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Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 
(404) 894-3720 

May 12, 1982 

MEMORANDUM 

TO: D. G. Cacuci, J. H. Marable, and C. R. Weisbin (ORNL) 

FROM: J. MOKatlfelz and L. A. Belblidia 

SUBJECT: Progress Report for ORNL Subcontract 7802 
Month of April 1982 

Accomplishments During Report Period  

o The first draft of a joint journal paper on "Generalized Peturla5ion Theory 
with Derivative Operators for Power Density Investigations" was com-
pleted. 

Further details concerning XY and RZ models for power density sensi-
tivities () were investigated with Charlie Cowan. 

Plans for Work in May 

We will continue work on the joint journal paper (1) 
mentioned above. Dan 

Cacuci will visit Georgia Tech on 13 and 14 May to discuss topics covered in the 
first draft of this paper. 

References  

1. J. M. Kallfelz and L. A. Belblidia, "Progress Report for ORNL Subcontract 
7802, Months of January, February and March, 1982," Memorandum to C. R. 
Weisbin, J. H. Marable and D. G. Cacuci, dated April 23, 1982. 

2. J. M. Kallfelz, "XY and RZ Models for Power Density (PD) Sensitivities," 
Memorandum to C. L. Cowan (GE-ARSD), dated January 6, 1982. 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 
(404) 594-3720 

June 11, 1982 

MEMORANDUM 

TO: D. G. Cacuci, J. H. Marable, and C. R. Weisbin (ORNL) 

FROM: J. M. KallYSiZ and L. A. Belblidia 

SUBJECT: Progress Report for ORNL Subcontract 7802 
Month of May 1982 

Accomplishments During Report Period  

o The second draft of a joint journal paper on "Generalized Perturtiffion Theory 
with Derivative Operators for Power Density Investigations" was com-
pleted. Dan Cacuci visited Georgia Tech on 13 and 14 May to discuss topics 
covered in the first draft of this paper. 

Plans for Work in June  

We will complete work on the joint journal paper (1) mentioned above. 

References 

1. J. M. Kallfelz and L. A. Belblidia, "Progress Report for ORNL Subcontract 
7802, Months of January, February and March, 1982," Memorandum to C. R. 
Weisbin, J. H. Marable and D. G. Cacuci, dated April 23, 1982. 

JMK/lm 
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Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

July 12, 1982 

C4041 894-3720 

MEMORANDUM 

TO: 	D.G. Cacuci, J.H. Marable, and C.R. Weisbin (ORNL) 

FROM: 	L.A. Belblidia and J.M. Kallfelz 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 
Month of June 1982 

Accomplishments During Report Period  

The last draft of a joint journal paper on "Generalized Perturbaqil 
Theory with Derivative Operators for Power Density Investigations" 
was completed during Dan Cacuci's visit to Georgia Tech on June 30 and 
July 1. 

Plans for Work in July 

We will complete work on the joint journal paper (1) mentioned above, and 
will submit this paper to Nuclear Science and Engineering for 
publication. 

References 

1. 	J.M. Kallfelz and L.A. Belblidia, "Progress Report for ORNL Subcontract 
7802, Months of January, February and March, 1982," Memorandum to C.R. 
Weisbin, J.H. Marable and D.G. Cacuci, dated April 23, 1982. 
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Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 
(40411354-3720 

December 20, 1982 

MEMORANDUM 

TO: 	C. R. Weisbin and D. G. Cacuci (ORNL) 

FROM: 	J. M. Kallfelz and L. A. Belblidia 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 
Months of August and September 1982 

The level of activity for this period was relatively low due to staffing 
problems. 

Accomplishments During Report Period 

- Revisions of NSE paper
(1) 

to include Jim Marable suggestions and 
redrawing of figures in order that they conform to NSE publication 
standards (See Attachment). 

- We looked into potential extension of the GPT-Taylor method to 2D models 
and thermal reactor power distributions. At this point we stiil have 
not conducted any calculations to reach any conclusion. 

Reference 

1. L. A. Belblidia, J. M. Kallfelz and D. G. Cacuci ) "Generalized 
Perturbation Theory with Derivative Operators for Power Density 
Investigations," to be published in Nucl. Sci. Eng.  

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 
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Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 
(404) 894-3720 

August 4, 1982 

MEMORANDUM  

TO: 	D.G. Cacuci, J.H. Marable, and C.R. Weisbin (ORNL) 

FROM: 	L.A. Belblidia and J.M. Kallfelz 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 
Month of July 1982 

Accomplishments During Report Period  

The final draft of a joint journal paper on "Generalized PerturbatM 
Theory with Derivative Operators for Power Density Investigations""' 
was completed, and is ready for submission to Nuclear Science and  
Engineering. 

References  

1. 	J.M. Kalifelz and L.A. Belblidia, "Progress Report for ORNL Subcontract 
7802, Months of January, February and March, 1982," Memorandum to C.R. 
Weisbin, J.H. Marable and D.G. Cacuci, dated April 23, 1982. 

AN EQUAL EDUCATION ANO EMPLOYMENT OPPORTUNITY INSTIT T 
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Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

 

L4041 e54-3720 

December 20, 1982 

MEMORANDUM 

TO: 	C. R. Weisbin and D. C. Cacuci (ORNL) 

FROM: 	J. M. Kallfelz and L. A. Belblidia 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 
Months of October, November and December 1982 

The subcontract and performance period was extended for the above months 
with no additional funding. No activity on the project is reported for this 
period because of staffing problems. 

JMK/vw 
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Georgia institt_..tie of Technology 
A UNIT OF THE UNIVEP:SITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENG!NEERINS AND HEALTH PHYSICS 

ATLANTA, r;TEORGIA 30332 

C404) E394-3720 

April 5, 1983 

MEMORANDUM 

TO: 	C. R. Weisbin and D. G. Cacuci. (ORNL) 

FROM: 	J. M. Kallfelz and L. A. Belblidia 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 Months of January, 
February, and March 1983 

The level of activity for this period was relatively low due to staffing 
problems. 

Accomplishments During Report Period 

Dan Cacuci visited Georgia Tech from January 13 to Janauary 15, 1983 to 
discuss and revise our joint paper

kl) 
which was accepted for publication in 

NSE. Changes were made in the manuscript resolve all the questions raised 
by the reviewers, and to enhance the readability of the paper. A copy of 
the revised article is attached to this report. 

Reference 

1. L. A. Belblidia, J. A. Kallfelz, and D. G. Cacuci, "Generalized Pertur-
bation Theory with Derivative Operators for.  Power Density Investiga-
tions. in Nuclear Reactors," to he. published in Nncl.  

JMK/vw 
LAB/vw 
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GENERALIZED PERTURBATION THEORY WITH DERIVATIVE OPERATORS FOR 

POWER DENSITY INVESTIGATIONS IN NUCLEAR REACTORS 
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School of Nuclear Engineering and Health Physics 

Georgia Institute of Technology 
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and 

D.G. Cacuci 
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Abstract 

This work presents an efficient method to analyze variations that 

nuclear data perturbations induce in one-dimensional power-density distri-

butions. This method is called the Taylor-GPT method since it is based on: 

(a) use of a Taylor-series expansion of the response variation, and (b) use 

of generalized perturbation theory (CPT) to evaluate the derivative opera-

tors that appear as coefficients in this Taylor-series. Equations satis-

fied by the importance functions for the derivatives of the response varia-

tions are derived and solved with existing GPT codes. The characteristics 

of these functions are highlighted analytically. 

Particular attention is focused on the numerical value and location 

of the maximum power density. This is because perturbations in system 

parameters affect not only the value at the maximum, but also affect the 

location of this maximum. The Taylor-GPT method can efficiently assess 

such effects. 

The practical usefulness of the Taylor-GPT method is illustrated by 

considering test cases involving a simplified heterogeneous LMFBR model. 

The results indicate that this method is as accurate as the GPT method, yet 

requires fewer calculations when investigating space-dependent power 

density variations. 

3 



I. INTRODUCTION 

1-4 
Generalized perturbation theory (CPT) 	has been used for many years 

to investigate
2-6 

the influence of cross section perturbations and design 

changes on integral performance parameters (customarily called responses) 

in reactors. The successful application of GPT to analysis of the power 

density response
5,6 

provided a strong motivation to study in detail the 

effects of parameter perturbations on such space-dependent responses_ 

Thus, this paper presents an application of first-order GPT to efficiently 

evaluate the space derivatives of the response that appear as coefficients 

in a Taylor-series expansion technique. This technique will henceforth be 

referred to as the "Taylor-GPT" method, and will be used to investigate the 

space-dependent characteristics of variations in the power density 

response. The shift in the location of the maximum of this response is of 

particular interest. 5, 7-10 

I. A. Generalized Perturbation Theory 

In reactor design studies, "sensitivities" 6P/da of a response P to 

input data a 	(typically nuclide densities or cross sections) are of 

interest.
2-6 

In particular, P can denote a ratio of linear functionals of 

the real flux 0(r). For such a P, the use of GPT to calculate sensitiv-

ities requires that the following adjoint inhomogeneous Boltzmann equation 

be solved for r : 

(A - )13
* 

 ) r 	= s . 
, 	

(1 ) 

In Eq. (1), A is the adjoint loss and scattering operator, B is the 

adjoint fission operator, and X is the system eigenvalue. 



In multigroup formalism, r (r) is the generalized adjoint function, 

whose component r
3
.r. ) gives the importance of neutrons at r in energy group 

j to the ratio P. Thus, r. satisfies the following equation that, except 

for the S
* 

term,
2 
 is formally identical to the "normal" adjoint equation 

 

for (!).: 

2 * 
(r) + E 	r. (r) = 

3 — 	rem,j 
-D. 

 

Ej 4- 	h - r *(r) + XvE 
f,j 1.00 S-(r)-  3 

h 

  

h 

 

In Eq. (2), all cross sections are functions of r. The boundary conditions 

associated with Eq. (2) are formally identical to those for the 4) 

equation, e.g., P = 0 at the outer reactor boundary (or extrapolated 

boundary). 

Consider a ratio P of functionals of the real flux defined as 

Jr Ea].  ;(1) (- (r)  (711._ 
V
1 
 j 

P = I  = 
a
2 	Jr  1-2 a 2  .(r) yr) dr 

2 

where. V
1 
and V2  specify the volumes associated, with the space intaation 

over r. (In the sequel, lack of such specification implies integration 

over the entire reactor volume.) For P defined by Eq. (3), there corre-

sponds the following fixed source for Eq. (2): 

a 	a 
S (r) = 	 1,i 

a 	• al  

(3)  

(4)  



Typically, 	0. . is some microscopic or macroscopic cross section. 

In previous wors
3

'
4 
that used the concepts of CPT, the expression for 

the fixed source S was generally written as 

S * 
	

1 DP 	
(5) 

P D0 

The expression 3P/D0, though, was used in a formal sense and did not have a 

precise mathematical meaning. Based on the rigorous and comprehensive 

sensitivity theory
7

'
8 

for nonlinear systems that has recently been devel-

oped, it can be shown that DP/a0 is in fact the partial Gateaux-derivative 

of P with respect to 0, i.e., aP/a-  is the operator defined via the 

relationship 

de 
F 
L 	

+ eh)] 	= — n, 
s=0 	90

P , 	
(6) 

where c is a real scalar and h is an arbitrary vector of "increments" 

around 0. Having thus specified its precise mathematical meaning, the 

notation HYD0 will be retained, for convenience, in the sequel. 

In the first-order GPT method, the relative response variation is 

given by4  

SP 	0 SG dr 	+ 	r*  SL(D. dr, 	 (7 ) 

where (D and P are, respectively, the real flux and generalized adjoint 

function, SL represents the perturbation in the Boltzmann operator, and the 

component of 6G for energy group j is defined as 



,1 
.(r) (},

J 
 (r) dr. 
— — 

and 

Sol 	(r) (Su 	.(r) So l 

a1  a 2 
(8) 

The first term on the right side of Eq. (7) arises from changes in the 

cross sections that appear explicitly in Eq. (3), and is customarily 

referred to as the "direct-effect" term. The second term on the right side 

of Eq. (7) is customarily referred to as the "indirect-effect" term, and 

arises from the change in the flux corresponding to the perturbation SL of 

the Boltzmann operator. 

I. B. Power Density dud Related Spatial Shifts  

In studies of uncertainties in calculated responses, P, 	for the 

heterogeneous core of a large thFBR, 5 ' 6 GPT has been employed to determine 

the sensitivities 6P/Sato variations in the cross sections. The responses 

studied included, for each driver zone, the ratio R . (r ) of the zonal 
-m 

maximum power density to the total reactor power, defined as 

 Q1 (41)  
-rn.) 	Q2 

(9) 

where r is the location at which the zonal maximum power density occurs in 
-m 

the unperturbed case (i.e., the "base case"). The terms in the above 

equation are defined by the following expressions: 

Q (r m) = 	
> 	Ei,j (r') q)j (f) 6(f-rm) dr', 	 (10) 

- 



The quantities E 	have identical forms for i = 1 and i = 2; considering E. 

only fission energy and assuming localized energy deposit, their explicit 

expression is 

E.1, Jr) = 	pk  Ek ,j  .(r) 3 — 	' 
k 

(12) 

. 
where p

k 
 is the total recoverable energy release per fission in the k-th 

isotope. 

The power density R(r) is defined as in Eq. (9), except that r is not 

necessarily the location where a maximum occurs. Furthermore, to 

facilitate the subsequent presentation of the Taylor-CPT method, and to 

clearly highlight its most important characteristics, a one-dimensional 

(x) model is henceforth considered, with the power density defined as 

Q
1

(x) 
R(x) - 

Such one dimensional models are frequently used for scoping calculations; 

of course, detailed power-density studies .require the use of multi-

dimensional models. 

Reference 5 discussed "far-range" shifts in the location of the 

reactor peak (i.e., maximum) of the power density (e.g., shifts between 

driver zones) and "near-range" shifts around the location of the initial 

maximum R in a particular driver zone. There, the influence of near-range 

shifts in the location of the zonal peak power density on the sensitivities 

dRivi /Rm  was estimated to be small. Note, though, that the nature of these 

spatial shifts was not rigorously analyzed. 

The theory of Cacuci
7,8

, which uses Gateaux-differentials, can be 

Q2 
• (13) 

applied to problems involving such maxima. This theory has successfully 



been applied
12 
 to obtain sensitivities for the numerical values of the 

maximum power response and the maximum fuel temperature response, and for 

the sensitivities of the phase-space locations for these maxima, for a 

reactor safety problem describing a protected transient with scram on high 

power level in the Fast Flux Test Facility. 

Recently, Gandini suggested the application of CPT to functionals 

involving derivative operators (see footnote 26 of Ref. 13). References 9' 

and 10 reported preliminary investigations that used CPT in conjunction 

with a Taylor-series expansion for a simple response function. These 

investigations indicated that this method appears promising for explicitly 

investigating near-range, or localized, spatial shifts. 

The purpose of this work is to present new developments and results 

regarding response variations that involve localized spatial shifts. 

Included are first examples in reactor physics of importance functions 

'associated with derivative operators,
14 

and a detailed discussion of the 

characteristics of these functions. To analyze both direct and indirect 

effects caused by cross-section perturbations, this work considers a more 

general response than previously considered in Refs. 9 and 10. The basics 

of the Taylor-CPT method are described in Sec. II, and the application of 

CPT to space derivatives of the response R(x) is discussed in Sec. III. A 

theoretical analysis that highlights the main characteristics of the 

importance functions for these derivatives is presented in Sec. IV. 

Section V describes the use of the Taylor-CPT method for predicting effects 

of cross-section variations on the power density and on the spatial shifts 

in the maximum power density. In addition, this section discusses several 

indicators that can be used to assess the accuracy of the Taylor-GPT 

method. Comparison of results given by exact calculations, CPT, and 

9 



Taylor-GPT have been performed for several test cases involving a 

simplified model of a heterogeneous LMFBR core. These test cases are 

described in Sec. VI, and the numerical results and specific comparisons 

are presented in Sec. VII. Finally, the summary and 

conclusions presented in Sec. VIII highlight the usefulness of the Taylor-

GPT method for assessing effects of variations in nuclide densities and/or 

nuclear data on the maximum of the power density and on the spatial 

location of this maximum. 

to 



II. TAYLOR-SERIES EXPANSION WITH GENERALIZED 

PERTURBATION THEORY (TAYLOR-CPT) 

II. A. Taylor-Series Expansion for Response Variation  

The variation 6R(x) in the power density R(x), caused by 

perturbations in cross sections, can be determined by using a Taylor-

series expansion about an arbitrary spatial point x k . Retaining the first 

three terms only, this Taylor series is 

dR(x) = 6R(xk ) + (x - xk ) SR(1) (xk) + 	(x - xk ) 2  SR(2) (xk), (14) 

O f 
where SR

(  kx
k 

denotes the i-th spatial derivative of the response 

variation dR(x), evaluated at x k . 

Two alternative approaches can be used to calculate the derivatives 

6R
(1) . One approach is to use the finite-difference approximations of the 

derivatives (5R
(i) at x

k' 
while an alternative approach is to use the 

aejoint solution that corresponds to SR (1) /R(1) at xk . 	As subsequent 

developments will show, either of these approaches can be implemented by 

using existing OPT codes,
16-18 

thereby avoiding any additional 

programming. This, inherent. impleMental expendiency enhances:the pr 

usefulness of the Taylor-GPT method. 

II. B. Finite-Difference Implementation of the  Taylor-OPT Method 

The values of the derivatives (SR (1) (x) and (SR
(2)

(x) can be approxi-

mated at x = x
k by using the finite-difference expressions 

)1 



(1) 	
OR

k+1 
- (SR

k-1 ORk  
2A 

and 

6T )  = R
k+1 

- 2 SRI(  + 

A
2 

In Eq. (15) and (16), A denotes the mesh spacing, and subscripts k-1, k, 

k+1 refer to values at xk x
k' 

x
k+1' 

r
e
spectively; for example, 612k = 

oR(xk)• 

(15)  

(16)  



III. GENERALIZED PERTURBATION THEORY FOR RESPONSES 

INVOLVING DERIVATIVE OPERATORS 

Equation (1) represents a "fixed-source" problem, and, due to 

linearity, such problems are known to possess the so--called "additivity" 

i 	
* 	 * 	-.°.

property. That is, f F .1_  , is a solution of Eq. (1) with source S 1
, and F

2 
 is 

.-- 

	

* 	* 

	

a solution with S
2' 	- 

then (r
1
-1-) is a solution corresponding to (S

I 
 + S

2 
 ). 

In the finite-difference approximation, the derivatives (511 (1) are linear 

combinations of SR evaluated at x k and at its neighboring mesh points. 

Therefore, it is possible, in principle, to find a source S*(i) so that the 

corresponding adjoint equation and boundary conditions would yield the 

*(i) necessary to calculate OR(i) . 	The actual procedure is detailed 

below. 

III. A. Adjoint Functions for Calculating Spatial Derivatives of 

Response Variations 

The ratio SR(1) /R (1) at x = x
k can be computed most efficiently 

by 

* using adjoint functions. These adjoint functions denoted by 	(i) , are 

solutions of 

(A - AB*) 	= S*(i) 
-k 	-k ' 

where, by analogy with Eq. (5), the adjoint source is 

3R(1)  

S * 	= (i) 	1 	k  -- 
-k 

R(i) 
	ao 

k 

(17)  

(18)  

13 



In'the above equations, the operator DR (i)
k

/D is. defined in the same way as 

* 
111( /30 pee Eq. (6)] , rk (i)  is subject to the same boundary conditions as 

fkk' and R
(i) denotes the i-th derivative at x

k' 
 of R(x) with respect to x- 

Changing the order of differentiation, Eq. (18) becoMes 

-k 
S*(i) 	1 	[ oR 1 (1)  

R(i)2 	x=x 
	 (19) 

Recalling Eq. (5), Eq. (19) is finite -differenced for i=1 and 1=2 to obtain 

Rk+1.51(4-1 Rk-15k-1  (1) 
= -k 	.p  (1) 	 211' 

-k 

(20) 

and 

*. 

Rk+1Sk+1 2R
kSk  + 

(21) S *(2) 	1   
k 	 ) 4(2 	 A2 

respectively. 

For calculational purpos.es,_Eq:s- (20) and.. (21) can be further simpli-

fied by using the expression 

Q1 ,k 	Q1 (xk)  
k  R = 	' Q  - 

2 	Q2 
(22)  

14 



and using similar expressions for R k....1  and Rk4.1 . Replacing these expres-

sions in Eqs. (20) and (21), and using Eq. (5) yields, for energy group j, 

* (1) 
E 	(x) 6 (x - xkii ) 	E 1 , J (x)

6 (x - xk_i) 	E 2, j (x) 
s
k, 	

-  	 , (23) 
j 

and 

*(2) 	
E 	(x) 6  (x - 
1,j 	1

) - 2 E 1,1  (x) 6 (x - x
k) 
 + E 	(x) 6 (x - xk_1) 

S
k,j 

- 
1,k+1 

- 2(2
1,k 	41,k-1 

2,
.(x) 
1__ 

Q 2 
(24) 

respectively. Equations (23) and (24) can be used with existing GPT codes 

* to calculate the corresponding IR(i)  thereby avoiding any additional pro-

gramming.. The procedure is described in Appendix A for the Italian GPT 

package.
16-18 

For the finite-difference approximations given by Eqs. (20) and (21), 

the functions - rk(i)  can be related to the generalized adjoint fluxes (i.e., 

importances) for the response sensitivities at x k_ i  ,xk, and xl(4-1  by making 

use of the previously mentioned additivity property of fixed-source 

problems. For the sources given by Eqs. (20) and (21), the use of this 

property gives, for 1=1 and i=2, 

r* r *  
I . ,*(1) 	 RIc4.1 -161  
-k 	(1) - 	2A 

-k 

41,k+1 	41,k-1 	 2 

(25)  

15 



and 

* 
—  (2) 	1 	k+1 r - 	2R 

F
k+1 	-k -k -k-1 r 

--k 	v (2) 

* respectively. The adjoint functions rk (l)  

the values of 6R
(1) /R(1) and SR(2) /R(2) at x 	respectively. 

III. B. Calculation of Direct Effects  

From the definition of the power density at x k , the expression giving 

the direct-effect component of the response sensitivity is obtained as 

6 R 	 SE 	(xk) . 	
- 

(xk) 	JIE SE 	.(x) (1) .(x)dx 1,j 	3 	 2 ,1 	3
j RD 

k. 	 Ql,k 	 Q2 
(27) 

Multiplying Eq. (27) by Rk  gives 

(2 6) 

* and (2) 
 are used to determine 

1  
151 k,D = Q2 

[

>2 62; 1,j (-xic )  Yxk)  — RO3 
i 

(28) 

where 

5X2, •(x) 	cb.(x)dx. i 
J 

(29) 

16 



Using a uniform mesh spacing about x k , the first spatial derivative at 

xk  of the direct-effect component can be approximated as 

(1)  — 1 1  [E fS7 	(x 	) 	(x_ ) d Ric ,D — 2,61 Q
2 	j 
	1,j s --lc.+1'  1' 

th 
 s"--1(+1 '  — Rk+1Q 3 

] 
..- E (SI  1,i ()(k. -1 ) 4)  j (xk- 1)  + RIc-1° 3 

:I 

( Dividing Eq. (30) by Rk 1)  , and simplifying the resulting expression gives 

( 1) 
Rk  ,D 	1 	1  	

)2 [Z, 	(x 	) 
p(1) 
	- 	 1,1 k+1 J"xk+1 

-k 	
Q2 Rk+1 Rk-1 	j 

Q3  
— az 	.(x 	) 4),(k ( c-1 ) 	0--  • 1,j k-1 	J 	-1 	2 

(31)  

Using the fact that 

Q2 ( Rk+1 	Rk-1 )  = (x(x (x 	(1). . 	 (1. 	)] ,j k+1
) 	

j k+1) - 	E 1,. (x3 k-1 ) 	
j k-1 

and replacing Q
2 

and Q
3 
by their respective expressions, Eq. (31) becomes 

[6E 1 j (xk+i)  Yx1(+1 ) 	6 1,j (xic-1 ) Yxk-1)] 

2] j 
'

(xk-1-1 )  Yxic-4-1 ) 	LI,j (xk-1) 	(xk—A 

fE dE2,j (x) (t) . (x)dx 
j 

X2,J 
. 	(I) (x) 	. (x) dx 

The procedure that has led to Eq. (32) is repeated to derive the 

expression for the second spatial derivative at x
k 

of the direct-effect 

component. The final result is 

(30) 

(32)  

17 



	

6 
(2) 	)2 [SE 	.(x 	)(}.(x 	)-26E 	.(x )41.(x )+SE 	.(x 	)(f).(x 	)] 1 j k+1 	k+1 	1,3 k j k 	1,3 k-1 j k-1 

	

Rk,D 	j 	3  

(2 

	

R
k

) 
	E ( E l j (xk+1)4)j (x -2 x

. E  1 , j (x
k)¢ (xk)+Ei  

j 	
‘ xk-1 ) j (x  k-1 )] 

J
j
r.V. E 23  .(x)(1) j (x)dx 4-, 	J  

(EE2 4 00yX)dX 
j 

The expressions given by Eqs. (32) and (33) can be calculated with exi sting 

GPT codes18 as described in Appendix A. 

• (33) 

18 



IV. THE FUNCTIONS r and F *(i)
: A THEORETICAL ANALYSIS 

OF THEIR PROPERTIES 

For each i = 0, 1, ..., the adjoint functions
k
(i) satisfy Eq. (17), and thus 

are functions of both x and x k'  i . e. r (i) 	r -1 (x, x
k
). The responses R

(1) 
= 

R
(i) (xk'  ) though, depend on x

k  only. 	Therefore, the equations and boundary 

conditions satisfied by the adjoint functions 
ilk 

and F
k
(i) are recast in the form 

	

, 	*, 	*, 

	

A *(R F ) 	AB 	) = R, S 

	

k k 	k k 	k 

, 
(Rk F-k*) = 0 at x = L , 

, 
d(R k F )/dx = 

 -k 
0 at x = 0 , 

and 

(i) 	*(i) 	 (i) 	*(1)1 	(i) 	*(i) A I' 	F 	I - AB R 	F 	=R 	S -  `k -k 	 k -k 	k -k ' 

Ra
k

) r *
k
a) - 0 at x = L , 

d[R
(
k
i) 

F*(1)I/dx = 0 at x = 0 , 

where L denotes the outer (or the extrapolated) boundary of the reactor system, 

and all other quantities have the same meanings as before. 

Eqs. (34) and (35) are the basis for establishing and analyzing relation- 

* 	. ships among the adjoint functions r k(i)  2 , 	= 1,2, ..., and I k . 	Of course, the 

*(0) 

	

functions 	and r are identical, since Eq. (35) reduces to Eq. (34) when 

i=0. 

(34) 

(35)  

fJ 



Differentiating Eq. (35) with respect to x k  gives 

(i) *(i) R
kk • )/D *r, (I) r* ( i ) mx  1= - B Lpozk 	 icj 

D 	S*(1)-1/ax 
J k 

* 
k 	

F  (1)1/ax k 	=0 at x = L, 

Ri(c i)  r: (i)]/Dxk}/dx = 0 at x= 0 

A 

(36) 

r Using the definition of S k(i)  [i.e., Eq. (19) 

expressed as 

(i) the. quantity (i) s 	can be k 

R(i) 5k(i) = J /d i [RAA/dx1 (5(x--x )d- k x ' 

Differentiating Eq. (37) with respect to xk , and using the definition2 

 d'-functional, i.e. 

(37) 

of the 

jif(x) P(x-a) dx = - jif'(x) d(x-a) dx, 	 (38) 

leads to 

20 



* 	_ff 	I--  
L k 	

S
k
(i) ta x k 	 R/ 	/dx i-  6'(x-xddx 

td1+1 
[WM/dx

i+1 
6(x-x

k 
 )dx . 

	

Writing Eq. (37) for 	and comparing the result with Eq. (39) shows that 

F (1) *(i)1 	 (1+i) 
s 

	

al R k s k 	/3)(k 	R  k 	--k 

Using Eq. (40) to replace the corresponding source term in Eq. (36), and 

comparing the resulting system of equations to the system obtained by writing Eq. 

(35) for i+1 leads to the conclusion that 

r*(1)] 	= it(i+1) 	r*(i+1) 	. 0, 1, 2,... 

	

k --k 	k 	k 	--k 

A simple inductive reasoning can now be used in conjunction with Eq. (41) to 

conclude that 

R (i) *(i) = a l 	 Bx
i

• 
k 	

Zic.  _kir 	lc  (42) 

* * 
The qualitative behavior of I:

k 	
(1) / and r

k
*(2) 

as functions of x can be 

studied analytically by considering a one-group, one-region representation 19 of 

the adjoint diffusion equations given by Eqs. (34) and (35). For clarity, the 

functions satisfying the corresponding simplified adjoint diffusion equations 

are denoted by r 	F
I
(1) 

 , and r 1
(2)  , where the subscript 1 now refers to the one- 

(39) 

( 40 ) 

(41) 
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group model rather than to the location of xk. The respective equations can be 

written explicitly as follows: 

d
2 i

1
/dx2 + 	= -S /D , 

dr
1 
 /dx =0 at x = 0 , 

r
1 
 = o at x = L 

	

} 

d2 r (1) /dx2 	B2  r*(1)  = 	s*(1) /D , 

1
(1) 

0 at x = L , 

dr
*
1
(1) /dx = 0 at x = 0 , 

and 

d2 r (2) /dx2 + B2 F
(2) 

= - S
*(2)

/D , 
1 	 1 

r (2) 
 =0 at x = L , 

dr ( idx = 2) 	0 at x = 0 . 1 

In Eqs. (43) through (45), B
2 
and D represent the customary one-group, one- 

region buckling and diffusion coefficient, respectively. 	The analytical 

expressions for S
* 
	*(1) and S*(2) are obtained by using Eqs. (9) through (11) 

in conjunction with Eq. (19) and with the definitioas 21  of the 6 i- 	and 

(43) 

(44)  

(45)  

22 



V-functionals. Also, for simplicity, the constants E.Isee Eq. (12)] are 
1 ,J 

arbitrarily set to unity. Under these conditions, the following analytical 

expressions are obtained: 

Rk  = Q1,0 /Q2  , 

( 
R

1)
k  = 01,1/Q2  , 

(2) 
R k  = 41,2 /02  , 	 (48) 

'(x-x
k

)  
S* =  

Q1,0 	Q2 

	

s *(1) 
 = - 61(x-xk) 

  	

Q1,1 	Q2 

"( 
S*(2)  = 	 - 	2 

Q1,2 	Q 2.  

where 

Ql,o = (;) (xk)' 

(46)  

(47)  

(49)  

(50)  

(51)  

(52) 



Q1, 1 
d$/ dx 

5 
(53) 

d2 ¢/dx2
1 x=x

k
' 
	

(54) 

Q2  = jrgx) dx. 
	 (55) 

The adjoint diffusion equations given by Eqs. (43) through (45), with the 

source terms given by Eqs. (49) through (51), respectively, can be solved 

* analytically to determine r ( 
1 , 	1 

 1} , 
	1 

and 	P (2)  . For this purpose, it is 

convenient to use the Laplace-transform method, as illustrated in Appendix B 

where Eq. (45) is solved in detail. The following analytical expressions for the 

solutions of Eqs. (43) through (45) are thus obtained: 

Q1,2 

and 

( 1 	cos Bxk 
 L 

rl B 2DQ2 [B-N1,0 	
BL 

- x
k 

L sin Bxk) 2  

LB 3DQ2 ] 
cos Bx 

1  
H(x-x

k
) sin B(x-x ), BD  

Q1,0  

 

(56)  

(*(1) = 	1 	L - xk 	 2  
r1 	Bxk 

+ 
1 

BD Q
2 	

DLQ 1,1 
	 LB3DQ

2
) 

cos Bx 

 

1  H(x-xk) cos B(x-xk), 
DQ

1,1 

 

(57)  
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 DQ1,0  

1  
DQ 	

H(x-x
k

) 
1,0

3 

(cos Bx
k 
 L - x

k sin Bxk )] sin Bx
k {dr /dx } 

2  
1 

x=x
k 

[LB
2 
 DQ

2 

1 
BL 

(Co) 

r
*(2) _ 	1 	4. 
1 	B

2 

	cos Bx
k 
 + B(L-x

k 
 ) sin Bxk 
	2  

LDQ1,2 	
DB 3 DQ2 	 LQ2 

d(x-x
k

) 
	 H(x-x ) sin B(x- ) 	 3 DQ

1,2 	
xk 	DQ

1,2 

cos Bx 

 

 

(58) 

where H(x) represents the customary21 Heaviside (unit-step) functional. 

