 

however, the option to perform the marketing analysis to reduce uncertainty in the 

earnings must also be considered. 

 
FIGURE 5.1. PROBABILITY DENSITY FUNCTIONS FOR PRODUCTS A AND 

B. 
 

The outcomes of the Analyze alternatives are predicted as discussed in Section 5.1.2. 

Cost is defined in dollars and affects the project by reducing the earnings by that amount.  

As stated previously, the manager knows from experience that the marketing analysis 

will give a result with a margin of error of $1.25M. The margin of error is interpreted as 

3σ, and thus the standard deviation of the random error term is approximately $420,000. 

This relationship is shown in the following equation, 
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 ( ),  0,v v Nα εε ε σ= + ∼  (5.4) 

where vα is the predicted earnings in dollars from the marketing analysis, v is the true 

earnings, ε is the random error term, and σε is the standard deviation of that error term. 

Bayes' Theorem is used to compute the posterior probabilities of the earnings of products 

A and B given the results of the marketing analysis. Due to the properties of the normal 

distribution, the posterior probability is also normally distributed. The derived mean and 

standard deviation of the posterior probability are shown in equation (5.5), 

 ( )
2 2 2 2

| 2 2 2 2~ ,a a a
a A

a a

vf v N α ε ε
α α

ε ε

σ σ µ σ σ
σ σ σ σ=

 +
 + + 

 (5.5) 

where  is the variance of the prior distribution of the earnings of product A and µa is 

the mean of the prior distribution of the earnings of product A. 

The third step of the decision analysis is to elicit the preferences of the manager with 

respect to risk in a utility function. Preferences are elicited with respect to outcomes in 

terms of the earnings. The risk attitude of the manager is formalized in an exponential 

utility function with risk aversion parameter, R in equation (5.6). Increasing R above zero 

represents increasing degree of risk aversion. R equal to zero represents risk neutrality. 

For normal distributions and exponential utility, there is an analytical solution to the 

integral for the expected utility, as shown in equation (5.7) where µv and  are the mean 

and variance of the value in dollars.  

 ( ) 1 Rveu v
R

−−=  (5.6) 
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−=    (5.7) 

The fourth and final step of the decision analysis is to compute the expected utilities of 

each decision alternative. This can be done by “rolling back” the branches of the 

designer’s decision tree in a process known as backward induction. The manager's 

decision is represented graphically in a decision tree in Figure 5.2. In a decision tree, 

boxes represent decisions and circles represent chance events. Arcs emanating from 

decision boxes represent decision alternatives, whereas arcs emanating from chance 

events represent outcomes.  Performing an analysis on one of the products enables the 

DM to update his prior knowledge about that product based on the outcome of the 

analysis. In this decision tree, a and b represent the earnings of products A and B. The 

estimated values from the marketing analysis are represented by α and β. The functions 

under the chance events represent probability density functions, where f(a) is the prior 

distribution of the earnings of product A, f(b) is the prior distribution of the earnings of 

product B, fA(α) and fB(β) are the marginal distributions of the outcomes of the marketing 

analysis on product A and B, and fa|A=α(a) and fb|B=β(b) are the posterior distributions of 

the earnings of products A and B given the values from the marketing analysis. 

Additionally, u(·) represents the utility of the argument and c(·) represents the cost of 

running the marketing analysis. 
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According to utility theory, the manager should choose the decision alternative which has 

the highest expected utility. The expected utility of each alternative can be computed by 

rolling back the branches of the decision tree. Chance events are rolled back by 

computing the expectation over the outcomes, and decision boxes are rolled back by 

taking the maximum value over the decision alternatives. For the manager's decision 

problem, equations (5.8) and (5.9) are used to compute the expected utility of the Select 

alternatives while equations (5.21) and (5.22) are used to compute the expected utility of 

the Analyze alternatives. Equations (5.10) through (5.20) define intermediate quantities 

which are referred to in equations (5.21) and (5.22). In these equations the subscripts on 

the utility refer to either the decision alternative of a particular decision node or to a 

decision node itself. Additionally, the analyses that have been performed are indicated in 

the subscripts on the utility. For example, uD|αβ represents the utility of the decision node 

FIGURE 5.2. DECISION TREE FOR THE MANAGER'S DECISION PROBLEM 
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at which the analysis has been performed on both products and uSB|α represents the utility 

of selecting product B after the analysis has been performed on product A. 

 [ ] ( ) ( )SAE u f a u a da
∞

−∞
= ∫  (5.8) 

 [ ] ( ) ( )SBE u f b u b db
∞

−∞
= ∫  (5.9) 

 ( ) ( ) ( ) ( )( )SA| a| =E u f a u a c c daαβ αα βα
∞

Α−∞
  = − −  ∫  (5.10) 

 ( ) ( ) ( ) ( )( )SB| b| =E u f b u b c c dbαβ ββ βα
∞

Β−∞
  = − −  ∫  (5.11) 

 ( ) ( ) ( )( )SA|αβD|αβ SB|αβ,E max E , Euu uα β βα   =        (5.12) 

 ( ) ( ) ( )( )SA| a| =E u f a u a c daα αα α
∞

Α−∞
  = −  ∫  (5.13) 
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∞

−∞
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∞
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 [ ] ( ) ( )D|AAE E uf du αα αα
∞

Α
−∞

=   ∫  (5.21) 

 [ ] ( ) ( )D|ABE E uf du ββ ββ
∞

Β
−∞

=   ∫  (5.22) 

The values of all the decision parameters are summarized in Table 5.1. For parameter 

exploration in the next section, the problem parameters are scaled such that the 

distribution with the larger standard deviation is scaled to a standard normal distribution 

with mean of zero and standard deviation of one. These scaled values are also shown in 

the table. 

TABLE 5.1. SUMMARY OF SCENARIO PARAMETERS 

 

Product 
Prior 
Distributions

Analysis 
Parameters 

A B Quality Cost 
Mean ($M) 8.00 15.00 0.03 
Margin ($M) 7.00 10.00 1.25 
Standard Deviation ($M) 2.33 3.33 0.42 
Normalize by  
Mean  2.40 4.50 
Standard Deviation  0.70 1.00 0.13 0.01 
Shift by  
Mean  -2.10 0.00 
Standard Deviation  0.70 1.00 

The parameters of the decision problem thus defined, the expected utilities of each 

Analyze decision alternative are computed using equations (5.21) and (5.22). Numerical 

integration via adaptive Simpson's quadrature is used to compute the integrals (Gander, et 

al. 2000). The expected utilities of the Select decision alternatives are computed via the 

analytical solution in equation (5.7). For comparison, the expected utilities of each 
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decision alternative are computed for both a risk neutral and a risk averse manager. The 

results are presented in Table 5.2. All of the computations are performed in Matlab, and 

the codes to perform the computations are included in Appendix A. To summarize the 

Manager’s Decision, the artifact and process decisions are shown graphically in Figure 

5.3 and Figure 5.4. 

 

FIGURE 5.3. MANAGER'S ARTIFACT DECISION 

 

FIGURE 5.4. MANAGER'S PROCESS DECISION 
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Manager’s Process Decision

Alternatives Outcomes Preferences

Design 
Actions

Artifact Information State Process
Resources

Expected Net 
Payoff

Select A No change $0 E[π(A)]-0

Select B No change $0 E[π(B)]-0

Analyze A Updated prediction and decision 
criteria for product A

$33,000 E[π(A’)]-$33,000

Analyze B Updated prediction and decision 
criterion for product B

$33,000 E[π(B’)]-$33,000
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5.2.2 Comparison with Value of Information Analysis 

Value of information is a one-at-a-time analysis; only one message is considered at a 

time. The decision tree given in Figure 5.2 can be adapted to be equivalent with the value 

of information approach by truncating the tree after only one analysis. Then, after the 

analysis has been performed on either product A or product B, the manager must choose 

between the two products without further analysis. The equations for the value of 

information for this example are given in equations (5.23) and (5.24). Two equations are 

given because two information sources are considered. The adapted equations for the 

expected utility of the Analyze alternatives are given in equations (5.25) and (5.27).  

TABLE 5.2. EXPECTED UTILITIES OF THE DECISION 
ALTERNATIVES IN $M, COMPARING THE FULL AND TRUNCATED 

DECISION TREES 
 Risk Neutral 

R = 0 
Risk Averse 

R = 1 
Full Truncated Full Truncated 

Select A 8.00 8.00 -16.44 -16.44 
Select B 15.00 15.00 12.84 12.84 
Analyze A 15.01 14.97 13.14 12.79 
Analyze B 15.02 14.99 13.16 12.94 
     

 ( ) [ ] [ ] [ ]( )| SA SBAAE E E max E , E,x u uuxα αυ α = −  (5.23) 

 ( ) [ ] [ ] [ ]( )| SA SBABE E E max E , E,x u uuxβ βυ β = −  (5.24) 

 [ ] ( ) ( )D|AAE E uf du αα αα
∞

Α
−∞

=   ∫  (5.25) 

 ( ) ( ) ( )( )D|α SA|α SB|αE max E , Eu u uα α α=            (5.26) 

 [ ] ( ) ( )D|ABE E uf du ββ ββ
∞

Β
−∞

=   ∫  (5.27) 

 ( ) ( ) ( )( )D| SA| SB|E max E , Eu u uβ β ββ β β  =           (5.28) 
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The expected utilities for each of the decision alternatives are shown in Table 5.2. Values 

are shown for the full decision tree analysis and the truncated decision tree analysis for 

both a risk neutral manager and a risk averse manager. The highest expected utility for 

each scenario is shown in boldface font.  

Performing the full decision tree analysis for the risk neutral manager reveals that 

analyzing product B is the alternative with the highest expected utility, whereas the 

truncated decision tree analysis for the same manager indicates that selecting product B 

has the highest expected utility. Thus, for the risk neutral manager, the truncated tree 

analysis indicates that it is not valuable to perform the marketing analysis on product B if 

there is no opportunity to then perform the marketing analysis on product A. But it can be 

seen from the full decision tree analysis that there is a benefit to performing the 

marketing analysis on product B if there is a subsequent opportunity to perform the 

analysis on product A.  

For the risk averse manager, however, the full and truncated decision tree analyses both 

yield the same answer: analyze product B. Although the same conclusion is reached, the 

full decision tree analysis gives a higher expected utility for analyzing product B than the 

truncated tree analysis. In fact, for both the risk neutral and the risk averse managers, the 

full decision tree analysis returns a higher expected utility for the Analyze alternatives as 

opposed to the truncated tree analysis, meaning that the ability to perform the subsequent 

marketing analysis adds value. Although the utility are higher for the full decision tree, 

the full and truncated tree analyses predict similar expected utilities. Therefore, VoI may 

be an acceptable decision rule if one is willing to accept a small amount of error in the 

predicted expected utility. 
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5.2.3 Exploration of the Effects of the Prior Distribution Parameters 

Additional insight can be gained by examining the changes in the results of the decision 

analysis as the parameters of the manager's problem are varied. Specifically, the effects 

are explored of changes in prior distributions, the cost and quality of the analysis, and the 

risk attitude of the manager. 

For particular values of analysis cost, analysis quality, and risk aversion, the boundaries 

between preferred decision alternatives are shown as a function of the mean and standard 

deviation of the prior distribution representing the earnings of product A in Figure 5.5. 

These boundaries are found by repeating the analysis from the previous section within a 

root-finding algorithm. In this plot the mean of the prior distribution representing the 

earnings of product B is held constant at zero while the mean of the prior distribution 

representing the earnings of product A varies. The standard deviation of the prior 

distribution representing the earnings of product B is held constant at one; thus, the prior 

distribution for product B is a standard normal distribution. Recall the parameter scaling 

mentioned earlier: all parameters are scaled such that the prior distribution with the 

largest standard deviation (product B in this case) is scaled to a standard normal 

distribution. This normalization keeps all the parameters at the same scale and enables 

this boundary plot to apply to many other problems in addition to the manager’s decision 

problem. Thus, this particular plot maintains the analysis cost and quality from the 

manager's decision problem, but the values shown are normalized by the standard 

deviation of product B. 
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FIGURE 5.5. BOUNDARY PLOT COMPARING FULL AND TRUNCATED 
DECISION TREES, RISK NEUTRAL, ALL PARAMETERS IN $M 

The boundaries from the full decision tree analysis are shown as solid lines, while the 

boundaries from the truncated decision tree analysis are shown as dotted lines. Also, the 

point on the plot that reflects the particular prior distributions of the manager’s decision 

problem is indicated with a star. In the figure one sees that it is preferred to perform the 

analysis on product B when the standard deviation of product A is less than the standard 

deviation of product B. Likewise, it is preferred to perform the analysis on product A 

when A has the larger standard deviation. Furthermore, one sees that it is only preferred 

to perform an analysis when the means of the two concepts are sufficiently close to one 

another. Intuitively speaking, this result is expected. One should perform an analysis only 

when it is difficult to tell which concept is likely to be preferred because their expected 

utilities are close to one another. In other words, it is worth performing the analysis only 

when there is significant overlap in the utility distributions of the two concepts. When 
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this is the case, the analysis should be performed on the concept with the larger amount 

of variation to get the most out of the analysis.  

 
FIGURE 5.6. BOUNDARY PLOT COMPARING FULL AND TRUNCATED 

DECISION TREES, RISK AVERSE, ALL PARAMETERS IN $M 

This boundary plot clearly shows that the full decision tree analysis results in a larger 

region in which it is preferred to perform an analysis. By truncating the decision tree after 

only one analysis, traditional value of information calculations can lead DMs to the 

wrong conclusion for cases in which the two products have similar standard deviations. 

At the bottom of the boundary plot the standard deviation of product A is equal to zero, 

meaning that there is no uncertainty in the outcome of product A. It makes sense that the 

boundaries for the full and truncated decision tree analyses would approach each other at 

this point, because there is no value in a subsequent marketing analysis if the predicted 

earnings from one product are already known precisely. When risk aversion is included, 

one sees a slightly different shape in the boundary plot, as shown in Figure 5.6. In the 
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the preferred alternative. The reason for the curved shape can be seen by examining the 

exponential utility function, specifically the formula for the expectation of the 

exponential utility function. In the risk averse case, the expected utility is a function of 

both the mean and the standard deviation, whereas the expected utility in the risk neutral 

case is a function of the mean only. Expected utility decreases with increasing standard 

deviation and increases with increasing mean; thus, to compensate for the decreasing 

expected utility as the standard deviation increases, the mean value at which the expected 

utilities between product A and product B are equal must increase. The curved shape is 

due to the exponential and the squared term in the expected utility. In this boundary plot 

one again sees that the truncated decision tree analysis gives a smaller area in which 

performing the marketing analysis is the preferred alternative. One can also see, however, 

that the manager’s decision falls within the region in which the analysis is preferred 

according to both the full and truncated decision tree analyses. 

5.2.4 Exploration of the Effects of the Analysis Cost and Quality 

To explore the effect of analysis cost and quality on the boundary plots, additional 

boundary plots are generated for increasing cost and for decreasing quality. It is expected 

that the marketing analysis will no longer be preferred for any combination of prior 

distributions if the analysis is either too costly or has a low enough quality. The 

progression of increasing cost boundary plots is displayed in Figure 5.7. The progression 

of decreasing quality boundary plots is displayed in Figure 5.8. Note that quality of the 

analysis decreases as the standard deviation of epsilon increases. The boundary plot 

progression for a risk averse manager and increasing analysis cost is shown in Figure 5.9.  
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In Figure 5.7, one sees that the area of the central region in which performing the analysis 

is preferred decreases as cost increases. Furthermore, at some point, the region in which 

analysis is preferred disappears entirely from the boundary plot.  Thus, at that point the 

cost of the analysis is too high and the manager is better off simply choosing the product 

with the higher expected utility. On the other hand, when there is no cost associated with 

the analysis, it is always preferred to run the analysis on the more uncertain product. A 

similar affect is seen in the progression of decreasing quality boundary plots in Figure 

5.8. As the quality decreases, the area in which analysis is preferred decreases. At some 

point the quality of the analysis is too low, and the manager is better off choosing the 

product with the higher expected utility. When the quality of the analysis is as good as it 

can possibly be (standard deviation equal to zero) there is still a finite space in which the 

analysis is preferred. This is because the value of the analysis must be averaged over all 

the possible outcomes. Thus, even though the analysis will entirely eliminate the 

uncertainty in that product, one is still left with the uncertainty of what the outcome of 

the analysis will be given the initial uncertainty in the product. In this case, the region in 

which the analysis is preferred represents the cases in which the EVPI is greater than or 

equal to the cost of the analysis. 

FIGURE 5.7. BOUNDARY PLOTS OF INCREASING COST, RISK NEUTRAL, 
PARAMETERS IN $M. 
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FIGURE 5.8. BOUNDARY PLOTS OF DECREASING QUALITY, RISK NEUTRAL, 
PARAMETERS IN $M. 

 
FIGURE 5.9. BOUNDARY PLOTS OF INCREASING COST, RISK AVERSE, 

PARAMETERS IN $M. 
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region represents analyses that are not worth the costs; thus, the manager can simply 
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choose the product with the higher expected utility. This means that for the combinations 

of analysis cost and quality in the upper right half of the plot, the decision maker can 

determine whether or not to perform the analysis based solely upon the parameters of the 

analysis itself, independent of the prior distributions of the two concepts under 

consideration. The lower left region, on the other hand, represents analyses that may be 

worth performing depending on the values of the product prior distributions. In this case 

the manager should view the boundary plot to determine the preferred alternative for his 

particular decision scenario. Although it is useful to screen out some “no brainer” 

decisions on the basis of the analysis cost and quality, it may be more useful in practice to 

have a screening test on the basis of the prior distributions of the products, since the cost 

and quality of potential analyses may be unknown.  

 
FIGURE 5.10. SCREENING TEST ON ANALYSIS COST AND 

QUALITY 

From this plot, one sees that increasing risk aversion increases the cost at which 

performing the analysis is no longer worth the expense for a particular value of σε. This 
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quality of the analysis, which is expected because a more risk averse decision maker is 

more sensitive to uncertainty and the analysis quality directly impacts the uncertainty in 

the outcomes. Because the added value of a subsequent analysis approaches zero as one 

approaches this boundary, as noted previously, the boundary shown in this plot is the 

same regardless of whether the full or truncated decision tree analysis is used to find the 

boundary.  

5.3 MANAGER’S DECISION: TWO ANALYSES 

To explore this scenario further, the manager’s decision problem was augmented by 

considering an additional analysis that could be applied to either product. This additional 

analysis has the same impact on the knowledge about the product earnings as the first 

marketing analysis, meaning that the predicted earnings are assumed to be the true 

earnings plus a random error term, and shown in equation (5.2). With this additional 

analysis it is possible to investigate not only when analysis is preferred, but which 

analysis is preferred. This augmentation significantly increases the size of the full 

decision tree, which also increases the computational effort required to compute the 

expected utilities of alternatives in the full tree. Because of the large size of the decision 

tree, the full tree is not depicted here. The truncated tree that is used for the Value of 

Information computation is shown in Figure 5.11. All other aspects of the problem 

formulation remain the same as reported in the previous section and are not repeated 

here.  

As in the previous section, the results from the full decision tree analysis are compared to 

the truncated Value of Information analysis. In Figure 5.12 and Figure 5.13, points where 

the two analyses disagree on the preferred alternative are depicted with an X. Similar to 
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the one analysis case, the full and truncated tree analyses disagree at the outer edges of 

the central region in which analysis is preferred. In these cases, the full decision tree 

indicates that an analysis should be performed while the truncated tree analysis indicates 

that the preferred alternative is to select one of the product proposals. However, unlike in 

the one analysis case, there is also a central region in which the full and truncated tree 

analyses disagree. In this region both decision tree analysis indicate that analysis is 

preferred, but they disagree on which analysis is preferred. This pattern is seen in both 

the risk neutral and the risk averse cases. As was the case with the single analysis 

scenario, the expected utilities of the preferred alternatives are very close to one another 

regardless of which decision tree is used for the computation. Thus, although the 

truncated Value of Information tree sometimes predicts the wrong decision alternative, 

the loss in expected utility from choosing that wrong alternative is minimal. 

 

FIGURE 5.11 TRUNCATED DECISION TREE FOR THE MANAGER’S 
DECISION, TWO ANALYSIS CASE 
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FIGURE 5.12 COMPARISON OF FULL AND TRUNCATED DECISION TREES 
FOR THE TWO ANALYSIS CASE OF THE MANAGER’S DECISION, RISK 

NEUTRAL 

 

FIGURE 5.13 COMPARISON OF FULL AND TRUNCATED DECISION TREES 
FOR THE TWO ANALYSIS CASE OF THE MANAGER’S DECISION, RISK 
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5.4 PRESSURE VESSEL DESIGN EXAMPLE 

A designer of pressure vessels is choosing between materials for her company’s next 

generation helium tank. The material supplier has suggested two materials: the 

material used in their other pressure vessels, which has a strength of 1000 ± 180 

MPa, and a new alloy that has a lower expected strength and a larger uncertainty, 

950 ± 270 MPa. The new alloy has a larger uncertainty because it has not yet been 

tested and characterized carefully, but it has the potential to have a much larger 

strength than the existing material. Both materials are available at a cost of 

$8500/m3. To reduce the uncertainty in the material strength the designer can request 

an additional material test. The material supplier offers to perform material strength 

testing and charges $660 per test. The test is expected to give the true strength within 

100 MPa.  

The pressure vessel manufacturing company has an established payoff function which 

includes the sale price of the tank, material costs assessed on a volumetric basis, a cost 

for replacing the tank when failure occurs, and the costs of material strength testing, 

shown in the following equation8. The company amortizes the cost of strength testing 

over 100 vessels for a per-vessel analysis cost of $6.60. 

                                                            
8 This is the same payoff function used by Ling and coauthors (Ling, et al. 2006), although the failure cost 
is changed from $1M to $300 to represent the cost of replacing the vessel when it fails by leaking rather 
than bursting. 
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 (5.29) 

In this example, it is assumed that the dimensions of the new pressure vessel are dictated 

by standards, with the exception of the wall thickness which must be varied according to 

the material strength. The wall thickness is varied to optimize expected payoff given the 

uncertainty in the true material strength. The equation for the expected payoff as a 

function of the wall thickness is given below, where p is the design pressure for the 

vessel, 100 MPa. The uncertain material strength only impacts the failure indicator. Thus, 

to compute the expectation of that portion of the payoff function the cost of failure is 

multiplied by the probability of failure. Since failure occurs when the maximum stress in 

the vessel exceeds the material strength, the probability of failure is the value of the 

cumulative distribution function of the material strength, , evaluated at the hoop stress, 

, which is the maximum stress in the pressure vessel. 
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To gain a better understanding of the pressure vessel problem, the impacts of the mean 

and standard deviation of normally distributed material strength on the expected payoff, 

vessel wall thickness, and probability of failure are explored in Figure 5.14. An increase 

in the mean or a decrease in the standard deviation of the material strength reduces the 

probability of failure for a constant wall thickness.  As shown in the figure, however, by 

maximizing the expected payoff, some of the reduction in failure cost is traded off for a 

reduction in wall thickness and hence material cost. 

(a) (b) (c) 
FIGURE 5.14. TRENDS OF EXPECTED PAYOFF (A), VESSEL WALL THICKNESS 

(B), AND PROBABILITY OF FAILURE (C) VERSUS MEAN AND STANDARD 
DEVIATION OF MATERIAL STRENGTH AT THE POINT OF MAXIMUM 

EXPECTED UTILITY (EQUATION 2). 
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Analyze material B. Selecting either material represents ordering that material to begin 

production of the new pressure vessels. Analyzing either material means that the designer 

orders a test of that material and can delay her decision between the two materials until 

after the test results are in. Thus, each analysis alternative is followed by another decision 

after receiving the test result. The decision alternatives of these subsequent decisions are 

the same as the first decision with the exception that it is assumed the designer will not 

retest a material.  

The second step of decision analysis is to predict the outcomes of each decision 

alternative. These outcomes reflect the beliefs of the designer about the actual material 

strength of each material and the payoff that will be realized from the sale of the resulting 

pressure vessels. The designer has beliefs about the material strength based on her 

experience and the values reported from the material supplier. Because the true value of 

the material strength is uncertain, a range of possible payoff outcomes are possible. The 

designer formulates her beliefs about the material strength as probability distributions. 

Normal distributions are assumed in order to simplify the computation of posterior 

distributions conditional on the outcome of the analyses. Based on those beliefs about the 

material strength, she can compute the payoff of the Select alternatives using equation 

(5.29). When propagated through the payoff function, the resulting overlapping payoff 

distributions are shown graphically in Figure 5.15. The top half of the plot shows the 

possible outcomes of the material strength, while the bottom half of the plot shows the 

potential payoff outcomes. As shown, the strength of material A is much more uncertain, 

but also has a lower mean strength than material B. Because of the large variation in the 

strength of material A, a greater thickness is required for vessels made from material A as 
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compared to material B. Since less material must be used, the potential payoff using 

material B is higher than potential payoff using material A. From this initial look, it 

appears that selecting material B is the preferred alternative; however, one must also 

consider the option to perform the material testing to reduce uncertainty in the material 

strength. 

FIGURE 5.15. CUMULATIVE DISTRIBUTION FUNCTIONS FOR MATERIALS 
A AND B. 
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this information mathematically by assuming that the result of the strength test is the true 

strength plus a random error term, where the random error term is also distributed 

normally and has a mean of zero. The margin of error reported by the material supplier is 

interpreted as 3σ, and thus the standard deviation of the random error term is 33 MPa. 

This relationship is shown in the following equation, 

 ( ),  ~ 0,s s Nα εε ε σ= +  (5.31) 

where sα is the strength test result in psi, s is the true material strength, ε is the random 

error term, and σε is the standard deviation of that error term. 

