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A B S T R A C T   

Increasing wind and solar generation in power grids leads to more renewable power curtailments in some periods 
of time due to the fast and unpredictable variations of their outputs. The utilization of these sources for energy 
storage can unlock huge potential benefits. Therefore, aiming at minimizing the curtailments of renewable power 
from the viewpoint of an independent system operator (ISO), in this paper, we propose deep learning-driven 
optimal sizing and operation of alkaline water electrolyzers (AWE) and battery energy storage systems (BESS). 
For this purpose, a set of actual renewable power curtailment data of California ISO was fully investigated, and 
deep learning forecast methods were employed to determine the prediction error and its probability distribution 
function (PDF). Using the fitted PDF, a set of scenarios was generated and reduced to some accurate and probable 
ones. Consequently, a two-stage scenario-based stochastic model was proposed to determine the optimal plan
ning of this system, and a penalty variable was defined in the second stage to maximize the utilization of cur
tailed renewable energy sources (RESs). The learning results showed that the prediction errors were minimized 
using the gated recurrent unit (GRU) method. It was also shown that 97% of curtailments were utilized using 
AWEs with annual costs of $233.55 million, which had 63.5% fewer costs than using BESSs. Furthermore, using 
AWEs reduced operational expenses by 89.1% compared with using BESSs, owing to their operational benefits.   

1. Introduction 

The increased share of renewable energy in electric power systems 
has created new challenges and sometimes leads to oversupply due to 
the lack of rapid ramp-up/down generating units in power grids. For 
example, in spring, snowpacks send much water to hydroelectric power 
plants, leaving less capacity for renewable energy sources (RESs). In 
such conditions, due to the lack of flexibility of conventional generation 
systems, energy production from RESs is sometimes curtailed by inde
pendent system operators (ISOs) [1] to avoid system contingencies [2]. 
According to some reports, in 2020, the amount of renewable power 
curtailments in California ISO (CAISO) has increased by 64% compared 
with 2019 [3]. Furthermore, on some occasions, the amount of curtailed 
renewable generation exceeds 10%, such as in China, Italy, and the 

Electric Reliability Council of Texas (ERCOT) market in the United 
States [4]. Financial losses as a result of oversupply in the U.S. Pacific 
Northwest, a hydro-dominated power grid where wind generation is 
rapidly increasing was examined in [5]. According to the study, 
increasing wind capacity will increase oversupply, with future elec
tricity prices affecting the amount of the curtailments. Hence, to maxi
mize the utilization of clean RESs, ISOs strive to minimize energy 
curtailments by implementing energy storage systems, fast, responsive, 
and flexible units, and demand-side management strategies. 

In this regard, to minimize curtailed renewable power by considering 
environmental issues, in this study, we aimed to introduce an optimal 
sizing and operation model of alkaline water electrolyzer (AWE) to 
produce hydrogen and use battery energy storage systems (BESS) to 
store electricity during oversupply periods. Furthermore, to cope with 
the volatile nature of wind and solar curtailments, a deep learning 
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method was utilized to forecast and generate scenarios for improved 
operation management through a two-stage stochastic process. 

In recent years, several works have focused on optimal sizing [6–8] 
and the operation scheduling [9,10] of wind-hydrogen systems. In [6], 
from the perspective of investors, an optimized sizing model for a 
wind-hydrogen system was developed using a chance-constrained pro
gramming approach. The extension of [6] is described in [7], which 
considers the hydrogen demand and trading modes. Also, a day-ahead 
dispatching approach for wind-hydrogen systems in power grids with 
modeling the external characteristics of hydrogen production was pro
posed in [9]. A net present value objective function for a hybrid offshore 
wind farm and a hydrogen system was developed in [11], where the 
interests of investors and effects of power curtailments were evaluated. 

In contrast to previous studies, only a few articles have considered 
the optimal design of solar-hydrogen systems [12,13]. Reference [12] 
proposed a heuristic approach for the optimal location and size of 
off-grid solar-hydrogen energy systems based on social, environmental, 

economic, and technical criteria. Moreover, the optimal planning of 
energy systems, such as solar photovoltaic power plants, electrolyzers, 
fuel cells, hydrogen tank storage systems, and chilled/hot water storage 
systems, was explored in [13]. One common theme among the examined 
articles is that they aimed at optimizing their problems from an in
vestor’s perspective. However, none of them aimed at managing 
renewable power curtailments in the grid-connected mode of RES power 
plants. 

Furthermore, BESSs have been extensively studied in recent years as 
possible solutions for alleviating the volatility of RESs [14–21]. In [14], 
to decrease wind power curtailment during oversupply periods, a 
two-stage model using BESSs was proposed. The commitment of thermal 
units and the output of wind turbines are determined in the first stage, 
while the operation of BESSs is scheduled in the second stage. Also, a 
risk-based day-ahead operation scheduling model for the unit commit
ment problem with large wind farms and bulk BESSs was defined in 
[15]. Moreover, in other studies, BESSs were utilized for peak shaving in 

Nomenclature 

Indices and acronyms 
i Index of zones i = 1,2,…,NI 
s Index of scenarios s = 1,2,…,S 
t Index of time t = 1,2,…,T 
AWE Alkaline water electrolyzer 
BESS Battery energy storage system 
CAPEX Capital expenditure 
M Large constant 
MM$ Million-dollar 
max/min Upper/Lower limits 
OPEX O&M expenditure 
O&M Operation and maintenance 
RMSE Root Mean Squared Error [MW] 

Variables 
ACCi

AWE/BESS Annualized capital cost of AWE/BESS in zone i [$] 
CAPi

AWE Capacity of AWE in zone i [MW] 
CAPi

BESS Capacity of BESS in zone i [MWh] 
Ci,t

p,s Penalty cost of excess power for scenario s and time t [$] 
FOCi

AWE/BESS Fixed O&M cost of AWE/BESS in zone i [$/year] 