In view of Eqs. (56) through (58), the behavior of the functions r
*
1, r

*(1) 

and r
*(2) 

as x approaches x
k becomes of particular interest. 	Thus, r 1  is 

continuous at x
k' 

where 

1  
cos Bx

k 
 - L - x 

[BDC21, 	BL 	
k  sin Bx

k r 1 (xk) 	2  
B DQ2 

_ 	
3 
2  	icos Bxk , 	 (59) 

LB DQ2 

but the first- and second-derivatives of r 
1 

with respect to x have a Heaviside - 

and a Dirac delta-type discontinuity, respectively, at x = xk' since 

25 



and 

	

= [  2 	 (cos Bxk  
td2 F
*1

/dx2 1 LBDQ2  DQ 	BL 
x=xk 	 10 

L - x
k 	

d(x-xk) 

L 	
sin Bx

k 	
cos Bx 

DQ1,0  

At x = xk' the function r*
1
(1) has a Heaviside-type discontinuity, since 

( L  x 
tr*1 	 DLQ (1) 	

1 	 ) 

	

cos Bxk  + 3 	cos Bxk  
x=x

k B
2
DQ2 	1,

k 

 1 	

2 

LB DQ2  

+ 1 H(x-xk), 
Q1,1 

* while the first derivative of r 1
(1) 
 with respect to x has a Dirac delta- 

discontinuity, since 

[B(L-x,) 	 2 	sin Bx td r1 (1) /dxl 	= 	 

	

DL 	
cos Bx

k 
+ 

x=xk 	
Q1,; 	 LB

2
DQ2

1 

o(x-x,) 
+ 	k  

DQ1,1  

(61)  

(62)  

k 

(63)  



* 
Finally, F

1
(2)  has a Dirac delta-type discontinuity at x = x

k' since 

I 	x= xk 	

[cos Bx + B(L-x
k 	k 	

3 
 ) j., Bx 

r
1

1 *(2) 	 1 	 k 	 2  _ 	+ 	 ] cos Bxk LDQ1,2  B 2DQ2 	
DB LQ

2 

d(x-xk) 	 (64) 

_ 	 
DQ

1,2 

When 
xk 
 is close to the exact location x

m 
of the maximum, but such that 

x
k 
< xm , Q1,0  and Q 1,1  are positive, while Q

1,2 
is negative. In this case, Eqs. 

(59) through (64) indicate that: 

*(1) 	*, 
1. The functions 1 ,, 1 	and dri/dx both undergo step-jumps at x = x k , but the 

former function undergoes a positive step jump, while the latter 

undergoes a negative step jump, and 

	

* 	* 	 * 
2. The functions F 1 (2)  , dr, (1)  /dx, and d

2 
 F1 /dx

2 
 all display "spikes", i.e. 

Dirac delta-type discontinuities at x = xk. These delta-functionals 

(2) 	* 

	

cause positive spikes in F 	and dr
1
(1)  /dx, but cause a negative spike 

in d2r
1
/dx2 . 

(45) are particular forms of Eqs. (34) through (36), 

* 	* 	 * respectively, the functions r1 , r1
(1)  , and r 1

(2)  should also satisfy the 

relationships given by Eqs. (41) and (42). This fact can readily be verified by 

using Eqs. (56) through (58) and Eqs. (46) through (48) to show that 

(1) -  *M- D(Rk r te)/ax = Rk 	r 	, (65) 

and 

Since Eqs. (43) through 

 

(1) *(1)] 	 (2) *(2) 
k 	r l 	Jiaxic = Rk 	r1 

 

2, 	*, 	2 
D lRk F 1

)/Dx
k 

= (6 6) 

   



V. RESPONSE VARIATIONS AND SPATIAL SHIFTS: CALCULATIONAL 

PROCEDURES AND ACCURACY OF PREDICTIONS 

V. A. Response Variations  and Accuracy of Predictions 

The effects on the power density of variations in the macroscopic 

cross sections can be evaluated by three methods: 

(I) direct: calculations; 

(2) use of generalized perturbation theory (OPT); 

(3) use of Taylor-series expansion method with GPT (Taylor-OPT). 

The first method consists of calculating the response (in this case, the 

point-power density) for the unperturbed case (denoted by the subscript 

0), the response for the perturbed case (denoted by the subscript 1), and 

substracting the two to determine the change. The result of this process 

gives 

AR
e
(x) = R

1  (x) 	
R(x). 	 (67) 

This method will henceforth be called "exact". 

For the first-order GPT method, the response variation, denoted by 

R ( 	is considered to be given by 

SR (x) = R(x) 
	SR 	

(68) 
R x 

where (SR/R has the same expression as CP/P in Eq. (7), except that P is 

replaced by the particular response R(x) defined by Eq. (13). 
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For the Taylor-GPT method, the response variation at x, denoted by 

611 (x), is considered to be given by the following three-term Taylor-
tp 

series expansion about x: 

( 	1 	 ( 
SR

tp
(x) = SR

p
(x
k
) + (x-x

k 
 ) (SR

p
1) 

 (xk) 	— 
2 	

2 
K 	p 

SR
2) 

 (xk). 	(69) 

In Eq. (69), the variation in the power density at x
k 
and its first two 

derivatives at x
k 

are determined from GPT calculations. 

The accuracy of the Taylor-GPT method can be assessed by comparing the 

left side of Eq. (69) to the result of a GPT sensitivity calculation at x, 

i.e., Eq. (68). A relative error, denoted by TAP and defined as 

TAP = 6 R
tp 

 (x) - 6 Rp  (x) 

R (x) 
(70) 

can be used to assess this accuracy. 

On the other hand, the relative error that results from: 

a. the inaccuracy of GPT, and 

b. the differences between Eq. (68) and the Taylor-series expansion 

of SR(x) about x
k 

is found by taking the direct calculations as the basis for comparison. 

This relative error is henceforth denoted by TAE, and is defined as 

TAE 
	R tp(x)  - A R (x) 

A R (x) 
e 
	 (71) 
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(72) 
(2) 

F. 

V. B. Spatial  Shifts in  the Maximum Power  Density 

Numerically, a discrete set 	R
. 
= R

0
(x

i
)

' 
	 . , N 	is 

obtained when the unperturbed power density R 0(x) is calculated as a 

function of x. Consider now that x
k 
represents the discrete point at which 

the largest discrete value R k  is obtained. In general, x
k 

doeS not 

coincide with the spatial location, denoted by xmo , at which R0(x) attains 

its actual maximum. The location x
m0 

can approximately be determined by 

expanding R (x) in a Taylor series around x k , i.e., 

R0 (x) = R
0 
 (x

k 
 ) + (x-xk  ) R

(1) (xk 	2 
) + 	(x- xk  

and by evaluating the first spatial derivative of this expansion at x mo . 

Retaining only terms up to 0[(x -x0 3 1 	in Eq. (72), and noting that 

dR
0 
 (x)/dx vanishes at x

m0 [ since R0  (x) attains its maximum there] gives 

xm0 - x
k 
 - (73) 

When the system parameters are perturbed, the perturbed response, 

denoted by R1 (x), attains its actual maximum at a location x
ml 

which, in 

genera/, will not coincide with x mo .The location xml  can be determined by 

expanding the perturbed response R 1 (x) in a Taylor series analogous to Eq. 

(72), and following the same procedure as that leading to Eq. (73). This 

gives 

	

( 	, 

	

R1) (, 	xk) 

xml 	 ,(2).„ 

	

1`1_ 	"(lc )  

(74) 
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X - x 	- 
ml 	m 0 	(2) 

R
O  

6 R (1) 

(76) 

The spatial shift (x
ml 	

x
m0) in the peak power density can now be 

estimated by subtracting Eq. (72) from Eq. (74). This gives 

R(1) + 6R
(1) 	(1) 

0  x 	x 
ml 	m0  

R(2) + 6 R
(2) 	

R
(2) 

0 
 

() 

(75) 

where all R (i) and 6R(i) , i=1,2, are understood as being evaluated at x . = 

x
IC 

When 6R
(2)

/R
(2) 

is much less than unity, Eq. (75) reduces to 

Within the framework of first-order GPT, the perturbed response can 

be written as the sum of the unperturbed response and the response varia-

tion SR p , where the latter term consists of a direct-effect component, 6R d , 

and an indirect-effect component, 611., i.e., 

R1  = R0 
 +SRp  

= Ro + SRd 
+ 6R.. 	 (77) 

Similar expressions can be written for the spatial derivatives of the 

perturbed response: 

R (1) 	
R0
(1) 

 + (SR
(1) 

 + (SRP-) , 

 (2) 	(2) 	(2) 	(2) R
1 	

R 	+ SR (2) + SR (2) 
 

(78) 



If, on the one hand, the direct-effect components vanish, then Eqs. 

(74) and (78) give 

(xmi - x
k

)
1 
 = - R 
	+ 6 R, 

R 0 + 6 Ra,  

(1) (1) 

(2) (2) • 
0 	1 	

(79) 

If, on the other hand, the indirect-effect components vanish, then Eqs. 

(74) and (78) give 

(xml 	xk) d 	- 	(2) 	(2) 

Ro + 6 R
d  

R
o 

+ 6 R
d 

(1) 	(1) 

(80) 

Adding Eqs. (79) and (80), and neglecting second-order terms of the form 

(i) 	(j 6Rd 6R )  , gives 

(x 	- x.) + (x 	- x.). = - 
ml 	k d 	ml 	k 	(2) 	(2) 	(2) 

R o 	+ 6 Rd 
+ 6 R. 

R 	+ 6 R. 	+ 6 R. 

(1) 	(1) 	(1) 	(I) 

0 	 R0 

R 
(2) . (81) 

In view of Eqs. (74) and (78), the first term on the right side of Eq. (81) 

is the expression for (xml  - k ) when both direct and indirect effects are 

present. The second term on the right side of Eq. (81) corresponds to the 

unperturbed case, i.e., to (xmo  - xk ) as given by Eq. (72). Therefore, Eq. 

(81) becomes 

	

(x
ml 	

x
kd 

+ (x
ml 

 --x
k 
 ). = (x

ml 	
xk) + (x

m0 
- x

k
). 	 (82) 

32 



Noting that xk 
is a fixed point, and subtracting twice the quantity (x m0

- 

xk) from Eq. (82) gives 

( x  _ xm ) d 	(x - x 
m0

) i 
= x - x 

ml 	 ml 	 ml 	m0 

Equation (83) shows that the spatial shift in the peak location can be 

expressed as the sum of a spatial shift due solely to direct effects and a 

spatial shift due solely to indirect effects. 

V. C. Influence of the Spatial Shift on the Sensitivity of the  

Peak-Power Density 

When a macroscopic cross section is perturbed, the resulting varia-

tion in peak power density is given by 

AR
es = R 1 (xml ) - R (x ). 0 m0 

Note that Eq. (84) is exact, i.e., it contains no approximations. 

Yf the shift in the location of the peak is neglected, the variation 

in the response is given by Eq. (67) evaluated at x
0'  that is, m 

AR 	R 	) - R (x e0 	1 m0 	0 (85)  

In view of Eqs. (84) and (85), the effect of the spatial shift on the 

sensitivity of the peak power density can be assessed by using the expres-

sion 

AR - AR 
es 	e0 SE - 
• A R  

-(83) 

(84 ) 

(86)  

33 



Since Cacuci
8 
 has shown that 

R1 (x
ml  ) - R1'In0) 0[(6a) 2 1 	 (87) 

  

where 60 represents variations in the system parameters, it follows that 

the numerator of Eq. (86) is also of second order in these variations-

Figure 1 illustrates the near-range spatial shift and its influence on the 

sensitivity of the extremism, 
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VI. DESCRIPTION OF TEST CASES 

VI. A. Model and Cross Sections 

A simplified three-region model, which has some of the significant 

characteristics
10 
 of a heterogeneous LMFBR, has been chosen to test the 

theoretical developments outlined in the previous sections. This model 

consists of an infinite slab, finite in the x-direction, with internal 

blanket (IB), driver (D), and exernal blanket (EB). The concentrations of 

Na, U-238, and Pu-239 are given in Table I, and are the same as for the 

beginning-of-life LMFBR model considered in Ref. 22. The three-group 

cross sections used are from the CITATION test case.
23 

The outer boundaries of regions IB, D, and EB are located at 10.5 cm, 

60 cm, and 90.0 cm from the reactor center (x = 0), respectively. A driver 

zone mesh spacing of 1.5 cm is used for all reported results; however, this 

spacing was varied in some of the test calculations discussed in Sec. 

VII.B. 

VI. B. Selection of Perturbations  

Perturbations of nuclide densities or microscopic cross sections 

cause changes in the macroscopic cross sections, 1 , and thus in the 

Boltzmann operator, L. To choose perturbations appropriate for testing the 

proposed method, several desirable, and sometimes conflicting, conditions 

should be considered: 

(i) To test the Taylor series method, SE should cause a response varia-

tion SR(x) that appreciably depends on x. This implies that the change in 

at least one of the derivatives SR (i)
(xk

) should be appreciable. 

(ii) To check the CPT method [see Eq. (7)] , the indirect-effect component 

of the total perturbation SR (i) (x) should be appreciable. 
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(iii) To allow useful comparisons with "exact" (i.e., direct calculation) 

results, the perturbation (SE should not be so large that second- and 

higher-order terms in SE, which are ignored in the first-order GPI .  applied 

herein, become overwhelmingly large. 

In view of the conditions described above, four test cases, as 

described in Table II, have been devised. In general, these cases meet the 

above conditions adequately, but the following exceptions should be noted: 

(a) Case 1 does not satisfy condition (i) well, but is a good test for 

predicting a small spatial shift in the peak power density. 

(b) Case 3 does not satisfy condition (iii) well, but is an interest-

ing example of a very large perturbation that effectively 

transforms the heterogeneous core into a homogeneous one. 
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VII. RESULTS FOR TEST CASES 

* 
VII. A. rk

(i)  Results 
- 

Various characteristics of the functions rk(i)  are illustrated by the 

results presented in Figs. 2 through 5. All numerical results discussed in 

this and the following sections are for x
k
-,22.5 cm, the mesh point at which 

the maximum value of Rk  occurred in the unperturbed (i.e., "base-case") 

calculation of the power density R(x). The spatial shape of rk  is 

illustrated in Figs. 2 and 3. The neutron importance to R(x
k
) is greatest 

near xk ; - there, a neutron is more likely to contribute to the numerator 

rather than the denominator of Eq. (13). As a function of x , 
,
4( (x) is _ 

negative over a wide range due to the neutron contributions to the 

denominator of Eq. (13). 

*(1) The shape of the curves for rk 	and 
r*(2) 
—k 

can be discussed in terms 

of the expressions derived in Sec. IV. For this purpose, recall that r i, 

depends both on xk  and x, and that the associated response R k  E R(xk ) 

depends on xk  but not on x. 	In the following, the dependence of 

I' *(i) (x,x
k

) E 	F
k
(i) (x) on each of the two independent variables x and xk 

will be addressed separately. 

*i 
As functions of x k' 

the relationships between the r k
(
i

)  for the j-th 

energy group have been generally given, in vector form, by Eq. (42), i.e., 

(i) 	*(i) R
k -k r ikt ] /axl [(42)] 

Qualitatively, this behavior is illustrated in Fig. 4, which presents 

(1), 
Ik 	kx, as a function of x. For group 2, for example, given the fact that 
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( 
R

1)
k 	is positive, the shape shown in Fig. 4 can be obtained by considering 

various fixed, but successively larger, values of x on the set of curves 

for 1_ (x ' xk
) shown in Fig. 2. 

*(i) As functions of x, the qualitative behavior of I"
k,j , 

shown in Figs. 

2 through 5, can be supported by considering the analytic results for 1' 1 , 

(1) 	r*(2) r
11 and I 	obtained in Sec. IV for a simple one-group, one-region 

case. Although the results shown in Figs. 2 through 5 are for a multi-

region, multigroup case, the predominant features of these results near x k 

 are expected to be similar to those of the simpler one-group, one-region. 

model. This is because: 

(i) the fixed point x
k 

is well within the interior of the driver 

region, and hence is neutronically "far" (several mean free 

paths) from other regions; 

(ii) the x-dependence of r*(i)( k,j  x) is strongly influenced by the 

spatial form of the fixed sources, Sk(i)  (x); for our test cases, 

these sources are space-energy separable in the driver region; 

(iii) coupling between groups for the multigroup case does not 

change the predominant features of the x-dependence of 

r *(i) (x), since this dependence is similar for all groups. 
k,j 

This similarity, illustrated in Fig. 3, is principally due to 

(ii), above. 

The discussion that followed Eqs. (59) through (64), and that focused on 

the predominant features of the x-dependence of the functions r*(1) and 

*(2) 
r
1 	

, also provides a good description of the predominant features of the 

x-dependence of the derivative importance functions shown in Figs. 4 and 5. 

The values of r
(2) 

for x 	x
k are significantly smaller than the 

value at xk' 
and are sensitive to the "fundamental harmonic correc- 



. 	2 4 24 
non" "that must be used to eliminate fundamental harmonic 

* contamination when calculating r  (i) . Although the CIAP-INO version of 

CLAP-1D17 that was employed to calculate the adjoint functions performs 

this correction, the correction was numerically inadequate to determine 

r *(2) 
 -k 	' This situation was resolved by noting that the functions - r*(1)  

satisfy the orthogonality property 

<r*k(i)  B 0> = 0, 
	 (88) 

where B is the fission operator. As a result of applying this orthogon-

ality property to eliminate fundamental harmonic contamination, the values 

for rk
(2) obtained by using the fixed source S:(2) Csee Eq. (24)1 agreed 

well with the corresponding values obtained by using Eq. (26). 

* The numerical accuracy of calculating rk(1)  was verified in a similar 

manner: on the one hand, rk (1)  was calculated by using the fixed source 

(1) 	 *(1) 
S
k 	

bee Eq. (23)J and, on the other hand, 	was calculated by using 

Eq. (25). These calculations gave essentially identical results. 

A mesh spacing of 1.5 cm, which is a typical value specified for 

benchmark calculations of critical assemblies with LMFBR characteristics 

(e.g., ZPR-3-48), 25  was initially chosen for both forward and adjoint 

calculations. The results for the functions r*k
CO were obtained by using 

this mesh spacing. The sharp variations displayed by these functions 

provided a strong motivation to investigate whether this mesh spacing, 

which is adequate for calculating the comparatively smooth forward fluxes, 

is indeed adequate for accurately calculating the adjoint functions. This 

adequacy was investigated by performing several calculations with a finer 

mesh, obtained by reducing the 1.5 cm mesh spacing to 0.5 cm in a region 

(i) 
around x . 	Although the shapes of r k 	changed slightly due to the 
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additional mesh points (an expected outcome considering the sharp 

variations involved), the use of the two meshes yielded essentially 

identical results for 6R
(1)

. This gives confidence that the 1.5 cm mesh 

spacing is indeed adequate. All numerical results reported in this work 

were obtained by using the 1.5 cm mesh -spacing. 

VII. B. Comparison  of Results for 61I
(1)

(x
k
) Obtained from CPT 

and Direct Calculations  

The accuracy of values for dRi(i)  obtained from GPT calculations was 

verified by performing two direct TAIM 16  calculations. As discussed in 

Sec. V.A, the results of these direct calculations are termed "exact". The 

convergence criteria for these direct calculations were adequately 

stringent to insure that the exact results retained sufficient significant 

figures for comparisons with perturbation-theory results. As indicated in 

(i) Tables III through VI, the exact and GPT results for 614k  generally agreed 

within about 5%. Note that for all four cases, the indirect component of 

(SR (i)  is greater than the direct component for at least two of the three i 

values. Thus, condition (ii) of Sec. VI.B is largely satisfied. 

The results shown in the last columns of Tables IV and V indicate that 

( 
CPT and exact results do not agree well for 612k

2) 
 of Case 2, and for Case 

respectively. For Case 3, the disagreement between GPT and exact results 

indicates that the nonlinear terms disregarded by first-order GPT are not 

small. This is not surprising, since, as discussed in Sec. VI.B, Case 3 

represents a very large perturbation. The disagreement between CPT and 

( 
exact results for 6Rk

2) 
 of Case 2 can be analyzed by comparing the results 

(2) 	(2) 
for 1511k /R

k 	presented in the fourth columns of Tables III through. VI. 

( 	( 
This comparison shows that oRk

2) 
 /R

k
2) 
 is smallest for Case 2, being about 
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an order of magnitude smaller than for Case 1 and about two orders of 

magnitude smaller than for Cases 3 and 4. Note now that the effects of the 

nonlinear terms disregarded by first-order OPT are measured by (x) 

defined as 

c(x) = 8R (x) - AR
e (x), 	

(89) 

where GR
e 
and 6R are given by Eqs. (67) and (68), respectively. Recalling 

( 
that 812

k
2) 
 for Case 2 is a very small quantity that is calculated by using 

Eq. (16), it is expected that even a weak dependence of e(x) on x would 

cause appreciable differences between exact and GPT results. Calculations 

of c(x) have indicated that this is indeed true for Case 2. Note, though,. 

(2) 
is 	 ( that if (5P 	s small compared to 8R

k 
and/or (SRI( D  , then inaccuracies in 

( 
6R

2)
k 	will influence results for 8R(x) appreciably only if (x - x k ) is 

large. This follows from the use of Eq. (14). 

VII. C. Comparison of Taylor-CPT,  OPT, and  Exact Results for SR(x) 

The use of the Taylor-CPT method raises questions concerning the 

accuracy of both the CPT and Taylor-series features. To investigate these 

questions, two series of comparisons were performed: 

(a) First, results obtained for (SR
tp
(x) were compared to exact 

values AR
e
(x) (see Eqs. (69) and (67), respectively]. As dis-

cussed in Sec. V.A, this comparison assesses the composite 

accuracy of both features (i.e., second-order Taylor expansion 

around x
k' 

and use of first-order GPT) of the Taylor-CPT.method. 

(b) Second, results for (SRtp  (x) were compared to results for 6R (x) 

[see Eqs. (69) and (68), respectively]. 	As discussed in Sec. 



V.A, this comparison assesses the accuracy of solely the Taylor 

series expansion feature of the Taylor-GPT method. (The 

inaccuracies due to the use of GPT are eliminated in this com-

parison.) 

Tables VII through IX present the comparisons mentioned in item (a) 

above. These comparisons show that for values of x xk  varying from -10 

cm to 20 cm, 6R tp (x) and AR
e
(x) agree within about 5%. This generally good 

agreement worsens only when x xk  becomes large (in absolute value), or 

when (512(x) is about to change sign while going smoothly through a zero 

(e.g., Case 4, x = 10.5 cm, in Table IX). 

Although Case 1 does not generally satisfy condition (i) of Sec. VI.B, 

the values of (SRtp (x) obtained by using all three terms in Eq. (69) agree 

well, within 5%, with the exact values ARe (x). Notably, this good agree- 

ment persists even at distances x - x
k 
as large as 30 cm. As will be 

discussed in Sec. VII.D, the perturbation considered in Case 1 causes only 

a small spatial shift in the location of the maximum power density. Thus, 

the good overall agreement between 6R
tp

(x) and AR
e
(x) obtained in this case 

represents an additional positive verification of the adequacy of the 

numerical methods used in this work. 

The results presented in the last two columns of Tables VII through IX 

also indicate that the use of only the first two terms in the Taylor 

expansion given by Eq. (69) is adequate when x is not very far from xk . The 

generallygoodagreementbetweenARe (x) and the values of SR
tp

(x) obtained 

by using this two-term expansion indicates that, in certain cases, the 

number of adjoint calculations may be reduced; for example, calculation of 

*(2) may not be necessary if only small to moderately large distances 

x x
k 
are of interest. Of course, the adequacy of using a two-term expan- 



sion for calculating SR (x) also depends on the size of the perturbation. tp 

Cases 1 and 2 involve small perturbations, but Cases 3 and 4 involve larger 

ones. For the latter cases, the importance of the term containing &R
(2) 

in 

Eq. (69) is illustrated in Fig. 6. 

Results for the second set of comparisons, i.e., those mentioned in 

item (b) at the beginning of this section, are presented in Table X. For 

completeness, this table presents not only comparisons of &R
tp

(x) 

6R (x), but also includes comparisons with the exact values AR
e
(x). Note 

p

the selection of particular combinations of perturbationcases. (i.e., 

Cases 3 and 4 of Table II) and values of x: each combination simul-

taneously involves a large perturbation and a large absolute value of x - 

x . The reason for selecting such combinations is to deliberately accen-

tuate the space-dependent inaccuracies, expressed by E(x) defined by Eq. 

(89), of using first-order GPT. 

The outcome of comparing
tp

(x), (SR (x), and AR
e
(x) is concisely 

expressed in Table X by presenting the values for TAP and TAE obtained from 

Eqs. (70) and (71), respectively. As expected, the nonlinear effects 

ignored by the Taylor-GPT method are important in these cases; this impor-

tance is clearly indicated by the large values obtained for the quantity 

TAE. The main contribution to these nonlinear effects, though, arises from 

the GPT component of the Taylor-GPT method. This fact is indicated by the 

small values obtained for the quantity TAP, which show that the Taylor -GPT 

results agree closely with the CPT results. These characteristics are 

further highlighted in Fig. 6, which shows that, even though the CPT 

results differ from the exact ones by as much as 50%, the Taylor -GPT and 

GPT results agree within 4% for a large range of distances x. This 

indicates that whenever the GPT method is sufficiently accurate, the use of 



the Taylor-GPT method could substantially reduce the number of calcula-

tions for investigations of space-dependent response variations. 

VII. D. 	Spatial Shifts,  and Their Influence on Peak Power Density 

Sensitivities 

Perturbations in nuclear data alter not only the maximum value taken 

on by the power density, but also cause spatial shifts in the location of 

this maximum. To calculate these shifts by using the Taylor-GPT method, it 

is convenient to rewrite Eq. (75) as 

x - x R(1)
6 (1) /R (1) 	6R(2),R (2) 

(90)• 
ml 	m0 

R(2)
 

I + 6R
(2)

/R
(2) 

0 

Table XI presents numerical values for the spatial shifts (i.e., 

x
ml 	

x
m0

) caused by the perturbations described in Cases 1 through 4. 

"Direct," "indirect," and "total" contributions were calculated by using 

the Taylor-GPT method. The respective contributions are denoted in Table 

XI by S
tp,D' 

S
tp,I' 

and 
 Stp,T' 

and were obtained by replacing the quantity 

6R
(i) 

in Eq. (90) with 6R(i) , 61Z 	, and (6R(i) 	6R
(i) ), respectively. 

Recall that Eq. (90) has inaccuracies stemming frovithe use of both 

first-order GPT and second-order Taylor expansion in x. Inaccuracies due 

to the use of first-order CPT in Eq. (90) can be assessed by using 

perturbed data to recalculate the response R
1
(x). The numerical values of 

RI (x) thus obtained have been examined to determine the grid location 

x
kl at which the largest discrete value of R 1

(x) occured. Except for very 

small shifts, xk, is not generally expected to coincide with x k . (Recall 

that x
k denotes the location where the largest discrete value of the 



unperturbed response occured.) 

Using now the same procedure as that leading to Eq. (74) but with x kl 

replacing xk  gives 

( R1)
I 

(xkl)  
(2) 

R1 (x10 )  

(91) 

Equation (91), rather than Eq. (74), is now used to determine xm1 ;. this is 

because, although, both equations stem from Taylor series truncated at the 

third order terms, the truncation errors in Eq. (91) are smaller than those 

in Eq. (74) since, in general, lxml -xkil < Ixmcxkl. Furthermore, it is 

expected that this procedure will in general allow determination of x ml 

 within an accuracy comparable to that of determining x
m0 

from Eq. (73). 

The results shown in Table XI in the row labeled S
e,T 

are the 

numerical values of (xml-xm0)  where x
ml 

and x
m0 

are obtained from Eqs. 

(91) and (73), respectively. A comparison between these results and the 

corresponsing results shown in the row labelled 
Stp,T 

indicates the 

magnitude of effects arising fron the use of firt-order GPT in Eq.. (90). 

The indirect contributions (i.e., S 	) are generally preponderant; 
tp,I 

the direct contributions 
Stp,D 

are zero for Cases 3 and 4, and are still 

much smaller than 
Stp,I 

for Case 2. Only for Case 1, which involves a very 

small shift, are the values of S
tp,I

and  S
tp,D 

comparable. 

The results presented in the last row of Table XI show that shifts 

predicted by the Taylor-GPT method agree well with the exact ones for 

distances between approximately 0.15 cm and 5 cm. For Case 3, which 

represents a perturbation so large that it effectively transforms the 

heterogeneous core into a homogeneous one, the shift predicted by the 
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Taylor-GPT method substantially overestimates the actual shift. 	This 

highlights the importance of the nonlinear terms , that are neglected by 

first-order GPT. 

The influence of spatial shifts on the sensitivity of peak-power 

density has been discussed in Sec. V.C. This influence is characterized by 

the quantity SE defined by Eq. (86). Note that the results for SE are 

subject to inaccuracies associated with Eqs. (73) and (91) which are used 

to determine the locations x
m0 

and x
m1' respectively. Table XII shows that 

the error caused by the shift in the location of the maximum power is small 

for Cases 1 and 2. For larger perturbations, e.g. Cases 3 and 4, the 

effect of the spatial shift on the sensitivity is appreciable and cannot be-

neglected. 
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VIII. SUMMARY AND CONCLUSIONS 

This work has presented an efficient method to investigate one-

dimensional, space--dependent variations SR(x) in the power density R(x). 