To incorporate the designer’s prior beliefs of the material strength with the result from 

the material strength test, Bayes' Theorem is used to compute posterior probabilities. The 

material strength test enables the designer to update her prior knowledge about the 

material. With updated beliefs about the material strength, she can also update her beliefs 

about the expected payoff of the pressure vessel design. Due to the properties of the 

normal distribution, the posterior probability is also normally distributed, however the 

mean varies as a function of the value from the analysis, . The derived mean and 

standard deviation of the posterior probability are shown in the following equation, 

 ( )
2 2 2 2

| 2 2 2 2~ ,a a a
a A

a a

sf s N α ε ε
α α

ε ε

σ σ µ σ σ
σ σ σ σ=

 +
 + + 

 (5.32) 

where  is the variance of the prior distribution of the strength of material A and µa is 

the mean of the prior distribution of the strength of material A. Once the posterior 
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probability is computed using the above equation, the expected payoff using each 

material can be computed using equation (5.30). 

The third step of the decision analysis is to elicit the preferences of the decision maker 

with respect to risk in a utility function. Preferences are elicited with respect to outcomes 

in terms of the payoff. For this example it is assumed that the designer is risk neutral, 

and, as a result, her utility function and payoff function are one in the same.  

 

The fourth and final step of the decision analysis is to compute the expected utilities of 

each decision alternative. This can be done by “rolling back” the branches of the 

designer’s decision tree in a process known as backward induction. The designer’s 

decision is represented graphically in a decision tree in Figure 5.16. In this decision tree, 

a and b represent the possible strength outcomes of materials A and B. The results from 

 
 

FIGURE 5.16. DECISION TREE FOR THE PRESSURE VESSEL DECISION 
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the strength test are represented by α and β. The functions under the chance events 

represent probability density functions, where f(a) is the prior distribution of the strength 

of material A, f(b) is the prior distribution of the strength of material B, fA(α) and fB(β) 

are the marginal distributions of the outcomes of the strength tests on materials A and B, 

and fa|A=α(a) and fb|B=β(b) are the posterior distributions of the strength of materials A and 

B given the values from the strength tests. Additionally, (∙) represents the payoff as a 

function of the material strength. 

To compute the expected utility of each decision alternative, chance events are rolled 

back by computing the expectation over the outcomes, and decision boxes are rolled back 

by taking the maximum value over the decision alternatives. For the pressure vessel 

decision problem, equations (5.33) and (5.34) are used to compute the expected utility of 

the Select alternatives while equations (5.46) and (5.47) are used to compute the expected 

utility of the Analyze alternatives. Equations (5.35) through (5.45) define intermediate 

quantities which are referred to in equations (5.46) and (5.47). In these equations the 

subscripts on the utility refer to either the decision alternative of a particular decision 

node or to a decision node itself. Additionally, the analyses that have been performed are 

indicated in the subscripts on the utility. For example, uD|αβ represents the utility of the 

decision node at which the strength test has been performed on both materials and uSB|α 

represents the utility of selecting material B after the strength test has been performed on 

material A. 

 [ ] ( ) ( )SAE u f a a daπ
∞

−∞
= ∫  (5.33) 

 [ ] ( ) ( )SBE u f b b dbπ
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−∞
= ∫  (5.34) 
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The parameters of the decision problem thus defined, the expected utilities of each 

Analyze decision alternative are computed using equations (5.46) and (5.47). Numerical 
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integration via adaptive Simpson's quadrature is used to compute the integrals (Gander, et 

al. 2000). The expected utilities of the Select decision alternatives are computed via 

equations (5.33) and (5.34). The computations are performed in Matlab, and the codes 

used to perform the computations are included in Appendix B. To summarize the 

analysis, the artifact and process decisions are depicted graphically in Figure 5.17 and 

Figure 5.18. 

 

FIGURE 5.17. PRESSURE VESSEL ARTIFACT DECISION 

 

 

FIGURE 5.18. PRESSURE VESSEL PROCESS DECISION 
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5.4.2 Comparison with Value of Information Analysis 

Value of information is traditionally computed by examining the impacts of each 

message independently. Sequences of messages are generally not considered. The 

decision tree given in Figure 5.16 can be adapted to be equivalent with the value of 

information approach by truncating the Analyze branches after only one analysis. Then, 

after the analysis has been performed on either material A or B, the designer must choose 

between the two materials without further analysis. The equations for the value of 

information for this example are given in equations (5.48) and (5.49). Two equations are 

given because two information sources are considered. The adapted equations for the 

expected utility of the Analyze alternatives are given in equations (5.50) and (5.52).  

TABLE 5.3. EXPECTED UTILITIES OF THE DECISION 
ALTERNATIVES IN $, COMPARING THE FULL AND TRUNCATED 

DECISION TREES 
 Full Truncated
Select A 103.88 103.88 
Select B 116.03 116.03 
Analyze A 113.30 113.29 
Analyze B 116.04 116.02 

  
 

 

 ( ) [ ] [ ] [ ]( )| SA SBAAE E E max E , E,x u uuxα αυ α = −  (5.48) 

 ( ) [ ] [ ] [ ]( )| SA SBABE E E max E , E,x u uuxβ βυ β = −  (5.49) 
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The expected utilities for each of the decision alternatives are shown in Table 5.3. Values 

are shown for the full decision tree analysis and the truncated decision tree analysis. The 

highest expected utility for each scenario is shown in boldface font.  

Performing the full decision tree analysis reveals that analyzing material B is the 

alternative with the highest expected utility, whereas the truncated decision tree analysis 

for indicates that selecting material B has the highest expected utility. Note that the full 

decision tree analysis returns a higher expected utility for both Analyze alternatives as 

compared to the truncated tree analysis, meaning that the ability to perform the 

subsequent material strength analysis adds value. The conflicting results from the full and 

truncated decision tree analyses demonstrate that traditional value of information analysis 

can lead to the wrong conclusion when a sequence of information sources is available; 

however, there is very little difference in the utilities of the preferred alternatives. 

5.4.3 Exploration of the Effects of the Prior Distribution Parameters 

The pressure vessel decision problem has been analyzed for the given parameters, but 

additional insight can be gained by examining the changes in the results of the decision 

analysis as the parameters of the decision problem are varied. In this section the effects of 

changes in prior distributions and the cost and quality of the analysis are explored. For 

particular values of analysis cost, and analysis quality, the boundaries between preferred 

decision alternatives are shown as a function of the mean and standard deviation of the 

prior distribution of the strength of material A in Figure 5.5. These boundaries are found 

by repeating the analysis from the previous section within a root-finding algorithm. In 

this plot the mean of the prior distribution of the strength of material B is held constant at 

1000 MPa while the mean of the prior distribution of the strength of material A varies. 
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The standard deviation of the prior distribution of the strength of material B is held 

constant at 33 MPa. This plot maintains the analysis cost and quality from the pressure 

vessel decision problem. For reference, the point on the plot that reflects the particular 

prior distributions of the pressure vessel decision problem is indicated with a star. 

(a) (b) 

FIGURE 5.19. BOUNDARY PLOT COMPARING FULL (A) AND TRUNCATED 
(B) DECISION TREES, STRENGTH OF MATERIAL B ~N(1000, 60) MPA  

The figure shows that it is preferred to perform the analysis on material A when the 

standard deviation of material A is greater than the standard deviation of material B (60 

MPa) and the mean of material A is nearly equal to or greater than the mean of material B 

(1000 MPa). Also, the figure indicates that it is preferred to select material A when the 

mean of material A is larger than the mean of material B and the standard deviation is 

less than that of material B. It is also preferred to select material A even for some cases in 

which the mean of material A is less than the mean of material B given that the standard 

deviation of material A is less than that of material B. For all values of the standard 

deviation of material A, there is a band of mean values for which it is preferred to analyze 

material B. The pressure vessel design problem falls within this band. It is preferred to 
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select material B for most cases where the mean of material A is less than that of material 

B. 

Comparing the truncated decision tree plot to the full tree plot, it can be seen that the 

band in which analyzing material B is the preferred alternative does not extend over all 

values of the standard deviation of material A as is the case in the full decision tree plot. 

Thus, it can be concluded that analyzing material B is preferred when the standard 

deviation of material A is larger than that of material B only if the analysis of material B 

is followed by the analysis of material A. Therefore, if it is possible to analyze both 

materials, relying upon traditional value of information analysis can lead to the wrong 

conclusion about whether the analysis is worth the costs. Other than the absence of the 

analyze B band for standard deviations greater than B, the truncated decision tree plot is 

largely the same as the full decision tree plot. This indicates that much of the benefit from 

analysis comes from the first analysis performed, which explains why the expected 

utilities computed via the truncated decision tree are very close to the expected utilities 

computed via the full decision tree. Because of this, VoI may be an acceptable decision 

rule if some error can be tolerated. 

To understand the meaning of these plots, recall that performing the analysis both reduces 

the uncertainty in the material strength and reduces the expected payoff by the cost of the 

test. Thus, for analysis to be preferred, the increase in expected payoff from the reduction 

in uncertainty must outweigh the cost of the test. Starting in the Select A region and 

moving vertically, performing the analysis on A becomes more attractive as the 

uncertainty in the strength of material A increases. This is expected because the 

magnitude of the reduction in uncertainty increases as the standard deviation of A 
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increases, and a greater reduction in uncertainty is more valuable. Next, starting in the 

Select A region and instead moving left by decreasing the mean strength, analyzing 

material B becomes preferred and is later outweighed by selecting material B. It makes 

sense that selecting material B is preferred for low mean strengths of material A, because 

the likelihood of getting a better value for the strength of material A after analysis is slim. 

With moderately low mean strengths of material A, it makes sense to do some analysis to 

determine which material has the higher strength. Because material B has the more 

uncertain strength in this region (below 60 MPa), analyzing material B will result in a 

greater reduction of uncertainty than analyzing material A. 

When the standard deviation of material A is larger than the standard deviation of 

material B, it is not immediately obvious why analyzing material B would be preferred 

over analyzing material A, as is the case for the pressure vessel decision problem 

indicated by the star in Figure 5.5.  Analyzing A only adds value if it results in a change 

in the choice of material.  When the prior belief for the mean strength of material A is 

lower than that of B, most of the time, the analysis will simply confirm that A is the worst 

material, so that there is little to be gained from analyzing A. (Notice also from Figure 

5.14a that when the strength of the material A does turn out to be larger than B's, the 

increase in expected utility is relatively small.)  Analyzing material B, however, does 

make sense if it can be followed by an analysis of A, as can be seen in Figure 5.19b.  If 

the analysis of B reveals a worse than expected strength for material B, then it becomes 

worthwhile to analyze A to verify whether it now has gained the upper hand.  Because of 

the fairly large standard deviation of material A, it is thus possible that analyzing both B 

and A results in a situation where it is beneficial to switch choices from material B (with 
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larger mean strength and smaller uncertainty) to material A (with smaller mean strength 

and larger uncertainty).  Whether or not the expected payoff of selecting B after analysis 

on B is larger than the initial expected payoff of selecting B depends on the quality and 

cost of the analysis. These relationships are explored in the next section. 

5.4.4 Exploration of the Effects of the Analysis Cost and Quality 

To explore the effect of analysis cost and quality on the boundary plots, additional 

boundary plots are generated for increasing cost and for decreasing quality. It is expected 

that the analysis will no longer be preferred for any combination of prior distributions if 

the analysis is either too costly or has a low enough quality. The progression of 

increasing cost boundary plots is displayed in Figure 5.20; the analysis standard deviation 

is held constant at 33 MPa through the progression. The progression of decreasing quality 

boundary plots is displayed in Figure 5.21. In this progression, the cost is held constant at 

$6.60. Note that quality of the analysis decreases as the standard deviation of epsilon 

increases. In both of the figures, a dotted line indicates the intersection of the two Analyze 

alternatives.  

FIGURE 5.20. BOUNDARY PLOTS FOR INCREASING ANALYSIS COST 
(SA=SELECT A; SB=SELECT B; AA=ANALYZE A; AB=ANALYZE B). 
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FIGURE 5.21. BOUNDARY PLOTS FOR DECREASING QUALITY OF THE 
ANALYSIS (SA=SELECT A; SB=SELECT B; AA=ANALYZE A; AB=ANALYZE 

B). 
 

In both figures, a similar progression is seen. At the left, for low cost and high quality, 

the boundary plot shows only three regions for Analyze B (AB), Analyze A (AA), and 

Select A (SA). So for low cost or high quality, analysis of one of the materials is almost 

always preferred. The exception is when material A has a higher mean and lower 

standard deviation than material B; in this case it is preferred to select material A. As the 

cost increases or the quality decreases, the analysis loses value and the boundary plots 

show four regions:  Select B (SB), Analyze B, Analyze A, and Select A. The size of the 

region in which analyze A is preferred is not substantially impacted, but Select B begins 

to overtake Analyze B for lower mean values of the strength of material A. At some point 

Select B overtakes Analyze B entirely, as shown in the fourth plot in each figure. Finally, 

as the cost continues to increase or the quality continues to decrease, the region in which 

Analyze A is preferred disappears as well and the only two preferred decision alternatives 

are Select A and B. These results confirm that both the quality and cost of an analysis 

impact the desirability of the analysis. 

The quality of the analysis impacts the payoff of the pressure vessel via the posterior 

distribution of material strength. From equation (5.32), the standard deviation of the 

posterior distribution is always less than the minimum among the prior distribution and 
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analysis standard deviations. Thus, when the analysis standard deviation is smaller than 

the prior standard deviation, the analysis can provide a significant reduction in 

uncertainty. However, when the standard deviation of the analysis is larger than that of 

the prior distribution, the reduction in uncertainty is very small. Also, recall that the 

uncertainty impacts the expected payoff via the failure cost, but the vessel thickness is 

selected to optimize the expected payoff.  Thus, reducing the uncertainty does not 

necessarily reduce the probability of vessel failure. Instead, reducing the uncertainty may 

simply allow for a thinner pressure vessel that reduces material costs.  

The cost of the analysis is a simple reduction in the expected payoff of the Analyze 

alternatives. The Analyze alternatives must have larger expected utilities than the Select 

alternatives to be preferred, despite this cost penalty. Higher expected utilities are 

possible with the Analyze alternatives because poor outcomes for one material can be 

avoided in favor of better outcomes in the other material in the subsequent decision 

between materials A and B. 

5.5 DISCUSSION 

In this chapter the decision analysis of design process decision problems has been 

presented to demonstrate the quantitative comparison abilities enabled by Rational 

Design Theory. Further exploration of the parameters of this scenario revealed that 

analyses are only desirable if the cost is low and the quality is high. In these cases, it is 

usually preferred to analyze the parameter that is more uncertain. However, there are 

some cases in which it is preferred to analyze the parameter that is less uncertain when 

the less uncertain parameter has a higher mean value. In these cases, the analysis of the 
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less uncertain parameter is usually followed by the analysis of the more uncertain 

parameter. 

The Value of Information decision rule has been evaluated by comparing a full decision 

tree that allows sequences of decisions to a truncated decision tree which is equivalent to 

traditional value of information calculations. This comparison shows that the full decision 

tree analysis is more comprehensive in that it reveals scenarios in which the ability to 

perform a subsequent analysis adds value; however, the expected utilities of the most 

preferred alternative are usually very similar regardless of whether the expected utility is 

computed with the full decision tree or the truncated decision tree. Thus, while the full 

decision tree analysis provides a richer understanding of the problem when a sequence of 

information sources is available, Value of Information as a decision rule gets very similar 

results with less computational expense. This difference in computational expense must 

be considered when comparing the Value of Information strategy and the full decision 

tree as prescriptive design methods. Since the Value of Information strategy gets very 

good results at a much lower computational cost, it is likely to be preferred over the full 

decision tree analysis.  

The analysis presented in these examples is a simple scenario: two discrete concepts and 

one to two analyses. As a result, the conclusions that can be made in a general sense are 

limited, but this work forms the foundation for future work. The decision tree analysis in 

this chapter is limited to the consideration of only one to two analyses for simplicity of 

the decision tree but also to make the decision tree finite in depth. Because the decision 

tree analysis is essentially a process of “rolling back” the tree, one must begin at the ends 

and work back to the beginning. Therefore, the decision tree must be finite so that there is 
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an end at which to begin the rolling back process. But in this work it has been shown that 

the consideration of subsequent analyses does impact the expected utility of the Analyze 

alternatives. The investigation of additional possible actions will require larger decision 

trees, which in turn dramatically increases the computational complexity of the decision 

analysis.  

In addition to limiting the depth of the decision tree, the computational complexity of the 

decision analysis was made manageable in this example by the additional simplifying 

assumptions of normally distributed uncertain parameters, which simplify the 

computation of posterior probabilities. The conclusions from these examples are limited 

by to the assumed relationship between the prior and posterior distributions. The design 

process decision analysis relies upon the availability of joint probability information 

through which Bayesian updating can be performed. To strengthen these conclusions, 

additional joint probability relationships should be studied in future work. 

5.6 THESIS ROADMAP 

In this chapter two examples were presented to demonstrate how Rational Design Theory 

enables the quantitative comparison of design methods and the evaluation of decision 

rules through the decision analysis of design process decision. This chapter serves to 

validate the secondary hypothesis H2. In the next chapter, the thesis is concluded with a 

critical review and summary. 
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CHAPTER 6: CONCLUSION 

The thesis is concluded in this chapter with a summary and critical review. The purpose 

of this work is to establish Rational Design Theory as a new theoretical framework for 

the evaluation of design methods. A comprehensive review of the thesis up to this point is 

presented in Section 6.1. In Section 6.2 the research questions and hypotheses are 

revisited and critically reviewed with emphasis on the validity of the research hypothesis 

beyond the example problems presented in Chapters 4 and 5. Based on this review, the 

contributions of this work are discussed in Section 6.3 followed by suggested future work 

in Section 6.4. The chapter concludes in Section 6.5 with some closing remarks. 

6.1 A SUMMARY OF THIS THESIS 

Design theories are powerful tools by which design researchers can reason, hypothesize, 

and learn about good design practice. To provide a sound basis for such reasoning, design 

theories must embrace the drivers of the design process: uncertainty and economic 

tradeoffs between the design artifact and the design process. Existing theories of design 

are reviewed in Section 2.1, and it is demonstrated that they fall short. These theories 

focus on classification and representation of design knowledge, but they do not provide 

any justification for the manner in which this knowledge should be applied to achieve 

good results. Furthermore, most of the existing theories compromise the ability to 

explicitly express uncertainty in favor of a rigorous mathematical foundation that can be 

used to infer properties of design. Given the fact that uncertainty is significant in design 

and that the reduction of uncertainty is a primary design activity, such a compromise is 

unacceptable. 
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Rational Design Theory is proposed in Chapter 3 as an improvement on existing theories 

because it enables the explicit characterization of uncertainty throughout the design 

process as well as the consideration of tradeoffs between the design process and the 

designed artifact. In addition, RDT provides a theoretical framework for the comparison 

and evaluation of design methods as measured by the ideal of maximizing expected Net 

Design Utility. These capabilities are provided in RDT by applying the normative 

approach of decision analysis to design process decisions.  

RDT is complemented by a descriptive conceptual model of design processes in which 

the artifact decision and the process decisions are viewed as two levels of design decision 

making. The artifact decision is described in the Artifact Information State in three 

aspects: concepts, concept predictions, and concept decision criteria. These three aspects 

correspond to the alternatives, outcomes, and preferences of the artifact decision, 

respectively. In the process decision, each design action changes the concept information 

state while consuming design phase resources. Design actions include synthesis, analysis, 

and evaluation. Designers have preferences with respect to the consumption of design 

phase resources, and they also have preferences concerning the artifact decision. By 

considering all of these aspects of the process decision in a structured decision analysis, 

the quality of a particular design action, design process, or design method can be 

evaluated in a qualitative and quantitative fashion. 

The qualitative evaluation capabilities of RDT are demonstrated in Chapter 4 in a review 

of the systematic design method of Pahl and Beitz (Pahl, et al. 1996). In this review, each 

of the activities in the Pahl and Beitz method are described in the context of the RDT 

conceptual model. The method is then evaluated with respect to the characteristics of 
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good design methods as identified in Chapter 3. Because of the general nature of the Pahl 

and Beitz method, the prescriptions of the method are vague and therefore difficult to 

conclusively evaluate. Nevertheless, the review demonstrates that the Pahl and Beitz 

method contains no structural limitations that necessarily lead to irrational behavior. A 

more conclusive evaluation can only be conducted for a particular implementation of the 

method for given beliefs and preferences of a particular designer.  

The quantitative comparison and evaluation capabilities of RDT are demonstrated in 

Chapter 5 with two example problems. In both examples, the design strategy of applying 

the analysis that maximizes the Value of Information is evaluated. The evaluation is 

achieved by comparing the Value of Information calculation to a more comprehensive 

decision tree analysis that allows for a sequence of information sources to be considered. 

In both examples it is found that the more comprehensive decision tree analysis finds 

cases in which it is beneficial to conduct an analysis while the Value of Information 

calculation indicates that it is not beneficial to conduct an analysis. Although the Value of 

Information strategy predicts the wrong preferred design action in some cases, the 

expected utilities of the preferred decision alternatives as calculated by both methods are 

very similar. Thus, the Value of Information strategy is found to be an appropriate 

approximation as long as a small amount of error in expected utility is tolerated. 

Furthermore, the cost of the decision tree analysis was assumed to be negligible in both 

the Value of Information strategy and the more comprehensive decision analysis. If the 

computational expense of these decision tree calculations were included, Value of 

Information would surely be preferred to the more comprehensive analysis because it 

takes less time to compute the answer with the Value of Information strategy. 
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The examples in Chapter 5 demonstrate that RDT provides a structured framework for 

comparing and evaluating design methods in a quantitative fashion; however, the 

examples themselves are simplified problems. Even to evaluate such a simplified 

problem, significant computational resources are required to solve moderately sized 

decision trees. As a result, it is difficult to quantitatively support generalized conclusions 

with such an analysis. Although improvements can be made in the numerical calculations 

to speed computation, quantitative analysis will always be limited to very specific 

problems because beliefs and preferences are difficult to meaningfully generalize. 

6.2 REVISITING THE RESEARCH QUESTIONS AND HYPOTHESES 

As introduced in Chapter 1, the primary research question addressed in this thesis is as 

follows: 

What theoretical foundation for design has explanatory power and enables quantitative 

evaluation of design methods? 

The hypothesis is that Rational Design Theory provides explanatory power by enabling 

qualitative and quantitative evaluation of design methods. This is achieved through the 

application of normative decision theory to design process decisions. In addition, the 

application of normative decision theory is supported by the conceptual model of the 

design process. This hypothesis is defended by addressing the qualitative and quantitative 

evaluation of design methods separately in the secondary research questions. Recall that 

the goal in proposing RDT is to establish a normative theoretical framework for 

evaluating prescriptive design methods. RDT is not intended as decision-making tool for 
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use during design, but rather as a normative ideal to which prescriptive design methods 

can be compared. 

The first secondary research question refers to the qualitative evaluation of design 

methods enabled by Rational Design Theory: “Can Rational Design Theory be used to 

compare design methods in a qualitative sense?”, This question is answered in the 

affirmative in Section 3.5.2. The central argument is that Rational Design Theory enables 

qualitative evaluation of design methods through the decomposition of the design process 

decision into alternatives, outcomes, and preferences. These elements of the process 

decision reference the Artifact Information State, which is a representation of the artifact 

decision problem. The decomposition of this two-level decision problem enables an 

element-by-element comparison of design methods, since a design method prescribes a 

sequence of decisions.  

The second secondary research question pertains to the quantitative comparison of design 

methods: Does Rational Design Theory enable quantitative prediction of design method 

quality?”. This question is also answered in the affirmative in Section 3.5.2, and this 

ability of RDT is demonstrated in two example problems in Chapter 5. The analysis of 

design process decisions provides a mathematical framework for computing the expected 

utility of design actions. However, to do so, one must formalize the outcomes and 

preferences of design actions mathematically. This is only possible for a particular 

design’s beliefs and preferences concerning a very specific design scenario. As such, this 

requirement can limit the generality of conclusions that can be drawn from such a 

quantitative analysis. Nevertheless, analysis of design process decisions is a powerful 
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tool that can be used to provide quantitative explanation of the reasons for the success of 

popular design methods. 

6.3 CONTRIBUTIONS 

The primary contribution of this thesis is Rational Design Theory: a new theoretical 

framework that incorporates a conceptual model of design processes and the normative 

approach of decision theory applied to design process decisions. This theory improves on 

previous work by explicitly including uncertainty considerations and the cost of the 

design process without placing limits on beliefs or preferences of the designer. 

Furthermore, RDT enables quantitative comparison of design methods with respect to a 

particular set of beliefs and preferences. Such comparisons can lead to insights that 

support the development of improved design methods. Previous design theories did not 

provide this type of guidance about the quality of design methods. 

In the development of RDT, several insights about design were gained. The primary 

insight is that design is a decision-making process about design actions; i.e., design is 

about process decision rather than artifact decisions. Viewing design in this context 

enables the consideration of tradeoffs between the design process and the quality of the 

designed artifact. I believe that these tradeoffs are crucial for understanding the reasons 

behind popular and successful design methods.  

Highlighting the tradeoff between the design process and the quality of the design 

artifact, RDT shows that design is about maximizing the expected NDU; i.e., the utility of 

the design process, taking into account both the utility of the designed artifact and the 

cost of the design process. This maximum expected NDU may or may not be realized by 
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producing an artifact, since the production of an artifact requires resources to be spent 

which may not be recovered through sales of the artifact. Additionally, it may be required 

to radically reformulate the artifact decision in order to maximize NDU.  

Building on this point, another important insight relates to the end of the design phase. 

RDT demonstrates that design should end when all remaining design actions would 

reduce rather than increase the expected NDU. Thus, design can end with the production 

of an artifact, but it is also possible that design should end with the cancellation of the 

project in order to cut losses. 

In Chapter 5, RDT was applied in two example problems to demonstrate the quantitative 

comparison of design methods under a consistent set of designer beliefs and preferences. 

