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GENERALIZING FLOOR PLANS USING GRAPH NEURAL NETWORKS

Christoffer P. Simonsen Frederik M. Thiesson Mark P. Philipsen Thomas B. Moeslund

Aalborg University
Visual Analysis and Perception Laboratory
Rendsburggade 14, 9000 Aalborg, Denmark

ABSTRACT
The proliferation of indoor maps is limited by the manual
process of generalizing floor plans. Previous attempts at
automating similar processes use rasterization for structure.
With Graph Neural Networks (GNN) it is now possible to
skip rasterization and rely on the inherent structures in CAD
drawings. A core component in floor plan generalization is
localization of doors. We show how floor plan graphs can
be extracted directly from CAD primitives and how state-of-
the-art GNNs can be used to classify graph nodes as door or
non-door. Generalization is represented by the creation of
placeholder bounding boxes using the labelled graph nodes.
Our graph-based approach completely outperforms the Faster
R-CNN baseline, which fail to locate any doors with the de-
sired localization accuracy. To support further development
of graph-based methods and comparison with raster-based
methods, we publish a new dataset that consists of both im-
age and graph-based floor plan representations.
Code and dataset is available at https://github.com/
Chrps/MapGeneralization.

Index Terms— graph neural networks, dataset, floor
plan, indoor map

1. INTRODUCTION

Cartography has historically been a major driver of progress,
enhancing our understanding of and ability to navigate the
world. With the introduction of smartphones and readily
available digitized maps the reliance on maps is now greater
than ever. While outdoor maps have become ubiquitous and
indispensable, indoor maps are far less commonplace. The
global indoor positioning and navigation market is predicted
to expand from $2.6bn in 2017 to $43bn by 2025 [1]. This
can be helped by automating the creation of indoor maps.
The impact of an automated and scalable process is difficult
to anticipate considering the effect that accessible outdoor
maps have had. For now, indoor maps are mostly known
from larger venues, such as airports, stadiums, HQs, and uni-
versities, where people are likely to be unfamiliar with the
layout.

Thanks to MapsPeople for supplying floor plans.

(a) (b) (c)

Fig. 1. (a) Rasterized floor plan. (b) Graph extracted from
CAD primitives. (c) Generalized map for navigation.

Maps for indoor navigation must present information about
room layout, hallways, and openings in a simple and stan-
dardized manner. In other words, a generalized representa-
tion. Specialists generalize maps with basis in existing tech-
nical drawings of buildings. These technical drawings are
highly complex and can vary in terms of format, level of de-
tail, and style. The time-consuming generalization process
involves tracing the perimeter of rooms, locating doors, as-
signing labels, etc. An example of a typical floor plan image
is shown in Figure 1 (a). This is the common representation
used in related work as input to e.g. a Convolutional Neu-
ral Network (CNN). In this work we investigate an alterna-
tive representation based on graphs. Such a graph, with blue
nodes and gray edges, is shown in Figure 1 (b). The graph
is created by parsing a vector-based CAD file. This work is
a step towards automatically generating generalized maps for
indoor navigation similar to the one shown in Figure 1 (c).
Here we focus on the central problem of localizing doors.

Automatic analysis of technical drawings in general and
floor plans in particular has long been an active research area,
with methods overwhelmingly operating in the image domain
(like Figure 1 (a)). Most recent methods rely on Deep Neural
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Networks (DNN) for detecting rooms [2, 3] and doors [4, 2, 3]
and segmenting walls [5, 3]. Prior to the Deep Learning revo-
lution, methods were based on simple rules and classic image
processing techniques such as Hough transform for detect-
ing walls [6] and morphological operations for segmenting
text [7] or rooms [8]. Common for most image based ap-
proaches is the amount of effort going into recovering infor-
mation that has been obfuscated or lost because of rasteriza-
tion. One example is Raster-to-Vector [9], where vectorized
representations of floor plans are created by extracting entities
such as wall junctions using a CNN. The information loss and
inefficiencies from rasteriztion are the result of quantisation
and the replacement of inherent structures with a grid struc-
ture. Throwing away meaningful structures only to attempt to
rediscover them using methods such as Raster-to-Vector [9],
seems counter intuitive. The use of more authentic and effi-
cient representations have so far been hampered by the lack
of powerful machine learning algorithms that are able to han-
dle input of arbitrary size, shape, and connectivity [10]. This
is quickly changing due to advances in the emerging class of
DNNs called Graph Neural Networks (GNN).

