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Abstract

Y-chromosomal and mitochondrial DNA profiles have been used as evidence in courts
for decades, yet the problem of evaluating the weight of evidence has not been
adequately resolved. Both are lineage markers (inherited from just one parent), which
presents different interpretation challenges compared with standard autosomal DNA
profiles (inherited from both parents), for which recombination increases profile
diversity and weakens the effects of relatedness. We review approaches to the
evaluation of lineage marker profiles for forensic identification, focussing on the key
roles of profile mutation rate and relatedness. Higher mutation rates imply fewer
individuals matching the profile of an alleged contributor, but they will be more
closely related. This makes it challenging to evaluate the possibility that one of these
matching individuals could be the true source, because relatedness may make them
more plausible alternative contributors than less-related individuals, and they may not
be well mixed in the population. These issues reduce the usefulness of profile databases
drawn from a broad population: the larger the population, the lower the profile
relative frequency because of lower relatedness with the alleged contributor. Many
evaluation methods do not adequately take account of relatedness, but its effects have
become more pronounced with the latest generation of high-mutation-rate Y profiles.

1 Weight of evidence for lineage marker profiles

Standard DNA profiles use autosomal DNA, inherited from both parents. We focus
here on DNA profiles obtained from the Y chromosome and the mitochondrial genome
(mitogenome/mtDNA), which are inherited only from the father and from the mother,
respectively. Because of this uniparental inheritance over generations, these DNA
profiles are called lineage markers. We outline the forensic value of lineage markers in
general, give a brief, historical review and critique of evaluation methods and make
recommendations for improved practice. Our key message is that the high mutation
rates of the latest generation of Y-chromosome short tandem repeat (STR) profiles
have effects that exaggerate the deficiencies of previous methods of analysis, but
understanding these effects highlights ways forward.
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We focus on the simplest scenario in which there is a good-quality,
single-contributor DNA profile (either Y or mitogenome) obtained from an evidence
sample, and a matching reference profile from a known individual Q who is alleged to
be source of the evidence sample (sometimes Q is called the person of interest, PoI).
Hypotheses of interest are:

HQ : the evidence profile came from Q

HX : the evidence profile came from X,

where X is an alternative to Q as source of the DNA whose profile is not available.
The likelihood ratio (LR) comparing the strength of the DNA profile evidence for HQ

relative to HX is then

LR(X,Q) =
P(profile evidence | HQ)

P(profile evidence | HX)
=

1

P(X has profile q)
, (1)

where q is the profile of Q. We omit background information and other evidence from
the notation, see [15] for a discussion. The denominator of (1) is a probability for the
unknown profile of X , given the observed q and possibly a database of profiles.

1.1 The effect of relatedness and mutation rate on the LR

For lineage markers, the relatedness of two individuals is fully captured by a single
number, G, of generations (or germline transfers, or meioses) that separate X and Q,
following either female-only or male-only ancestors. Degree-1 (G = 1) relative pairs
are parent/offspring, G = 2 for siblings and grandparent/grandchild, while G = 3 for
avuncular relationships such as aunt/niece as well as
great-grandparent/great-grandchild. As G increases, the relatedness becomes less
likely to be known, but there is a female-lineage G and a male-lineage G for all pairs
of individuals, “unrelated” only means that G is large and/or unknown.

Given G for X and Q, we can approximate (1) by

LR(X,Q) =
1

(1− µ)G
(2)

where µ is the profile mutation rate1. This formula is not exact for at least two
reasons. Firstly, it assumes that the profile mutation rate is constant over generations
and independent of the current profile state. In fact, accurate estimates are hard to
obtain but the STR mutation rate is likely to depend on the allele sequence (including
its length and presence of a partial repeat) [29]. However, these effects are relatively
unimportant for the total mutation rate over many loci. Secondly, it is based on
assuming no mutations in the lineage path connecting X and Q, whereas a match can
also arise following an even number of mutations between X with Q such that the
effect of each mutation is reversed by another mutation. However, profiles consisting
of many loci and with multiple possible mutation events at each locus are very unlikely
to match if there is any mutation between X and Q [4, 17].

