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An Improved Synchronization Stability Method of 

Virtual Synchronous Generators Based on Frequency 

Feedforward on Reactive Power Control Loop 

Xiaoling Xiong, Member, IEEE, Chao Wu, Member, IEEE, Donghua Pan, Member, IEEE  

and Frede Blaabjerg, Fellow, IEEE 
 

ABSTRACT － The synchronization stability of the virtual 

synchronous generator (VSG) under grid fault is an important 

issue for maintaining stable operation in the power system. 

Existing work has pointed out a low pass filter (LPF) with a 

sufficiently low cutoff frequency in the reactive power control loop 

(RPCL) can improve the transient stability. Yet, the underlying 

mechanism was unknown. Moreover, as a key index of VSG and 

precondition of synchronization stability, the frequency response 

is rarely studied. In this paper, based on the linearized model for 

qualitative analysis, combined with the nonlinear model for 

quantitative analysis, the underlying mechanism of improving 

synchronization stability using an LPF in the RPCL is revealed. 

Furthermore, to avoid increasing the system order and solve the 

conflict between transient stability and frequency response, an 

improved synchronization stability method is proposed by 

feedforwarding the frequency difference between the VSG and 

grid to the RPCL. The frequency response is also acquired based 

on the combined linearized and nonlinear model, which shows that 

the frequency feedforward method can further enhance the 

frequency stability. How to design the coefficient of the frequency 

feedforward path with different inertia requirements is also 

presented. Finally, this method is verified by experimental results. 

 

Index Terms—Virtual synchronous generators, synchronization 

stability, frequency stability, reactive power control loop, virtual 

inertia. 

I. INTRODUCTION 

The penetration of distributed energy resources (DERs) 

connected to the electric power system (EPS) by voltage source 

converters (VSCs) is growing quickly [1]-[3]. As a result, the 

EPS becomes weaker as the ratio of synchronous generators 

(SGs) based generation decreases, indicating that the inertia of 

the power grid is reduced [4]. The decrease of inertia will 

jeopardize the frequency stability from two aspects: frequency 

deviation and the rate of change of frequency (RoCoF). Firstly, 

lower inertia leads to a large frequency deviation during the 

disturbances, which is harmful to both SGs and loads. Besides, 

lower inertia will cause a high RoCoF, which might trip the 

generators and lead to cascading failure [5]-[7]. Thus, to avoid 

the adverse effects of the low inertia characteristic, it is 

necessary to investigate optimized control strategies that can 

equip the VSCs with inertia.  

The basic idea is to control the VSCs to mimic actual SGs by 

using the swing equation [8]-[17]. The inertia emulating 

methods can generally be divided into two categories. The first 

one is virtual synchronous generators (VSGs) [8]-[10], also 

called virtual synchronous machines (VISMA) [11] or 

synchroconverter [12], which directly imitate the mechanical 

toque equation in the active power control loop (APCL). 

Another category is the generalized droop control, which 

implements the inertia by adding a low-pass filter (LPF) in the 

APCL [13], [14]. It has been proved that these two methods are 

equivalent to the inertia response [15], [16]. Furthermore, an 

adaptive inertia and damping method are proposed to further 

increase the frequency stability by employing different inertia 

during the frequency deviation and recovery process [17], [18]. 

Even though the VSGs can support the system inertia and 

improve frequency stability, it still suffers from other stability 

problems during different kinds of disturbances. Substantial 

research efforts have been devoted to the modeling and stability 

analysis under different grid conditions [19]-[21], [24]-[32]. 

However, most of them are concentrated on the small-signal 

stability analysis [19], [20], which are generally assessed by 

linearizing the system around a steady-state operating point. 

The linearized small-signal model is simple and can provide a 

clear physical insight into the stability issues. However, much 

dynamic information was missing during the linearizing 

procedure, especially for the nonlinear behaviors during large 

disturbances. Thus, the linearized model cannot be directly 

extended to analyze the synchronization stability of the VSGs 

during grid faults, such as grid voltage sag, as it is a large-signal 

nonlinear dynamic response [21]. Dynamic voltage restorers 

(DVRs) is an effective method to restore the load voltage during 
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the grid voltage sag [22]. However, it can only support the 

voltage for a very short time due to the limited capacity of the 

energy storage system [23]. On the other hand, the additional 

space and equipment are very costly. Thus, the DVR is usually 

installed for sensitive load, not in all general applications. 

Therefore, the DVRs are not concerned in this paper, which 

mainly focuses on improving the control method of VSG to ride 

through the grid fault, i.e., synchronization stability. Recently, 

the synchronization stability, which describes the ability of the 

VSG to maintain synchronization with the grid during grid fault, 

has received much research interest [24]-[32].  

The transient dynamics of VSC with grid-forming control are 

analyzed in [24]. It has been found that there were no 

synchronization stability problems when the system with power 

synchronous control has equilibrium points after grid fault [24], 

[25], due to a first-order response of the APCL. However, due 

to the non-inertia contribution, the RoCoF was very high, which 

means that the frequency changes sharply during the transient 

process. In [26], [27], the transient stability of VSGs can be 

enhanced by reducing the active power reference and/or 

increasing the reactive power reference during grid voltage sag. 

These methods are easily implemented by just changing the 

power reference according to the faulty voltage. However, the 

disadvantage is that the steady-state performance is changed. 

