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Abstract: Known etiologic factors can only be found in about 50% of patients with recurrent preg-
nancy loss (RPL). We hypothesized that male microchimerism is a risk factor for RPL and aimed to
explore whether information on family tree and reproductive history, obtained from 383 patients
with unexplained RPL, was supportive of this hypothesis. The male:female sex ratio of older siblings
was 1.49 (97:65) in all RPL patients and 1.79 (52:29) in secondary RPL (sRPL) patients, which differed
significantly from the expected 1.04 ratio (p = 0.027 and p = 0.019, respectively). In contrast, the
sex ratio of younger siblings was close to the expected ratio. Sex ratio of the firstborn child before
sRPL was 1.51 (p = 0.026). When combined, 79.1% of sRPL patients had at least one older brother, a
firstborn boy, or both. This differed significantly from what we expected based on the distribution of
younger siblings and a general 1.04 sex ratio of newborns (p = 0.040). We speculate whether (s)RPL
patients possibly acquired male microchimerism from older brother(s) and/or previous birth of
boy(s) by transplacental cell trafficking. This could potentially have a detrimental impact on their
immune system, causing a harmful response against the fetus or trophoblast, resulting in RPL.

Keywords: recurrent pregnancy loss; habitual abortion; reproductive immunology; microchimerism;
Y chromosome

1. Introduction

The most common pregnancy complication is miscarriage, which, in most cases, can
be explained by serious structural malformations or chromosomal abnormalities which
are incompatible with life [1], and 2–3% of fertile women suffer from recurrent pregnancy
loss (RPL).

RPL of unknown etiology (uRPL) includes women with no uterine malformations,
endocrine dysfunction or thrombotic disorders, and couples with no parental chromosome
abnormalities, and this applies to about 50% of RPL patients. The identification of con-
tributing risk factors and underlying causes of uRPL is essential in order to offer the most
favorable support and, if possible, curative medical treatment.

Immunological disturbances have been suggested to play a pivotal role in the patho-
genesis for uRPL, since autoantibodies [2,3], specific human leukocyte antigen (HLA)
class II alleles [4], and immune imbalance of specific lymphocytes [5–7] are found more
frequently in uRPL patients than in healthy controls.

A potential immunological risk factor for RPL is microchimerism. Microchimerism
is defined as small amounts of foreign cells or DNA detectable in a genetically distinct
individual.

A frequent source of microchimerism is the transplacental trafficking of cells through
the placenta. As early as the first trimester, male-specific minor histocompatibility (HY)-
specific T-cell responses were detected. Microchimeric cells have the potential to persist
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for many decades post-partum [8–11]. These cell grafts can potentially affect the womans’
immune tolerance to a pregnancy; however, we still question if these foreign cells act in a
beneficial or detrimental manner, or both [10,12].

Microchimerism is not only acquired in the childbearing female, but also in her fetus,
by fetomaternal cell trafficking across the placental in both directions. Male microchimerism
has been found in nulliparous women; thus, in women with no history of miscarriages,
suggested sources have been an unrecognized pregnancy loss, sexual intercourse, blood
transfusion, a twin or a known or unknown vanished twin, or the microchimeric cells could
derive from an older brother via the mother of the proband (MP) [13].

Microchimerism from the MP or the proband’s child(ren) has been investigated
more thoroughly than microchimerism from other sources, such as older siblings. Mi-
crochimerism acquired from the proband’s child(ren) has been proposed as a risk factor for
autoimmune diseases, as it is more prevalent in females [14–16]. In transplant recipients,
the risk for graft versus host disease (GVHD) is higher when the donor is a parous rather
than a nulliparous female [9,17]. Pathologic responses to semiallogeneic cells in uRPL
patients have been suggested to resemble the immunological mechanisms and responses
involved in autoimmune diseases and GVHD and, therefore, microchimerism has also
been suggested as a risk factor for uRPL [12,18].