For G unknown, in place of (2) we have (see also [21]):

LR(X,Q) =
1

∑

∞

g=1
(1− µ)gP(G = g)

where
∞
∑

g=1

P(G = g) = 1. (3)

Equation (3) requires a probability distribution for G, which can be informed by
population genetic models and by the available information about alternative possible

1For L loci each with mutation rate µl, mutation events are usually considered to be independent
across loci so that µ = 1−

∏L
l=1

(1 − µl), which is less than (but usually close to) the sum of the µl.
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sources of the DNA profile. We introduced X as a specific alternative individual, but
in practice there are usually many alternative sources of the DNA. In either case,
P(G = g) can be interpreted as the probability that the unknown alternative source of
the DNA is a degree-g relative of Q. If, for example, it is known that all of the
degree-g relatives of Q are excluded as possible sources, then P (G = g) = 0 in (3)2.

Profile mutation rate
Type Markers [% per generation] Reference
Ychr PowerPlex Y (12 loci) 2.5% [2, 4]
Ychr Yfiler (17 loci) 4.4% [2, 4]
Ychr PowerPlex Y23 (23 loci) 8.3% [2, 4]
Ychr Yfiler Plus (27 loci) 13.5% [2, 4]
Mitogenome 16,070 sites 0.3%-1.9% [5, 36]
Mitogenome 16,494 sites 0.4%-2.3% [5, 32]

Table 1. Estimates of lineage marker profile mutation rate (= the probability that
parent and child have non-matching profiles). These estimates are obtained assuming
that the mutation probability does not depend on the current profile state. The per-year
mitogenome mutation rates in [32, 36] have been multiplied by a generation time of 25
years.

Although we can rarely compute it accurately, (3) tells us how to evaluate a lineage
marker profile match: we need to assess, given the known circumstances, the
probability that an alternative source of the DNA has relatedness g with the alleged
source Q, and weight this probability by (1 − µ)g ≈ e−gµ, which means that
individuals with g ≫ 1/µ contribute little to the LR.

Most presentations of lineage marker DNA profile evidence mention something like
“maternally-related individuals will share the same mitochondrial DNA profile” and
then proceed to assess weight of evidence assuming that X and Q are unrelated. Such
a statement conveys little and is potentially misleading, because we are all maternally
related and we are also all paternally related, what is important is the degree g of the
relatedness (or that g ≫ 1/µ).

1.2 The role of databases in evidence evaluation

Most methods reviewed below make some use of a database of profiles. When multiple
databases are available, the one with ancestry closest to that of Q should usually be
chosen [26, 42], unless the database size is very small and there is an alternative
database of larger size drawn from a population with similar ancestry.

Databases are usually not random samples [4, 40], and not drawn from the
population relevant to a specific case. For lineage markers, the important role of
relatedness implies that the way the database is sampled can have a big impact on
inferences. On the one hand, databases may be sampled in a way that includes more
sets of related individuals than would the case for random sampling, for example
because the close relatives of a suspected contributor may also be suspects. On the
other hand, some databases may implement a policy of excluding close relatives.

For Y and mitogenome the most important international databases, both highly
respected for their data quality [52], are available online at www.YHRD.org [50] and
www.EMPOP.online [33, 34]. In July 2021 EMPOP had 48,572 mtDNA sequences (of
which 4,289 cover the entire mitogenome, the rest span some or all of the control
region, which is the most variable part of the mitogenome [34]). YHRD had 337,449

2Note that after setting P (G = g) = 0 it must still be true that
∑

∞

g=1
P(G = g) = 1, meaning that

the distribution potentially has to be renormalised.
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minimal (8 STR loci) profiles, of which 97,087 were 27-locus Yfiler Plus profiles. Both
databases contain samples from multiple worldwide populations, in some cases
including several subpopulations.

Equation (3) has profound implications for the role of databases in computing the
LR. For any of the lineage markers in Table 1, the space of possible profiles is so vast
that it is extremely unlikely that two distinct lineages will generate the same
(complete) profile by neutral mutations. Except for partial profiles with few loci
observed (Section 4.4), the possibility of a “chance” match between distantly related
individuals is negligible relative to the much more likely event of a match between
pairs of individuals who are related closely enough to generate the match, but
distantly enough that the relatedness is not recognised. Relatedness also affects match
probabilities for autosomal profiles, but because of recombination its effect is much
less important except for monozygotic twins [47].