According to the IEEE standard 1547-2018 [28], it requires the 

VSGs to operate normally for 10 s without decreasing the active 

power when the grid voltage drops to 0.5 p.u-0.8 p.u.. In order 

to avoid the change of power reference, there are also some 

works aimed at changing the control structure to enhance the 

transient stability. In [29], [30], an adaptive inertia method is 

proposed to decrease the frequency deviation during the 

transient period, which is dependent on detecting the frequency 

and RoCoF. The adaptive inertia is changed based on the 

direction of frequency variation and RoCoF variation, which is 

complicated to implement, especially the differentiation 

element. In [31], an additional damping control method is 

proposed based on Lyapunov’s direct method, but the design 

method for the additional damping coefficient is absent. In [32], 

a mode-switching control method is presented for riding 

through even without an equilibrium point by changing VSG 

mode during the grid faults. However, the mode detection block 

is complicated based on combining the variation of frequency 

and active power, especially when the differentiation element is 

used. In [21], it has been found there is a conflict between the 

frequency response and the transient stability, indicating that 

large inertia may drive the VSG to crossover the unstable 

equilibrium point (UEP). However, the frequency response is a 

key index and requirement for the VSG. The precondition for 

synchronization stability enhancement is that frequency 

stability should be firstly guaranteed. 

In order to keep a high inertia contribution, using an LPF with 

a sufficiently low cutoff frequency in the RPCL can enhance 

transient stability. However, the underlying mechanism is not 

analyzed in details in [21]. Despite this, this method will 

decrease the dynamic performance of RPCL and increase the 

system order.  

This paper is going to solve the above problems. Also, it aims 

to investigate an improved control method to enhance transient 

stability and not to deteriorate frequency stability 

simultaneously. Therefore, the contributions of this paper can 

be summarized as, 

1. An analytical method of combining linearized and 

nonlinear model is employed to study synchronization stability 

and frequency stability. The linearized model is used for 

qualitative analysis to provide physical meaning, while the 

nonlinear model is adopted for quantitative analysis and 

stability assessment. 

2. The underlying mechanism of improving synchronization 

stability using an LPF in the RPCL is revealed. The added LPF 

introduces a dominant closed-loop pole to damp the power 

angle oscillation during the transient process. However, the 

system order is increased, and the dominant pole might 

jeopardize the VSG's small-signal stability.  

3. In order to avoid the LPF with very low bandwidth in the 

RPCL, a frequency feedforward path is added in the RPCL to 

improve the synchronization stability without increasing the 

system order and not affecting the small-signal stability.  

4. The synchronization stability and frequency response are 

studied based on the combined model, demonstrating that the 

frequency feedforward method can improve not only the 

synchronization stability but also the frequency stability during 

grid faults.  

This paper is organized as follows. The configuration and the 

basic mathematical model of the VSG are presented in Section 

II. In Section III, using the linearized method for qualitative 

analysis and the state space trajectories of the nonlinear system 

for the quantitative analysis, the effect of LPF in RPCL on the 

synchronization stability is studied and revealed. Section IV 

proposes an improved method by adding a frequency 

feedforward path to the RPCL to enhance synchronization 

stability. Meanwhile, the frequency response is also derived 

based on the combined model. Detailed parameter design 

guidelines of the coefficient parameters for the additional path 

are also presented. The theoretical analysis is verified in Section 

V by experimental results, and the conclusions are drawn in 

Section VI. 

II. CONFIGURATION AND MATHEMATICAL MODEL 

The configuration of a three-phase grid-connected VSG is 

shown in Fig. 1. The grid is modeled as an infinite voltage in 

series with an impedance, which includes an inductance Lg and 

a resistance Rg. Here,  Vg=Vgejωgt  and Vpcc=Vpcce
jθpcc  

represent the space vectors of the grid voltage and the PCC 

voltage, respectively. Usually, ωg is equal to the synchronous 

angular frequency ω0 in a strong grid, but it varies when 

connected to a weak grid. Inductor Lf represents the output filter 

of the VSG, and Ig is the current vector of the injected current 

to the grid. P and Q represent the active and reactive power 

transferred from PCC to the grid, respectively. In practice, to 

make an inertia contribution, a large capacitor is added on the 

dc side, which is controlled by the front-end converter, or the 
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energy storage is generally employed where the dc-link voltage 

is regulated by an energy storage converter [33], [34]. Hence, 

the dc voltage can be assumed to be constant when analyzing 

the synchronization issues between the VSG and the power grid 

[16], [21], [24-27]. 
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Fig. 1. The configuration of a three-phase grid-connected VSG. 

As shown in Fig. 1, Pref and Qref are active and reactive power 

references, respectively. The outer power control loops generate 

the PCC voltage vector reference, i.e., Vref=Vmrefe
jθref, where 

θref and Vmref are the phase and the voltage amplitude reference, 

respectively. An inner voltage and current control loop are 

adopted to regulate Vpcc to track Vref and limit the overcurrent. 

In practice, the responses of the outer power control loops are 

very slow, which determines the synchronization stability. 

Meanwhile, the inner loop bandwidth is much higher, and the 

delay term mainly affects the performance of high frequency 

[35], [36]. Therefore, the inner control loop and delay can be 

regarded as one with an ideal PCC voltage reference tracking 

when analyzing the synchronization stability [21], [24]-[27]. 

Thus, Vpcc = Vmref, θpcc = θref can be obtained. 

The droop control with an LPF can be used to emulate the 

VSG control, where Kp is the proportional gain, ωp is the cutoff 

angular frequency of LPF, which is added to provide virtual 

inertia. The commonly used VSG control scheme is also shown 

in Fig. 1, where J and Dp are the virtual inertia and the gain of 

frequency governor, respectively. The two control methods are 

equivalent when  

 
1 1, p

pp p

J D
KK 

   (1) 

The droop control with an LPF is adopted in this paper to 

compare with the results in [21] directly. The APCL is to 

emulate the swing equation of a SG, given as  

   0= p p ref p
d K P P

dt
        (2) 

The Q-V droop control is employed to adjust Vmref, the 

transfer function of which is given by 

 0mref q refV V K Q Q     (3) 

where Kq is the proportional gain. 