Hi,t
AWE,s Produced hydrogen of AWE in zone i for scenario s and 

time t [kg] 
OMCi,t

AWE/BESS,s Variable O&M cost of AWE/BESS in zone i for 
scenario s and time t [$] 

Pi,t
AWE,s Consumed power by AWE in zone i for scenario s and time t 

[MW] 
Pi,t

ch/dis,s Charge and discharge power of BESS in zone i for scenario s 
and time t [MW] 

Pi,t
e,s Excess power in zone i for scenario s and time t [MW] 

RCi,t
BESS,s Annualized replacement cost of BESS in zone i for scenario 

s and time t [$] 
Sci,t

s Scenarios’ costs in zone i for scenario s and time t [$] 
ui,t

ch/dis,s Binary variables show the status of BESS for scenario s and 
time t 

Parameters 
α⋅ Coefficients of capacities limitations [%] 
CAPi,max

AWE Maximum size of AWE [MW] 
CAPi,max

BESS Maximum size of BESS [MWh] 
CAWE Capital cost of AWE per MW [$/MW] 
CBESS Capital cost of BESS per MWh [$/MWh] 
CRF Capital recovery factor 
ηi

AWE Efficiency of AWE in zone i [%] 
ηi

ch,dis Efficiency of charge and discharge for BESS in zone i [%] 
fw,KOH,s,N2 Flow of water, potassium hydroxide, steam, and nitrogen 

[kg/kg of H2] 
ir Interest rate[%] 
LHVH2 Lower heating value of hydrogen [MWh/kg] 
ny Project lifetime [years] 
NCBESS Number of cycles for BESS charge and discharge 
Pi,t

cs/w,s Curtailed solar and wind power in zone i for scenario s and 
time t [MW] 

πFOC
BESS Fixed O&M cost of BESS per MW [$/MW-year] 

πO&M
BESS Variable O&M cost of BESS per MWh [$/MWh] 

πP Price of penalty [$/MWh] 
πw,KOH,s,N2 Price of water, potassium hydroxide, steam, and nitrogen 

per kg of produced hydrogen [$/kg] 
πdis,πH2 Electricity, hydrogen selling prices [$/MWh, $/kg] 
RBESS Range of discharge [%] 
ρs Probability of scenarios [%]  

Table 1 
Comparisons of the studies on the management of power curtailments.  

Reference [6] [7] [9] [11] [12] [13] [14] [15] [22] [23] [30] This Study 

Minimizing RES curtailments ⨯ ⨯ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⨯ ⨯ ✓ 
Forecasting RES curtailments ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ 
Short-term operation ✓ ⨯ ✓ ⨯ ⨯ ✓ ✓ ✓ ⨯ ⨯ ✓ ✓ 
Planning and sizing ✓ ✓ ⨯ ✓ ✓ ✓ ⨯ ⨯ ✓ ✓ ✓ ✓ 
Utilizing AWE ✓ ✓ ✓ ✓ ✓ ✓ ⨯ ⨯ ✓ ✓ ✓ ✓ 
Utilizing BESS ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ✓ ✓ ⨯ ✓ 
Uncertainty modeling ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ⨯ ✓ ⨯ ✓  
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wind farms [16], and they were found to decrease the effects of fore
casting errors [17] and reduce the probable penalties of wind farms by 
ISOs in electricity markets [18]. Besides, some works [22,23] attempted 
to utilize both batteries and hydrogen as storage units to support volatile 
renewable power generation. 

The above investigations have mainly focused on the optimal plan
ning of wind/solar-hydrogen systems. The optimal planning of these 
systems could be unfavorably influenced because of the uncertainties of 
wind and solar power generation as well as their curtailments. There
fore, forecasting renewable power curtailments and considering the 
associated uncertainties with enhancing the optimal planning of AWEs 
and BESSs are crucial issues. Nevertheless, several publications have 
investigated machine learning or autoregressive models to predict wind 
and solar generation [24–26] based on historical data. Likewise, some 
machine learning methods were introduced to generate scenarios for 
stochastic programming problems [27–29]. 

To this point, despite the forecasting efforts of wind speed and solar 
radiations, there have not been any studies on forecasting wind and solar 
power curtailments. Actually, there are no predictive investigations or 
straightforward probability distribution functions (PDFs) for the fore
casting errors of RES curtailments. Table 1 provides a comprehensive 
overview of the most relevant existing studies, and it highlights some of 

their shortcomings and shows our work’s merits. So far, there have been 
very few surveys discussing the optimal size and operation of both AWEs 
and BESSs for managing oversupply conditions. Also, these studies have 
mostly ignored the forecasting uncertainties associated with wind and 
solar curtailments. Below are the contributions of this study, which 
aimed at filling the knowledge gap discussed above. 

In this paper, machine learning-based optimal planning and opera
tion of AWE–BESS systems were proposed to alleviate curtailed RES 
power using a two-stage stochastic approach. Compared with existing 
research, the major contributions of the proposed framework are as 
follows:  

• A comprehensive learning-based data analysis was performed based 
on time-series renewable power curtailment reports obtained from 
CAISO, and it was utilized as input for training and forecasting 
procedures. Afterward, a PDF reflecting the errors of the forecasted 
and actual values was fitted for scenario generation. So far, there 
have not been any studies on the prediction of renewable power 
curtailments.  

• Compared with the existing deterministic [9,11–13] and 
chance-constrained models [10,22], in this paper, a two-stage 
scenario-based planning approach is proposed to cope with the 
uncertainties associated with wind and solar power curtailments.  

• In contrast to the research works in [6,7,9,11,15,23], which only 
focus on the planning of wind-hydrogen systems, in this study, the 
comprehensive sizing and operation of AWE–BESS were examined to 
maximize RES curtailments utilization.  