In these examples, it was shown that one design method can be quantitatively determined 

to be preferred over another for particular beliefs and preferences. This type of 

comparison is useful for studying design processes after completion or in a hypothetical 

sense, but the analysis is too computationally demanding to be used to support real-time 

design-process decision making. Although the Value of Information heuristic sometimes 

predicts a different preferred design action than the more comprehensive decision 

analysis, the difference in expected NDU between the preferred action as predicted by the 

decision analysis and the preferred action as predicted by the Value of Information 

heuristic is very small. Thus, comparing the Value of Information approach to the more 

comprehensive decision analysis showed that the Value of Information approach is an 

appropriate approximation of normative decision theory as long as a small amount of 

error can be tolerated. This comparison demonstrates the application of RDT as a 

normative framework for quantitative evaluating prescriptive design methods. 
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6.4 OPPORTUNITIES FOR FUTURE WORK 

RDT provides a theoretical foundation for the evaluation of design methods; therefore, 

there are many opportunities for future work enabled by RDT. These opportunities are 

summarized in Table 6.1 and are discussed in more detail thereafter. In addition, there are 

opportunities to enhance RDT with extensions and supporting studies. These 

opportunities are identified in Table 6.2. There are also some opportunities for future 

work inspired by the quantitative examples in Chapter 5. These opportunities for future 

work are given in Table 6.3. 

TABLE 6.1. OPPORTUNITIES FOR FUTURE WORK ENABLED BY RDT 

1  Explore the benefits in a design process of explicitly modeling the 
uncertainty in artifact outcomes. 

R
Q

 When is it a good idea to model uncertainty explicitly? 

Ta
sk

s 

• Discuss the sources and impacts of uncertainty in artifact outcomes. 
• Review methods for design under uncertainty 
• Identify a quantitative example for comparing a design method in 

which uncertainty is explicitly modeled with a design method in 
which uncertainty is ignored. 

2  Explore the tradeoffs between various design phase resources: time, 
cost, manpower, etc. 

R
Q

 Why is it sometimes a good idea to analyze multiple concepts in 
parallel? 

Ta
sk

s 

• Identify the resources allocated in design process decisions. 
• Identify conflicts between these resources. 
• Develop and solve a quantitative example exploring one or more 

conflicts between design phase resources. 

A first suggested study enabled by RDT is to explore the benefits of explicitly modeling 

uncertainty during a design process. A primary motivation for the development of RDT 

was that existing theories of design do not allow for the explicit characterization of 

uncertainty. This is important because uncertainty is a primary driver in the design 

process, and the decisions that designers make about design actions depend on their 
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attitudes toward uncertainty. However, the characterization of uncertainty can be a 

tedious process. While beliefs about uncertain outcomes can be elicited and formalized as 

subjective probabilities, the process of doing so is time-consuming and requires that the 

analyst be knowledgeable about belief elicitation. Because of this large cost associated 

with characterizing uncertainty, it may sometimes be preferred to ignore the uncertainty 

or crudely approximate the uncertainty in outcomes. In the early stages of design when 

uncertainty is large, it may make more sense to make decisions on the basis of the best 

guess about concept outcomes rather than a more comprehensive expression of all 

possible outcomes. These hypotheses can be quantitatively tested by comparing design 

methods in the context of RDT. This should be done by comparing the outcomes of an 

appropriate sequence of design actions with and without an explicit characterization of 

uncertainty. 

A second study enabled by RDT is the investigation of tradeoffs between various design 

phase resources such as cost, time, manpower, and computing resources. This study is 

prompted by the observation that designers often conduct analyses of multiple concepts 

in parallel. Such parallel investigations obviously take less time to complete, but require 

more resources in other areas such as cost, manpower, and computing resources. One 

may then ask why it is preferred to run parallel analyses when it is obvious that it will 

cost more to do so. When deadlines are looming, it is apparent that time may be more 

important than other resources, but it is possible that parallel investigation is valuable 

even in the absence of strict deadlines because of missed market opportunities. To 

investigate these interactions, the design phase resources and the conflicts between them 
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must be identified. Then, a quantitative example can be developed based on RDT to test 

hypotheses regarding deadlines, market timing, or other potential causes. 

In addition to future work enabled by RDT, there are also opportunities for future work to 

extend and enhance RDT. These are summarized in Table 6.2. The first opportunity for 

future work would serve to strengthen RDT by providing more examples of design 

methods explained in the context of RDT. This study leverages the structured framework 

of RDT to compare and contrast some common design strategies. This type of qualitative 

comparison is one of the primary capabilities of RDT, as mentioned previously. By 

explaining well-known design strategies in the context of RDT, this work would help to 

explore and strengthen the core ideas of RDT. In addition, this study could identify 

important similarities and differences between existing design methods. In current work, 

existing methods for design under uncertainty have been compared on the basis of risk 

attitudes (Lee, et al. 2010b). Although this study is not carried out in the context of RDT, 

similar types of insights would likely be gained with RDT as a central framework.  

Another opportunity for future work to support RDT is a descriptive study of practical 

design problems. In such a study, researchers would observe and record the beliefs, 

preferences, and design rationale of designers throughout a practical design project. Then, 

by interpreting the data in the context of RDT, conclusions can be drawn about how real 

design processes proceed. Such a study would help to verify that the RDT conceptual 

model is sufficiently comprehensive such that it is capable of characterizing any design 

method, regardless of whether it is considered to be a good method.  
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One area of RDT that could use improvement is the modeling of outcomes of synthesis 

actions. All synthesis methods differ in the amount of effort required and the quality of 

concepts produced. It is our view that the various synthesis methods can be quantitatively 

evaluated in the context of Rational Design Theory. To do this, some means for 

quantifying the resources spent during synthesis is needed, as well as a way to define the 

goodness of concepts produced. By gathering data on synthesis actions in practical design 

processes, researchers can make better estimates of the resources and outcomes of 

synthesis actions in future investigations. 

The next suggested opportunity for future work could support such data gathering in 

practical design problems. In this third suggested study, the Systems Modeling Language 

(OMG SysMLTM)(SysML 2006) is leveraged to provide a formal information model for 

the artifact information state and elements of the design process decision. The RDT 

conceptual model can be used to develop an information model for tracking knowledge 

about concepts and available actions during design. Formalizing such a model in a 

language such as SysML would facilitate the documentation of design processes and ease 

information sharing among distributed teams and multiple stakeholders. In addition, this 

work would provide a theoretical foundation for the use of SysML in systems design 

processes. Although there are constructs capable of representing uncertainty in SysML, 

they are not consistently or widely used in current work. Since uncertainty is a driving 

factor in the development of RDT, adopting a variant of the information model of RDT in 

SysML would provide some structure to the application of SysML in systems engineering 

for information capture and process documentation. Furthermore, such a model would 

support the adoption of RDT as a framework for the documentation of design processes, 



   

167 
 

which would further support the collection of practical design data for future RDT-

inspired work. 

TABLE 6.2. OPPORTUNITIES FOR FUTURE WORK TO EXTEND AND 
ENHANCE RDT  

1 Comparison of common design strategies using RDT. 
RQ What are the similarities and differences in common design strategies? 

Ta
sk

s 

• Identify design strategies for investigation (e.g., robust design, reliability-
based design, set-based design, product platform design, etc.) 

• Describe each strategy in the context of RDT. 
• Compare the strategies on the basis of the elements of the design process 

decision and the concept information state. 
• Quantitatively compare the strategies for a specific design scenario. 

2 Descriptive study of practical design processes. 

R
Q

 How do designers make decisions about the design process in practical design 
problems? 

Ta
sk

s 

• Identify a design project in which designers are willing to participate in a 
design study. 

• Determine the scope of data gathering: design phase, type of data to gather, 
how to gather, how to capture, etc. 

• Gather data. 
• Interpret data in the context of RDT 
• Draw conclusions about the design process as recorded. 

3 Formalize concept information state and elements of process decision in SysML 

R
Q

 How can design information be captured in SysML constructs in the context of 
RDT? 

Ta
sk

s 

• Enumerate and describe the types of design information in RDT. 
• Identify SysML constructs that can be used to represent these types of 

design information. 
• Demonstrate the documentation and manipulation of design information 

using these SysML constructs. 
4 Explore impacts of design actions that extend beyond a particular design 

project. 

R
Q

 How can one account for expected but uncertain benefits of design actions that 
extend beyond a particular design project, such as the benefits of formulating 
reusable performance models? 

Ta
sk

s 

• Identify cases in which the outcomes of a design action may extend beyond 
a particular design project. 

• Explore these outcomes with respect to fundamental outcomes of decision-
makers. 

• Propose a means for including these extended benefits in the context of 
RDT. 
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Another idea for future work to strengthen RDT is to investigate the impacts of design 

actions which may have benefits beyond the current design process. The generation of 

reusable performance models, for example, may have a moderate benefit during the 

current design project. Such a model may have an enormous benefit in later design 

projects since the hard work of creating the model has already been completed. It is 

unclear how to model preferences for such a model within RDT. This is complicated by 

the fact that the future benefit of the reusable model is uncertain. Although one may 

anticipate that the model will be reused, it cannot be known with certainty whether or not 

the model will actually be used or how many times it will be reused. Future work in this 

area would strengthen the ability of RDT to explain current practice.  

In addition to opportunities for future work that are enabled by or enhance RDT itself, 

there is an opportunity for future work based on the conclusions of the examples from 

Chapter 5. This opportunity is summarized in Table 6.3. 

In the example problems it was found that the Value of Information strategy is a good 

strategy for determining when to perform an analysis to gather more information in 

support of a decision between two design concepts. In future work, this conclusion can be 

used to develop a strategy for the efficient optimization of a large design space using a 

surrogate model when additional samples can be taken. Finding the global optimum in a 

large design space is a compromise between broad coverage and detailed exploration. 

Detailed exploration is enabled by complex simulation models; however, these models 

are often slow to evaluate. Generating a surrogate model using an interpolation technique 

can enable broad coverage of this design space with a small amount of error. The creation 

of the interpolating model requires evaluation of the underlying simulation model. 
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Evaluating more points using the simulation model reduces the error of the surrogate 

model, but it may take a long time to evaluate each point. Thus, to decide how many 

points to sample, one must make a compromise between evaluation time and accuracy. 

This compromise is similar to the tradeoff investigated in the example problems in this 

thesis; thus, the conclusions from these example problems can be leveraged to develop 

heuristics for efficient search of a large design space with surrogate modeling. 

TABLE 6.3. OPPORTUNITIES FOR FUTURE WORK INSPIRED BY THE 
EXAMPLES 

 Leverage VoI conclusions to develop a technique for efficient global 
optimization using a kriging model 

R
Q

 Given that Value of Information is an appropriate strategy for determining 
when to gather additional information, how can this strategy be used to support 
efficient global optimization using a surrogate model? 

Ta
sk

s 

• Identify a practical optimization example problem for demonstration and 
validation. 

• Develop a decision rule based on the Value of Information of an additional 
sample for the surrogate model. 

• Implement this decision rule within an optimization algorithm. 
• Demonstrate and critically evaluate this technique with respect to other 

strategies for efficient global optimization. 

6.5 CLOSING REMARKS 

RDT provides a theoretical framework for the comparison and evaluation of design 

processes and prescriptive design methods. This comparison is enabled by applying 

normative decision analysis to design process decisions, which is a departure from 

previous work focusing on design artifact decisions. This process context is a more 

appropriate context for the application of decision theory to design because it allows for 

the considerations of tradeoffs between the design process and the performance of the 

design artifact. I believe that the investigation of these tradeoffs will provide explanation 
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of why particular design methods are successful in particular design and economic 

situations.  

I believe that RDT has the potential to foster a new direction in design research. 

Presenting new methods in the context of RDT makes it easier to highlight the 

advantages of new methods over old methods and the differences in the classes of 

problems for which new methods are intended. In addition, knowledge of the types of 

information and the transformations of information in design will help designers to 

hypothesize and test new design methods and improvements to design practice. 
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APPENDIX A: MANAGER’S DECISION MATLAB CODE 

In this appendix, the Matlab code for solving the Manager’s Decision problem is presented. A 

list of the files with associated page numbers is presented in Table A.1. 

TABLE A.1. INVENTORY OF M-FILES FOR THE MANAGER’S DECISION 
PROBLEM 

Filename Page 
One Analysis Case 

AnalysisCost.m 172 
areaCrossing.m 172 
normedTwoOnewRiskAversionFunction.m 217 
normedTwoOnewRiskAversionFunction_OneAnalysis.m 217 
plotBoundaries_new.m 218 
plotBoundaries_OneAnalysis_new.m 220 
scanYLdown_new.m 224 
scanYLdown_OA_new.m 224 
scanYLup_new.m 224 
scanYLup_OA_new.m 224 
scanYMid_new.m 224 
scanYMid_OA_new.m 225 
scanYRdown_new.m 225 
scanYRdown_OA_new.m 225 
scanYRup_new.m 225 
scanYRup_OA_new.m 225 
TwoOnewRiskAversionFunction.m 227 
TwoOnewRiskAversionFunction_OneAnalysis.m 229 
utilFunction.m 233 

Two Analysis Case 
decisionProblem2_2Function.m 173 
E_U_DNminus2.m 174 
E_U_Test_X.m 178 
evaluateDecision.m 180 
findIntegrationLimitsNR.m 184 
RunDoEs_TwoTwo.m 221 
Scenario1_TwoAnalyses_fromDoEData.m 225 
TwoTwowRiskAversionFunction_OneAnalysis.m 229 
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AnalysisCost.m 

function [cost] = AnalysisCost(infostate, costsOfAnalyses) 
 
% Inputs:  - infostate:  a 1 x 4 vector indicating which analyses have been 
%            performed, i.e., [0 1 0 0] 
%          - costsOfAnalyses: a 1 x 4 vector indicating the costs of 
%            analyses; [LQAcost, LQBcost, HQAcost, HQBcost] 
 
% Outputs: - cost: the sum of the costs of the analyses that have been 
%            performed 
 
cost = infostate*costsOfAnalyses'; 

areaCrossing.m 

% testing using fzero to find points where number of areas changes 
 
Rvect = [0 1 2]; 
options = optimset('TolX',1e-4); 
stdev_eps_vect = [0 0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5]; 
 
for jj = 1:length(Rvect) 
 
    C_cross = zeros(length(stdev_eps_vect)); 
 
    R = Rvect(jj); 
 
    % stdev_eps_vect = [0.125, 0.25]; 
    tic 
    C_cross(1) = fzero(@(c) plotBoundaries(R,stdev_eps_vect(1),c), 
0.4+0.1*(jj-1) , options); 
    toc 
 
    for ii = 2:(length(stdev_eps_vect)) 
        tic     
        C_cross(ii) = fzero(@(c) plotBoundaries(R,stdev_eps_vect(ii),c), 
C_cross(ii-1), options); 
        toc 
    end 
 
    plot(C_cross,stdev_eps_vect) 
    xlabel('Cost') 
    ylabel('\sigma_\epsilon') 
    title({'Analysis Quality vs Cost Screening Test';... 
                ['R = ',num2str(R)]}) 
    hgsave(['Screen-R',num2str(R),'-',datestr(now,'HH.MM.SS'),'.fig']) 
    close 
    csvwrite(['C_cross-',num2str(R),'.csv'],C_cross) 
 
end 
 
%% 
% Plot all three on one 
data = csvread('ScreeningTestPoints.csv',1,0); 
R0 = data(:,1); 
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R1 = data(:,2); 
R2 = data(:,3); 
stdev_eps_vect = [0 0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5]; 
 
plot(R0,stdev_eps_vect,'k',R1,stdev_eps_vect,'k--',R2,stdev_eps_vect,'k-.') 
legend('R = 0','R = 1','R = 2') 
xlabel('Cost') 
ylabel('Quality') 
axis([0 0.6 0 5]) 

decisionProblem2_2Function.m 

function [SA,SB,A1A,A1B,A2A,A2B] = 
decisionProblem2_2Function(mu_uA,stdev_uA,mu_uB,stdev_uB,stdev_eps,stdev_de
lta,C1,C2,R,tol) 
 
% tic 
%% set up the problem 
 
global debug; 
debug = 0; 
 
% % generate zero mean, unit variance normally distributed stratified 
sample 
% global normalizedSamples; 
% numSamples = 10; 
% normalizedSamples = icdf('normal',(0.5:numSamples)/numSamples,0,1); 
 
% define the analyses 
global analyses; 
analyses.alternative = [1, 2, 1, 2];                    % analternative to 
which applied 
% analyses.stdev       = [0.25, 0.25, 0.0625, 0.0625]; 
% analyses.cost        = [0.0313, 0.0313, 0.3125, 0.3125]; 
analyses.stdev       = [stdev_eps, stdev_eps, stdev_delta, stdev_delta]; 
analyses.cost        = [C1, C1, C2, C2]; 
 
% define the prior mean and variance for each alternative 
% infoState.mean  = [1, 0]; 
% infoState.stdev = [1.25, 1]; 
infoState.mean  = [mu_uA, mu_uB]; 
infoState.stdev = [stdev_uA, stdev_uB]; 
infoState.done  = zeros(length(analyses.alternative),1); 
 
% define the risk aversion 
% R = 2; 
 
% define the tolerance for the numerical integration 
% tol = 1e-4; 
 
%% solve the decision problem 
% 6 branches in top-level decision 
[expUtil1] = evaluateDecision(1,infoState,0,R,tol); 
[expUtil2] = evaluateDecision(2,infoState,0,R,tol); 
[expUtil3] = evaluateDecision(3,infoState,0,R,tol); 
[expUtil4] = evaluateDecision(4,infoState,0,R,tol); 
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expUtil_Select = utilFunction(infoState.mean, infoState.stdev, R); 
 
% fprintf('|--------------|\n') 
% fprintf('Select A %12.10f\n',expUtil_Select(1)); 
% fprintf('Select B %12.10f\n',expUtil_Select(2)); 
% fprintf('LQ A     %12.10f\n',expUtil1); 
% fprintf('LQ B     %12.10f\n',expUtil2); 
% fprintf('HQ A     %12.10f\n',expUtil3); 
% fprintf('HQ B     %12.10f\n',expUtil4); 
% fprintf('|--------------|\n'); 
 
SA = expUtil_Select(1); 
SB = expUtil_Select(2); 
A1A = expUtil1; 
A1B = expUtil2; 
A2A = expUtil3; 
A2B = expUtil4; 
 
% Plot 
% A = normalizedSamples * infoState.stdev(1) + infoState.mean(1); 
% B = normalizedSamples * infoState.stdev(2) + infoState.mean(2); 
% samples = (0.5:numSamples)/numSamples; 
% plot(A,samples,B,samples,... 
%     result1,samples,result2,samples,... 
%     result3,samples,result4,samples) 
% legend('A','B','LQ A','LQ B','HQ A','HQ B','location','SouthEast') 
% xlabel('Utility') 
% toc 

E_U_DNminus2.m 

function [expectedUtility] = E_U_DNminus2( analysis, infoState, accumCost, 
R, tol) 
 
global analyses 
 
% E_U_DNminus2() is a function that computes the expected utility of the 
% second to last decision node by breaking the expectation integral into 
% three parts.  In the first part, which corresponds to poor test values, 
% the preferred alternative is to select the concept that wasn't tested. In 
% the second part, which corresponds to intermediate test values, the 
% preferred alternative is to perform the final test and then decide 
% between the two concepts.  In the third part, which corresponds to good 
% test values, the preferred alternative is to select the concept which was 
% tested.  Depending on the prior distributions, any of these portions may 
% be absent from the integral; e.g., if the prior distribution on the 
% concept being tested is already much better than the prior distribution 
% for the other concept, it may be the case that one will never select the 
% other concept even if a low test value is returned. 
 
% First find the thresholds between the three portions of the integral 
% [Tstar, Tlower, Tupper] = findIntegrationLimits( analysis, infoState, 
% accumCost, R, tol) 
Tstar = []; 
Tlower = []; 
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Tupper = []; 
 
% fprintf(1,'FINDING ROOTS -------------------------------------------
\n',[]) 
%     fprintf(1,'current Analysis = %1.1f\n',analysis)     
%     fprintf(1,'infoState.mean = %12.8f  %12.8f\n',infoState.mean) 
%     fprintf(1,'infoState.stdev = %12.8f  %12.8f\n',infoState.stdev) 
%     fprintf(1,'infoState.done = %12.8f %12.8f %12.8f 
%12.8f\n',infoState.done) 
%     fprintf(1,'accumCost = %4.3f\n',accumCost)  
[Tstar, Tlower, 
Tupper,xup,rel_error_up,xdown,rel_error_down,priorStdevZeroflag] = 
findIntegrationLimitsNR( analysis, infoState, accumCost, R, tol); 
% fprintf(1,'Tlower = %12.8f\n',Tlower)  
% fprintf(1,'Tupper = %12.8f\n',Tupper)  
% fprintf(1,'DONE FINDING ROOTS--------------------------------------
\n',[]) 
 
 
% Once the thresholds have been found, compute the integrals.  Analytical 
% expressions are used for the first and third portions of the integral, 
% while the intermediate portion is computed via numerical integration over 
% E_U_Test_X. 
 
% If Tstar is empty, then all three integrals must be computed; else, only 
% the lower and upper integrals need to be computed. 
 
LowerInt = []; 
UpperInt = []; 
InterInt = []; 
 
% Extract variables from analysis and infostate 
alternative = analyses.alternative(analysis); 
analysisStdev = analyses.stdev(analysis); 
priorStdev = infoState.stdev(alternative); 
priorMean = infoState.mean(alternative); 
stdevSumSq = priorStdev^2 + analysisStdev^2; 
 
% perform the analysis 
newInfoState = infoState; 
newInfoState.stdev(alternative) = priorStdev * analysisStdev / 
sqrt(stdevSumSq); 
newInfoState.done(analysis) = 1; 
newAccumCost = accumCost + analyses.cost(analysis); 
 
% determine which analyses to perform next 
nextAnalyses = find(not(newInfoState.done)); 
nextAnalysis = nextAnalyses(1); 
nextAccumCost = newAccumCost + analyses.cost(nextAnalysis); 
nextAlternative = analyses.alternative(nextAnalysis); 
nextAnalysisStdev = analyses.stdev(nextAnalysis); 
 
% Extract mu_uA, mu_uB, stdev_uA, and stdev_uB 
stdev_uA = newInfoState.stdev(1); 
stdev_uB = newInfoState.stdev(2); 
 
% Define variables 
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if alternative==1  %A is being tested 
    mu_uX=priorMean; 
    mu_uY=newInfoState.mean(2); 
    stdev_uX=stdev_uA; 
    stdev_uY=stdev_uB; 
    mu_uA_givenX = @(X) (priorMean*analysisStdev^2 + 
X*priorStdev^2)/(stdevSumSq); 
    mu_uB_givenX = @(X) newInfoState.mean(2); 
elseif alternative==2  %B is being tested 
    mu_uX=priorMean; 
    mu_uY=newInfoState.mean(1); 
    stdev_uX=stdev_uB; 
    stdev_uY=stdev_uA; 
    mu_uA_givenX = @(X) newInfoState.mean(1);     
    mu_uB_givenX = @(X) (priorMean*analysisStdev^2 + 
X*priorStdev^2)/(stdevSumSq); 
else  
    error('TestX must be either 1 for A or 2 for B.') 
end 
 
if priorStdevZeroflag == 1 
    if R == 0 
        EselectUp = (mu_uX-newAccumCost); 
        EselectDown = (mu_uY-newAccumCost); 
    else % R > 0 
        EselectUp = 1/R*(1-exp(-R*(mu_uX - 
newAccumCost)+stdev_uX^2*R^2/2)); 
        EselectDown = 1/R*(1-exp(-R*(mu_uY - 
newAccumCost)+stdev_uY^2*R^2/2)); 
    end 
    Etest = 
E_U_Test_X(mu_uA_givenX(priorMean),mu_uB_givenX(priorMean),stdev_uA,stdev_u
B,... 
        nextAccumCost,nextAnalysisStdev,R,nextAlternative); 
    expectedUtility = max([EselectUp,EselectDown,Etest]); 
else 
 
    if isequal(Tstar,[]) 
        if R == 0 
            LowerInt = (mu_uY-
newAccumCost)*normcdf(Tlower,priorMean,max(sqrt(stdevSumSq),tol)); 
 
            UpperInt = (analysisStdev^2*priorMean/stdevSumSq-
newAccumCost)*... 
                (1-normcdf(Tupper,priorMean,max(sqrt(stdevSumSq),tol)))+... 
                priorStdev^2/(sqrt(2*pi)*stdevSumSq)*... 
                (sqrt(stdevSumSq)*exp(-(Tupper-
priorMean)^2/(2*stdevSumSq))... 
                +priorMean*sqrt(pi/2)*... 
                (1-erf((Tupper-priorMean)/(sqrt(2)*sqrt(stdevSumSq))))); 
 
        else %R ~= 0 
            LowerInt = 1/R*(1-exp(-R*(mu_uY - 
newAccumCost)+stdev_uY^2*R^2/2))*... 
                normcdf(Tlower,priorMean,max(sqrt(stdevSumSq),tol)); 
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            UpperInt = 1/R*(1-
normcdf(Tupper,priorMean,max(sqrt(stdevSumSq),tol)))... 
                - 1/R*(exp(stdev_uX^2*R^2/2 ... 
                +R*newAccumCost+R^2*priorStdev^4/(2*(stdevSumSq))-
R*priorMean))... 
                *(1-normcdf(Tupper,(priorMean-
R*priorStdev^2),max(sqrt(stdevSumSq),tol))); 
        end 
        if sqrt(stdevSumSq)<tol 
            if priorMean <= Tupper && priorMean >= Tlower 
                InterInt = 
E_U_Test_X(mu_uA_givenX(priorMean),mu_uB_givenX(priorMean),stdev_uA,stdev_u
B,... 
                nextAccumCost,nextAnalysisStdev,R,nextAlternative); 
            else % priorMean is not between Tlower and Tupper 
                InterInt = 0; 
            end 
        else %sqrt(stdevSumSq) >=tol 
            % If the limits of integration are too far away from the 
            % "interesting" things happening in the normal probability  
            % density function, the adaptive quadrature will not find that  
            % very small range of interesting-ness and will return a value 
            % of zero for the integral.  Thus, if the limits of integration 
            % are more than 14 times the standard deviation of the normal 
            % distribution, we will replace them with +/- 7 times the 
            % standard deviation of the normal distribution. 
            if 14*sqrt(stdevSumSq)>=(Tupper - Tlower) 
                % Active portion of pdf is much larger than integration 
                % bounds, so don't change the bounds              
                lowerbound = Tlower; 
                upperbound = Tupper; 
            else % The active portion of the pdf smaller than the  
                % integration bounds, so the bounds should be changed to 
                % only integrate over the active portion 
                pdfMax = priorMean+7*sqrt(stdevSumSq); 
                pdfMin = priorMean-7*sqrt(stdevSumSq); 
                if Tupper <= pdfMax && Tupper >= pdfMin 
                    upperbound = Tupper; 
                else 
                    upperbound = pdfMax; 
                end 
                if Tlower >= pdfMin && Tlower <= pdfMax 
                    lowerbound = Tlower; 
                else 
                    lowerbound = pdfMin; 
                end 
            end 
% ------------------------------------------------------------------------- 
% INTEGRATE OVER MIDDLE BRANCH --------------------------------------------          
%             InterInt = quad(@(sampleVal) 
(normpdf(sampleVal,priorMean,sqrt(stdevSumSq)).*... 
%                 
E_U_Test_X(mu_uA_givenX(sampleVal),mu_uB_givenX(sampleVal),stdev_uA,stdev_u
B,... 
%                 nextAccumCost,nextAnalysisStdev,R,nextAlternative)),... 
%                 lowerbound,upperbound,tol) 
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            InterInt = 
Mid_Int(lowerbound,upperbound,infoState,analyses,analysis,R); 
             
