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Abstract: In this paper, a methodology for optimal decision making for electrical systems is ad-
dressed. This methodology seeks to identify and to prioritize the replacement and maintenance of a
power asset fleet optimizing the return of investment. It fulfills this objective by considering the risk
index, the replacement and maintenance costs, and the company revenue. The risk index is estimated
and predicted for each asset using both its condition records and by evaluating the consequence of
its failure. The condition is quantified as the probability of failure of the asset, and the consequence is
determined by the impact of the asset failure on the whole system. Failure probability is estimated
using the health index as scoring of asset condition. The consequence is evaluated considering a
failure impact on the objectives of reliability (energy not supplied -ENS), environment, legality, and
finance using Monte Carlo simulations for an assumed period of planning. Finally, the methodology
was implemented in an open-source library called PywerAPM for assessing optimal decisions, where
the proposed mathematical optimization problem is solved. As a benchmark, the power transformer
fleet of the New England IEEE 39 Bus System was used. Condition records were provided by a local
utility to compute the health index of each transformer. Subsequently, a Monte Carlo contingency
simulation was performed to estimate the energy not supplied for a period of analysis of 10 years.
As a result, the fleet is ranked according to risk index, and the optimal replacement and maintenance
are estimated for the entire fleet.

Keywords: asset management; decision making; health index; Monte Carlo simulations; risk index

1. Introduction

Utilities are facing challenges in their operation, maintenance, and planning. This is a
consequence of fulfilling regulations, seeking improvements in both profitability and strate-
gic objectives. Regulation demands more sustainability, reliability, quality, and security of
the system with a constant assessment of a utility’s revenue. In order to accomplish higher
regulations and to meet the company goals, decisions must be optimized [1]. Most of these
decisions are related to intensive investments on physical assets. These investments com-
monly include the replacement, refurbishing, or monitoring of aging assets. Investments
are subject to budgetary constraints, the lack of qualified staff able to do the replacement,
long waiting times for manufacturing some power assets, etc. These challenges are sum-
marized in the CIGRE TB 787 [2], where it is stated that the assessment of power systems
assets needs to increase its sophistication and rigor because they are in a perfect storm.
Therefore, decisions must be made considering optimal cost effectiveness. For instance,

Energies 2021, 14, 4987. https://doi.org/10.3390/en14164987 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2188-2498
https://orcid.org/0000-0001-9163-4989
https://orcid.org/0000-0002-2640-0964
https://orcid.org/0000-0002-8635-7689
https://orcid.org/0000-0002-3892-6189
https://orcid.org/0000-0002-2995-1147
https://doi.org/10.3390/en14164987
https://doi.org/10.3390/en14164987
https://doi.org/10.3390/en14164987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14164987
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14164987?type=check_update&version=2


Energies 2021, 14, 4987 2 of 25

in [3], a conceptual framework is shown for linking physical asset management practices
and their performance implications. The framework was implanted in a survey measuring
the next AM variables: strategy and plan, life-cycle, asset information, asset review, and,
finally, risk assessment. A similar work was presented recently in [4] seeking to establish
the relationship between asset management and business performance.

In order to improve decision making, the decisions must be supported and aligned
with the utility objectives. One way to support the decisions is by using an asset manage-
ment strategy [5]. With such a strategy, both asset condition and criticality can be employed
to support optimal decisions using the risk index. However, issues related to the index
estimation of electric assets must be faced as a consequence of a lack of consensus and
international standards [6].

In spite of these asset management challenges, improvements in asset maintenance
and replacement strategies using data analytics are reported in the literature. For in-
stance, algorithms using big data to estimate optimal maintenance and replacement of
distribution transformers and poles by predicting the aging of assets are addressed in [7].
However, these algorithms are focused on preventive maintenance due to their simple
implementation at the distribution level.

In [8], RADPOW (reliability assessment of electrical distribution systems) code is
used to develop a method assessing, in a cost-benefit way, the impact of a maintenance
strategy on the reliability of power distribution systems. Similarly in [9], a transformer
maintenance assessment method is developed using a semi-Markov state diagram. In the
aforementioned methods, both the rate of failure and their impact are provided by statistics
over a whole network. Therefore, asset condition records are not considered, implying
that a forecast of the future condition is not contemplated. In [10], a model for optimal
decision making considering reliability and cost is addressed for power transformers.
The optimal decision making is focused on evaluating the maintenance strategy by which
the maximum reward is obtained. However, in the cost function, the energy not supplied
due to a transformer failure is assumed to be constant. In [11], a procedure to realize
a replacement plan considering reliability and cost is addressed. The decision making
considers the impact on the whole system. In this tool, the asset age is represented by a
bathtub curve considering its condition and the reliability N-2 criteria.

A model of composite power system assets is addressed in [12]. This model seeks to
identify critical components of a power system. The critical analysis is performed using the
costs of system contingencies with a state enumeration instead of a Monte Carlo simulation.
The advantage of using state enumeration is that the probability of failure of the assets can
be analyzed independently of their failure consequence. In this case, the consequence is
the cost of the expected energy not supplied. Nevertheless, load forecasting and condition
assessment are not considered.

OFGEM, Great Britain’s independent energy regulator, published a common frame-
work [13] for Distribution Network Operators, where the methodology for risk assessment
is addressed, including the estimation of health index, probability of failure, and mone-
tization of criticality throughout time. However, in this framework, methodologies for
supporting optimal decision making and the use of historical condition records for fore-
casting asset condition are not addressed, and the major of the variables are estimated
using the operation conditions of Great Britain. A global asset management approach
has been introduced in the project PRIAD [14] by Hydro-Quebec, proposed to develop
an asset management decision support tool in order to ensure utilities’ sustainability
and performance [15]. This plan considers developing modules for data warehouses,
asset behavior, reliability, transmission system simulator, risk, and optimization, while
considering the decision-making process in a holistic way. These modules are currently
under development and just consider maintenance strategies. Additionally, the methods
to optimize the maintenance strategy are currently under investigation. Finally, in [2],
approximations performed by different utilities are presented, where the importance of
risk assessment using estimations of probability of failure and critically can be concluded.
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However, the lack of both consensus for the definition of asset index and decision-making
optimization methodologies can be evidenced.