This method has been called the Taylor-GPT method in order to highlight its 

two main characteristics: - (a) use of a Taylor series expansion of 6R(x) in 

the spatial variable x, and (b) use of first-order generalized 

perturbation theory (GPT)
1-4 
 to efficiently evaluate the derivative 

operators that appear as coefficients in this Taylor series. 

Equations satisfied by the importance (i.e., adjoint) functions for 

the i-th spatial derivative of 6R(x) have been derived within the framework 

of GPT. Using finite differences, it has been shown that these equations 

can be solved in a straightforward manner with existing GPT codes to obtain 

the importance functions. The main characteristics of these importance 

functions have been highlighted analytically by deriving certain relation-

ships that they satisfy. A deeper understanding of these characteristics 

has been facilitated by deriving the complete analytical expressions of 

the importance functions for an illustrative (one-region, one-group) 

reactor model. 

It has been shown that the Taylor--GPT method. is efficient not only for 

estimating space-dependent variations in the power density, but also for 

estimating spatial shifts that parameter perturbations induce in the peak 

power density. To illustrate its usefulness, this method has been applied 

to four test cases involving a simplified three-region one-dimensional 

model of a heterogeneous DIFSR. The results given by the Taylor-GPT method 

have been compared to those produced by the standard GPT 

method, and both have been verified by comparisons to exact results 
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(obtained by actual recalculations with altered parameter values). 

These comparisons indicate that the results given by the Taylor-OPT 

method are practically as accurate as those given by the standard GPT 

method. The Taylor-GPT method includes all the advantages offered by 

adjoint methods, e.g., the same importance functions are used to assess the 

effects on the response of many parameter perturbations. In addition, the 

Taylor-CPT method could substantially reduce (even by comparisc;a to 

standard CPT) the number of calculations for investigations of space-

dependent variations in the power density. Note, though, that the Taylor-

GPT method does not account for second- and higher-order effects of 

parameter variations. Nevertheless, th -s_ Taylor-OPT method provides 

detailed information regarding specific contributions (e.g. 1  due to 

leakage, absorption) to the overall variation in the response. The 

availability of such detailed information is valuable for systematic and 

efficient reactor design studies. 
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.(x) - 
1-23 

Pk 1
(x) k 

. 
f/J 

(A-2) 

and 

APPENDIX A 

APPLICATION OF THE ITALIAN CPT CODE PACKAGE TO 

CALCULATE SPATIAL DERIVATIVES OF dR(x) 

A. 1. Calculation of r ^(i) 

In general, the solution to the adjoint problem is computed by CIAP 17 

for ratios of the form: 

R
0  

E i,j (x) (1) i  (x) dx 

171 

)2 

  j  	 

2 2,j(x) (1)j (x) dx 
V2  

(A-1) 

Eq. (A-1) can be cast in a form amenable to calculate 6R (1)/R(1) by simply 

preparing, as indicated below, the input data for the adjoint-source. 

The energy-production cross sections in the numerator and denominator 

of Eq. (A-1) are written as 

2, .(x) = j 
k k 

N
2 (x) o k . 

f)j 
(A-3) 

respectively, where Ni denotes densities for nuclide k. Subscripts 1 and 2 

in Nk and Nk ' respectively, allow for potentially distinct spatial behav- 
1 	2 

for of the energy-production cross sections. With these specifications, 
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CIAP computes the desired F*(i)  if the densities are chosen in the follow-- 

ing manner: 

(a) N2 (x) = N for all x in region m, m=1, M 
 

(b) for r *(1) calculations: 

+Nm0' 
for 

 x=xk+1 
and x E m0 

N
1
(x) = 

-Nm0' 

0.0, 

for 
 x=xk-1 

and x 

elsewhere 

E m0 

(c) for F
*(2) 

calculations: 

+ Nmo , for x=x
k+1' 

x
k-1 

and x E m0 

N
1
(x) = 	-2N

m0' 
for x=x

k 
and x E mO 

0.0, elsewhere 

Here, m and M refer, respectively, to the region number and the number of 

regions, m0 denotes the number of the region where the peak power occurs, 

and Nk and N
m0 

are the densities of nuclide k in regions m and mO, 

respectively. 

Note that CIAP includes the volumes associated with the mesh points in 

the integrations over space- But, as long -  as the mesh spacing is uniform 

in the vicinity of xk , this does not affect the values of the fractional 

variation of the derivatives. Note also that CIAP attaches a factor of 

0.5 to the contribution of a point to the integral Value if the contribu-

tion of the point preceding it or the point following it is zero. To guard 

against this, one must use a very small value for the input density (of the 

order of 10
-14

) at xk_2  and xki_ 2 . 
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A.2. Direct-Effect Calculations 

The code GLOBPERT-1D
18 

can be used to calculate the direct-effect 

component of 6R (i) /R(i) . For this purpose, the input data for the direct-

effect calculations must be prepared as follows: 

(a) for 6R(1) /R(1) calculations, 

+6N x=x
k+1 

6N = 	. - 6 	x- N, 	xk_, 

0.0, elsewhere 

(b) for 6R
(2) 

/R
(2) 

calculations, 

+ 6N
i
, x=x

k+1' 	
xk_j. or x= 

6N = 	-26N
i' 
 x=x

k  

0.0, elsewhere.  

Ilere,Mdenotes the density change for nuclide i and effected in the 

quantity Q
1,k 

[see Eq. (22)] . 

Also note that GLOBPERT-1D was modified to treat more accurately the 

interfaces between regions. In addition, an algorithm was implemented to 

calculate 6D (i.e., the perturbation in the diffusion coefficient) 

exactly, rather than via a first-order expansion in 6E as done in the 
tr 

version.. of this code. 
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U(p) = f px r
(2) 
 dx, 

00 

O 

(B.2) 

APPENDIX B 

DETERMINATION OF r *(2) 
1 

In view of Eqs. (45) and (51), the function r*(2) 
1 

is the solution of 

2 *(2) 
d r

1  

dx2 
 

+ 
B2 2 *(2) 	1 	1  

1 	Dc2 2 	DQ1,2  

at x (13.1) 

dr
*(2) 
1  

dx 
- 0 at x = 0 

Applying a Laplace-transform to Eq. (B.1), and defining 

gives 

p 
U(p) = K  2 2 

p +B 

1 
 DQ1,2  

2 
p expf-pm,. 

K  

2 2 	DQ 	2 
p +B 	 2 p(p +B

2 
 ) 

(B.3) 

where K is, at this stage, an unknown constant to be determined. 
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Taking the inverse Laplace-transform of Eq. (B.3) gives 

r
1 	 2
*(2) 1  

= KcosBx + 	(1-cosBx) 
B DQ

2 

1 - 	 d(x-x )-B H(x-x
k
) sinB(x-x id . 

DQ
1,2 

(B.4) 

For a critical reactor, the boundary conditions given in Eq. (B.1) are 

automatically satisfied; thus, the constant K is determined by using the 

orthogonality condition given in Eq. (88). This leads to 

K = 
1 	

- 
2 (1 	

(cos Bxk  L xk  

BL) DQ1

B 

 2 	BL  
 sin Bxk) 2

D Q2 
(B.5)  

Replacing Eq. (B.5) in Eq. (B.4) yields 

r*(2) I 
1 + 

DQ 2  

cos Bxk  + B(L-xk) sin Bx
k 

[ 
	LDQ1,2  

B 	
d(x-xk) 

E(x-x ) sin B(x-xk) - 	 
1)`4,2 "1,2 

(B.6)  
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TABLE 1 

Nuclide Concentrations for Test Model 

Nuclide 
Concentration [10 24  atom/cm

3
] 

Driver 	 Blankets (IB,EB) 

U--238 0.006 0.012 

Pu-239 0.001 0.0 

Na 0.010 0.007 



TABLE II 

Selected Perturbations and Corresponding Test. Cases 

Case 
Zonal Perturbationa  

Int. Blkt. 	(IB) Driver (D) Ext. Blkt. 	(EB) 

1 

2 

3 

4 

6N
28 

6N49 6N49=+0.045 N49  

6N28 

N49 --3% 

6N
49 

-+5Z 
N 28 

Replaced with 
driver. 

Outer three 
cm replaced 
with driver 

—57  
N49 	° 

Inner 
boundary 
extended to 
core center 
(x=0). 

Inner 
boundary 
extended to 
x=7.5 cm. 

N
28 	

- 

a. NYz is the number density in zone x of the nuclide with 

the last digits in its atomic number and weight of y and z, 

respectively. If no x appears, N is for the zone designated 

by the column heading. N values are given in Table I. 



TABLE III 

CPT and Exact ISR (i) (x ) Results for Case l a-e  

Derivative 

Order, 	i 

CPT Results for oR(1)/R(1) 6R(1)  
P 

(GPT) 

AR(1) 
 e 

(Exact)g 

CPT-Exact 

Direct f Indirect f Total 
[7.] Exact 

0 

1 

2 

-9.16-3 

+2.26,4 

-3.59-3 

-2.25-3 

+2.97-1 

-1.16-2 

-1.14-2 

+5.23-1 

-1.52-2 

-3.56-4 

+2.71-6 

+2.86-7 

-3.69-4 

+2.88-6 

+3.04-7 

-3.7 

-5.8 

-5.8 

a. All values are for x
k 
= 22.5 cm. 

b. Because of the characteristics of CIAP, R has a AVol factor of 1.5 cm3 

in the numerator which is not contained in Eq. (9). 

c. Read ±x-y as ±x . 10 -Y . 

d. See Table II for description of perturbation cases. 

e. Values presented in the last three columns are calculated with more 
significant figures than shown. 

f. Sce discussion of Eq.. (7).. 

g. Exact value determined from two direct calculations; see Eq. (67)_ 



TABLE IV 

CPT and Exact R (i) Results for Case 2. a 

Derivative 	GPT Results for (SR (i) /R (i) 
GP 611(i)  AR(i)T-Exact 

I
%

1 
 Order, i 	Direct 	Indirect 	Total 	(GPT) 	(Exact) 

Exact 
 

0 5.41-4 2.59-3 3.13-3 9.77-5 9.09-5 7.4 

1 3.93-1 -2.17+0 -1.78+0 -9.21-6 -9.05-6 7.7 

2 9.82-3 -7.26-3 2.55-3 -4.80-8 -3.4-8 39. 

a. See footnotes for Table III 



Table V 

GPT and Exact SR (i) 
Results Case 3.a 

Derivative 	GPT Results for 6 R (I) /R (1) 	SR(5- ) 	AR ( i) GPT-Exact  [x]  

Order, i 	Direct 	Indirect Total 	(GPT) 	(Exact) 	
Exact 

0 -1.59-1 3.78-2 -1.21-1 -3.79 - 3 -3.79-3 -0.14 

1 -1.59-1 -5.44+1 -5.46+1 -2.83-4 -2.14-4 32. 

2 -1.59-1 -4.52-1 -6.11-1 1.15-5 1.00-5 14. 

a. See footnotes for Table III. 



Table VI 

GPT and Exact 812 (i) Results for Case 4.
a 

Derivative 	GPT Results for SR (l) /R (i) SR (i) 	AR(i)  GPT-Exact 
Exact Order, i 	Direct 	Indirect Total 	(CPT) 	(Exact) 

0 -4.54-2 1.14-2 -3.39-2 -1.06-3 -1.05-3 0.75 

1 -4.54-2 -1.58+1 -1.58+1 -8.19-5 -7.64-5 7.2 

-4.54-2 -1.31-1 -1.76-1 3.32-6 3.22-6 3.1 

a. See footnotes for Table III. 



TABLE VII 

Taylor-GPT and Exact SR(x) Results a  for Case 1;
b 
 xk  = 22.5 cm 

x 

[cm] 

sr x- ,  _ lc  
[cm] 

Eact
c 

x 

AR 
e 

T.fylor-GPT
d 

6R
t p 

(SRtp - ,ARe 	d [74] 
ARe 

3-terme  
f 

2-term 

13.5 -9 -3.84-4 -3.69-4 --4.0 -1.0 

16.5 -6 -3.82-4 -3.67-4 -3.9 -2.5 

25.5 +3 -3.60-4 -3.46-4 -3.7 -3.3 

28.5 +6 -3.47-4 -3.34-4 -3.6 -2.1 

34.5 +12 -3.13-4 -3.02-4 -3.3 +3.2 

40.5 +18 -2.68-4 -2.61-4 -2.9 +14. 

52.5 +30 -1.53-4 -1.46-4 -4.9 +79. 

a. Read -±x-y as ±x . 10 Y . 

b. See Table II for description of test cases. 

c. Exact value determined from two direct calculations; see Eq. (67). 

d. Values presented in. the last three columns are calculated with 
more significant figures than shown, 

e. Values for SR
tp 

obtained by using all three terms in Eq. (69). 

f. Values for SR
tp 

obtained by using only the first two terms in 
Eq. (69). 



TABLE VIII 

Taylor -GPT and Exact Results a  for Case 2; x k  ---,, 22.5 cm 

x 

[ew.] 

x- xk 

[cm] 

Exact 

ARe 

Taylor-GPT 

SR 
LID 

(SRtp - ARe 	[az] 
AR

e 

3-term 2-tern 

10.5 -12 +1.93-4 +2.05-4 +6.0 +8. 

13.5 -9 +1.69-4 +1.79-4 +5.4 +7. 

16.5 -6 +1.44-4 +1.52-4 +5.5 +6. 

19.5 -3 - +1.25-4 - - 

25.5 +3 - +6.98-5 - - 

28.5 +6 +3.64-5 +4.16-5 +14. +17. 

34.5 +12 -1.71-5 -1.63-5 -4.9 -25. 

40.5 +18 -6.79-5 -7.59-5 +12. +0.3 

52.5 +30 -1.57-4 -2.00-4 +27. +13. 

a. See footnotes for Table VTI. 



TABLE IX 

Taylor-CPT and Exact Rcsults a  for Case 4; x = 22.5 cm 

x 

[cm] 

x-x
k 

[cm] 

Exact 

AR
e 

Taylor-GPT 

dRtp 

SRtp - ARe 
[%1 ARe 

3-term 2-term 

10.5 -12 +8.32-5 +1.63-4 +96. +190. 

13.5 -9 -2.38-4 -1.87-4 -21. +35. 

16.5 -6 -5.36-4 -5.07-4 -5. +6. 

19.5 -3 - -7.98-4 - - 

25.5 +3 - --1.29-3 - - 

28.5 +6 -1.45-3 -1.49-3 +3. +7. 

34.5 +12 -1.73-3 -7.80-3 +4. 418. 

40.5 +18 -1.88-3 -2.00-3 +6. 1-34. 

52.5 +30 -1.81-3 -2.02-3 +12. +94. 

a.. Sae footnotes for Table 



TABLE X 

ComparisOns of ARe
(x), SR (x), and (SR (x) for Large 

tp 

Perturbations and Large Ix - x k l 

Perturbation 

Case 

x 

[ cm] 

4 

3 

13.5 

40.) 

13.5 

40.5 

a. 

b. 

See Eq. 

See Eq. 

(70). 

(71). 



TABLE XI 

Spatial Shifts [cm] in Location of Peak Power 

Sniftsa  Case 1 Case 2 Case 3 Case 4 

S e,T  +0.160 -0.482 -22.8 -4.85 

b 
Stp,T +0.151 -0.490 -38.2 -5.23 

Stp,1 +0.086 -0.601 -27.1 -4.96 

Stp,D +0.064 +0.105 0.0 0.0 

S 	+S 
tp,I 	tp,D 

+0.150 -0.496 -27.1 -4.96 

S tp,T-S e,T -5.6% +1.7% +67.8% +8-0% Se,T 

a. Shifts are defined in Sec. VII.D. 

b.
gtp,T 

 differs slightly from (gt
p,I + p,D)_because the sum neglects 

the second-order terms mentioned immediately after Eq. 1(80). 



TABLE XII 

Influence of the Spatial Shift on the Peak-Power Density 

Case 	 SEa  [fl 

1 	 0.009 

2 	 -0.029 

3 	 -63.5 

4 	 -17.0 

a. See Eq. (86). 
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A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

August 9, 1983 

(4041894.3720 

MEMORANDUM 

TO: 	 C. R. Weisbin and D. G. Cacuci (ORNL) 

FROM: 	J. Waaflfelz and L. A. Belblidia 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 
Months of April, May and June 1983 

No activity on the project occured for the above report period because of 
staffing problems. 

JNR/vw- 
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Georgia Institute of Technology 
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS 

ATLANTA, GEORGIA 30332 

August 9, 1983 

(404)E394-3720 

MEMORANDUM 

TO: 	D. G. emenri C. R. Weisbin and B. A. Worley (ORNL) 

FROM: 	J. M.\galkfelz 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 
Period July 1 - August 1, 1983 

Accomplishments During Report Period  

- A survey was performed of literature pertinent to the deelopment of an on- 
line power distribution and reactivity monitor (PDRM) (I-L4) .  Based on this 
survey and discussions with various

(2
i

)
ndividuals, a brief memo containing 

comments on this topic was prepared 

- I visited ORNL on August 1 for a project meeting with John Lewellen to 
discuss plans and priorities for next year's work, and in particular PDRM 
development. 

Plans for Work for Next Month  

- The literature survey and discussions with various individuals concerning 
PDRM development will be continued. As requested by Dan Cacuci, I will 
prepare a brief statement describing the potential of PDRMs for improving the 
economics and safety of large LMFBRs. This statement is for inclusion in 
information to be transmitted to John Lewellen. 

JMK/vw 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 
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MEMORANDUM  

TO: 	D. G. Cacuci. C. R. Weisbin and B. A. Worley (ORNL) 

FROM: 	J. MOKaiffelz 

SUBJECT: 	Progress Report for ORNL Subcontract 7802 
Period August 2 - September 1, 1983 

Accomplishments During Report Period  

o A survey of literature pertinent to the development of an on-line power 
distribution and reactivity monitor (PDRM) was continued. Section 1 
(p. 1-3) of this report contains comments on PDRM development. 

o A statement discussing the contribution of a PDRM to the safety and 
economics of an LMFBR was prepared. This statement, requested by John 
Lewellen, is contained in Section 2 (p. 3-5) of this report. 

o An investigation of ex-core detector reading sensitivities to the core 
power density distribution was initiated, using generalized perturba-
tion theory (GPT). The methods and results of the initial calculations 
are discussed in Section 3 (p. 5-7) of this report. 

Plans for Work for Next Month  

o GPT investigations of ex-core detector reading sensitivities will be 
continued, for detectors at greater distances from the core. 

o A report will be prepared, which states the conclusions of the investi-
gations performed in this project period (July - September 1983) 
related to PDRM development, and presents recommendations for further 
work. 
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cc: C. L. Cowan (GE-Sunnyvale) 
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J. M. Kallfelz 
ORNL Progress Report 
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1. General Comments on PDRM Development  

The goal for development of an on-line power distribution and 

reactivity monitor (PDRM) is to provide a system which is "capable of 

providing a rapid assessment of the status of core parameters which are 

important for economical and safe reactor operation."
1 

It is important to 

recognize the significant difference in the applicable experience for the 

two components of the monitor name, i.e. "power distribution" and 

"reactivity." There is considerable experience in the development and 

application of "reactivity balance meters" 
2 
 in LMFBRs. However, develop-

ment of power distribution monitoring capability in fast reactors is in a 

relatively early stage, partially because related experience in thermal 

reactors is not directly applicable. As discussed below, this is because of 

the difference in the location of neutron detectors in fast and thermal 

reactors. 

1.1 Reactivity Balance Meters  

Basically, a reactivity balance meter (RBM) compares on-line the "real" 

or "measured" reactivity with the "expected" or "theoretical" reactiv-

ity.
2-4 The measured reactivity is determined with a "reactivity meter" 

(RM), utilizing neutron detector readings and the inverse kinetics 

equations.
4 The theoretical reactivity is calculated, using reactivity 

feedback coefficients and various measured parameters, e.g. power, control 

rod positions, coolant T., coolant AT in core, etc.
2 

Such a device is 
inlet 

also called an anomalous-reactivity (ANOR) meter
4
, and the associated 



monitoring procedure has been referred to as "reactivity surveillance pro-

cedure-anomaly detection" (RSP-AD).
5 

Reactivity balance meters have been used in Rapsodie
2 
 and FFTF

5
, and use 

of the CAROL RBM is planned for Super-Phenix. 3  An RBM was planned for the 

Fermi-1 "malfunction detection analyzer" 6 , and a conceptual RBM design was 

performed for EBR-II.
4 

1.2 Power Distribution Monitor  

For thermal reactors, several systens which include power shape 

monitoring have been developed. 7'8 Of particular interest is the BWR Hybrid 

Power Shape Monitoring System (PSMS) developed under EPRI sponsorship. ? 

 This system monitors the state of the core in real time, and allows for 

adjustment of a few parameters to mimimize the difference between measured 

and theoretical values for in-core detector readings. ?  A nodally  physics 

code coupled to a thermal hydraulics code is used for monitoring and predic-

tive analysis. 

The presence of in-core detectors is obviously a great advantage in 

power distribution monitoring. The readings from these monitors are used to 

check and adjust the calculated power distribution. The following perfor-

mance parameter is minimized:
7 

Lk) C , 	R 2  ( )-4.) 

where 1 and k designated location, the residual R is the normalized differ-

ence between the measured and calculated detector readings, and w is a 

weighting factor. 

Unfortunately, it is difficult to use in-core detectors in fast 

reactors, because of the core environmental conditions,
9 and most designs 



call for ex-vessel detectors. For instance, the neutron detectors for 

Super-Phenix are located outside the safety vessel, which encloses the main 

containment vessel.
3 
 It is obvious that the information content of such 

detectors concerning the core power shape is relatively small, compared to 

that of in-core detectors. 

This raises the obvious question: 

Are there any measurable parameters for an LMFBR which are 
appropriate for adjustment of data used for calculated power 
shapes? 

Gamma scan data for fuel elements can be used, but only at end-of-cycle. 

For a BWR it has been shown that adjustment during the cycle is necessary to 

avoid a serious deterioration in the accuracy of calculated cycles. 7 

Possibly the best standard of comparison for on-line LMFBR 

calculational models is a detailed off-line 3D calculation, to be performed 

periodically. Sandra and Azekura9 used detailed 3D calculations to 

validate results from an influence function method they propose for on-line 

LMFBR calculations. 

2. Impact of PDRM on LMFBR Safety and Economics  

In our August 1 meeting with John Lewellen, he requested a brief 

statement discussing the contribution of a PDRM to the safety and economics 

of an LMFBR. Following is a draft of this statement. 

It is generally recognized that on-line core surveillance systems using 

special computers can have a significant impact on the safe and economic 

operation of both thermal and fast reactors.
1 ' 3 ' 7-9 The introduction of 

powerful mini-computers coupled to the surveillance process facilitates a 

significant improvement in on-line performance evaluation of a fast reactor 

core. The reactor state functions, e.g. reactivity and power distribution, 

can be estimated with increased accuracy using such systems. 



The improvement in safety achieved by an on-line Power Distribution and 

Reactivity Monitor (PDRM) is accomplished in a variety of ways, including 

the following: 

o By the detection of incipient incidents as soon as possible. For 

instance, analysis has indicated that with a device to detect 

"anomalous reactivity" (the difference between predicted and 

measured reactivity) the Fermi-1 flow blockage incident would have 

been detected at a much smaller excess reactivity than for the 

actual case. 4 

o By diagnosing any incipient incident promptly. Such diagnosis may 

be utilized to protect the core either by input to an automatic 

safety system, or by helping the operator to determine the proper 

action to control the incident.
3 

o By insuring that various safety-related limits (e.g. peak clad tem-

perature, peak fuel temperature) are not exceeded. 

Many features of a PDRM contribute to improved economics of an LMFBR, 

e.g. 

o Prompt control of incipient incidents which have a potential for 

core damage obviously influences the reactor economics. 

o Early diagnosis of an incident may allow control thereof without 

scram. This avoids mechanical stresses which impact on the core 

life, and may allow continued operation at a reduced power, improv-

ing the plant load factor compared to that for a scram occurence.
3 

o Increased knowledge of the reactor state aids in insuring that the 

design fuel life is reached. 



o Increased reliability of reactor state prediction also allows 

operation nearer the design limits, increasing the reactor power 

output. 

o Used to predict the influence of operator actions, the PDRM can 

assist in short-term operational strategy planning, considering 

economic criteria. 

In summary, a PDRM can be a valuable tool to improve knowledge of the 

core state, to reduce the impact of incipient incidents, and to help the 

reactor staff to optimize reactor operation with regard to safety and 

economic criteria. 

3. GPT Investigation of Ex-Core Detector Reading Sensitivity to Core Power 

Distribution 

Generalized perturbation theory
11

'
12 

(GPT) can be used to investigate 

the sensitivity of ex-core detector readings to the core power distribu-

tion. "Ex-core" is a very general expression, and apparently "ex-vessel" is 

a more appropriate term for most LMFBR designs. As mentioned in section 

1.2, the neutron detectors for Super-Phenix are far from the core, under the 

safety vessel. For a realistic analysis of such a system, transport theory 

methods 13 are necessary. 

For initial calculations related to this problem, I have used diffusion 

theory GPT codes 12 , the simple 1D slab model of an LMFBR described in Ref. 

11, and an assumed detector location in the outer blanket, 10 cm from the 

core. This simple case is an appropriate starting point, and will yield 

some physical insight into the problem we are considering; definitive 

results will require gradual extension to a model approximating the 

realisitc ex-vessel case, described above. 



For these initial calculations, the response function is similar to 

ii 
that considered in our studies of the core power density. Assuming the 

detector response is proportional to CY
f (U-235), the normalized response 

ratio is: 

Cxb)  
n) 	-- 

where x10  is the detector location, 

and Q2, given by eqns. (11) and (12) of Ref. 11, is the total reactor power. 

Normalization with Q2 
represents the constraint of constant power for power 

density shape changes. It should be noted that R in eqn. (2) is of the same 

form as the response considered in our power density studies
11

. 
—.4•#  

The generalized adjoint function, P (x), calculated for R(xD), gives 

the importance of neutrons at x in various energy groups to the ratio R.
11 

The sensitivity of the core power density (PD) to the neutron flux distribu-

tion is given by the fixed source in the eqn. for PD, as indicated by 

eqn. (5) of Ref. 11. Conversion from neutron flux sensitivity to that for 

the neutron density is trivial; thus the functions mentioned in this para-

graph can be used to study the sensitivity of detector response to PD shape. 

Figure 1 gives results for V1  for R(xD) of eqn. (2). The group cross 

section set is the same as that used in Ref. 11. Following are some aspects 

of interest, and their implications: 

a. For obvious reasons, the importance curves are smooth in the core. 

Thus it seems unlikely that detection of localized  flux perturba- 



tions with ex-core detectors will be possible, even with a large 

number of detectors. 

b. The importance curves have an appreciable space dependence over the 

core. Feutrons near the core edge have a larger probability of 

contributing to the detector reading, and thus have a positive 

importance, while those near the reactor center are more likely to 

contribute to the normalization denominator of R(x D), and have a 

negative importance. Thus for the case considered the ex-core 

detector could be useful in the determination of "core-wide" flux 

shape changes, e.g. "flux tilt". (Other information, e.g. total 

power and coolant LITs, would also be necessary.) This aspect 

should be investigated for detectors farther from the core. 

c. If we are interested in sensitivity to relative  changes in the flux 

shape, the curves in Fig. 1 should be multiplied by 96 (x) to 

determine regions of significance. (The product ow' includes 
information on the location of neutrons which may contribute to R.) 

Since cb drops rapidly with distance from the core, this multipli-

cation increases the significance of the core regions to R(x D ). 

At this point we are primarily interested in the sensitivity to changes 

in flux shape, rather than the cause of such changes. However, a perturba- 

tion calculation was performed for "Case 3" of Ref. 1, which replaces the 

inner blanket with driver. The impact on R(xD
) was determined by GPT and 

"exactly" (by solving for 96 for the base and perturbed cases.) The "exact" 
gR/R is - 24.5%, while the GPT code result was -18.3% with by far the 

largest contribution from the "direct-effect" term
11

. As mentioned in Ref. 

11, for this quite large perturbation second-and higher-order terms involv-

ing 	and r(f are significant. 
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SUMMARY 

This annual progress report covers the activity of the Georgia 

Institute of Technology during the period October 1, 1981 - September 

30, 1982 under Oak Ridge National Laboratory subcontract 7802-X01. 

This work has been described in detail in our monthly progress reports 

[1-7], and several articles [8,91. The primary effort of this acti-

vity involved the development of generalized perturbation theory with 

derivative operators for power investigations, as described in detail 

in the attached manuscript. This work was performed jointly with Dan 

Cacuci of ORNL. 

The intent of the research was to develop an efficient method 

to analyze variations that nuclear data perturbations induce in power 

density distributions. This method was called the Taylor-GPT method 

since it was based on: (a) the use of a Taylor-series expansion of the 

response variation, and (b) the use of generalized perturbation theory 

(GPT) to evaluate the derivative operators that appeared as coefficients 

in this Taylor series. Equations satisfied by the importance functions 

for the derivatives of the response variations were derived for a one-

dimensionaL model and solved with existing GPT codes. The characte-

ristics of these functions were highlighted analytically. 

Particular attention was focused on the numerical value and 

location of the maximum power density. This was because perturbations 

in system parameters affect not only the value at the maximum, but also 

affect the location of this maximum. The Taylor-GPT method can 



efficiently assess these effects. 

The practical usefulness of the Taylor-GPT method was illus-

trated by considering test cases involving a simplified heterogeneous 

LMFBR model. The results indicated that this method was as accurate 

as the GPT method, yet required fewer calculations when investigating 

space-dependent power density variations. 
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Abstract  

This work presents an efficient method to analyze variations that 

nuclear data perturbations induce in power density distributions. This 

method is called the Taylor-GPT method since it is based on: (a) use of a 

Taylor-series expansion of the response variation, and (b) use of 

generalized perturbation theory (GPT) to evaluate the derivative operators 

that appear as coefficients in this Taylor series. Equations satisfied by 

the importance functions for the derivatives of the response variations 

are derived for a one-dimensional model and solved with existing GPT codes. 

The characteristics of these functions are highlighted analytically. 

Particular attention is focused on the numerical value and location 

of the maximum power density. This is because perturbations in system - 

parameters affect not only the value at the maximum, but also affect the 

location of this maximum. The Taylor-GPT method can efficiently assess 

such effects. 

The practical usefulness of the Taylor-GPT method is illustrated by 

considering test cases involving a simplified heterogeneous LMFBR model. 

The results indicate that this method is as accurate as the GPT method, yet 

requires fewer calculations when investigating space-dependent power 

density variations. 