• Unlike most works [7,11], which were performed from an investor’s 
viewpoint, this paper proposes an objective to maximize the utili
zation of RESs based on the perspective of ISO by incorporating a 
penalty term in the cost minimization objective. 

The proposed scheme in this study is a two-stage scenario-based 
stochastic operational planning model of AWE and BESS that was 
developed to maximize the utilization of wind and solar power curtail
ments, and it was linearized and modeled as a mixed-integer linear 
programming (MILP) problem, coded in GAMS software, and solved 
using the CPLEX solver [31]. The machine learning, PDF fitting, and 
scenario generation approach were implemented in MATLAB, and the 
generated scenarios were reduced using the SCENRED tool in GAMS 
software [32]. 

The rest of this paper is organized as follows. Section 2 represents the 
preliminaries of the performed work, and the mathematical modeling is 
described in Section 3. The case studies and results are demonstrated in 
Section 4, and the conclusions are mentioned in Section 5. 

2. Preliminaries 

Fig. 1 highlights the proposed schematic and its respective end 
products. The curtailment option considered in the model comprises 
both wind and solar curtailment. A total of three pathways were 
considered in the model, and they were classified as Case 1 (With BESS), 
Case 2 (With AWE), and Case 3 (With BESS and AWE). 

2.1. AWE model 

The electrolyzer used in this model is an alkaline water electrolyzer. 
Among all the available electrolyzer technologies, AWE is a mature and 
commercially available technology [33]. Many industrial electrolyzers 
have the capacity to produce 650 m3 of hydrogen per hour [34]. From an 
economic point of view, AWE has a longer life span of around 80, 
000–90,000 h, making it a favorable option for long-term operations 
[35,36]. In addition to its economic viewpoint, AWE is capable of 
withstanding low current densities, making it flexible, so it can easily 
accommodate the dynamic nature of electrolyzers. 

Fig. 1. Schematic of the proposed system.  

Fig. 2. Flowchart of the RES curtailment prediction.  
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2.2. BESS model 

The lithium-ion (Li-Ion) battery technology was used as a BESS in 
this study, as Li-Ion BESSs offer ample energy storage based on their size 
and can be frequently charged and discharged during their life spans. In 
comparison with other technologies, the Li-Ion technology offers the 
highest system efficiency (86%) and has a very minute degradation rate 
[37]. Also, apart from its operational benefits, it has the highest 
manufacturing and technology level, making it the most suitable option 
in our study. 

2.3. Data analysis and deep learning approach 

Forecasting RES power curtailments is the main task of ISOs, espe
cially when a system is highly penetrated by wind and solar generation. 
In this regard, five-year historical data of RES curtailments (2015–2019) 
was used to train three mature, well-implemented, and widely used 
machine learning methods: long short-term memory (LSTM) [38], 
bidirectional LSTM [39], and gated recurrent unit (GRU) [40]. 
Accordingly, the best method with the least root mean squared error 

(RMSE) was chosen to forecast wind and solar curtailments one year 
ahead (i.e., 2020), as shown in Fig. 2. Eq. (1) demonstrates the RMSE, 
where T denotes the total prediction hours, YP denotes the forecasted 
values, and YA denotes the actual observed values. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T

t=1
(YP − YA)2

√
√
√
√ (1)  

2.3.1. Long short-term memory networks 
There is a type of neural network called recurrent neural network 

(RNN), where the connections between nodes are organized along with a 
sequential relationship. Thus, temporal dynamic behavior is exhibited. 
LSTM networks work similarly to RNNs, except that the hidden layer 
updates are replaced by purpose-built memory cells. Therefore, data 
with long-range dependencies might be discovered and utilized much 
better. 

The following Eqs. (2)–(6) implement a memory cell of an LSTM 
network [41]: 

It = σ(WxIxt +WhIht− 1 +WcIct− 1 + bI) (2)  

ft = σ
(
Wxf xt +Whf ht− 1 +Wcf ct− 1 + bf

)
(3)  

ct = ftct− 1 + Ittanh(Wxcxt +Whcht− 1 + bc) (4)  

ot = σ(Wxoxt +Whoht− 1 +Wcoct + bo) (5)  

ht = ottanh(ct) (6)  

where σ, I, f , and o denote sigmoid functions in addition to the input, 
forget, and output gates, respectively. Also, c and h are cell and hidden 
vectors, respectively. The weight matrices are W with the same sub
scripts as those of gates (e.g., WcI is the diagonal matrix of the cell 
input gate). 

2.3.2. Bidirectional long short-term memory networks 
Since we had access to both past and future input elements, we could 

use a bidirectional LSTM network, as proposed in [39]. Thus, the past 
and future features could be efficiently used for a specific time frame via 
forward and backward states. 

2.3.3. Gated recurrent unit networks 
GRU networks were proposed to capture dependencies over time

scales by adapting each recurrent unit [42]. GRU units have gate units 
that control information flow, just like LSTMs, without separate memory 
cells. In comparison with those of the LSTM network, GRU consists of the 
memory cell and new memory cell. 

2.4. Uncertainty modeling 
To proceed with the uncertainty modeling, the errors of the fore

casted and actual observed values were initially fitted to a PDF, which 
was then utilized to perform scenario generation using the Monte-Carlo 
approach. Fig. 3 demonstrates the employed algorithm for obtaining the 
best scenario along with the probabilities. After the scenario generation, 
the vectors of all the scenarios were reduced to a total of the best and 
most accurate scenarios using the Fast Backward method in the 
SCENRED tool in GAMS [31]. Three algorithms are included in 
SCENRED: The Fast Backward method, Backward/Forward methods, 
and Backward/Backward methods. Generally, the methods differ in 
their computation performance (i.e., accuracy and run time). According 
to the estimated time for running large scenario trees such as our work, 
the Fast Backward method performs the best. These algorithms employ a 
distance measure that exploits the difference between the original and 
reduced probabilities. The probability distance is a compromise between 
scenario probabilities and their values. As a result, scenarios with a small 
probability or close to each other will be deleted. 