Defining δ as the power angle, which is the phase difference 

between Vpcc and Vg, i.e., δ = θpcc－θg = θref－ωgt. Thus, P and 

Q can be derived as  

 2

2 2

cos sin3

2

pcc pcc g g g pcc g

g g

V V V R X V V
P

R X

  
 


 (4) 

 2

2 2

cos sin3

2

pcc pcc g g g pcc g

g g

V V V X R V V
Q

R X

  
 


 (5) 

It can be found P and Q are coupled with each other, which 

gives the inspiration to provide damping from the RPCL. It will 

be discussed in details in Section IV. 

III. SYNCHRONIZATION STABILITY ANALYSIS  

A. Types of the Synchronization Problems 

Substituting (5) to (3) and considering Vpcc = Vmref, Vpcc can 

be solved. Vpcc is then substituted into (4), P-δ relationship can 

thus be obtained in (6), as shown at the bottom of this page, 

where  

   1 22 2 2 2
g g

g g g g

X R
k k

R X R X
 

 
 (7) 

Accordingly, the P－δ curves, with different grid voltage 

sags and different Rg, are plotted in Fig. 2. Assuming ωg = ω0 

holds after a disturbance for simplifying the illustration. In Fig. 

2(a), as shown by the solid line, the VSG initially operates at 

point a. After the disturbance occurs, there are two types of 

transient problems, i.e., the equilibrium point exists or not after 

the grid fault. According to IEEE Standards 1547-2018 [28], it 

can be known that the VSG should continue to supply power at 

least for 10 s when the grid voltage drops to 0.5-0.8 p.u.. 10 s is 

undoubtedly larger than the critical clearing time (CCT) of VSG, 

which indicates that the VSG should keep working normally 

during the fault for a long time. Therefore, this paper aims to 

optimize the control algorithm to ride through the grid fault 

when the equilibrium point exists, as shown with the dashed red 

line. The points b and b1 are the stable equilibrium point (SEP), 

and the UEP after disturbance, respectively. The 

corresponding power angles are denoted as δe and δce.  

During the transient period, if the system goes across b1, δ will 

 
2

1 2 1 2 1 0

1

1.5 cos 1.5 sin 1 1.5 cos 1.5 sin 1 6 ( )sin3

2 3

q g q g q g q g q q refg

g q

k K V k K V k K V k K V k K V K QV
P

X K k

          
    

(6) 
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exceed δce and then go to infinite, causing the loss of 

synchronization (LOS). Thus, δce is called the critical power 

angle. In contrast, if the power angle was controlled smaller 

than δce during the transient period, the system finally can 

operate stably at b.  

0

Vg=1.0 p.u.

δ0 δe δce δc0 

Pref

P

Vg=0.8 p.u.

Vg=0.4 p.u.

Before 
disturbance

After 

disturbance

a a1b b1

d

δm

Pmax

δ 
π

2
π

 
(a) 

0 0.5 1 1.5 2 2.5 3 3.5

Pref

b1

δ 

P Pmax

b

 

δe 
δce 

δosm 

Rg=0.1 p.u.

Rg=0.05 p.u.
Rg=0 p.u.

 
(b) 

Fig. 2. P-δ curves with (a) different grid voltage sags and (b) different grid 

resistances Rg. 

The other type of no equilibrium point after the fault, shown 

as the dashed green line, is not of concern here since it cannot 

continue supplying power normally. 

From Fig. 2(b), it can be seen that the power transfer 

capability of the VSG varies with different Rg. The maximum 

power Pmax that can be transmitted becomes higher with a larger 

Rg. Meanwhile, the allowed variation range of the power angle 

δ, i.e., δosm, is much wider with a larger Rg, which can benefit 

the synchronization stability during grid fault. Thus, the worst 

condition is Rg =0, which is focused on in this manuscript. 

B. Effects of the LPF in the Reactive Power Control Loop  

As shown in Fig. 2, after the grid fault, the SEP b is small-

signal stable; thus, all the trajectories of the state variables in 

the neighborhood are attracted to b. However, how large the 

neighborhood is unknown. The severe grid faults might be out 

of the neighborhood, resulting in the small-signal stability 

analysis method is not accurate enough to investigate transient 

stability. However, the linearized model can provide clear 

physical insight and intuitive explanation of stability issues, 

which is thus considered to be used for a better understanding. 

Before that, the connections between the linearized model and 

the nonlinear model should be established. Suppose the VSG is 

large-signal stable. In that case, it will finally be attracted to the 

neighborhood of b (see Fig. 2), so the trajectory for the original 

nonlinear system has the same response trend as the linearized 

system. For example, a larger damping ratio leads to a smaller 

overshoot for a linear second-order system, which is also 

applicable to the nonlinear system. Therefore, the linearized 

system can be used for qualitative analysis during the grid faults, 

such as analyzing the overshoot and the damping ratio for the 

power angle response.  

ΔV

Q

V0 

Kq

Qref

s+ωq

ωq Vmref

 
Fig. 3. An LPF is added in RPCL in [21] to enhance the transient stability. 

In [21], it has been revealed that adding an LPF in the RPCL, 

as shown in Fig. 3, with a very low cutoff frequency ωq can 

enhance transient stability. However, the underlying 

mechanism is not addressed, and this paper will give a thorough 

qualitative analysis based on the linearized method and 

quantitative analysis with the nonlinear system. 