2 



Acknowledgments  

Stimulating discussions with A. Gandini and V. Perone are gratefully 

acknowledged. We thank Jim Marable for his critical review of the manu-

script which led to some modifications in the presentation. Special thanks 

are due to Lynn Messenger and Sharon Reeves for their expert typing of this 

manuscript. 

This research was performed under Subcontract No. 7802(X01) with 

Georgia Institute of Technology under Union Carbide Corporation contract 

W-7405-eng-26 with the U.S. Department of Energy. 

3 



I. INTRODUCTION 

Generalized perturbation theory (GPT) 1-4 
has been used for many years 

to investig
a
te

2-6 
the influence of cross section perturbations and design 

changes on integral performance parameters (customarily called responses) 

in reactors. The successful application of GPT to analysis of the power 

density response5,6 provided a strong motivation to study in detail the 

effects of parameter perturbations on such space-dependent responses. 

Thus, this paper presents an application of first-order GPT to efficiently 

evaluate the space derivatives of the response that appear as coefficients 

in a Taylor-series expansion technique. This technique will henceforth be 

referred to as the "Taylor-GPT" method, and will be used to investigate the 

space-dependent characteristics of variations in the power density 

response. The shift in the location of the maximum of this response is of 

particular interest. 5 ' 7-10 

I. A. Generalized Perturbation Theory  

In reactor design studies, "sensitivities" dPha of a response P to 

input data a (typically nuclide densities or cross sections) are of 

interest. 2-6 In particular, P can denote a ratio of linear functionals of 

the real flux 0(r). For such a P , the use of GPT to calculate sensitiv-

ities requires that the following adjoint inhomogeneous Boltzmann equation 

be solved for r* 

* 
(A - 	B

*
) r 	= S te . (1 ) 

 In Eq. (1), A  is the adjoint loss 	and scattering operator, B i s the 

adjoint fission operator, and A is the system eigenvalue. 



In multigroup, formalism, r (r) is the generalized adjoint function, 

whose component r.(r) gives the importance of neutrons at r in energy group 
J 

jtotheratioP.Thus,r.satisfies the following equation that, except 

for the S
3 
 term,

2 
is formally identical to the "normal" adjoint equation

11 

for 0 : 

2 * 
—D. 0  r• (r) + E 	. r. 	= rem,] 	— 

E E. 	rh  (r) 
f,j . Exh  rh — + S.(r). 

J 
(2)  

h h 

In Eq. (2), all cross sections are functions of r. The boundary conditions 

associated with Eq. (2) are formally identical to those for the (1). 

equation, e.g., r = 0 at the outer reactor boundary (or extrapolated 

boundary). 

Consider a ratio P of functionals of the real flux defined as 

Jr Ea, .(r) 0.(r) dr 
a
l 	

V
1 

j 	 3  

a2 	r J  E o 	(r) 4). (r) dr 
j 	2,3 	j 

where V and V
2 

specify the volumes associated with the space integration 

over r. (In the sequel, lack of such specification implies integration 

over the entire reactor volume.) For P defined by Eq. (3), there corre-

sponds the following fixed source for Eq. (2): 

*  
S. 	= —jui — _22i • 

a a
1 
	a2 
 

P= (3)  

V
2 

(4)  

5 



Typically, 	0. . is some microscopic or macroscopic cross section. 

In previous works 3 ' 4 that used the concepts of GPT, the expression for 

* 
the fixed source S was generally written as 

(5) 

The expressionl'/(12_, though, was used in a formal sense and did not have a 

precise mathematical meaning. Based on the rigorous and comprehensive 

sensitivity theory7 ' 8 for nonlinear systems that has recently been devel-

oped, it can be shown that DP/D0 is in fact the partial Gateaux-derivative 

of P with respect to 0, i.e., BP/B0 is the operator defined via the 

relationship 

= 111 , h — [P(4) + Eh) 
de 	- 	 - E-0 31,  - 

(6) 

where a is a real scalar and h is an arbitrary vector of "increments" 

around 0. Having thus specified its precise mathematical meaning, the 

notation app will be retained, for convenience, in the sequel. 

In the GPT method, the relative response variation is given by4 

SP 
P 

f SG dr + 	r
* 	

o dr 
Y  (7) 

where 0 and r are, respectively, the real flux and generalized adjoint 

function, 61, represents the perturbation in the Boltzmann operator, and the 

component of 6G for energy group j is defined as 

6 



Q2 C(r) dr. .(r) 
2,J — 

and 

dal •  (r) 	do2, .(r) —  
dG.(r) = 	 • J 	 a1 	

a
2 

(8)  

The first term on the right side of Eq. (7) arises from changes in the 

cross sections that appear explicitly in Eq. (3), and is customarily 

referred to as the "direct-effect" term. The second term on the right side 

of Eq. (7) is customarily referred to as the "indirect-effect" term, and 

arises from the change in the flux corresponding to the perturbation dL of 

the Boltzmann operator. 

I. B. Power Density Ratios and Related Spatial Shifts  

In studies of uncertainties in calculated responses, P, 	for the 

heterogeneous core of a large LMFBR, 5,6 GPT has been employed to determine 

the sensitivities 6 P/da to variations in the cross sections. The responses 

studied included, for each driver zone, the ratio Ft„,(r 
m
) of the zonal 

— 

maximum power density to the total reactor power, defined as 

Q (r ) 

(r 
 ) _  1 —in 

Q2 

where r
m 
 is the location at which the zonal maximum power density occurs in 

the unperturbed case (i.e., the "base case"). The terms in the above 

equation are defined by the following expressions: 

Q l (r  ) = E 	.(r 1 ) (1).(r') 1,j — 	 3 — 

d(r'-rte) dr', 	 (10) 

(9)  

7 



The quantities E 	have identical forms for i = 1 and i = 2; considering 

only fission energy and assuming localized energy deposit, their explicit 

expression is 

.(r) E 	Ek  .(r), 
3 	 /3 

k 

where pk is the total energy release per fission in the k-th isotope. 

The power density ratio R(r) is defined as in Eq. (9), except that r 

is not necessarily the location where a maximum occurs. In this paper, a 

one-dimensional (x) model is considered, and the power density ratio is 

defined as 

Q1 (x)  
R(x) - 

Q2 
(13) 

Reference 5 discussed "far-range" shifts in the location of the 

reactor peak power density (e.g., shifts between driver zones) and "near-

range" shifts around the location of the initial maximum R in a particular 

driver zone. There, the influence of near-range shifts in the location of 

the zonal peak power on the sensitivities 6Rm/Rm  was estimated to be small. 

Note, though, that the nature of these spatial shifts was not rigorously 

analyzed. 

The theory of Cacuci7 ' 8  which uses Gateaux-differentials, can be 

applied to problems involving such maxima. This theory has successfully 

been applied
12 

to obtain sensitivities for the numerical values of the 

maximum power response and the maximum fuel temperature response, and for 

the sensitivities of the phase-space locations for these maxima, for a 

(1 2) 

8 



reactor safety problem describing a protected transient with scram on high 

power level in the Fast Flux Test Facility. 

Recently, Gandini suggested the application of GPT to functionals 

involving derivative operators (see footnote 26 of Ref. 13). References 9 

and 10 reported preliminary investigations that used GPT in conjunction 

with a Taylor-series expansion for a simple response function. These 

investigations indicated that this method appears promising for explicitly 

investigating near-range spatial shifts. • 

The purpose of this work is to present new developments and results 

regarding this topic, including the first examples in reactor physics of 

importance functions associated with derivative operators, 14 
and a 

detailed discussion of the characteristics of these functions. To analyze 

both direct and indirect effects caused by cross-section perturbations, 

this work considers a more general response than previously considered in 

Refs. 9 and 10. The basics of the Taylor-GPT method are described in Sec. 

II, and the application of GPT to space derivatives of the response R(x) is 

discussed in Sec. III. A theoretical analysis that highlights the main 

characteristics of the importance functions for these derivatives is 

presented in Sec. IV. Section V describes the use of the Taylor-GPT method 

for predicting effects of cross-section variations on the point-power 

density and on the spatial shifts in the maximum power density. In 

addition, this section discusses several indicators that can be used to 

assess the accuracy of the Taylor-GPT method. Comparison of results given 

by exact calculations, GPT, and Taylor-GPT have been performed for several 

test cases involving a simplified model of a heterogeneous LMFBR core. 

These test cases are described in Sec. VI, and the numerical results and 

specific comparisons are presented in Sec. VII. Finally, the summary and 

9 



conclusions presented in Sec. VIII highlight the usefulness of the Taylor-

GPT method for assessing effects of variations in nuclide densities and/or 

nuclear data on the localized power density peak and on its spatial 

location. 

10 



II. TAYLOR-SERIES EXPANSION WITH GENERALIZED 

PERTURBATION THEORY (TAYLOR-GPT) 

II. A. Taylor-Series Expansion for Response Variation 

The variation SR(x) in the power-density ratio R(x), caused by 

perturbations in cross sections, can be determined by using a Taylor-

series expansion about an arbitrary spatial point xk . Retaining the first 

three terms only,, this Taylor series is 

1 
611(x) = (511(x ) + (x - x

k ) 611.
(1)

(x
k
) + 	(x -

k
)
2 6

R(2) (xk), (14) 
2 

where SR(i) (x
k) denotes the i-th spatial derivative of the response 

variation 6R(x), evaluated at x k . 

Two alternative approaches can be used to calculate the derivatives 

(SR(i) . One approach is to use the finite-difference approximations of the 

derivatives dR (1) at x
k' while an alternative approach is to use the 

adjoint solution that corresponds to SR (i) /R(i) at x
k
. As subsequent 

developments will show, either of these approaches can be implemented by 

using existing GPT codes,
16-18 

thereby avoiding any additional 

programming. This inherent implemental expendiency enhances the practical 

usefulness of the. Taylor-GPT method. 

II. B. Finite-Difference Implementation of the Taylor-GPT Method  

The values of the derivatives SR(1) (x) and ,31q(x) can be approxi-

mated at x = x
k 
by using the finite-difference expressions 

11 



(1) 	
SR
k+1 

- SR
k-1 

2A 

and 

(2) 	6111(+1 	
2 dRk  + dRk_i  

(5F 
A 2 

In Eq. (15) and (16), A denotes the mesh spacing, and subscripts k-1, k, 

k+1 refer to values at x
k-1' x x ' 	k+1' 

SR(xk). 

respectively; for example, 6Ric  = 

In view of Eqs. (15) and (16), three GPT calculations are needed to 

determine the derivatives SR(i.) and to enable the subsequent use of Eq. 

(14). 

(15)  

(16)  

12 



III. GENERALIZED PERTURBATION THEORY FOR RESPONSES 

INVOLVING DERIVATIVE OPERATORS 

Equation (1) represents a "fixed-source" problem, and, due to 

linearity, such problems are known to possess the so-called "additivity" 

* 	 * 	* 
property. That is, if r 1  is a solution of Eq. (1) with source S i , and t

2 
is 

** 	* 
a solution with S

2' -1 -2 
then (r+r* ) is a solution corresponding to (S

1 
 + S

2 
 ). 
 

In the finite-difference approximation, the derivatives dR (i)  are linear 

combinations of SR evaluated at x
k and at its neighboring mesh points. 

Therefore, it is possible, in principle, to find a source S*(i) so that the 

corresponding adjoint equation and boundary conditions would yield the 

r*(i)  necessary to calculate SR (i) . The actual procedure is detailed.  

below. 

III. A. Adjoint Functions for Calculating Spatial Derivatives of 

Response Variations  

The ratio (SR (i) /R (1) at x = x
k can be computed most efficiently by 

using adjoint functions. These adjoint functions, denoted by r*
k
(i)  are 

solutions of 

(A*  - A B*) *( i) _ _ *( 

where, by analogy with Eq. (5), the adjoint source is 

H.")  
S = 
*(i) 	1 	k  

-k 

	

R
(i) 	a(1) 

(17)  

(18)  

13 



( In the above equations, the operator DRki)  /34) is defined in the same way as 

1'k (i)  311k/DO pee Eq. (6fl, i is subject to the same boundary conditions as 

rk' and Rk 
(0 denotes the i-th derivative at x

k' 
 of R(x) with respect to x. 
 

Changing the order of differentiation, Eq. (18) becomes 

-Sk 
* (i) 	1 	[ DR (i) 

R
k 
- 	x=x

k 
(1) 	34) 
	 (19) 

Recalling Eq. (5), Eq. (19) is finite-differenced for i=1 and i=2 to obtain 

* 	 * 

k  
s*(1) 	

1 	Rk+l+1 — Rk—lk-1  

--k 	
l`
, (1) 	 2A' 

(20) 

and 

* 	* 	* 
R. S 	- 2R.S+ R. Sk -1 1 	- k+1 k+1 	-k-k 	lc -1-  *(2) _ 	 , 	(21) 

pI( 	
A(2) 	 2 

L 
 

respectively. 

For calculational purposes, Eqs. (20) and (21) can be further simpli-

fied by using the expression 

Ql,k 	Q1(xk)  

	

Rk  = Q2 	Q2 	, (22) 

14 



and using similar expressions for Rk_ i  and Rk4.1 . Replacing these expres-

sions in Eqs. (20) and (21), and using Eq. (5) yields, for energy group j, 

S
*(1) 

 
k,j 

Z  1,i (x) 6 (x 	xk+1 ) 	1,7 (x) 6 (x 	xk-1) 	
E 

z'J 
 . (x) 

, (23) 
Q 2-  

	

Q1,k+1 	1,k-1  

and 

*(2) -  Sk, j  
El,j (x) 6(x  - xk+1) - 2 E i,j ( ) 6( 	xk) + 	6(x - xk_ ) 

Q1,k+1 2Q1,k Ql,k-1 

,(x) 

Q2 
	4 	 (24) 

respectively. Equations (23) and (24) can be used with existing GPT codes 

*( i) to calculate the corresponding rk  , thereby avoiding any additional pro- 

gramming. The procedure is described in Appendix A for the Italian GPT 

package. 16-18  

For the finite-difference approximations given by Eqs. (20) and (21), 

(i)* the functions r _k 	can be related to the generalized adjoint fluxes (i.e., 

importances) for the response sensitivities at xk_ i  ,xk , and xk+1  by making 

use of the previously mentioned additivity property of fixed-source 

problems. For the sources given by Eqs. (20) and (21), the use of this 

property gives, for i=1 and i=2, 

-k 	,0(1) 	 24 
r*(1) 	1 	Rk+1 -k+1 -k-1 -k-1  

F 	R 	r * 	
._‘. 	

* 

(25) 

L‘k 

15 



and 

r 	- 2R_ r + R_ 	r 
lc(2) 

=  (2) 
1 	k+1 -k+I 	-k -k -k-1 -k-1  

A 2 

r* respectively. The adjoint functions rk(1)  and 	(2) 
 are used to determine 

the values of SR
(1)

/R
(1) 

and 611
(2)

/R(2) at x
k' 

respectively. 

III. B. Calculation of Direct Effects 

From the definition of the power density at x
k' the expression giving 

the direct-effect component of the response sensitivity is obtained as 

R E (sE .(x) j (xo 	fE SE2 , . (x) (11 (x) dx 

	  - 	  Rk 	
Q1,k 	 Q 2 

• 	(27) 

Multiplying Eq. (27) by Rk  gives 

(S R. ,D 
	1 	

SE 	.(x
k 

 ) (1) .
J  (

i) 	itQ3 ] , 

	

(28) 

where 

Q3 	
...I 

(SE
2, 

.(x) yx)dx. 
j 
	

(29) 

(26) 

16 



Using a uniform mesh spacing about x k , the first spatial derivative at 

xk  of the direct-effect component can be approximated as 

[

6 R111) = L (------ 	E °E 1,J (xki-i ) 0  ; ( xk+i)  — Rk-aQ3 

- 	1,j (xk-1) (1)  j (xk-1)  + Rk-I.Q  ] 
j 

(30) 

Dividing Eq. (30) by 11 (( 1) , and simplifying the resulting expression gives 

1 	1 	E rff Jx 
L 1,J k+1  Q2 Rk+1 - Rk-1 	j 

- 6E .(x  ) "xk 1 )] - 

Q3 
t:T • 1,3 k-1 	j 	- 	2 

(31) 

Using the fact that 

Q2(Rk. Rk_i) - E 	x..1) 
0.(x ) - j k+1 Ei, j(xk — 1 ) '; (xk- 1 ) ] 

and replacing Q2  and Q3  by their respective expressions, Eq. (31) becomes 

E [" 1, ;  (xic+1 )  (1) 
J  

L 	1,; (xk+1) 49; (xk+1 )  

6E  1, (xk-1)  (1)- j (xk-1)1 

(xk-1) 4 j (xk-i )] 

2,j 	j 
.(x) 	(x)dx 

(32) 

E2 j 	j 
(x) 0 (x)dx 

 

The procedure that has led to Eq. (32) is repeated to derive the 

expression for the second spatial derivative at x k  of the direct-effect 

component. The final result is 

17 



	

(2) 	E [6, (x 	)4). (x 	)-26E( )(P j k  (x) dEi,i k i  ) (x_)4 

	

0Rk D 	• 	1,j k+1 	k+1 	1,i 

	

R(Z) 	E['1,j (xk+1 ) (1)j (xk-F-1 ) -2E 1, j (x  k) (1) j (xk)+E 1 ,j ‘'xk-1)4)j (x 
	)l

(2)  

j 

IV  SE2,j  (x) 4) j  (x)dx 

• 	 (33) 
E 2 j  (x) j  (x)dx 

The expressions given by Eqs. (32) and ( .33) can be calculated with existing 

GPT codes 18 as described in Appendix A. 
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IV. THE FUNCTIONS r
* 

and r*(i) : A THEORETICAL ANALYSIS 

OF THEIR PROPERTIES 

Noting that Rk  and R (i) do not depend on x, the equations and boundary 

conditions satisfied by the adjoint functionsI k and rk*(i)  are recast in the form 

A *(Rk  f*k) - AB
*
(Rk  r k) = Rk  S k  , 

(Rk 	= 0 at x = L , 

d(Rk  Fic)/dx = 0 at x = 0 , 

and 

4")] - XeK ) 	= R(i) S*(i) , k —k 

FR(0 r*(01 = 0 at x = L 
L k —k 

• 

44i) r*k( l/dx = 0 at x = 0 

(35) 

where L denotes the outer (or the extrapolated) boundary of the reactor system, 

and all other quantities have the same meanings as before. 

Eqs. (34) and (35) are the basis for establishing and analyzing relation-

ships among the adjoint functions F*k
(i) 

' i = 1,2, ..., and rk. * 	
Of course, the —  

functions r*
k
(0)  and r k  are identical, since Eq. (35) reduces to Eq. (34) when 

i = 

(34) 

rv 

19 



Differentiating Eq. (35) with respect to x k  gives 

A,p(R11)  r: (i))/dxj - 2,1311(4,i )  _Z" ) )/dxd. 

41( i )  s*"1/dxk  

dbli(c i) 1_1 (i)1/dxk 	= 0 at x = L, 

d{d[Rli)  r:(i)ydxkl/dx = 0 at x = 0 . 

Usingthedefinitionof k Eq. (20], the quantity Itl i) *(i)  S*(i)  [i.e.,- 	 can be 

expressed as 

R(1)  S*k(i) =
1 

	6(x-xk)dx. k — 	
(37) 

Differentiating Eq. (37) with respect to xk , and using the definition19  of the 

V-functional, i.e. 

ilf(x) (5 1 (x -a) dx = - 1ff 1 (x) (S(x -a) dx, 	 (38) 

2 

(36) 

leads to 

20 



d [R(
k
i)  S*( k 

i)  I - 	di  idR/d 	/dxi l (5'(x-x' 
_ 

{d i+1 [dR/dd/dx
i+1 	ax-x

k
)dx 
	

(39) 

Writing Eq. (37) for 1+1, and comparing the result with Eq. (39) shows that 

d[R(,,i ) 	/dxk  = It(ki+1)  s*, 14-1) 	 (40) 

Using Eq. (40) to replace the corresponding source term in Eq. (36), and 

comparing the resulting system of equations to the system obtained by writing Eq. 

(35) for i+1 leads to the conclusion that 

d[R(i) F*(i)] /dx = R(i+1)  r*(i+1)  i = 0, 1, 2,... 
k --k k -k ' 

(41)  

A simple inductive reasoning can now be used in conjunction with Eq. (41) to 

conclude that 

R(1) r*(i) = d i dx
i

. 
k -k 	 K -k k 

* * The qualitative behavior of rk , rk (1) 
 

(42)  

and r *(2) as functions of x can be -k 

studied analytically by considering a one-group, one-region representation of 

the adjoint diffusion equations given by Eqs. (34) and (35). For clarity, the 

functions satisfying the corresponding simplified adjoint diffusion equations 

(1) 
are denoted by r i , 	and r;" (2) , where the subscript 1 now refers to the one- 
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group model rather than to the location of x
k
. The respective equations can be 

written explicitly as follows: 

* 
d2* /dx

2  + B2  r = -s*ID , 

T1 =0 at x = L , 

dr1  /dx = 0 at x = 0 , 

} 

d2 r*1
(1) /dx2 + B2 I'*(1) = 	S*(1) /D , 

r*
1
(1) = 0 at x = L 

dr*
1
(1)

/dx = 0 at x = 0 , 

and 

d2 I'*(2) /dx2 + B2 r*(2) = - s"(2) /r) , 

r (2) 
1 	=0 at x = L 

dr*1
(2) /dx = 0 at x = 0 . 

In Eqs. (43) through (45), B
2 and D represent the customary one-group, one-

region buckling and diffusion coefficient, respectively. 	The analytical 

expressions for S, S *(1)  and S*(2)  are obtained by using Eqs. (9) through (11) 

in conjunction with Eq. (19) and with the definitions 19  of the V - 	and 

(43) 

(44)  

(45)  
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V-functionals. Also, for simplicity, the constants E.. [see Eq. (12)1 are 

arbitrarily set to unity. Under these conditions, the following analytical 

expressions are obtained: 

Rk = Q1,0/Q 2 ' 

(1) 
Rk  = (11,1/Q2  , 

( 
R

2)
k 

= Q1,2
/Q2 

* 	"x-xk) 1  S =  

Qi,o 	Q2 

s *(1) = - 
61(x-xk)  

- 

Q1,1 	Q2 

S 
6"(x-xk) 

*(2) 1 

Q1,2 	Q2 

where 

Qi,o = "xk) ' 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52)  
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Q1,1 = 
dcP/dx/ 

X=Xk - 

	 (53) 

d2 Odx21 
x=xk ' (54) 

and 

Q2  = ircp(x) dx. 
	 (55) 

The adjoint diffusion equations given by Eqs. (43) through (45), with the 

source terms given by Eqs. (49) through (51), respectively, can be solved 

Ti 
 

	

analytically to determine r
1 , 	ri 

1)* 

	

' and 	r (2)
d 	. For this purpose, it is 

1 

convenient to use the Laplace-transform method, as illustrated in. Appendix B 

where Eq. (45) is solved in detail. The following analytical expressions for the 

solutions of Eqs. (43) through (45) are thus obtained: 

cos Bxk  L - x 
k  r *1 - 

B2DQ2 	

1 	
sin Bxk)L  BDQ 	BL 1,0   

2  

LB 3DQ 
I cos Bx 

H(x-xk) sin B(x-x
k
), 

BD Q1,0  

( * (1) =  1 	L - xk-  

r1 
B
2
DQ

2 	
DLQ1,1 

cos Bxk  + cos Bx 

1  
H(x-x ) cos B(x-xk), 

DQ
1,1 	

k 

1 
(56)  

(57)  
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D 
	 H(x-x 

Q1,2 
 

6(x-x ) 
sin B(x-x

k
) 	 

DQ 
1,2 

(58) 

r
*(2) = 	1 	4. [cos Bx

k 
+ B(L-x

k
) sin Bx

k 	2 
1 

B DQ2
LDQ1,2 	

DB
3

LQ
2 

 

cos Bx 

  

19 where H(x) represents the customary 	Heaviside (unit-step) functional. 

1  
In view of Eqs. (56) through (58), the behavior of the functions r* 

9  1 

and r1(2) 
1 	

as x approaches x
k 

becomes of particular interest. 	Thus' 1 is 

continuous at xk' where 

(cos Bx
k 
 L - x

k 
r1 (x

k
) = 

B DQ 9  

	

2 1 
		[  1  

BDQ1, 

	

3 	

0 	BL 

- 	2 	cos Bxk , 
LB DQ

2 

sin Bxk) 

(59)  

but the first- and second-derivatives of r 1 with respect to x have a Heaviside - 

and a Dirac delta-type discontinuity, respectively, at x = x
k' 

since 

cos Bx
k 
 L - 

tdr*
1
/dx} 

X=X
k 	

x
k sin Bxk 	Bx

k- 	L 
2 	

( 

DQ
1 

 1,0 	BL  

1 H(x-x
k
), 

DQ  
1,0  

[LB DQ 
 

2 

(60)  
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and 

t d2 r*I mx2 1 
X"X.k  

[

2 	B 	
(cos Bxk 

 LBDQ2 DQ
10 	

BL 

L - x
k 	

6(x-xk) 

L 	 Q 
sin Bxk)] cos Bxk 
	D 
	 • 

1,0 
(61)  

At x = x
k' the function r*

1
(1) 

has a Heaviside-type discontinuity, since 

tr*I")} x= 
L - xk  

3 
1  

cos Bxk  + 
2  ) 

cos Bxk  
B
2
DQ2 

(DLQ
1,1 LB DQ

2 

 

 

1  
H(x-xk), 

DQ1,1 
(62)  

while the first derivative of I'*
1 

 (1) 
with respect to x has a Dirac delta- 

discontinuity, since 

I dr*(1)/dx1 
t J x=xk  [

B(L-xk) 

DLQ1,1 

6(x-xk) 
+ 	 

DQ1,1 

COS Bx + 	
2 	sin Bx 

k 
LB

2
DQ

2 	
k

] 

(63) 
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Finally, F1
(2)  has a Dirac delta-type discontinuity at x = x since 

cos Bxk  + B(L_xk) sin Bx 
r(2) 	

1  } 
	 k 	2  

1 X=Xk B2 DQ2 	
LDQ1,2 	

DB
3
LQ

2 

cos Bx
k 

 

6(x-xk) 

DQ
1,2 

 

(64) 

When xk  is close to the exact location xM  of the maximum, but such that 

xk  < x
m 
 , Q
110 1 

and 
Q1,1 

are positive, while Q
1,2 

 is negative. In this case, Eqs. 

(59) through (64) indicate that: 

1. The functions ik(1) End dr1 /dx both undergo step-jumps at x = xk, but 1 

the former function undergoes a positive  step-jump, while the latter 

undergoes a negative  step-jump, and 

2. The functions r *( 
1 	1 	 1

2) dr *(1) /dx, and d 2 F*/dx2 all display "spikes", i.e. 

Dirac delta-type discontinuities at x = 

cause positive spikes in r 	and dF*(1) /dx, but cause a negative spike *(2) 
1 	1 

in d2 r1 /dx
2 . 

Since Eqs. (43) through (45) are particular forms of Eqs. (34) through (36), 

* 	* 
respectively, the 	

l' 	1 
functions r 	

(1)' 
	

and r*
1
(2) 

should also satisfy the 

relationships given by Eqs. (41) and (42). This fact can readily be verified by 

using Eqs. (56) through (58) and Eqs. (46) through (48) to show that 

d(Rk r
1
)/dx

k 	k 
= R(1)  In*

1
(1) 
	

(65) 

and 

d
2
(Rk 

r1k  )idx
2 

= 	
( 
k 

r 1
1) *(1)] /dxk 	k 	1 

= R(2) r*(2) 	 (66) 

k • 
 These delta-functionals 
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V. RESPONSE VARIATIONS AND SPATIAL SHIFTS: CALCULATIONAL 

PROCEDURES AND ACCURACY OF PREDICTIONS 

V. A. Response Variations and Accuracy of . Predictions  

The effects on the point-power density of variations in the macro-

scopic cross sections can be evaluated by three methods: 

(1) direct calculations; 

(2) use of generalized perturbation theory (GPT); 

(3) use of Taylor-series expansion method with GPT (Taylor-GPT). 

The first method consists of calculating the response (in this case, the 

point-power density) for the unperturbed case (denoted by the subscript 

0), the response for the perturbed case (denoted by the subscript 1), and 

subtracting the two to determine the change. The result of this process 

gives 

ARe (x) = R1 (x) - Ro (x). 	 (67) 

This method will henceforth be called "exact". 

For the GPT method, the response variation, denoted by (SR (x), is 

given by 

sR (x) = R(x) 
a 
R ix • (68) 

where 611/R has the same expression as 6P/P in Eq. (7), except that P is 

replaced by the particular response R(x) defined by Eq. (13). 
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For the Taylor-GPT method, the response variation at x, denoted by 

(SR
tp
(x), is considered to be given by the following three-term Taylor-

series expansion about x: 

6Rtp (x) = 61I 
( 

x- xk) 6Rp
1) 	1 (xk) + 	(x-xk)2 6R1:1

(2) (x
k). 	(69) 2 

In Eq. (69), the variation in the power density at x
k 

and its first two 

derivatives at x
k 

are determined from GPT calculations. 

The accuracy of the Taylor-GPT method can be assessed by comparing the 

left side of Eq. (69) to the result of a GPT sensitivity calculation at x, 

i.e., Eq. (68). A relative error, denoted by TAP and defined as 

6 R tp(x)  - SRp  (x) 
TAP - 

R (x) 	• 
(70) 

can be used to assess this accuracy. 

On the other hand, the relative error that results from: 

a. the inaccuracy of GPT, and 

b. the differences between Eq. (68) and the Taylor-series expansion 

of 611(x) about x
k 

is found by taking the direct calculations as the basis for comparison. 