Fig. 3. Flowchart of the scenario generation and reduction approach.  
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2.5. Assumptions 

In our optimization model, the following assumptions were 
considered:  

1) The optimal size of the equipment does not refer to a single unit, and 
it denotes the total number of units to be installed zone-wide next to 
wind or solar farms to accommodate RES curtailments.  

2) The project life considered is ten years, so the replacement costs of 
the AWEs were neglected, and no salvage values were considered. 
For the BESSs, we considered the replacements cost since it depends 
on the number of charge and discharge cycles. 

Fig. 4. Framework of the proposed approach.  

Fig. 5. Wind and solar curtailed power from 2015 to 2020 [3].  

Table 2 
Summary of the wind and solar curtailed power for 2020.  

Reference Wind Solar 

Total Curtailed Power (MWh) 94,967 1,543,464 
Maximum Power Curtailed (MW) 1,799 6,275 
No. of Curtailed Hours (hr) 1,584 4,044 
Percentage of curtailment hours in a year (%) 18 46 
Standard Deviation (MW) 51 521 
Mean 10 174  
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3) Electricity and hydrogen products are sold at their respective market 
prices to nearby industries and power grid.  

4) The objective function was formulated from an ISO perspective 
rather than an investor perspective; therefore, the utilization of re
sources was our main objective, followed by the system operation 
profits. 

3. Proposed two-stage stochastic sizing and operation model 

In this part, a two-stage scenario-based sizing and operation frame
work was modeled as a MILP problem. The objective function was to 

minimize the yearly expected planning and operation costs of the 
AWE–BESS system. In the first stage, the optimal sizing of AWE and BESS 
was determined, while the optimal operation of the system in the 
generated scenarios was preserved in the second stage. Fig. 4 demon
strates the sequence of the proposed work: data analysis, forecasting, 
PDF fitting, scenario generation and reduction, and two-stage modeling. 
As shown in the figure, the decisions related to the optimal sizing of the 
AWE and BESS units were determined in the first stage, and the decisions 
pertaining to the scheduling of AWE/BESS and the amount of excess 
power in the concerned zones were defined in the second stage. After
ward, the objective function and constraints were introduced. 

3.1. Objective function 

Eq. (7) shows that the objective function is the CAPEX and OPEX 
minimization model. The annualized capital costs of AWE and BESS 
were included in CAPEX as (8)–(10), and the operation and penalty costs 
of excess power were included in OPEX as (11)–(17). In this modeling, 
the penalty cost of excess power was incorporated in the scenario costs 
to enforce optimization for maximizing the utilization of curtailed wind 
and solar power. In better words, the objective function aims at maxi
mizing the utilization of curtailed wind and solar power. 

The annualized capital costs of AWE and BESS were calculated in (8) 
and (9), respectively, using the capital recovery factor equation repre
sented in (10) [43]. Eqs. (11) and (12) define the fixed operation and 
maintenance costs of AWE and BESS, respectively. The scenarios’ cost 
for Zone i and time t is shown in (13), and it includes the variable 
operating costs of units (AWE–BESS) and the penalty cost of excess 
power. The variable O&M cost of the electrolyzer is described in (14) as 
a function of the produced hydrogen and used water, potassium hy
droxide, nitrogen, and steam. The generated hydrogen depends on the 
consumed power and electrolyzer efficiency, as shown in (15). Eq. (16) 
defines the O&M cost of BESS using the amount of charged power in 
each period. Finally, (17) presents the penalty cost of excess power.   

ACCi
AWE = CAWE.CAPi

AWE.CRF (8)  

ACCi
BESS = CBESS.CAPi

BESS.CRF (9)  

CRF =
ir(1 + ir)ny

(1 + ir)ny − 1
(10)  

FOCi
AWE = α0.CAPi

AWE.CAWE (11)  

FOCi
BESS = α2.CAPi

BESS.πFOC
BESS (12)  

Sci,t
s = OMCi,t

AWE,s + OMCi,t
BESS,s + Ci,t

p,s (13)  

OMCi,t
AWE,s =

(
fw.πw + fKOH .πKOH + fN2 .πN2 + fS.πS

)
.Hi,t

AWE,s (14) 

Table 3 
Parameters used in the model.  

Parameter Units Value References 

CAWE  $/MW 298,000 [45] 
CBESS  $/MWh 380,000 [46] 
ir  % 4.50 [47] 
ny  Years 10 [47] 

πFOC
BESS  $/MW-yr 10,000 [37] 

πO&M
BESS  $/MWh 30 [37] 

fw,KOH,s,N2  kg/kg of H2 10.11, 0.0019, 0.11, 0.00029 [35] 
πw,KOH,s,N2  $/kg 0.012, 2.96, 0.012, 0.33 [35] 
LHVH2  MWh/kg 0.033 [35] 
πP  $/MWh 1000 - 

ηi
ch, ηi

dis  % 95 [37] 

ηAWE  % 68 [35] 
πH2  $/kg 4.50 [47] 
πdis  $/MWh 90 [46] 
α0,α1,α2,α3,α4  % 5,30,30,20,20 [35,37] 
RBESS  % 80 [37] 
NCBESS  Cycles 35,00 [37]  

Table 4 
Comparative analysis for RMSE based on the used algorithms and optimizers.  