In [16], the CIGRE defined the modern asset management in power networks as the
use of asset health and asset criticality to prioritize the replacement or maintenance of
an asset fleet. The health index could be linked with the probability of failure in order to
estimate the risk index. In line with the CIGRE’s definition and in order to support decision
making in electrical systems in a common asset management framework, the present
paper proposes a methodology to estimate in a novel way the optimal decision making
for both replacement and maintenance. This methodology assesses and predicts the
condition, reliability, and risk of an electrical asset fleet considering individual assets as a
part of a whole system. The condition is scored using diagnostics records, the reliability is
assessed by Monte Carlo contingency simulations during an assumed period of planning,
and the risk is computed as the impact of the contingency by the probability of failure.
The objective function is formulated to obtain the highest return of investments (ROI)
considering incomes, risk monetized, and cost of decisions. This assessment can be used as
an input for cost-effective decision making in maintenance and replacement of physical
assets, as well as for benchmarking. Finally, this methodology was implemented in an
open library called PywerAPM.

According to the literature review, the main contribution of this paper is considering
in a novel way the whole optimization problem with the following methodology features:

• Criticality assessment by Monte Carlo simulations considering both load growth and pro-
file;

• Forecasting of asset management index using diagnostic records;
• Monetization of strategic objectives such as financial, environmental, legal, and reliability;
• Comparison between “do nothing”, replacement, or maintenance strategies for an asset

fleet considering the optimal ROI modeling the risk variation in time as TOTEX outcomes;
• A mathematical formulation in order to reduce the computational effort to estimate

optimal maintenance strategies and replacement time is presented.

Figure 1 summarizes the framework proposed to estimate the optimal return of
investment of a power asset fleet from replacement or maintenance.
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Figure 1. Proposed framework for optimal decision making of a power asset fleet using risk assessment.

The remainder of this paper is organized as follows: Section 2 presents the approxima-
tion used to estimate the risk index of a fleet of assets using their condition and criticality.
Section 3 describes the formulation to compute the optimal replacement and maintenance
frequency of an asset. Section 4 presents the results of the assessment of the entire power
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transformer fleet belonging to the IEEE 39 Bus System. Finally, Section 5 closes with con-
clusions.

2. Asset Management Framework

In this section, the risk index (RI) assessment of an asset fleet is addressed. The index
is estimated using the probability of failure of an asset and the assumed impact of this
failure on the whole network. This impact is defined as the criticality. The conceptual
model of the asset management framework is presented in [17].

2.1. Asset Condition Using Health Index (HI)

To score the condition of a physical asset, the health index (HI) is commonly used [18,19].
HI can be computed using a weight function as follows:

HI(t) =

N
∑

n=1
βn(S(t)n · wn)

N
∑

n=1
βnwn

, (1)

where t is the evaluation time, S(t) is the score of a specific condition, which is commonly
normalized in the range [0–1], 0 being the best condition and 1 the worst condition; w
is the weight given to the condition; β is a binary coefficient which represents the data
availability; and N is the number of conditions scored. Health index at the instant t (HI(t)),
as the score S(t), can take values in the range [0–1], 0 being the best condition and 1 the
worst condition.

2.2. Reliability Assessment

With the condition scored by the HI, the failure rate of an asset (λ) [20] can be
estimated as follows:

λ(t) = a · eb·HI(t) + c, (2)

where a, b, c are constants to fit using both historical failure rates and condition reports.
In order to formulate the optimization problem addressed in Section 3, it is proposed to fit
the following logistic function using Equation (2):

λ(t) =
L

1 + e−k(t−t0)
+ λ0 (3)

where L, k, t0 are the parameters of the logistic function to be fitted. In other words,
with the purpose of fitting the failure rate to a logistic function using the health index
forecast Equation (1), the points to fit Equation (3) are computed using Equation (2), which
are estimated using the HI. Hence, the integral of the cumulative failure rate is given by∫ tend

tbeg

λ(t)dt =
∫ tend

tbeg

(
L

1 + e−k(t−t0)
+ λ0

)
dt (4)

With the estimation of the failure rate, the reliability (R(t)) of an asset during its life
can be computed by

R(t) = e
−
∫ tend

tbeg
λ(t) dt

, (5)

where tbeg and tend are the current time and the end time of the assessed period, respectively.
Finally, the probability of failure (POF(t)) can be estimated using the reliability as follows:

POF(t) = 1− R(t) (6)
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2.3. Risk Index

The risk index (RI) of an asset is defined as the probability of failure (POF) times the
criticality (Cr) or impact of the failure on the entire system as follows:

RI(t) = Cr(t) · POF(t) (7)

However, the POF and the Cr are time varying. As the asset ages, operating con-
ditions can influence its health. To illustrate this, the condition degradation of a power
transformer can be accelerated due to high temperatures, electromagnetic transients, or
an incipient internal failure which influences the oil and insulation quality. On the other
hand, the criticality can increase throughout time as a consequence of system growth and
therefore with the energy not supplied (ENS) during a contingency. Hence, the criticality
depends on both the duration of the failure rate and the operating conditions during the
failure. The duration of failure can be assessed with the mean time to repair (MTTR),
and the operating conditions can be assessed using reliability analysis, such as N-POF(N)
(probabilistic assessment) instead of N − 1, with load forecast models during an assumed
period of planning.

In order to assess the decision making using the risk index, it is suggested to measure
the criticality as a monetary consequence [16] of the asset failure. This consequence can be
evaluated considering different objectives, such as safety, finance, environment, reliability,
etc. The risk monetization facilitates the costs/benefits assessment of different decisions
and therefore the determination of optimal expenditure strategy on assets.

3. Proposed Risk Assessment Procedure

The proposed algorithm to estimate optimal decision making considering the risk
is addressed.

3.1. Risk Index Forecasting

The algorithm proposed to estimate the risk index is shown in Figure 2. The inputs
of the procedure are the net name, the asset portfolio, the starting date of assessment,
the number of Monte Carlo trials, and the number of hours of the assumed period of
planning. The algorithm is divided into three main stages, as suggested in [8]. In the first
stage, the health index of the entire fleet is assessed. Subsequently, in the second stage,
to assess the reliability of the system and to estimate the expected energy not supplied,
a Monte Carlo simulation is performed during the assumed period of planning. Such a
simulation models the probability of operating the system under security margins when
an asset fails. Security margins are determined by the loading limits of transformers and
lines and by bus voltages; for this, redundancy is commonly used at the transmission level.
Finally, in the third stage, the risk assessment for each asset is performed using the results
of the Monte Carlo simulation. To simplify the risk assessment, an optimal secure power
flow rescheduling considering losses and cost is not taken into account.
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1: procedure RISKINDEX(Net_Name,Fleet,Date_Beg,N,N_hours)

2: Asset_Con← Con(Fleet) . Condition Assessment

3: net← pandapower_load_net(Net_Name) . from pandapower software

4: for n← 0 to N do . Reliability Assessment - Monte Carlo

5: for tk ← 0 to N_hours do . Period to eval in hours

6: Datek ← Date_Beg + tk

7: Asset_HI← HI(Asset_Con, Datek) . Equation (1)

8: Asset_POF← POF(Asset_HI) . Equation (6)

9: Asset_Status← BOOL(Asset_POF)

10: net.asset.in_service← Asset_Status

11: load_forecast← Four_Fit(Datek) . Cruz, et al.