This relative error is henceforth denoted by TAE, and is defined as 

R
tp 

(x) - A R
e 
(x) 

TAE - A R (x) 
e 

 
(71) 
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V. B. Spatial Shifts in the Maximum Power Density  

Numerically,adiscretesetfR.=R0 (x i ), i=1,2, . . , is 

obtained when the unperturbed power density response R
0 
 (x) is calculated 

as a function of x. Consider now that x
k 
represents the discrete point at 

which the largest discrete value R k  is obtained. In general, xk  does not 

coincide with the spatial location, denoted by x mo , at which R0 (x) attains 

its actual maximum. To second order in x, the location x
m0 

can be deter-

mined as follows: (a) approximate R o (x) by a quadratic polynomial in x 

that passes through the points 
(xk-1'--Lc-1)' 

 (xk ,Rk), and (x10.1, Rk+1 ) in 

the 
((

passes 

 R0 
 (x)/ -plane, and (b) set the first spatial derivative of this 

polynomial to zero. This gives 

xmO 7 xk 7 	
R
(2) (x ) 

q)1) (xk) 

0 	k 

	 (72) 

When the system parameters are perturbed, the perturbed response, 

denoted by R
1
(x), attains its actual maximum at a location xml 

 which, in 

general, will not coincide with x
m0

. To second order, the perturbed 

response at xml 
can be expressed as 

	

) = R
1
(x
k

) 	(x
ml 
 - xk)  R

(1) (x
k 

 ) 

	

2 k 
, xm 
	

xk)2 R12) (xk) 
	

(73) 

Note that since R1(xml)  is the perturbed peak (i.e., maximum) power, the 

first spatial derivative of R1 (x) vanishes at xml . Therefore, Eq. (73) can_ 

be used to obtain 

Ril)  (xk) 

xml 	 ( 2) 
(xk) 

(74) 
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The spatial shift (x
ml 

- x
m0

) in the peak power can now be estimated 

by subtracting Eq. (72) from Eq. (74). This gives 

xml  x - 

	

ml 	m0  

R
o 

+ 6 R 

R
(2) + 6R

(2) 

(1) 	(1) 

0 	
R
(2) 

R (1) 

0 

	 (75) 

where all R(i) and 61t (i) i=1,2, are understood as being evaluated at x = 

x
k
. When 6R

(2)
/R(2) is much less than unity, Eq. (75) reduces to 

xml xmO 	- (2) 
6 R (1)  

R
0 

	 (76) 

Within the framework of first-order GPT, the perturbed response can 

be written as the sum of the unperturbed response and the response varia-

tion SR p , where the latter term consists of a direct-effect component, 6R d' 

and an indirect-effect component, 6R., i.e., 

R
1 
 = R0 

 + 6R
p  

= R
o 

+ 6R
d 
 + 6R.. 	 (77) 

Similar expressions can be written for the spatial derivatives of the 

perturbed response: 

R
(1) 

= R
(1) 

+ 6R(1) + 6R
(1) 

1 	0 	d 	i ' 

1,  R
1
(2)  = R(2)  + SR(2)  + 6R

(2) . 
0 

(78) 
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If, on the one hand, the direct-effect components vanish, then Eqs. 

(74) and (78) give 

(xml  - xk) i  = 
R (1) + 6 R (. 1)  
0  
(2) 	() • 

R 0  + 6 R. 
(79)  

If, on the other hand, the indirect-effect components vanish, then Eqs. 

(74) and (78) give 

(1) 	(1) 
R
0 
 + 6 R

d  
(xml 	xk)d(2) • 

o 
It (2) + 6 R

d  

(80) 

Adding Eqs. (79) and (80), and neglecting second-order terms of the form 

(i) 	(j) 6Rd  6R. 	gives 

R(1)  + 0 
p 
 Rd 

(1)  + 6 R( 1) 	R(1) 
 

0  	0  
(xml 	xk) d 	(xml 	xk) i = 	(2) 	, (2) 	„ (2) 	

(2) . (81) 
R o + oR 	+ 0 R R 

In view of Eqs. (74) and (78), the first term on the right side of Eq. (81) 

is the expression for (xml  - xk ) when both direct and indirect effects are 

present. The second term on the right side of Eq. (81) corresponds to the 

unperturbed case, i.e., to (xmo  - xk ) as given by Eq. (72). Therefore, Eq. 

(81) becomes 

(xml - xk  ) d  + (xml  - xk ) i  = (xml - xk) + (xm0  - xk). 	(82) 
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Noting that x
k 

is a fixed point, and subtracting twice the quantity (x
m0 

x
k
) from Eq. (82) gives 

- xm0)d + (xml - xm0). = xml x
m0

. 	 (83) 

Equation (83) shows that the spatial shift in the peak-power location can 

be expressed as the sum of a spatial shift due solely to direct effects and 

a spatial shift due solely to indirect effects. 

V. C. Influence of the Spatial Shift on the Sensitivity of the  

Peak-Power Density  

When a macroscopic cross section is perturbed, the resulting varia-

tion in peak-power density is given by 

R
es 

= R
1
(x
ml 
	

). 	 (84) 

Note that Eq. (84) is exact, i.e., it contains no approximations. 

If the shift in the location of the maximum power is neglected, the 

variation in the response is given by Eq. (67) evaluated at xm0
, that is, 

R
e0 

= R
1
(x
m0

) - R0 (x
m0 

 ). 	 (85) 

In view of Eqs. (84) and (85), the effect of the spatial shift on the 

sensitivity of the peak-power density can be assessed by using the expres-

sion 

SE - 
	 AA R - R 

es 	e0  
AR

e0 
(86) 
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Since Cacuci
8  has shown that 

I R 1 (xml
) - R1

(x
m 

(87) 

where Sc represents variations in the system parameters, it follows that 

the numerator of Eq. (86) is also of second order in these variations. 

Numerically, the locations x
m0 

and x
ml 

are determined by using Eqs. 

(72) and (74). Therefore, the numerical results for SE are also subject to 

the second-order approximations associated with Eqs. (72) through (74). 

Figure 1 illustrates the spatial shift caused by near-range effect and its 

influence on the sensitivity of the extremum. 
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VI. DESCRIPTION OF TEST CASES 

VI. A. Model and Cross Sections  

A simplified three-region model, which has some of the significant 

characteristics 10 
 of a heterogeneous LMFBR, has been chosen to test the 

theoretical developments outlined in the previous sections. This model 

consists of an infinite slab, finite in the x-direction, with internal 

blanket (IB), driver (D), and external blanket (EB). The concentrations of 

Na, U-238, and Pu-239 are given in Table I, and are the same as for the 

beginning-of-life LMFBR model considered in Ref. 20. The three-group 

cross sections used are from the CITATION test case. 21 

The outer boundaries of regions 13, D, and EB are located at 10.5 cm, 

60 cm, and 90.0 cm from the reactor center (x = 0), respectively. A driver 

zone mesh spacing of 1.5 cm is used for all reported results; however, this 

spacing was varied in some of the test calculations discussed in Sec. 

VII.B. 

VI. B. Selection of Perturbations  

Perturbations of nuclide densities or microscopic cross sections 

cause changes in the Boltzmann operator, L, and in the macroscopic cross 

sections, E . To choose perturbations appropriate for testing the pro-

posed method, several desirable, and sometimes conflicting, conditions 

should be considered: 

(i) To test the Taylor series method, (51 should cause a response varia-

tion 6R(x) that appreciably depends on x. This implies that the change in 

at least one of the derivatives SR(i) (xk ) should be appreciable. 

(ii) To check the GPT method [see Eq. (7)], the indirect-effect component 

of the total perturbation SR(x) should be appreciable. 
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(iii) To allow useful comparisons with "exact" (i.e., direct calculation) 

results, the perturbation (SE should not be so large that second- and 

higher-order terms in (SE, which are ignored in the first-order GPT applied 

herein, become overwhelmingly large. 

In view of the conditions described above, four test cases, as 

described in Table II, have been devised. These cases meet the above 

conditions adequately, but the following exceptions should be noted: 

(a) Case 1 does not satisfy condition (i) well, but is a good test for 

predicting a small spatial shift in the peak power. 

(b) Case 3 does not satisfy condition (iii) well, but is an interest-

ing example of a very large perturbation that effectively 

transforms the heterogeneous core into a homogeneous one. 
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VII. RESULTS FOR TEST CASES 

VII. A. r (1)  Results 

Various characteristics of the functions r*
k
(i) are illustrated by the 

results presented in Figs. 2 through 5. All numerical results discussed in 

this and the following sections are for x
k=22.5 cm, the mesh point at which 

the maximum value of Rk  occurred in the unperturbed (i.e., "base-case" 

calculation of the power density response R(x). The spatial shape of r k is 

illustrated in Figs. 2 and 3. The neutron importance to R(x
k
) is greatest 

near x
k
; there, a neutron most probably contributes to the numerator of Eq. 

(13). As a function of x, r k (x) is negative over a wide range due to the 

neutron contributions to the denominator of Eq. (13). 

The shape of the curves for r*(1) and r*(2) can be discussed in terms 

of the expressions derived in Sec. IV. For this purpose, recall that r 
k 

depends both on x k  and x, and that the associated response R k 	R(xk ) 

depends on xk  but not on x. 	In the following, the dependence of 

r
k(i)

(x'xk) = r
*
k
(i) (x) on each of the two independent variables x and xk -- 

will be addressed separately. 

As functions of x k , the relationships between the rk( i )  for the j-th 

energy group have been generally given, in vector form, by Eq. (42), i.e., 

Rk Ik  [Ric 	k' /dxi  (i) *(i) [(42)} 

Qualitatively, this behavior is illustrated in Fig. 4, which presents 

r*(1) (x) as a function of x. For group 2, for example, given the fact that 

(1) . R
k 

is positive, the shape shown in Fig. 4 can be obtained by considering 
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various fixed, but successively larger, values of x on the set of curves 

for r
*
(x,xk ) shown in Fig. 2. 

As functions of x, the qualitative behavior of r*(i) , shown in Figs. 
k,j 

2 through 5, can be supported by considering the analytic results for I'
1

, 

*(1) 	*(2) r 1 	and r1 	obtained in Sec. IV for a simple one-group, one-region 

case. Although the results shown in Figs. 2 through 5 are for a multi-

region, multigroup case, the predominant features of these results near x k 

 are expected to be similar to those of the simpler one-group, one-region 

model. This is because: 

(0 the fixed point x
k 

is well within the interior of the driver 

region, and hence is neutronically "far" (several mean free 

paths) from other regions; 

(ii) the x-dependence of r*(i) (x) is strongly influenced by the 
k,j 

spatial form of the fixed sources, S *(i) (x); for our test cases, 

these sources are space-energy separable in the driver region; 

(iii) coupling between groups for the multigroup case does not 

change the predominant features of the x•dependence of 

r*(i) -k,i (x), since this dependence is similar for all groups. 

This similarity, illustrated in Fig. 3, is principally due to 

(ii), above. 

The discussion that followed Eqs. (59) through (64), and that focused on 

* the predominant features of the x-dependence of the functions ri(l)  and 

r*(2) , also provides a good description of the predominant features of the 

x-dependence of the derivative importance functions shown in Figs. 4 and 5. 

The values of r*(2) for x # x
k 

are significantly smaller than the 

value at x
k' 

and are sensitive to the "fundamental harmonic correc-

tion"
2,22 that must be used to eliminate fundamental harmonic 

38 



contamination when calculating I' *(i) . Although the CIAP-INO version of 

CLAP-1D17  that was employed to calculate the adjoint functions performs 

this correction, the correction was numerically inadequate to determine 

(2)
. This situation was resolved by noting that the functions r,*(i) 

K 

satisfy the orthogonality property 

<rkk(i) 9  B 	= 0, — 	- (88) 

where B is the fission operator. As a result of applying this orthogon-

ality property to eliminate fundamental harmonic contamination, the values 

for f*
k
(2) 

obtained by using the fixed source S k
(2) 

 bee Eq. (24)] agreed 

well with the corresponding values obtained by using Eq. (26). 

* The numerical accuracy of calculating rk(1)  was verified in a similar 
* manner: on the one hand, rk(1)  was calculated by using the fixed source 

*(1) S
k 	

[see Eq. (23)] and, on the other hand, f*IP )  was calculated by using 

Eq. (25). These calculations gave essentially identical results. 

A mesh spacing of 1.5 cm, which is a typical value specified for 

benchmark calculations of critical assemblies with LMFBR characteristics 

(e.g., ZPR•3-48), 23  was initially chosen for both forward and adjoint 

calculations. The results for the functions r*k
(i) were obtained by using 

this mesh spacing. The sharp variations displayed by these functions 

provided a strong motivation to investigate whether this mesh spacing, 

which is adequate for calculating the comparatively smooth forward fluxes, 

is indeed adequate for accurately calculating the adjoint functions. This 

adequacy was investigated by performing several calculations with a finer 

mesh, obtained by reducing the 1.5 cm mesh spacing to 0.5 cm in a region 

*(i) around xk . Although the shapes of I' 	changed slightly due to the 
k 

additional mesh points (an expected outcome considering the sharp 
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variations involved), the use of the two meshes yielded essentially 

identical results for OR (i) . This gives confidence that the 1.5 cm mesh 

spacing is indeed adequate. All numerical results reported in this work 

were obtained by using the 1.5 cm mesh-spacing. 

VII. B. Comparison of Results for OR (i) (x
k
) Obtained from GPT 

and Direct Calculations . 

The accuracy of values for OR (i) obtained from GPT calculations was 

verified by performing two direct TAIM
16 

calculations. As discussed in 

Sec. V.A, the results of these direct calculations are termed "exact". The 

convergence criteria for these direct calculations were adequately 

stringent to insure that the exact results retained sufficient significant 

figures for comparisons with perturbation-theory results. As indicated in 

Tables III through VI, the exact and GPT results for SR k) generally agreed 

within about 5%. Note that for all four cases, the indirect component of 

(i) . OR 	is greater than the direct component for at least two of the three i 

values. Thus, condition (ii) of Sec. VI.B is largely satisfied. 

The results shown in the last columns of Tables IV and V indicate that 

( 
GPT and exact results do not agree well for dR k

2) 
 of Case 2, and for Case 3, 

respectively. For Case 3i the disagreement between GPT and exact results 

indicates that the nonlinear terms disregarded by first-order GPT are not 

small. This is not surprising, since Case 3 represents a very large 

( 
perturbation. The disagreement between GPT and exact results for OR k

2)  of 

2 
Case 2 can be analyzed by comparing the results for dR

(k )  /R (k )  presented in 

the fourth columns of Tables III through VI. This comparison shows that 

dR(2) /R(2)  is smallest for Case 2, being about an order of magnitude 

smaller than for Case 1 and about two orders of magnitude smaller than for 
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Cases 3 and 4. Note now that the effects of the nonlinear terms dis-

regarded by first-order GPT are measured by 6(x) defined as 

e(x) = SR (x) - AR
e
(x), 	 (89) 

where ARe and (SR are given by Eqs. (67) and (68), respectively. Recalling 

(2) that SR 	for Case 2 is a very small quantity that is calculated by using 

Eq. (16), it is expected that even a weak dependence of 6(x) on x would 

cause appreciable differences between exact and GPT results. Calculations 

of c(x) have indicated that this is indeed true for Case 2. Note, though, 

that if (SR
() 

is small compared to 611k  and/or (SR
k
1) 
 , then inaccuracies in 

( 

( 
811

k
2) 
 will influence results for SR(x) appreciably only if (x - xk ) is 

large. This follows from the use of Eq. (14). 

VII. C. Comparison of Taylor-GPT, GPT, and Exact Results for 6R(x)  

The use of the Taylor-GPT method raises questions concerning the 

accuracy of both the GPT and Taylor-series features. To investigate these 

questions, two series of comparisons were performed: 

(a) First, results obtained for (SR
tp (x) were compared to exact 

values AR
e (x) [See Eqs. (69) and (67), respectively . As dis-

cussed in Sec. V.A, this comparison assesses the composite 

accuracy of both features (i.e., second-order Taylor expansion 

around xk , and use of GPT) of the Taylor-GPT method. 

(b) Second, results for 611tp  (x) were compared to results for SIZ (x) 

[see  Eqs. (69) and (68), respectively]. As discussed in Sec. 

V.A, this comparison assesses the accuracy of solely the Taylor 

series expansion feature of the Taylor-GPT method. 	(The 
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inaccuracies due to the use of GPT are eliminated in this com-

parison.) 

Tables VII through IX present the comparisons mentioned in item (a) 

above. These comparisons show that for values of x - x
k 
varying from -10 

cm to 20 cm, (SR
tp (x) and ARe (x) agree within about 5%. This generally good 

agreement worsens only when x - xk  becomes large (in absolute value), or 

when SR(x) is about to change sign while going smoothly through a zero 

(e.g., Case 4, x = 10.5 cm, in Table IX). 

Although Case 1 does not generally satisfy condition (0 of Sec. VI.B, 

the values of (SR tp (x) obtained by using all three terms in Eq. (69) agree 

well, within 5%, with the exact values AR
e (x). Notably, this good agree-

ment persists even at distances x - xk  as large as 30 cm. As will be 

discussed in Sec. VII.E, the perturbation considered in Case 1 causes only 

a small spatial shift in the location of the maximum power density. Thus, 

the good overall agreement between 612
tp

(x) and AR
e (x) obtained in this case 

represents an additional positive verification of the adequacy of the 

numerical methods used in this work. 

The results presented in the last two columns of Tables VII through IX 

also indicate that the use of only the first two terms in the Taylor 

expansion given by Eq. (69) is adequate when x is not very far from xk . The 

generally good agreement between AR
e (x) and the values of &R tp

(x) obtained 

by using this two-term expansion indicates that, in certain cases, the 

number of adjoint calculations may be reduced; for example, calculation of 

r *
k
(2) 

may not be necessary if only small to moderately large distances 

x - xk  are of interest. Of course, the adequacy of using a two-term expan-

sion for calculating (SR tp (x) also depends on the size of the perturbation. 

Cases 1 and 2 involve small perturbations, but Cases 3 and 4 involve larger 
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ones. For the latter cases, the importance of the term containing 6R
(2) 

 in  

Eq. (69) is illustrated in Fig. 6. 

Results for the second set of comparisons, i.e., those mentioned in 

item (b) at the beginning of this section, are presented in Table X. For 

completeness, this table presents not only comparisons of 611
tp

(x) vs. 

6R
p
(x), but also includes comparisons with the exact values AR

e
(x). Note 

the selection of particular combinations of perturbation cases (i.e., 

Cases 3 and 4 of Table II) and values of x: each combination simul-

taneously involves a large perturbation and a large absolute value of x - 

xk . The reason for selecting such combinations is to deliberately accen-

tuate the space-dependent inaccuracies, expressed by c(x) defined by Eq. 

(89), of using first-order GPT. 

The outcome of comparing (5R
tp

(x), SR (x), and AR
e
(x) is concisely 

expressed in Table X by presenting the values for TAP and TAE obtained from 

Eqs. (70) and (71), respectively. As expected, the nonlinear effects 

ignored by the Taylor-GPT method are important in these cases; this impor-

tance is clearly indicated by the large values obtained for the quantity 

TAE. The main contribution to these nonlinear effects, though, arises from 

the GPT component of the Taylor-GPT method. This fact is indicated by the 

small values obtained for the quantity TAP, which show that the Taylor-GPT 

results agree closely with the GPT results. These characteristics are 

further highlighted in Fig. 6, which shows that, even though the GPT 

results differ from the exact ones by as much as 50%, the Taylor-GPT and 

GPT results agree within 4% for a large range of distances x. This 

indicates that whenever the GPT method is sufficiently accurate, the use of 

the Taylor--OPT method could substantially reduce the number of calcula-

tions for investigations of space-dependent response variations. 
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VII. D. 	Spatial Shifts, and Their Influence on Peak Power Density  

Sensitivities 

Perturbations in nuclear data alter not only the maximum value taken 

on by the power density, but also cause spatial shifts in the location of 

this maximum. To calculate these shifts by using the Taylor-GPT method, it 

is convenient to rewrite Eq. (75) as 

(1) 
R
0  x - x = 

ml 	m0 	(2) 
R
0  

6R (1) 1R (1) 	6R(2) /R (2) 

1 + 6R (2) /R (2)  
(90) 

Table XI presents numerical values for the spatial shifts (i.e., 

x
ml 

- x
m0 
 ) caused by the perturbations described in Cases 1 through 4. 

"Direct," "indirect," and "total" contributions were calculated by using 

the Taylor-GPT method. The respective contributions are denoted in Table 

XI by S tp,D , S tp,T , and S tp,T , and were obtained by replacing the quantity 

(i) 	 () 	(i) 	(i) 	(i) (51Z 	in Eq. (90) with 6RD  , 	, and (dRri 	6111  ), respectively. 

For comparison, Table XI also presents exact results, denoted by Se T , for 

the total shift. These values were obtained by using actual 

recalculations, with perturbed data, in conjunction with Eqs. (72) and 

(74). 

The indirect contributions (i.e. , Stp,I) 
 are generally preponderant; 

the direct contributions Stp,D 
are zero for Cases 3 and 4, and are still 

much smaller than Stp,I 
for Case 2. Only for Case 1, which involves a very 

small shift, are the values of Stp,I 
and  Stp,D comparable. 

The results presented in the last row of Table XI show that shifts 

predicted by the Taylor-GPT method agree well with the exact ones for 

distances between approximately 0.15 cm and 5 cm. For Case 3, which 

represents a perturbation so large that it effectively transforms the 
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heterogeneous core into a homogeneous one, the shift predicted by the 

Taylor-GPT method substantially overestimates the actual shift. This 

highlights the importance of the nonlinear terms that are neglected by 

first-order GPT. 

The influence of spatial shifts on the sensitivity of peak-power 

density has been discussed in Sec. V.C. This influence is characterized by 

the quantity SE defined by Eq. (86). Table XII shows that the error caused 

by the shift in the location of the maximum power is small for Cases I and 

2. For larger perturbations, e.g. Cases 3 and 4, the effect of the spatial 

shift on the sensitivity is appreciable and cannot be neglected. 
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VIII. SUMMARY AND CONCLUSIONS 

This work has presented an efficient method to investigate one-

dimensional, space-dependent variations 6R(x) in the power-density 

distribution R(x). This method has been called the Taylor-GPT method in 

order to highlight its two main characteristics: (a) use of a Taylor 

series expansion of SR(x) in the spatial variable x, and (b) use of 

generalized perturbation theory (GPT) 1-4  to efficiently evaluate the 

derivative operators that appear as coefficients in this Taylor series. 

Equations satisfied by the importance (i.e., adjoint) functions for 

the i-th spatial derivative of SR(x) have been derived within the framework 

of GPT. Using finite-differences, it has been shown that these equations 

can be solved in a straightforward manner with existing GPT codes to obtain 

the importance functions. The main characteristics of these importance 

functions have been highlighted analytically by deriving certain relation-

ships that they satisfy. A deeper understanding of these characteristics 

has been facilitated by deriving the complete analytical expressions of 

the importance functions for an illustrative (one-region, one-group) 

reactor model. 

It has been shown that the Taylor-GPT method is efficient not only for 

estimating space-dependent variations in the power density, but also for 

estimating spatial shifts that parameter perturbations induce in the 

localized peak-power density. To illustrate its usefulness, this method 

has been applied to four test cases involving a simplified three-region 

one-dimensional model of a heterogeneous LMFBR. The results given by the 

Taylor-GPT method have been compared to those produced by the standard GPT 

46 



method, and both have been verified by comparisons to exact results 

(obtained by actual recalculations with altered parameter values). 

These comparisons indicate that the results given by the Taylor-GPT 

method are practically as accurate as those given by the standard GPT 

method. The Taylor-GPT method includes all the advantages offered by 

adjoint methods, e.g., the same importance functions are used to assess the 

effects on the response of many parameter perturbations. In addition, the 

Taylor-GPT method could substantially reduce (even by comparison to 

standard GPT) the number of calculations for investigations of space-

dependent variations in the power density. Note, though, that the Taylor-

GPT method does not account for second- and higher-order effects of 

parameter variations. 	Nevertheless, the Taylor-GPT method provides 

detailed information regarding specific contributions (e.g., due to 

leakage, absorption) to the overall variation in the response. The 

availability of such detailed information is valuable for systematic and 

efficient reactor design studies. 
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APPENDIX A 

APPLICATION OF THE ITALIAN GPT CODE PACKAGE TO 

CALCULATE SPATIAL DERIVATIVES OF SR(x) 

A. 1. Calculation of r *(i) 

In general, the solution to the adjoint problem is computed by CIAP
17 

for ratios of the form: 

/V 

	

	
2: Ei,j(x) 4j (x) dx 

1 

i:/2

0 	 E 2  (x) $j(x)  dx 
(A-1) 

Eq. (A-1) can be cast in a form amenable to calculate 613. (i) /R(1) by simply 

preparing, as indicated below, the input data for the adjoint source. 

The energy-production cross sections in the numerator and denominator 

of Eq. (A-1) are written as 

and 

ik 
1 2.i (x)  = 15.2 

pk 
1
(x) ak  

k 

pk NZ(x) a
k 

 .(x) = 1 2,j 	 2 	fyj 
k 

(A-2)  

(A-3)  

respectively, where Ni denotes densities for nuclide k. Subscripts 1 and 2 

in Ni  and N
k ' respectively, allow for potentially distinct spatial behav- 
2 

for of the energy-production cross sections. With these specifications, 
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CIAP computes the desired F*(i)  if the densities are chosen in the follow-_ 

ing manner: 

(a) N(x) = Nk for all x in region m, m=1, M 
2 

(b) for r
*(1) 

calculations: 

+N
m0, 

for x=xk+1 and x E mO 

N
1
(x) = -N

mO' 

0.0, 

for x=xk-1 and x 

elsewhere 

E mO 

(c) for r*(2) calculations: 

+ Nm0'  for x=xk+1' x
k-1 

and x E m0 

N
1
(x) = 	-2N

m0, 
for x=x

k 
and x E m0 

0.0, elsewhere 

Here, m and M refer, respectively, to the region number and the number of 

regions, m0 denotes the number of the region where the peak power occurs, 

and N
k 

and N
m0 

are the densities of nuclide k in regions m and mO, 

respectively. 

Note that CIAP includes the volumes associated with the mesh points in 

the integrations over space. But, as long as the mesh spacing is uniform 

in the vicinity of xk , this does not affect the values of the fractional 

variation of the derivatives. Note also that CIAP attaches a factor of 

0.5 to the contribution of a point to the integral Value if the contribu-

tion of the point preceding it or the point following it is zero. To guard 

against this, one must use a very small value for the input density (of the 

order of 10
-14 ) at xk_2  and xk+2 . 
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A.2. Direct-Effect Calculations  

The code GLOBPERT-1D 18 
can be used to calculate the direct-effect 

component of 6R/R. For this purpose, the input data for the direct-

effect calculations must be prepared as follows: 

(a) for 	R(1) /R(1) calculations, 

il
+dNi , x=x10.1   

6I4= -614
i' 
 x=x 

k-1 

0.0, elsewhere 

(b) for SR (2)  /R (2) 	calculations
, 

-1-(SN
i , x=x104' 

abl = 	-2614.
1
, x=x 

t 

k 

0.0, elsewhere x=xk-1 

Here, 04 i  denotes the density change for nuclide i and effected in the 

quantity (1 1,k  [see Eq. (22)] . 

Also note that GLOBPERT-1D was modified to treat more accurately the 

interfaces between regions. In addition, an algorithm was implemented to 

calculate (SD (i.e., the perturbation in the diffusion coefficient) 

exactly, rather than via a first-order expansion in SEtr as done in the 

original version of this code. 
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U(p) = I -13x  r*(2)  dx, 
1 

00 

O 

(B.2) 

APPENDIX B 

DETERMINATION OF r*(2) 
1 

In view of Eqs. (45) and (51), the function r *
1
(2)  is the solution of 

2 *(2) 
r1 	 1 	 + B

2 
r
*(2) 	 611(x - X2 	 1 	DQ2 	DQ1,2  

*(2) 
r1 	= 

0 at x = L (B.1) 

dx - 0 at x = 0 

Applying a Laplace-transform to Eq. (B.1), and defining 

*(2) 
dr1  

gives 

p 

U(P) 	K  2 2 
p 

1 	p
2
exp(-pxk 4.  1 	1  

DQ2 p(p24132) 
(B.3) 

   

DQ
1,2 	.2 2 p +B 

 

where K is, at this stage, an unknown constant to be determined. 

53 



Taking the inverse Laplace-transform of Eq. (B.3) gives 

r
1
*(2)  = KcosBx + 2 	(1-cosBx) 

B DQ
2 

1 [ d(x-xk)-B H(x-xk) sinB(x-xk) . (B.4) 
DQ1,2 

For a critical reactor, the boundary conditions given in Eq. (B.1) are 

automatically satisfied; thus, the constant K is determined by using the 

orthogonality condition given in Eq. (88). This leads to 

K = 
(cos Bx

k 
 L-x

k 

B
2
D 

1 	1 ( 
BL) DQ12 	BL Q2  

sin Bxk) (B.5)  

Replacing Eq. (B.5) in Eq. (B.4) yields 

     

r*(2) 	1 
cos Bxk  + B(L-x

k
) sin Bx

k 2 

	

1 	B2 

  	
LDQ1,2  DQ2 	 DB3LQ 

 

cos Bx 

 

  

   

B 	 (S(x-x
k
) 

	 H(x-x
k
) sin B(x-xk) - DQ1,2  

'1,2 

   

(B.6)  
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TABLE I 

Nuclide Concentrations for Test Model 

Concentration [1024 atom/cm3 ] 
Nuclide 

Driver 	Blankets (IB,EB) 

U-238 	 0.006 	 0.012 

Pu--239 	 0.001 	 0.0 

Na 	 0.010 	 0.007 



TABLE II 

Selected Perturbations and Corresponding Test Cases 

Case 
Zonal Perturbationa  

Int. Blkt. 	(IB) Driver (D) Ext. Blkt. 	(EB) 

1 

2 

3 

4 

0
28 

6N49 __3% 6N49=+0.045 N49 
D 

6N
28 

N49 

6N
49 

-+5% 
N28 

Replaced with 
driver. 

Outer three 
cm replaced 
with driver 

--5% 
N49 

Inner 
boundary 
extended to 
core center 
(x=0). 

Inner 
boundary 
extended to 
x=7.5 cm. 

-+5% 
N28 

yz 
a. N is the number density in zone x of the nuclide with 

x 
 

the last digits in its atomic number and weight of y and z, 

respectively. If no x appears, N is for the zone designated 

by the column heading. N values are given in Table I. 



TABLE III 

GPT and Exact 6R (1) (x
k
) Results for Case la-e  

Derivative 

Order, 	i 

GPT Results for SR(i)/R(i) 6R(i) 
 P 

(GPT) 

AR (i) 
 e 

(Exact)g 

GPT-Exact 

Direct Indirect Indirect f Total 
P.] Exact 

0 

1 

2 

-9.16-3 

+2.26-1 

-3.59-3 

-2.25-3 

+2.97-1 

-1.16-2 

-1.14-2 

+5.23-1 

-1.52-2 

-3.56-4 

+2.71-6 

+2.86-7 

-3.69-4 

+2.88-6 

+3.04-7 

-3.7 

-5.8 

-5.8 

a. All values are for x
k 

= 22.5 cm. 

b. Because of the characteristics of CLAP, R has a AVol factor of 1.5 cm 3 

in the numerator which is not contained in Eq. (9). 

c. Read -±x-y as -±x . 10Y. 

d. See Table II for description of perturbation cases. 

e. Values presented in the last three columns are calculated with more 
significant figures than shown. 

f. See discussion of Eq. (7). 

g. Exact value determined from two direct calculations; see Eq. (67). 