Algorithm Optimizer RMSE [MW] 

LSTM ADAM 219.83 
LSTM SGDM 346.22 
LSTM RMSPROP 236.60 
GRU ADAM 198.64 
GRU SGDM 321.72 
GRU RMSPROP 209.80 
BILSTM ADAM 287.04 
BILSTM SGDM 359.05 
BILSTM RMSPROP 284.87 

*Number of hidden units (NHU) =200, Gate activation function (GAF) = Sig
moid, State action function (SAF) = tanh, Epochs = 250. 

minimize
CAPi

AWE ,CAPi
BESS ,P

i,t
AWE,s ,P

i,t
ch/dis,s ,P

i,t
e,s

∑NI

i=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ACCi
AWE + ACCi

BESS⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
CAPEX

+FOCi
AWE + FOCi

BESS +
∑T

t=1

∑S

s=1
ρs.Sc

i,t
s

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
OPEX

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7)   
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Hi,t
AWE,s = Pi,t

AWE,s.ηi
AWE

/
LHVH2 (15)  

OMCi,t
BESS,s = πO&M

BESS .P
i,t
ch,s (16)  

Ci,t
p,s = Pi,t

e,s.πP (17)  

3.2. Constraints 
The constraints were considered in three parts: 1) first-stage con

straints associated with the planning and sizing of the AWE and BESS 

units in the concerned zones, 2) second-stage constraints regarding the 
O&M costs in the scenarios, and 3) linking constraints between the first 
and second stages. 

3.2.1. First-stage problem 
The maximum and minimum acceptable capacities of BESSs and 

AWEs for each zone in the planning stage were considered in (18) and 
(19), respectively. 

CAPi,min
BESS ≤ CAPi

BESS ≤ CAPi,max
BESS (18) 

Fig. 6. Wind and solar curtailed power forecasting for the year 2020—(a) curtailed wind forecast, (b) magnified version of the curtailed wind power from 6150 to 
6500 h, (c) Error for the wind forecast, (d) curtailed solar forecast, (e) magnified version of the solar curtailed power from 6150 h to 6500 h, and (f) Error for the 
solar forecast. 

Fig. 7. Error and Normal PDF fitting curve for the (a) wind and (b) solar power curtailments in 2020.  
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CAPi,min
AWE ≤ CAPi

AWE ≤ CAPi,max
AWE (19)  

3.2.2. Second-stage problem 
The summation of the consumed power in AWE, charged power in 

BESS, and excess power should be equal to the amount of curtailed RES 
power in each zone, time, and scenario, as shown in (20). Moreover, (21) 
shows the balance of the state of charge in BESSs in each period. 

Pi,t
e,s + Pi,t

ch,s + Pi,t
AWE,s = Pi,t

cs,s + Pi,t
cw,s (20)  

SOCi,t
s = SOCi,t− 1

s + ηi
ch.P

i,t
ch,s − Pi,t

dis,s

/
ηi
dis (21)  

3.2.3. Linking the first and second-stage problems 
As described in (22) and (23), respectively, the allowable amount of 

charge and discharge in each BESS is a portion of the BESS capacity. 
Constraint (24) guarantees that the state of charge in BESSs is within a 
certain range. Constraints (25)–(27) restrict the BESSs from being 
simultaneously charged and discharged. The consumed power of the 
electrolyzer is limited within its capacity, as shown in (28). 

0 ≤ Pi,t
ch,s ≤ α1.CAPi

BESS (22)  

0 ≤ Pi,t
dis,s ≤ α2.CAPi

BESS (23)  

α3.CAPi
BESS ≤ SOCi,t

s ≤ CAPi
BESS (24)  

Pi,t
ch,s ≤ ui,t

ch,s.M (25)  

Pi,t
dis,s ≤ ui,t

dis,s.M (26)  

ui,t
ch,s + ui,t

ch,s ≤ 1 (27)  

α4.CAPi
AWE ≤ Pi,t

AWE,s ≤ CAPi
AWE (28)  

3.2.4. Modeling the BESS replacement cost 
In order to consider the annualized replacement cost of the BESS in 

the modeling, the below equation is defined [44]. Based on this model, 
the replacement cost primarily depends on the range and number of 
charges and discharges, as shown in (29).To consider the replacement 
cost, (29) should be added to the scenario costs as in (13). 

RCi,t
BESS,s =

ηi
ch.P

i,t
ch,s.CBESS

RBESS.NCBESS
(29)  

4. Case studies and numerical results 

4.1. Data and scenarios 

The 2015–2020 wind and solar curtailment data used for the analysis 
and sizing was taken from California ISO [3]. The curtailment data was 
recorded for different hours and at different minute intervals, and it was 
only sorted for one-hour intervals to keep consistency. A year-round 
curtailment data distribution for the wind and solar profiles can be 
seen in Fig. 5 from 2015 to 2020. It can be observed from Fig. 5 that the 
wind curtailment was less than the solar curtailment due to the preva
lence of solar installation in California. In this system, the average load is 
25,827 MW, the average power exchange is 6805 MW, and the output 
power of solar farms, wind turbines, nuclear power plants, large hydro 
units, thermal power plants, and other renewables plants (i.e., biomass 
or geothermal) are 2814 MW, 1685 MW, 2020 MW, 2439 MW, 8312 
MW, 6250 MW, respectively. 

Table 2 summarizes the total curtailed power, highlighting the 
maximum curtailed power at a particular hour and the number of times 
power was curtailed per year. Solar power had the highest curtailment 
due to its higher installation capacity. A total of 1.5 million MWh of 
power was curtailed, accounting for 46% of the curtailment hours a 
year. As for wind power, curtailment occurred for 1584 h a year, rep
resenting 18% of the total hours a year. This curtailed power can unlock 
potential benefits for profits, so it was extensively studied, as shown in 
the following sections. 

The values of the considered parameters in this study are shown in 
Table 3. These parameters include the capital and operation costs, 
technical and financial parameters, and efficiencies of AWEs and BESSs. 

Sorted data sets of five years from 2015 to 2019 with 43,800 points 
were input as training values to the deep learning algorithm. The LSTM, 
GRU, and BILSTM methods were employed in MATLAB to analyze the 
RMSE score for the year 2020, along with a combination of different 
optimizers, as shown in Table 4. The parameters used for training are 
mentioned in the footnotes of Table 4. 