According to the previous description, the dynamics of the 

system is a third-order nonlinear system, which can be 

represented in the standard form as  

 

2 0

3
1

2 1

2

2
3 3 3 1

0 3

+

3
sin

2

cos3

2

g

p p g

p p p ref
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
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 

     
   
   
     

     
 

   

 (8) 

where dot (·) denotes time derivative, x= [x1, x2, x3]T = [δ, Δω, 

Vpcc]T is the state variable vector, superscript T represents the 

transposition of a matrix or vector. 

By setting all the differential items in (8) to zero, the two 

equilibrium points xe = [δe, Δωe Vpcce]T and xce = [δce, Δωce 

Vpccce]T can be obtained. This implies Δωe = Δωce = ωg － ω0, 

δe (δce) and Vpcce (Vpccce) should satisfy,  

0

2

0

sin3

2

cos3
=

2

g pcc g

ref

g p

pcc pcc g

pcc q ref

g

V V
P

X K

V V V
V V K Q

X
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


  




 
     

 

 (9) 

By solving (9), Vpcce = Vpccce, and two angle values in [0, 2π] 
for δ can be obtained. Among them, the smaller one is δe, and 

the other larger one is δce. The equilibrium points are the same 

as the second-order system without LPFs. 

To linearize the third-order system around the equilibrium 

point, the Jacobian J(xe) is calculated as 
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33

0 1 0
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( )
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3 sin
0
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where J33 is 

33

2 3 (2 cos )
=

2

g q q q pcce g e

g

X K V V
J

X

    
 (11) 

Suppose the eigenvalues (also called the closed-loop poles) 

of J(xe) include a real and a pair of conjugate eigenvalues. In 

that case, the system is decomposed into a first- and second-

order dynamics. Thus the response consists of an exponential 

curve and a damped sinusoidal curve. For a stable third-order 

system, if one pole is much closer to the imaginary axis than the 

other poles, it is called the dominant pole since this pole will 

determine the transient response and decay slowest. 

To obtain the closed-loop poles, we can solve the 

characteristic equation for J(xe), i.e., det[λI －  J(xe)] = 0. 

Suppose λ1 is the pole for the first-order system, and λ2,3 are the 

second-order system's conjugate eigenvalues, respectively. β 

denotes the ratio of the real parts of the poles, defined as β = 

Real(λ2,3) /λ1. A large β helps to dampen the oscillation of the 

second-order system, thus reducing the overshoot of the power 

angle and improving the synchronization stability. In contrast, 

if β is too small, i.e., β < 0.1, the system is dominated by the 

second-order system, and the impact of λ1 is so little that it can 

be neglected. If β is sufficiently large, λ1 is the dominant pole, 

and the approximated system can be a first-order one. To 

conclude, introducing an LPF in the RPCL means introducing 

a closed-loop pole λ1, which can enhance the transient stability 

if it is close enough to the imaginary axis. 

Numerical calculations are performed with ωq decreasing 

from 4π rad/s to 0.1π rad/s when Vg = 0.6 p.u. and ωp = 0.6π 

rad/s, the other parameters in Table III in section V are adopted. 

The corresponding loci for eigenvalues are plotted in Fig. 4, and 

the typical scenario for the variation of the eigenvalues are 

shown in Table I. It can be found that ωq mainly determines the 

real pole and has a little effect on the pair of conjugate 

eigenvalues. Smaller ωq, such as ωq < 0.4π rad/s, can make λ1 

closer to the imaginary axis, indicating the first-order system 

dominates the system response in this case. Thus, smaller ωq 

induces a larger β to damp the power angle overshoot, which 

can enhance the synchronization stability. As ωq increases, the 

impact of λ1 is reduced, and if ωq ≥ 2.6π rad/s, the impact can 

be ignored. Although these conclusions are summarized with 

the linearized system, it can be applied to qualitatively evaluate 

the influences of the LPF in the RPCL for the nonlinear system. 
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Fig. 4. Loci of eigenvalues with ωq is decreasing from 4π rad/s to 0.1π rad/s (ωp 

= 0.6π rad/s and Vg = 0.6 p.u.). 

TABLE I 

EIGENVALUES FOR INCREASING ωq OF THE SYSTEM IN TABLE III 

ωq (rad/s) Eigenvalues (λ1, λ2,3) β 

0.1π －0.2910, －1.0033 ± j2.5724 3.4478 

0.2π －0.5716, －1.0694 ± j2.5728 1.8709 

0.4π －1.1354, －1.2001 ± j2.5250 1.0570 

0.44π －1.2541, －1.2234 ± j2.5075 1.0251 

0.6π －1.7729, －1.2941 ± j2.4153 0.9755 

π －3.4718, －1.2700 ± j2.1857 0.3658 

2π －7.9490, －1.0948 ± j2.0937 0.1377 

2.6π －10.5049, －1.0549 ± j2.0924 0.1004 

20π －82.5118, －0.9552 ± j2.1131 0.0116 

To further investigate the impacts of ωq and to obtain more 

accurate results, the state-space trajectories based on the 

original nonlinear system in (8) can be plotted, as shown in Fig. 

5(a). To provide a more clear visual support, one of the 

projections, i.e., Δω-δ curves, is replotted in Fig. 5(b), where 

the second-order system's unstable curve without LPF in the 

RPCL is also given to make a comparison. The power angle 

overshoot, denoted as δp, is the maximum difference between 

the transient power angle and δe, as shown in Fig. 5(b). 

From Fig. 5, it can be found that a smaller ωq damps more 

power angle overshoot, leading to better transient stability. If ωq 

is small enough, as ωq = 0.1π rad/s, indicating λ1 is the dominant 

closed-loop pole, so the dynamic response behaves similarly as 

a first-order system in the neighborhood. If ωq increases over 

2.6π rad/s, the impacts of ωq can be almost ignored. The 

responses of the nonlinear system agree with the qualitative 

analysis in Fig. 4 based on the linearized system. 