12: net.load← load_forecast

13: ENSk ← pandapower_Load_flow(net) . Thurner, et al.

14: end for

15: end for

16: for Ak in Fleet do . Risk Assessment

17: CRk ← Criticality
(
ENSAk

)
18: RIk ← CRk × POFAk

19: end for

20: return RI

21: end procedure

Figure 2. Proposed pseude-algorithm for risk assessment of an electric asset fleet.

For condition assessment, the scoring normalization of the health index is carried out
using a linear interpolation for each condition assessed. Subsequently, to predict the health
index, a function fit for each condition is performed as follows:

S(t) = 1− e−(
t
l )

m
, (8)

where m and l are the constants to fit using the historical condition records. Additionally,
in order to improve the fit, the conditions at the beginning of the asset life Stbeg = 0 and at
the end of life Stend = 1 are assumed.

The reliability assessment using Monte Carlo simulations is performed seeking to
quantify the impact of an asset failure on the ENS during contingencies. This impact
is computed running load flows and considering the load profiles, the expected load
growth, and the mean time to repair (MTTR) of each asset. Hence, for every hour of
the assumed period of planning, the POF of each asset is evaluated, followed by a load
flow running. This calculation is realized in order to assess the security limits during the
contingency. The probability of failure is computed using the health index by which the
condition assessment is considered. Hence, the criticality associated with the reliability
objective is estimated as the cost of the expected ENS during a year due to the failure of
an asset. To summarize, trials are performed in order to simulate in a probabilistic way
(N-POF(N)) the expected ENS for a whole power system during a period of planning.
Hence, the probability of failure of each asset is considered.
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Using the results of the Monte Carlo simulation, the density and cumulative functions
of the expected energy not supplied are computed to estimate the monetized criticality
corresponding to ENS (CrENS) along the assumed period of planning. In this proposal,
the total criticality of the failure is assumed as the monetized impacts:

Cr(t) = CrENS(t) + CrFin + CrEnv + CrLegal (9)

where CrFin, CrEnv and CrLegal are the financial, environmental, and legal impacts as a
consequence of the failure, respectively. These monetized values can be estimated using the
regulation and expert knowledge, as suggested by the CIGRE [1]. Finally, the risk matrix is
assessed, and subsequently, a priority ranking is performed and presented by a Pareto plot
using the risk index.

3.2. Optimal Decision-Making Assessment

With the asset fleet ranked by the risk index, and assuming the risk as a financial
outcome, the return of investment (ROI) can be stated as follows:

ROI(t) =
Inc(t)

RI(t) + OPEX + CAPEX
− 1 (10)

where Inc(t) is the estimated revenue for operating the asset at the instant t, and OPEX and
CAPEX are the assumed constant operating expenses and capital expenses, respectively.
In order to assess the optimal decision making, in this paper, we proposed to maximize the
ROI by optimizing the maintenance or replacement of a fleet of assets.

3.2.1. Optimal Replacement Strategy

In this section, the optimization problem is formulated to estimate the optimal replace-
ment of an asset. Hence, the influence of the replacement on the ROI can be formulated
as follows:

ROI(t) =
Inc(t)

RI
(
t, trep

)
+ OPEX + CAPEX

− 1 (11)

where trep is the time when the asset is replaced. To estimate the influence of replacement
in the RI with Equation (7), the cumulative failure rate can be expressed as follows:∫ tend

tbeg

λ(t)dt =
∫ trep

tbeg

(
L

1 + e−k1(t−t1+tbeg)
+ λ0

)
dt +

∫ tend

trep

(
L

1 + e−k2(t−t2+trep)
+ λ0

)
dt (12)

where t1, t2, k1, and k2 are the cumulative function fit factors for the current and new asset,
respectively. Integrating Equation (13), the following expression is obtained:

∫ tend

tbeg

λ(t)dt =(λ0 + L)
(

tend − tbeg

)
+ L

 ln
(

ek1(tbeg+t1−trem) + 1
)
− ln

(
ek1t1 + 1

)
k1

+

ln
(

ek2(trem+t2−tend) + 1
)
− ln

(
ek2t2 + 1

)
k2


(13)

With Equations (6), (7), (11) and (13), the optimization problem is formulated as fol-
lows:

max
trep

Inc(t)(
1− e

−
∫ tend

tbeg
λ(t,trep)·dt

)
· Cr(t) + OPEX + CAPEX

− 1

s.t. trep > tbeg

s.t. trep < tend

(14)
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where the decision variable is the replacement time
(
trep
)
, and tend is the assumed life in

which the asset generates income.

3.2.2. Optimal Maintenance Strategy

In this section, the optimal frequency of maintenance is addressed. The OPEX is
taken as the maintenance expenditures given by the maintenance cost times the number
of maintenances. As in the previous section, the ROI is assumed as the objective function
as follows:

ROI(t) =
Inc(t)

RI(t, T) +
N−1
∑

n=0
Mc + CAPEX

− 1 (15)

where Mc is the maintenance cost, N is the amount of maintenance during the asset life,
and a constant maintenance period T equivalent to the time between maintenance tasks is
assumed. To assume constant T, the planning of maintenance in a medium large time is
simplified. Hence, the influence of maintenance in the cumulative failure rate is given by

∫ tend

tbeg

λ(t)dt =
N−1

∑
n=0

∫ T

0

(
L

1 + e−k(t−t0)
+ λ0

)
dt (16)

where N =
tbeg−tend

T . The result of solving the integral of Equation (16), assuming tbeg = 0,
is the following:

∫ tend

tbeg

λ(t)dt =
tend

T

(
L
k

(
ln
(

ek(t0−T) + 1
)
− ln

(
ekt0 + 1

))
+ T(λ0 + L)

)
(17)

Substituting Equation (17) into Equation (15), the optimization problem is given by

max
T

Inc(t)(
1− e

∫ tend
0 λ(t,T)

)
· Cr(t) +

tend

T
·MC + CAPEX

− 1

s.t. T > 0

s.t. T < tend

(18)

where the decision variable is the maintenance period (T).