The carriage of HLA class II alleles able to present HY-antigens to maternal T-helper
lymphocytes in women with secondary RPL (sRPL) after a first-born boy have been
associated with a decreased chance of a live birth compared to similar sRPL patients
without these alleles [18]. This supports the theory that the poorer prognosis in patients
with RPL after the birth of a boy is due to an unfavorable immune response to HY-positive
cells. A persistent fetal-specific immune response seems to be characterized by an effector
memory T-cell phenotype that retained the ability to proliferate, secrete IFN-gamma, and
lyse male target cells many years after pregnancy when stimulated in vitro [11]. Based on
these studies, cell grafts are associated with detrimental actions in at least some women.

In this purely clinical study, we aimed to explore if a history of an older brother and/or
a first-born boy was more frequent in RPL patients compared to the expected distribution,
and if the association was more pronounced in primary (pRPL) or sRPL. If this is confirmed,
it supports the hypothesis of a role for male microchimerism in the pathogenesis of RPL.

2. Materials and Methods

All patients who, from January 2016 to March 2021, were admitted to The Centre for
Recurrent Pregnancy Loss of Western Denmark located at Aalborg University Hospital were
included in the study if the study criteria were met. In all patients, hysterosalpingography,
hysteroscopy or hydrosonography screening for uterine abnormalities were performed
and blood samples were collected to screen for RPL risk factors, as is recommended by
the European Society of Human Reproduction and Embryology (ESHRE) Guidelines on
RPL [19]. Furthermore, in most couples, karyotyping was also done on peripheral blood.

Data for this study were collected retrospectively from medical records from all
patients admitted to The Centre for Recurrent Pregnancy Loss. At the first consultation,
in addition to a detailed recording of their medical and reproductive history, the women
were asked to give information about their full and half siblings: their sex (biological
attribute), age compared with the proband, and whether they were full siblings or half
siblings. In the latter case, it was asked whether they were siblings on the maternal or
paternal side, since only siblings sharing the same mother were considered relevant in the
present study. Data on pregnancy losses in the MP before giving birth to the proband were
not obtained since they would rarely, if ever, contribute information regarding the gender
of these predominantly early pregnancy losses. The data were entered into the centre’s
research database, from which data for this study were extracted.

Women were included if they had ≥3 consecutive pregnancy losses including both bio-
chemical and clinical miscarriages. Verified complete molar and ectopic pregnancy losses
were not counted in the number of losses. Exclusion criteria were uterine malformations
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(n = 8), adopted as child (n = 3), no family history obtained at first consultation (n = 16),
having a twin (n = 3), patient or husband carrying a known significant chromosomal
translocation (n = 4) and ≤2 consecutive pregnancy losses (n = 16). A total of 383 were
included for analysis.

3. Statistical Analysis

Patients were divided into four groups according to the sex of older siblings with
whom they shared the same mother: (1) patients who had only one or more older brothers,
(2) patients who had only one or more older sisters, (3) patients who had both older
brother(s) and sister(s) and (4) patients with no older siblings.

Data were analyzed in Stata/MP (StataCorp LCC. 2017. Stata Statistical Software:
Release 15. College Station, TX, USA). Level of statistical significance was defined as p < 0.05.
Differences in continuous parametric variables were compared using unpaired t-test, while
continuous non-parametric variables were compared using two-sample Mann–Whitney U
test. When comparing three groups or more on a non-parametric variable, Kruskal–Wallis
H Test was used, while a one-way ANOVA was used for parametric variables. Categorical
variables were compared using chi-squared test, while Fischer’s exact test was used when
small numbers were expected in at least one group.

We tested for deviation of sex distribution from an expected 51%:49%, which equals
a 1.04 male:female sex ratio in older siblings or firstborn child using binomial test, since
this was the sex ratio of Danish newborns in 2017. In the binomial test, we only included
patients with older siblings of one sex and excluded patients with no older siblings or older
siblings of both sexes. We expected that the probability of having only older brother(s)
equals the probability of having only older sister(s). This test was performed on all RPL
patients and then stratified by RPL subgroups. When we reported the number of patients
with at least one older brother or sister, the sexes of all the patient’s older siblings were
accounted for. The same tests were performed in younger siblings and firstborn children.
Regarding the sex ratio of firstborn children, only women with either only boy(s) or only
girl(s) before RPL were included, and those with births of children of both sexes were not
counted in this sex ratio. However, the sex of all children born >22 weeks of gestation
before the RPL of all sRPL patients were included when analyzing the number of patients
with at least one boy or girl. In total, 39 (21.4%) sRPL patients had ≥2 children before the
sRPL diagnosis, including six patients who had three children and one patient who had
four births before sRPL.