For the mitogenome, µ is estimated to be around 1 per 70 generations (Table 1).
Thus, alternative sources X will be almost certainly be female-line relatives of Q with
G up to a few hundred [5]. This is greatly beyond the known relatives of Q, but is still
closer than a random pair of individuals in a large population, who are typically
separated by thousands of generations [5]. Mutation rates for older Y-profile kits are a
small multiple of the mitogenome rate, but more recent Y-profile kits can have
mutation rate an order of magnitude higher: around 1 per 7.5 generations for Yfiler
Plus profiles (Table 1). In that case profile matches occur between pairs of individuals
separated by at most a few tens of generations [4].

Therefore the majority of profiles in broadly-defined databases such as YHRD or
EMPOP are drawn from individuals that are too distantly related to Q to be relevant
to a particular case. The frequency of q can depend sensitively on the choice of
population, according to its average relatedness with Q. Alternative sources of the
DNA may be concentrated in the same subpopulation as Q, defined by geographical
origin and/or social factors such as ethnicity and religion. A relevant consideration is
that if Q is in fact not the source of the DNA, the false allegation may in part be due
to Q resembling the true source in some characteristics such as appearance, place of
residence, or social background. Similarity on these characteristics tends to increase
P(G = g) for small values of g. Therefore, a broadly-defined database population can
lead to artificially low match probability estimates.

2 Review of evaluation methods

Most methods have not addressed the fundamental effects of relatedness, mutation
rate and database sampling frame discussed above. We will review methods assuming,
as most authors have done, that the available database is appropriate, and return to
these issues in the Discussion.

2.1 Adjusted database counts

The denominator of the LR (1), is often assumed to equal the match probability, πq,
the relative frequency of q in a population of alternative sources of the DNA. Many
approaches aim to estimate πq based on the count kq of q in a database of size n. The
database relative frequency kq/n has long been recognised as an unsatisfactory
estimator of πq, because we often have kq = 0 and yet Q has the profile and so πq > 0.

Further, the requirement to avoid overstatement of evidence converts here to
preferring a "conservative" over-estimate of πq rather than an under-estimate.
Excessive conservativeness wastes information, and our goal should be to evaluate the
evidence as accurately as possible, while taking care to guard against being
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anti-conservative. However, the latter requirement is difficult to satisfy, and there is
no agreement about to what extent we should seek to eliminate any risk of being
anti-conservative.

Various adjustments to kq and n have been proposed to avoid zero estimates and
introduce an upward bias. We will discuss them in order of increasing conservativeness
as measured by π̂q when kq = 0.

2.1.1 Adjustment based on the database frequency spectrum

Brenner’s κ (kappa) estimate [16] (based on [37]) is π̂q = (1−κ)/n when kq = 0, where
κ is the fraction of singleton profiles (observed only once in the database). Intuitively,
a large κ corresponds to a high profile diversity which justifies a low estimate for πq.
The estimator can be very small if the database consists mainly of singletons, which is
the case for high-mutation-rate Y profiles. In particular, if the database consists only
of singletons, then κ = 1 and π̂q = 0.

Cereda’s estimators [22, 23] are based on the numbers of both singletons and
doubletons (profiles observed exactly twice). All of these approaches take no account
of individuals with profile q due to relatedness with Q, and the estimates can be
strongly influenced by the way the database is sampled, as discussed above.

2.1.2 Augmenting the database

If we compute the database relative frequency after adding q, then both kq and n are
augmented by one to obtain π̂q = (kq+1)/(n+1). If we add two copies of q to the
database, corresponding to the profiles of both Q and X under HX , we obtain [13]

π̂q =
kq + 2

n+ 2
. (4)

Use of (4) is conservative in the sense that we don’t know if we have observed one or
two individuals with q (that is, we don’t know if HX is true). Both the above
estimators can alternatively be derived as Bayesian posterior probabilities given a
uniform prior for πq, the first using the original database while (4) uses the database
augmented with one copy of q.

Other methods can be modified similarly by augmented the database with one or
two copies of q.