TABLE IV 

(i) GPT and Exact SR 	Results for Case 2.
a 

Derivative 	GPT Results for SR (1) /R (1) sit (i) 	AR(i)  GPT-Exact 
Exact Order, i 	Direct 	Indirect 	Total 	(GPT) 	(Exact) 

0 5.41-4 2.59-3 3.13-3 9.77-5 9.09-5 7.4 

1 3.93-1 -2.17+0 -1.78+0 -9.21-6 -9.05-6 7.7 

2 9.82-3 -7.26-3 2.55-3 -4.80-8 -3.4-8 39. 

a. See footnotes for Table III 



Table V 

GPT and Exact SR (1) Results Case 3. a  

Derivative 	GPT Results for 611. (1) /R (1) 	SR( i) 	AR(i) 	GPT-Exact  
70 

Exact 	
] 

Order, i 	Direct 	Indirect Total 	(GPT) 	(Exact) 

0 -1.59-1 3.78-2 -1.21-1 -3.79-3 -3.79-3 -0.14 

1 -1.59-1 -5.44+1 -5.46+1 -2.83-4 -2.14-4 32. 

2 -1.59-1 -4.52-1 -6.11-1 1.15-5 1.00-5 14. 

a. See footnotes for Table III. 



Table VI 

CPT and Exact all (i) Results for Case 4. a  

Derivative 	GPT Results for 8R (1) /R (1) SR (1) 	AR(i) CPT-Exact [ % 1 

Order, i 	Direct 	Indirect Total 	(CPT) 	(Exact) 
Exact 

 

0 -4.54-2 1.14-2 -3.39-2 -1.06-3 -1.05-3 0.75 

1 -4.54-2 -1.58+1 -1.58+1 -8.19-5 -7.64-5 7.2 

2 -4.54-2 -1.31-1 -1.76-1 3.32-6 3.22-6 3.1 

a. See footnotes for Table III. 



TABLE VII 

Taylor-GPT and Exact SR(x) Results a  for Case 1; b  xk  = 22.5 cm 

x x-xk 

 [cm] 

c Exact 

AR
e 

d 
Taylor-GPT 

6R 
tp 

SEt 	 d p - ARe 	[7,,] 
PAR 	

[ . 7]. 

3-terma  2-term
f 

13.5 -9 -3.84-4 -3.69-4 -4.0 -1.0 

16.5 -6 -3.82-4 -3.67-4 -3.9 -2.5 

25.5 +3 -3.60-4 -3.46-4 -3.7 -3.3 

28.5 +6 -3.47-4 -3.34-4 -3.6 -2.1 

34.5 +12 -3.13-4 -3.02-4 -3.3 +3.2 

40.5 +18 -2.68-4 -2.61-4 -2.9 +14. 

52.5 +30 -1.53-4 -1.46-4 -4.9 +79. 

- 
a. Read ±x-y as ±x . 10 Y . 

b. See Table II for description of test cases. 

c. Exact value determined from two direct calculations; see Eq. (67). 

d. Values presented in the last three columns are calculated with 
more significant figures than shown. 

e. Values for 
611tp 

obtained by using all three terms in Eq. (69). 

f. Values for a.
tp 

obtained by using only the first two terms in 
Eq. (69). 



TABLE VIII 

Taylor-GPT and Exact Resultsa  for Case 2; xk  = 22.5 cm 

x 

[cm] 

x-1( k 

[cm] 

Exact 

e 

Taylor-GPT 

aR
tp 

(SRtp - AR e m  
AR e 

3-term 2-term 

10.5 -12 +1.93-4 +2.05-4 +6.0 +8. 

13.5 -9 +1.69-4 +1.79-4 +5.4 +7. 

16. .5 -6 +1.44-4 +1.52-4 +5.5 +6. 

19.5 -3 - +1.25-4 - - 

25.5 +3 - +6.98-5 - - 

28.5 +6 +3.64-5 +4.16-5 +14. +17. 

34.5 +12 -1.71-5 -1.63-5 -4.9 -25. 

40.5 +18 -6.79-5 -7.59-5 +12. +0.3 

52.5 +30 -1.57-4 -2.00-4 +27. +13. 

a. See footnotes for Table VII. 



TABLE IX 

Taylor-GPT and Exact Results a  for Case 4; x = 22.5 cm 

x 

[cm] 

x-xk 

[cm] 

Exact 

AR
e 

Taylor-GPT 

SRtp 

(SRtp - ARe 
[7] AR

e 

3-term 2-term 

10.5 -12 +8.32-5 +1.63-4 +96. +190. 

13.5 -9 -2.38-4 -1.87-4 -21. +35. 

16.5 -6 -5.36-4 -5.07-4 -5. +6. 

19.5 -3 - -7.98-4 - - 

25.5 +3 - -1.29-3 - - 

28.5 +6 -1.45-3 -1.49-3 +3. +7. 

34.5 +12 -1.73-3 -1.80-3 +4. +18. 

40.5 +18 -1.88-3 -2.00-3 +6. +34. 

52.5 +30 -1.81-3 -2.02-3 +12. +94. 

a. See footnotes for Table VII. 



TABLE X 

Comparisons of ne (x), 61t. (x), and SR
tp

(x) for Large 

Perturbations and Large Ix - xk l 

Perturbation 
Case 

x 
[cm] 

a 
TAP 

[%] 

b 
TAE 

[7] 

4 13.5 -3.7 -22. 

4 40.5 +1.9 +6.3 

3 13.5 -3.3 -47. 

3 40.5 +2.0 +17. 

a. See Eq. (70). 

b. See Eq. (71). 



TABLE XI 

Spatial Shifts [cm] in Location of Peak Power 

Shiftsa  Case 1 	Case 2 Case 3 	Case 4 

Se,T 	
+0.160 	 -0.482 	-22.8 	-4.85 

b 
Stp,T 	+0.151 	 -0.490 	 -38.2 	-5.23 

Stp,I 	+0.086 	 -0.601 	 -27.1 	-4.96 

Stp,D 	
+0.064 	+0.105 	 0.0 	 0.0 

tp,I 	tp,D 
S 	+S 	+0.150 	 -0.496 -27.1 	-4.96 

Stp,T-Se,T 
-5.6% 	+1.7% +67.8% 	+8.0% 

Se,T 

a. Shifts are defined in Sec. VII.E. 

. St 	differs 
 
differs slightly from (Stp,, + Stp,D) because the sum neglects 

the second-order terms mentioned immediately after Eq. 1(80). 



TABLE XII 

Influence of the Spatial Shift on the Peak-Power Density 

Case 
	

SE
a 

[%] 

1 	 0.009 

2 	 -0.029 

3 	 -63.5 

4 	 -17.0 

a. See Eq. (86). 
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ABSTRACT 

This annual progress report covers the activity of the Georgia Institute 

of Technology during the period October 1, 1982 - September 30, 1983, under 

Oak Ridge National Laboratory Subcontract 7802-X01. 

The primary task of this activity, imitiateein July 1983, is related to 

the development of a Power Distribution and Reactivity Monitor (PDRM) for a 

fast breeder reactor. This report contains a summary of these investigations, 

the conclusions that can be made based on the present status, and recommendations 

for further work. 

Some effort was also expended to complete an article concerning the use of 

generalized perturbation theory for investigations of reactor power density 

distributions. This article has been published, and is included in this report 

as an appendix. 



TABLE OF CONTENTS 

Page 

1. Introduction 	  1 

2. Power Distribution and Reactivity Monitor 	  2 

2.1 General Comments on PDRM Development 	  2 
2.1.1 Reactivity Balance Meters 	  2 
2.1.2 Power Distribution Monitor • OOOOOOOO 	• • • 	3 

2.2 Impact of PDRM on LMFBR Safety and Economics 	  4 

2.3 GPT Investigation of Ex-Core Detector Reading Sensitivity to 
Core Power Distribution 	  6 
2.3.1 Initial GPT Investigation 	  6 
2.3.2 Influence of Detector-Core Distance on Detector 

Information Content 	  10 

2.4 Method for On-Line Calculations of Reactor Paramters. . . 	 12 

2.5 Recommendations for Further Work 	  12 
2.5.1 Information Content of Ex-Vessel Detectors 	 12 
2.5.2 Methods of On-Line Calculations 	  13 
2.5.3 Use of Measured Values for Adjustment of Parameters 

Used in On-Line Calculations 	  13 

3. Generalized Perturbation with Derivative Operators for Power 
Density Investigations in Nuclear Reactors  

	
14 

References • . 	0 	  15 

ii 



1. Introduction 

The studies discussed in this report have been described in more detail in our 

monthly progress reports
(22-28) 

to Oak Ridge National Laboratory. The primary 

effort was related to the development of a Power Distribution and Reactivity Monitor 

(PDRM) for a fast breeder reactor. The studies related to the PDRM are discussed 

in Section 2. Section 3 and Appendix A concern the use of generalized perturbation 

theory for investigations of reactor power density distributions. 



2. 	power Distribution - and ReactiviitvMonitor 

2.1. General Comments on PDRM Development  

The goal for development of an on-line power distribution and 

reactivity monitor (PDRM) is to provide a system which is "capable of 

providing a rapid assessment of the status of core parameters which are 

important for economical and safe reactor operation."' It is important to 
• 

recognize the significant difference in the applicable experience for the 

two components of the monitor name, i.e. "power distribution" and 

"reactivity." There is considerable experience in the development and 

application of "reactivity balance meters" 2  in LMFBRs. However, develop-

ment ofpower distribution monitoring capability in fast reactors is in a 

relatively early stage, partially because related experience in thermal 

reactors is not directly applicable. As discussed below, this is because of 

the difference in the location of neutron detectors in fast and thermal . 

reactors. 

24.1 Reactivity Balance Meters  

Basically, a reactivity balance meter (RBM) compares on-line the "real" 

or "measured" reactivity with the "expected" or "theoretical" reactiv-

ity. 2-4  The measured reactivity is determined with a "reactivity meter" 

(RM), utilizing neutron detector readings and the inverse kinetics 

equations.
4 The theoretical reactivity is calculated, using reactivity 

feedback coefficients and various measured parameters, e.g. power, control 

rod positions, coolant Tinlet' coolant AT in core, etc.
2 Such a device is 

also called an anomalous-reactivity (ANOR) meter
4 , and the associated 



monitoring procedure has been referred to as "reactivity surveillance pro-

cedure-anomaly detection" (RSP-AD). 

Reactivity balance meters have been used in Rapsodie
2 
and FFTF5 , and use 

of the CAROL RBM is planned for Super-Phenix. 3  An RBM was planned for the 

Fermi-1 "malfunction detection analyzer" 6 , and a conceptual RBM design was 

performed for EBR-11. 4 

2.1.2 Power Distribution Monitor  

For thermal reactors, several systems which include power shape 

monitoring have been developed.
7,8 Of particular interest is the BWR Hybrid 

Power Shape Monitoring System (PSMS) developed under EPRI sponsorship. 7 

This system monitors the state of the core in real time, and allows for 

adjustment of a few parameters to minimize the difference between measured 

and theoretical values for in-core detector readings. ? A nodal10 physics 

code coupled to a thermal hydraulics code is used for monitoring and predic-

tive analysis. 

The presence of in-core detectors is obviously a great advantage in 

power distribution monitoring. The readings from these monitors are used to 

check and adjust the calculated power distribution. The following perfor-

mance parameter is minimized: 7 

where 1 and k designated location, the residual R is the normalized differ-

ence between the measured and calculated detector readings, and w is a 

weighting factor. 

Unfortunately, it is difficult to use in-core detectors in fast 

reactors, because of the core environmental conditions, 9 and most designs 



call for ex-vessel detectors. For instance, the neutron detectors for 

Super-Phenix are located outside the safety vessel, which encloses the main 

containment vessel.
3 It is obvious that the information content of such 

detectors concerning the core power shape is relatively small, compared to 

that of in-core detectors. 

This raises the obvious question: 

Are there any measurable parameters for an LMFBR which are 
appropriate for adjustment of data used for calculated power 
shapes? 

Gamma scan data for fuel elements can be used, but only at end-of-cycle. 

For a BWR it has been shown that adjustment during the cycle is necessary to 

avoid a serious deterioration in the accuracy of calculated cycles. 7 
 

Possibly the best standard of comparison for on-line LMFBR 

calculational models is a detailed off-line 3D calculation, to be performed 

periodically. 	Sandra and Azekura9 
used detailed 3D calculations to 

validate results from an influence function method they propose for on-line 

LMFBR calculations. 

2.2. Impact of PDRM on LMFBR Safety and Economics  

In our August 1 meeting with John Lewellen, he requested a brief 

statement discussing the contribution of a PDRM to the safety and economics 

of an LMFBR. Following is a draft of this statement. 

It is generally recognized that on-line core surveillance systems using 

special computers can have a significant impact on the safe and economic 

operation of both thermal and fast reactors. 1
' 3 ' 7-9 The introduction of 

powerful mini-computers coupled to the surveillance process facilitates a 

significant improvement in on-line performance evaluation of a fast reactor 

core. The reactor state functions, e.g. reactivity and power distribution, 

can be estimated with increased accuracy using such systems. 



The improvement in safety achieved by an on-line Power Distribution and 

Reactivity Monitor (PDRM) is accomplished in a variety of ways, including 

the following: 

o By the detection of incipient incidents as soon as possible. For 

instance, analysis has indicated that with a device to detect 

"anomalous reactivity" (the difference between predicted and 

measured reactivity) the Fermi-1 flow blockage incident would have 

been detected at a much smaller excess reactivity than for the 

actual case.4  

By diagnosing any incipient incident promptly. Such diagnosis may 

be utilized to protect the core either by input to an automatic 

safety system, or by helping the operator to determine the proper 

action to control the incident.
3 

o By insuring that various safety-related limits (e.g. peak clad tem-

perature, peak fuel temperature) are not exceeded. 

Many features of a PDRM contribute to improved economics of an LMFBR, 

e.g. 

o Prompt control of incipient incidents which have a potential for 

core damage obviously influences the reactor economics. 

o Early diagnosis of an incident may allow control thereof without 

scram. This avoids mechanical stresses which impact on the core 

life, and may allow continued operation at a reduced power, improv-

ing the plant load factor compared to that for a scram occurence. 3 

o Increased knowledge of the reactor state aids in insuring that the 

design fuel life is reached. 



o Increased reliability of reactor state prediction also allows 

operation nearer the design limits, increasing the reactor power 

output. 

o Used to predict the influence of operator actions, the PDRM can 

assist in short-term operational strategy planning, considering 

economic criteria. 

n summary, a PDRM can be a valuable tool to improve knowledge of the 

core state, to reduce the impact of incipient incidents, and to help the 

reactor staff to optimize reactor operation with regard to safety and 

economic criteria. 

2.3. GPT Investigation of Ex-Core Detector Reading Sensitivity to Core  Power 

Distribution  

Generalized perturbation theory
11

'
12 

(GPT) can be used to investigate 

the sensitivity of ex-core detector readings to the core power distribu-

tion. "Ex-core" is a very general expression, and apparently "ex-vessel" is 

a more appropriate term for most LMFBR designs. As mentioned in section 

1.2, the neutron detectors for Super-Phenix are far from the core, under the 

safety vessel. For a realistic analysis of such a system, transport theory 

methods
13 
 are necessary. 

2.3.1 Initial GPT Investigations  

For initial calculations related to this problem, I have used diffusion 

theory GPT codes 12 , the simple 1D slab model of an LMFBR described in Ref. 

11, and an assumed detector location in the outer blanket, 10 cm from the 

core. This simple case is an appropriate starting point, and will yield 

some physical insight into the problem we are considering; definitive 

results will require gradual extension to a model approximating the  

realistic ex-vessel case, described above. 



QiC)(b) 

Q 2, 
C 2  i“K 

For these initial calculations, the response function is similar to 

that considered in our studies of the core power density.. Assuming the 

detector response is proportional to C5i (U-235), the normalized response 

ratio is: 

where xr, is the detector location, 

gCxi-x jcPx 

and Q2 , given by eqns. (11) and (12) of Ref. 11, is the total reactor power. 

Normalization with Q2 represents the constraint of constant power for power 

density shape changes. It should be noted that R in eqn. (2) is of the same 

form as the response considered in our power density studies11 . 
-*woo  

The generalized adjoint function, r (x), calculated for R(xD), gives 

the importance of neutrons at x in various energy groups to the ratio R. II 

The sensitivity of the core power density (PD) to the neutron flux distribu-

tion is given by the fixed source in the '61' eqn. for PD, as indicated by 

eqn. (5) of Ref. 11. Conversion from neutron flux sensitivity to that for 

the neutron density is trivial; thus the functions mentioned in this para-

graph can be used to study the sensitivity of detector response to PD shape. 

Figure 1 gives results for V1  for R(xii) of eqn. (2). The group cross 

section set is the same as that used in Ref. 11. Following are some aspects 

of interest and their implications: 

a. For obvious reasons, the importance curves are smooth in the core. 

Thus it seems unlikely that detection of localized  flux perturbs- 

-7. 



tions with ex-core detectors will be possible, even with a large 

number of detectors. 

b. The importance curves have an appreciable space dependence over the 

core. Neutrons near the core edge have a larger probability of 

contributing to the detector reading, and thus have a positive 

importance, while those near the reactor center are more likely to 

contribute to the normalization denominator of R(x p), and have a 

negative importance. Thus for the case considered the ex-core 

detector could be useful in the determination of "core-wide" flux 

shape changes, e.g. "flux tilt". (Other information, e.g. total 

power and coolant 14Ts, would also be necessary.) This aspect 

should be investigated for detectors farther from the core. 

c. If we-are interested in sensitivity to relative changes in the flux 

shape, the curves in Fig. 1 should be multiplied by 95 (x) to 

determine regions of significance. (The product 	C"' includes 

information on the location of neutrons which may contribute to R.) 

Since 4) drops rapidly with distance from the core, this multipli- 

cation increases the significance of the core regions to R(x D). 

At this point we are primarily interested in the sensitivity to changes 

in flux shape, rather than the cause of such changes. However, a perturba-

tion calculation was performed for "Case 3" of Ref. I, which replaces the 

inner blanket with driver. The impact on R(x D) was determined by GPT and 

"exactly" (by solving for 56 for the base and perturbed cases.) The " exact" 

ER/R is - 24.5%, while the GPT code result was -18.3% with by far the 

largest contribution from the "direct-effect" term " . As mentioned in Ref. 

11, for this quite large perturbation second-and higher-order terms involv-

ing VX and 196 are significant. 
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2.3.2 Influence of  Detector-Core Distance on Detector Information Content 

In the previous section it was concluded that, while it seems unlikely that 

detection of localized flux perturbations with ex-core detectors will be possible, 

such detectors could be useful for the detection of "core-wide" flux shape changes - 

For the studies described in the previous section the detector was assumed to be in 

the blanket 10 cm from the core. In the present section we describe investigations 

for detectors farther from the core. 

Table 1 presents r results for detectors located in the blanket 10, 20, and 

25 cm from the core. All results are for group 2 of the 3-group CITATION test case 

data set
14

. Several aspects of the results are significant: 

* 
a. Within the core the space-dependence off' for the three cases is nearly 

the same. At least for this aspect moving the detector farther from the 

core does not obviously decrease the information content of the detectors 

concerning core -flux shape. 

b. The relative importance to the detector response of neutrons near the 

detector compared to that for neutrons in the core does increase as the 

detector distance from the core is increased. This does not necessarily 

mean that the detector becomes less sensitive to the core flux behavior 

for such a move, however. As noted in the previous section, regions of 

significance for the detector response also depend on the neutron population 
* 	- 

distribution; thus 0g  rs g  determines regions of significance. As can be 
seen in Table 1, the decrease in 02  as the core-detector distance increases 
more than compensates for the increase in 1' at the detector location. 

For comparison of groups it should be noted that ri gives the importance of neu-

trons, not flux. While 93 for the nuclear data set we used14 is significantly smaller 
than 42 , the ratio of the average velocities of these groups is roughly the same as that 

of the fluxes. Thus groups 2 and 3 have about the same value for neutron density. 

In summary, for core-detector distance from 10 to 25 cm, the aspects considered 

yield no evidence that moving the detector farther from the core causes an appreciable 

decrease in the information content of the detectors concerning core flux shape. 
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Table 1. Comparison of r: for Detector 
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r
* 
 (20) 	. r

* 
*(20) r

* 
(25) 

- (10) 	 r (10) 

y
*
(25) 

f *  

- . 
-.435 -.473 1.09 -.481 1.11 
-.444 -.484 1.09 -.492 1.11 

.345 '-.384 1.11 -.392 144 . 
-.086 -.119 -.128 
+.400 +.379 .947 +.373 .932 
1.05 ' 1.05 1.00 - - 	1.05 	--- 1.00 
1.69 1.72 1.02 1.73 1.02 

E61 2.79 1.05 	• 2.81 1.06 
3.52 1.34 , 	2.61 3.57 2.66 

.673 1.77 	- 2.64 3.85 5.71 

2.18 o 
0 Ai 

2.22 a 
1.4 P2 

2.25 
2.19 
2.01 
1.72 
1.41 

0.91 k  
0.44 2 g 
0.22 4; V, 

a. Core-outer Blkt. interface is at x s  60 cm, and blanket is 30 cm 
wide. 

* 
b. r values at detector location highlighted with rectangle. 

c. Values excluded if proximity to location of r sign change 
makes ratio insignificant. 



2.4 Method for On-Line Calculations of Reactor Parameters 

For simple calculations of reactor parameters we have discussed three methods: 

a. Nodal/Modal codes
10 

Such codes have extensive use for thermal reactor 
7 

monitoring systems . 

b. Influence function methods 9 . 

c. Eigenfunction expansion methods 16 ' 3°  

Felix di,Fillipo is obtaining promising results from method c., for one-group. i 

 calculations, with eigenfunctions of the Laplace-transformed 'equation. 

Since one-group calculations are generally not adequate for fast reactors, we 

should consider the fact that for the multigroup case of the Boltzmann equation, it 

is "generally assumed that the eigenfunctions On  associated to eigenvalues 
do not form a complete set" except under special conditions

18 
 . This topic is further 

discussed in various referencea2
7-21. However, it is shown in Reference 18 that an 

expension in such eigenfunctions is applicable for functionals of the fission source, 

such as the reactor power. A recent paper by Gilai
31 

substantiates.this conclusion. 

2.5 Recommendations for Further Work  

2.5.1 Information Content of Ex-Vessel Detectors  

Relevant to the sensitivity of ex-vessel neutron detectors to core power dis-

tributions the following is recommended: 

Lacking definitive information to the contrary, we should assume that the 

U.S. LMFBR will use a ex-vessel neutron monitor system similar to that of Super-Phenix 3  . 

Thus we should investigate the information content of neutron detectors located under 

the safety vessel, at the location of "neutron guides (themselves located in the first 

layer of the blanket)" 
3
. Such investigations could involve at least two steps: 

a. Calculations of rl for the normalized neutron density (rather than detector 

response) at a position in the blanket. This will yield information on the 



sensitivity of this density (as a function of group) to the core flux distribu-

tion. For these calculations a cylindrical model should be used, to include the 

radial "geometrical effects" not contained in the slab model used until now. 

b. 2D adjoint transport theory calculations, similar to those performed in 

Reference 13, should be performed to determine the importance of neutrons at the 

core midplane (in the neutron guide tube) the response of the ex-vessel detectors 

at the bottom of the guide tube. For these calculations perhaps we can use a 

reactor model approximating that of the "modUlar breeder"
15

. 

2.5.2 Methods  of On-Line Calculations  

Parallel to the development of eigenfunction expansiOn methods discussed in section. 

2.4, we should begin investigations to determine which nodal methods: or_ already-developed 

codes might be employed for our power distribution and reactivity monitor.. 

2.5.3 Use of Measured Values for Adjustment of Parameters Used in On-Line Calculations  

We should investigate further the question raised in section 2.1.2, to determine 

how reactor parameters measured during operation could be used to adjust data used for 

calculated power shapes. 



3. Generalized Perturbation Theor with Derivative 0 erators for Power Density 

Investigations in Nuclear Reactors  

The research related to this topic was performed almost entirely in the previous 

report year
32

. However, some effort was devoted to this topic in the present report 

year,• in making revisions to the final version of the journal article1 
1 
 describing this 

work. This article, published in July 1983, is included as Appendix A. 
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This paper presents an efficient method to analyze variations that nuclear data 
perturbations induce in one-dimensional power-density distributions. This method is called 
the Taylor-generalized perturbation theory (Taylor-GPT) method since it is based on ( a) use 
of a Taylor series expansion of the response variation, and (b) use of generalized perturba-
tion theory (GPT) to evaluate the derivative operators that appear as coefficients in this 
Taylor series Equations satisfied by the importance functions for the derivatives of the 
response variations are derived and solved with existing GPT codes. The characteristics 
of these functions are highlighted analytically. 

Particular attention is focused on the numerical value and location of the niaximum 
power density. This is because perturbations in system parameters affect not only the value 
at the maximum, but also the location of this maxbnum. The Taylor-GPT method cart 
efficiently assess such effects. 

The practical usefulness of the Taylor-GPT method is illustrated by considering test 
cases Involving a simplified heterogeneous liquid-metal fast breeder reactor model The 
results indicate that this method is as accurate as the GPT method, yet requires fewer 
calculations when investigating space-dependent power density variations. 

I. INTRODUCTION 

Generalized perturbation theory" (GPT) has 
been used for many years to investigate =' the 
influence of cross-section perturbations and design 
changes on integral performance parameters (cus- 

*Present address: Kernforschungszentrum Karlsruhe, D-
7500 Karlsruhe 1, Federal Republic of Germany.  

tomarily called responses) in reactors. The successful 
application of GPT to analysis of the power density 
responses,' provided a strong motivation to study in 
detail the effects of parameter perturbations on such 
space-dependent responses. (References appear on 
p. 225.) Thus, this paper presents an application of 
first-order GPT to efficiently evaluate the space 
derivatives of the response that appear as coefficients 
in a Taylor series expansion technique. This tech-
nique is henceforth referred to as the "Taylor-GPT" 
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method, and is used to investigate the space-depen-
dent characteristics of variations in the power density 
response. The shift in the location of the maximum 
of this response is of particular interest. 5,7-1°  

I.A. Generalized Perturbation Theory 

In reactor design studies, "sensitivities" SP/Soy 
of a response P to input data a (typically nuclide 
densities or cross sections) are of interest. 2-6  In 
particular, P can denote a ratio of linear functionals 
of the real flux ell(r). For such a P, the use of GPT to 
calculate sensitivities requires that the following 
adjoint inhomogeneous Boltzmann equation be solved 
for r*: 

(A* - XB*)r* = S* . 

In Eq. (1), A* is the adjoint loss and scattering 
operator, B* is the adjoint fission operator, and X is 
the system eigenvalue. 

In multigroup formalism, T*(r) is the generalized 
adjoint function, whose component I7(r) gives the 
importance of neutrons at r in energy group) to the 
ratio P. Thus, 17 satisfies the following equation 
that, except for the 5* term,' is formally identical to 
the "normal" adjoint equation" for Op: 

-DiV217(r) + E rmmj17(r) 

= E El*hrti(r) )1/41)  Eli E xh rg(r)+s,*(r) . 
h 	 h 

(2) 

In Eq. (2), all cross sections are functions of r. The 
boundary conditions associated with Eq. (2) are 
formally identical to those for the equation, 
e.g., 17 = 0 at the outer reactor boundary (or 
extrapolated boundary). 

Consider a ratio P of functionals of the real flux 
defined as 

Pa l  f E 0 (ty(r) dr 1.i (r) 
 = =  

a2 

 v, , 

02, 1(r)0
1
(r) dr 

2 / 

where V I  and V2 specify the volumes associated with 
the space integration over r. (In the sequel, lack of 
such specification implies integration over the entire 
reactor volume.) For P defined by Eq. (3), there 
corresponds the following fixed source for Eq. (2): 

So'(r)=-- - al./ 02 

a, 	a2  

Typically, oi j is some microscopic or macroscopic 
cross section. 

In previous works3,4  that used the concepts of 
GPT, the expression for the fixed source S* was 
generally written as 

S* = 1ap 	 (5) P ad 
The expression arias, though, was used in a formal 
sense and did not have a precise mathematical 
meaning. Based on the rigorous and comprehensive 
sensitivity theory7'8  for nonlinear systems that has 
recently been developed, it can be shown that 
aNao is in fact the partial Gateaux-derivative of P 
with respect to 42, i.e., anack is the operator defined 
via the relationship 

de II(' 4. eh)" 	' 

where e is a real scalar and h is an arbitrary vector of 
"increments" around Having thus specified its 
precise mathematical meaning, the notation allay) 
will be retained, for convenience, in the sequel. 

In the first-order GPT method, the relative 
response variation is given by's  

=f 406G dr + f r*aLt dr , 	(7) 

where fi and r* are, respectively, the real flux and 
generalized adjoint function, SL represents the per-
turbation in the Boltzmann operator, and the com-
ponent of SG for energy group/ is defined as 

oa1 ,i(r) 80 2)(r) 

I.B. Power Density and Related Spatial Shifts 

In studies of uncertainties in calculated responses, 
P, for the heterogeneous core of a large liquid-metal 
fast breeder reactor 5.6  (LMFBR), GPT has been 
employed to determine the sensitivities SP/Sa to 
variations in the cross sections. The responses studied 
included, for each driver zone, the ratio Rm(r m ) of 
the zonal maximum power density to the total 
reactor power, defined as 

Q1(rm)Rm(r m ) -  
Q2 	I  - 

where rm  is the location at which the zonal maximum 
power density occurs in the unperturbed case 
(i.e., the "base case"). The terms in the above 
equation are defined by the following expressions: 

Q,(rm) = f Z  E l ./(,)q5/(/)8(/ - rm) dr° , (10) 

(3) 

(4)  

(6) 

SGi(r)- 	al 	a2 	 (8) 

The first term on the right side of Eq. (7) arises 
from changes in the - cross sections that appear 
explicitly in Eq. (3), and is customarily referred to 
as the "direct-effect" term. The second term on the 
right side of Eq. (7) is customarily referred to as the 
"indirect-effect" term, and arises from the change in 
the flux corresponding to the perturbation SL of the 
Boltzmann operator. 

(9) 
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and 

Q2  = f E y2,/ (0951 (r) dr . 	(11) 

The quantities Eid have identical forms for i = 1 
and 2; considering only fission energy and assuming 
localized energy deposit, their explicit expression is 

E1.1(0= 	P k ViEj (r) , 	 (12) 
k 

where p k  is the total recoverable energy release per 
fission in the kith isotope. 

The power density R(r) is defined as in Eq. (9), 
except that r is not necessarily the location where a 
maximum occurs. Furthermore, to facilitate the 
subsequent presentation of the Taylor-GPT method, 
and to clearly highlight its most important charac-
teristics, a one-dimensional (x) model is henceforth 
considered, with the power density defined as 

-R(x)= Qi(
Q2

x) 
(13) 

Such one-dimensional models are frequently used for 
scoping calculations; of course, detailed power-
density studies require the use of multidimensional 
models. 