Next, we listed the number of patients with a minimum of one older brother, one
birth of a boy before RPL, or both, observed in the present study, in contrast to the number
with only older sister(s), no siblings and only birth of girls before RPL. The former group
represents patients with a potentially increased chance of microchimerism of HY-positive
cells due to the transfer of cells from older brothers via their mothers’ placentas or transfer
of cells from their own previous pregnancies with boys. The latter group represents patients
with a low chance of HY cell microchimerism, since neither their mothers nor themselves
were exposed to ongoing pregnancies with fetuses and placentas expressing HY antigens
(Figure 1).

We had no reference group of “normal” women to serve as a comparison group with
regard to the frequency of at least one older brother and/or birth of a boy before RPL.
However, we had details on our RPL patients’ younger siblings and the sex ratio of Danish
newborns in 2017. We assumed that the frequency and the distribution of younger siblings
according to sex would be a proxy for the frequencies and distribution of older siblings
according to sex in a non-sRPL population. Using the data on younger siblings, 127 (69.8%)
non-RPL women were expected to have had ≥1 older brother and/or ≥1 delivery of a boy.
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We had no reference group of “normal” women to serve as a comparison group with 
regard to the frequency of at least one older brother and/or birth of a boy before RPL. 
However, we had details on our RPL patients’ younger siblings and the sex ratio of Danish 
newborns in 2017. We assumed that the frequency and the distribution of younger siblings 
according to sex would be a proxy for the frequencies and distribution of older siblings 
according to sex in a non-sRPL population. Using the data on younger siblings, 127 
(69.8%) non-RPL women were expected to have had ≥1 older brother and/or ≥1 delivery 
of a boy. 

This calculation is as follows: we observed that 56 out of 182 parous (sRPL) patients 
had at least one younger brother, and 126 (87 + 39) parous (sRPL) patients had no younger 
siblings or only younger sister(s) (Table 1 and Figure 2). We assume that the distribution 
of younger siblings represents the distribution of older siblings in “normal” women. 
Among the 126 parous women with no older brother(s), we expected that 51% had given 
birth to a boy in each of their pregnancies. Based on the frequency of ≥2 births before sRPL 
observed in our sRPL sample, 27 (21.4%) women with no older brother(s) were expected 
to have given birth to ≥2 children. The calculations of the expected/hypothetical 
probability of having delivered ≥1 boy before RPL are shown in Figure 2. We expected 
that 64 (50 with 1 boy + 14 with ≥2 boys) parous women with no older brother(s) would 
only have given birth to boys and 7 women would have both boy(s) and girl(s). This 

Figure 1. The mother of proband acquires fetal cells during her first pregnancy (fetus 1) which cells
are transferred to fetus 2 in a subsequent pregnancy. The proband with RPL is illustrated as fetus 2 in
this figure; she harbors microchimeric cells from both her mother and her older brother.

This calculation is as follows: we observed that 56 out of 182 parous (sRPL) patients
had at least one younger brother, and 126 (87 + 39) parous (sRPL) patients had no younger
siblings or only younger sister(s) (Table 1 and Figure 2). We assume that the distribution of
younger siblings represents the distribution of older siblings in “normal” women. Among
the 126 parous women with no older brother(s), we expected that 51% had given birth to a
boy in each of their pregnancies. Based on the frequency of ≥2 births before sRPL observed
in our sRPL sample, 27 (21.4%) women with no older brother(s) were expected to have
given birth to ≥2 children. The calculations of the expected/hypothetical probability of
having delivered ≥1 boy before RPL are shown in Figure 2. We expected that 64 (50 with
1 boy + 14 with ≥2 boys) parous women with no older brother(s) would only have given
birth to boys and 7 women would have both boy(s) and girl(s). This calculation showed
that 56 + 64 + 7 = 127 (69.8%) sRPL patients were expected to have had older brother(s)
and/or delivered ≥1 boy before RPL.
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Figure 2. (a) The observed distribution of older siblings and children born before RPL according to sex to the left and (b) the
hypothetical distribution of the same parameters to the right, which was based on distribution of the younger siblings and a
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siblings. # Calculation based on the observed distribution of 1 (78.6%) or ≥2 children (21.4%) before RPL. ** Calculation
based on the known 1.04 sex ratio of newborn children in the Danish background population.

