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An Improved Complex Signal Based Calibration
Method for Beam-Steering Phased Array

Fengchun Zhang, Huaqiang Gao, Zhengpeng Wang and Wei Fan

Abstract—Phased array calibration is essential to ensure ac-
curate array radiation performance. This paper proposes an
improved calibration method based on complex signals in an
anechoic chamber for phased arrays that can only operate
in its default beam-steering mode with limited beam-steering
angular ranges. The basic principle is to convert the array
factors associated with the multi-probe locations into the beam-
steering factors of the array, which can virtually widen the beam-
steering angular range. The broadened angular range can lower
the condition number of the phase setting matrix and therefore
improve the calibration accuracy. Both theoretical derivations
and measurement validation are provided to demonstrate the
effectiveness and enhancement of the proposed method.

Index Terms—Over-the-air testing, millimeter-wave phased
array, array calibration, beam-steering angular range.

I. INTRODUCTION

Phased arrays have found increasing use in various key
applications, e.g. 5G, radar, and satellite communications, to
provide high-speed and reliable wireless data links. To en-
sure accurate and optimal radiation performance for practical
phased arrays, array calibration is often required to compensate
for the imhomogenities among radio frequency (RF) chains
associated with phased array elements.

Phased array calibration has been a long standing research
topic and a variety of measurement techniques have been pro-
posed in the literature [1]–[11]. The calibration methods can be
grouped into two categories: on-off method and all-on meth-
ods. The on-off method is typically adopted in the industry,
where the RF responses of array elements are measured one
by one via activating the target element and deactivating other
elements. In the industry, on-off is often done in the near-field
with the help of a scanner [12]. However, on-off measurements
might not truthfully reflect the states of the array elements
in their default all-on mode, especially for mmWave phased
arrays [6]. In all-on calibration measurements, all elements
radiate simultaneously while we can tune the phase excitation
for individual array elements. Based on the measured data,
calibration methods have been developed for both complex
signal data [4], [5] and amplitude-only signal data [1], [3],
[8], [10], [11].
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However, dedicated phase tuning operations per element
might not be supported by commercial mmWave radios, mak-
ing the above mentioned all-on methods inapplicable. It would
be desirable if array calibration can be done in the default
beam-steering mode, i.e. via simultaneously tuning phases
of all elements according to beam-steering vectors, which is
generally supported by device under test (DUT).

An array calibration method is proposed in [13] for phased
arrays that can only operate in beam-steering mode. However,
the algorithm is restricted to uniform linear array (ULA)-
type phased array, whose beam-steering matrix has the unique
Vandermonde structure. The algorithm would deteriorate and
fail for the DUTs with a limited beam-steering range and it
can not be directly applied for phased arrays with arbitrary
array configurations. To address these problems, a multi-probe
strategy is proposed in this paper to virtually increase beam
angular interval steered by the DUT array, thus improving
the calibration accuracy. The proposed strategy necessitates
repetitive measurements for multiple DUT orientations or
multiple probe antenna directions, which can be easily realized
and automated in practical systems. The proposed method also
works for phased arrays with arbitrary array configurations.

In this paper, we firstly review the reference calibration
method presented in [13] and highlight the limitation of the
existing solution. After that, a strategy to tackle the problem
with ill-conditioned beam-steering matrix is discussed. We
then experimentally validate the proposed algorithm in a com-
pact antenna testing range (CATR) measurement setup. Our
proposed solution is essentially an extension and improvement
of the reference method presented in [13].

II. METHOD

A. Signal Model

The system diagram for calibrating a N -element DUT array
is illustrated in Fig. 1, where Q = 2M + 1 probes are
symmetrically distributed around the boresight direction and
numbered from −M to M with θm denoting the angular
location of the m-th probe, with θ−m = −θm and θ0 = 0o.
The complex signal received by the m-th probe is given by:

s(θm) = B ·A(θm) · c, (1)

where the vectors and matrices are explained below:
• The vector s(θm) ∈ CP×1 is the complex signal vector

received by the m-th probe antenna when P phase shifter
settings are implemented for the DUT antennas.

• The matrix B ∈ CP×N is the phase setting matrix
with its entry bpn denoting the p-th phase shifter setting
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Figure 1. System diagram of a multi-probe setup for phased array calibration.

Table I
CONDITION NUMBER OF B FOR VARIOUS Ψ VALUES.