However, only reducing ωq, is not able to achieve an 

overdamped system during the grid fault. Take ωq = 0.1π rad/s 

in Fig. 5 as an example. Although ωq is small enough, the 

overshoot of δ still exists when the grid voltage drops from 1 

p.u. to 0.6 p.u.. Meanwhile, a sufficiently small ωq can enhance 

transient stability but reducing the small-signal stability margin, 

as λ1 is too close to the imaginary axis. 
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(b) 

Fig. 5. The state-space trajectories of the nonlinear system in (8) with different 

ωq. (a) The corresponding trajectories of the third-order system. (b) The 

projection of Δω-δ plane to provide visual support. (ωp = 0.6π rad/s and Vg = 

1→ 0.6 p.u.). 

Moreover, the LPF is usually employed for Q-V droop 

control to filter the high-frequency harmonics and noises [8], 

[13], [14], ωq is at least higher than 10 Hz, i.e., 1000 rad/s is 

used in [8]. Thus, the effect of this kind of LPF can be generally 

ignored when studying the synchronization stability issues due 

to the decoupled timescales. Here, the LPF is employed to 

simultaneously enhance the synchronization stability, ωq needs 

to be set very low, such as lower than 2π rad/s. In this case, the 

effects of LPF cannot be ignored when analyzing the 

synchronization stability. Thus, the dynamics of the system is 

increased to third-order. Unlike in the linearized second-order 

system, the underlying mechanism and the performance can be 

analyzed using an explicit mathematical approach rather than a 

numerical analysis. Therefore, in order to avoid these negative 

effects of too small ωq, adding frequency feedforward to the 

RPCL is proposed to enhance the synchronization stability in 

Section IV. 

IV. FREQUENCY FEEDFORWARD TO THE RPCL 

In order to keep the desired original steady-state 

characteristics and not to deteriorate the frequency performance, 

a synchronization stability enhancement method is proposed, as 

shown in Fig. 6. The additional path, by feedforwarding the 

frequency difference between the VSG and grid, is introduced 

into the RPCL. Since ω is equal to ωg at the steady-state, the 

additional path does not influence the steady-state 

characteristics. 

P

Kps+ωp

ωpPref

Qref ΔV

V0 Q

Kq

Vmref

Δω
s
1 refθ

ω0

ωg

K
ω

ω

 

Fig. 6. Diagram of the enhanced method for synchronization stability by 

frequency feedforward to RPCL. 

From Fig. 6, it can be seen that the reactive power control 

law is different from (3), and it is given as 

   0 0+ +mref q ref q gV V K Q Q K K         (12) 

Substituting (5) into (12), combining with Vpcc = Vmref and Rg 

= 0, the relationship between Vpcc and δ, Δω, i.e., Vpcc(δ, Δω), 

can be solved, as given in (13) at the top of next page. Since the 

added term in (12) is zero at steady-state, the additional path 

will not affect the steady-state characteristics.  

A. Qualitative Analysis Based on the Linearized System 

The dynamic representation of the system is a second-order 

state equation, derived as  

2 0

1

2 1 22

+

3
( , )

2

g

p p g

p p p ref

g

x
x

K V
x F x x K Px

X

 


 

 
   

        
 

 (14) 

where F(x1, x2) is 

 ( , ) , sinpccF V        (15) 

By setting the differential of x in (14) to zero, the two 

equilibrium points xe = [δe, Δωe]T and xce = [δce, Δωce]T are 

obtained, which are the SEP b and UEP b1, respectively. To 

linearize the nonlinear system at xe, the Jacobian J(xe) is 

evaluated as 

21 22

0 1
( )

+pJ J

 
  

 
e

J x  (16) 

where J21 and J22 are expressed as 

 21

3

2

p p g

e

g

K V
J F

X


   (17) 

 22

3

2

p p g

e

g

K V
J F

X


    

(18) 

From (13) and (15), the values of the functions F’(δ) and 
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 
    

2

0 01.5 cos 1.5 cos 6 +
,

3

q g g g q g q g q ref q g

pcc

q

K V X X K V K X V K Q K K
V

K

    
 

       
   (13) 

 

F’(Δω) around xe,, i.e., F’(δe) and F’(Δωe), can be derived as 

 
 

3 sin sin
cos

2 3 2 cos

q g pcce e e

e pcce e

g q pcce g e

K V V
F V

X K V V

 
 




  

 
 (19) 

 
 

2 sin

2 3 2 cos

g q e

e

g q pcce g e

X K K
F

X K V V





  

 
 (20) 

Solving the characteristic equation, i.e., det[λI － J(xe)] = 0, 

the eigenvalues are calculated as 

 
2

22 22 21

1 2

+4

2

p pJ J J 


    
，  (21) 

Therefore, the damping ratio of the second-order system can 

be derived as 

 
 

 

22

212

3
=

6 8

p

g p p p g

g p e g e

J

J

X K V
F

V K F X F




 


 






 
 

 (22) 

Here, the sign of F’(δe) and F’(Δωe) need to be first illustrated. 

Suppose when δ = δm, P(δm) = Pmax in Fig. 2(a), and thus 
dP

dδ
|𝛿𝑚

=0. According to (4) and (15),  =0mF  is derived. As 

P is monotonically increasing with δ when δ < δm. Therefore, 

when δ < δm, 
dP

dδ
>0, then  >0eF   is obtained. Meanwhile, 

due to Vpcc ≈ Vg in steady-state, then F’(Δω) > 0 always holds, 

and it becomes larger with the increase of K. 