% ------------------------------------------------------------------------- 
% -------------------------------------------------------------------------          
        end 
    else % Tlower and Tupper should be empty 
        if R == 0 
            LowerInt = (mu_uY-
newAccumCost)*normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)); 
 
            UpperInt = (analysisStdev^2*priorMean/stdevSumSq-
newAccumCost)*... 
                (1-normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)))+... 
                priorStdev^2/(sqrt(2*pi)*stdevSumSq)*... 
                (sqrt(stdevSumSq)*exp(-(Tstar-
priorMean)^2/(2*stdevSumSq))... 
                +priorMean*sqrt(pi/2)*... 
                (1-erf((Tstar-priorMean)/(sqrt(2)*sqrt(stdevSumSq)))));    
 
        else % R ~= 0 
            UpperInt = 1/R*(1-
normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)))... 
                - 1/R*(exp(stdev_uX^2*R^2/2 ... 
                +R*newAccumCost+R^2*priorStdev^4/(2*(stdevSumSq))-
R*priorMean))... 
                *(1-normcdf(Tstar,(priorMean-
R*priorStdev^2),max(sqrt(stdevSumSq),tol))); 
 
            LowerInt = 1/R*(1-exp(-R*(mu_uY - 
newAccumCost)+stdev_uY^2*R^2/2))*... 
                normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)); 
        end 
 
 
 
    end 
 
    expectedUtility = sum([LowerInt,UpperInt,InterInt]); 
end 

E_U_Test_X.m 

function 
E_test=E_U_Test_X(mu_uA,mu_uB,stdev_uA,stdev_uB,cost,stdev_eps,R,TestX) 
 
%% E_test=E_U_Test(mu_uA,mu_uB,stdev_uA,stdev_uB,cost,stdev_eps,R) 
%  E_U_Test_X() is a function that algebraically calculates the expected 
%  value of performing a test on design alternative X defined by 'TestX'  
If the test were 
%  performed, a test value V_TX would be returned, and the prior beliefs 
%  about the distribution of the utility of the alternative is updated 
%  using Bayesian statistics.  An integral over all possible test values 
%  was calculated to generate the expected utility of performing the test. 
% 
% 
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%  **Parameters** 
%   Priors (mu_uA,mu_uB,stdev_uA,stdev_uB) of the distribution of the 
%      possible values for two design alternatives 'A' and 'B' 
%   Information about the cost 'cost' of testing the alternative and 
%      information about the quality of the test characterized by  
%      its standard deviation 'stdev_eps.' 
%   The constant risk aversion 'R' of the decision maker. 
%   A definition variable 'TestX' which is 1 if X='A' is the alternative 
being 
%   tested, and 2 if X='B' is the alternative being tested. 
%%  Variable Definition 
if TestX==1  %A is being tested 
    mu_uX=mu_uA; 
    mu_uY=mu_uB; 
    stdev_uX=stdev_uA; 
    stdev_uY=stdev_uB; 
elseif TestX==2  %B is being tested 
    mu_uX=mu_uB; 
    mu_uY=mu_uA; 
    stdev_uX=stdev_uB; 
    stdev_uY=stdev_uA; 
else  
    error('TestX must be either 1 for A or 2 for B.') 
end 
 
 
%% Check for stdev_uX equal to zero 
if stdev_uX == 0 
    E_test = max(utilFunction(mu_uX-cost, stdev_uX, R),... 
        utilFunction(mu_uY-cost, stdev_uY, R)); 
else 
 
    %% Intermediate calculations 
 
    stdev_Vtx=sqrt(stdev_uX^2+stdev_eps^2); 
        %Standard deviation for distribution of uX given the value of the 
test 
    stdev_XgivenLQ=sqrt(stdev_uX^2*stdev_eps^2/stdev_Vtx^2); 
        %Critical test value at which the E(uX)=E(uY) after testing X 
    V_TXStar=(1/stdev_uX^2)*(stdev_Vtx^2*mu_uY-
stdev_eps^2*mu_uX+R/2*(stdev_uX^2*stdev_eps^2-stdev_Vtx^2*stdev_uY^2)); 
 
    %% Define Expectations for all risk considerations 
    if R==0 
        E_test=(mu_uY-cost).*normcdf(V_TXStar,mu_uX,stdev_Vtx)+... 
            (stdev_eps^2.*mu_uX./stdev_Vtx^2-cost).*(1-
normcdf(V_TXStar,mu_uX,stdev_Vtx))+... 
            stdev_uX^2/(sqrt(2*pi)*stdev_Vtx^2)*(stdev_Vtx.*exp(-(V_TXStar-
mu_uX).^2/(2*stdev_Vtx^2))+mu_uX.*sqrt(pi/2).*(1-erf((V_TXStar-
mu_uX)/(sqrt(2)*stdev_Vtx)))); 
    else 
        E_test=1/R*(1-...            
            (exp(-R.*(mu_uY-cost)+1/2*stdev_uY^2*R^2))... 
            .*normcdf((V_TXStar-mu_uX)/stdev_Vtx)... 
            -exp(1/2*stdev_XgivenLQ^2*R^2+R.*(R*stdev_uX^4/(2*stdev_Vtx^2)-
mu_uX+cost))... 
            .*(1-normcdf((V_TXStar+R*stdev_uX^2-mu_uX)/stdev_Vtx)));  
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    end 
end 

evaluateDecision.m 

function [expectedUtility] = E_U_DNminus2( analysis, infoState, accumCost, 
R, tol) 
 
global analyses 
 
% E_U_DNminus2() is a function that computes the expected utility of the 
% second to last decision node by breaking the expectation integral into 
% three parts.  In the first part, which corresponds to poor test values, 
% the preferred alternative is to select the concept that wasn't tested. In 
% the second part, which corresponds to intermediate test values, the 
% preferred alternative is to perform the final test and then decide 
% between the two concepts.  In the third part, which corresponds to good 
% test values, the preferred alternative is to select the concept which was 
% tested.  Depending on the prior distributions, any of these portions may 
% be absent from the integral; e.g., if the prior distribution on the 
% concept being tested is already much better than the prior distribution 
% for the other concept, it may be the case that one will never select the 
% other concept even if a low test value is returned. 
 
% First find the thresholds between the three portions of the integral 
% [Tstar, Tlower, Tupper] = findIntegrationLimits( analysis, infoState, 
% accumCost, R, tol) 
Tstar = []; 
Tlower = []; 
Tupper = []; 
 
% fprintf(1,'FINDING ROOTS -------------------------------------------
\n',[]) 
%     fprintf(1,'current Analysis = %1.1f\n',analysis)     
%     fprintf(1,'infoState.mean = %12.8f  %12.8f\n',infoState.mean) 
%     fprintf(1,'infoState.stdev = %12.8f  %12.8f\n',infoState.stdev) 
%     fprintf(1,'infoState.done = %12.8f %12.8f %12.8f 
%12.8f\n',infoState.done) 
%     fprintf(1,'accumCost = %4.3f\n',accumCost)  
[Tstar, Tlower, 
Tupper,xup,rel_error_up,xdown,rel_error_down,priorStdevZeroflag] = 
findIntegrationLimitsNR( analysis, infoState, accumCost, R, tol); 
% fprintf(1,'Tlower = %12.8f\n',Tlower)  
% fprintf(1,'Tupper = %12.8f\n',Tupper)  
% fprintf(1,'DONE FINDING ROOTS--------------------------------------
\n',[]) 
 
 
% Once the thresholds have been found, compute the integrals.  Analytical 
% expressions are used for the first and third portions of the integral, 
% while the intermediate portion is computed via numerical integration over 
% E_U_Test_X. 
 
% If Tstar is empty, then all three integrals must be computed; else, only 
% the lower and upper integrals need to be computed. 
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LowerInt = []; 
UpperInt = []; 
InterInt = []; 
 
% Extract variables from analysis and infostate 
alternative = analyses.alternative(analysis); 
analysisStdev = analyses.stdev(analysis); 
priorStdev = infoState.stdev(alternative); 
priorMean = infoState.mean(alternative); 
stdevSumSq = priorStdev^2 + analysisStdev^2; 
 
% perform the analysis 
newInfoState = infoState; 
newInfoState.stdev(alternative) = priorStdev * analysisStdev / 
sqrt(stdevSumSq); 
newInfoState.done(analysis) = 1; 
newAccumCost = accumCost + analyses.cost(analysis); 
 
% determine which analyses to perform next 
nextAnalyses = find(not(newInfoState.done)); 
nextAnalysis = nextAnalyses(1); 
nextAccumCost = newAccumCost + analyses.cost(nextAnalysis); 
nextAlternative = analyses.alternative(nextAnalysis); 
nextAnalysisStdev = analyses.stdev(nextAnalysis); 
 
% Extract mu_uA, mu_uB, stdev_uA, and stdev_uB 
stdev_uA = newInfoState.stdev(1); 
stdev_uB = newInfoState.stdev(2); 
 
% Define variables 
if alternative==1  %A is being tested 
    mu_uX=priorMean; 
    mu_uY=newInfoState.mean(2); 
    stdev_uX=stdev_uA; 
    stdev_uY=stdev_uB; 
    mu_uA_givenX = @(X) (priorMean*analysisStdev^2 + 
X*priorStdev^2)/(stdevSumSq); 
    mu_uB_givenX = @(X) newInfoState.mean(2); 
elseif alternative==2  %B is being tested 
    mu_uX=priorMean; 
    mu_uY=newInfoState.mean(1); 
    stdev_uX=stdev_uB; 
    stdev_uY=stdev_uA; 
    mu_uA_givenX = @(X) newInfoState.mean(1);     
    mu_uB_givenX = @(X) (priorMean*analysisStdev^2 + 
X*priorStdev^2)/(stdevSumSq); 
else  
    error('TestX must be either 1 for A or 2 for B.') 
end 
 
if priorStdevZeroflag == 1 
    if R == 0 
        EselectUp = (mu_uX-newAccumCost); 
        EselectDown = (mu_uY-newAccumCost); 
    else % R > 0 
        EselectUp = 1/R*(1-exp(-R*(mu_uX - 
newAccumCost)+stdev_uX^2*R^2/2)); 
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        EselectDown = 1/R*(1-exp(-R*(mu_uY - 
newAccumCost)+stdev_uY^2*R^2/2)); 
    end 
    Etest = 
E_U_Test_X(mu_uA_givenX(priorMean),mu_uB_givenX(priorMean),stdev_uA,stdev_u
B,... 
        nextAccumCost,nextAnalysisStdev,R,nextAlternative); 
    expectedUtility = max([EselectUp,EselectDown,Etest]); 
else 
 
    if isequal(Tstar,[]) 
        if R == 0 
            LowerInt = (mu_uY-
newAccumCost)*normcdf(Tlower,priorMean,max(sqrt(stdevSumSq),tol)); 
 
            UpperInt = (analysisStdev^2*priorMean/stdevSumSq-
newAccumCost)*... 
                (1-normcdf(Tupper,priorMean,max(sqrt(stdevSumSq),tol)))+... 
                priorStdev^2/(sqrt(2*pi)*stdevSumSq)*... 
                (sqrt(stdevSumSq)*exp(-(Tupper-
priorMean)^2/(2*stdevSumSq))... 
                +priorMean*sqrt(pi/2)*... 
                (1-erf((Tupper-priorMean)/(sqrt(2)*sqrt(stdevSumSq))))); 
 
        else %R ~= 0 
            LowerInt = 1/R*(1-exp(-R*(mu_uY - 
newAccumCost)+stdev_uY^2*R^2/2))*... 
                normcdf(Tlower,priorMean,max(sqrt(stdevSumSq),tol)); 
 
            UpperInt = 1/R*(1-
normcdf(Tupper,priorMean,max(sqrt(stdevSumSq),tol)))... 
                - 1/R*(exp(stdev_uX^2*R^2/2 ... 
                +R*newAccumCost+R^2*priorStdev^4/(2*(stdevSumSq))-
R*priorMean))... 
                *(1-normcdf(Tupper,(priorMean-
R*priorStdev^2),max(sqrt(stdevSumSq),tol))); 
        end 
        if sqrt(stdevSumSq)<tol 
            if priorMean <= Tupper && priorMean >= Tlower 
                InterInt = 
E_U_Test_X(mu_uA_givenX(priorMean),mu_uB_givenX(priorMean),stdev_uA,stdev_u
B,... 
                nextAccumCost,nextAnalysisStdev,R,nextAlternative); 
            else % priorMean is not between Tlower and Tupper 
                InterInt = 0; 
            end 
        else %sqrt(stdevSumSq) >=tol 
            % If the limits of integration are too far away from the 
            % "interesting" things happening in the normal probability  
            % density function, the adaptive quadrature will not find that  
            % very small range of interesting-ness and will return a value 
            % of zero for the integral.  Thus, if the limits of integration 
            % are more than 14 times the standard deviation of the normal 
            % distribution, we will replace them with +/- 7 times the 
            % standard deviation of the normal distribution. 
            if 14*sqrt(stdevSumSq)>=(Tupper - Tlower) 
                % Active portion of pdf is much larger than integration 
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                % bounds, so don't change the bounds 
% -------------------------------------------------------------------------          
% INTEGRATE OVER MIDDLE BRANCH ---------USE GIVEN BOUNDS------------------- 
            InterInt = quad(@(sampleVal) 
(normpdf(sampleVal,priorMean,sqrt(stdevSumSq)).*... 
                
E_U_Test_X(mu_uA_givenX(sampleVal),mu_uB_givenX(sampleVal),stdev_uA,stdev_u
B,... 
                nextAccumCost,nextAnalysisStdev,R,nextAlternative)),... 
                Tlower,Tupper,tol); 
% ------------------------------------------------------------------------- 
% ------------------------------------------------------------------------- 
            else % The active portion of the pdf smaller than the  
                % integration bounds, so the bounds should be changed to 
                % only integrate over the active portion 
                pdfMax = priorMean+7*sqrt(stdevSumSq); 
                pdfMin = priorMean-7*sqrt(stdevSumSq); 
                if Tupper <= pdfMax && Tupper >= pdfMin 
                    upperbound = Tupper; 
                else 
                    upperbound = pdfMax; 
                end 
                if Tlower >= pdfMin && Tlower <= pdfMax 
                    lowerbound = Tlower; 
                else 
                    lowerbound = pdfMin; 
                end 
% -------------------------------------------------------------------------          
% INTEGRATE OVER MIDDLE BRANCH ---------USE BOUNDS DETERMINED FROM PDF-----          
            InterInt = quad(@(sampleVal) 
(normpdf(sampleVal,priorMean,sqrt(stdevSumSq)).*... 
                
E_U_Test_X(mu_uA_givenX(sampleVal),mu_uB_givenX(sampleVal),stdev_uA,stdev_u
B,... 
                nextAccumCost,nextAnalysisStdev,R,nextAlternative)),... 
                lowerbound,upperbound,tol);    
% ------------------------------------------------------------------------- 
% -------------------------------------------------------------------------          
            end 
        end 
    else % Tlower and Tupper should be empty 
        if R == 0 
            LowerInt = (mu_uY-
newAccumCost)*normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)); 
 
            UpperInt = (analysisStdev^2*priorMean/stdevSumSq-
newAccumCost)*... 
                (1-normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)))+... 
                priorStdev^2/(sqrt(2*pi)*stdevSumSq)*... 
                (sqrt(stdevSumSq)*exp(-(Tstar-
priorMean)^2/(2*stdevSumSq))... 
                +priorMean*sqrt(pi/2)*... 
                (1-erf((Tstar-priorMean)/(sqrt(2)*sqrt(stdevSumSq)))));    
 
        else % R ~= 0 
            UpperInt = 1/R*(1-
normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)))... 
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                - 1/R*(exp(stdev_uX^2*R^2/2 ... 
                +R*newAccumCost+R^2*priorStdev^4/(2*(stdevSumSq))-
R*priorMean))... 
                *(1-normcdf(Tstar,(priorMean-
R*priorStdev^2),max(sqrt(stdevSumSq),tol))); 
 
            LowerInt = 1/R*(1-exp(-R*(mu_uY - 
newAccumCost)+stdev_uY^2*R^2/2))*... 
                normcdf(Tstar,priorMean,max(sqrt(stdevSumSq),tol)); 
        end 
 
 
 
    end 
 
    expectedUtility = sum([LowerInt,UpperInt,InterInt]); 
end 

findIntegrationLimitsNR.m 

function [Tstar, Tlower, 
Tupper,xup,rel_error_up,xdown,rel_error_down,priorStdevZeroflag] = 
findIntegrationLimitsNR( analysis, infoState, accumCost, R, tol) 
 
global analyses 
 
% This function finds the integration limits for the second-to-last 
% decision node. 
 
% Extract variables from analysis and infostate 
alternative = analyses.alternative(analysis); 
analysisStdev = analyses.stdev(analysis); 
priorStdev = infoState.stdev(alternative); 
priorMean = infoState.mean(alternative); 
stdevSumSq = priorStdev^2 + analysisStdev^2; 
 
if priorStdev == 0 
    Tstar = []; 
    Tlower = []; 
    Tupper = []; 
    xup = []; 
    rel_error_up = []; 
    xdown = []; 
    rel_error_down = []; 
    priorStdevZeroflag = 1; 
else 
    priorStdevZeroflag = 0; 
    if alternative == 1 
        otherAlternative = 2; 
    elseif alternative ==2 
        otherAlternative = 1; 
    else 
        error('Invalid input for variable alternative.  Must be either 1 or 
2') 
    end 
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    otherStdev = infoState.stdev(otherAlternative); 
    otherMean = infoState.mean(otherAlternative); 
 
    % perform the analysis 
    newInfoState = infoState; 
    newInfoState.stdev(alternative) = priorStdev * analysisStdev / 
sqrt(stdevSumSq); 
    newInfoState.done(analysis) = 1; 
    newAccumCost = accumCost + analyses.cost(analysis); 
 
    % determine which analyses to perform next 
    nextAnalyses = find(not(newInfoState.done)); 
    nextAccumCost = newAccumCost + analyses.cost(nextAnalyses(1)); 
    nextAnalysis = nextAnalyses(1); 
    nextAlternative = analyses.alternative(nextAnalysis); 
    nextAnalysisStdev = analyses.stdev(nextAnalysis); 
 
 
%     % Extract mu_uA, mu_uB, stdev_uA, and stdev_uB 
%     mu_uA = newInfoState.mean(1); 
%     mu_uB = newInfoState.mean(2); 
%     stdev_uA = newInfoState.stdev(1); 
%     stdev_uB = newInfoState.stdev(2); 
%  
%  
%     % Define variables for solving for V_TXStar 
%     if alternative==1  %A is being tested 
%         mu_uX=mu_uA; 
%         mu_uY=mu_uB; 
%         stdev_uX=stdev_uA; 
%         stdev_uY=stdev_uB; 
%     elseif alternative==2  %B is being tested 
%         mu_uX=mu_uB; 
%         mu_uY=mu_uA; 
%         stdev_uX=stdev_uB; 
%         stdev_uY=stdev_uA; 
%     else  
%         error('TestX must be either 1 for A or 2 for B.') 
%     end 
 
 
    % % First, find the intersection of Select A and Select B. 
    % stdev_Vtx=sqrt(stdev_uX^2+analysisStdev^2); 
    % %Standard deviation for distribution of uX given the value of the 
test 
    % stdev_XgivenLQ=sqrt(stdev_uX^2*analysisStdev^2/stdev_Vtx^2); 
    % Critical test value at which the E(uX)=E(uY) after testing X 
%     V_TXStar=(1/priorStdev^2)*(stdevSumSq*mu_uY-
analysisStdev^2*priorMean+R/2*(priorStdev^2*analysisStdev^2-
stdevSumSq*stdev_uY^2)); 
    V_TXStar=(1/priorStdev^2)*(stdevSumSq*otherMean-
analysisStdev^2*priorMean+R/2*(priorStdev^2*analysisStdev^2-
stdevSumSq*otherStdev^2)); 
    % mu_uX given V_TXStar 
    mu_uX_given_V_TXStar = (priorMean*analysisStdev^2 + 
V_TXStar*priorStdev^2)/stdevSumSq; 
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    % Then test the utility of performing the next analysis at 
mu_uX_given_V_TXStar 
    nextInfoState = newInfoState; 
    nextInfoState.mean(alternative) = mu_uX_given_V_TXStar; 
 
    mu_uA = nextInfoState.mean(1); 
    mu_uB = nextInfoState.mean(2); 
    stdev_uA = nextInfoState.stdev(1); 
    stdev_uB = nextInfoState.stdev(2); 
    expUtilTest = 
E_U_Test_X(mu_uA,mu_uB,stdev_uA,stdev_uB,nextAccumCost,nextAnalysisStdev,R,
nextAlternative); 
 
    % Get the value of Select A (or SelecV_t B) at mu_given_V_TXStar 
    % expUtilSelect = utilFunction(mu_uX_given_V_TXStar, stdev_XgivenLQ, R) 
    expUtilSelect = utilFunction(mu_uA-newAccumCost, stdev_uA, R); 
    expUtilSelect = utilFunction(mu_uB-newAccumCost, stdev_uB, R); 
 
 
    if expUtilSelect >= expUtilTest 
    %     then the test should not be performed 
        Tlower = []; 
        Tupper = []; 
        Tstar = V_TXStar; 
        xup = []; 
        xdown = []; 
        rel_error_up = []; 
        rel_error_down = []; 
    else 
    %     use Newton Raphson find Tlower and Tupper 
        Tstar = []; 
 
        sigma_X = priorStdev; 
        sigma_Y = otherStdev; 
        sigma_delta = nextAnalysisStdev; 
        sigma_epsilon = analysisStdev; 
        mu_Y = otherMean; 
        mu_X = priorMean; 
        c_1 = newAccumCost; 
        c_2 = nextAccumCost - newAccumCost; 
 
        if R == 0; 
            %RISK NEUTRAL 
            if alternative == nextAlternative 
                % SAME CONCEPT TESTED TWICE 
                fuOverfprimeu = @(x) ((((mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2)) .* (1 + erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
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2) + 2 .* sigma_delta .^ 2)) + (sigma_X .^ 2) .* (sigma_epsilon .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* exp(-((-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi .* 
(sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) 
+ sigma_delta .^ 2)) .^ (-0.1e1 ./ 0.2e1) ./ 0.2e1 + (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2 .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) .* (1 - erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + ((mu_Y - c_1 - c_2) .* (1 + erf((-(-mu_Y .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - 
mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 
./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 
0.2e1 - ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 
+ sigma_epsilon .^ 2)) + c_1) ./ ((sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 .* (1 + erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + 0.2e1 .* ((mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2)) .* pi .^ (-0.1e1 ./ 0.2e1) .* 
exp(-((-(-mu_Y .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* 
sigma_delta .^ 2))) .* (-sigma_delta .^ 2 ./ sigma_epsilon .^ 2 - sigma_X 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) .* ((2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* 
sigma_delta .^ 2) .^ (-0.3e1 ./ 0.2e1)) - (sigma_X .^ 2) .* (sigma_epsilon 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
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sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* exp(-((-(-mu_Y .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* 
sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi .* (sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2)) .^ (-0.1e1 
./ 0.2e1) + (sigma_X .^ 4 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .^ 2 .* (1 - erf((-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) - 0.2e1 .* (sigma_X .^ 2) .* (sigma_epsilon .^ 
2) ./ ((sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2) .* (mu_X .* sigma_epsilon 
.^ 2 + x .* sigma_X .^ 2) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-mu_Y .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - 
mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 
./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.3e1 ./ 0.2e1)) + (mu_Y 
- c_1 - c_2) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-mu_Y .* sigma_X .^ 2 
.* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) - 
(sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2))); 
 
                flOverfprimel = @(x) ((((mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2)) .* (1 + erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
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sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + (sigma_X .^ 2) .* (sigma_epsilon .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* exp(-((-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi .* 
(sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) 
+ sigma_delta .^ 2)) .^ (-0.1e1 ./ 0.2e1) ./ 0.2e1 + (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2 .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) .* (1 - erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + ((mu_Y - c_1 - c_2) .* (1 + erf((-(-mu_Y .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - 
mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 
./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 
0.2e1 - mu_Y + c_1) ./ ((sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_delta .^ 2 .* (1 + erf((-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + 0.2e1 .* ((mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2)) .* pi .^ (-0.1e1 ./ 0.2e1) .* 
exp(-((-(-mu_Y .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* 
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sigma_delta .^ 2))) .* (-sigma_delta .^ 2 ./ sigma_epsilon .^ 2 - sigma_X 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) .* ((2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* 
sigma_delta .^ 2) .^ (-0.3e1 ./ 0.2e1)) - (sigma_X .^ 2) .* (sigma_epsilon 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* exp(-((-(-mu_Y .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* 
sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi .* (sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2)) .^ (-0.1e1 
./ 0.2e1) + (sigma_X .^ 4 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .^ 2 .* (1 - erf((-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) - 0.2e1 .* (sigma_X .^ 2) .* (sigma_epsilon .^ 
2) ./ ((sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2) .* (mu_X .* sigma_epsilon 
.^ 2 + x .* sigma_X .^ 2) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-mu_Y .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - 
mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 
./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.3e1 ./ 0.2e1)) + (mu_Y 
- c_1 - c_2) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-mu_Y .* sigma_X .^ 2 
.* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))); 
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                f_lowerSameR0 = @(x) (((mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2)) .* (1 + erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + (sigma_X .^ 2) .* (sigma_epsilon .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* exp(-((-(-mu_Y .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi .* 
(sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) 
+ sigma_delta .^ 2)) .^ (-0.1e1 ./ 0.2e1) ./ 0.2e1 + (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2 .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) .* (1 - erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + ((mu_Y - c_1 - c_2) .* (1 + erf((-(-mu_Y .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - 
mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 
./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 
0.2e1 - mu_Y + c_1; 
                 
                f_upperSameR0 = @(x) (((mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2)) .* (1 + erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + (sigma_X .^ 2) .* (sigma_epsilon .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* exp(-((-(-mu_Y .* sigma_X .^ 2 .* 
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sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi .* 
(sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) 
+ sigma_delta .^ 2)) .^ (-0.1e1 ./ 0.2e1) ./ 0.2e1 + (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2 .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) .* (1 - erf((-(-mu_Y .* sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - mu_Y .* 
sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) + 2 .* sigma_delta .^ 2)) + ((mu_Y - c_1 - c_2) .* (1 + erf((-(-mu_Y .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - 
mu_Y .* sigma_delta .^ 2 + (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 
./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2) - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) .* (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 
0.2e1 - ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 
+ sigma_epsilon .^ 2)) + c_1; 
     