Ψ[deg] 10 20 30 40 50 - 90
Condition number 241 19.6 4.4 1.7 1

implemented for the n-th DUT antenna. To steer a beam
in direction ψp with a ULA, bpn should be set as:

bpn = e−jk(n−1)d sinψp , (2)

where k and d represent the wave number and the element
spacing, respectively. The beam directions ψp varies
within [−Ψ,Ψ] with Ψ ≤ 90o. Note that the proposed
principle can be applied for arbitrary array configuration,
though ULA is investigated in this work for simplicity.

• The matrix A(θm) ∈ CN×N is a diagonal matrix with the
diagonal elements representing the coupling coefficients
between the DUT antenna ports and the m-th probe
antenna port. Assuming free space propagation scenario
under the far-field condition and a constant complex gain
value among elements over a limited angular region for
both the DUT elements and probe antennas, the coupling
coefficient between the n-th DUT antenna port and the
m-th probe antenna port can be simplified as:

an(θm) = GG
ejk(n−1)d sin θm

2kr
, (3)

where G and G denote the complex radiation patterns of
the DUT antennas and the probe antennas, respectively.
The above assumption is valid since the DUT arrays are
typically composed of identical elements with broad main
beams in design. The parameter r is the distance between
the center of the DUT array and the probe array.

• The vector c ∈ CN×1 denotes the calibration vector with
the entry cn denoting the complex initial excitations of
the n-th DUT antennas. The goal of the calibration is
to detect the complex initial excitations among the DUT
antennas, i.e. the vector c, and further to compensate for
the excitation discrepancies among the DUT elements.

B. Problem Statement
In [13], an array calibration method is proposed for ULAs

with a single probe located in the boresight direction of the

DUT, i.e. with m = 0 and θ0 = 0o. According to (1) and (3),
the calibration vector c can be solved as:

c =
2kr

GG
·B+ · s(0o), (4)

where ()+ denotes the pseudo-inverse operator.
However, several factors would affect the calibration accu-

racy:
• The approximation errors in radiation patterns of DUT

antennas and probe antennas in matrix A. The radiation
patterns are not identical in a practical array, due to the
fabrication error and mutual coupling effect among the
elements. Therefore, the pattern approximation in (3) for
matrix A will introduce errors in the estimated cn.

• Implementation errors in the phase setting matrix B.
Although the target matrix B used in (4) is ideally
determined, the actual matrix B in (1) implemented with
phase shifters will suffer from the quantization error
and stepping error (tuning error) in both amplitude and
phase terms. Thus, the matrix B implemented with phase
shifters will introduce errors in the estimated cn.

• The measurement noise in the complex signal vector
s(θm). In a practical measurement, the measurement
noise is unavoidable, which will introduce estimation
errors to the calibration coefficients as well.

As concluded in [13], the calibration accuracy, i.e. the
estimation accuracy of the vector c, relies on the condition
number of the phase setting matrix B. The phase setting matrix
B in beam-steering mode defined in (2) is mainly ruled by the
steering angle interval Ψ of the DUT array, as illustrated in
Table. I for a 4-element ULA with a half-wavelength spacing.
It can be observed that the condition number of matrix B
decreases as Ψ increases from 10o to 50o and converges to
the minimum value 1 for Ψ ≥ 50o.

However, in many deployment scenarios, phased arrays can
only steer beams within a small angular range, e.g. up to 15o

for LTE base station antennas, leading to a poor calibration
accuracy with the method in [13] due to the large condition
number of matrix B. Therefore, a more generic calibration
method for beam-steering phased arrays is highly demanded.

C. Proposed solution
In this work, we propose an improved calibration method

for beam-steering phased arrays. The basic idea is to virtu-
ally increase the DUT steering range, therefore reducing the
condition number, by employing multiple probes or measuring
the DUT in multiple orientation angles (which are equivalent
in principle). The product of matrix B and A(θm) can be
denoted by matrix H(θm), where its entry hpn(θm) can be
calculated by following (2) and (3):

hpn(θm) = bpn · an(θm)

=
GG

2kr
e−jk(n−1)d·(sinψp−sin θm)

=
GG

2kr
e−jk(n−1)d·sin[ϕp(θm)],

(5)

where we define

sin[ϕp(θm)] = sinψp − sin θm. (6)
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A new signal vector s̃ ∈ CQP×1 can be constructed by
stacking the signal vectors received by the probes as:

s̃ = [sT (θM ), ..., sT (θ0), ..., s
T (θ−M )]T , (7)

where ()T denotes the transpose operator. Accordingly, a new
matrix H̃ ∈ CQP×N can be written as:

H̃ = [HT (θM ), ...,HT (θ0), ...,H
T (θ−M )]T . (8)

Based on (1), (7) and (8), the signal model with a multi-probe
setup can be expressed by:

s̃ = H̃ · c, (9)

where the entry of the matrix H̃ can be given as:

h̃in =
GG

2kr
· e−jk(n−1)d·sin ψ̃i

=
GG

2kr
· b̃in,

(10)

where b̃in is expressed by:

b̃in = e−jk(n−1)d·sin ψ̃i . (11)

Comparing the above equation with (2), we can see that the
phase of b̃in is equal to the phase shift set for the n-th DUT
antenna to steer a beam in direction ψ̃i. Based on (9), (10)
and (11), the calibration vector c can be solved as:

c =
2kr

GG
· B̃+ · s̃. (12)

Again, the estimation accuracy of vector c is determined by
the condition number of the matrix B̃.

When ψp and θm are small, the i-th virtual beam direction
ψ̃i in (11) can be approximated according to (6), (8) and (10):

ψ̃i = ϕp(θm) ≈ ψp − θm, (13)

where the index i = (M − m)P + p via setting m =
M, ...,−M and p = 1, ..., P , respectively.

For a DUT array with the steering angles ψp ∈ [−Ψ,Ψ], the
virtual steering angle range is extended to [−θM−Ψ, θM+Ψ]
with θM > 0o denoting the angular location of the edged
probe. The range extension is accomplished via converting
the DUT array factors in the directions of the probes into the
beam-steering factors. The widened beam-steering angle range
can decrease the condition number of matrix B and thereby
improve the calibration accuracy. Hence, the proposed multi-
probe setup is capable of calibrating phased arrays even with
a limited steering range.

As explained, the matrix B̃ should be designed to have a
minimum condition number in principle to avoid magifying
the errors, which requires a beam-steering range ≥ 50o. To
achieve a larger virtual beam-steering range with a multi-probe
setup, the edged probes should be located further away from
the boresight direction, i.e. 0o, which however, will introduce
larger approximation errors in the radiation patterns in (3).
Therefore, the selection of the probe locations is a trade-
off between the virtual beam-steering range (determining the
condition number of matrix B) and the approximation errors
in the radiation patterns of the DUT and the probe antennas.

Reflector antenna

Feed 
antenna

mmWave
AiP

Horizontal 
rotation with 
azimuth axis

90o

−90o

Figure 2. A photo of the measurement setup seen inside the CATR chamber
(VNA and control computer are outside the chamber and not shown).

III. MEASUREMENT VALIDATION

A. Measurement Setup and Procedure

The validation measurements were performed in a standard
CATR setup, where a 4×4 mmWave phased array antenna-in-
package (AiP) platform detailed in [6] and [13] was employed
as the DUT. As shown in Fig. 2, the measurement setup
consisted of the phased array AiP, the CATR setup, VNA,
a DC power supply for the AiP and a control computer to
automate measurements and store the measured data.

The mmWave AiP was placed in the quiet zone of the CATR
where the polarization of feed antenna and mmWave AiP
was aligned. The azimuth axis of 0o represents the boresight
direction of the AiP pointing to the CATR reflector center. To
validate the efficiency of the proposed calibration method in
practice, the following two measurements were conducted.

• Calibration measurement using the well-known rotating
element electric field vector (REV) method. Same as [13],
the REV method was adopted to obtain the ground truth
coefficients of the AiP elements. The REV calibration
procedure was detailed in [14].

• Beam-steering calibration measurement for the AiP with
multiple orientations. The AiP was horizontally rotated
around the azimuth axis from 90o to −90o with a step of
−10o, which is equivalent to multiple probes located in
cooresponding directions as shown in Fig. 1. For each
orientation of the AiP (i.e. each probe location), the
AiP performed horizontal beam-steering operations from
−90o to 90o with a total of 65 beam-steering angles. The
complex S-parameters were recorded in the VNA for each
beam-steering operation in each orientation.

As explained in [13], the calibration coefficients of the 1
× 4 ULA elements can be determined based on horizontal
beam-steering measurements, with each ULA element being a
subarray composed of 4 × 1 antenna elements.