According to (22), it can be clearly seen that ζ is related to 

the system parameters and controller parameters. For a given 

condition, the system parameters are constant. Controller 

parameters Kp and ωp are related to the inertia and frequency 

governor, which also should be fixed. Without the additional 

path, the original damping ratio can be derived similarly, which 

is the first term in (22). Obviously, the damping ratio can be 

increased with the additional path, and a larger K leads to a 

larger damping ratio. Moreover, numerical calculations of the 

eigenvalues are performed with various K. The corresponding 

loci are plotted in Fig. 7. As shown in Fig. 7, the damping ratio 

increases while K becomes larger, and even an overdamped 

dynamics can be achieved with a sufficiently large K. 

To analyze the frequency response in the s-domain, the active 

power P should be linearized firstly around b, given as 

    

   1 2

3
ˆˆ ˆ+

2

3 3
= =

2 2

g

e e

g

define
g g

e e

g g

V
P F F

X

V V
G F G F

X X

   

 

    

  

 (23) 

where cap (^) represents the small variations, G1 and G2 are 

the approximate gains between P and δ, P and Δω evaluated at 

b, respectively. 
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Fig. 7. Loci of eigenvalues for the second-order system in (16) with K 

increasing from 1 p.u. to 250 p.u. (ωp = 0.6π rad/s and Vg = 0.6 p.u.). 
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Fig. 8. The control block diagram of the VSG system with the frequency 

feedforward path. 

Combining (23) and Fig.1, the control block diagram is 

derived as in Fig. 8, where the effects of RPCL and the 

frequency feedforward path are equivalently substituted into 

APCL. From there, the dynamics of δ and Δω, can be described 

in the s-domain as 

 2

2 1

ˆ

ˆ +

p p

p p p p pref

K

s K G s K GP



  


 
 (24) 

 2

2 1

ˆ

ˆ +

p p

p p p p pref

K s

s K G s K GP



  




 
 

(25) 

The damping ratio can also be deduced from (24) and (25), 

which is the same as that in (22).  

Assuming that the power reference has a step change, the 

Laplace form is 1/s. Thus, according to (25), the response of 

the frequency variation in the s-domain can be deduced as, 

 2

2 1

ˆ
+

p p

p p p p p

K

s K G s K G




  
 

 
 (26) 

Rewrite (26) in the standard form of the second-order 

system, expressed as, 
2

1

2 2
ˆ

2

n

n n

G

s s




 
 

 
 (27) 

where 2

1n p pK G  , 22 +n p p pK G   . 

Thus, the response of frequency variation in the time-
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domain can be derived as, 
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2

2

2
1

1
ˆ sin 1

1

ntn

ne t
G


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
  


 (28) 

The RoCoF is the change rate of frequency, which can be 

deduced as, 

 
2

2

2
1

RoCoF= =

1
sin 1

1

ntn

n

d d

dt dt

e t
G
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
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 (29) 

where 2sin 1   . 

The maximum RoCoF is achieved when t=0, which is 

calculated as, 

 
2

max 2
1

1 1
RoCoF sin =

1

n

p pK
G J


 


 


 (30) 

It can be found that the inertia J determines the maximum 

RoCoF, which has no relationship with K, indicating the 

additional path does not influence the maximum RoCoF. 

Furthermore, the inertia J should be large enough to maintain 

the maximum RoCoF in the acceptable range according to the 

grid code [8].  

When the derivative of frequency is equal to zero, the 

maximum frequency variation can be obtained, given as, 

 2

2
arcsin 1

1 1

max
ˆ = n

G
e e

J




  
 

    (31) 

As can be seen from (31), the maximum frequency deviation 

is an inverse ratio of J and ζ. Increasing J is unexpected from 

the perspective of synchronization stability [21]. Thus, 

increasingζcan effectively decrease the frequency deviation 

during the transient period, which perfectly avoids the conflict 

between frequency stability and synchronization stability.  

Therefore, the additional frequency feedforward path with a 

larger K, leading to a larger damping ratio, which enhances 

synchronization stability and simultaneously benefits 

frequency stability during grid fault.  

B. Quantitative Analysis Based on the Nonlinear System 

The influence of the proposed method on exact transient 

behaviors is examined in Fig. 9 based on the nonlinear system 

in (14). It can be observed that without the additional path, a 

LOS occurs when the grid voltage drops from 1 p.u. to 0.6 p.u. 

with ωp = 0.6π rad/s, due to the low damping dynamics. 

Increasing ωp to 1.2π rad/s (the virtual inertia J is decreased) 

can remove the instability due to an increased ζ.  

However, the frequency response becomes worse, i.e., a 

larger Δωmax and higher RoCoF are observed, resulting from 

smaller inertia. The frequency feedforward method can also 

remove the instability with a large K. It can be seen that the 

overshoot of δ can be reduced with a larger K due to the 

increased ζ. Even an overdamped response can be achieved by 

a sufficiently large K, i.e., K = 200 p.u.. Moreover, Δωmax 

decreases with the increase of K, which is also helpful to 

frequency stability. Therefore, a larger K is expected to increase 

the damping ratio, thus improving the synchronization stability 

and frequency stability. Otherwise, instability can occur if K is 

not large enough, i.e., K = 10 p.u.. The system suffers from 

poorly damped dynamics, which causes δ to exceed δce. 

A larger K is expected from the above analysis, but an 

extensive K is also not practical. Thus, the minimum required 

K according to different inertia requirements should be found. 