The same analysis was performed on all RPL patients; thus, we added all pRPL
patients. Among the 201 pRPL patients, 69 patients had ≥1 younger brother while 132 pRPL
patients had only younger sister(s) or no younger siblings. Therefore, we expected 189 RPL
patients to have had an older brother and/or delivered a boy before RPL.

4. Results

The study sample comprised 383 RPL patients, including 182 (47.5%) sRPL patients
who had a previous childbirth >22 weeks. In total, 202 (52.6%) RPLs patients had ≥1 older
full siblings or maternal half siblings and 213 (55.6%) had ≥1 younger full siblings or
maternal half siblings (Table 1).

Table 1. Frequency of older siblings stratified according to sex in all RPL patients and in primary
RPL (pRPL) and secondary RPL (sRPL) patients.

All RPL Patients
(n = 383)

pRPL
(n = 201)

sRPL
(n = 182)

No older siblings, n (%) 181 (47.3) 104 (51.7) 77 (42.3)
Older siblings of both sexes, n (%) 40 (10.4) 16 (8.0) 24 (13.2)

Only older brother(s), n (%) 97 (25.3) a 45 (22.4) 52 (28.6) b

Only older sister(s), n (%) 65 (17.0) a 36 (17.9) 29 (15.9) b

At least one older brother, n (%) 137 (35.7) 61 (30.4) 76 (41.8)
At least one older sister, n (%) 105 (27.4) 52 (25.9) 53 (29.1)
Only younger brother(s), n (%) 76 (19.8) 42 (21.0) 34 (18.7)
Only younger sister(s), n (%) 88 (23.0) 48 (24.0) 39 (21.4)

Younger siblings of both sexes, n (%) 49 (12.8) 27 (13.5) 22 (12.1)
No younger siblings, n (%) 170 (44.4) 83 (41.3) 87 (47.8)

At least one younger brother, n (%) 125 (32.6) 69 (34.3) 56 (30.8)
At least one younger sister, n (%) 137 (35.8) 76 (37.8) 61 (33.5)

a: Binomial test compared to expected 1.04 sex ratio. p = 0.027; b: Binomial test compared to expected 1.04 sex
ratio. p = 0.019.
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Comparing baseline characteristics between the four subgroups of RPL patients:
patients with only older brother(s), patients with only older sister(s), patients with older
siblings of both sexes and patients with no older siblings, showed no significant differences
(Table 2). Comparing patients with only older brother(s) with patients with only older
sister(s) showed no differences either.

Table 2. Demographic data on recurrent pregnancy loss (RPL) patients stratified according to the sex of older siblings. All
demographic data were obtained at time of referral.

Demographic Only Older Brother(s)
(n = 97)

Only Older Sister(s)
(n = 65)

Older Siblings of
Both Sexes

(n = 40)

No Older Siblings
(n = 181)

Age, years
Mean (SD) 33.3 (5.6) 32.6 (5.2) 32.4 (5.8) 32.8 (5.1)

No. of consecutive
losses, Median (range) 4 (3;12) 4 (3;13) 4 (3;10) 4 (3;12)

BMI, kg/m2

Mean (SD)
26.1 (5.4) 26.5 (6.5) 26.2 (5.8) 26.2 (5.7)

Smoking, % 13.4 18.5 5.0 9.4

4.1. Frequency of an Older Brother and Sister

Among the 383 RPL patients. 25.3% had only older brother(s) and 17.0% had only older
sister(s), which corresponds to a male:female sex ratio of 1.49 (Table 1). The male:female
sex ratio differed significantly from the expected 1.04 sex ratio among siblings of all RPL
patients (p = 0.027) and among siblings of sRPL patients (p = 0.019). More pRPL patients
had only older brother(s), but the sex ratio of 1.25 was not significant. The sex ratio in
younger siblings of all RPL patients was 0.86, which did not differ from the expected
1.04 ratio, and the same was true for the sex ratio of younger siblings in RPL subgroups.