Reference 5 discussed "far-range" shifts in the 
location of the reactor peak (i.e., maximum) of the 
power density (e.g., shifts between driver zones) and 
"near-range" shifts around the location of the initial 
maximum R in a particular driver zone. There, the 
influence of near-range shifts in the location of the 
zonal peak power density on the sensitivities 15Rm/Rm 
was estimated to be small. Note, though, that the 
nature of these spatial shifts was not rigorously 
analyzed. 

The theory of Cacuci, 1'8  which uses Gateaux 
differentials, can be applied to problems involving 
such maxima. This theory has successfully been 
applied" to obtain sensitivities for the numerical 
values of the maximum power response and the 
maximum fuel temperature response, and for the 
sensitivities of the phase-space locations for these 
maxima, for a reactor safety problem describing 
a protected transient with scram on high power level 
in the Fast Flux Test Facility. 

Recently, Gandini suggested the application of 
GPT to functionals involving derivative operators 
(see footnote 26 of Ref. 13). References 9 and 10 
reported preliminary investigations that used GPT 
in conjunction with a Taylor series expansion for a 
simple response function. These investigations indi-
cated that this method appears promising for ex-
plicitly investigating near-range, or localized, spatial 
shifts. 

The purpose of this paper is to present new 
developments and results regarding response varia- 

tions that involve localized spatial shifts. Included 
are first examples in reactor physics of importance 
functions associated with derivative operators," and 
a detailed discussion of the characteristics of these 
functions. To analyze both direct and indirect effects 
caused by cross-section perturbations, this paper 
considers a more general response than previously 
considered in Refs. 9 and 10. The basics of the 
Taylor-GPT method are described in Sec. II, and the 
application of GPT to space derivatives of the 
response R(x) is discussed in Sec. HI. A theoretical 
analysis that highlights the main characteristics of 
the importance functions for these derivatives is 
presented in Sec. IV. Section V describes the use of 
the Taylor-GPT method for predicting effects of 
cross-section variations on the power density and on 
the spatial shifts in the maximum power density. In 
addition, this section discusses several indicators that 
can be used to assess the accuracy of the Taylor-GPT 
method. Comparison of results given by exact cal-
culations, GPT, and Taylor-GPT have been performed 
for several test cases involving a simplified model of 
a heterogeneous LMFBR core. These test cases are 
described in Sec. VI, and the numerical results and 
specific comparisons are presented in Sec. VII. 
Finally, the summary and conclusions presented in 
Sec. VIII highlight the usefulness of the Taylor-GPT 
method for assessing effects of variations in nuclide 
densities and/or nuclear data on the maximum of the 
power density and on the spatial location of this 
maximum. 

IL TAYLOR SERIES EXPANSION WITH 
GENERALIZED PERTURBATION 

THEORY (TAYLOR-GPT) 

ILA. Taylor Series Expansion for Response Variation 

The variation SR(x) in the power density R(x), 
caused by perturbations in cross sections, can be 
determined by using a Taylor series expansion about 
an arbitrary spatial point xk . Retaining the first three 
terms only, this Taylor series is 

8R(x) = 6R(xk) + (x — x k)SR." )(x k ) 

1 + 
2
—(x — xk) 2811.(2)(xk) , 

where BR(1)(xk) denotes the i'th spatial derivative of 
the response variation SR(x), evaluated at x k . 

Two alternative approaches can be used to 
calculate the derivatives 8R( 0. One approach is to 
use the finite difference approximations of the 
derivatives SR(i) at x k , while an alternative approach 
is to use the adjoint solution that corresponds to 
811(1)/R( 1) at xk . As subsequent developments will 
show, either of these approaches can be implemented 
by using existing GPT codes, I6-18  thereby avoiding 

(14) 
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any additional programming. This inherent imple-
mental expendiency enhances the practical usefulness 
of the Taylor-GPT method. 

KB. Finite Difference Implementation of the 
Taylor-GPT Method 

The values of the derivatives 8R( I )(x) and 8R(2)(x) 
'can be approximated at x = xk  by using the finite 
difference expressions 

8R 	614+i ORk-i  
(0 = k 	2p 

and 

°R
(2) 6Rk4.1 -  26Rk ÷ SR k -1  
k 	 412 

In Eqs. (15) and (16), A denotes the mesh spacing, 
and subscripts k - 1, k, and k + 1 refer to values at 
xk- i, xk, and xk+i, respectively; for example, 8Rk = 
8R(xk). 

GPT FOR RESPONSES INVOLVING 
DERIVATIVE OPERATORS 

Equation (1) represents a "fixed-source" problem, 
and, due to linearity, such problems are known to 
possess the so-called "additivity" property. That is, 
if rf is a solution of Eq. (1) with source St, and 
rf is a solution with Sr, then (ri* + is a solution 
corresponding to (Si + Sr). In the finite difference 
approximation, the derivatives 811( 0  are linear com-
binations of 8R evaluated at xk and at its neighboring 
mesh points. Therefore, it is possible, in principle, to 
find a source S*(i) so that the corresponding adjoint 
equation and boundary conditions would yield the 
Ti *(i) necessary to calculate 8R( 0. The actual proce-
dure is detailed below. 

PIA. Adjoint Functions for Calculating Spatial 
Derivatives of Response Variations 

The ratio 8R(1)/R(i)  at x = xk can be computed 
most efficiently by using adjoint functions. These 
adjoint functions, denoted by Tr), are solutions of 

	

(A* - Xl3*)11(') = S: (i) 	 (17) 

where, by analogy with Eq. (5), the adjoint source is 

s*(1). 	aRio 
k 	R a if ) 	4 
	 (18) 

In the above equations, the operator arty)/ad,  is 
defined in the same way as aRk/ail,  [see Eq. (6)1; 
rri) is subject to the same boundary conditions as 
IT; and Rg) denotes the i'th derivative at xk, of R(x) 
with respect to x. 

Changing the order of differentiation, Eq. (18) 

becomes 

	

s*(0=-1--( 1) (I) 	 (19) * 	Ry) a 4i 	' )x 'xk 

Recalling Eq. (5), Eq. (19) is finite differenced for 
= 1 and 2 to obtain 

s „,k(1) 	1 	Rk+1Sk114.1 -  
2A 

(22) 

1,k+3, 	1,k-1 

Z2,1(x) 	= 

Q2 
	 (23) 

and 

5*(2)  kj 

Ei.i(X)RX - Xk+1) -  2Z i d (x)8(x - xk)  + E (x)a (x  - xk-t)  
01.*+1. 2Q t.k 

E2,1(x) 
Q2 
	 (24) 

respectively. Equations (23) and (24) can be used 
with existing GPT codes to calculate the corre-
sponding 1":( 1), thereby avoiding any additional pro-
gramming. The procedure is described in Appendix A 
for the Italian GPT package."'" 

For the finite difference approximations given 
by Eqs. (20) and (21), the functions rvi) can be 
related to the generalized adjoint fluxes (i.e., impor-
tances) for the response sensitivities at xk_ i , xk, and 
xk.,. 1  by making use of the previously mentioned 
additivity property of fixed-source problems. For 
the sources given by Eqs. (20) and. (21), the use of 
this property gives, for i = 1 and 2, 

r ,z(1)... R(1 ) Rk-pirt+ ,  -  

2A 

and 

rt(2)- Ri2) 
 Rk+117+1  - 2Rkrt Rk-117-1  

(20) 

and 
(15) 1 Rk+14.1 -  2RkSic  S:(2)- 	 f■ 	(21) 

l‘k 
respectively. 

(16) 	For calculational purposes, Eqs. (20) and (21) 
can be further simplified by using the expression 

Ql,k Ql(xk) 
Rk =---= G Q2 

and using similar expressions for Rk-.1 and Rk+1. 
Replacing these expressions in Eqs. (20) and (21), 
and using Eq. (5) yields, for energy group j, 

S*(1)  - 
Ii,i(x)S(x - Xk+i) - Z1,i(x)6(x Xk-t) 

k,J 

(25) 

, (26) 
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respectively. The adjoint functions IV and rz(2) are used to determine the values of 4511. (1)/W I)  and 811(2)/R(2) 
 at xk, respectively. 

N.B. Calculation of Direct Effects 

From the definition of the power density at xk, the expression giving the direct-effect component of the 
response sensitivity is obtained as 

8E i ,i(x00/ (xk ) f E 8E 2 ,10001 (x) dx 
8Rk,D / 
Rk 
	

Q1,k 	 Q2 

Multiplying Eq. (27) by Rk gives 

ER - 	[E SE I, Axk.)0ixk) -  RkQ] 
j 

where 

(23 f E S12P)(gx) dx . 	 (29) 

Using a uniform mesh spacing about xk, the first spatial derivative at xk of the direct-effect component 
can be approximated as 

8R(1)  - 	8 	( 	( k,D 2P 	[ 

	
Eij.xkoi .1 Xk+1 ) --" Rk+1Q3 E 6Z ii(xk-1)41(xk-i) + Rk-023 • 

I 
(30) 

Dividing Eq. (30) by RP and simplifying the resulting expression giies 

80) 
1  	

Q3 
Q2  Rk+1 	1 8  1,1(rk +1)0j(Xki1) - 8E2 JOCk-IVAXk_i)] -

QZ 
	 (31) 

Using the fact that 

Q2(Rk+1 - Rk-t) = E [Eid (xk+i)omk+a) - 

(27)  

(28)  

&WO 
E (Sz,,,ock÷ovxk+i)- SE1,/ (Xk-i) (MXk.-1)1 

k,D 

Rk) 
	 „ „ 	 „ 

	

LJ 4,  id VCk-4-11 1Pi(-rk+i) 	t oilXk-1/WilXk-1/1  

E 8E 2,1(x)95i(x) dx 
• •  

E E 2J(xVi(x) dx 
(32) 

The procedure that has led to Eq. (32) is repeated to derive the expression for the second spatial derivative 
at xk of the direct-effect component. The final result is 

a R(2) 
E USE ii(xkftWxk+i) - 28Ii,i(4)46/(xk)+ BE 1,i(x lc-001(4-M f E 5E 2,1000,(x)thc 

k,D     	
(33) 

E 	o [Ei,i(rk.mxk+i)- 2I 1,i(xk)95i(xk) + 1,/(xk-i)Mxk-1)] 	f E z 2 ,;(x)¢i (x)dx 

The expressions given by Eqs. (32) and (33) can be calculated with existing GPT codes as described in 
Appendix A. 
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IV. THE FUNCTIONS r* AND rip: 
A THEORETICAL ANALYSIS 

OF THEIR PROPERTIES 

For each I = 0, 1, 	, the adjoint functions rk) 
satisfy Eq. (17), and thus are functions of both x 
and xk , i.e., n(') = r*i(x,xd. The responses Ril)  r-- 
It(1)(xk), though, depend on xk only. Therefore, the 
equations and boundary conditions satisfied by the 
adjoint functions r: and IV')  are recast in the form 

A*(Rk17) - XB*(1:44) = RkS: , 

(RkI1) = 0 at x = L , 

d (R krinIcbc = 0 at x = 0 , 

and 

A* [14)171(1) ] - XB *[ RPT:(1)] = Igl)Sr)  , 

	

[RiOrr] =0 at x = L , 	(35) 

d(14)In/dx = 0 at x = 0 , 

where L denotes the outer (or the extrapolated) 
boundary of the reactor system, and all other quanti-
ties have the same meanings as before. 

Equations (34) and (35) are the basis for estab-
lishing and analyzing relationships among the adjoint 
functions rr, I 1, 2, ... , and IT. Of course, the 
functions r: (11)  and r: are identical, since Eq. (35) 
reduces to Eq. (34) when i = 0. 

Differentiating Eq. (35) with respect to xk gives 

A* Ia[Riorroyaxkt - XVI a [ Rftritaxki 
= a [Rpsrovax k  

a [R)prryax, = 0 at x = L 

dia[RVIVOYax k ildx = 0 at x = 0 . 

Using the definition of Sr )  [i.e., Eq. (19)], the 
quantity Rk )Sr )  can be expressed as 

RTS;(1)  = f [d((aR/54)/dx ] 5(x xk ) dx . (37) 

Differentiating Eq. (37) with respect to xk , and using 
the definition" of the 5' functional, i.e., 

f f(x)o' (x - a) dx = - f f'(x)5(x - a) dx , (38) 

leads to 

a [ Wspo]Iaxk  

-f [di(aR/a(b)/c/xi] 8' (x -xk ) dx 

	

= f [di +1 (3R/ ac1)1dx 1 + 1 ] 8(x - xk ) dx 	(39)  

Writing Eq. (37) for I + 1, and comparing the result 
with Eq. (39) shows that 

a [RIpspol/axk  = Rrosr+1) . 
Using Eq. (40) to replace the corresponding 

source term in Eq. (36), and comparing the resulting 
system of equations to the system obtained by writ-
ing Eq. (35) for (i + 1) leads to the conclusion that 
arlerir )j/axk  = Rrorzu+0 , 1= o, 1,2,  

The qualitative behavior of 17, rro, and 11:(2) 
 as functions of x can be studied analytically by con-

sidering a one-group, one-region representation" of 
the adjoint diffusion equations given by Eqs. (34) 
and (35). For clarity, the functions -satisfying the 
corresponding simplified adjoint diffusion equations 
are denoted by rr, 11(1), and I1(2), where the sub-
script I now refers to the one-group model rather 
than to the location of xk . The respective equations 
can be written explicitly as follows: 

dr: /dx = 0 at x = 0 , 

11= 0 at x = L , 	(43) - 

c/211/cix2 + B2I1 = -S*ID 

d 21141)Idx2  + B21":(1)  = -,3*(1)/D , 
11(1)  = 0 at x = L , 	(44) 

c/11(1)/dx = 0 at x =  

d211(2)1dx2 +B2r:(2) = nS*(2)ID , 

(45) 
d11(2)/dx = 0 at x = 0 . 

In Eqs. (43), (44), and (45), B 2  and D represent 
the customary one-group, one-region buckling and 
diffusion coefficient, respectively. The analytical 
expressions for 5*, S*(1), and S*(2)  are obtained by 
using Eqs. (9), (10), and (11) in conjunction with 
Eq. (19) and with the definitions" of the 5' and &" 
functionals. Also, for simplicity, the constants I li 

 [see Eq. (12)] are arbitrarily set to unity. Under these 
conditions, the following analytical expressions are 
obtained: 

	

Rk = Qi,o1Q2 
	 (46) 

	

Q1,1/42 2 
	 (47) 

	

RP' Q,,2/Q2 	 (48) • 

(41) 

(34) A simple inductive reasoning can now be used in 
conjunction with Eq. (41) to conclude that 

R(1)17(1) = artRkr: ]lax; . 	(42) 

(36) and 
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b(x - xk) 	1 
(49) 

9 	
(50) 

(51) 

S* = 
Q 1,0 sei,o 	Q2 	' 

8'(x- xk) 	1  S*(I)  - 	n I.K.1,1 	Q2 

6"(x - xk) 	1 s .(2).  

Q1,2 	Q2 	2 

42 1 ,0 = 46(xk) , (52)  

Q11 = (dOldx) x.xk  , (53) 

Q 1,2  = (d 2Oldx 2)„,xk  , (54)  

and 

02 = f gx) dx . 	 (55) 

The adjoint diffusion equations given by Eqs. 
(43), (44), and (45), with the source terms given by 
Eqs. (49), (50), and (51), respectively, can be solved 
analytically to determine 11, 11 (1), and Irk For 
this purpose, it is convenient to use the Laplace 
transform method, as illustrated in Appendix B where 
Eq. (45) is solved in detail. The following analytical 
expressions for the solutions of Eqs. (43), (44), and 
(45) are thus obtained: 

1 	i  1 (cos Bxk L - xk sin Bx ) 	2  
r* = 1 B2DQ 3 

+ 
LBDQ to  k BL 	L 	k  LB3DQ2icos Bx 	

1 
BDQ1,o H(x - xk)sin B(x - xk) , (56) 

1 	 . 
r*(1). 

B2DQ 2 DLQ 
---- (  L  - x'k  cos Bxk + L—L,qi7r) cos Bx + DQ,,,H(x  - xk) cos B(x - xk) , 	 (5 7) I 	 13.1  

ra(2) . 1 + i
IV 

coscosBx,c  +  B(L - xk)sin  Bxk 	2 
1 cosx + B 
	 8(x - xk) 

r,r, 	 nil  H(x xk)sin B(x xk)  
1  B2DQ 2 L 	 DB3LQ 1,2 	

i 	
"V 1,2 	 .4.. 54 1,2  

(58) 

where H(x) represents the customary" Heaviside (unit-step) functional. 
In view of Eqs. (56), (57), and (58), the behavior of the functions 11, Fro, and 11(2)  as x approaches 

xk becomes of particular interest. Thus, Tit is continuous at xk, where 

	

1  ., 	1 	(cos Bxk L - Xk 	 2  r*(... 1_ 
BDQ 2  A I Wok, ''' 2 	. 	 3

DQ2
I COS BXk , 	 (59) 

[BDQ 1,0  BL 	L sin Bxk) LB  

but the first and second derivatives of I": with respect to x have a Heaviside and a Dirac delta-type discon-
tinuity, respectively, at x = xk, since 

	

2 	1 (cos Bxk L - xk 
sin Bx I)} sin Bxk - 	 H( 	 ) , 	 , 	

x - xk) , I 
 

(dr: Idx), xk  = 	 (60 [LB 2DQ 2  DQ10  k BL 	L 	 DQIo 

and 

2 	B (cos Bxk L - xk 	 Rx - xk) 
(d 2111dx )x-xk  =[ 	 in Bxk cos Bxk 	nn  

	

7LBDQ 2  . DQ 1,0 	BL 	L s 	 --lii,o 

At x = xk, the function r; (1)  has a Heaviside-type discontinuity, since 

L - 
Er*mixork  B2DQ2 

( 

 DLQI

Xk

i
cos Bxk  LB 32DQ 2  ) 

cos Bxk 4-
DQ 

I  
-

1,1 	
- 4) 

while the first derivative of IT" with respect to x has a Dirac delta discontinuity, since 

	

[ 	
DLQ 1,1 

B(L  - xk) 	 2 	b(x -  
[dr70)/axi x.,,,k  = 	cos Bxk  LB2DQ2 sin Bxk  

Finally, rt(2) has a Dirac delta-type discontinuity at x = xk, since 

rcos Bxk  + B(L -  xk)sin  Bxk 	2 	 8(x - xic) 

	

[11(2) ix-xk  - B2DQ 	
2 	 LDQ1,2 	 Lvd cos Bxk  

DQ 1,2 • 

(61)  

(62)  

(63)  

(64) 
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When xk is close to the exact location x„, of the 
maximum, but such that xk < x.„ Q 1,0  and Q 1 , 1  are 
positive, while Q 1,2  is negative. In this case, Eqs. (59) 
through (64) indicate that 

1. The functions 1- 24.0) and dr*i ldx both undergo 
step jumps at x = xk, but the former function 
undergoes a positive step jump, while the latter 
undergoes a negative step jump 

2. The functions l': (2), dr;( ' )/dx, and d 2rsi ldx 2  
all display "spikes," i.e., Dirac delta-type dis-
continuities at x = xk. These delta functionals 
cause positive spikes in 11 (2)  and df: (1)/dx, 
but cause a negative spike in d 2rr/dx2. 

Since Eqs. (43), (44), and (45) are particular 
forms of Eqs. (34), (35), and (36), respectively, the 
functions rr, rz('), and 11(2)  should also satisfy the 
relationships given by Eqs. (41) and (42). This fact 
can readily be verified by using Eqs. (56), (57), and 
(58) and Eqs. (46), (47), and (48) to show that 

a(Rkrr)/axk  = R11)11(1) 	(65) 

and 

a201.k rrva4 = arRiorvol/ax k  = R ) :0) 

(66) 

V. RESPONSE VARIATIONS AND SPATIAL 
SHIFTS: CALCULATIONAL PROCEDURES 

AND ACCURACY OF PREDICTIONS 

V.A. Response Variations and Accuracy 
of Predictions 

The effects on the power density of variations 
in the macroscopic cross sections can be evaluated 
by three methods: 

1. direct calculations 

2- use of GPT 

3. use of Taylor series expansion method with 
GPT (Taylor-GPT). 

The first method consists of calculating the response 
(in this case, the point-power density) for the un-
perturbed case (denoted by the subscript 0), the 
response for the perturbed case (denoted by the 
subscript 1), and subtracting the two to determine 
the change. The result of this process gives 

ARJx) = R 1 (x) — R o(x) . 	(67) 

This method will henceforth be called "exact." 
For the first-order GPT method, the response 

variation, denoted by Rp(x), is considered to be 
given by 

SR 
S Rp(x) = R(x) ()

x ' 
where SR/R has the same expression as 8PIP in 
Eq. (7), except that P is replaced by the particular 
response R(x) defined by Eq. (13). 

For the Taylor-GPT method, the response varia-
tion at x, denoted by SR Ep(x), is considered to be 
given by the following three-term Taylor series 
expansion about x: 

6R tp (x)= Rp(xk ) + — xk )5141)(4) 

+ (x — xk)25142)(xk ) • 	(69) 

In Eq. (69), the variation in the power density at 
xk and its first two derivatives at xk are determined 
from GPT calculations. 

The accuracy of the Taylor-GPT method can be 
assessed by comparing the left side of Eq. (69) to 
the result of a GPT sensitivity calculation at x, i.e., 
Eq. (68). A relative error, denoted by TAP and 
defined as 

TAP= (70) 
bIttp(x) — 612p(x) 

6Rp(x) 

can be used to assess this accuracy. 
On the other hand, the relative error that results 

from (a) the inaccuracy of GPT, and (b) the differ-
ences between Eq. (68) and the Taylor series expan-
sion of 6R(x) about xk is found by taking the direct 
calculations as the basis for comparison. This relative 
error is henceforth denoted by TAE and is defined as 

Sittp (x) — ARe(x) 

V.B. Spatial Shifts in the Maximum 
Power Density 

Numerically, a discrete set Ri = R o(xi), i = I, 
2,...,N is obtained when the unperturbed power 
density R o(x) is calculated as a function of x. 
Consider now that xk represents the discrete point 
at which the largest discrete value Rk is obtained. 
In general, xk  does not coincide with the spatial 
location, denoted by xmo, at which R o(x) attains 
its actual maximum. The location xmo  can approxi-
mately be determined by expanding R o(x) in a 
Taylor series around xk, i.e., 

Ro(x) = Ro(xk) + (x — xk)R (01)(xk ) 

1 + —
2 (x — xk)211(02)(xk) + 	(72) 

and by evaluating the first spatial derivative of 
this expansion at xmo. Retaining only terms up to 
0[(x — xk)31 in Eq. (72), and noting that dR o(x)/dx 
vanishes at xmo  [since Ro(x) attains its maximum 
there) gives 

(68) 

TAE = liRe(x) (71) 
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R(01)(xk ) 
xmo  — xk R(0  k2)(x ) " 	

(73) 

When the system parameters are perturbed, the 
perturbed response, denoted by R 1 (x), attains its 
actual maximum at a location xmi , which, in general, 
will not coincide with x mo. The location xmi  can be 
determined by expanding the perturbed response 
R 1(x) in a Taylor series analogous to Eq. (72), and 
following the same procedure as that leading to 
Eq. (73). This gives 

(75)  

(76)  

Within the framework of first-order GPT, the 
perturbed response can be written as the sum of 
the unperturbed response and the response variation 
allp , where the latter term consists of a direct-effect 
component, SRd, and an indirect-effect component, 
SRi, i.e., 

R1 = Ro  + Sltp  

	

= R0 +45Rd + SRi . 	 (77) 

Similar expressions can be written for the spatial 
derivatives of the perturbed response: 

R(11)= R(01)  + SR() )  + SRI° 
R(12)= R(02) 4. 8 Fel) + 8 Rp 	' 

	(78) 

If, on the one hand, the direct-effect components 
vanish, then Eqs. (74) and (78) give 

R(01)  +451V 

	

(xmi  — xk)i = — 
N
" (2)  . 

''' 
°eR(2 	(79) 

o  
If, on the other hand, the indirect-effect components 
vanish, then Eqs. (74) and (78) give 

R(1)+ SRd 
(xmi  — xk)d = 	 (80) R(2)+ 8Rd2) • 

Adding Eqs. (79) and (80), and neglecting second-
order terms of the form SKPSRfi ), gives 

(xmi  — xk )d + (xmi — xk )1 

R(0')  + MP + SR;' )  R(01)  

R(02)  + SRP)  + SRP)  R(02) • 	
(81) 

 
=  

In view of Eqs. (74) and (78), the first term on the 
right side of Eq. (81) is the expression for (xmi — xk) 
when both direct and indirect effects are present. 
The second term on the right side of Eq. (81) corre-
sponds to the unperturbed case, i.e., to (xmo  — xk) 
as given by Eq. (73). Therefore, Eq. (81) becomes 

(xmi xk)d + (xmi xk)a = (xmi xk) + (xmo —  xk) - 

(82) 
Noting that xk is a fixed point, and subtracting twice 
the quantity (xmo  — xk) from Eq. (82) gives 

(xmi — xmo)d + (xmi  — xmo)i = xmi  — xmo - (8 3) 
Equation (83) shows that the spatial shift in the peak 
location can be expressed as the sum of a spatial 
shift due solely to direct effects and a spatial shift 
due solely to indirect effedts. 

Y.C. Influence of the Spatial Shift on the 
Sensitivity of the Peak-Power Density 

When a macroscopic cross section is perturbed, 
the resulting variation in peak power density is given 
by 

ARes  = RI (xmi) Ro(xmo) - 	(84) 

Note that Eq. (84) is exact, i.e., it contains no . ap-
proximations. 

If the shift in the location of the peak is ne-
glected, the variation in the response is given by 
Eq. (67) evaluated at xmo; that is, 

AReo  = RI  (xmo) Ro(xmo) • 	(85) 

In view of Eqs. (84) and (85), the effect of the spatial 
shift on the sensitivity of the peak power density can 
be assessed by using the expression 

Art es —  ARe0  SE — 	 (86) Atte° 	' 

Since Cacucis has shown that 

IR, (xmi) Ri(xmo)r = 0[00 2] , 	(87) 
where. Su represents variations in the system param-
eters, it follows that the . numerator of Eq. (86) is - 
also of second order in these variations. Figure 1 
illustrates the near-range spatial shift and its influence 
on the sensitivity of the extremum. 

VI. DESCRIPTION OF TEST CASES 

VIA. Model and Cross Sections 

A simplified three-region model, which has some 
of the significant characteristics' of a heterogeneous 
LMFBR, has been chosen to test the theoretical 
developments outlined in the previous sections. 
This model consists of an infinite slab, finite in the 
x direction, with internal blanket (IB), driver (D), 

Tell)(xk)  
Xmi - Xk = 0)(xk) 	

(74) 

The spatial shift (x m l xmo) in the peak power 
density can now be estimated by subtracting Eq. (72) 
from Eq. (74). This gives 

R(01)  + SR(1)  R(01)  
Xm  a — xmo 	(2) 	s R(2) + FW 

i‘O 	u  

where all R(i)  and 450), I = 1,2, are understood as 
being evaluated at x = xk. When SR(2)/R(2)  is much 
less than unity, Eq. (75) reduces to 

6R(1)  
xmi x 

IC  0 



Perturbed 

Unperturbed 

X m0 
	

X m 1 
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Ri(xm l)  

Ri 
Ro(xmo) 
R0(xk) 

Ri (xma) 

Fig. 1. Influence of spatial shift on peak response [after 
Cacuci (Ref. 8)]. 

and external blanket (EB). The concentrations of 
sodium, 238U, and 23913u are given in Table I, and 
are the same as for the beginning-of-life LMFBR 
model considered in Ref. 22. The three-group cross 
sections used are from the CITATION test case. 23  

The outer boundaries of regions IB, D, and EB 
are located at 10.5, 60, and 90.0 cm from the reactor 
center (x = 0), respectively. A driver zone mesh 
spacing of 1.5 cm is used for all reported results; 
however, this spacing was varied in some of the test 
calculations discussed in Sec. VII.B. 

VI.B. Selection of Perturbations 

Perturbations of nuclide densities or microscopic 
cross sections cause changes in the macroscopic 
cross sections, 2, and thus in the Boltzmann operator, 
L. To choose perturbations appropriate for testing 

TABLE 

Nuclide Concentrations for Test Model  

Nuclide 

Concentration 
(1024  atom/cm 3) 

Driver 
Internal and 

External Blankets 

238u 

239Pu 

Sodium 

0.006 

0.001 

0.010 

0.012 

0.0 

0.007 

the proposed method, several desirable, and some-
times conflicting, conditions should be considered: 

1. To test the Taylor series method, 82 should 
cause a response variation 8R(x) that appreciably 
depends on x. This implies that the change _in at 
least one of the derivatives alt (i) (xk) should be 
appreciable. 

2. To check the GPT method [see Eq. (7)], 
the indirect-effect component of the total perturba-
tion 80) (x) should be appreciable. 

3. To allow useful comparisons with exact (i.e., 
direct calculation) results, the perturbation SE 
should not be so large that second- and higher order 
terms in 82, which are ignored in the first-order 
GPT applied herein, become overwhelmingly large. 

In view of the conditions described above, four 
test cases, as described in Table II, have been devised. 
In general, these cases meet the above conditions 
adequately, but the following exceptions should 
be noted: 

a. Case 1 does not satisfy condition 1 above 
well, but is a good test for predicting a small 
spatial shift in the peak power density. 

b. Case 3 does not satisfy condition 3 above 
well, but is an interesting example of a very 
large perturbation that effectively transforms 
the heterogeneous core into a homogeneous 
one. 

TABLE 11 

Selected Perturbations and Corresponding Test Cases 

Case 

Zonal Perturbation' 

Internal Blanket Driver External Blanket 

1 

2 

3 

4 

61‘128  

49 
49 

8N
= —3% 

SN" 	- 

8N49 = +0.04549  

SN'.  0,, - +5% N ." 

Replaced with 
driver 

Outer 3 cm 
replaced with 
driver 

. 	= 5% N49 

Inner 
boundary 
extended to 
core center 
(x = 0) 

Inner  
boundary 
extended to 
x= 7.5 cm 

as +5% 
2'7 

'Here, NX is the number density in zone x of the nuclide 
with the last digits in its atomic number and weight of y and z, 
respectively. If no x appears, N is for the zone designated by 
the column heading; N values are given in Table I. 
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	 VII. RESULTS FOR TEST CASES 

	
1.00 

VILA. rr) Results 	 0.80 
Various characteristics of the functions rt i)  

are illustrated by the results presented in Figs. 2 	0.60 
through 5. All numerical results discussed in this 
and the following sections are for xk = 22.5 cm, 
the mesh point at which the maximum value of 

	
0.40 

Rk occurred in the unperturbed (i.e., "base case") 
calculation of the power density R(x). The spatial 
shape of I1 is illustrated in Figs. 2 and 3. The neu- 

r 
	tron importance to R(xk) is greatest near xk; there, 

a neutron is more likely to contribute to the numer- 
ator rather than the denominator of Eq. (13). As 
a function of x, I1(x) is negative over a wide range 	

-0.20 
due to the neutron contributions to the denominator 
of Eq. (13). 