4. Evaluation of the Proposed Procedure

The proposed procedure is implemented in Python language, in a library called
PywerAPM, and evaluated using the IEEE 39 Bus System [21]. Hence, an assessment using
the algorithm shown in Figure 2 is performed to model, in a probabilistic way, the impact
of a contingency consequence of assets’ failures to support the decision making. For this
case, in the asset portfolio, only the power transformer fleet was considered. To simplify,
the criticality of each transformer is defined as the expected energy not supplied when
it fails plus the impact shown in Table 1. For the simulation, the following conditions
were assumed: number of trials N = 750, starting date 1 January 2020, planning period of
10 years equivalent to 87,600 h, and load growth rate of 2 %/year. The load patterns and
the records of transformer diagnostic tests were provided by a local utility.
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Table 1. Assumed criticality for the asset fleet.

Asset CrFin CrEnv CrLegal

TR_1 8.40× 104 1.00× 105

TR_2 1.20× 105

TR_3 1.20× 105 1.00× 103

TR_4 9.60× 104 1.00× 103

TR_5 8.40× 104

TR_6 9.60× 104

TR_7 1.20× 105

TR_8 7.20× 104

TR_9 3.60× 104

TR_10 9.60× 104 1.00× 105

TR_11 3.60× 104

TR_12 8.40× 104 2.00× 103

4.1. System Description

The IEEE 39 Bus System is composed of 19 loads, 10 generators, 34 lines, and 12 power
transformers. The system topology is shown in Figure 3. The rating of power transformers
and lines was assumed constant, making a conservative assumption. In other words,
dynamic rating was not considered.
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Figure 3. Transmission System of IEEE 39 New England Bus System [21].

The operating conditions of the assumed power system during the first week of the
period of planning are shown in Figure 4. These conditions were computed following the
procedure proposed in [22]. Figure 4a,b shows the assumed load profiles for each of the 19
loads on Wednesday and Sunday. These are considered as the days with a higher difference
in the load patterns. The load profiles were approximated using Fourier series, such as
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addressed in [23]. The loading of the transformers and lines as well as the voltages of the
buses were computed using the pandapower tool [24] by running load flows at each hour.

0 5 10 15 20
Time - [h]

0

500

1000

1500

2000

2500

3000

3500

4000

Lo
ad

 - 
[M

VA
]

Load_03
Load_04
Load_07

Load_08
Load_12
Load_15

Load_16
Load_18
Load_20

Load_21
Load_23
Load_24

Load_25
Load_26
Load_27

Load_28
Load_29

Load_31
Load_39

0 5 10 15 20
Time - [h]

0

500

1000

1500

2000

2500

3000

Lo
ad

 - 
[M

VA
]

Load_03
Load_04
Load_07

Load_08
Load_12
Load_15

Load_16
Load_18
Load_20

Load_21
Load_23
Load_24

Load_25
Load_26
Load_27

Load_28
Load_29

Load_31
Load_39

(a) Power forecasting on Wednesday (b) Power forecasting on Sunday

0 5 10 15 20
Time - [h]

TR_1
TR_2
TR_3
TR_4
TR_5
TR_6
TR_7
TR_8
TR_9

TR_10
TR_11
TR_12 Loading-[%]

10
20
30
40

Load-[MVA]
 100.0
 200.0
 300.0
 400.0
 500.0

0 5 10 15 20
Time - [h]

TR_1
TR_2
TR_3
TR_4
TR_5
TR_6
TR_7
TR_8
TR_9

TR_10
TR_11
TR_12 Loading-[%]

8
16
24
32
40

Load-[MVA]
 100.0
 200.0
 300.0
 400.0

(c) Loading of TR on Wednesday (d) Loading of TR on Sunday

0 5 10 15 20
Time - [h]

LN_04_05
LN _06_11
LN _10_11
LN_10_13
LN_13_14
LN_16_19
LN_16_21
LN_16_24
LN_26_28
LN_26_29
LN_28_29
LN_23_24
LN_22_23
LN_03_18
LN_08_09
LN_07_08
LN_02_25
LN_01_02
LN_25_26
LN_17_18
LN_26_27
LN_17_27
LN_16_17
LN_15_16
LN_14_15
LN_04_14
LN_03_04
LN_02_03
LN_01_39
LN_09_39
LN_05_08
LN_05_06
LN_06_07
LN_21_22 Loading-[%]

20
40
60
80

Load-[MVA]

 100.0
 200.0
 300.0
 400.0
 500.0

0 5 10 15 20
Time - [h]

LN_04_05
LN _06_11
LN _10_11
LN_10_13
LN_13_14
LN_16_19
LN_16_21
LN_16_24
LN_26_28
LN_26_29
LN_28_29
LN_23_24
LN_22_23
LN_03_18
LN_08_09
LN_07_08
LN_02_25
LN_01_02
LN_25_26
LN_17_18
LN_26_27
LN_17_27
LN_16_17
LN_15_16
LN_14_15
LN_04_14
LN_03_04
LN_02_03
LN_01_39
LN_09_39
LN_05_08
LN_05_06
LN_06_07
LN_21_22 Loading-[%]

20
40
60

Load-[MVA]

 100.0
 200.0
 300.0
 400.0

(e) Loading of OHL on Wednesday (f) Loading of OHL on Sunday

Figure 4. Cont.