%                 First check for a valid bracket for the upper root 
                if f_upperSameR0(V_TXStar)*f_upperSameR0(V_TXStar + 100)>0 
                    Tupper = Inf; 
                    xup = []; 
                    rel_error_up = []; 
                else 
                    % NEWTON-RAPHSON ALGORITHM 
                    ii = 1; 
                    xup(1) = V_TXStar; 
                    rel_error_up(1) = 1; %Initialize error at one 
        %             Find Tupper 
                    while rel_error_up(ii) > tol 
                        ii = ii+1; 
                        xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                        rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
                        if ii > 15 
                            xup(ii)=Inf; 
                            break                       
                        end 
                    end 
                    if xup(length(xup))>=V_TXStar 
                        Tupper = xup(length(xup)); 
                    else 
                        % restart NEWTON-RAPHSON ALGORITHM 
                        ii = 1; 
                        xup=[]; 
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                        xup(1) = V_TXStar+3*analysisStdev; 
                        rel_error_up = []; 
                        rel_error_up(1) = 1; %Initialize error at one 
            %             Find Tupper 
                        while rel_error_up(ii) > tol 
                            ii = ii+1; 
                            xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                            rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
                            if ii > 15 
                                xup(ii)=Inf; 
                                break                       
                            end 
                        end 
                        Tupper = xup(length(xup)); 
                    end 
                end 
%                 % NEWTON-RAPHSON ALGORITHM 
%                 ii = 1; 
%                 xup(1) = V_TXStar; 
%                 rel_error_up(1) = 1; %Initialize error at one 
%     %             Find Tupper 
%                 while rel_error_up(ii) > tol 
%                     ii = ii+1; 
%                     xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
%                     rel_error_up(ii) = abs((xup(ii)-xup(ii-1))/xup(ii)); 
%                     if ii > 15 
%                         xup(ii)=Inf; 
%                         break                       
%                     end 
%                 end 
%                 if xup(length(xup))>=V_TXStar 
%                     Tupper = xup(length(xup)); 
%                 else 
%                     % restart NEWTON-RAPHSON ALGORITHM 
%                     ii = 1; 
%                     xup=[]; 
%                     xup(1) = V_TXStar+3*analysisStdev; 
%                     rel_error_up = []; 
%                     rel_error_up(1) = 1; %Initialize error at one 
%         %             Find Tupper 
%                     while rel_error_up(ii) > tol 
%                         ii = ii+1; 
%                         xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
%                         rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
%                         if ii > 15 
%                             xup(ii)=Inf; 
%                             break                       
%                         end 
%                     end 
%                     Tupper = xup(length(xup)); 
%                 end 
%                 Check for a valid bracket for the lower root 
                if f_lowerSameR0(V_TXStar)*f_lowerSameR0(V_TXStar - 100)>0 
                    Tlower = -Inf; 
                    xdown = []; 
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                    rel_error_down = []; 
                else 
                    jj = 1; 
                    xdown(1) = V_TXStar; 
                    rel_error_down(1) = 1; %Initialize error at one 
        %             Find Tlower 
                    while rel_error_down(jj) > tol 
                        jj = jj+1; 
                        xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
                        rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                        if jj > 15 
                            xdown(jj)=-Inf; 
                            break 
                        end 
                    end 
                    if xdown(length(xdown))<=V_TXStar 
                        Tlower = xdown(length(xdown));                         
                    else %restart NEWTON RAPHSON ALGORITHM 
                        jj = 1; 
                        xdown = []; 
                        xdown(1) = V_TXStar - 3*analysisStdev; 
                        rel_error_down = []; 
                        rel_error_down(1) = 1; %Initialize error at one 
            %             Find Tlower 
                        while rel_error_down(jj) > tol 
                            jj = jj+1; 
                            xdown(jj) = xdown(jj-1) - 
flOverfprimel(xdown(jj-1)); 
                            rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                            if jj > 15 
                                xdown(jj)=-Inf; 
                                break 
                            end 
                        end 
                        Tlower = xdown(length(xdown)); 
                    end 
                end 
%                 jj = 1; 
%                 xdown(1) = V_TXStar; 
%                 rel_error_down(1) = 1; %Initialize error at one 
%     %             Find Tlower 
%                 while rel_error_down(jj) > tol 
%                     jj = jj+1; 
%                     xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-1)); 
%                     rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                     if jj > 15 
%                         xdown(jj)=-Inf; 
%                         break 
%                     end 
%                 end 
%                 if xdown(length(xdown))<=V_TXStar 
%                     Tlower = xdown(length(xdown));                         
%                 else %restart NEWTON RAPHSON ALGORITHM 
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%                     jj = 1; 
%                     xdown = []; 
%                     xdown(1) = V_TXStar - 3*analysisStdev; 
%                     rel_error_down = []; 
%                     rel_error_down(1) = 1; %Initialize error at one 
%         %             Find Tlower 
%                     while rel_error_down(jj) > tol 
%                         jj = jj+1; 
%                         xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
%                         rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                         if jj > 15 
%                             xdown(jj)=-Inf; 
%                             break 
%                         end 
%                     end 
%                     Tlower = xdown(length(xdown)); 
%                 end 
            else % test one concept, then test the next concept 
                 % ONE CONCEPT AFTER ANOTHER 
                fuOverfprimeu = @(x) (((mu_Y .* sigma_delta .^ 2 - (c_1 + 
c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (sigma_Y .^ 2) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 
2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) 
.* sqrt(0.2e1) .* (pi .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .^ (-0.1e1 ./ 
0.2e1) ./ 0.2e1 + (sigma_Y .^ 2 .* mu_Y .* (1 - erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) + c_1) ./ (-0.2e1 .* (mu_Y .* sigma_delta .^ 2 - (c_1 + c_2) .* 
(sigma_Y .^ 2 + sigma_delta .^ 2)) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + 
mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 
2 + 2 .* sigma_delta .^ 2))) .* (-sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_Y .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ (sigma_Y .^ 2) .* ((2 .* 
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sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.3e1 ./ 0.2e1)) + (-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .* (-sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) 
.* sigma_Y .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) 
.^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi 
.* (sigma_Y .^ 2 + sigma_delta .^ 2)) .^ (-0.1e1 ./ 0.2e1) + 0.2e1 .* mu_Y 
.* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) 
.* (-sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - 
sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) .* 
((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.3e1 ./ 0.2e1)) + 
(sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (1 + erf((-(-(mu_X 
.* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) - c_1 - c_2) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2))) .* (-sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) ./ (sigma_Y .^ 2) .* ((2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) - (sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2))); 
 
                flOverfprimel = @(x) (((mu_Y .* sigma_delta .^ 2 - (c_1 + 
c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (sigma_Y .^ 2) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 
2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) 
.* sqrt(0.2e1) .* (pi .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .^ (-0.1e1 ./ 
0.2e1) ./ 0.2e1 + (sigma_Y .^ 2 .* mu_Y .* (1 - erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
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sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 0.2e1 - mu_Y + c_1) ./ (-0.2e1 
.* (mu_Y .* sigma_delta .^ 2 - (c_1 + c_2) .* (sigma_Y .^ 2 + sigma_delta 
.^ 2)) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 2 
+ x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 
- (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) 
.* (-sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - 
sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ 
(sigma_Y .^ 2) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.3e1 
./ 0.2e1)) + (-(-(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) 
./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .* (-sigma_X .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - sigma_X .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) .* exp(-((-(-(mu_X 
.* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2))) .* sqrt(0.2e1) .* (pi .* (sigma_Y .^ 2 + sigma_delta .^ 
2)) .^ (-0.1e1 ./ 0.2e1) + 0.2e1 .* mu_Y .* pi .^ (-0.1e1 ./ 0.2e1) .* 
exp(-((-(-(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 
+ sigma_epsilon .^ 2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + 
mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 
2 + 2 .* sigma_delta .^ 2))) .* (-sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_Y .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) .* ((2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.3e1 ./ 0.2e1)) + (sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* (1 + erf((-(-(mu_X .* sigma_epsilon .^ 2 + x .* 
sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-
0.1e1 ./ 0.2e1)))) ./ 0.2e1 - ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2) .* pi .^ (-0.1e1 
./ 0.2e1) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) 
.^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) .* (-sigma_X .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 2 - sigma_X .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ (sigma_Y .^ 2) 
.* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))); 
 
                f_lowerNotSameR0 = @(x) ((mu_Y .* sigma_delta .^ 2 - (c_1 + 
c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
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2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (sigma_Y .^ 2) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 
2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) 
.* sqrt(0.2e1) .* (pi .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .^ (-0.1e1 ./ 
0.2e1) ./ 0.2e1 + (sigma_Y .^ 2 .* mu_Y .* (1 - erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 0.2e1 - mu_Y + c_1; 
                 
                f_upperNotSameR0 = @(x) ((mu_Y .* sigma_delta .^ 2 - (c_1 + 
c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (sigma_Y .^ 2) .* exp(-((-(-(mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_Y .^ 
2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) 
.* sqrt(0.2e1) .* (pi .* (sigma_Y .^ 2 + sigma_delta .^ 2)) .^ (-0.1e1 ./ 
0.2e1) ./ 0.2e1 + (sigma_Y .^ 2 .* mu_Y .* (1 - erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1))) ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) + (((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2) .* (1 + erf((-(-(mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* sigma_Y .^ 2 - (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 + mu_Y .* 
sigma_delta .^ 2) ./ sigma_Y .^ 2 - mu_Y) .* (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) + c_1; 
% --------------------- ititial bracket test------------------------------- 
%                 Check for a valid bracket for the upper root 
%                     upperRootFuncAtVTX = f_upperNotSameR0(V_TXStar) 
%                     upperRootFuncAtVTXplus100sigmas = 
f_upperNotSameR0(V_TXStar + 100*stdevSumSq) 
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                if f_upperNotSameR0(V_TXStar)*f_upperNotSameR0(V_TXStar + 
100)>0 
                    Tupper = Inf; 
                    xup = []; 
                    rel_error_up = []; 
                else 
        %             NEWTON-RAPHSON ALGORITHM 
                    ii = 1; 
                    xup(1) = V_TXStar; 
                    rel_error_up(1) = 1; %Initialize error at one 
        %             Find Tupper 
                    while rel_error_up(ii) > tol 
                        ii = ii+1; 
                        xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                        rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
                        if ii > 15 
                            xup(ii)=Inf; 
                            break                       
                        end 
                    end 
                    if xup(length(xup))>=V_TXStar 
                        Tupper = xup(length(xup));  
                    else 
            %           restart NEWTON-RAPHSON ALGORITHM 
                        ii = 1; 
                        xup = []; 
                        xup(1) = V_TXStar+3*analysisStdev; 
                        rel_error_up = []; 
                        rel_error_up(1) = 1; %Initialize error at one 
            %             Find Tupper 
                        while rel_error_up(ii) > tol 
                            ii = ii+1; 
                            xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                            rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
                            if ii > 15 
                                xup(ii)=Inf; 
                                break                       
                            end 
                        end 
                        Tupper = xup(length(xup)); 
                    end 
                end 
% ------------------end ititial bracket test------------------------------- 
% -------------------no ititial bracket test------------------------------- 
% %             NEWTON-RAPHSON ALGORITHM 
%                 ii = 1; 
%                 xup(1) = V_TXStar; 
%                 rel_error_up(1) = 1; %Initialize error at one 
%     %             Find Tupper 
%                 while rel_error_up(ii) > tol 
%                     ii = ii+1; 
%                     xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
%                     rel_error_up(ii) = abs((xup(ii)-xup(ii-1))/xup(ii)); 
%                     if ii > 15 
%                         xup(ii)=Inf; 
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%                         break                       
%                     end 
%                 end 
%                 if xup(length(xup))>=V_TXStar 
%                     Tupper = xup(length(xup));  
%                 else 
%         %           restart NEWTON-RAPHSON ALGORITHM 
%                     ii = 1; 
%                     xup = []; 
%                     xup(1) = V_TXStar+3*analysisStdev; 
%                     rel_error_up = []; 
%                     rel_error_up(1) = 1; %Initialize error at one 
%         %             Find Tupper 
%                     while rel_error_up(ii) > tol 
%                         ii = ii+1; 
%                         xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
%                         rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
%                         if ii > 15 
%                             xup(ii)=Inf; 
%                             break                       
%                         end 
%                     end 
%                      
%                     Tupper = xup(length(xup)); 
%                end 
% ---------------end no ititial bracket test-------------------------------          
% ------------------------initial bracket test-----------------------------          
%               Check for a valid bracket for the lower root 
%                 lowerRootFuncAtVTX = f_lowerNotSameR0(V_TXStar) 
%                 lowerRootFuncAtVTXminus100sigmas = 
f_lowerNotSameR0(V_TXStar-100*stdevSumSq) 
                if f_lowerNotSameR0(V_TXStar)*f_lowerNotSameR0(V_TXStar-
100)>0 
                    Tlower = -Inf; 
                    xdown = []; 
                    rel_error_down = []; 
                else 
                    jj = 1; 
                    xdown(1) = V_TXStar; 
                    rel_error_down(1) = 1; %Initialize error at one 
        %             Find Tlower 
                    while rel_error_down(jj) > tol 
                        jj = jj+1; 
                        xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
                        rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                        if jj > 15 
                            xdown(jj)=-Inf; 
                            break 
                        end 
                    end 
                    if xdown(length(xdown))<=V_TXStar 
                        Tlower = xdown(length(xdown)); 
                    else % restart NEWTON RAPHSON ALGORITHM 
                        jj = 1; 
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                        xdown = []; 
                        xdown(1) = V_TXStar - 3*analysisStdev; 
                        rel_error_down = []; 
                        rel_error_down(1) = 1; %Initialize error at one 
            %             Find Tlower 
                        while rel_error_down(jj) > tol 
                            jj = jj+1; 
                            xdown(jj) = xdown(jj-1) - 
flOverfprimel(xdown(jj-1)); 
                            rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                            if jj > 15 
                                xdown(jj)=-Inf; 
                                break 
                            end 
                        end 
                        Tlower = xdown(length(xdown)); 
                    end 
                end 
% --------------------end initial bracket test----------------------------- 
% ---------------------no initial bracket test----------------------------- 
%                 jj = 1; 
%                 xdown(1) = V_TXStar; 
%                 rel_error_down(1) = 1; %Initialize error at one 
%     %             Find Tlower 
%                 while rel_error_down(jj) > tol 
%                     jj = jj+1; 
%                     xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-1)); 
%                     rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                     if jj > 15 
%                         xdown(jj)=-Inf; 
%                         break 
%                     end 
%                 end 
%                 if xdown(length(xdown))<=V_TXStar 
%                     Tlower = xdown(length(xdown)); 
%                 else % restart NEWTON RAPHSON ALGORITHM 
%                     jj = 1; 
%                     xdown = []; 
%                     xdown(1) = V_TXStar - 3*analysisStdev; 
%                     rel_error_down = []; 
%                     rel_error_down(1) = 1; %Initialize error at one 
%         %             Find Tlower 
%                     while rel_error_down(jj) > tol 
%                         jj = jj+1; 
%                         xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
%                         rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                         if jj > 15 
%                             xdown(jj)=-Inf; 
%                             break 
%                         end 
%                     end 
%                     Tlower = xdown(length(xdown)); 
%                 end 
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% -----------------end no initial bracket test-----------------------------          
            end 
        else % R > 0; 
             % RISK AVERSE 
            if alternative == nextAlternative 
                % SAME CONCEPT TESTED TWICE 
                fuOverfprimeu = @(x) (((1 - erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R) 
./ 0.2e1 - exp(((-2 .* R .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 
2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2) + 2 .* R .* 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2) + R .^ 2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 
2 + R .^ 2 .* sigma_X .^ 4 .* sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .^ 2) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (1 - 
erf(((((sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X 
.^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2 - 2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - 
((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) + (R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 
./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - exp(-(R .* (mu_Y - c_1 - c_2)) + 
(sigma_Y .^ 2 .* R .^ 2) ./ 0.2e1)) .* (1 + erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R 
./ 0.2e1 - 0.1e1 ./ R .* (0.1e1 - exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + 
x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1)) + (R .^ 2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) ./ 0.2e1))) ./ (-pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
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2))) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2)) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R + 
(sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .* exp(((-2 .* R .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) + R .^ 2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + R .^ 2 .* sigma_X .^ 4 .* 
sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2) ./ (2 .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
2 .* sigma_delta .^ 2))) .* (1 - erf(((((sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2) .* (2 .* mu_Y - 
sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* (mu_X .* sigma_epsilon 
.^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) + (R .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2))) .* ((2 .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) + exp(((-2 .* R .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) + R .^ 2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + R .^ 2 .* sigma_X .^ 4 .* 
sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2) ./ (2 .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
2 .* sigma_delta .^ 2))) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
sigma_delta .^ 2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 
2 - 2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 
+ sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) + (R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2))) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2)) .* (-
sigma_delta .^ 2 ./ sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 
0.2e1)) ./ R + (0.1e1 - exp(-(R .* (mu_Y - c_1 - c_2)) + (sigma_Y .^ 2 .* R 
.^ 2) ./ 0.2e1)) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
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.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2)) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R - 
(sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* exp(-(R .* ((mu_X 
.* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) - c_1)) + (R .^ 2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1)); 
 
                flOverfprimel = @(x) (((1 - erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R) 
./ 0.2e1 - exp(((-2 .* R .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 
2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2) + 2 .* R .* 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2) + R .^ 2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 
2 + R .^ 2 .* sigma_X .^ 4 .* sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .^ 2) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (1 - 
erf(((((sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X 
.^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2 - 2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - 
((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) + (R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 
./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - exp(-(R .* (mu_Y - c_1 - c_2)) + 
(sigma_Y .^ 2 .* R .^ 2) ./ 0.2e1)) .* (1 + erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R 
./ 0.2e1 - 0.1e1 ./ R .* (0.1e1 - exp(-(R .* (mu_Y - c_1)) + (sigma_Y .^ 2 
.* R .^ 2) ./ 0.2e1))) ./ (-pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
sigma_delta .^ 2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 
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2 - 2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 
+ sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2)) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R + 
(sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .* exp(((-2 .* R .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) + R .^ 2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + R .^ 2 .* sigma_X .^ 4 .* 
sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2) ./ (2 .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
2 .* sigma_delta .^ 2))) .* (1 - erf(((((sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2) .* (2 .* mu_Y - 
sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* (mu_X .* sigma_epsilon 
.^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon .^ 2 .* (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) + (R .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2))) .* ((2 .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) + exp(((-2 .* R .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) + R .^ 2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2 + R .^ 2 .* sigma_X .^ 4 .* 
sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .^ 2) ./ (2 .* 
sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
2 .* sigma_delta .^ 2))) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 
sigma_delta .^ 2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 
2 - 2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 
+ sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) + (R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2))) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2)) .* (-
sigma_delta .^ 2 ./ sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 
0.2e1)) ./ R + (0.1e1 - exp(-(R .* (mu_Y - c_1 - c_2)) + (sigma_Y .^ 2 .* R 
.^ 2) ./ 0.2e1)) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 



   

206 
 

2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .^ 2 ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2)) .* (-sigma_delta .^ 2 ./ 
sigma_epsilon .^ 2 - sigma_X .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2)) 
.* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R); 
                 
                f_lowerSame = @(x) ((1 - erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R) 
./ 0.2e1 - exp(((-2 .* R .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 
2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2) + 2 .* R .* 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2) + R .^ 2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 
2 + R .^ 2 .* sigma_X .^ 4 .* sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .^ 2) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (1 - 
erf(((((sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X 
.^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2 - 2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - 
((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) + (R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 
./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - exp(-(R .* (mu_Y - c_1 - c_2)) + 
(sigma_Y .^ 2 .* R .^ 2) ./ 0.2e1)) .* (1 + erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R 
./ 0.2e1 - 0.1e1 ./ R .* (0.1e1 - exp(-(R .* (mu_Y - c_1)) + (sigma_Y .^ 2 
.* R .^ 2) ./ 0.2e1)); 
                 
                f_upperSame = @(x) ((1 - erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
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2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R) 
./ 0.2e1 - exp(((-2 .* R .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 
2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* (sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 2) + 2 .* R .* 
(c_1 + c_2) .* (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + sigma_delta .^ 2) + R .^ 2 .* sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 
2 + R .^ 2 .* sigma_X .^ 4 .* sigma_epsilon .^ 4 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .^ 2) ./ (2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2))) .* (1 - 
erf(((((sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon 
.^ 2) + sigma_delta .^ 2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X 
.^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* 
sigma_delta .^ 2 - 2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ 
sigma_epsilon .^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - 
((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2)) + (R .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 
./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - exp(-(R .* (mu_Y - c_1 - c_2)) + 
(sigma_Y .^ 2 .* R .^ 2) ./ 0.2e1)) .* (1 + erf(((((sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) + sigma_delta .^ 
2) .* (2 .* mu_Y - sigma_Y .^ 2 .* R) + R .* sigma_X .^ 2 .* sigma_epsilon 
.^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* sigma_delta .^ 2 - 2 .* 
(mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* sigma_delta .^ 2) ./ sigma_X .^ 2 ./ sigma_epsilon 
.^ 2 .* (sigma_X .^ 2 + sigma_epsilon .^ 2)) ./ 0.2e1 - ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2))) .* ((2 .* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R 
./ 0.2e1 - 0.1e1 ./ R .* (0.1e1 - exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + 
x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1)) + (R .^ 2 
.* sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2)) ./ 0.2e1)); 
 
%                 Check for a valid bracket for the upper root 
%                 if f_upperSame(V_TXStar)*f_upperSame(V_TXStar +100 
*analysisStdev)>0 
%                     Tupper = Inf; 
%                     xup = []; 
%                     rel_error_up = []; 
%                 else 
%         %             NEWTON-RAPHSON ALGORITHM 
%                     ii = 1; 
%                     xup(1) = V_TXStar; 
%                     rel_error_up(1) = 1; %Initialize error at one 
%         %             Find Tupper 
%                     while rel_error_up(ii) > tol 
%                         ii = ii+1; 
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%                         xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
%                         rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
%                         if ii > 15 
%                             xup(ii)=Inf; 
%                             break                       
%                         end 
%                     end 
%                     if xup(length(xup))>=V_TXStar 
%                         Tupper = xup(length(xup)); 
%                     else 
%             %           restart NEWTON-RAPHSON ALGORITHM 
%                         ii = 1; 
%                         xup = []; 
%                         xup(1) = V_TXStar + 3*analysisStdev; 
%                         rel_error_up = []; 
%                         rel_error_up(1) = 1; %Initialize error at one 
%             %             Find Tupper 
%                         while rel_error_up(ii) > tol 
%                             ii = ii+1; 
%                             xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-
1)); 
%                             rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
%                             if ii > 15 
%                                 xup(ii)=Inf; 
%                                 break                       
%                             end 
%                         end 
%                         Tupper = xup(length(xup)); 
%                     end 
%                 end 
 
    %             NEWTON-RAPHSON ALGORITHM 
                ii = 1; 
                xup(1) = V_TXStar; 
                rel_error_up(1) = 1; %Initialize error at one 
    %             Find Tupper 
                while rel_error_up(ii) > tol 
                    ii = ii+1; 
                    xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                    rel_error_up(ii) = abs((xup(ii)-xup(ii-1))/xup(ii)); 
                    if ii > 15 
                        xup(ii)=Inf; 
                        break                       
                    end 
                end 
                if xup(length(xup))>=V_TXStar 
                    Tupper = xup(length(xup)); 
                else 
        %           restart NEWTON-RAPHSON ALGORITHM 
                    ii = 1; 
                    xup = []; 
                    xup(1) = V_TXStar + 3*analysisStdev; 
                    rel_error_up = []; 
                    rel_error_up(1) = 1; %Initialize error at one 
        %             Find Tupper 



   

209 
 

                    while rel_error_up(ii) > tol 
                        ii = ii+1; 
                        xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                        rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
                        if ii > 15 
                            xup(ii)=Inf; 
                            break                       
                        end 
                    end 
                    Tupper = xup(length(xup)); 
                end 
 
