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ABSTRACT
Objective  To systematically review and critically appraise 
prognostic models for falls in community-dwelling older 
adults.
Eligibility criteria  Prospective cohort studies with any 
follow-up period. Studies had to develop or validate 
multifactorial prognostic models for falls in community-
dwelling older adults (60+ years). Models had to be 
applicable for screening in a general population setting.
Information source  MEDLINE, EMBASE, CINAHL, The 
Cochrane Library, PsycINFO and Web of Science for studies 
published in English, Danish, Norwegian or Swedish until 
January 2020. Sources also included trial registries, 
clinical guidelines, reference lists of included papers, along 
with contacting clinical experts to locate published studies.
Data extraction and risk of bias  Two authors performed 
all review stages independently. Data extraction followed 
the Critical Appraisal and Data Extraction for Systematic 
Reviews of Prediction Modelling Studies checklist. Risk of 
bias assessments on participants, predictors, outcomes and 
analysis methods followed Prediction study Risk Of Bias 
Assessment Tool.
Results  After screening 11 789 studies, 30 were 
eligible for inclusion (n=86 369 participants). Median 
age of participants ranged from 67.5 to 83.0 years. Falls 
incidences varied from 5.9% to 59%. Included studies 
reported 69 developed and three validated prediction 
models. Most frequent falls predictors were prior falls, 
age, sex, measures of gait, balance and strength, along 
with vision and disability. The area under the curve was 
available for 40 (55.6%) models, ranging from 0.49 to 
0.87. Validated models’ The area under the curve ranged 
from 0.62 to 0.69. All models had a high risk of bias, 
mostly due to limitations in statistical methods, outcome 
assessments and restrictive eligibility criteria.
Conclusions  An abundance of prognostic models on 
falls risk have been developed, but with a wide range in 
discriminatory performance. All models exhibited a high 
risk of bias rendering them unreliable for prediction in 
clinical practice. Future prognostic prediction models 
should comply with recent recommendations such as 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis.
PROSPERO registration number  CRD42019124021.

BACKGROUND
The propensity to fall is a serious and 
common health issue among older adults 

with one-third of community-dwelling adults 
≥65 years and half of those ≥80 years falling 
annually.1 Consequences of falls are consid-
erable with loss of independence, increased 
morbidity and mortality.2–4 Furthermore, 
the healthcare costs of falls increase substan-
tially with age.5 Therefore, as the prevalence 
of older fallers is predicted to increase with 
changes in demography, preventing falls is of 
utmost importance.6

Falls interventions have proven effective 
when aimed at older adults with a high risk of 
falling.7 However, identifying these high-risk 
individuals is not straight-forward since falling 
is multifactorial. Prognostic models combine 
risk factors to estimate the individual’s risk 
of a future outcome.8 Thus, a prognostic 
model may be a valuable tool to discriminate 
between older adults at high versus low risk 
of falling. To prevent the consequences of 
falls, healthcare professionals could perform 
screening in the general population using 
prognostic models.9 However, no systematic 

Strengths and limitations of this study

►► This systematic review is the first to summarise all 
prediction models on falls in community-dwelling 
older adults of the general population.

►► The extensive search strategy supports identifying 
all available prospective cohort studies predicting 
falls in community-dwelling older adults (60+ years).

►► Guidelines on prediction modelling reviews were 
strictly followed for search strings, data ex-
traction (Critical Appraisal and Data Extraction 
for Systematic Reviews of Prediction Modelling 
Studies), risk of bias assessment (Prediction study 
Risk Of Bias Assessment Tool), along with devel-
opment (Preferred Reporting Items for Systematic 
reviews and Meta-Analyses (PRISMA)-Protocol) and 
transparent reporting of the review (PRISMA).

►► All review stages were performed independently and 
in duplicate.

►► The exclusion of non-English language studies con-
stitutes a risk of selection bias.
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review has addressed prognostic models on falls for 
community-dwelling older adults.

This systematic review aims to provide an updated over-
view of available models to be used by healthcare profes-
sionals and for researchers to improve on. The primary 
objective was to describe the discriminatory performance 
of prognostic models for falls in prospective cohort 
studies on community-dwelling older adults. Secondary 
objectives were to describe the study and model charac-
teristics of these models.

METHODS
A protocol was preregistered before commencing the 
review process10 and is available in data supplements 
(online supplemental appendix 1). The review and 
its protocol followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses statement 
(PRISMA)11 and PRISMA-Protocols,12 respectively. A 
completed PRISMA Checklist is available in data supple-
ments (online supplemental appendix 2). During the 
review process, we found the protocol unclear in terms 
of eligibility criteria for the study designs, participants, 
models, outcomes and settings, for which reason we have 
further described these. Rationales for the changes are 
given in the protocol. Box 1 provides an introduction to 
commonly used prediction modelling terms.