2.1.3 Upper confidence limit (UCL)

An alternative to (4) is an upper confidence limit (usually 95%) for πq [20, 31]. This is
the smallest binomial “success” probability π such that the probability of observing up
to kq successes in n trials is ≤ 0.05. That is, the UCL is the largest π such that

kq
∑

x=0

(

n

x

)

πx(1−π)n−x ≤ 0.05 (5)

which is sometimes called the Clopper-Pearson formula [24]. The UCL represents a
standard scientific approach to controlling the risk of overstating the evidence: it
provides an answer to the question of how big the unknown πq could reasonably be,
given observations kq and n. The 95% UCL is larger (more conservative) than (4). For
example, when kq = 0, from (5) and ln(0.05) ≈ −3, we obtain that the UCL is just
under 3/n, whereas (4) is just under 2/n.
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2.2 The Discrete Laplace method

The Discrete Laplace method [1, 11] models πq for all possible q, making it also useful
for model-based clustering and mixture analyses [10, 12]. Intuitively, based on the
database profiles, clusters are identified corresponding to the descendants of a recent
common ancestor, and probabilities are computed for the observed profiles to belong
to each cluster. The ancestors are treated as unrelated and so their profiles are
independent. Profile probabilities are computed by assuming that profiles descend
independently from each ancestor according to a discrete Laplace (double geometric)
distribution.

2.3 Coancestry adjustment for population sub-structure

The population genetic parameter FST , often referred to as θ in forensic DNA
profiling, has been widely used to correct match probabilities for autosomal DNA
profiles [14]. An analogous adjustment for lineage marker profiles [15, 19] is

LR =
1

θ + (1−θ)πq

(6)

There are several interpretations of θ, one is that it represents the average level of
relatedness of individuals within a subpopulation, relative to a larger population. In
forensic settings the larger population can be interpreted as the population from which
the available profile database was drawn, while the subpopulation is not usually well
defined but it is assumed to include Q and some or all of the alternative possible
sources of the evidence sample. The denominator of (6) can be loosely interpreted as
follows. Under HX , there is probability θ that X is a relative of Q, sufficiently close
that a match is very likely, while with probability 1−θ, X comes from the broader
population which includes more distant relatives of Q such that the match probability
is well estimated by the database relative frequency.

Equation (6) can be used in conjunction with the Discrete Laplace or other method
to estimate πq. However, it is difficult to choose a θ value relevant to a particular case,
which cannot be directly estimated. It will depend on the available case-specific
background information and the population that the reference database was drawn
from. In general, if the database is drawn from a broad, heterogeneous population that
extends greatly beyond the population relevant to the case, then a larger θ would be
needed than if the database came from a smaller more homogeneous region that
includes most alternative donors of the DNA in a particular case.

Population-genetic estimates of θ have been reported for many human
subpopulation-population pairs [18, 43] and from simulation scenarios [42]. Most
available estimates of θ are for autosomal loci. For lineage markers, the smaller
effective population size (there are 4 copies of each autosome for every Y chromosome)
tends to increase the value of θ, but the higher mutation rate of the Y tends to act in
the opposite direction. Many population genetic studies do not estimate θ relative to a
forensic database, but instead use a hypothetical ancestral reference population which
leads to smaller estimates. Further, few studies are available on the fine geographical
scale relevant for many cases.

In general, every alternative X can have a different value of θ reflecting their level
of ancestry shared with Q relative to the database population. However, rather than
try to choose a distribution of θ values appropriate for the alternative contributors in
a case, usual practice is to take a single value from the upper tail of that distribution.
[43] argued for θ = 0.03 as a conservative, default value for autosomal profiles, finding
through simulations based on real data that it remains appropriate even if X in fact
comes from a different continent than the one where the database was sampled.
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2.4 Estimating the number of matches in the population

If we knew that Kq individuals have a profile matching Q, and these are well-mixed in
a population of alternative sources of the DNA of size N , then the LR would equal the
inverse of the match probability, which is

LR =
N

Kq

. (7)

We have noted above that this is not directly useful in practice, in contrast with the
central role of the LR in the interpretation of autosomal profiles. This is because the
choice of population and hence the value of N is problematic for lineage marker
profiles. As we consider larger suspect populations, Kq increases at a slower rate than
N , because the matching individuals are relatives of Q and they are expected to form
a smaller proportion of the population when it is more broadly defined.