1.1. Contribution

We use GNNs for floor plan analysis, thereby avoiding fun-
damental problems plaguing raster-based methods. We ad-
dress the lack of suitable datasets by introducing a new public
dataset that consists of distinct buildings and uniquely sup-
ports both rasterized and graph-based methods. The contribu-
tions can be summarized as follows:

• Comparison of state-of-the-art GNNs performing node
classification in graphs from CAD floor plans.

• Demonstration of the performance and accuracy bene-
fits of a graph-based approach to floor plan analysis.

• The Repository of Unique Buildings (RUB) dataset.

2. RELATED WORK

Early work involved image processing techniques such as
Macé et al.’s [6] use of the Hough transform for detecting
walls and Ahmed et al.’s [7] use of morphological operations
for separating text and graphics. More recently, Heras et
al. [11] proposed a patch-based segmentation method where
sets of features are extracted from image patches before labels
are assigned using a bag-of-words model.

Current methods such as those presented by Zhu et al. [5]
and Dodge et al. [3] employ Fully Convolutional Networks to
segment walls of varying thickness. Following the segmenta-
tion, Dodge et al. [3] use the Faster R-CNN object detector to
locate individual rooms. Sharma et al. [12] use low and high
level semantic features from a CNN to measure floor plan
similarity. Zeng et al. [2] use a multi-task CNN with a room-
boundary-attention mechanism for floor plan recognition and

room type classification. Sharma et al. [13] propose a con-
junction of autoencoder, Cyclic GAN and CNN for mapping
between domains and for retrieving similar floor plan image.

The use of graphs in floor plan analysis has been seen
before. After morphological operations and connected com-
ponent analysis, Sharma et al. [8] create graphs of segmented
floor plan elements in order to compare room layouts. Ya-
masaki et al. [14] use a modified McGregor’s algorithm to
extract a graph model from segmented floor plans, resulting
in a maximum common subgraph that is used to measure sim-
ilarity. Heras et al. [11] generate graphs after segmentating
doors, windows, and walls. They then use the A* algorithm to
identify the final door and window entities. Most important,
Gerstweiler et al. [15] create graphs directly from the lines,
arcs, polylines, etc. that make up CAD files, thereby avoiding
the problematic transformation to the image domain. Subse-
quently, openings, walls, and rooms are detected in the graph
based on a sets of handcrafted conditions.

With recent breakthroughs in GNNs and the new pos-
sibilities they bring, it is worth combining the idea from
Gerstweiler et al. [15] with GNNs. GNNs follow a recursive
neighborhood aggregation scheme, where feature vectors
are passed between neighboring nodes, capturing structural
information within nodes’ k-hop neighborhood [16]. This
encourages similar representation across neighboring nodes
and the stacking of graph convolution layers result in progres-
sively higher-level features as seen in CNNs. The power of
graph-based deep learning has been demonstrated by Wang
et al. [17], who significantly outperform prior work that rely
on rasterized representations [18] or does not take advantage
of graph structures [19]. Some of the most prominent GNNs
include, Graph Convolutional Network (GCN) [20], Graph
Attention Network (GAT) [21], GraphSAGE [22], Attention-
based Graph Neural Network (AGNN) [23], Topology Adap-
tive Graph Convolutional Network (TAGCN) [24], and Graph
Isomorphism Network (GIN) [16].