This is also handy design information for engineers to identify 

how far or close the system is from the LOS region. As only if 
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Fig. 9. The VSG responses with different K in the frequency feedforward path 

when Vg = 1→ 0.6 p.u.. (a) The trajectories of the nonlinear system in the phase 

plane and (b) the frequency response in the time-domain. 
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Fig. 10. Iterative calculation procedure of the critical value of K for a specific 

ωp. 
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Fig. 11. The minimum required K according to different inertia requirements 

(different ωp) when Vg = 1→ 0.6 p.u.. 

δ exceeds δce, LOS can occur. Thus, as long as δp does not 

exceed δce, the synchronization stability can be guaranteed. 

According to this, the critical value of K for each specified ωp 

can be calculated using the procedure in Fig. 10, which is 

plotted in Fig. 11. In Fig. 11, the stable and unstable operation 

regions are located above and below the boundary line, 

respectively. From them, it can be found that smaller ωp (larger 

J), the minimum required K for the stable operation increases. 

For example, with ωp = 0.6π rad/s, it is sufficient when K > 11 

p.u., but if ωp = 0.4π rad/s, then K > 36 p.u. must be adopted. 

Hence, using the frequency feedforward to the RPCL method 

with a larger K, higher inertia becomes viable. 

Combining with the analysis in Section IV-A, a larger J can 

reduce RoCoF of the system. Meanwhile, a larger K increases 

the damping ratio, which reduces the power angle overshoot 

and frequency deviation during the transient period. Therefore, 

by adjusting J and K together, both the transient stability and 

frequency stability can be improved. 

C. Comparison of Transient Stability Enhancement Methods  

Different transient stability enhancement methods have 

distinct performance, a comparison of which is listed in 

Table II from different perspectives. Four indicators are 

selected to compare: steady-state performance, enhancement 

of synchronization stability, enhancement of frequency 

stability, and implementation complexity.  

 Steady-state performance: changing the steady-state 

performance does not satisfy the IEEE standard 

1547-2018. Thus, whether affecting the steady-state 

performance is a significant index during riding 

through the grid faults. 

 Enhancement of synchronization stability: all the 

enhancement methods can improve synchronization 

stability when the VSG has an equilibrium point. 

However, just [32] can damp the oscillation within a 

small bounded range even without an equilibrium 

point, which can be regarded as a good performance 

of improving synchronization stability.  

 Enhancement of frequency stability: if the method 

can decrease the RoCoF and maximum frequency 

deviation simultaneously, it can be classified as a 

good frequency stability performance. 

 Implementation complexity: if the method contains 

differential detecting elements during the transient 

process, it may reduce the anti-interference 

performance. This kind of method is classified as 

having a high implementation complexity.  

Based on these four indexes, it can be seen that the 

frequency feedforward method proposed in this paper is a 

compromise between the synchronization stability and 

implementation complexity. 

It should be noted that although only a grid voltage sag 

has been considered in this paper, the analytical method and 

the proposed method to enhance synchronization stability 

can be similarly also applied to other types of fault, such as 

grid impedance jumps. Since the synchronization stability of 

the grid-forming converters is ongoing work, more 

analyzing methodologies and the synchronization stability 

enhancement methods for the multi-inverter system will be 

studied in the future. 

V. EXPERIMENTAL VERIFICATION 

To verify the theoretical analysis and the effectiveness of the 

proposed frequency feedforward method, an experimental setup 

is established in the lab, as shown in Fig. 12. The dc voltage is 

provided by another rectifier. A Chroma 61850 grid simulator  

TABLE II  

METHODS TO IMPROVE THE TRANSIENT STABILITY OF THE VIRTUAL SYNCHRONOUS GENERATOR 

Methods 
Affecting the steady-state 

performance 
Enhancement of 

synchronization stability 
Enhancement of frequency 

stability 
Implementation complexity 

Change active and reactive power 

references [26] [27] 
Yes Good Poor Low 

Adaptive inertia [29][30] No Medium Good Medium 

Additional damping control [31] No Medium Medium Medium 

Mode-switching control [32] No Good Not discussed High 

Decrease the bandwidth of LPF 
in RPCL [21] 

No Poor Not discussed Low 

Frequency feedforward added on 

RPCL 
No Medium Good Low 
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Fig. 12. The experimental setup. 

TABLE III 

MAIN PARAMETERS OF THE VSG SYSTEM USED IN THE EXPERIMENTS 

Parameters Description Value p.u. 

Pref Rated active power 2 kW 1.0 

Qref Rated reactive power 0 0 

V0 Rated voltage 100 V 1.0 

Vg Normal grid voltage 100 V 1.0 

ω0  Grid angular frequency 314 rad/s  

Lg Grid inductance 12 mH 0.5 

Kp P-f droop gain  0.04ω0/Pmax 0.04 

Kq Q-V droop gain 0.1V0/Qmax 0.1 

K Additional coefficient 1 Qmax/V0 1 

connected in series with a three-phase inductor is employed to 

emulate the weak power grid. The voltage and current are 

measured by the dSPACE DS2004 A/D board and then sent to 

the dSPACE DS1007 platform, where the control strategies are 

implemented. The calculated P, δ, and the signal Δω are 

transmitted to the oscilloscope through the DS2102 D/A board 

The VSG's main parameters are given in Table III, where Kp 

and Kq are chosen according to their droop functions demanded 

in grid codes like in [20], [21]. The transient performances of 

the VSG under the grid voltage dropping from 1 p.u. to 0.6 p.u. 

are evaluated. In order to perform a comparative verification, 

three types of scenarios with different sets of ωp and K are 

examined, as shown in Table IV. The corresponding 

experimental results are shown in Fig.13 ~ Fig.15. From top to 

bottom in each figure, the displayed waveforms are the phase 

to phase voltage Vgab, the active power P, the line current of 

phase a, i.e., Iga, the deviation of frequency Δω and power angle 

δ, respectively.  
TABLE IV 

DIFFERENT SETS OF CONTROL PARAMETERS USED IN THE EXPERIMENTS 

Parameter Scenario A Scenario B Scenario C 

 I II I II III IV I II 

ωp (π rad/s) 0.6 1.2 0.6 0.6 0.6 0.6 0.6 0.6 

K (p.u.) 0 0 10 20 100 200 0 20 

In Fig. 13, the original system without the additional 

frequency feedforward path is tested. In Fig. 13(a), an 

instability occurs when Vg drops from 1 p.u. to 0.6 p.u. due to a 

small ωp leading to a small damping ratio for the power angle. 