Among all RPL patients with a minimum of one older brother, 113 (81.3%) had one
older brother, 16 (11.5%) had two older brothers, 8 (5.8%) had three older brothers and
2 (1.4%) had five older brothers. Among all patients with a minimum of one older sister,
86 (79.6%) had one older sister, 17 (15.7%) had two older sisters and 5 (4.8%) had three
older sisters.

4.2. Age Difference

The age difference between the proband and her youngest older brother and youngest
older sister is illustrated in Table 3. The age difference between the youngest older brother
and youngest older sister did not differ in all RPL patients or in RPL subgroups. There
was no significant difference in age difference from proband to her youngest older brother
when comparing pRPL with sRPL patients. Furthermore, the age difference regarding the
youngest older sister in pRPL patients was comparable to the age difference in sRPL pa-
tients.

Table 3. Age difference from the proband to her youngest older sibling in all RPL patients and in
pRPL and sRPL patients.

All RPL pRPL sRPL

Age difference to the youngest older
brother (year)

Median (P10:P90)

3.5
(1.5:7.0) 3.0 (1.5:7.0) 4.5 (2.0:7.0)

Age difference to the youngest older sister (year)
Median (P10:P90)

3.5
(2.0:7.0) 3.5 (2.0:5.0) 3.5 (1.5:7.0)

P10:P90: 10th and 90th percentiles.
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4.3. Sex Ratio of Previous Birth

In the probands with sRPL, the frequency of previous birth of only boys and only girls
was skewed, showing a significantly higher frequency of previous birth of a boy compared
to the expected 1.04 ratio. The sex ratio was 1.51 (95:63, p = 0.026). The sex ratio of firstborns
was even higher in sRPL patients with older sisters only (2.50); this ratio was, however, not
significant (Table 4). Among sRPL patients with only older sisters, 72.4% had previously
given birth at least one boy, 31.0% had given birth at least one girl, and 3.4% had given
birth to a girl and a boy before sRPL. The sex ratio of older siblings to pRPL patients was
1.25, while, in sRPL after girls only or boys only, the sex ratio of older siblings was 1.67 and
1.54, respectively. These sex ratios did not differ significantly.

Table 4. Sex ratio of the firstborn child in sRPL patients stratified according to sex of RPL patient’s older siblings.

Only Older
Brother(s)

Only Older
Sister(s)

Both Older
Brother(s) and

Sister(s)

No Older
Siblings

At Least One
Older Brother All sRPL

Sex ratio of births
>22 weeks a 1.33 2.50 2.00 1.23 1.48 1.51 b

Minimum one boy, n
(%) c 34 (65.4) 21 (72.4) 17 (70.8) 47 (61.0) 51 (67.1) 119 (65.4)

Minimum one girl, n
(%) c 28 (53.9) 9 (31.0) 10 (41.7) 40 (52.0) 38 (50.0) 87 (47.8)

a: Only RPL patients with birth of boy(s) or girl(s) only were included. b: Binomial test compared to expected 1.04 sex ratio, p = 0.026.
c: % of sRPL patients.

4.4. Combining Sex of Older Siblings and First-Born Child(ren)

Of all sRPL patients, 79.1% had at least one older brother or had given birth to a boy
before the RPL diagnosis, or both, while 20.9% had only older sister(s), no older siblings
and/or a firstborn girl and, thus, no known exposure to HY-antigens (Table 5).

Table 5. The observed and expected distribution of siblings and previous births in all sRPL patients
according to sex. All previous births before sRPL were included (n = 182).

Observed Expected *

Frequency Percentage (%) Frequency Percentage (%)

Older brother and/or
a prior boy 144 79.1 127 69.8

No older brother and
no prior boy 38 20.9 55 30.2

* Calculations based on assumptions in statistics section and Figure 2. χ2-test, p = 0.041.