Energies 2021, 14, 4987 11 of 25

0 5 10 15 20
Time - [h]

Bus_08
Bus_07
Bus_05
Bus_04
Bus_06
Bus_31
Bus_11
Bus_12
Bus_10
Bus_32
Bus_13
Bus_14
Bus_15
Bus_20
Bus_19
Bus_34
Bus_33
Bus_36
Bus_23
Bus_22
Bus_37
Bus_35
Bus_24
Bus_21
Bus_16
Bus_17
Bus_27
Bus_18
Bus_03
Bus_26
Bus_28
Bus_25
Bus_29
Bus_38
Bus_30
Bus_02
Bus_01
Bus_39
Bus_09 |1 Ukpu|

 0.02
 0.04
 0.06

Voltage-[Pu]

 0.99
 1.02
 1.05

0 5 10 15 20
Time - [h]

Bus_08
Bus_07
Bus_05
Bus_04
Bus_06
Bus_31
Bus_11
Bus_12
Bus_10
Bus_32
Bus_13
Bus_14
Bus_15
Bus_20
Bus_19
Bus_34
Bus_33
Bus_36
Bus_23
Bus_22
Bus_37
Bus_35
Bus_24
Bus_21
Bus_16
Bus_17
Bus_27
Bus_18
Bus_03
Bus_26
Bus_28
Bus_25
Bus_29
Bus_38
Bus_30
Bus_02
Bus_01
Bus_39
Bus_09 |1 Ukpu|

 0.02
 0.04
 0.06

Voltage-[Pu]

 0.99
 1.02
 1.05

(g) Vol. of buses on Wednesday (h) Vol. of buses on Sunday

Figure 4. Operating conditions assuming a normal operation of the IEEEE 39 Bus System and considering load forecasting
for the first assessed week.

As security margins, a conservative loading less than 100 % for lines and transformers
was assumed, and to simplify, dynamic ratings were not considered. For buses, the voltage
limits are from 0.9 pu to 1.1 pu. In Figure 4c,d, it can be appreciated that the transformers
TR_1, TR_3, TR_4, TR_5, TR_6, and TR_10 are close to 50 % of their loading during load
peak operation. Additionally, by these transformer flows, the maximum peak power is
close to 500 MVA. Figure 4e,f shows the loading of lines. Here, it can be appreciated that
the LN_16_19 is operating close to its security margin with a power flow near 500 MVA.
Finally, Figure 4g,h shows the voltage assessment where Bus_36 and Bus_33 are close to
their upper limit.

4.2. Power Transformer Conditions

To assess the condition of the transformer fleet, historical diagnostic records of a local
utility were used. Figure 5 shows the records of total dissolved combustible gas (TDCG),
the furan 2FAL, and the dielectric breakdown voltage (DS). In particular, Figure 5a presents
the assessment of TDGC using the IEEE Std C57.104™-2008 [25], and it can be noted that
the condition of TR_5 indicates that the transformer has been heavily overloaded, and/or
an arc has occurred inside. A similar behavior of this transformer is shown in the records
of the furan 2FAL. According to Figure 5b, the transformers TR_3, TR_10, and TR_12
present a historical increasing rate of the furan 2FAL. Finally, the records of dielectric
breakdown voltage are shown in Figure 5c. These records were assessed according to
IEEE Std C57.152™-2013 [26] and demonstrate that almost all of the transformer fleet is
outside of the acceptable margin, and an accelerated degradation of the assets can occur in
the lifetime.
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TDCG in ppm for the 12 power transformers
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Figure 5. Historical diagnostic test of the power transformers.

4.3. Condition Assessment

In order to estimate the transformer health index, each condition assessment is nor-
malized from 0 to 1, where 0 is the score with the best condition, or as new, and 1 is the
worst condition score. To illustrate, a value of dielectric breakdown voltage greater than
55 kV mm−1 will be scored with 0 and a value close to 0 will be scored with 1, using
the IEEE Std C57.152™-2013. Additionally, considering that the condition records are
reported on different dates, a curve fit using (8) is performed in order to predict the asset
condition. Hence, the normalized condition of power transformers is assessed using the
tables reported in [27], and the curve fit is performed using the condition records and the
Python library SciPy [28]. With these normalized conditions, the health index is computed
using Equation (1). To illustrate this procedure, the normalized conditions of transformers
TR_2, TR_3, and TR_12 are predicted for the years 2020, 2021, 2025, and 2030 and exposed
in Figure 6. These dates correspond to the assumed periods for planning maintenance
(2020), refurbishment (2025), and replacement (2030) of a power transformer fleet. Here, it
can be appreciated that the transformers present differences in the number of diagnostics
tests, i.e., by the current policies of maintenance of the asset owner by which the kind of
diagnostic for each transformer is defined.
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Figure 6. Normalized diagnostic condition assessment of the power transformer fleet of IEEE 36 Bus System transmission,
where C_H20, PF, IP, WR, IR, TR, IT, AN, and SAT are water content, power factor, polarization index, winding resistance,
insulation resistance, winding ratio, interfacial tension, acidity,and relative saturation, respectively.

To assess the transformer condition using the health index Equation (1), the normalized
historical diagnostic records are employed. The weights (ω) used for each condition are
presented in [27]. Table 2 shows the estimated HI for the power transformer fleet during
the assuming periods of planning. Here, it can be appreciated that the transformers TR_1
and TR_11 present the highest rise of degradation, increasing from 0.24 to 0.53 and from
0.4 to 0.72, respectively.
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Table 2. Condition assessment forecast using health index.

TR Rating-[S] HI
2020 2021 2025 2029

TR_1 700 MVA 0.24 0.31 0.48 0.53
TR_2 1000 MVA 0.50 0.52 0.58 0.63
TR_3 1000 MVA 0.69 0.70 0.77 0.82
TR_4 800 MVA 0.47 0.48 0.53 0.57
TR_5 700 MVA 0.81 0.82 0.87 0.89
TR_6 800 MVA 0.33 0.40 0.50 0.54
TR_7 1000 MVA 0.56 0.57 0.62 0.66
TR_8 600 MVA 0.41 0.43 0.52 0.61
TR_9 300 MVA 0.55 0.57 0.65 0.73
TR_10 800 MVA 0.75 0.76 0.79 0.82
TR_11 300 MVA 0.40 0.48 0.68 0.72
TR_12 700 MVA 0.61 0.65 0.74 0.79

Subsequently, the rate of failure (λ(t)) is estimated with (2) using the health index.
The constants assumed to estimate λ are shown in Table 3. However, these constants
should be estimated with both condition and failure records of the utility when the data
are available. Finally, once the failure rate is calculated, the reliability and therefore the
probability of failure are computed. In Figure 7a, HI predictions are shown, whereas
Figure 7b pictures the cumulative probability forecast of failure for each asset.

Table 3. Constants to estimate transformer failure rate [20].