An alternative to reporting the LR is to report estimates of Kq. A precise estimate
is not usually possible, but probability distributions for Kq can be obtained using
simulation under different population genetic models [4–6], which can include various
mutation rates and mechanisms, and demographic factors such as population growth
and structure, as well as between-male variance in offspring number. The simulations
can also condition on kq and n from a database, provided the database sampling
scheme is known, which is only feasible in practice if the database can be assumed to
be a random sample from the population. Often conditioning on kq and n doesn’t
greatly alter the distribution of Kq, since it merely confirms that the profile is rare as
is expected from the mutation rate [4].

A further advantage of the simulation approach is that it can easily incorporate
available information about the numbers of close relatives of Q, and about their
profiles if available [6].

Using the malan (MAle Lineage ANalysis) software [2], the distribution of Kq was
found in high-mutation-rate settings to be insensitive to the modelling assumptions
[4, 6]. In the case of Yfiler Plus, the number of matching males is typically < 10 and
rarely more than a few tens. This approach has been extended to mitogenomes [5], but
due to their lower mutation rate the distribution of Kq was spread over a wider range,
and was more sensitive to the population genetic model. While there remains merit in
reporting to jurors an estimate of Kq, the arguments for this are less compelling than
in high-mutation-rate settings, and conversely problems with the match probability
and LR are lessened.

Given the estimates of Kq, a juror can assess how likely it is that one of these
matching individuals was the source of the evidence profile, rather than Q. The
population size N may play some role in these considerations, but is relatively
unimportant. Since Kq is a count, it is likely to be more interpretable to a juror than
an LR or a match probability [28]: it can be presented using phrases such as "the
number of individuals with profile q is unlikely to be more than...".

2.5 Methods not widely used

2.5.1 Frequency surveying

The frequency surveying method [30, 41, 49] is based on pairwise distances, measured
in mutational steps, between the Y-profiles from individual i and j. An exponential
regression is then based on these distances and used to establish a Beta prior
distribution in a Bayesian model with a binomial likelihood. One disadvantage of this
approach is that the differences in mutation rates across Y-STR loci are ignored, and
only counting the number of mutational steps discards information. This method is
still available at www.YHRD.org [50], but is no longer recommended [40].
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2.5.2 Population genetic modelling using the coalescent

The first method for computing match probabilities using an explicit genetic model
was based on a genealogical tree with n+2 leaves, representing the database augmented
with one copy of q plus a leaf node representing an unobserved profile [51]. Given a
mutation model and a demographic model describing the population size, growth rates
and structure, a Markov chain Monte Carlo algorithm updates the tree structure and
branch lengths, as well as the profiles at the internal nodes of the tree and the
unobserved leaf node. The distribution of profiles in the population is estimated from
equilibrium frequencies at the unobserved leaf. The method was found to perform well
in comparison to methods available at the time [7], but it is computationally
demanding, particularly for large databases. This is because the whole profile space is
explored, whereas only the probability of q is needed for forensic identification.

2.5.3 Graphical statistical models

These Y-profile models [8, 9] are computationally fast and allow intermediate alleles,
which the population-genetic models above cannot accommodate. However, they do
not exploit much genetic information and alleles are merely assumed to be different
categories.

3 Recommendations from forensic authorities

For Y-profiles, the Discrete Laplace method (Section 2.2) is currently recommended in
the Philippines [38] and in Germany [48], where it was first used in court in a case
from 2015 [39]. In that case profiles were available for some male-line relatives of the
suspected contributor, which can be taken into account in assessing the strength of the
evidence by the malan simulation approach [6] (Section 2.4). The Polish Speaking
Working Group of the International Society for Forensic Genetics (ISFG) [35]
currently recommends using the κ method (Section 2.1.1). The UK Forensic Regulator
has recently commended use of (4), the adjusted database frequency [26].

Below we briefly summarise and comment on recommendations from two other
forensic authorities.

3.1 Scientific Working Group on DNA Analysis Methods
(USA, Canada)

3.1.1 Y-profiles

The SWGDAM 2014 guidelines [44] note that “the profile probability is not the same
as the match probability”, but they do not distinguish between low- and
high-mutation-rate profiles. They recommend that the profile probability is estimated
by the unadjusted database relative frequency kq/n, or with a UCL (Section 2.1.3),
and that this value be used within (6) to adjust for population structure (Section 2.3).