This instability can be removed by increasing ωp, i.e. ωp is 

increased to 1.2π rad/s, as shown in Fig. 13(b). However, a 

larger ωp implies smaller virtual inertia. Thereby, a larger Δωmax 

and higher RoCoF are observed in Fig. 13(b). These 

experimental results verify the theoretical analysis on the 

frequency response, as the red lines are shown in Fig. 9. 

Then, the proposed frequency feedforward path was added to 

the RPCL with different parameter settings. The experimental 

results are shown in Fig. 14. It can be seen that the grid voltage 

sag can also trigger a LOS due to the poor damping dynamics 

with a small K, i.e., K = 10 p.u.. Increasing K, the system can 

be stabilized, and the overshoot of δ declines due to the 

damping ratio increases. The power angle overshoot can be 

completely damped with large enough K, i.e., K = 200 p.u.. 

These results agree with the theoretical analysis in Section IV. 

Moreover, it can be seen that the additional frequency 

feedforward path with a large K not only reduces the overshoot 

of δ during the fault but also reduces Δωmax. These experimental 

results validate the analyzed theoretical results, confirming the 

effectiveness of the proposed frequency feedforward method. 

Therefore, this method can enhance the synchronization 

stability of the VSG without degrading the frequency stability. 
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P:  [4 kW/div]

173 V 104 V
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31◦ 

     Time: [1 s/div]
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δ:  [36◦ /div]31◦ 

72◦ 

Δωmax=2.4 rad/s

δp=86◦ 

Higher RoCoF

 
(a)                                                                 (b) 

Fig. 13. Experimental results of the VSG without the frequency feedforward path (K2 = 0) when Vg drops from 1 p.u. to 0.6 p.u. The Scenario A in Table IV is 

tested, as (a) Case I: ωp = 0.6π rad/s and (b) Case II: ωp = 1.2π rad/s. 
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                               (c)                                                                 (d) 
Fig. 14. Experimental results of the VSG with the addtional frequency feedforward path in the RPCL when Vg drops from 1 p.u. to 0.6 p.u. The Scenario B in Table 

IV is tested, as (a) Case I: K = 10 p.u., (b) Case II: K = 20 p.u., (c) Case III:K = 100 p.u., (d) Case IV: K = 200 p.u.. ωp = 0.6π rad/s is used for te fore cases. 

Time: [1 s/div]

fault

Vgab:  [200 V/div]

P:  [4 kW/div]

173 V 104 V

2 kW
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31◦ 

Fault cleared

    Time: [1 s/div]
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2 kW

Iga:  [50 A/div]
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δ:  [36◦ /div]31◦ 31◦ 

173 V

Fault cleared

 

(a)                                                             (b) 

Fig. 15. Experimental results of the VSG with ωp = 0.6π rad/s when Vg drops from 1 p.u. to 0.6 p.u. and recoveries after 4s. The Scenario C in Table IV is tested, 

as (a) Case I: K = 0 p.u., (b) Case II: K = 20 p.u.. 

According to IEEE Standards 1547-2018 [28], the VSG 

should continue to supply power at least for 10 s when the grid 

voltage drops to 0.6 p.u.. Thus, the fault is not cleared in Fig. 

13 and Fig. 14, since riding-through the low voltage is more 

severe than the period of grid voltage coming back to normal. 

Thus, as long as the VSG is controlled stable during the fault, 

the synchronization stability can be guaranteed when the fault 

is cleared after 10s. To prove this, Fig. 15 gives the 

experimental results of clearing the fault after 4s (for 

convenience of displaying). From there, it can be seen that if a 

LOS occurs during the fault, the system can not return to stable 

operation after the fault is cleared. However, when the 

additional frequency feedforward path is added to improve the 

stability during the fault, i.e., K =20 in Fig. 15(b), the system 

can remain stable after the fault is cleared. 

VI. CONCLUSION 
Firstly, a combined linearized and nonlinear model is 

employed to analyze synchronization stability. The linearized 

model is used for qualitative analysis, while quantitative 

analysis is according to the nonlinear model. Secondly, base on 
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the combined model, the mechanism of employing LPF in the 

RPCL to enhance synchronization stability is revealed. It 

indicates that an LPF with a sufficiently low cutoff frequency 

introduces a dominant closed-loop pole for the original second-

order dynamic system and can damp the power angle overshoot 

oscillation, leading to a better transient power angle response. 

Thirdly, an improved synchronization method is proposed by 

feedforwarding the frequency to RPCL, which can avoid the 

slow dynamic LPF in RPCL. Parameter design guidelines are 

given to enhance the synchronization stability with different 

inertia requirements, which indicates a larger coefficient of the 

feedforward path is expected with larger inertia. Fourthly, the 

frequency response is also deduced based on the combined 

model, demonstrating that the improved synchronization 

methods can further improve the frequency stability during grid 

faults. Finally, experimental results have verified the 

effectiveness of the theoretical analysis and the proposed 

method. 
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