TR Rating-[S] Constant
a b c

S ≤ 25 MVA 0.01565 2.2478602 −0.008148
S > 25 MVA 0.00962 2.5618677 −0.004615
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(a) HI—Health Index (b) Cumulative Probability of Failure

Figure 7. Health index prediction and cumulative probability forecast of failure for the transformer fleet.
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4.4. Reliability Assessment

The risk assessment can be addressed as the criticality times the POF, according to
(7). An objective of the criticality assessment in electric systems is the quantification of the
expected cost by energy not supplied (ENS) as a result of an asset failure. Nevertheless,
as a consequence of power demand variation depending on the hour, day, week, and year,
the ENS when an asset fails depends on the operating conditions during the failure as
well as the time to repair. In this case, on the one hand, a mean time for repair (MTTR) of
8 h and of 16 h for transformers located close to generators (step up) and for transmission
transformers (step down) was assumed, respectively. These times consider the use of
mobile substations or substitute transformers, commonly employed at the transmission
level. On the other hand, the expected ENS was estimated performing the Monte Carlo
simulation shown in the algorithm of Figure 2. This reliability assessment can be called
N − POF(N). The simulation results are shown in Figures 8 and 9, where both histograms
of the cumulative density of expected ENS and the ENS cumulative probability can be
appreciated for the entire power system. Figure 9 shows with vertical lines the cumulative
probability of 85, 95, and 99% for each period of planning. The cumulative expected energy
not supplied is shown in Table 4.
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Figure 8. Histogram of the expected accumulated energy not supplied for each period of planning.
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Figure 9. Cumulative probability of the expected energy not supplied by year.

Table 4. Cumulative probability of the expected energy not supplied.

Year Cumulative ENS—GW h
85% 95% 99%

2020 6.4 41.2 54.8
2021 24.5 49.8 74.1
2025 65.4 95.9 134.4
2029 112.1 154.1 208.6

4.5. Risk Assessment

In order to assess the contribution of an asset failure in the entire risk of the whole
power system, violin plots are performed as shown in Figure 10. In these plots, the cu-
mulative expected ENS associated with each transformer failure is compared with the
cumulative ENS of the fleet during the assumed periods of planning.
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Figure 10. Cont.
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Figure 10. Impact of asset fleet failures on the cumulative expected ENS.

In Figure 10i, it can be appreciated that the transformer TR_12 has the highest impact
on the total ENS of the system. Additionally, this asset presents the highest contingency im-
pact as a result of its failure, with a cumulative expected ENS close to 350 GW h. However,
this result is a consequence of the transformer function, since TR_12 is the link between the
transmission system and the generator G02, which was assumed as the slack for running
load flows.As future work, a power rescheduling strategy must be included for the assess-
ment. The second transformer with the highest expected impact on the risk of the system
is the TR_3. In Figure 10b, it can be observed that all failures of this transformer produced
contingencies, and therefore the energy not supplied is expected for all studied cases (inner
violin plot always has values greater than 0). On the contrary, transformers TR_5 and TR_6
(Figure 10d,e) present a high failure rate, but their impact on the risk assessment of the
whole system is lower for almost all failures. Finally, the expected failures of transformers
TR_2, TR_9, and TR_11 do not impact the risk and therefore do not cause ENS. For this
reason, their violin plots are not shown.

Figure 11 shows the predicted risk matrix of the transformer fleet during each year of
the periods of planning assumed. The criticality for each transformer was assumed as the
root mean square of the ENS associated with its failure. The size of the circles represent the
MTTR assumed for each asset, and the color represents the risk index.
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Figure 11. Transformer fleet risk matrix for the assumed periods of planning.

Finally, Figure 12 shows the risk index using a Pareto ranking during the assumed
periods of planning. Only the assets with RI > 0 by ENS are shown. Here, it can be
appreciated that the transformers TR_3 and TR_12 present the highest risk. On the one
hand, it is estimated that the TR_5 shows the highest risk increase by ENS, and on the
other hand, the TR_7 presents the lowest increase. These types of analyses can be used to
support decision making. For instance, in the year 2021, the prioritized decision over the
fleet should be related to TR_3 and TR_12. Subsequently, in the year 2025, the prioritized
transformers should be TR_10, TR_4, and TR_6. This decision making must consider
budgetary constraints as well as a positive opportunity. The opportunity is measured as
the risk reduction monetized to carried out the decision minus the cost of it.
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Figure 12. Asset fleet risk index ranking for the assumed periods of planning.

4.6. Optimal Decision Making

With the model for forecasting the risk index, the optimal asset replacement and
maintenance frequency are estimated assuming a regulatory life of 35 years. The financial
variables are shown in Table 5.
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Table 5. Assumed financial parameters for the asset fleet.

Asset CAPEX [$] OPEX-MC [$] Income Per Year [$]

TR_1 63× 103 1.4× 103 7× 103

TR_2 90× 103 2× 103 10× 103

TR_3 90× 103 2× 103 10× 103

TR_4 72× 103 1.6× 103 8× 103

TR_5 63× 103 1.4× 103 7× 103

TR_6 72× 103 1.6× 103 8× 103

TR_7 90× 103 2× 103 10× 103

TR_8 54× 103 1.2× 103 6× 103

TR_9 27× 103 0.6× 103 3× 103

TR_10 72× 103 1.6× 103 8× 103

TR_11 27× 103 0.6× 103 3× 103

TR_12 63× 103 1.4× 103 7× 103

To estimate both optimal replacement and maintenance frequency, the formulations
given by Equations (14) and (18) were implemented in the SciPy optimization package [28].

4.6.1. Optimal Replacement

The optimal replacement time for the entire fleet compared with not replacing the asset
is shown in Figure 13. According to the results, here, it can be appreciated that the highest
benefit is replacing the TR_1 in the year 7.7. This decision is a result of the associated legal
impact shown in Table 1, which is the highest of the fleet. A similar assessment is done for
the transformer TR_10. The second decision with the best benefit is related to transformer
TR_12, because this asset has both a high criticality by ENS and a poor condition. In other
words, it presents a high risk index as can be appreciated in Figure 12. For TR_12, the result
of not replacing it (do nothing) is a negative ROI. The next decisions with a positive benefit
are changing the assets TR_9, TR_11, and TR_6 at years 5.9, 6, and 7.3, respectively. For the
rest of the assets, the optimal decision is to do nothing and therefore assume taking the
risk. The benefit is assumed as the difference between ROI of the optimal replacement time
and the ROI of the do nothing decision.
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Figure 13. Ranking by higher benefit of optimal asset fleet replacement.
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To illustrate the influence of replacement on ROI, Figure 14 shows the ROI for the
decision with the highest benefit (TR_1) considering different replacement times. Here, it
can be appreciated how an early or late replacement significantly impacts the return of
investment. The point at time 35 refers to the decision to do nothing.
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Figure 14. ROI for TR_1 considering different replacement times.