3. DATASET

We add to the diversity of publicly available floor plans by
making our Repository of Unique Buildings (RUB) available
for research in floor plan analysis. The dataset consists of
floor plans from two universities and a concert hall. The
dataset addresses the lack of support for vectorized floor plan
representations in current datasets by providing the source
CAD files as well as both rasterized and vectorized repre-
sentations. RUB consists of 74 floor plans, ranging in scale
from smaller buildings rasterized at 500x3,000 pixels to large
building complexes taking up 10,000x18,000 pixels. The
number of doors in the dataset totals 1744. With our graph
representation this corresponds to 21,874 door nodes out
of 189,850 total nodes. Figure 2 gives an overview of the
tools (rounded rectangles) and data (rectangles) that are made
available with RUB. The basis is CAD floor plans in the DXF



Fig. 2. The Repository of Unique Buildings (RUB) dataset
consists of tools (rounded rectangles) and data (rectangles)
that support both rasterized and vector-based methods.

format. These can either be rasterized or graphs can be ex-
tracted based on CAD primitives. We have labelled the graph
nodes and used these to compute and transfer bounding boxes
the floor plan images. The result is two comparable datasets,
one consisting of node labelled graphs and another of images
and bounding boxes. Everything is available at https:
//github.com/Chrps/MapGeneralization.

4. METHOD

4.1. Graph Extraction

Graph nodes and edges are extracted from CAD primitives
that are parsed from DXF files using the ezdxf Python library.
The conversion from primitives to nodes and edges requires
analysis of each CAD primitive. In case of the simple line
primitive, a node is created for the start point P0 and another
for the end point P1. The two are connected by an edge. A
more complex primitive such as a circle is sampled at incre-
ments of θi based on a center point C and radius r with an
angular resolution of 10◦. The angular resolution is deter-
mined heuristically in order to faithfully capture the shape of
the primitives. The sampling of an arc is illustrated in Figure
3. Unlike the circle, arcs are constrained to a ∆θ range.

(a) (b)

Fig. 3. (a) Nodes are created for P0 and P1 and connected by
an edge. (b) Points are interpolated on an arc with center C
and radius r at increments of θi across ∆θ.

The result of the primitive conversion and sampling is a large
number of small disjoint graphs that are subsequently joined
by merging any nodes with similar position. Node attributes
are computed using the graph and the relationship between

Name Accuracy[%] Name Accuracy[%]
GCN [20] 94.9 GAT [21] 97.3
GraphSAGE [22] 94.5 AGNN [23] 87.6
TAGCN [24] 95.9 GIN [16] 95.4

Table 1. Door vs. non-door node classification performance
of selected GNN architectures.

neighboring nodes. The attributes include: (1) node degree,
(2) max edge angle, (3) min edge angle, (4) max edge length
and (5) min edge length. All of the attributes are normalized.

4.2. Node Classification

GNN variants have shown state-of-the-art results on both
node and graph classification tasks [16] and look ideally
suited for classifying graph nodes as doors or non-door. The
novelty of the floor plan dataset and the uncertainty associ-
ated with results presented using current benchmarks [10]
warrants a comparison between a selection of GNNs. Using
the Deep Graph Library we implement the six GNNs men-
tioned at the end of Section 2. For comparison each network
consists of 8 layers and undergo a parameter sweep. The net-
works are trained using a weighted cross-entropy loss for 500
epochs. Table 1 gives an overview of the performance and
shows that performance is generally in line between GNN
variants, with GAT achieving a slight lead.

(a) (b)

Fig. 4. (a) Ground truth labelling. (b) Labelling by GAT
GNN. Door nodes are red and non-door nodes are blue.

Figure 4 (a) shows a fragment of a graph where nodes are la-
belled according to our ground truth. Figure 4 (b) shows the
same fragment with nodes labelled according to the predic-
tions from the GAT GNN. Notice that some non-door nodes
in close proximity to door nodes have been misclassified. This
is generally not a big problem but may result in less accurate
localization in the generalization step that follows. Worst case
is nearby doors being registered as one.