B. Measurement Results

To measure the estimation accuracy of a set of complex cal-
ibration coefficients, the root-mean-square deviation (RMSD)
is taken as a figure of merit in this letter, which is defined as

RMSD =

√∑N
n=1 |cn − ĉn|2

N
, (14)
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Figure 3. RMSD with the proposed method in a 3-probe setup via locating
side probes in different directions for various Ψ.

where cn represents the coefficients obtained with REV
method and ĉn denotes the coefficients obtained with beam-
steering mode methods, for various settings, e.g. the beam-
steering range and the configuration of the probe array.

To investigate the impact of the side probe locations on the
calibration accuracy, an analysis is done for a 3-probe setup
based on the data measured with the side probes in various
directions for DUTs with different beam-steering ranges Ψ, as
plotted in Fig. 3. It shows that the minimum RMSD is achieved
when the side probes are located in ±30o for DUTs with
different beam-steering ranges. For the side probes located
from ±10o to ±30o, the RMSDs decrease due to the reduced
condition number of matrix B and small approximation errors
in the radiation patterns for matrix A. However, when the side
probes located further away from each other, i.e. from ±30o

to ±90o, the condition number of matrix B is small, and the
RMSDs increase mainly due to increased approximation errors
in the radiation patterns of the DUT antennas and the probe
antennas. The results demonstrate that locating side probes in
±30o is a good trade-off between the condition number of
matrix B and the approximation accuracy of matrix A. The
figure further illustrates that a better calibration accuracy can
be achieved for the DUT with a larger beam-steering range Ψ,
which is expected due to the larger beam-steering range and
more measurement data are used in the calibration.

Furthermore, the minimal RMSD achieved with an optimal
3-probe setup is compared to that with the method in [13] for
different Ψ, as illustrated in Table II. It can be observed that:

• The RMSDs achieved with the proposed method in the
3-probe setup are all obviously lower than those with the
method in [13] for various Ψ, which further demonstrates
the performance improvement with the proposed method.

• With the proposed method, the RMSD decreases as Ψ
increases due to the reduced condition number of matrix
B and more measurement data used in the calculation
while constant approximation errors remain in radiation
patterns of the DUT antennas and the probe antennas .

• For small beam-steering ranges, i.e. Ψ ≤ 20o, the
RMSDs with the proposed method are slightly higher
than those with the method in [13] with Ψ = 90o due
to the slightly higher condition number of matrix B for

Table II
RMSD COMPARISON BETWEEN THE 1-PROBE AND 3-PROBE SETUP.

Ψ[deg] RMSD for 1-probe setup RMSD for 3-probe setup
5 1.276 0.144
10 0.574 0.113
15 0.489 0.096
20 0.155 0.083
25 0.216 0.070
30 0.138 0.058
35 0.129 0.044
40 0.143 0.037
45 0.109 0.029
50 0.086 0.026
55 0.076 0.029
60 0.075 0.024
65 0.073 0.038
70 0.073 0.042
75 0.073 0.042
80 0.072 0.042
85 0.072 0.042
90 0.072 0.042

the virtual beam-steering range within [35o, 50o]. While
for Ψ > 20o, the RMSDs with the proposed method
are almost the same to those with the method in [13]
with Ψ = 90o since the condition number of matrix
B converges to 1 when the virtual beam-steering range
larger than 50o, as illustrated in Table I.

The results demonstrate that the proposed method can
efficiently enhance the calibration accuracy for the DUTs with
limited beam-steering ranges. The achieved calibration perfor-
mance is comparable to that of the DUTs with a full steering
range, i.e. [−90o, 90o]. Thus, a 3-probe setup, which can
achieve acceptable calibration accuracy with a cost-effective
setup, is employed for the 1× 4 DUT array in the letter.

IV. CONCLUSION

An array calibration method is proposed in [13] for phased
arrays operating only in beam-steering mode. However, the
calibration performance of the method deteriorates as the
beam-steering range shrinks, making it inapplicable to cal-
ibrate the phased arrays with limited beam-steering ranges.
Therefore, an improved calibration method is proposed in this
work. The proposed method employing multiple probes can
virtually extend the angle range steered by the DUT array
via converting the array factors associated with the probe
locations into the beam-steering factors. For a multi-probe
setup, the proposed method can virtually enlarge the beam-
steering range to ±(θM + Ψ) with θM denoting the angular
location of the edged probe and ±Ψ being the steering range
of the DUT array. The widened beam-steering range will
weaken the error amplification effect introduced by the phase
setting matrix and thereby improve the calibration accuracy.
The performance of the proposed method is validated in a
mmWave AiP. The array calibration results demonstrate the
effectiveness and an obvious enhancement of the proposed
method for the calibration of phased arrays with restricted
steering angle ranges.
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