The guidelines also discuss the importance of identifying the relevant population(s)
and the difficulty in choosing an appropriate θ value, and they suggest default values
for three kits. For PowerPlex Y23, the most discriminatory (highest profile mutation
rate) of the three, they suggest θ = 2× 10−5 for African Americans, Asians,
Caucasians and Hispanics; and θ = 3× 10−4 when Native Americans are considered.

3.1.2 mtDNA

The SWGDAM 2019 guidelines for mtDNA [45] are similar to those for Y-profiles [44],
except for the θ adjustment. They write: “It is recognized that population substructure
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exists for mtDNA haplotypes. However, determination of an appropriate theta (θ)
value is complicated by the variety of primer sets, covering different portions of HV1
and/or HV2, which may be applied to forensic casework. SWGDAM has not yet
reached consensus on the appropriate statistical approach to estimating θ for mtDNA
comparisons”.

3.2 International Society for Forensic Genetics (ISFG)

3.2.1 Y-profiles

The ISFG 2020 guidelines [40] state that “Information on the degree of paternal
relatedness in the suspect population as well as on the familial network is however
needed to interpret Y-chromosomal results in the best possible way” but did not
delineate how to achieve this. The guidelines focus on estimating a profile relative
frequency from a database, for which they recommend the Discrete Laplace method
(Section 2.2), which we support in low-mutation-rate settings but the guidelines do not
distinguish low- and high-mutation-rate settings.

The guidelines also recognise arguments for avoiding profile frequencies, referencing
[4], but they write “However, the appropriate wording for statements not relying on
population databases need to be validated in the context of the national guidelines.”.

3.2.2 mtDNA

The ISFG 2014 guidelines on mtDNA [34] focus on profile frequencies, but do not
recommend any particular approach; instead they mainly mention frequency-based
estimators such as (4) (Section 2.1.2) and the UCL (Section 2.1.3).

4 Some further issues

4.1 Combination with autosomal evidence

In many respects, lineage marker profiles resemble a single locus of an autosomal
profile, with a higher mutation rate and hence greater allelic diversity than for typical
autosomal loci but only one allele rather than two. The problem of the strong role for
relatedness that we have highlighted in this review also arises at a single autosomal
locus, although due to diploidy there are four lineages connecting Q and X at an
autosomal locus, one for each pairing of an allele from Q with one from X .

It is possible to compute a combined LR for autosomal and lineage marker profiles
that both match Q. This is rarely done in practice, perhaps because an autosomal
profile match is typically so informative that the relatively small additional evidential
strength of the lineage marker match is outweighed by the additional interpretation
issues. One possible approach would be to multiply a conservative estimate of Kq by
the autosomal match probability, to obtain an estimate of the expected number of
individuals matching Q at both lineage marker and autosomal profiles. Alternatively,
if the lineage marker profile mutation rate is low, it may be acceptable to multiply
autosomal and lineage-marker LRs, each obtained using a suitable value of θ.

4.2 Locus order for duplicated Y loci

The STR loci that form a Y-profile usually have known locations on the Y
chromosome, except for some pairs of duplicated loci including DYS385a and
DYS385b. Two males with the same pair of alleles DYS385a/b may or may not match
because of the two possible orderings. When the two alleles from Q are the same as
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those from the evidence profile, the evaluation problem can be overcome by ignoring
the duplicated loci, which tends to underestimate evidential strength, or by assuming
a match at both loci, which tends to overstate evidential strength, by at most a factor
of two and arguably much less.

4.3 Consistency

[25] proposes a consistency principle requiring that the strength of evidence for a Y
profile cannot be less than that for any the sub-profiles obtained by omitting one or
more loci. This reasonable requirement is not enforced by most of the methods
discussed here, because a Y profile is treated as a single allele and sub-profiles are not
considered. The problem can be important when there is a good sample size for a
particular DNA profiling kit, but a reduced sample size for a more detailed profile that
includes additional loci [26, 44]. The method of Section 2.4 based on the distribution
of the number Kq of matching individuals does respect the principle, because adding
additional loci to a profile increases the mutation rate, and hence stochastically
reduces Kq.

4.4 Partial profiles

Often the DNA from a contributor of interest is at a very low level and/or degraded,
so that a partial profile can arise if no allele is observed at some Y-STR loci, due to
allele drop-out and/or masking by the alleles of a known contributor. The principles of
interpretation are unchanged, using only the loci at which an allele is observed. The
fewer the loci observed, the lower the profile mutation rate, which increases the
number of matching individuals and decreases their average relatedness with Q. These
quantities can be assessed using simulation including only the observed loci [2, 3].