It can be observed that BILSTM has poor performance and that it 
resulted in high RMSE. Besides, the BILSTM predictions had a huge 
deviation from the zero value for the times with no solar radiation, 
which is not practically possible. Thus, BILSTM was neglected and was 
not considered for further analysis. The LSTM and GRU algorithms 
performed better than BILSTM, with predictions near zero when no solar 
radiation was available. Among all, the GRU algorithm and ADAM [48] 
optimizer resulted in the lowest RMSE score for both the wind and solar 

Table 5 
AOC, CAPEX, OPEX, penalty cost, product, profits, system size, and utilization of 
the curtailed power.  

Reference Units Case 1 Case 2 Case 3 

Objective (AOC) MM$ 640.00 233.55 270.00 
CAPEX MM$ 240.00 130.00 94.10 
OPEX MM$ 38.50 4.16 3.93 
Penalty cost MM$ 352 48.50 136 
Electricity Product MWh 1,042,032 - - 
Hydrogen Product ton/year - 32,304 30,600 
Profit MM$ (184.71) 11.18 39.66 
AWE size MW - 3,462 2,500 
BESS size MWh 5000 - - 
Utilization % 79 97 92 

MM$: Million dollars 

Table 6 
Comparison of the obtained results with deterministic models.  

Reference Units Case 
1 

Case 1 
(DET*) 

Case 
2 

Case 2 
(DET) 

Case 
3 

Case 3 
(DET) 

Objective 
(AOC) 

MM$ 640 646 233 230 270 272 

Utilization % 79 79 97 97 92 91.6  

* DET is the deterministic model 

Fig. 8. One-point sensitivity analysis for Cases 1, 2, and 3.  

M.H. Shams et al.                                                                                                                                                                                                                               



Journal of Energy Storage 41 (2021) 103010

9

curtailed data. Thus, GRU and ADAM were chosen to individually pre
dict the wind and solar curtailments for the year 2020, as shown in 
Fig. 6. The forecasted wind and solar data, as well as observed values in 
the respective year, i.e., 2020, are shown in Fig. 6 (a) and (d). To have a 
better look at the predicted and observed values, a magnified time slot 
was demonstrated, as shown in Fig. 6 (b) and (e). Finally, Fig. 6 (c) and 
(f) show the RMSE score at individual hours, with plus and minus values 
depicting the difference between the predicted and observed data. Using 
the error data obtained from the predicted values, a normal PDF was 
fitted to be used as input in the generation scenario. The error PDF 
distribution can be seen in Fig. 7. The mean and standard deviations for 
the wind power curtailment were -1.77 and 44.99, whereas they were 
-31 and 315.12 for the solar power curtailment, respectively. These 
values were used in the Monte-Carlo scenario-generation approach, as 
shown in Fig. 3. A set of 100 scenarios were generated and reduced to 
the best and most accurate five scenarios. 

4.2. Results 

As shown in Fig. 1, the proposed model was applied to three cases to 
alleviate wind and solar power curtailments by 1) only BESSs in Case 1, 
2) only AWEs in Case 2, and 3) both AWEs and BESSs in Case 3. It should 
be noted that the maximum size was kept similar (i.e., 5000 MW) for 
both Case 1 and Case 2. For Case 3, the maximum allowable size was 
equally distributed between the AWE (2500 MW) and BESS (2500 MW). 
Cases 1, 2, and 3 were evaluated for their total expected annual oper
ating cost (AOC). As explained in the formulation section, the system 
costs, i.e., BESS and AWE equipment costs, were annualized only to 
evaluate the yearly operating costs and annual profits for each case 
scenario. Furthermore, for each case scenario, the fraction of the cur
tailed power utilization was also evaluated. A summary of the results for 
Cases 1, 2, and 3 can be seen in Table 5 for the first scenario. 

4.2.1. Case 1: with Battery Energy Storage System (BESS) 
Owing to the high technology costs of BESSs compared with AWEs, 

BESS resulted in high CAPEX and high OPEX. Keeping in mind the 
objective function, i.e., maximization of utilization, Case 1 hit its upper 
bound of 5000 MW. To achieve the maximum possible curtailment 
utilization, the case results in the maximum possible size for BESS 
satisfied the given objective. As a result, Case 1 had no profit ($184.71 
million of loss) and had more operational costs. Annually, the system 

only consumed a total of 79% of curtailed power. As the system could 
not completely utilize the curtailed power given the size constraint, the 
utilized curtailed power was penalized. The penalty cost was 46.6% 
higher than with CAPEX for Case 1, which is a major contributor to the 
high annual costs of Case 1. Therefore, the optimal size for Case 1 was 
the same as the upper bound considered in the model, i.e., 5000 MW. It 
should be noted that considering the replacement cost of the BESS in the 
formulation increased the AOC from $640 million to $819 million and 
had no effect on other variables such as capital costs, utilization, and 
BESS size, as shown in Table 5; Because the objective function was based 
on maximizing the utilization of the RES curtailment and not based on 
cost minimization. 

4.2.2. Case 2: with Alkaline Water Electrolyzer (AWE) 
Case 2, in contrast to Case 1, had 63.5% less annual costs, i.e., 

$233.55 million, as shown in Table 5. Owing to the operational benefits 
of AWE, the operational cost of Case 2 was $4.16 million, which is 89.1% 
less than that of Case 1. As hydrogen has a greater benefit as a storage 
medium, the difference in the penalty costs between Cases 1 and 2 can 
be seen in Table 5. Compared with Case 1, Case 2 had 86.2% fewer 
penalty costs due to its high utilization of curtailed power (96%). 
Annually, Case 2 could utilize 1,567,500 MWh of power for converting it 
to hydrogen. This amount of power can result in the annual production 
of 35,604 tons of hydrogen and an annual operating profit of $11.18 
million. The optimal size for Case 2 to accommodate curtailed power is 
3,404 MW. Among all the cases, Case 2 showed to have the highest 
utilization rate and second-highest profit. 