Eligibility criteria
Participants and setting
All participants had to be community dwelling, 60 years 
of age or older, and be recruited from a general popu-
lation setting. For that reason, we excluded models 
intended for hospitals, general practitioners and nursing 
homes. Studies restricted to participants with prespeci-
fied diseases, conditions or symptoms such as Parkinson’s 
disease or stroke were excluded to raise external validity. 
However, we included studies that excluded certain types 
of community-dwelling older adults, such as those with 
known neurological, spinal or cognitive disorders.

Index (model)
Studies had to present a final multifactorial prognostic 
model defined by the inclusion of two prognostic factors 
or more. This definition was chosen as causes of falls are 
multifactorial and coexisting.1 Thus, prognostic factor 
studies investigating the association between predictors 
and prospective falls were excluded. Both development 
studies and validation studies with and without model 
updating were included.

Outcome
We included studies defining falls as ‘an unexpected 
event in which the participants come to rest on the 
ground, floor or lower level’.13 However, studies without 
an outcome definition were also included since this 
would not rule out the definition mentioned above. We 
excluded studies using fall definitions excluding certain 

Box 1  Commonly used prediction modelling terms with 
examples related to falls

Prognostic factor
A prognostic factor, also called a predictor, is any measure that, among 
people with a given health condition, is associated with a subsequent 
clinical outcome such as falls.57

Prognostic prediction model
A prognostic prediction model is a statistical combination of multiple 
predictors from which risks of a longitudinal outcome, for example, falls, 
can be calculated for individuals.8

Development and validation studies
A prediction model development study aims to develop a prediction 
model by combining essential predictors from a data set into a model 
and testing its predictive performance within the same development 
data set.54 A model validation study aims to assess the predictive per-
formance of a developed prediction model using new data not used in 
the development of the model.54

Model performance, overfitting and internal validation
A model’s predictive performance is termed model performance. This 
term encompasses several measures with the two most important be-
ing discrimination and calibration.17 Estimates of model performance 
derived directly from a data set used for developing the model is termed 
the apparent performance.54 Since the model is fitted explicitly to the 
development data set, predictions on new data, that is, new older adults 
with different characteristics, may yield poorer model performance es-
timates, that is, poor generalisability. Hence, clinicians would typically 
find the apparent performance optimistic in terms of predicting a fall in 
their population which has not been used for developing the model. In 
consequence, fall preventive interventions could end up being provided 
to those not needing it and not offered to those actually in need hereof. 
The optimism in apparent performance is due to the model fitting too 
well to its data, a term known as overfitting. In such situations, pre-
dictions would be biased when the model is used on older adults with 
different characteristics, that is, frequency distributions of predictors.17 
Estimating the amount of optimism in the development study’s model 
can be done using internal validation techniques such as bootstrap val-
idation. However, since the population of older adults is heterogeneous, 
generalising a model’s performance to the entire population would be 
more clinically relevant. Here, internal validation procedures fail, and the 
model should instead be tested in a validation study.

Model discrimination
Model discrimination is a performance measure referring to the models’ 
ability to correctly predict if an individual will experience a fall or not. 
Therefore, as an example, it can be used by healthcare professionals to 
assess how confident a model assigns individuals to a high-risk group 
and guides the clinician when allocating fall preventive interventions.58 
A perfectly discriminating model assigns a higher risk of falling to all 
older adults experiencing a fall. Likewise, a lower risk is appointed to 
those not suffering a fall. Usually, discrimination is reported as a concor-
dance index (c-index) or an area under the curve, but other measures 
are also available. Here, a value of 1 equals perfect discrimination, and 
0.5 indicates that the model discriminates no better than chance. If a 
model shows poor discriminative performance, it could predict low-risk 
older adults to fall and high-risk older adults to not fall.

Model calibration
Model calibration is a performance measure used to examine whether 
a model over- or underestimates the predicted risks in a sample. More 

Continued

https://dx.doi.org/10.1136/bmjopen-2020-044170
https://dx.doi.org/10.1136/bmjopen-2020-044170


3Gade GV, et al. BMJ Open 2021;11:e044170. doi:10.1136/bmjopen-2020-044170

Open access

types of falls presumed to be due to a specific cause, for 
example, external forces or acute medical events. This 
approach was chosen since postfall classification methods 
may introduce recall bias.14 Finally, we did not include 
studies predicting only injurious falls in older adults 
since risk factors for these are different from those expe-
riencing non-injurious falls.15 No restrictions were made 
on method or timing of outcome assessment other than it 
had to be prospectively recorded.