4.5 Mixtures

Many evidence profiles come from multiple contributors, with at least two of them
unknown. If there is a large discrepancy in the amount of DNA from each unknown
contributor, it may be possible to deconvolve the mixture (assign alleles to distinct,
unknown contributors) manually, based on peak heights. Various peak height models
are available. Mixture examples with peak height information are included in [46].

Surprisingly, for high-mutation-rate Y-profiles, a two-male mixture profile in which
q is fully represented is almost as powerful as observing q as a single-source evidence
profile [6]. Although many pairs of possible Y-profiles could give rise to the observed
mixture, the great majority of these possible profiles do not exist in the worldwide
human population, which is minuscule compared with the vast number of possible
profiles. Since we know that q does exist in the population, the pair of profiles that
includes q is much more likely than all the other profile pairs combined, unless one or
more of the other profiles has been observed in a database [6].

For low mutation rate Y-profiles, the Discrete Laplace method (Section 2.2) can be
used to deconvolve mixtures using estimated population frequencies [10].

A "profile centred” (HC) method [46] is based on (3) and focusses on the number of
generations G in the lineage linking Q with alternative contributor X . Beyond some
threshold on G, the method assumes that the match probability is low and uses a
population frequency estimator similar to the Discrete Laplace method. The HC
method assumes a constant-size, random mating population of size N to assign
weights for the mixture donors (using formulas for the probability that two random
persons are g generations apart). The HC method uses the κ method (Section 2.1.1)
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for calibration, so that these methods are the same in the special case of good-quality
single-source profiles.

5 Discussion

Our review of methods for assessing the forensic value of DNA evidence from lineage
markers, namely Y-profiles and mitogenomes, has emphasised the key roles of the
profile mutation rate and the (male-line or female-line) relatedness G, which are not
adequately addressed by many methods. In particular, it is unsatisfactory to inform
courts that, for example, a Y -profile match is likely for male-line relatives and then to
proceed as if the alleged contributor Q is unrelated to the alternative contributors.

Values of G are typically unknown in actual populations except when G is very
small, but the distribution of G can be investigated via simulation in population
genetic models (Section 2.4). There are also some well documented actual human
populations that can be studied in more detail. To date these are relatively isolated
and not typical of many cosmopolitan urban populations. A national-scale project is
underway in Denmark aimed at tracing lineages over a century for almost the whole
population [27]. At this time-depth, lineage paths up to about G = 8 for two
contemporary young adults can be traced, provided that there are no migrants in the
lineage.

When the profile mutation rate is low (say below 0.05 per generation, which holds
for the mitogenome and older Y-STR profiling kits), most of the individuals with
profiles matching Q are separated by at least several tens of generations. There are
typically hundreds of matching individuals, and in some cases thousands of them [5].
That is enough individuals and at sufficient genetic distance that many of them will
differ from Q in many characteristics, thus lessening the problems discussed above. In
these cases, methods based on estimating population match probabilities such as the
Discrete Laplace method recommended by the ISFG (Section 2.2) may be acceptable,
provided that the role of relatedness is also adequately explained possibly through a θ
adjustment. As discussed in Section 2.3, it is difficult to recommend specific values for
θ as these can depend on case-specific details and the reference database.

For high-mutation-rate profiles (say above 0.1 per generation) most males matching
Q are related to him within a few generations, and there seems no satisfactory
alternative to summarising to a court the distribution of the number of close relatives
of Q expected to match, as well as their degree of relatedness (Section 2.4). The UCL,
for example, will be conservative if the alternative sources of the DNA include few
close relatives of Q, but without addressing that question directly we can’t be sure.
Methods that rely on a database may be affected by a non-conservative bias because
the database is typically drawn from a broadly-defined population that has a lower
average relatedness with Q than the alternative sources of the DNA in a particular
case.

To improve the simulation approaches to approximating the number of matches, we
require good models and rate estimates for mutation. Some data are available but
details such as the dependence of mutation rate on current profile state have been
little studied, particularly for mitogenomes. Mutation models allowing for allele
specific mutation rates have been investigated [29], but the available data was
insufficient to estimate the model parameters accurately.
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