The question is whether this 79.1% versus 20.9% distribution is different from that
expected from the background population. As described in the statistical section and
Figure 2, we expected that 127 (69.8%) women would have an older brother and/or previ-
ous birth of a boy. Compared with the observed number of 144 (79.1%) sRPL with the same
family/reproductive history, the difference was statistically significant (p = 0.041, Table 5).

When we performed the same analysis in all RPL patients, the difference was no
longer significant (Table 6).
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Table 6. The observed and expected distribution of siblings and previous births in all RPL patients
according to sex. All previous births before sRPL were included (n = 383).

Observed Expected *

Frequency Percentage (%) Frequency Percentage (%)

Older brother and/or
a prior boy

205 53.5 189 49.0

No older brother and
no prior boy

178 46.5 194 51.0

* Calculations based on assumptions in statistics section and Figure 2. χ2-test, p = 0.247.

5. Discussion

The present study has, for the first time, provided data suggesting that events in
the MP’s pregnancies prior to the birth of the proband herself are risk factors for the
development of sRPL. Previous studies have suggested that birth of a boy before sRPL is
significantly more frequent than expected, and that it negatively impacts the subsequent
pregnancy prognosis [20,21]. Subsequent follow-up studies suggested that this reduction
in reproductive fitness was due to immunity against HY-antigens, expressed on fetal or
trophoblast cells [18,22]. The time interval between the birth of the youngest older brother
and the proband seemed not to impact the risk of sRPL (Table 3). Thus, the influence of
male microchimerism transferred via the mother to younger siblings does not appear to
be short-lived.

In the present study, significantly more (s)RPL patients had older brother(s) compared
with the expected number, and there was also a significant excess of firstborn boys born
before the sRPL diagnosis, which confirms previous findings [20,21]. In an analysis com-
bining these two observations, 79.1% of sRPL patients either had an older brother, had
given birth to a boy before the RPL diagnosis, or both. This was significantly higher than
the expected frequency (69.8%) of women with a similar family history and history of prior
deliveries in the background population based on the observed frequency and sex distribu-
tion of the patients’ younger siblings in our sample and an expected 1.04 sex ratio in the
population. Based on these findings, we propose that sRPL patients with older brother(s)
and/or birth of boy(s) have a high probability of acquiring male microchimerism, sup-
porting the hypothesis that immunity against HY-antigens plays a role in the pathogenesis
of sRPL.

The sex ratio of older siblings among patients with pRPL was lower than the sex ratio
found among patients with sRPL with a previous birth of a girl. Although the difference
was non-significant, the finding may initially seem unexpected, since the pRPL patients
have (probably) not been previously exposed to male microchimeric cells in their own
pregnancies and, thus, an increased prevalence of older brothers could be expected if
anti-HY immunity plays a role in the pathogenesis of RPL. However, meta-analyses of
randomized controlled trials of immunotherapy with intravenous immunoglobulins (IVIG)
in RPL patients seem to indicate that this kind of immunotherapy only works in sRPL
patients and not in pRPL patients [23,24]. This could support the hypothesis that the
pathogenesis of pRPL is often non-immunological (anatomical, genetic, endocrine and
hemostatic alterations), which is not benefited by immunotherapy. This is in accordance
with the findings of this study, which suggest that a substantial proportion of sRPL cases
is associated with anti-HY immunity: an alloimmune disorder that may be modified by
immunotherapy with IVIG-like alloimmune thrombocytopenia [25].

The transplacental trafficking of cells from the fetus to the mother and the reverse is
now well-documented as occurring during a normal human pregnancy. Fetal cells entering
the maternal circulation have been documented to be able to survive in the maternal
organism for decades and establish the so-called microchimerism [8,16,26]. According
to previous studies, the level and frequency of male microchimerism were significantly
higher in women who had experienced an induced abortion [13,27]. These fetal cells
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may interact with the maternal cellular immune system and cause lifelong immunological
changes: both the induction of immunological tolerance and harmful immunity against the
semiallogeneic cells are possible.