4.2.3. Case 3: hybrid case (BESS + AWE) 
Case 3 considers the hybrid case, where both BESS and AWE are 

utilized. For Case 3, the upper bounds for the maximum power for BESS 
and AWE were reduced to half compared with the maximum bounds 
used in Case 1 and Case 2, respectively, i.e., 2500 MWh for the BESS 
state of charge and 2500 MW for the AWE capacity. To satisfy the 
objective of maximum utilization, Case 3, similar to Case 1, hit its upper 
bound, as shown in Table 5. At an AWE size of 2500 MW, Case 3 can 
utilize 92% of the curtailed power and produce 33,730 tons of hydrogen 
annually. Also, Case 3 showed to have the highest profits among all 
cases, corresponding to $39.6 million. High profits are due to less CAPEX 
as the AWE size was reduced by 26.5%, which equally lays off the ex
penses from AOC. It should be noted that in Case 3, the replacement cost 

Fig. 9. Effect of the electricity and hydrogen prices on profit—Case 1 shows the effect of the electricity selling price on profit when varied (67–317 $/MWh); Cases 2 
and 3 show the effect of the hydrogen selling price on profit when varied (1–12.5 $/MWh). 
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of BESS did not have any effects because the BESSs were not employed 
due to their high capital and operation costs. 

4.3. Model validation 

This section has validated the proposed two-stage stochastic model 
by comparing it with the deterministic model. For the deterministic 
model, the predicted wind and solar curtailments were used as the input 
for the model. As shown in Table 6, the proposed two-stage stochastic 
method had almost similar AOC and utilization with respect to the 
deterministic methods. Results validated the proposed model and 
showed the effectiveness of the approach in the context of stochastic 
planning and operation. 

4.4. Discussion and sensitivity analysis 
Cases 1–3 were subjected to one-point sensitivity analysis to observe 

the expected variations in the AOC due to market fluctuations and 
technology price. For these fixed operational and maintenance costs 
(FOM) for BESS and AWE, the technology cost (BESS and AWE) was 
considered as a sensitive parameter. Fig. 8 shows the results of the one- 
point sensitivity analysis. 

For Case 1, the BESS capacity had the highest impact on AOC. With a 
10% increase in the BESS capacity cost, there was a 4.0% increase in the 
AOC. However, with a 10% decrease in FOM, no change was observed. 
Similarly, for Case 2, the AWE technology cost had the second-highest 
impact, followed by the FOM of AWE. The impact of FOM on AOC can 
be justified due to the higher utilization rate for Case 2. Lastly, for Case 
3, as AWE was selected as an optimal option for the utilization of cur
tailed power, the FOM of BESS and the BESS capacity cost had no impact 
on the cost. Furthermore, similar to Case 2, the FOM of AWE had the 
highest impact, followed by the AWE capacity cost. 

4.5. Effects of the product price, system cost, and penalty 

4.5.1. Effect of the electricity and hydrogen price on the profit/cost 
minimization 

The electricity and hydrogen prices do not impact the utilization of 
curtailed power, but their selling price highly affects the profit for each 
case scenario. For Case 1, electricity is the product, whereas for Cases 2 
and 3, hydrogen is the product. The base electricity price used in the 
model to calculate the system’s profit is 90 $/MWh, whereas the selling 
price of hydrogen was considered as 4.5 $/kg in the model. These prices 

Fig. 10. Effects of the product selling price and system cost on profit, system sizing, and utilization via profit maximization—(a), (b), and (c): Case 1 profit, BESS size, 
and utilization; (d), (e), and (f): Case 2 profit, AWE size, and utilization; and (g), (h), and (i): Case 3 profit, AWE size, and utilization. 
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are varied respectively from the lower bounds of 67 $/MWh and 1 $/kg 
to the maximum bounds of 317 $/MWh and 12.5 $/kg for electricity and 
hydrogen. The resulting profits can be seen in Fig. 9 for Cases 1, 2, and 3, 
respectively. It must be noted that the profit was evaluated from the 
results obtained via the cost minimization objective function. An anal
ysis via the profit maximization objective function with a varying 
product selling price and a penalty price can be seen in the next section. 

The minimum selling price at which Case 1 started to generate profit 
is 268 $/MWh. Below this price, the profit is negative, i.e., the operating 
expenses are more than the operational savings. Similar to Case 2, the 
minimum selling price was calculated to be 4.15, whereas, for Case 3, it 
was calculated to be 3.2 $/kg. The price for Case 3 decreased by 29.6% 
compared with Case 2, generating more economical benefits. However, 
Case 2 showed to have a better utilization rate in comparison with Case 3. 

4.5.2. Effects of the product selling price and system cost (Profit 
Maximization) 

After the one-point sensitivity analysis, the effects of the product 
selling price and system size on profit, system size (BESS or AWE), and 
utilization of curtailed power were evaluated using the profit maximi
zation objective function. The profit maximization objective is the same 
as AOC. Also, it is constrained without considering the penalty cost and 

considers the revenue from selling electricity and hydrogen. Thus, the 
electricity selling price for Case 1 varied from a minimum of 60 $/MWh 
to a maximum of 300 $/MWh. Similar to Cases 2 and 3, the hydrogen 
selling price varied from a minimum of 1 $/kg to a maximum of 12.5 
$/kg. Likewise, the system costs for BESS and AWE varied from the 
minimum values of 355k $/MW and 298k $/MW to the maximum values 
of 478k $/MW and 405k $/MW, respectively. The profit maximization 
results can be seen in Fig. 10. 