4.3. Generalization from Node Labels

Generalization is the process of replacing diverse representa-
tions with a general symbol. Here, we use bounding boxes
as placeholders. Graph nodes are turned into axis aligned
bounding boxes by first removing all non-door nodes from the
graphs. This results in a number disjointed sub-graphs. These

https://github.com/Chrps/MapGeneralization
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Name Precision[%] Recall[%] Accuracy[%]

ou
r

GAT 75.2 75.9 60.8
GAT 96.7 97.6 94.5
Dodge et al. [3] 0.0 0.0 0.0
Dodge et al. [3] 84.2 65.6 58.4

ot
he

r

Dodge et al. [3] - - 96.0
Liu et al. [9] 91.9 90.2 -
Yama. et al. [14] - - 65.8
Zeng et al. [2] - - 86.0

Table 2. (Top) Performance comparison between our GNN
method and Dodge et al. [3] on the RUB dataset. Bold is
used to highlight results with a strict IoU > 0.95 criteria
(otherwise IoU > 0.5). (Bottom) Performance as reported
in related work on other datasets. Results are all based on
different subsets of the LIFULL Home’s database.

sub-graphs are further separated using the DB-scan [25] clus-
tering algorithm. Finally, the maximum and minimum along
each of the two major axes define the bounding boxes for each
sub-graph. This procedure is performed on both ground truth
labelled graphs and on graphs labelled by the GNN. An ex-
ample of the resulting bounding boxes is shown in Figure 5

5. RESULTS

Positional accuracy is very important in this application.
For this reason, performance is measured using a very strict
Intersection-over-Union (IoU) criteria. A performance com-
parison between our GAT GNN and Dodge et al. [3] is pre-
sented in the top half of Table 2. The bottom half shows
performance as reported in existing works for their respective
datasets. The results from related work are all based on differ-
ent datasets and since it is not possible to apply our method
to existing raster-datasets, these results simply serve as an
indicator for the overall level of performance that can be ex-
pected. With an accuracy of 96.0% Dodge et al. [3] looks like
the best performing method. For this reason Dodge et al. [3],
which detects doors using the Faster R-CNN object detector,
is used as our baseline. Liu et al. [9] report 91.9% precision
and 90.2% recall for their openings category with IoU > 0.5.
Yamasaki et al. [14] and Zeng et al. [2] both perform pixel
level segmentation. Yamasaki et al. [14] achieves 65.8%
accuracy for doors and Zeng et al. [2] achieves 86.0% accu-
racy in a combined door and window category. Even under
a strict localization requirement of IoU > 0.95 our graph-
based method achieves a precision of 75.2% and a recall of
75.9%.The raster-based detector is unable to detect doors
when subjected to the IoU > 0.95 requirement. For this
reason we also report results with a more relaxed IoU > 0.5.
Here, the graph-based method achieves a precision of 96.7%
and a recall of 97.6%, while our implementation of Dodge et
al. [3] (Faster R-CNN) achieves a precision of 84.2% and a
recall of 65.6%.

(a)

Fig. 5. Crop from a challenging example from our validation
set, which highlights the high level of performance for con-
ventional layouts and difficulties with unusual architecture.
Green boxes correspond to the ground truth and blue boxes
correspond to detections by the GNN.

The drop from 96.0% to 58.4% accuracy when Dodge et
al. [3] is applied to our dataset shows that the proposed dataset
is significantly more challenging than the raster-datasets cur-
rently in use. The reason for this is clearly visible in Figure 5,
where our GNN performs well in the conventional areas of
the building, accurately identifying and localizing individual
doors. Meanwhile, it fails in some of the unusual parts of the
architecture resulting in many false positives.

6. CONCLUSION

We have demonstrated the benefits of using graph-based rep-
resentations and GNNs for analysing floor plans. Unlike the
baseline Faster R-CNN object detector our graph-based de-
tector is able to cope with very strict localization require-
ments. The efficient graph-based representation also makes
it easy to operate on huge floor plans. When rasterized, large
buildings may require 10,000x18,000 pixels or more to rep-
resent their footprint, making it necessary to use a window
scheme to perform detection using a CNN. The 37.6 percent-
age point drop in performance for the baseline method when
applied to our dataset suggests that our novel dataset is indeed
more challenging. We hope to support further comparison and
development by publishing our Repository of Unique Build-
ings (RUB) dataset, which supports both graph and raster-
based approaches.
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