Microchimerism may be established over generations. Fetal cells entering the MP
circulation during the first pregnancy may persist and represent a preexisting inhabitant
that, in a subsequent pregnancy, may cross the placenta and establish microchimerism in
the second child (Figure 1). The second-born child will consequently acquire long-lasting
or permanent microchimerism originating from both the MP and an older sibling. A
pregnancy loss in the MP before giving birth to the proband is also a possible source of
microchimerism. This information was not possible to collect, since the patients rarely knew
if their mother had prior pregnancy losses and, in addition, the sex of these predominantly
early pregnancy losses is rarely known. Therefore, this information would not add any
information to this preliminary study beyond what we already know. It is a minor but
potential source of microchimerism that may explain why some women with no older
brother or previous birth of a boy harbor male microchimeric cells.

The acquired microchimerism from the MP during intrauterine life may stimulate
the fetal T-cells and induce Treg differentiation with suppressive a function that persists
into adulthood [28]. This acquired tolerance to maternal microchimerism was theorized
to occur against any antigens encountered in the maternal circulation while in utero;
thus, male microchimeric cells in the MP, which may have been acquired from a previous
pregnancy with a male fetus, cross the placenta into the fetus (the probands in this study)
during a subsequent pregnancy, and could cause the differentiation of long-lived Tregs
specific to HY-antigens acquired from an older brother via the mother. Gammill et al. [12]
hypothesized that the microchimerism acquired from the MP possibly plays an active role
in the proband’s capacity to adapt to future pregnancies; thus, it is of particular relevance
in patients with RPL.

Dierselhuis et al. [29] discovered male microchimerism in six of nine umbilical cord
blood (UCB) samples from newborn female infants with older brothers while, in contrast,
male microchimerism was found in none of the UCB samples from females with no older
brothers. Additionally, hepatocytes containing XY chromosomes in liver biopsies from
female fetuses and children have been reported [26]. Furthermore, several studies have
observed a lower risk of acute and chronic GVHD when younger siblings were used as
donors in allogeneic stem cell transplantation (SCT) compared to older siblings. This
suggests that the younger siblings were possibly exposed to cells from the older siblings,
inducing B- and T-cell sensitization and the differentiation of Treg cells, which may prevent
lymphocyte activation after SCT [30,31].

Thus, these findings strongly support our hypothesis that microchimerism acquired
from older siblings in the MP can be passed on to younger siblings and is a normal
phenomenon, occurring in the pregnancies of multiparous women. As a consequence,
these allogeneic cells from MP and older siblings can be harbored in the younger sibling
until adulthood, or even remain lifelong, and affect his/her immune system.

Nonetheless, while such transplantation studies suggest a beneficial effect of de-
veloping tolerance to older siblings, other studies have suggested harmful impacts of
microchimerism from older siblings and previous births in some conditions. One example
is systemic sclerosis (SSc), as a study observed an increased risk of developing SSc with
an increasing number of older siblings and a history of pregnancy loss with or, especially,
without a live birth [32]. The risk of developing systemic lupus erythematosus (SLE) also
increases with birth order [33]. In agreement with these autoimmune diseases, the present
study also suggests that, in women with sRPL, male microchimerism may result in harmful
rather than beneficial immunological responses to HY antigens.

The results of this study have limitations and must be considered preliminary. We
aimed to test if RPL patients had an older brother more frequently than expected. The
estimation of how frequently we could expect RPL patients to have at least one older
brother was based on the observed frequency of having a least one younger brother
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(Table 1), since the distribution of sex of siblings before and after the birth of the proband
should, theoretically, be similar if the male microchimerism did not exist and did not impact
the risk of sRPL. The almost equal number of older and younger siblings allowed us to
use the frequency of younger brothers and sisters in this context. In a follow-up study, it
would strengthen the conclusions if an external control group, for the distribution of older
and younger siblings according to sex in a group of women with normal fertility, could
be collected.

Our study could not document whether sRPL patients with an older brother actually
received male microchimeric cells from that older brother or not. Therefore, we can only
speculate that the high prevalence of older brothers among sRPL patients could indicate
that microchimerism from older brothers, acquired via maternal circulation, could be a risk
factor for sRPL. To confirm our hypothesis, we suggest that new studies should analyze if
microchimeric cells from an older brother can be detected in sRPL patients more often than
in women without RPL.
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