From Fig. 10 (a), it can clearly be seen that Case 1 resulted in a 
maximum profit of $88.2 million and that it failed to generate any profit 
with an electricity selling price below 90 $/MWh. In contrast, Case 2 
showed a profit increase of 85.7%, as shown in Fig. 10 (d). Case 3 had 
similar results to those of Case 2, as the profit maximization was driven 
toward a smaller system size, which eventually ended up to be the same 
for both cases, as seen in Fig. 10 (g). Since this particular case is for profit 
maximization, the utilization of curtailed power was not the primary 
goal. This overview of the profits can be a good reference source from an 
investor’s perspective. The results for the sizing and curtailment utili
zation of Case 1 can be seen in Fig. 10 (b) and (c). With profit maxi
mization, Case 1 had an optimal size of 2100 MW with the lowest 
equipment cost and highest electricity selling price and could only 
accommodate 54% of the curtailed power. As shown in Fig. 10 (e), (f), 

Fig. 11. Effects of the penalty price and system cost on the AOC, system sizing, and utilization via the AOC objective function—(a), (b), and (c): AOC, BESS size, and 
utilization of Case 1; (d), (e), and (f): AOC, AWE size, and utilization of Case 2; and (g), (h), and (i): AOC, AWE size, and utilization of Case 3. 
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and (h), (i), Case 2 had a 2.8% lower system size for the lowest system 
cost and maximum hydrogen selling price. With a system size of 2040 
MW, Cases 2 and 3 resulted in a 60.7% increase in the utilization of 
curtailed power compared with Case 1, i.e., 86.8%. The results showed 
that from a profit perspective, Cases 2 and 3 have the best to offer. 

4.5.3. Effects of the penalty price and system Cost (AOC Minimization) 
The effects of the penalty price and system size on the AOC, system 

size (BESS or AWE), and utilization of curtailed power were evaluated 
using the AOC objective function. For this, the penalty prices for Cases 1, 
2, and 3 varied from a minimum of 100 $/MWh to a maximum of 10,000 
$/MWh. Likewise, the system costs for BESS and AWE varied in a similar 
manner, as mentioned in the previous section. The results of the AOC 
objective function can be seen in Fig. 11. 

As shown in Fig. 11, the objective function aimed at minimizing the 
AOC with a subjected penalty price, thus deriving the optimization to
ward maximum utilization to avoid penalties. The optimizer opted for a 
maximum system size for all the cases. It must be noted that since the 
penalty price increased from a minimum of 100 to 10,000 $/MWh, the 
AOC increased with the increased penalty price, as seen in Fig. 11 (a), 
(d), and (g), respectively. Therefore, although the optimal size reached 
its maximum value, the penalty cost was at a higher value, making the 
AOC much higher than the one at the lower price. As shown in Fig. 11 
(b), the maximum system size was realized at a penalty price of 
~600–800 $/MW. Above 800 and up to 10,000 $/MW, the system size 
of BESS was stagnant as the upper bound was already reached. So, for 
ease of observation, the penalty price scale was lowered to 1000 $/MW 
from its original maximum value of 10,000 $/MW. A similar trend 
regarding the system size saturation can be seen in Fig. 11 (e) and (h). 
However, as shown in Fig. 11 (e), it must be noted that Case 2 reached its 
saturation level near 900–1000 $/MWh, whereas Case 3 reached its 
saturation level at ~500–600 $/MWh, as shown in Fig. 11 (h). This is 
due to the lower upper limit of the hybrid case compared with Cases 1 
and 2, with an upper limit of 5000 MW. Lastly, the utilization rate for 
Cases 1 and 2 was highest with 100% curtailment utilization, whereas 
for Case 3, the maximum achieved curtailment utilization was 91.7%. 
All the cases show higher utilization in comparison with the scenarios 
discussed for profit maximization. The curtailment utilization results for 
Cases 1, 2, and 3 can be seen in Fig. 11 (c), (f), (i), respectively. 

5. Conclusions 

Due to the increasing numbers of wind and solar farms, renewable 
energy curtailment increases with each year. However, energy storage 
options, such as hydrogen and battery storage systems, can minimize 
energy curtailments if RESs can be appropriately employed. Therefore, 
in this paper, we developed a novel deep learning-based planning model 
for maximizing the utilization of curtailed wind and solar power using 
the storage capacity of hydrogen and battery systems. RES uncertainty 
was modeled using a scenario-based two-stage stochastic method. Also, 
year-ahead scenarios for wind and solar curtailments were generated 
using a fitted error PDF via a deep learning forecasting approach. 

The deep learning results showed that the GRU algorithm could 
forecast wind and solar power curtailments with a minimal forecast 
error. Also, the generated scenarios with the obtained forecast errors, 
when used to run the stochastic model, showed that the hybrid case (i.e., 
AWE and BESS) is the most profit-generating case. Despite being a 
hybrid case, the optimal size only resulted in incorporating AWE for the 
whole zones. Furthermore, the AWE sizing selection highly depended on 
the penalty price as well as the curtailment amount in the scenarios. 
However, in some periods with high curtailed power, the optimum AWE 
size did not increase and was penalized as excess power as a result of the 
performed cost-benefit assessment. Furthermore, it was revealed that by 
developing AWE units to produce hydrogen, 97% of the curtailed 
renewable power could be utilized while taking into consideration the 
worst curtailment scenarios. The payback period for this investment can 

be less than five years, with a hydrogen selling price of 6 $/kg and 
without considering any revenues from monetizing carbon-free sources. 
Furthermore, the effects of the product selling price and penalties were 
investigated using AOC and profit objective optimizations. 

All in all, this study provides a tangible solution that can be utilized 
by ISOs for overcoming energy curtailment issues through the effective 
prediction of renewable energy curtailments, two-stage stochastic 
equipment sizing, and daily operation for each case. However, the main 
limitation for implementing this study is the lack of RES curtailment 
data for other locations. Furthermore, this survey can be extended by 
utilizing other sources to mitigate the oversupply, such as flexible power 
plants, demand-side management, and electric and hydrogen vehicles. 
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