The influence of replacing TR_1 on the failure rate and POF is shown in Figure 15.
Here, it can be appreciated that when the asset is replaced at time 7.7, approximately in the
year 2029, the failure rate comes to λ0, and the growth of both cumulative failure rate and
POF decreases compared with the do noting decision.
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Figure 15. Influence of the optimal TR_1 replacement on their failure rate and POF.

4.6.2. Optimal Maintenance

In order to enhance the decision-making process, an optimal maintenance strategy
must be estimated. In this paper, the strategy considers a constant frequency of maintenance
seeking to obtain the maximum ROI at the end of life of the asset. In this case, for the
assessment , a strategy by which the health index is held below 0.2 after each major
maintenance is assumed. In other words, the maintenance has a direct impact on the HI.
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In Figure 16, the comparison between replacement and maintenance strategies under the
assumed conditions is shown, where bar numbers mean the optimal replacement time
and frequency of maintenance, respectively. Here it can be appreciated that the optimal
decision for TR_1 is replacing the asset in the year 7.7 instead of performing maintenance
every 4 years. For the rest of the assets, a higher ROI is obtained with maintenance instead
of replacing. It is worth emphasizing that the transformer with the lowest maintenance
interval is the TR_12, which is a consequence of its poor condition and high failure impact.
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Figure 16. Comparison between ROIs obtained to employ an optimal replacement and a maintenance
strategy for the entire asset fleet.

To illustrate the influence of maintenance over the assets, Figure 17 shows the failure
rate behavior for TR_1, employing the estimated optimal maintenance frequency: in this
case, approximately every 4 years. By doing maintenance, the POF is reduced to less than
40% compared to almost 100% if doing nothing. Figure 18 shows the influence of using
different maintenance frequencies on ROI and the optimal frequency estimated using the
proposed methodology. The slopes in the plot are the result of the integer value of the
number of maintenance instances.

2025 2030 2035 2040 2045 2050 2055

0.05

0.1

0

1

2

3

2025 2030 2035 2040 2045 2050 2055

0

0.2

0.4

0.6

0.8

1

Do nothing
Maintenance
Cumulative
Cumulative

Time

Fa
ilu

re
 r

at
e 

pe
r 

ye
ar

Cu
m

ul
at

iv
e 

Fa
ilu

re
 r

at
e

Pr
ob

ab
ili

ty
 o

f F
ai

lu
re

Figure 17. Influence of the optimal TR_1 maintenance strategy on its failure rate and POF.
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Figure 18. ROI for TR_1 considering different maintenance frequencies.

4.7. Discussion of Results

The implementation of the proposed methodology for supporting decision making by
prioritizing ranking was supported by the definition of replacement times and maintenance
strategy for a transformer fleet. The ranking was computed to optimize the ROI, solving the
proposed problem formulation. This optimization considers a monetized risk increasing
in time. Considering risk forecasting using the condition records as well as critically in a
novel optimization formulation was the main contribution of this paper. This methodology
was assessed considering common power transformer condition records and common
strategic objectives by computing the criticality.

5. Conclusions

As the main contribution of this paper, a novel methodology for decision making
based on optimal return on investment considering a holistic view was proposed. As part
of the methodology, a mathematical formulation to optimize the ROI for decision making
was developed in order to determine the replacement times and maintenance periods.
This methodology can be used to support decision making in electrical systems using the
risk index to optimize the return on investment. The risk assessment is based on the cost
of decisions and their impact on the risk. We employed a monetized criterion of the RI
using the penalties when the strategic objectives are impacted. The strategic objectives
assessed were financial, reliability-related, environmental, and legal; however, according to
the organization context and stakeholder expectations, objectives such as safety, reputation,
and compliance, among others, can be considered. In this way, it would be possible to
evaluate the cost of decisions such as repairs, refurbishment, replacement of the asset, or
doing nothing. This methodology seeks to estimate the risk index through the use of a
historical diagnostics test estimating the asset health condition. To summarize, the asset
manager can use the findings in this paper to improve replacement and maintenance
strategies considering a holistic view seeking to obtain the value of the assets. However,
the internal financial issues must be considered, and the relationship between the HI
and the failure rate must be fitted using records of failures. This fit can be performed,
for example, by using Bayesian statistics.

As future research, in order to improve the risk forecasting, alternative methods to
predict the asset condition could be employed. The methodology proposed in this work
was implemented for power transformers in an open source tool. The library is open to
including, in future research, other types of assets into the portfolio fleet such as lines,
circuit breakers, etc., as well as other technologies such as dynamic ratings to support
decision making.
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3. Maletič, D.; Maletič, M.; Al-Najjar, B.; Gomišček, B. An Analysis of Physical Asset Management Core Practices and Their Influence

on Operational Performance. Sustainability 2020, 12, 9097. [CrossRef]
4. Lima, E.S.; McMahon, P.; Costa, A.P.C.S. Establishing the relationship between asset management and business performance. Int.

J. Prod. Econ. 2021, 232, 107937. [CrossRef]
5. Abu-Elanien, A.E.; Salama, M.M. Asset management techniques for transformers. Electr. Power Syst. Res. 2010, 80, 456–464.

[CrossRef]
6. IEC. Strategic asset management of power networks. In International Electrotechnical Commission; IEC: New York, NY, USA, 2015.
7. Goyal, A.; Aprilia, E.; Janssen, G.; Kim, Y.; Kumar, T.; Mueller, R.; Phan, D.; Raman, A.; Schuddebeurs, J.; Xiong, J.; et al. Asset

health management using predictive and prescriptive analytics for the electric power grid. IBM J. Res. Dev. 2016, 60, 4:1–4:14.
[CrossRef]

8. Bertling, L.; Allan, R.; Eriksson, R. A Reliability-Centered Asset Maintenance Method for Assessing the Impact of Maintenance in
Power Distribution Systems. IEEE Trans. Power Syst. 2005, 20, 75–82. [CrossRef]

9. Koksal, A.; Ozdemir, A. Improved transformer maintenance plan for reliability centred asset management of power transmission
system. IET Gener. Transm. Distrib. 2016, 10, 1976–1983. [CrossRef]

10. Dong, M.; Zheng, H.; Zhang, Y.; Shi, K.; Yao, S.; Kou, X.; Ding, G.; Guo, L. A Novel Maintenance Decision Making Model of
Power Transformers Based on Reliability and Economy Assessment. IEEE Access 2019, 7, 28778–28790. [CrossRef]