The shape of the curves for r: (1)  and n(2) can 	-0.40 

be discussed in terms of the expressions derived 
in Sec. IV. For this purpose, recall that n depends 	-0.60 
both on xk and x, and that the associated response 
Rk R(xk) depends on xk but not on x. In the 	

-4180 following, the dependence of 1"(i) (x,xk) = rri) (x) 

40.0 	60.0 
	

80.0 

Distance (cm) 

It  

1.00 

40.0 	60.0 	80.0 

Distance (cm) 

Fig. 2. Spatial behavior of M I, rk , and rk., for energy 
group 2, and xk_ i  = 21.0 cm, xk = 22.5 cm, and xkft  = 
24.0 cm. 

Fig. 3. Spatial behavior - of n for energy groups 1, 2, 
and 3, and xk = 22.5 cm. 

on each of the two independent variables x and 
xk will be addressed separately. 

As functions of xk, the relationships between 
the IV)  for the j'th energy group have been generally 
given, m vector form, by Eq. (42), i.e., 

WIT (I)  = al[Rkrmaxi . 	 R42) 

Qualitatively, this behavior is illustrated in Fig. 4, 
which presents 17(1) (x) as a function of x. For 
group 2, for example, given the fact that 14.1)  is 
positive, the shape shown in Fig. 4 can be obtained 
by considering various fixed, but successively larger, 
values of x on the set of curves for r *(x,xk) shown 
in Fig. 2. 

As functions of x, the qualitative behavior of 
IV, shown in Figs. 2 through 5, can be supported 
by considering the analytic results for 11, 11 0), and 
Fr")  obtained in Sec. IV for a simple one-group, 
one-region case. Although the results shown in 
Figs. 2 through 5 are for a multiregion, multigroup 
case, the predominant features of these results near 
xk are expected to be similar to those of the simpler 
one-group, one-region model. This is because 

I. fixed point xk is well within the interior of 
the driver region, and hence is neutronically 
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Fig. 4. Spatial behavior of Tr (i)  for energy groups 1, 2, 
and 3, and xk = 22.5 cm. 

"far" (several mean-free-paths) from other 
regions 

2. the x dependence of TV 1) (x) is strongly in-
fluenced by the spatial form of the fixed 
sources, SPi)(x); for our test cases, these 
sources are space-energy separable in the 
driver region 

3. coupling between groups for the multigroup 
case does not change the predominant features 
of the x dependence of TVP(x), since this 
dependence is similar for all groups. This 
similarity, illustrated in Fig. 3, is principally 
due to item 2 above. 

The discussion that followed Eqs. (59) through (64), 
and that focused on the predominant features of the 
x dependence of the functions 1-1(1) and 11(2), also 
provides a good description of the predominant 
features of the x dependence of the derivative im-
portance functions shown in Figs. 4 and 5. 

The values of rz(2) for x # xk are significantly 
smaller than the value at xk, and are sensitive to 
the "fundamental harmonic correction" 2,4,24 that 
must be used to eliminate fundamental harmonic 
contamination when calculating r*(0. Although 

I  
40.0 	60.0 
	

80.0 

Distance•cm) 

Fig. 5. Spatial behavior orrr(3) for energy groups 1, 2, 
and 3, and xk = 22.5 cm. 

the CIAP-INO version of CIAP-ID (Ref. 17) that 
was employed to calculate the adjoint functions 
performs this correction, the correction was numer-
ically inadequate to determine 17 (2). This situation 
was resolved by noting that the functions II (1) 

 satisfy the orthogonality property 

(rp(),Elo)=o , 	(88) 

where B is the fission operator. As a result of apply-
ing this orthogonality property to eliminate funda-
mental harmonic contamination, the values for 
Tr)  obtained by using the fixed source S: (2)  [see 
Eq. (24)] agreed well with the corresponding values 
obtained by using Eq. (26). 

The numerical accuracy of calculating 17 (1)  was 
verified in a similar manner: On the one hand, rivo 
was calculated by using the fixed source SZ (1)  [see 
Eq. (23)] and, on the other hand, rto was cal-
culated by using Eq. (25). These calculations gave 
essentially identical results. 

A mesh spacing of 1.5 cm, which is a typical 
value specified for benchmark calculations of critical 
assemblies with LMFBR characteristics, e.g., ZPR-
3-48 (Ref.. 25), was initially chosen for both forward 
and adjoint calculations. The results for the functions 

-6.00 	 
00 

-0.20 	I  
0.0 	20.0 



218 	 BELBLIDIA et al. 

rzo) were obtained by using this mesh spacing. 
The sharp variations displayed by these functions 
provided a strong motivation to investigate whether 
this mesh spacing, which is adequate for calculating 
the comparatively smooth forward fluxes, is indeed 
adequate for accurately calculating the adjoint func-
tions. This adequacy was investigated by performing 
several calculations with a finer mesh, obtained by 
reducing the 1.5-cm mesh spacing to 0.5 cm in a 
region around xk. Although the shapes of Fr) 
changed slightly due to the additional mesh points 
(an expected outcome considering the sharp varia-
tions involved), the use of the two meshes yielded 
essentially identical results for 8Itk ). This gives 
confidence that the 1.5-cm mesh spacing is indeed 
adequate. All numerical results reported here were 
obtained by using the 1.5-cm mesh spacing. 

VILB. Comparison of Results for 811 (1) (xk) Obtained 
from GPT and Direct Calculations 

The accuracy of values for 84) obtained from 
GPT calculations was -verified by performing two  

direct TAIM calculations.' As discussed in Sec. V.A, 
the results of these direct calculations are termed 
exact. The convergence criteria for these direct 
calculations were adequately stringent to ensure that 
the exact results retained sufficient significant figures 
for comparisons with perturbation-theory results. 
As indicated in Tables HI through VI, the exact 
and GPT results for UV)  generally agreed within 
^•5%. Note that for all four cases, the indirect com-
ponent of SR' )  is greater than the direct component 
for at least two of the three f values. Thus, con-
dition 2 of Sec. 'VI.B is largely satisfied. 

The results shown in the last columns of Tables 
IV and V indicate that GPT and exact results do not 
agree well for 15142)  of cases 2 and 3, respectively. 
For case 3, the disagreement between GPT and exact 
results indicates that the nonlinear terms disregarded 
by first-order GPT are not small. This is not surpris-
ing since, as discussed in Sec. VI.B, case 3 represents 
a very large perturbation. The disagreement between 
GPT and exact results for SIV )  of case 2 can be 
analyzed by comparing the results for SRP/142) 

 presented in the fourth columns of Tables HI through 

TABLE III 

GPT and Exact SR°)(xk) Results for Case 1* 

Derivative 
Order, i 

GPT Results for SR(D/R°) 
• 

aR")  P 
(GPT) 

AReo) 

(Exact)b  
GPT - Exact 

Direct' Indirect' '"'""" Exact 	(74 

0 
1 

2 

-9.16-3C 

 +2.26-1 

-3.59-3 

-2.25-3 

+2.97-1 

-1.16-2 

---...■----- 

--..-- 

----- 	----- 

-356-4 

+2.71-6 

+2.86-7 

-3.69-4 

+2.88-6 

+3.04-7 

-3.7 

-5.8 

-5.8 

*All values are for xk s,  22.5 cm. Because of the characteristics of CLAP, R has a LiVol factor of 1.5 cm 3  in the numerator, 
which is not contained in Eq. (9). Read (±x - y) as tx •10 -Y; see Table II for description of perturbation cases. The values pre-
sented in the last three columns are calculated with more significant figures than shown. 

"See discussion of Eq. (7). 
bfhe exact value was determined from two direct calculations [see Eq. (67)]. 
`Read as -9.16 X 10-3. 

TABLE IV 

GPT and Exact SW° Results for Case 2* 

Derivative 
Order, i 

GPT Results for SRS' JR° )  
450)  P 
(GPT) 

AO 
(Exact) 

GPT - Exact 
Direct Indirect Total Exact 	

(%) 

0 
• 1 

2 

541-4' 

3.93--1 

9.82--3 

2.59-3 

-2.17+0 

-7.26-3 

3.13-3 

-1.78+0 

2.55-3 

9.77-5 

-9.21-6 

-4.80-8 

9.09-5 

-9.05-6 

-34-8 

7.4 

7.7 

39 

*See footnotes for Table 'IL 
'Read as 5.41 X 10 -4. 
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TABLE V 

GPT and Exact 8R (i)  Results for Case 3* 

Derivative 
Order, i 

GPT Results for 8R(O/R(11  
80 P 
(GPT) 

ARe(i) 

(Exact) 
GPT - Exact 

Direct Indirect Total Exact 	- (%) 

0 

1 
2 

-I.59-1 8  

-1.59- 1 

-1.59-1 

3.78-2 

-5.44+1 

-4.52-1 

-1.21-1 

-5.46+1 

-6.11-1 

-3.79-3 

-2.83-4 

1.15-5 

-3.79-3 

-2.14-4 

 1.00-5 

-0.14 

32 

14 

*See footnotes for Table III. 
*Read as-139 X 10'. 

TABLE VI 

GPT and Exact 811(1)  Results for Case 4* 
. 

GPT Results for BROW )  
Derivative 
Order, i 

84) 
 (GPT) 

A4'1 
(Exact) 

CPT - Exact 
Direct Indirect Total (5,.) Exact 

0 --4.54-2a  1.14-2 -339-2 -1.06-3 -1.05-3 	- 0.75 

1 -4.54-2 -1.58+1 -1.58+1 -8.19-5 -7.64-5 7.2 

2 -4.54-2 -131-1 -1.76-1 3.32-6 3.22-6 3.1 

*See footnotes for Table III. 
'Read as -4.54 X 10'. 

VI. This comparison shows that SRP )/RP is smallest 
for case 2, being about an order of magnitude smaller 
than for case 1 and about two orders of magnitude 
smaller than for cases 3 and 4. Note now that the 
effects of the nonlinear terms disregarded by first-
order GPT are measured by e(x) defined as 

e(x) = 8Rp(x) - AR,(x) , 	(89) 

where AR, and 15Rp  are given by Eqs. (67) and (68), 
respectively. Recalling that 81421  for case 2 is a very 
small quantity that is calculated by using Eq. (16), 
it is expected that even a weak dependence of e(x) 
on x would cause appreciable differences between 
exact and GPT results. Calculations of e(x) have 
indicated that this is indeed true for case 2. Note, 
though, that if 6142)  is small compared to 814 
and/or SW, then inaccuracies in 61425  will influence 
results for SR(x) appreciably only if (x xk ) is 
large. This follows from the use of Eq. (14). 

VII.C. Comparison of Taylor-GPT, GPT, 
and Exact Results for SR(x) 

The use of the Taylor-GPT method raises ques-
tions concerning the accuracy of both the GPT 
and Taylor series features. Tc investigate these 
questions, two series of comparisons were performed: 

1. First, results obtained for 8Rip(x) were com-
pared to exact values AR,(x) [see Eqs. (69) . 
and (67), respectively]. As discussed in Sec. 
V.A, this comparison assesses the composite 
accuracy of both features (i.e., second-order 
Taylor expansion around xk  and use of first-
order GPT) of the Taylor-GPT method. -  

2. Second, results for SIt tp(x) were compared to 
results for 8 Rp(x) [see Eqs. (69) and (68), 
respectively]. As discussed in Sec. VA, this 
comparison assesses the accuracy of solely 
the Taylor series expansion feature of the 
Taylor-GPT method. (The inaccuracies due 
to the use of GPT are eliminated in this com-
parison.) • 

Tables VII, VIII, and IX present the comparisons 
mentioned in item 1 above. These comparisons show 
that for values of (x - xk) varying from -10 to 20 cm, 
aRtp (x) and AR,(x) agree within--570. This generally 
good agreement worsens only when (x - xk) becomes 
large (in absolute value), or when SR(x) is about 
to change sign while going smoothly through a 
zero (e.g., case 4, x = 10.5 cm, in Table IX). 

Although case 1 does not generally satisfy con-
dition 1 of Sec. VI.B, the values of aR tp(x) obtained 
by using all three terms in Eq. (69) agree well, within 
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TABLE VII 

Taylor-GPI and Exact 8R(x) Results* for Case 1;+ xk = 22.5 cm 

x x - xk Exacta  Taylor-GPTb  

8Rtp 	AR, 
0b 

 

AR, 	9 

(cm) (cm) ARe  a Rtp Three Terme  Two Termd  

13.5 -9 -3.84-4e  -3.69-4 -4.0 -1.0 
16.5 -6 -3.82-4 -3.67-4 -3.9 -2.5 
25.5 +3 -3.60-4 -3.46-4 -3.7 -3.3 

28.5 +6 -3.47-4 -334-4 -3.6 -2.1 
34.5 +12 -3.13-4 -3.02-4 -33 +3.2 
40.5 +18 -2.68-4 -2.61-4 -2.9 +14 
52.5 +30 -1.53-4 -1.46-4 -4.9 . 	+79 

*Read (tx - y) as tx-10-Y. 
+See Table H for description of test cases. 
aThe exact value was determined from two direct calculations [see Eq. (67)]. 
bThe values presented in the last three columns are calculated with more significant figures than shown. 
aThe values for 8114, were obtained by using all three terms in Eq. (69). 
dThe values for 812.11, were obtained by using only the first two terms in Eq. (69). 
*Read as -3.84 X 10 -4 . 

5%, with the exact values Alte(x). Notably, this 
good agreement persists even at distances (x - xk) 
as large as 30 cm. As will be discussed in Sec. VII.D, 
the perturbation considered in case I causes only 
a small spatial shift in the location of the maximum 
power density: Thus, the good overall agreement 
between 8It tp(x) and ARe(x) obtained in this case 
represents an additional positive verification of 
the adequacy of the numerical methods used in this 
work. 

The results presented in the last two columns 
of Tables VII, VIII, and IX also indicate that the 
use of only the first two terms in the Taylor ex-
pansion given by Eq. (69) is adequate when x is 
not very far from xk. The generally good agreement 
between AR e(x) and the values of Rip (x) obtained 
by using this two-term expansion indicates that, 
in certain cases, the number of adjoint calculations 
may be reduced; for example, calculation of 11 (2) 

 may not be necessary if only small to moderately 

TABLE VIII 

Taylor-GPT and Exact Results* for Case 2;74 = 22.5 cm 

x 
(cm) 

x - xk 
(cm) 

Exact 
ARe  

Taylor-CPT 
8Rjp  

811tp.

A 

 - AR, 
(%)  

, 
Three Term Two Term 

10.5 -12 +1.93-4a  +2.05-4 +6.0 +8 
13.5 -9 +1.69-4 +1.79-4 +5.4 +7 
16.5 -6 +1.44-4 +1.52-4 +5.5 +6 

19.5 -3 ---  +1.25-4 -- - --- 
25.5  +3 - -- +6.98-5 - -- -- - 
28.5 +6 +3.64-5 +4.16-5 +14 +17 

34.5 +12 -1.71-5 -1.63-5 -4.9 -25 
40.5 +18 -6.79-5 -7.59-5 +12 +0.3 
52.5 +30 -1.57-4 -2.00-4 +27 +13 

*See footno es for Table VII. 
'Read as 1.93 X 10-4. 
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TABLE IX 

Taylor-GPT and Exact Results* for Case 4, xk = 22.5 cm 

x 
(cm) 

x - xk 
(cm) 

Exact 
Alta  

Taylor-GPT 
8Rtp  

6Rti, - afiRe  

(%)  

Three Term 
c 

Two Term 

10.5 -12 +832-5a  +1.63-4 +96 +190 
13.5 -9 -2.38-4 -1.87-4 -21 +35 
16.5 -6 -5.36-4 -5.07-4 -5 +6 

19.5 -3 ---  -7.98-4 --- 
25.5 +3 - -- -1.29-3 - -- --- 
28.5 +6 -1.45-3 -1.49-3 +3 +7 

34.5 +12 -1.73-3 -1.80-3 +4 +18 
40.5 +18 -1.88-3 -2.00-3 +6 +34 
52.5 +30 -1.81-3 -2.02-3 +12 +94 

*See footno es for Table VII. 
'Read as 832 X 10 -5. 

large distances (x - xk) are of interest. Of course, 
the adequacy of using a two-term expansion for 
calculating 6Rtp(x) also depends on the size of the 
perturbation. Cases 1 and 2 involve small perturba-
tions, but cases 3 and 4 involve larger ones. For the 
latter cases, the importance of the term containing 
8142)  in Eq. (69) is illustrated in Fig. 6. 

Results for the second set of comparisons, i.e., 
those mentioned in item 2 at the beginning of this 
section, are presented in Table X. For completeness, 
this table presents not only comparisons of bR ip (x) 
versus dRp(x), but also includes comparisons with 
the exact values ARe(x). Note the selection of 
particular combinations of perturbation cases (i.e., 
cases 3 and 4 of Table II) and values of x: Each 
combination simutaneously involves a large perturba-
tion and a large absolute value of (x - xk). The 
reason for selecting such combinations is to delib-
erately accentuate the space-dependent inaccuracies, 
expressed by e(x) defined by Eq. (89), of using first-
order GPT. 

The outcome of comparing SRtp(x), SRp(x), 
and ARe(x) is concisely expressed in Table X by 
presenting the values for TAP and TAE obtained 
from Eqs. (70) and (71), respectively. As expected, 
the nonlinear effects ignored by the Taylor-GPT 
method are important in these cases; this importance 
is clearly indicated by the large values obtained for 
the quantity TAE. The main contribution to these 
nonlinear effects, though, arises from the GPT 
component of the Taylor-GPT method. This fact 
is indicated by the small values obtained for the 
quantity TAP, which show that the Taylor-GPT 
results agree closely with the GPT results. These  

characteristics are further highlighted in Fig. 6, 
which shows that, even though the GPT results 
differ from the exact ones by as much as 50%, the 
Taylor-GPT and GPT results agree within 4% for 
a large range of distances x. This indicates that when-
ever the GPT method is sufficiently accurate, the 
use of the Taylor-GPT method could substantially 
reduce the number of calculations for investigations 
of space-dependent response variations. 

0.0 

o -2.0 

o -4.0 

-6.0 

c°  
-8.0 

ECL  
CC 

-10.0 

-12.0 

40.0 50.0 60.0 70.0 80.0 

Distance (cm) 

Fig. 6. Comparisons of exact, GPT, two-term Taylor-GPT 
[8Rtp(2)I, and three-term Taylor-GPT [8R 1 ,(3)1 results for 
cases 3 and 4. 
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TABLE X 

Comparisons of Alle(x), Rp(x), and Rtp(x) for Large 
Perturbations and Large Ix - xkl 

Perturbation 
Case 

x 
(cm) 

TAPa  
(%) 

TAE b  
(%) 

4 ;13.5 -3.7 -22 
4 40.5 +1.9 +6.3 
3 135 -33 -47 
3 403 +2.0 +17 

'See Eq. (70). 
bSee Eq. (71). 

VILA Spatial Shifts and Their Influence on 
Peak-Power Density Sensitivities 

Perturbations in nuclear data alter not only the 
maximum value taken on by the power density, 
but also cause spatial shifts in the location of this 
maximum. To calculate these shifts by using the 
Taylor-GPT method, it is convenient to rewrite 
Eq. (75) as 

R0(0  6R( °/R(  ° - 6R(0/R(2)  
= - 	 . (90) 

xmi 
 -xmo  Rot" 	1 + 611(2)/R(2)  

Table XI presents numerical values for the spatial 
shifts (i.e., xo" - x,,,0) caused by the perturbations 
described in cases 1 through 4. Direct, indirect, and 
total contributions were calculated by using the 
Taylor-GPT method. The respective contributions 
are denoted in Table XI by Stp.D,StpJ, and Stp,T, and 
were obtained by replacing the quantity 6R (` )  in 

TABLE XI 

Spatial Shifts in Location of Peak Power 

Shifts' 
Case 1 
(cm) 

Case 2 
(cm) 

Case 3 
(cm) 

Case 4 
(cm) 

Sex +0.160 -0.482 -22.8 -4.85 

Stp,Tb +0.151 -0.490 -38.2 -5.23 

Sepj +0.086 -0.601 -27.1 -4.96 

Stp,D +0.064 +0.105 0.0 0.0 

Stp,i + Stp,D +0.150 -0.496 -27.1 -4.96 

.5 ip,T 
-Se,T 

 
-5.6% +1.7% +67.8% +8.0% 

Se,T 

'Shifts are defined in Sec. VII.D. 
bThe quantity S tp,T differs slightly from (Stp./ + Stp.D) 

because the sum neglects the second-order terms mentioned 
immediately after Eq. (80). 

Eq. (90) with -6R19, 61210, and 1611)  + 8RY)), 
respectively. 

Recall that Eq. (90) has inaccuracies stemming 
from the use of both first-order GPT and second-
order Taylor expansion in x. Inaccuracies due to the 
use of first-order GPT in Eq. (90) can be assessed 
by using perturbed data to recalculate the response 
Ri(x). The numerical values of R i(x) thus obtained 
have been examined to determine the grid location 
xk i  at which the largest discrete value of R 1(x) 
occurred. Except for very small shifts, xk a  is not 
generally expected to coincide with xk. (Recall 
that xk denotes the location where the largest dis-
crete value of the unperturbed response occurred.) 

Using now the same procedure as that leading 
to Eq. (74) but with xk 1  replacing xk gives 

Val V4k 

X/111 Xk 1 	(2) RI 	(xia) 

Equation (91), rather than Eq. (74), is now used 
to determine xmi ; this is because, although both 
equations stem from Taylor series truncated at the 
third-order terms, the truncation errors in Eq. (91) 
are smaller than those in Eq. (74) since, in general, 

xklI < lx,,ti  xk1. Furthermore, it is expected 
that this procedure will; in general, allow determina-
tion of xo" within an accuracy comparable to that 
of determining xmo  from Eq. (73). 

The results shown in Table X1 in the row labeled 
Se,T are the numerical values of (x„" - xmo), where 
xmi  and xmo  are obtained from Eqs. (91) and (73), 
respectively. A comparison between these results 
and the corresponding results shown in the row 
labeled Sipa. indicates the magnitude of effects 
arising from the use of first-order GPT in Eq. (90). 

The indirect contributions (i.e., Stp j) are gen-
erally preponderant; the direct contributions Szp,D 
are zero for cases 3 and 4, and are still much smaller 
than Stia for case 2. Only for case 1, which involves 
a very small shift, are the values of Stpj and Stpj) 
comparable. 

The results presented in the last row of Table XI 
show that shifts predicted by the Taylor-GPT method 
agree well with the exact ones for distances between 
-0.15 and 5 cm. For case 3, which represents a 
perturbation so large that it effectively transforms 
the heterogeneous core into a homogeneous one, 
the shift predicted by the Taylor-GPT method 
substantially overestimates the actual shift. This 
highlights the importance of the nonlinear terms that 
are neglected by first-order GPT. 

The influence of spatial shifts on the sensitivity 
of peak-power density has been discussed in Sec. V.C. 
This influence is characterized by the quantity SE 
defined by Eq. (86). Note that the results for SE 
are subject to inaccuracies associated with Eqs. (73) 
and (91), which are used to determine the locations 

(91) 



POWER DENSITY IN NUCLEAR REACTORS 

x„„)  and xmi , respectively. Table XII shows that 
the error caused by the shift in the location of the 
maximum power is small for cases 1 and 2. For 
larger perturbations, e.g., cases 3 and 4, the effect 
of the spatial shift on the sensitivity is appreciable 
and cannot be neglected. 

VIII. SUMMARY AND CONCLUSIONS 

This paper has presented an efficient method 
to investigate one-dimensional, space-dependent varia-
tions 8R(x) in the power density R(x). This method 
has been called the Taylor-GPT method in order to 
highlight its two main characteristics: 

1.use of a Taylor series expansion of SR(x) 
in the spatial variable x 

2. use of first-order GPT (Refs. 1 through 4) 
to efficiently evaluate the derivative operators 
that appear as coefficients in this Taylor series. 

Equations satisfied by the importance (i.e., 
adjoint) functions for the l'th spatial derivative of 
SR(x) have been derived within the framework of 
GPT. Using finite differences, it has been shown that 
these equations can be solved in a straightforward 
manner with existing GPT codes to obtain the im-
portance functions. The main characteristics of these 
importance functions have been highlighted analyti-
cally by deriving certain relationships that they sat-
isfy. A deeper understanding of these characteristics 
has been facilitated by deriving the complete analyt-
ical expressions of the importance functions for an 
illustrative (one-region, one-group) reactor model. 

It has been shown that the Taylor-GPT method 
is efficient not only for estimating space-dependent 
variations in the power density, but also for estimat-
ing spatial shifts that parameter perturbations induce 
in the peak power density. To illustrate its usefulness, 
this method has been applied to four test cases 
involving a simplified three-region, one-dimensional 
model of a heterogeneous LMFBR. The results given 
by the Taylor-GPT method have been compared 
to those produced by the standard GPT method,  

and both have been verified by comparisons to 
exact results (obtained by actual recalculations with 
altered parameter values). 

These comparisons indicate that the results given 
by the Taylor-GPT method are practically as accurate 
as those given by the standard GPT method. The 
Taylor-GPT method includes all the advantages 
offered by adjoint methods, e.g., the same impor-
tance functions are used to assess the effects on 
the response of many parameter perturbations. 
In addition, the Taylor-GPT method could sub-
stantially reduce (even by comparison to standard 
OPT) the number of calculations for investigations 
of space-dependent variations in the power density. 
Note, though, that the Taylor-GPT method does 
not account for second- and higher order effects 
of parameter variations. Nevertheless, the Taylor-
GPT method provides detailed information regarding 
specific contributions (e.g., due to leakage, absorp-
tion) to the overall variation in the response. The 
availability of such detailed information is valuable 
for systematic and efficient reactor design studies. 

APPENDIX A 

APPLICATION OF THE ITALIAN GPT CODE 
PACKAGE TO CALCULATE SPATIAL 

DERIVATIVES OF S R(x) 

Al. Calculation of Po 
In general, the solution to the adjoint problem 

is computed by CIAP (Ref. 17) for ratios of the 
form 

f E z,j (901 (x)dx 

(A-1) 

f E Z2,1(X)01(X) dx 
V2  

Equation (A.1) can be cast in a form amenable to 
calculate 8R(I)/R(I)  by simply preparing, as indicated 
below, the input data for the adjoint source. 

The energy production cross sections in the 
numerator and denominator of Eq. (A.1) are written 
as 

TABLE XII 

Influence of the Spatial Shift on the Peak-Power Density 
(x) = E plC (X)4i (A.2) 

SE a  
Case (%) 

1 0.009 
2 -0.029 
3 -63.5 
4 -17.0 

aSee Eq. (86).  

and 

E2,j (X) E "1(44 	(A.3) 

respectively, where Ni denotes densities for nuclide 
k. Subscripts 1 and 2 in Ni and Nil, respectively, 
allow for potentially distinct spatial behavior of 
the energy production cross sections. With these 



3. for r*(2) calculations, +N,no  
2N o 

1 
Ni(x) = - ni 

0.0 , 

for x = 	xk-1, and x E m0 

for x = xk and x E m0 

elsewhere . 

-4 

U(p)= K 
P2 	+ B2 DQ1 , 2 

p2  exp(-pxk) 
p2 1. B2 

(B.3) 
1 	1 

+ DQ2 P-1-1315(P 
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specifications, CLAP computes the desired r*(`) if 
the densities are chosen in the following manner: 

1.NI (x) = Nifs  for allx in region m, m = 1 through 
M 

2. for r*(1) calculations,  

In addition, an algorithm was implemented to cal-
culate SD (i.e., the perturbation in the diffusion 
coefficient) exactly, rather than via a first-order 
expansion in SE r, as done in the original version 
of this code. 

1+N,,, 0 .1 

N1(X) = .1S410 1 

0.0 „ 

for x = xk.I. 1  and x E m0 

for x = xk- 1  and x E m0 

elsewhere 

APPENDIX B 

DETERMINATION OF Fro 

In view of Eqs. (45) and (51), the function 
rtm is the solution of 

d2r:(2)_, D2„.(2)_ 	- 1 8"(x - xk) " 	DQ2  D(21.2 

Here, m and M refer, respectively, to the region 
number and the number of regions; m0 denotes the 
number of the region where the peak power occurs; 
and be„ and 40  are the densities of nuclide k in 
regions m and mO, respectively. 

Note that CIAP includes the volumes associated 
with the mesh points in the integrations over space. 
But, as long as the mesh spacing is uniform in the 
vicinity of xk, this does not affect the values of 
the fractional variation of the derivatives. Note also 
that CLAP attaches a factor of 0.5 to the contribution 
of a point to the integral value if the contribution 
of the point preceding it or the point following it 
is zero. To guard against this, one must use a very 
small value for the input density (of the order of 
10-14) at xk -2  and xk +2. 

A.11. Direct-Effect Calculations 

The code GLOBPERT-1 D (Ref. 18) can be used 
to calculate the direct-effect component of SR" )/ 
R"). For this purpose, the input data for the direct-
effect calculations must be prepared as follows: 

1. for 8R(1)/R(1)  calculations, 

i +SN/ , x = xi( +1 

6N = -6N1 , x = xk-i 

0.0 , elsewhere 

2. for SR(2)/10)  calculations, 

1 +8Ni  , x = xk +I  or x = xic- 1 

bisi = -2&N1 , x = xk 

0.0 , elsewhere 

Here, 6N1 denotes the density change for nuclide 
i and effected in the quantity (21,k (see Eq. (22)1. 

Also note that GLOBPERT-1D was modified to 
treat more accurately the interfaces between regions. 

rr (2)  = 0 at x = L 	t , (B.1) 

drr (2)  
dx 
	at x = 0 

Applying a Laplace transform to Eq. (B.I), and 
defming 

U(p) = f exp(-px)11 (2)  dx 	(B.2) 

gives 

where K is, at this stage, an unknown constant to 
be determined. 

Taking the inverse Laplace transform of Eq. (B.3) 
gives 

r1(2)  = K cos Bx + B-*; (1 - cos Bx) 

I  [6(x - x
k 

)- .131-1(x - xk) sin B(x -xk)1 DQ i .2   

(B.4) 

For a critical reactor, the boundary conditions given 
in Eq. (B.1) are automatically satisfied; thus, the 
constant K is determined by using the orthogonality 
condition given in Eq. (88). This leads to 

K =  1 	_ 2 ) B 
B2DQ2 	BL DQ 3.3  

X 

 

" BL  
cos Bxk L - xk sin  Bxk) 	

(B.5) 

Replacing Eq. (B.5) in Eq. (B.4) yields 
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rt(2) = B DQ2 1 + 
[cosBxk  + 	- xk) sin Bxk  

LD(2 1.2  

2 1 j  cos Bx 

B  Q  i.2  MX - xk) sin B(x xk) 6(x  - k)  DQ ix.2  
D 	' 

(B.6) 
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