%               Check for a valid bracket for the lower root 
%                 if f_lowerSame(V_TXStar)*f_lowerSame(V_TXStar - 
100*analysisStdev)>0 
%                     Tlower = -Inf; 
%                     xdown = []; 
%                     rel_error_down = []; 
%                 else 
%                     jj = 1; 
%                     xdown(1) = V_TXStar; 
%                     rel_error_down(1) = 1; %Initialize error at one 
%         %             Find Tlower 
%                     while rel_error_down(jj) > tol 
%                         jj = jj+1; 
%                         xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
%                         rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                         if jj > 15 
%                             xdown(jj)=-Inf; 
%                             break 
%                         end 
%                     end 
%                     if xdown(length(xdown))<=V_TXStar 
%                         Tlower = xdown(length(xdown)); 
%                     else % restart NEWTON RAPHSON ALGORITHM 
%                         jj = 1; 
%                         xdown = []; 
%                         xdown(1) = V_TXStar - 3*analysisStdev; 
%                         rel_error_down = []; 
%                         rel_error_down(1) = 1; %Initialize error at one 
%             %             Find Tlower 
%                         while rel_error_down(jj) > tol 
%                             jj = jj+1; 
%                             xdown(jj) = xdown(jj-1) - 
flOverfprimel(xdown(jj-1)); 
%                             rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                             if jj > 15 
%                                 xdown(jj)=-Inf; 
%                                 break 
%                             end 
%                         end       
%                         Tlower = xdown(length(xdown)); 
%                     end 
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%                 end 
 
                jj = 1; 
                xdown(1) = V_TXStar; 
                rel_error_down(1) = 1; %Initialize error at one 
    %             Find Tlower 
                while rel_error_down(jj) > tol 
                    jj = jj+1; 
                    xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-1)); 
                    rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                    if jj > 15 
                        xdown(jj)=-Inf; 
                        break 
                    end 
                end 
                if xdown(length(xdown))<=V_TXStar 
                    Tlower = xdown(length(xdown)); 
                else % restart NEWTON RAPHSON ALGORITHM 
                    jj = 1; 
                    xdown = []; 
                    xdown(1) = V_TXStar - 3*analysisStdev; 
                    rel_error_down = []; 
                    rel_error_down(1) = 1; %Initialize error at one 
        %             Find Tlower 
                    while rel_error_down(jj) > tol 
                        jj = jj+1; 
                        xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
                        rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                        if jj > 15 
                            xdown(jj)=-Inf; 
                            break 
                        end 
                    end       
                    Tlower = xdown(length(xdown)); 
                end 
            else % test one concept, then test the next concept 
                 % ONE CONCEPT AFTER ANOTHER 
                fuOverfprimeu = @(x) (((1 - erf(((((sigma_Y .^ 2 + 
sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* 
sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 
- mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 
0.2e1)))) ./ R) ./ 0.2e1 - exp(((-2 .* R .* mu_Y .* (sigma_Y .^ 2 + 
sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 
2) + R .^ 2 .* sigma_Y .^ 2 .* sigma_delta .^ 2 + R .^ 2 .* sigma_Y .^ 4) 
./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) .* (1 - erf(((((sigma_Y .^ 
2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y + (R .* sigma_Y .^ 2)) .* ((2 .* sigma_Y .^ 2 
+ 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - 
exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 
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2 + sigma_epsilon .^ 2) - c_1 - c_2)) + (sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R .^ 2) ./ 0.2e1)) .* (1 + 
erf(((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 
2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 - (0.1e1 - exp(-(R .* ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) - c_1)) + (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* R .^ 2) ./ 0.2e1)) ./ R) ./ (-pi .^ (-0.1e1 ./ 
0.2e1) .* exp(-((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta 
.^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) .* (sigma_Y .^ 2 + sigma_delta .^ 2) .* (sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) ./ (sigma_Y .^ 2) .* ((2 .* sigma_Y 
.^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R + exp(((-2 .* R .* 
mu_Y .* (sigma_Y .^ 2 + sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* 
(sigma_Y .^ 2 + sigma_delta .^ 2) + R .^ 2 .* sigma_Y .^ 2 .* sigma_delta 
.^ 2 + R .^ 2 .* sigma_Y .^ 4) ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 
2))) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_Y .^ 2 + sigma_delta .^ 
2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 
.* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y + (R .* 
sigma_Y .^ 2)) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2)) .* 
(sigma_Y .^ 2 + sigma_delta .^ 2) .* (sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) ./ (sigma_Y .^ 2) .* ((2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R + (sigma_X .^ 2) ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2) .* exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x 
.* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2)) + 
(sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) 
.* R .^ 2) ./ 0.2e1) .* (1 + erf(((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 
.* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* 
mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .* ((2 .* 
sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 0.2e1 + 
(0.1e1 - exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2)) + (sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R .^ 2) ./ 
0.2e1)) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_Y .^ 2 + sigma_delta 
.^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 
2 .* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .^ 2 ./ (2 
.* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2)) .* (sigma_Y .^ 2 + sigma_delta .^ 
2) .* (sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) ./ (sigma_Y .^ 
2) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ 
R - (sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* exp(-(R .* 
((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - c_1)) + (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) .* R .^ 2) ./ 0.2e1)); 
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                flOverfprimel = @(x) (((1 - erf(((((sigma_Y .^ 2 + 
sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* 
sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 
- mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 
0.2e1)))) ./ R) ./ 0.2e1 - exp(((-2 .* R .* mu_Y .* (sigma_Y .^ 2 + 
sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 
2) + R .^ 2 .* sigma_Y .^ 2 .* sigma_delta .^ 2 + R .^ 2 .* sigma_Y .^ 4) 
./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) .* (1 - erf(((((sigma_Y .^ 
2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y + (R .* sigma_Y .^ 2)) .* ((2 .* sigma_Y .^ 2 
+ 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - 
exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) - c_1 - c_2)) + (sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R .^ 2) ./ 0.2e1)) .* (1 + 
erf(((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 
2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 - (0.1e1 - exp(-(R .* (mu_Y - 
c_1)) + (sigma_Y .^ 2 .* R .^ 2) ./ 0.2e1)) ./ R) ./ (-pi .^ (-0.1e1 ./ 
0.2e1) .* exp(-((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 .* (mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta 
.^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2)) .* (sigma_Y .^ 2 + sigma_delta .^ 2) .* (sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) ./ (sigma_Y .^ 2) .* ((2 .* sigma_Y 
.^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R + exp(((-2 .* R .* 
mu_Y .* (sigma_Y .^ 2 + sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* 
(sigma_Y .^ 2 + sigma_delta .^ 2) + R .^ 2 .* sigma_Y .^ 2 .* sigma_delta 
.^ 2 + R .^ 2 .* sigma_Y .^ 4) ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 
2))) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_Y .^ 2 + sigma_delta .^ 
2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 
.* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y + (R .* 
sigma_Y .^ 2)) .^ 2 ./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2)) .* 
(sigma_Y .^ 2 + sigma_delta .^ 2) .* (sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) ./ (sigma_Y .^ 2) .* ((2 .* sigma_Y .^ 2 + 2 .* 
sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ R + (sigma_X .^ 2) ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2) .* exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x 
.* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2)) + 
(sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) 
.* R .^ 2) ./ 0.2e1) .* (1 + erf(((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 
.* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* 
mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .* ((2 .* 
sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ 0.2e1 + 
(0.1e1 - exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ 
(sigma_X .^ 2 + sigma_epsilon .^ 2) - c_1 - c_2)) + (sigma_X .^ 2 .* 
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sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R .^ 2) ./ 
0.2e1)) .* pi .^ (-0.1e1 ./ 0.2e1) .* exp(-((((sigma_Y .^ 2 + sigma_delta 
.^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X 
.^ 2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* sigma_delta .^ 2 - 
2 .* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .^ 2 ./ (2 
.* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2)) .* (sigma_Y .^ 2 + sigma_delta .^ 
2) .* (sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) ./ (sigma_Y .^ 
2) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)) ./ 
R); 
 
                f_lowerNotSame = @(x) ((1 - erf(((((sigma_Y .^ 2 + 
sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* 
sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 
- mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 
0.2e1)))) ./ R) ./ 0.2e1 - exp(((-2 .* R .* mu_Y .* (sigma_Y .^ 2 + 
sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 
2) + R .^ 2 .* sigma_Y .^ 2 .* sigma_delta .^ 2 + R .^ 2 .* sigma_Y .^ 4) 
./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) .* (1 - erf(((((sigma_Y .^ 
2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y + (R .* sigma_Y .^ 2)) .* ((2 .* sigma_Y .^ 2 
+ 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - 
exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) - c_1 - c_2)) + (sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R .^ 2) ./ 0.2e1)) .* (1 + 
erf(((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 
2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 - (0.1e1 - exp(-(R .* (mu_Y - 
c_1)) + (sigma_Y .^ 2 .* R .^ 2) ./ 0.2e1)) ./ R; 
                 
                f_upperNotSame = @(x) ((1 - erf(((((sigma_Y .^ 2 + 
sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* sigma_Y .^ 2 .* 
sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ sigma_Y .^ 2) ./ 0.2e1 
- mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 
0.2e1)))) ./ R) ./ 0.2e1 - exp(((-2 .* R .* mu_Y .* (sigma_Y .^ 2 + 
sigma_delta .^ 2) + 2 .* R .* (c_1 + c_2) .* (sigma_Y .^ 2 + sigma_delta .^ 
2) + R .^ 2 .* sigma_Y .^ 2 .* sigma_delta .^ 2 + R .^ 2 .* sigma_Y .^ 4) 
./ (2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 2))) .* (1 - erf(((((sigma_Y .^ 
2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 2 + x .* sigma_X 
.^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 2 .* 
sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y + (R .* sigma_Y .^ 2)) .* ((2 .* sigma_Y .^ 2 
+ 2 .* sigma_delta .^ 2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 + (0.1e1 - 
exp(-(R .* ((mu_X .* sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 
2 + sigma_epsilon .^ 2) - c_1 - c_2)) + (sigma_X .^ 2 .* sigma_epsilon .^ 2 
./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R .^ 2) ./ 0.2e1)) .* (1 + 
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erf(((((sigma_Y .^ 2 + sigma_delta .^ 2) .* (2 .* (mu_X .* sigma_epsilon .^ 
2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) - sigma_X .^ 
2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + sigma_epsilon .^ 2) .* R) + R .* 
sigma_Y .^ 2 .* sigma_delta .^ 2 - 2 .* mu_Y .* sigma_delta .^ 2) ./ 
sigma_Y .^ 2) ./ 0.2e1 - mu_Y) .* ((2 .* sigma_Y .^ 2 + 2 .* sigma_delta .^ 
2) .^ (-0.1e1 ./ 0.2e1)))) ./ R ./ 0.2e1 - (0.1e1 - exp(-(R .* ((mu_X .* 
sigma_epsilon .^ 2 + x .* sigma_X .^ 2) ./ (sigma_X .^ 2 + sigma_epsilon .^ 
2) - c_1)) + (sigma_X .^ 2 .* sigma_epsilon .^ 2 ./ (sigma_X .^ 2 + 
sigma_epsilon .^ 2) .* R .^ 2) ./ 0.2e1)) ./ R; 
%                 Check for a valid bracket for the upper root 
%                 if 
f_upperNotSame(V_TXStar)*f_upperNotSame(V_TXStar+100*analysisStdev)>0 
%                     Tupper = Inf; 
%                     xup = []; 
%                     rel_error_up = []; 
%                 else 
%         %             NEWTON-RAPHSON ALGORITHM 
%                     ii = 1; 
%                     xup(1) = V_TXStar; 
%                     rel_error_up(1) = 1; %Initialize error at one 
%         %             Find Tupper 
%                     while rel_error_up(ii) > tol 
%                         ii = ii+1; 
%                         xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
%                         rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
%                         if ii > 15 
%                             xup(ii)=Inf; 
%                             break                       
%                         end 
%                     end 
%                     if xup(length(xup))>=V_TXStar 
%                         Tupper = xup(length(xup)); 
%                     else 
%             %           restart NEWTON-RAPHSON ALGORITHM 
%                         ii = 1; 
%                         xup = []; 
%                         xup(1) = V_TXStar + 3*analysisStdev; 
%                         rel_error_up = []; 
%                         rel_error_up(1) = 1; %Initialize error at one 
%             %             Find Tupper 
%                         while rel_error_up(ii) > tol 
%                             ii = ii+1; 
%                             xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-
1)); 
%                             rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
%                             if ii > 15 
%                                 xup(ii)=Inf; 
%                                 break                       
%                             end 
%                         end     
%                         Tupper = xup(length(xup)); 
%                     end 
%                 end 
 
    %             NEWTON-RAPHSON ALGORITHM 
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                ii = 1; 
                xup(1) = V_TXStar; 
                rel_error_up(1) = 1; %Initialize error at one 
    %             Find Tupper 
                while rel_error_up(ii) > tol 
                    ii = ii+1; 
                    xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                    rel_error_up(ii) = abs((xup(ii)-xup(ii-1))/xup(ii)); 
                    if ii > 15 
                        xup(ii)=Inf; 
                        break                       
                    end 
                end 
                if xup(length(xup))>=V_TXStar 
                    Tupper = xup(length(xup)); 
                else 
        %           restart NEWTON-RAPHSON ALGORITHM 
                    ii = 1; 
                    xup = []; 
                    xup(1) = V_TXStar + 3*analysisStdev; 
                    rel_error_up = []; 
                    rel_error_up(1) = 1; %Initialize error at one 
        %             Find Tupper 
                    while rel_error_up(ii) > tol 
                        ii = ii+1; 
                        xup(ii) = xup(ii-1) - fuOverfprimeu(xup(ii-1)); 
                        rel_error_up(ii) = abs((xup(ii)-xup(ii-
1))/xup(ii)); 
                        if ii > 15 
                            xup(ii)=Inf; 
                            break                       
                        end 
                    end     
                    Tupper = xup(length(xup)); 
                end 
%               Check for a valid bracket for the lower root 
%                 if f_lowerNotSame(V_TXStar)*f_lowerNotSame(V_TXStar-
100*analysisStdev) 
%                     Tlower = -Inf; 
%                     xdown = []; 
%                     rel_error_down = []; 
%                 else 
%                     jj = 1; 
%                     xdown(1) = V_TXStar; 
%                     rel_error_down(1) = 1; %Initialize error at one 
%         %             Find Tlower 
%                     while rel_error_down(jj) > tol 
%                         jj = jj+1; 
%                         xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
%                         rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                         if jj > 15 
%                             xdown(jj)=-Inf; 
%                             break 
%                         end 
%                     end 
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%                     if xdown(length(xdown))<=V_TXStar 
%                         Tlower = xdown(length(xdown)); 
%                     else % restart NEWTON RAPHSON ALGORITHM 
%                         jj = 1; 
%                         xdown = []; 
%                         xdown(1) = V_TXStar - 3*analysisStdev; 
%                         rel_error_down = []; 
%                         rel_error_down(1) = 1; %Initialize error at one 
%             %             Find Tlower 
%                         while rel_error_down(jj) > tol 
%                             jj = jj+1; 
%                             xdown(jj) = xdown(jj-1) - 
flOverfprimel(xdown(jj-1)); 
%                             rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
%                             if jj > 15 
%                                 xdown(jj)=-Inf; 
%                                 break 
%                             end 
%                         end 
%                         Tlower = xdown(length(xdown)); 
%                     end 
%                 end 
 
                jj = 1; 
                xdown(1) = V_TXStar; 
                rel_error_down(1) = 1; %Initialize error at one 
    %             Find Tlower 
                while rel_error_down(jj) > tol 
                    jj = jj+1; 
                    xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-1)); 
                    rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                    if jj > 15 
                        xdown(jj)=-Inf; 
                        break 
                    end 
                end 
                if xdown(length(xdown))<=V_TXStar 
                    Tlower = xdown(length(xdown)); 
                else % restart NEWTON RAPHSON ALGORITHM 
                    jj = 1; 
                    xdown = []; 
                    xdown(1) = V_TXStar - 3*analysisStdev; 
                    rel_error_down = []; 
                    rel_error_down(1) = 1; %Initialize error at one 
        %             Find Tlower 
                    while rel_error_down(jj) > tol 
                        jj = jj+1; 
                        xdown(jj) = xdown(jj-1) - flOverfprimel(xdown(jj-
1)); 
                        rel_error_down(jj) = abs((xdown(jj)-xdown(jj-
1))/xdown(jj)); 
                        if jj > 15 
                            xdown(jj)=-Inf; 
                            break 
                        end 
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                    end 
                    Tlower = xdown(length(xdown)); 
                end 
 
            end 
        end 
    end 
end 

normedTwoOnewRiskAversionFunction.m 

function [SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction(delta_mu,delta_stdev,stdev_eps,Ca,R) 
 
muB = 0; 
% y-axis is delta_stdev, with sigma A and sigma B held constant at 1 at the 
% top and bottom of the plot, respectively. 
% if delta_stdev>= 0 
%     stdevA = 1; 
%     stdevB = stdevA - delta_stdev; 
% else 
%     stdevB = 1; 
%     stdevA = delta_stdev + stdevB; 
% end 
 
 
muA = delta_mu+muB; 
 
% y-axis is sigma A, sigma B is constant at 1 
stdevB = 1; 
stdevA = delta_stdev; 
 

[SA,SB,AA,AB] = 
TwoOnewRiskAversionFunction(muA,stdevA,muB,stdevB,stdev_eps,Ca,R); 

normedTwoOnewRiskAversionFunction_OneAnalysis.m 

function [SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(delta_mu,delta_stdev,stde
v_eps,Ca,R) 
 
muB = 0; 
% y-axis is delta_stdev, with sigma A and sigma B held constant at 1 at the 
% top and bottom of the plot, respectively. 
% if delta_stdev>= 0 
%     stdevA = 1; 
%     stdevB = stdevA - delta_stdev; 
% else 
%     stdevB = 1; 
%     stdevA = delta_stdev + stdevB; 
% end 
 
 
muA = delta_mu+muB; 
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% y-axis is sigma A, sigma B is constant at 1 
stdevB = 1; 
stdevA = delta_stdev; 
 

[SA,SB,AA,AB] = 
TwoOnewRiskAversionFunction_OneAnalysis(muA,stdevA,muB,stdevB,stdev_eps,Ca,
R); 

plotBoundaries_new.m 

function [areas]=plotBoundaries_new(R,stdev_eps,Ca) 
tic 
 
num_steps = 10; 
yvect_up = linspace(1,2,num_steps); 
yvect_down = linspace(1,0,num_steps); 
 
[SA,SB,AA,AB] = normedTwoOnewRiskAversionFunction_new(0,1,stdev_eps,Ca,R); 
 
if SA > AA 
    areas = -1; % Two region plot, rather than 4 region. Vertical split. 
%     find intersection of SA and SB 
        y = yvect_up(1); 
 
        SASBu(1) = fzero(@(x) scanYMid_new(x,y,stdev_eps,Ca,R),0); 
        SASBd(1) = fzero(@(x) scanYMid_new(x,y,stdev_eps,Ca,R),SASBu(1)); 
 
    for ii = 2:num_steps 
        y_up = yvect_up(ii); 
        y_down = yvect_down(ii); 
 
        SASBu(ii) = fzero(@(x) 
scanYMid_new(x,y_up,stdev_eps,Ca,R),SASBu(ii-1)); 
        SASBd(ii) = fzero(@(x) 
scanYMid_new(x,y_down,stdev_eps,Ca,R),SASBd(ii-1)); 
 
    end 
figure 
    plot(SASBu,yvect_up,'k',SASBd,yvect_down,'k') 
    axis([-5 5 0 2]) 
%     legend('SA=SB','location','Southeast') 
    xlabel('\mu_A') 
    ylabel('\sigma_A') 
    title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
            ', Cost = ',num2str(Ca),... 
            ', R = ',num2str(R)]}) 
   hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.fig']) 
    close 
     
else 
    [SA1,SB1,AA1,AB1] = 
normedTwoOnewRiskAversionFunction_new(5,1,stdev_eps,Ca,R); 
    if SA1 > AA1 
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        areas = 1; % 4 region plot rather than two region 
    %     find intersections of SA/AA,SA/AB,SB/AA,SB/AB 
        SAAA = zeros(1,num_steps); 
        SAAB = SAAA; 
        SBAA = SAAA; 
        SBAB = SAAA; 
 
        y = yvect_up(1); 
            SAAA(1) = fzero(@(x) scanYRup_new(x,y,stdev_eps,Ca,R),[0,5]); 
            SAAB(1) = fzero(@(x) 
scanYRdown_new(x,y,stdev_eps,Ca,R),[SAAA(1)]); 
            SBAA(1) = fzero(@(x) scanYLup_new(x,y,stdev_eps,Ca,R),[-
1*SAAA(1)]); 
            SBAB(1) = fzero(@(x) 
scanYLdown_new(x,y,stdev_eps,Ca,R),[SBAB(1)]); 
 
 
        %% 
        for ii = 2:num_steps 
        y_up = yvect_up(ii); 
        y_down = yvect_down(ii); 
 
            SAAA(ii) = fzero(@(x) 
scanYRup_new(x,y_up,stdev_eps,Ca,R),SAAA(ii-1)); 
            SAAB(ii) = fzero(@(x) 
scanYRdown_new(x,y_down,stdev_eps,Ca,R),SAAB(ii-1)); 
            SBAA(ii) = fzero(@(x) 
scanYLup_new(x,y_up,stdev_eps,Ca,R),SBAA(ii-1)); 
            SBAB(ii) = fzero(@(x) 
scanYLdown_new(x,y_down,stdev_eps,Ca,R),SBAB(ii-1)); 
        end 
        figure 
        
plot(SAAA,yvect_up,'k',SBAA,yvect_up,'k',SAAB,yvect_down,'k',SBAB,yvect_dow
n,'k',[SAAA(1),SBAA(1)],[1,1],'k') 
        axis([-5 5 0 2]) 
%         
legend('SA=AA','SB=AA','SA=AB','SB=AB','AA=AB','location','Southeast') 
        xlabel('\mu_A') 
        ylabel('\sigma_A') 
        title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
                ', Cost = ',num2str(Ca),... 
                ', R = ',num2str(R)]}) 
       hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.fig']) 
        close 
        right = [[SAAA(linspace(num_steps,1,num_steps))]';SAAB']; 
        left = [[SBAA(linspace(num_steps,1,num_steps))]';SBAB']; 
        yvector = 
[yvect_up([linspace(num_steps,1,num_steps)])';yvect_down']; 
        csvwrite(['R',num2str(R),'-eps',num2str(stdev_eps),'-
C',num2str(Ca),'-',datestr(now,'HH.MM.SS'),'.csv'],[yvector,right,left]) 
    else 
        areas = -2; %Two region plot.  Horizontal split. (Should be the 
case for zero cost). 
        AAAB = [-5,5]; 
        y = [1 1]; 
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        figure 
        plot(AAAB,y,'k') 
        axis([-5 5 0 2]) 
%         legend('AA=AB','location','Southeast') 
        xlabel('\mu_A') 
        ylabel('\sigma_A') 
        title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
                ', Cost = ',num2str(Ca),... 
                ', R = ',num2str(R)]}) 
       hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.fig']) 
        close 
    end 
         
end 

toc 

plotBoundaries_OneAnalysis_new.m 

function [areas]=plotBoundaries_OneAnalysis_new(R,stdev_eps,Ca) 
tic 
 
num_steps = 10; 
yvect_up = linspace(1,2,num_steps); 
yvect_down = linspace(1,0,num_steps); 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(0,1,stdev_eps,Ca,R); 
 
if SA > AA 
    areas = -1; % Two region plot, rather than 4 region. Vertical split. 
%     find intersection of SA and SB 
        y = yvect_up(1); 
 
        SASBu(1) = fzero(@(x) scanYMid_OA_new(x,y,stdev_eps,Ca,R),0); 
        SASBd(1) = fzero(@(x) 
scanYMid_OA_new(x,y,stdev_eps,Ca,R),SASBu(1)); 
 
    for ii = 2:num_steps 
        y_up = yvect_up(ii); 
        y_down = yvect_down(ii); 
 
        SASBu(ii) = fzero(@(x) 
scanYMid_OA_new(x,y_up,stdev_eps,Ca,R),SASBu(ii-1)); 
        SASBd(ii) = fzero(@(x) 
scanYMid_OA_new(x,y_down,stdev_eps,Ca,R),SASBd(ii-1)); 
 
    end 
figure 
    plot(SASBu,yvect_up,'k',SASBd,yvect_down,'k') 
    axis([-5 5 0 2]) 
%     legend('SA=SB','SA=SB','location','Southeast') 
    xlabel('\mu_A') 
    ylabel('\sigma_A') 
    title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
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            ', Cost = ',num2str(Ca),... 
            ', R = ',num2str(R)]}) 
   hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.fig']) 
    close 
     
else 
    [SA1,SB1,AA1,AB1] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(5,1,stdev_eps,Ca,R); 
    if SA1 >= AA1 
        areas = 1; % 4 region plot rather than two region 
    %     find intersections of SA/AA,SA/AB,SB/AA,SB/AB 
        SAAA = zeros(1,num_steps); 
        SAAB = SAAA; 
        SBAA = SAAA; 
        SBAB = SAAA; 

RunDoEs_TwoTwo.m 

scriptStart = tic; 
diary(['runDoEDiary-',datestr(now,'HH.MM.SS'),'.txt']) 
 
% Run DoE's 
 
levels = 21; 
totalRuns = levels^2; 
 
muB = 0; 
stdevB = 1; 
tol = 1e-5; 
 
stdev_eps_vect = [1]; 
stdev_delta_vect = [0]; 
C1vect = [0.01]; 
C2vect = [0.1]; 
Rvect = [0.001]; 
 
mu_A = linspace(-5,5,levels); 
stdev_A = linspace(0.1,1.9,levels); 
 
% New normalization is symmetric about x-axis.  Stdev B is held at 1 for  
% the lower two quadrants.  Stdev A is held at 1 for the upper two  
% quadrants.  Mu A is varied within the plot; Stdev A and B are varied 
% within the plot in the quadrants where they are not held constant. 
% Separate plots are created for various values of Mu B, stdev_eps, Ca,  
% and R. 
 