11. Nagata, M.; Takehara, A.; Kurihara, I. Development of a support tool to level transmission equipment replacements over long
term. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, DC, USA, 15–18 March 2009;
pp. 1–7. [CrossRef]

12. Fattaheian-Dehkordi, S.; Fotuhi-Firuzabad, M.; Ghorani, R. Transmission System Critical Component Identification Considering
Full Substations Configuration and Protection Systems. IEEE Trans. Power Syst. 2018, 33, 5365–5373. [CrossRef]

13. Ofgem. DNO Common Network Asset Indices Methodology; Technical Report January; Ofgem: London, UK, 2017.
14. Côté, A.; Messaoudi, D.; Komljenovic, D.; Alarie, S.; Blancke, O.; Boudreau, J.; Gaha, M.; Truchon, E.; Pelletier, S. Development of

an Asset Management Decision Support Tool for Hydro-Québec TransÉnergie. In Proceedings of the 2019 CIGRE CANADA
Conference, Le Westin Montréal, QC, Canada, 16–19 September 2019.

15. Komljenovic, D.; Messaoudi, D.; Côté, A.; Gaha, M.; Vouligny, L.; Alarie, S.; Dems, A.; Blancke, O. Asset Management in
Electrical Utilities in the Context of Business and Operational Complexity. In 14th WCEAM Proceedings; Crespo Márquez, A.,
Komljenovic, D., Amadi-Echendu, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 34–45. [CrossRef]

16. CIGRE WG C1.38. Valuation as a Comprehensive Emerging Developments Management in View of Approach to Asset—TB 791; Number
September; CIGRE: Boston, MA, USA, 2019; pp. 1–45.

17. Alvarez, D.L.; Rosero, L.S.; Rivera, S.R.; Romero, A.A. A Framework For Asset Management in Electrical Systems, Part I:
Conceptual Model. In Proceedings of the 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA),
Manizales, Colombia, 30–31 May 2019; pp. 1–6. [CrossRef]

18. Azmi, A.; Jasni, J.; Azis, N.; Kadir, M.A. Evolution of transformer health index in the form of mathematical equation. Renew.
Sustain. Energy Rev. 2017, 76, 687–700. [CrossRef]

19. CIGRE WG C1.16. Transmission Asset Risk Management; Technical Brochure 422; CIGRE: Boston, MA, USA, 2010.
20. Brown, R.E.; Frimpong, G.; Willis, H.L. Failure rate modeling using equipment inspection data. IEEE Trans. Power Syst. 2004,

19, 782–787. [CrossRef]
21. Athay, T.; Podmore, R.; Virmani, S. A Practical Method for the Direct Analysis of Transient Stability. IEEE Trans. Power Appar.

Syst. 1979, PAS-98, 573–584. [CrossRef]
22. Cruz, L.M.; Alvarez, D.L.; Rivera, S.R.; Herrera, F.A. On-Line Contingency Assessment Using Short-Term Load Forecasting. In

Proceedings of the 2019 FISE-IEEE/CIGRE Conference—Living the Energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6
December 2019; pp. 1–6. [CrossRef]

http://doi.org/10.3390/su12219097
http://dx.doi.org/10.1016/j.ijpe.2020.107937
http://dx.doi.org/10.1016/j.epsr.2009.10.008
http://dx.doi.org/10.1147/JRD.2015.2475935
http://dx.doi.org/10.1109/TPWRS.2004.840433
http://dx.doi.org/10.1049/iet-gtd.2015.1286
http://dx.doi.org/10.1109/ACCESS.2019.2897606
http://dx.doi.org/10.1109/PSCE.2009.4840144
http://dx.doi.org/10.1109/TPWRS.2018.2797895
http://dx.doi.org/10.1007/978-3-030-64228-0_4
http://dx.doi.org/10.1109/PEPQA.2019.8851575
http://dx.doi.org/10.1016/j.rser.2017.03.094
http://dx.doi.org/10.1109/TPWRS.2004.825824
http://dx.doi.org/10.1109/TPAS.1979.319407
http://dx.doi.org/10.1109/FISECIGRE48012.2019.8984974


Energies 2021, 14, 4987 25 of 25

23. Cruz, L.M.; Alvarez, D.L.; Rivera, S.R.; Herrera, F.A. Short-Term Demand Forecast Using Fourier Series. In Proceedings of the
2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Manizales, Colombia, 30–31 May 2019;
pp. 1–5. [CrossRef]

24. Thurner, L.; Scheidler, A.; Schafer, F.; Menke, J.H.; Dollichon, J.; Meier, F.; Meinecke, S.; Braun, M. Pandapower—An Open-Source
Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Trans. Power Syst. 2018,
33, 6510–6521. [CrossRef]

25. IEEE. Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE: New York, NY, USA, 2009. [CrossRef]
26. IEEE. IEEE Guide for Diagnostic Field Testing of Fluid-Filled Power Transformers, Regulators, and Reactors; IEEE: New York, NY, USA,

2013; Volume 2013, pp. 1–121. [CrossRef]
27. Rosero, L.S.; Alvarez, D.L.; Amortegui, F.J.; Hernandez, G.; Garcia, S.R. A Framework For Asset Management in Electrical

Systems, Part II: Case Study—Power Transformers. In Proceedings of the 2019 IEEE Workshop on Power Electronics and Power
Quality Applications (PEPQA), Manizales, Colombia, 30–31 May 2019; pp. 1–6. [CrossRef]

28. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/PEPQA.2019.8851533
http://dx.doi.org/10.1109/TPWRS.2018.2829021
http://dx.doi.org/10.1109/IEEESTD.2009.4776518
http://dx.doi.org/10.1109/IEEESTD.2013.6544533
http://dx.doi.org/10.1109/PEPQA.2019.8851551
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543

	Introduction
	Asset Management Framework
	Asset Condition Using Health Index (HI) 
	Reliability Assessment
	Risk Index

	Proposed Risk Assessment Procedure
	Risk Index Forecasting
	Optimal Decision-Making Assessment
	Optimal Replacement Strategy
	Optimal Maintenance Strategy


	Evaluation of the Proposed Procedure
	System Description
	Power Transformer Conditions
	Condition Assessment
	Reliability Assessment
	Risk Assessment
	Optimal Decision Making
	Optimal Replacement
	Optimal Maintenance

	Discussion of Results

	Conclusions
	References