for ee = 1:length(stdev_eps_vect); 
    stdev_eps = stdev_eps_vect(ee); 
    for dd = 1:length(stdev_delta_vect); 
        stdev_delta = stdev_delta_vect(dd); 
        for ff = 1:length(C1vect); 
            C1 = C1vect(ff); 
            for gg = 1:length(C2vect); 
                C2 = C2vect(gg); 
                for kk = 1:length(Rvect); 
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                R = Rvect(kk); 
 
                    count = 0; 
                    M = zeros(totalRuns,14); 
                    timeElapsed = zeros(totalRuns,1); 
                    for ii = 1:levels 
                        for jj = 1:levels 
                            count = count + 1; 
                            fprintf(1,'-----------------------------------
\n',[]) 
                            fprintf(1,'Run %4.0f out of %4.0f\n', [count, 
totalRuns]) 
                    % Run the calculation and store the inputs and outputs 
in a file. 
                            fprintf(1,'running 
decisionProblem2_2Function(%8.6f, %8.6f, %6.2f, %6.2f, %8.6f, %8.6f, %8.6f, 
%8.6f, %6.2f, 
%1.0e)\n',[mu_A(ii),stdev_A(jj),muB,stdevB,stdev_eps,stdev_delta,C1,C2,R,to
l]) 
                            tic         
                            [SA,SB,A1A,A1B,A2A,A2B] = 
decisionProblem2_2Function(mu_A(ii),stdev_A(jj),muB,stdevB,stdev_eps,stdev_
delta,C1,C2,R,tol); 
                            timeElapsed(count) = toc; 
                            fprintf(1,'Elapsed Time: %12.8f seconds\n', 
timeElapsed(count)) 
                            M(count,:) = 
[mu_A(ii),stdev_A(jj),stdev_eps,stdev_delta,C1,C2,R,SA,SB,A1A,A1B,A2A,A2B,t
imeElapsed(count)]; 
                        end 
                    end 
                    fprintf(1,'-----------------------------------\n',[]) 
                    fprintf('Total Time for all runs: %12.8f 
seconds\n',sum(timeElapsed)) 
                    fprintf(1,'---------End Block-----------------\n',[])            
                    % Save data 
                    csvwrite(['DoEData-R',num2str(R),... 
                    '-eps',num2str(stdev_eps),... 
                    '-delta',num2str(stdev_delta),... 
                    '-C1',num2str(C1),... 
                    '-C2',num2str(C2),... 
                    '-',datestr(now,'HH.MM.SS'),'.csv'],M,0,0) 
 
                    data = M; 
                    num_blocks = size(data,1)/(levels^2); 
 
                    for i = 1:num_blocks 
                    % for i = 1:1 
                    % Obtain one block of the experiment 
                    % A block is a set of runs for which muA and stddevA 
vary, but the other 
                    % parameters stay constant 
                    % separate data into inputs and responses 
                    muA = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),1),[levels,levels]); 
                    stdevA = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),2),[levels,levels]); 
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                    stdeveps= data((totalRuns*(i-1)+1),3); 
                    stdevdelta= data((totalRuns*(i-1)+1),4); 
                    C1= data((totalRuns*(i-1)+1),5); 
                    C2 = data((totalRuns*(i-1)+1),6); 
                    R = data((totalRuns*(i-1)+1),7); 
                    SA = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),8),[levels,levels]); 
                    SB = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),9),[levels,levels]); 
                    A1A = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),10),[levels,levels]); 
                    A1B = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),11),[levels,levels]); 
                    A2A = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),12),[levels,levels]); 
                    A2B = reshape(data((totalRuns*(i-
1)+(1:(totalRuns))),13),[levels,levels]); 
 
 
 
                    figure 
                    % Plot surfaces for each of six responses 
                    % surf(muA,stdevA,HQB,1.0*ones(levels,levels)) 
                    hold on 
                    surf(muA,stdevA,A2B,0.8*ones(levels,levels)) 
                    surf(muA,stdevA,A2A,1.0*ones(levels,levels)) 
                    surf(muA,stdevA,A1B,0.6*ones(levels,levels)) 
                    surf(muA,stdevA,A1A,0.4*ones(levels,levels)) 
                    surf(muA,stdevA,SB,0.2*ones(levels,levels)) 
                    surf(muA,stdevA,SA,0.0*ones(levels,levels)) 
                    colormap(hsv(6)) 
                    shading flat 
                    legend('A2B','A2A','A1B','A1A','SB','SA') 
                    xlabel('\mu_A') 
                    ylabel('\sigma_A') 
                    view(0,90) 
                    title({'Maximum Expected Utilities of SA, SB, A1A, A1B, 
A2A, and A2B';... 
                        [' \sigma_\epsilon = ',num2str(stdeveps),... 
                        ' ,\sigma_\delta = ',num2str(stdevdelta),... 
                        ', Cost_1 = ',num2str(C1),... 
                        ' ,Cost_2 = ',num2str(C2)]}) 
                    % save figure automatically, clear and move on to next 
block 
                    hgsave(['surf-R',num2str(R),... 
                        '-eps',num2str(stdev_eps),... 
                        '-delta',num2str(stdev_delta),... 
                        '-C1',num2str(C1),... 
                        '-C2',num2str(C2),... 
                        '-',datestr(now,'HH.MM.SS'),'.fig']) 
 
                    close 
 
                    end 
 
                end 
            end 
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        end 
    end 
end 
toc(scriptStart) 
diary off 

 

 

scanYLdown_new.m 

function [diffSBAB] = scanYLdown_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSBAB = SB-AB; 

scanYLdown_OA_new.m 

function [diffSBAB] = scanYLdown_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSBAB = SB-AB; 

scanYLup_new.m 

function [diffSBAA] = scanYLup_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSBAA = SB-AA; 

scanYLup_OA_new.m 

function [diffSBAA] = scanYLup_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSBAA = SB-AA; 

scanYMid_new.m 

function [diffSASB] = scanYMid_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
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diffSASB = SA-SB; 

scanYMid_OA_new.m 

function [diffSASB] = scanYMid_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSASB = SA-SB; 

scanYRdown_new.m 

function [diffSAAB] = scanYRdown_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSAAB = SA-AB; 

scanYRdown_OA_new.m 

function [diffSAAB] = scanYRdown_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSAAB = SA-AB; 

scanYRup_new.m 

function [diffSAAA] = scanYRup_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSAAA = SA-AA; 

scanYRup_OA_new.m 

function [diffSAAA] = scanYRup_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSAAA = SA-AA; 

Scenario1_TwoAnalyses_fromDoEData.m 
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% Script to run and save data on the VoI comparison for Scenario 1: One 
% analysis 
 
 
% Get samples and data from DoEData csv files 
cd('C:\Users\stephanie\Documents\MATLAB\TwoTwo\TwoTwo_full_V4') 
data2 = csvread('DoEData-R0.001-eps1-delta0-C10.01-C20.1-04.37.41.csv'); 
% data2 = csvread('DoEData-R1-eps1-delta0-C10.01-C20.1-10.28.36.csv'); 
 
% Full = [data1;data2]; 
Full = [data2]; 
samples = length(Full); 
Full = [Full(:,1:2),0*ones(samples,1),1*ones(samples,1),Full(:,3:7),1e-
4*ones(samples,1),Full(:,8:size(Full,2))]; 
 
Trunc = zeros(size(Full)); 
 
X = [Full(:,1:2),Full(:,5:9)]; 
tol = Full(1,10); 
 
stdev_1 = X(1,3); 
stdev_2 = X(1,4); 
C1 = X(1,5); 
C2 = X(1,6); 
R = X(1,7); 
 
%% 
% Run the full and truncated decision trees for each point, save the data 
% to a csv file 
 
for ii=1:samples 
     
% %     Full 
%     cd('C:\Users\stephanie\Documents\MATLAB\TwoTwo\TwoTwo_full_V4') 
%     time1 = tic; 
%     [SA,SB,A1A,A1B,A2A,A2B] = 
decisionProblem2_2Function(X(ii,1),X(ii,2),0,1,X(ii,3),X(ii,4),X(ii,5),X(ii
,6),X(ii,7),tol); 
%     elapsedFull = toc(time1); 
%      
%     Full(ii,:) = 
[X(ii,1),X(ii,2),0,1,X(ii,3),X(ii,4),X(ii,5),X(ii,6),X(ii,7),tol,SA,SB,A1A,
A1B,A2A,A2B,elapsedFull]; 
     
%     Truncated 
    cd('C:\Users\stephanie\Documents\MATLAB\TwoTwo\TwoTwo_TruncatedTree') 
    time2 = tic; 
    [SA_trunc,SB_trunc,A1A_trunc,A1B_trunc,A2A_trunc,A2B_trunc] = 
TwoTwowRiskAversionFunction_OneAnalysis(X(ii,1),X(ii,2),0,1,X(ii,3),X(ii,4)
,X(ii,5),X(ii,6),X(ii,7),tol); 
    elapsedTrunc = toc(time2); 
     
    Trunc(ii,:) = 
[X(ii,1),X(ii,2),0,1,X(ii,3),X(ii,4),X(ii,5),X(ii,6),X(ii,7),tol,SA_trunc,S
B_trunc,A1A_trunc,A1B_trunc,A2A_trunc,A2B_trunc,elapsedTrunc]; 
     
end 
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cd('C:\Users\stephanie\Documents\MATLAB\CompareVoI') 
csvwrite(['Scenario1.TwoAnalyses.Full_',num2str(samples),'-
',datestr(now,'HH.MM.SS'),'.csv'],Full,0,0) 
csvwrite(['Scenario1.TwoAnalyses.Trunc_',num2str(samples),'-
',datestr(now,'HH.MM.SS'),'.csv'],Trunc,0,0) 
 
% test for the same preferred alternative, and record errors 
 
Full_output = Full(:,11:16); 
Trunc_output = Trunc(:,11:16); 
 
[fullMaxes,fullLocations] = max(Full_output,[],2); 
[truncMaxes,truncLocations] = max(Trunc_output,[],2); 
 
VoIErrors = not(eq(fullLocations,truncLocations)); 
csvwrite(['Scenario1.OneAnalysis.VoIErrors_',num2str(samples),'-
',datestr(now,'HH.MM.SS'),'.csv'],VoIErrors,0,0) 
 
%% Plot outputs 
 
% plot(X(:,1),X(:,2),'o') 
%% 
ErrorsOnlyX = X(find(VoIErrors),:); 
 
ErrorsOnlyFull = Full(find(VoIErrors),:); 
ErrorsOnlyTrunc = Trunc(find(VoIErrors),:); 
csvwrite(['Scenario1.TwoAnalyses.ErrorsOnlyFull_',num2str(samples),'-
',datestr(now,'HH.MM.SS'),'.csv'],ErrorsOnlyFull,0,0) 
csvwrite(['Scenario1.TwoAnalyses.ErrorsOnlyTrunc_',num2str(samples),'-
',datestr(now,'HH.MM.SS'),'.csv'],ErrorsOnlyTrunc,0,0) 
 
%% 
plot(X(:,1),X(:,2),'k.','MarkerSize',4) 
hold on 
plot(ErrorsOnlyX(:,1),ErrorsOnlyX(:,2),'kx','LineWidth',3,'MarkerSize',10) 
xlabel('\mu_A') 
ylabel('\sigma_A') 
legend('Agree','Disagree','Location','Best') 
title({[' \sigma_1 = ',num2str(stdev_1),... 
        ' \sigma_2 = ',num2str(stdev_2),... 
        ', C_1 = ',num2str(C1),... 
        ', C_2 = ',num2str(C2),... 
        ', R = ',num2str(R)]}) 
hgsave(['R',num2str(R),'-eps',num2str(stdev_1),'-delta',num2str(stdev_2),'-
Cone',num2str(C1),'-Ctwo',num2str(C2),'-',datestr(now,'HH.MM.SS'),'.fig'])  
 

TwoOnewRiskAversionFunction.m 

function [SA,SB,AA,AB] = TwoOnewRiskAversionFunction(... 

mu_uA,stdev_uA,mu_uB,stdev_uB,stdev_eps,Ca,R,tol) 

 
% New script including risk aversion 
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% tic 
% ------------------------------------------------------------------------- 
% Define risk aversion. 
% ------------------------------------------------------------------------- 
% R > 0  risk averse 
% R < 0  risk seeking 
% R = 0  risk neutral 
% R = 0; 
 
% ------------------------------------------------------------------------- 
% Define costs of analyses 
% ------------------------------------------------------------------------- 
costs = [Ca,Ca]; 
% ------------------------------------------------------------------------- 
% Define distribution parameters 
% ------------------------------------------------------------------------- 
% prior distributions on the utility of concepts A and B 
% mu_uA =1; 
% stdev_uA = 1;; 
var_uA = stdev_uA^2; 
 
% mu_uB = 0; 
% stdev_uB = 1; 
var_uB = stdev_uB^2; 
 
% low quality analysis 
% uLQ = uA + eps, where eps ~ N(0,10) 
mu_eps = 0; 
% stdev_eps = 0.125; 
var_eps = stdev_eps^2; 
 
% marginal distribution of low quality analysis 
mu_uA_LQ = mu_uA + mu_eps; 
var_uA_LQ = var_uA + var_eps; 
stdev_uA_LQ = sqrt(var_uA_LQ); 
 
mu_uB_LQ = mu_uB + mu_eps; 
var_uB_LQ = var_uB + var_eps; 
stdev_uB_LQ = sqrt(var_uB_LQ); 
% ------------------------------------------------------------------------- 
% define conditional distributions  
% ------------------------------------------------------------------------- 
% p(uI|uLQ) ~ N((uLQ*var_uI + mu_uI*var_eps)/(var_uI + var_eps), 
%               (var_uI*var_eps)/(var_uI + var_eps)) 
mu_AgivenLQ = @ (uLQ) (uLQ*var_uA + mu_uA*var_eps)/(var_uA + var_eps); 
var_AgivenLQ = (var_uA*var_eps)/(var_uA + var_eps); 
stdev_AgivenLQ = sqrt(var_AgivenLQ); 
 
mu_BgivenLQ = @ (uLQ) (uLQ*var_uB + mu_uB*var_eps)/(var_uB + var_eps); 
var_BgivenLQ = (var_uB*var_eps)/(var_uB + var_eps); 
stdev_BgivenLQ = sqrt(var_BgivenLQ); 
% ------------------------------------------------------------------------- 
 
% ------------------------------------------------------------------------- 
% Evaluate decision alternatives  
% ------------------------------------------------------------------------- 
% tol = 1.e-6; 
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SA = utilFunction(mu_uA,stdev_uA,R); 
SB = utilFunction(mu_uB,stdev_uB,R); 
 
AA = quadv(@(a) max(quad(@(b)((max(... 
    utilFunction(mu_AgivenLQ(a)-
AnalysisCost([1,1],costs),stdev_AgivenLQ,R),... 
    utilFunction(mu_BgivenLQ(b)-
AnalysisCost([1,1],costs),stdev_BgivenLQ,R)))... 
    .*normpdf(b,mu_uB_LQ,stdev_uB_LQ)),... 
    mu_uB_LQ-10*stdev_uB_LQ,mu_uB_LQ+10*stdev_uB_LQ, tol), (max(... 
                utilFunction(mu_AgivenLQ(a)-
AnalysisCost([1,0],costs),stdev_AgivenLQ,R),... 
                utilFunction(mu_uB-
AnalysisCost([1,0],costs),stdev_uB,R))))... 
               .*normpdf(a,mu_uA_LQ,stdev_uA_LQ),... 
          mu_uA_LQ-10*stdev_uA_LQ,mu_uA_LQ+10*stdev_uA_LQ, tol); 
 
AB = quadv(@(b) max(quad(@(a)((max(... 
    utilFunction(mu_AgivenLQ(a)-
AnalysisCost([1,1],costs),stdev_AgivenLQ,R),... 
    utilFunction(mu_BgivenLQ(b)-
AnalysisCost([1,1],costs),stdev_BgivenLQ,R)))... 
    .*normpdf(a,mu_uA_LQ,stdev_uA_LQ)),... 
    mu_uA_LQ-10*stdev_uA_LQ,mu_uA_LQ+10*stdev_uA_LQ, tol), (max(... 
                utilFunction(mu_uA-
AnalysisCost([0,1],costs),stdev_uA,R),... 
                utilFunction(mu_BgivenLQ(b)-
AnalysisCost([0,1],costs),stdev_BgivenLQ,R))))... 
               .*normpdf(b,mu_uB_LQ,stdev_uB_LQ),... 
          mu_uB_LQ-10*stdev_uB_LQ,mu_uB_LQ+10*stdev_uB_LQ, tol); 
 

% toc 

TwoOnewRiskAversionFunction_OneAnalysis.m 

function [SA,SB,AA,AB] = 
TwoOnewRiskAversionFunction_OneAnalysis(mu_uA,stdev_uA,mu_uB,stdev_uB,stdev
_eps,Ca,R,tol) 
 
% New script including risk aversion 
% tic 
% ------------------------------------------------------------------------- 
% Define risk aversion. 
% ------------------------------------------------------------------------- 
% R > 0  risk averse 
% R < 0  risk seeking 
% R = 0  risk neutral 
% R = 0; 
 
% ------------------------------------------------------------------------- 
% Define costs of analyses 
% ------------------------------------------------------------------------- 
costs = [Ca,Ca]; 
% ------------------------------------------------------------------------- 
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% Define distribution parameters 
% ------------------------------------------------------------------------- 
% prior distributions on the utility of concepts A and B 
% mu_uA =1; 
% stdev_uA = 1;; 
var_uA = stdev_uA^2; 
 
% mu_uB = 0; 
% stdev_uB = 1; 
var_uB = stdev_uB^2; 
 
% low quality analysis 
% uLQ = uA + eps, where eps ~ N(0,10) 
mu_eps = 0; 
% stdev_eps = 0.125; 
var_eps = stdev_eps^2; 
 
% marginal distribution of low quality analysis 
mu_uA_LQ = mu_uA + mu_eps; 
var_uA_LQ = var_uA + var_eps; 
stdev_uA_LQ = sqrt(var_uA_LQ); 
 
mu_uB_LQ = mu_uB + mu_eps; 
var_uB_LQ = var_uB + var_eps; 
stdev_uB_LQ = sqrt(var_uB_LQ); 
% ------------------------------------------------------------------------- 
% define conditional distributions  
% ------------------------------------------------------------------------- 
% p(uI|uLQ) ~ N((uLQ*var_uI + mu_uI*var_eps)/(var_uI + var_eps), 
%               (var_uI*var_eps)/(var_uI + var_eps)) 
mu_AgivenLQ = @ (uLQ) (uLQ*var_uA + mu_uA*var_eps)/(var_uA + var_eps); 
var_AgivenLQ = (var_uA*var_eps)/(var_uA + var_eps); 
stdev_AgivenLQ = sqrt(var_AgivenLQ); 
 
mu_BgivenLQ = @ (uLQ) (uLQ*var_uB + mu_uB*var_eps)/(var_uB + var_eps); 
var_BgivenLQ = (var_uB*var_eps)/(var_uB + var_eps); 
stdev_BgivenLQ = sqrt(var_BgivenLQ); 
% ------------------------------------------------------------------------- 
 
% ------------------------------------------------------------------------- 
% Evaluate decision alternatives  
% ------------------------------------------------------------------------- 
% tol = 1.e-6; 
 
SA = utilFunction(mu_uA,stdev_uA,R); 
SB = utilFunction(mu_uB,stdev_uB,R); 
 
AA = quad(@(a) max(... 
                utilFunction(mu_AgivenLQ(a)-
AnalysisCost([1,0],costs),stdev_AgivenLQ,R),... 
                utilFunction(mu_uB-
AnalysisCost([1,0],costs),stdev_uB,R))... 
               .*normpdf(a,mu_uA_LQ,stdev_uA_LQ),... 
          mu_uA_LQ-10*stdev_uA_LQ,mu_uA_LQ+10*stdev_uA_LQ, tol); 
 
AB = quad(@(b) max(... 
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                utilFunction(mu_uA-
AnalysisCost([0,1],costs),stdev_uA,R),... 
                utilFunction(mu_BgivenLQ(b)-
AnalysisCost([0,1],costs),stdev_BgivenLQ,R))... 
               .*normpdf(b,mu_uB_LQ,stdev_uB_LQ),... 
          mu_uB_LQ-10*stdev_uB_LQ,mu_uB_LQ+10*stdev_uB_LQ, tol); 
 
% toc 

TwoTwowRiskAversionFunction_OneAnalysis.m 

function [SA,SB,A1A,A1B,A2A,A2B] = 
TwoTwowRiskAversionFunction_OneAnalysis(mu_uA,stdev_uA,mu_uB,stdev_uB,stdev
_eps,stdev_delta,C1,C2,R,tol) 
 
% New script including risk aversion 
% tic 
% ------------------------------------------------------------------------- 
% Define risk aversion. 
% ------------------------------------------------------------------------- 
% R > 0  risk averse 
% R < 0  risk seeking 
% R = 0  risk neutral 
% R = 0; 
 
% ------------------------------------------------------------------------- 
% Define costs of analyses 
% ------------------------------------------------------------------------- 
costs = [C1,C1,C2,C2]; 
% ------------------------------------------------------------------------- 
% Define distribution parameters 
% ------------------------------------------------------------------------- 
% prior distributions on the utility of concepts A and B 
% mu_uA =1; 
% stdev_uA = 1;; 
var_uA = stdev_uA^2; 
 
% mu_uB = 0; 
% stdev_uB = 1; 
var_uB = stdev_uB^2; 
 
% Analysis 1 (LQ) 
% uLQ = uA + eps, where eps ~ N(0,10) 
mu_eps = 0; 
% stdev_eps = 0.125; 
var_eps = stdev_eps^2; 
 
% marginal distributions of Analysis 1 
mu_uA_LQ = mu_uA + mu_eps; 
var_uA_LQ = var_uA + var_eps; 
stdev_uA_LQ = sqrt(var_uA_LQ); 
 
mu_uB_LQ = mu_uB + mu_eps; 
var_uB_LQ = var_uB + var_eps; 
stdev_uB_LQ = sqrt(var_uB_LQ); 
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% Analysis 2 (HQ) 
% uHQ = uA + eps, where delta ~ N(0,10) 
mu_delta = 0; 
% stdev_eps = 0.125; 
var_delta = stdev_delta^2; 
 
% marginal distributions of Analysis 1 
mu_uA_HQ = mu_uA + mu_delta; 
var_uA_HQ = var_uA + var_delta; 
stdev_uA_HQ = sqrt(var_uA_HQ); 
 
mu_uB_HQ = mu_uB + mu_delta; 
var_uB_HQ = var_uB + var_delta; 
stdev_uB_HQ = sqrt(var_uB_HQ); 
% ------------------------------------------------------------------------- 
% define conditional distributions  
% ------------------------------------------------------------------------- 
% p(uI|uLQ) ~ N((uLQ*var_uI + mu_uI*var_eps)/(var_uI + var_eps), 
%               (var_uI*var_eps)/(var_uI + var_eps)) 
% Analysis 1 (LQ) 
mu_AgivenLQ = @ (uLQ) (uLQ*var_uA + mu_uA*var_eps)/(var_uA + var_eps); 
var_AgivenLQ = (var_uA*var_eps)/(var_uA + var_eps); 
stdev_AgivenLQ = sqrt(var_AgivenLQ); 
 
mu_BgivenLQ = @ (uLQ) (uLQ*var_uB + mu_uB*var_eps)/(var_uB + var_eps); 
var_BgivenLQ = (var_uB*var_eps)/(var_uB + var_eps); 
stdev_BgivenLQ = sqrt(var_BgivenLQ); 
 
% Analysis 2 (HQ) 
mu_AgivenHQ = @ (uHQ) (uHQ*var_uA + mu_uA*var_delta)/(var_uA + var_delta); 
var_AgivenHQ = (var_uA*var_delta)/(var_uA + var_delta); 
stdev_AgivenHQ = sqrt(var_AgivenHQ); 
 
mu_BgivenHQ = @ (uHQ) (uHQ*var_uB + mu_uB*var_delta)/(var_uB + var_delta); 
var_BgivenHQ = (var_uB*var_delta)/(var_uB + var_delta); 
stdev_BgivenHQ = sqrt(var_BgivenHQ); 
% ------------------------------------------------------------------------- 
 
% ------------------------------------------------------------------------- 
% Evaluate decision alternatives  
% ------------------------------------------------------------------------- 
% tol = 1.e-6; 
 
SA = utilFunction(mu_uA,stdev_uA,R); 
SB = utilFunction(mu_uB,stdev_uB,R); 
 
A1A = quad(@(a) max(... 
                utilFunction(mu_AgivenLQ(a)-
AnalysisCost([1,0,0,0],costs),stdev_AgivenLQ,R),... 
                utilFunction(mu_uB-
AnalysisCost([1,0,0,0],costs),stdev_uB,R))... 
               .*normpdf(a,mu_uA_LQ,stdev_uA_LQ),... 
          mu_uA_LQ-10*stdev_uA_LQ,mu_uA_LQ+10*stdev_uA_LQ, tol); 
 
A1B = quad(@(b) max(... 
                utilFunction(mu_uA-
AnalysisCost([0,1,0,0],costs),stdev_uA,R),... 
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                utilFunction(mu_BgivenLQ(b)-
AnalysisCost([0,1,0,0],costs),stdev_BgivenLQ,R))... 
               .*normpdf(b,mu_uB_LQ,stdev_uB_LQ),... 
          mu_uB_LQ-10*stdev_uB_LQ,mu_uB_LQ+10*stdev_uB_LQ, tol); 
 
A2A = quad(@(a) max(... 
                utilFunction(mu_AgivenHQ(a)-
AnalysisCost([0,0,1,0],costs),stdev_AgivenHQ,R),... 
                utilFunction(mu_uB-
AnalysisCost([0,0,1,0],costs),stdev_uB,R))... 
               .*normpdf(a,mu_uA_HQ,stdev_uA_HQ),... 
          mu_uA_HQ-10*stdev_uA_HQ,mu_uA_HQ+10*stdev_uA_HQ, tol); 
 
A2B = quad(@(b) max(... 
                utilFunction(mu_uA-
AnalysisCost([0,0,0,1],costs),stdev_uA,R),... 
                utilFunction(mu_BgivenHQ(b)-
AnalysisCost([0,0,0,1],costs),stdev_BgivenHQ,R))... 
               .*normpdf(b,mu_uB_HQ,stdev_uB_HQ),... 
          mu_uB_HQ-10*stdev_uB_HQ,mu_uB_HQ+10*stdev_uB_HQ, tol); 
 
% toc 

utilFunction.m 

function expectedUtility = utilFunction(dollarsMean, dollarsStdev, 
riskAversion) 
 
% we need to account for risk aversion here.  
% we assume that u = (1 - exp(-a*dollars))/a 
% if dollars is normally distributed then the expected value is: 
% E[u] = (1 - exp(-a*mean + 0.5*(a*stdev)^2))/a; 
if riskAversion == 0 
    expectedUtility = dollarsMean; 
else 
    expectedUtility = (1 - exp(-riskAversion.*dollarsMean + 
0.5*(riskAversion.*dollarsStdev).^2))./riskAversion; 

end 
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APPENDIX B: MATLAB CODE FOR THE PRESSURE VESSEL 
EXAMPLE 

In this appendix, the Matlab code used to solve the pressure vessel design problem is 

presented. A list of the files along with page numbers are shown in Table B.1. Although 

the filenames are the same as those used in the Manager’s Decision problem (included in 

Appendix A), there are differences in the content of the files themselves. 

TABLE B.1. INVENTORY OF MATLAB FILES USED IN THE PRESSURE 
VESSEL DESIGN PROBLEM 

Filename Page 
normedTwoOnewRiskAversionFunction_new.m 234 
normedTwoOnewRiskAversionFunction_OneAnalysis_new.m 235 
plotBoundaries_new.m 235 
plotBoundaries_OneAnalysis_new.m 238 
scanYLdown_new.m 240 
scanYLdown_OA_new.m 240 
scanYLup_new.m 240 
scanYLup_OA_new.m 240 
scanYMid_new.m 241 
scanYMid_OA_new.m 241 
scanYRdown_new.m 241 
scanYRdown_OA_new.m 241 
scanYRup_new.m 241 
scanYRup_OA_new.m 242 
TwoOnewRiskAversionFunction.m 242 
TwoOnewRiskAversionFunction_OneAnalysis.m 244 
utilFunction.m 246 

normedTwoOnewRiskAversionFunction_new.m 

function [SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction(delta_mu,delta_stdev,stdev_eps,Ca,R) 
 
muB = 0; 



   

235 
 

% y-axis is delta_stdev, with sigma A and sigma B held constant at 1 at 
the 
% top and bottom of the plot, respectively. 
% if delta_stdev>= 0 
%     stdevA = 1; 
%     stdevB = stdevA - delta_stdev; 
% else 
%     stdevB = 1; 
%     stdevA = delta_stdev + stdevB; 
% end 
 
 
muA = delta_mu+muB; 
 
% y-axis is sigma A, sigma B is constant at 1 
stdevB = 1; 
stdevA = delta_stdev; 
 

[SA,SB,AA,AB] = 
TwoOnewRiskAversionFunction(muA,stdevA,muB,stdevB,stdev_eps,Ca,R); 

normedTwoOnewRiskAversionFunction_OneAnalysis_new.m 

function [SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(delta_mu,delta_stdev,
stdev_eps,Ca,R) 
 
muB = 0; 
% y-axis is delta_stdev, with sigma A and sigma B held constant at 1 at 
the 
% top and bottom of the plot, respectively. 
% if delta_stdev>= 0 
%     stdevA = 1; 
%     stdevB = stdevA - delta_stdev; 
% else 
%     stdevB = 1; 
%     stdevA = delta_stdev + stdevB; 
% end 
 
 
muA = delta_mu+muB; 
 
% y-axis is sigma A, sigma B is constant at 1 
stdevB = 1; 
stdevA = delta_stdev; 
 

[SA,SB,AA,AB] = 
TwoOnewRiskAversionFunction_OneAnalysis(muA,stdevA,muB,stdevB,stdev_eps
,Ca,R); 

plotBoundaries_new.m 

function [areas]=plotBoundaries_new(R,stdev_eps,Ca) 
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tic 
 
num_steps = 10; 
yvect_up = linspace(1,2,num_steps); 
yvect_down = linspace(1,0,num_steps); 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_new(0,1,stdev_eps,Ca,R); 
 
if SA > AA 
    areas = -1; % Two region plot, rather than 4 region. Vertical 
split. 
%     find intersection of SA and SB 
        y = yvect_up(1); 
 
        SASBu(1) = fzero(@(x) scanYMid_new(x,y,stdev_eps,Ca,R),0); 
        SASBd(1) = fzero(@(x) 
scanYMid_new(x,y,stdev_eps,Ca,R),SASBu(1)); 
 
    for ii = 2:num_steps 
        y_up = yvect_up(ii); 
        y_down = yvect_down(ii); 
 
        SASBu(ii) = fzero(@(x) 
scanYMid_new(x,y_up,stdev_eps,Ca,R),SASBu(ii-1)); 
        SASBd(ii) = fzero(@(x) 
scanYMid_new(x,y_down,stdev_eps,Ca,R),SASBd(ii-1)); 
 
    end 
figure 
    plot(SASBu,yvect_up,'k',SASBd,yvect_down,'k') 
    axis([-5 5 0 2]) 
%     legend('SA=SB','location','Southeast') 
    xlabel('\mu_A') 
    ylabel('\sigma_A') 
    title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
            ', Cost = ',num2str(Ca),... 
            ', R = ',num2str(R)]}) 
   hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.fig']) 
    close 
     
else 
    [SA1,SB1,AA1,AB1] = 
normedTwoOnewRiskAversionFunction_new(5,1,stdev_eps,Ca,R); 
    if SA1 > AA1 
        areas = 1; % 4 region plot rather than two region 
    %     find intersections of SA/AA,SA/AB,SB/AA,SB/AB 
        SAAA = zeros(1,num_steps); 
        SAAB = SAAA; 
        SBAA = SAAA; 
        SBAB = SAAA; 
 
        y = yvect_up(1); 
            SAAA(1) = fzero(@(x) 
scanYRup_new(x,y,stdev_eps,Ca,R),[0,5]); 
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            SAAB(1) = fzero(@(x) 
scanYRdown_new(x,y,stdev_eps,Ca,R),[SAAA(1)]); 
            SBAA(1) = fzero(@(x) scanYLup_new(x,y,stdev_eps,Ca,R),[-
1*SAAA(1)]); 
            SBAB(1) = fzero(@(x) 
scanYLdown_new(x,y,stdev_eps,Ca,R),[SBAB(1)]); 
 
 
        %% 
        for ii = 2:num_steps 
        y_up = yvect_up(ii); 
        y_down = yvect_down(ii); 
 
            SAAA(ii) = fzero(@(x) 
scanYRup_new(x,y_up,stdev_eps,Ca,R),SAAA(ii-1)); 
            SAAB(ii) = fzero(@(x) 
scanYRdown_new(x,y_down,stdev_eps,Ca,R),SAAB(ii-1)); 
            SBAA(ii) = fzero(@(x) 
scanYLup_new(x,y_up,stdev_eps,Ca,R),SBAA(ii-1)); 
            SBAB(ii) = fzero(@(x) 
scanYLdown_new(x,y_down,stdev_eps,Ca,R),SBAB(ii-1)); 
        end 
        figure 
        
plot(SAAA,yvect_up,'k',SBAA,yvect_up,'k',SAAB,yvect_down,'k',SBAB,yvect
_down,'k',[SAAA(1),SBAA(1)],[1,1],'k') 
        axis([-5 5 0 2]) 
%         
legend('SA=AA','SB=AA','SA=AB','SB=AB','AA=AB','location','Southeast') 
        xlabel('\mu_A') 
        ylabel('\sigma_A') 
        title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
                ', Cost = ',num2str(Ca),... 
                ', R = ',num2str(R)]}) 
       hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-
C',num2str(Ca),'-',datestr(now,'HH.MM.SS'),'.fig']) 
        close 
        right = [[SAAA(linspace(num_steps,1,num_steps))]';SAAB']; 
        left = [[SBAA(linspace(num_steps,1,num_steps))]';SBAB']; 
        yvector = 
[yvect_up([linspace(num_steps,1,num_steps)])';yvect_down']; 
        csvwrite(['R',num2str(R),'-eps',num2str(stdev_eps),'-
C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.csv'],[yvector,right,left]) 
    else 
        areas = -2; %Two region plot.  Horizontal split. (Should be the 
case for zero cost). 
        AAAB = [-5,5]; 
        y = [1 1]; 
        figure 
        plot(AAAB,y,'k') 
        axis([-5 5 0 2]) 
%         legend('AA=AB','location','Southeast') 
        xlabel('\mu_A') 
        ylabel('\sigma_A') 
        title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
                ', Cost = ',num2str(Ca),... 
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                ', R = ',num2str(R)]}) 
       hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-
C',num2str(Ca),'-',datestr(now,'HH.MM.SS'),'.fig']) 
        close 
    end 
         
end 

toc 

plotBoundaries_OneAnalysis_new.m 

function [areas]=plotBoundaries_OneAnalysis_new(R,stdev_eps,Ca) 
tic 
 
num_steps = 10; 
yvect_up = linspace(1,2,num_steps); 
yvect_down = linspace(1,0,num_steps); 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(0,1,stdev_eps,Ca,R); 
 
if SA > AA 
    areas = -1; % Two region plot, rather than 4 region. Vertical 
split. 
%     find intersection of SA and SB 
        y = yvect_up(1); 
 
        SASBu(1) = fzero(@(x) scanYMid_OA_new(x,y,stdev_eps,Ca,R),0); 
        SASBd(1) = fzero(@(x) 
scanYMid_OA_new(x,y,stdev_eps,Ca,R),SASBu(1)); 
 
    for ii = 2:num_steps 
        y_up = yvect_up(ii); 
        y_down = yvect_down(ii); 
 
        SASBu(ii) = fzero(@(x) 
scanYMid_OA_new(x,y_up,stdev_eps,Ca,R),SASBu(ii-1)); 
        SASBd(ii) = fzero(@(x) 
scanYMid_OA_new(x,y_down,stdev_eps,Ca,R),SASBd(ii-1)); 
 
    end 
figure 
    plot(SASBu,yvect_up,'k',SASBd,yvect_down,'k') 
    axis([-5 5 0 2]) 
%     legend('SA=SB','SA=SB','location','Southeast') 
    xlabel('\mu_A') 
    ylabel('\sigma_A') 
    title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
            ', Cost = ',num2str(Ca),... 
            ', R = ',num2str(R)]}) 
   hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.fig']) 
    close 
     
else 
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    [SA1,SB1,AA1,AB1] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(5,1,stdev_eps,Ca,R); 
    if SA1 >= AA1 
        areas = 1; % 4 region plot rather than two region 
    %     find intersections of SA/AA,SA/AB,SB/AA,SB/AB 
        SAAA = zeros(1,num_steps); 
        SAAB = SAAA; 
        SBAA = SAAA; 
        SBAB = SAAA; 
 
        y = yvect_up(1); 
            SAAA(1) = fzero(@(x) 
scanYRup_OA_new(x,y,stdev_eps,Ca,R),[0,5]); 
            SAAB(1) = fzero(@(x) 
scanYRdown_OA_new(x,y,stdev_eps,Ca,R),[SAAA(1)]); 
            SBAA(1) = fzero(@(x) scanYLup_OA_new(x,y,stdev_eps,Ca,R),[-
1*SAAA(1)]); 
            SBAB(1) = fzero(@(x) 
scanYLdown_OA_new(x,y,stdev_eps,Ca,R),[SBAA(1)]); 
 
 
 
        for ii = 2:num_steps 
        y_up = yvect_up(ii); 
        y_down = yvect_down(ii); 
 
            SAAA(ii) = fzero(@(x) 
scanYRup_OA_new(x,y_up,stdev_eps,Ca,R),SAAA(ii-1)); 
            SAAB(ii) = fzero(@(x) 
scanYRdown_OA_new(x,y_down,stdev_eps,Ca,R),SAAB(ii-1)); 
            SBAA(ii) = fzero(@(x) 
scanYLup_OA_new(x,y_up,stdev_eps,Ca,R),SBAA(ii-1)); 
            SBAB(ii) = fzero(@(x) 
scanYLdown_OA_new(x,y_down,stdev_eps,Ca,R),SBAB(ii-1)); 
        end 
        figure 
        
plot(SAAA,yvect_up,'k',SBAA,yvect_up,'k',SAAB,yvect_down,'k',SBAB,yvect
_down,'k',[SAAA(1),SBAA(1)],[1,1],'k') 
        axis([-5 5 0 2]) 
%         
legend('SA=AA','SB=AA','SA=AB','SB=AB','AA=AB','location','Southeast') 
        xlabel('\mu_A') 
        ylabel('\sigma_A') 
        title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
                ', Cost = ',num2str(Ca),... 
                ', R = ',num2str(R)]}) 
       hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-
C',num2str(Ca),'-',datestr(now,'HH.MM.SS'),'.fig']) 
        close 
        right = [[SAAA(linspace(num_steps,1,num_steps))]';SAAB']; 
        left = [[SBAA(linspace(num_steps,1,num_steps))]';SBAB']; 
        yvector = 
[yvect_up([linspace(num_steps,1,num_steps)])';yvect_down']; 
        csvwrite(['R',num2str(R),'-eps',num2str(stdev_eps),'-
C',num2str(Ca),'-
',datestr(now,'HH.MM.SS'),'.csv'],[yvector,right,left]) 
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    else 
        areas = -2; %Two region plot.  Horizontal split. (Should be the 
case for zero cost). 
        AAAB = [-5,5]; 
        y = [1 1]; 
        figure 
        plot(AAAB,y,'k') 
        axis([-5 5 0 2]) 
%         legend('AA=AB','location','Southeast') 
        xlabel('\mu_A') 
        ylabel('\sigma_A') 
        title({[' \sigma_\epsilon = ',num2str(stdev_eps),... 
                ', Cost = ',num2str(Ca),... 
                ', R = ',num2str(R)]}) 
       hgsave(['R',num2str(R),'-eps',num2str(stdev_eps),'-
C',num2str(Ca),'-',datestr(now,'HH.MM.SS'),'.fig']) 
        close 
    end 
         
end 

toc 

scanYLdown_new.m 

function [diffSBAB] = scanYLdown_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSBAB = SB-AB; 

scanYLdown_OA_new.m 

function [diffSBAB] = scanYLdown_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSBAB = SB-AB; 

scanYLup_new.m 

function [diffSBAA] = scanYLup_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSBAA = SB-AA; 

scanYLup_OA_new.m 
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function [diffSBAA] = scanYLup_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSBAA = SB-AA; 

scanYMid_new.m 

function [diffSASB] = scanYMid_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSASB = SA-SB; 

scanYMid_OA_new.m 

function [diffSASB] = scanYMid_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSASB = SA-SB; 

scanYRdown_new.m 

function [diffSAAB] = scanYRdown_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSAAB = SA-AB; 

scanYRdown_OA_new.m 

function [diffSAAB] = scanYRdown_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSAAB = SA-AB; 

scanYRup_new.m 

function [diffSAAA] = scanYRup_new(x,y,stdev_eps,Ca,R) 
 



   

242 
 

[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_new(x,y,stdev_eps,Ca,R); 
 

diffSAAA = SA-AA; 

scanYRup_OA_new.m 

function [diffSAAA] = scanYRup_OA_new(x,y,stdev_eps,Ca,R) 
 
[SA,SB,AA,AB] = 
normedTwoOnewRiskAversionFunction_OneAnalysis_new(x,y,stdev_eps,Ca,R); 
 

diffSAAA = SA-AA; 

TwoOnewRiskAversionFunction.m 

function [SA,SB,AA,AB] = 
TwoOnewRiskAversionFunction(mu_uA,stdev_uA,mu_uB,stdev_uB,stdev_eps,Ca,
matCosA,matCosB,percent,R,tol) 
 
% New script including risk aversion 
% tic 
% ---------------------------------------------------------------------
---- 
% Define risk aversion. 
% ---------------------------------------------------------------------
---- 
% R > 0  risk averse 
% R < 0  risk seeking 
% R = 0  risk neutral 
% R = 0; 
 
% ---------------------------------------------------------------------
---- 
% Define percentile for determining vessel thickness. 
% ---------------------------------------------------------------------
---- 
percentile = percent; 
% ---------------------------------------------------------------------
---- 
% Define costs 
% ---------------------------------------------------------------------
---- 
costs = [Ca,Ca]; % of analysis 
materialCostA = matCosA; 
materialCostB = matCosB; 
% ---------------------------------------------------------------------
---- 
% Define distribution parameters 
% ---------------------------------------------------------------------
---- 
% prior distributions on the utility of concepts A and B 
% mu_uA =1; 
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% stdev_uA = 1;; 
var_uA = stdev_uA^2; 
 
% mu_uB = 0; 
% stdev_uB = 1; 
var_uB = stdev_uB^2; 
 
% low quality analysis 
% uLQ = uA + eps, where eps ~ N(0,10) 
mu_eps = 0; 
% stdev_eps = 0.125; 
var_eps = stdev_eps^2; 
 
% marginal distribution of low quality analysis 
mu_uA_LQ = mu_uA + mu_eps; 
var_uA_LQ = var_uA + var_eps; 
stdev_uA_LQ = sqrt(var_uA_LQ); 
 
mu_uB_LQ = mu_uB + mu_eps; 
var_uB_LQ = var_uB + var_eps; 
stdev_uB_LQ = sqrt(var_uB_LQ); 
% ---------------------------------------------------------------------
---- 
% define conditional distributions  
% ---------------------------------------------------------------------
---- 
% p(uI|uLQ) ~ N((uLQ*var_uI + mu_uI*var_eps)/(var_uI + var_eps), 
%               (var_uI*var_eps)/(var_uI + var_eps)) 
mu_AgivenLQ = @ (uLQ) (uLQ*var_uA + mu_uA*var_eps)/(var_uA + var_eps); 
var_AgivenLQ = (var_uA*var_eps)/(var_uA + var_eps); 
stdev_AgivenLQ = sqrt(var_AgivenLQ); 
 
mu_BgivenLQ = @ (uLQ) (uLQ*var_uB + mu_uB*var_eps)/(var_uB + var_eps); 
var_BgivenLQ = (var_uB*var_eps)/(var_uB + var_eps); 
stdev_BgivenLQ = sqrt(var_BgivenLQ); 
% ---------------------------------------------------------------------
---- 
 
% ---------------------------------------------------------------------
---- 
% Evaluate decision alternatives  
% ---------------------------------------------------------------------
---- 
% tol = 1.e-6; 
 
SA = utilFunction(mu_uA, stdev_uA, R, percentile, materialCostA); 
SB = utilFunction(mu_uB, stdev_uB, R, percentile, materialCostB); 
 
AA = quadv(@(a) max(quad(@(b)((max(... 
    
utilFunction(mu_AgivenLQ(a),stdev_AgivenLQ,R,percentile,(materialCostA+
2*Ca)),... 
    
utilFunction(mu_BgivenLQ(b),stdev_BgivenLQ,R,percentile,(materialCostB+
2*Ca))))... 
    .*normpdf(b,mu_uB_LQ,stdev_uB_LQ)),... 
    mu_uB_LQ-4*stdev_uB_LQ,mu_uB_LQ+4*stdev_uB_LQ, tol), (max(... 
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utilFunction(mu_AgivenLQ(a),stdev_AgivenLQ,R,percentile,(materialCostA+
Ca)),... 
                
utilFunction(mu_uB,stdev_uB,R,percentile,(materialCostB+Ca)))))... 
               .*normpdf(a,mu_uA_LQ,stdev_uA_LQ),... 
          mu_uA_LQ-4*stdev_uA_LQ,mu_uA_LQ+4*stdev_uA_LQ, tol); 
 
AB = quadv(@(b) max(quad(@(a)((max(... 
    
utilFunction(mu_AgivenLQ(a),stdev_AgivenLQ,R,percentile,(materialCostA+
2*Ca)),... 
    
utilFunction(mu_BgivenLQ(b),stdev_BgivenLQ,R,percentile,(materialCostB+
2*Ca))))... 
    .*normpdf(a,mu_uA_LQ,stdev_uA_LQ)),... 
    mu_uA_LQ-4*stdev_uA_LQ,mu_uA_LQ+4*stdev_uA_LQ, tol), (max(... 
                
utilFunction(mu_uA,stdev_uA,R,percentile,(materialCostA+Ca)),... 
                
utilFunction(mu_BgivenLQ(b),stdev_BgivenLQ,R,percentile,(materialCostB+
Ca)))))... 
               .*normpdf(b,mu_uB_LQ,stdev_uB_LQ),... 
          mu_uB_LQ-4*stdev_uB_LQ,mu_uB_LQ+4*stdev_uB_LQ, tol); 
 
% toc 
 

TwoOnewRiskAversionFunction_OneAnalysis.m 

function [SA,SB,AA,AB] = 
TwoOnewRiskAversionFunction_OneAnalysis(mu_uA,stdev_uA,mu_uB,stdev_uB,s
tdev_eps,Ca,R,tol) 
 
% New script including risk aversion 
% tic 
% ---------------------------------------------------------------------
---- 
% Define risk aversion. 
% ---------------------------------------------------------------------
---- 
% R > 0  risk averse 
% R < 0  risk seeking 
% R = 0  risk neutral 
% R = 0; 
 
% ---------------------------------------------------------------------
---- 
% Define costs of analyses 
% ---------------------------------------------------------------------
---- 
costs = [Ca,Ca]; 
% ---------------------------------------------------------------------
---- 
% Define distribution parameters 
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% ---------------------------------------------------------------------
---- 
% prior distributions on the utility of concepts A and B 
% mu_uA =1; 
% stdev_uA = 1;; 
var_uA = stdev_uA^2; 
 
% mu_uB = 0; 
% stdev_uB = 1; 
var_uB = stdev_uB^2; 
 
% low quality analysis 
% uLQ = uA + eps, where eps ~ N(0,10) 
mu_eps = 0; 
% stdev_eps = 0.125; 
var_eps = stdev_eps^2; 
 
% marginal distribution of low quality analysis 
mu_uA_LQ = mu_uA + mu_eps; 
var_uA_LQ = var_uA + var_eps; 
stdev_uA_LQ = sqrt(var_uA_LQ); 
 
mu_uB_LQ = mu_uB + mu_eps; 
var_uB_LQ = var_uB + var_eps; 
stdev_uB_LQ = sqrt(var_uB_LQ); 
% ---------------------------------------------------------------------
---- 
% define conditional distributions  
% ---------------------------------------------------------------------
---- 
% p(uI|uLQ) ~ N((uLQ*var_uI + mu_uI*var_eps)/(var_uI + var_eps), 
%               (var_uI*var_eps)/(var_uI + var_eps)) 
mu_AgivenLQ = @ (uLQ) (uLQ*var_uA + mu_uA*var_eps)/(var_uA + var_eps); 
var_AgivenLQ = (var_uA*var_eps)/(var_uA + var_eps); 
stdev_AgivenLQ = sqrt(var_AgivenLQ); 
 
mu_BgivenLQ = @ (uLQ) (uLQ*var_uB + mu_uB*var_eps)/(var_uB + var_eps); 
var_BgivenLQ = (var_uB*var_eps)/(var_uB + var_eps); 
stdev_BgivenLQ = sqrt(var_BgivenLQ); 
% ---------------------------------------------------------------------
---- 
 
% ---------------------------------------------------------------------
---- 
% Evaluate decision alternatives  
% ---------------------------------------------------------------------
---- 
% tol = 1.e-6; 
 
SA = utilFunction(mu_uA,stdev_uA,R); 
SB = utilFunction(mu_uB,stdev_uB,R); 
 
AA = quad(@(a) max(... 
                utilFunction(mu_AgivenLQ(a)-
AnalysisCost([1,0],costs),stdev_AgivenLQ,R),... 
                utilFunction(mu_uB-
AnalysisCost([1,0],costs),stdev_uB,R))... 



   

246 
 

               .*normpdf(a,mu_uA_LQ,stdev_uA_LQ),... 
          mu_uA_LQ-10*stdev_uA_LQ,mu_uA_LQ+10*stdev_uA_LQ, tol); 
 
AB = quad(@(b) max(... 
                utilFunction(mu_uA-
AnalysisCost([0,1],costs),stdev_uA,R),... 
                utilFunction(mu_BgivenLQ(b)-
AnalysisCost([0,1],costs),stdev_BgivenLQ,R))... 
               .*normpdf(b,mu_uB_LQ,stdev_uB_LQ),... 
          mu_uB_LQ-10*stdev_uB_LQ,mu_uB_LQ+10*stdev_uB_LQ, tol); 
 
% toc 

utilFunction.m 

function expectedUtility = utilFunction(StrengthMean, StrengthStdev, 
riskAversion, percentile, materialCost) 
 
% Compute the expected utility of a pressure vessel given a normally 
distributed material strength 
% We assume that the thickness of the pressure vessel is determined 
using the Xth percentile strength value. The length and radius are 
fixed, and the vessel is a cylinder with hemi-spherical ends.  
 
length = 50; % inches 
radius = 4.5; % inches 
 
% The vessel is designed to a pressure of 1000 atm. The thickness is 
determined by setting the strength equal to the maximum (hoop) stress. 
 
pressure = 1000; % atm 
psiPerAtm = 14.6959488; % psi/atm 
percentileStrength = norminv(percentile,StrengthMean,StrengthStdev); % 
kpsi 
thickness = pressure*radius*psiPerAtm./(percentileStrength); % inches 
materialVolume = pi().*(length-2.*thickness).*thickness.*(2*radius-
thickness)+4/3*pi().*(radius^3-(radius-thickness).^3); % cubic inches 
cubIncpercubMeter = 1.6387064*10^-5;  
 
% The payoff function includes the sale price per vessel, the material 
cost per vessel, and a failure indicator. 
 
pricePerVessel = 200; % dollars 
costPerFailure = 300; % dollars 
 
if riskAversion == 0 
    expectedUtility = (pricePerVessel - 
materialCost.*cubIncpercubMeter.*materialVolume) - 
costPerFailure*percentile; 
else 
% we assume that u = (1 - exp(-a*dollars))/a, where a is riskAversion 
    expectedUtility = (percentile)*(1 - exp(-
riskAversion*(pricePerVessel - 
materialCost.*cubIncpercubMeter.*materialVolume-
costPerFailure)))./riskAversion + (1-percentile)*(1 - exp(-
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riskAversion*(pricePerVessel - 
materialCost.*cubIncpercubMeter.*materialVolume)))/riskAversion; 
end 
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