Study designs
We only included prospective cohort studies since this 
study design allows optimal control when measuring 
predictors and outcomes. Thus, it is the recommended 
study design for prognostic modelling studies.16 We 
excluded randomised controlled trials since these can 
have different limitations incorporated within their 
design. Typically, strict eligibility criteria are used that 
generate a highly selected sample of participants. This 
narrows predictors’ distribution and hence reduces the 
discriminatory performance in the prognostic models.17 
Also, strict criteria may compromise generalisability to 
the target population.18 Lastly, interventions in the study 
may also influence the discriminatory performance of the 
models.18 Retrospective cohort studies were also excluded 
due to issues of missing data and restrictions on which 
predictors to apply since data are already collected.18

Timing
No restrictions on follow-up or predictive horizon were 
made since we found it clinically relevant to include 
models both able to predict falls within short and long 
periods ahead in time.

Language and publication year
Due to the composition of the study group, we only 
included published studies reported in English, Danish, 
Norwegian or Swedish languages. No restrictions on 
publication year were made.

Information sources
We searched electronic databases, trial registries and 
clinical guidelines. Furthermore, we consulted with addi-
tional clinical experts. Lastly, we screened conference 
abstracts along with reference lists of both the included 
studies and systematic reviews found during the search. 
Databases included ​Pubmed.​gov (PubMed interface), 
EMBASE (​Embase.​com), CINAHL (EBSCOhost inter-
face), The Cochrane Library (Wiley interface), PsycINFO 
(APA PsycNET interface), and Web of Science (Web of 
Science Core Collection). All databases were searched 
from inception dates to the 3 January 2020. Trial registries 
included PROSPERO, ​ClinicalTrials.​gov, WHO Interna-
tional Clinical Trials Registry Platform and Open Grey. 
Guidelines included Guidelines International Network, 
the National Institute for Health and Care Excellence, 
Centre for Reviews and Dissemination and to Health 
Technology Assessments and Scottish Intercollegiate 
Guidelines Network. Conference abstracts and studies in 
trial registries were used to obtain full-text papers through 
contact with authors. Letters to the editor were excluded.

Search
We used a validated search string for prediction models.19 
With the help of a research librarian in health science, 
we added the following terms to the search string: inde-
pendent living, aged and accidental falls. Details on the 
search string are available online supplemental appendix 
3. No search filters were applied. We included ‘Aged’ as a 
search term in the search string. Since this would restrict 
the number of search hits and thus the sensitivity of the 
search string, we pretested the search string without 
‘Aged’ in all databases before commencing the review. 
From this, the first 3000 hits were screened independently 
and in duplicate, and we did not find studies not identi-
fied by the final search string. Thus, we believe this had 
a limited influence on the sensitivity of the search string.

Study selection
Duplicates were removed using EndNote (EndNote X9, 
Clarivate Analytics, Philadelphia, USA). Two reviewers 
independently screened titles and abstracts (GVG and 
JRi) and full-text papers (GVG and KT) according to the 
inclusion criteria. We contacted authors for clarification 
when information on this review’s eligibility criteria was 
missing. Disagreement among reviewers was resolved by 
consensus for one study by including a third reviewer 
(MGJ). For screening of titles and abstracts along with full-
text reading, we used Covidence (Covidence systematic 
review software, Veritas Health Innovation, Melbourne, 
Australia. Available at www.​covidence.​org). Exclusion 
of studies after full-text reading was performed using a 

Box 1  Continued

specifically, it is the agreement between predictions made by the model 
and the frequency of the outcome to be predicted.54 Healthcare pro-
fessionals can use this information to assess how confident the model 
predicts the specific risk of having a fall for the individual. In brief, it 
is crucial when counselling older adults on their fall risk that the risk 
estimate is as accurate as possible.58 If the model predicts a person 
to have a 10% risk of falling within 1 year, the observed frequency of 
people falling with such a predicted risk should be 10 out of 100 for 
the model to have good calibration. However, should the frequency be 
only 5 of 100 people, the model overestimates the risk. Calibration is 
typically assessed graphically using calibration plots. In development 
studies, models are usually calibrated well to the data from which they 
are developed and therefore yield limited information.4 Thus, it is more 
relevant how well the model is calibrated when introduced to a new 
sample of older adults used to validate the model. This information 
would enable healthcare professionals to evaluate whether the model 
over- or underestimates the risk of falling when used in their popula-
tion of community-dwelling older adults. If the model is not correctly 
calibrated, it could predict low-risk older adults to have a higher risk 
and vice versa, or systematically overestimate or underestimate all 
predictions.

https://dx.doi.org/10.1136/bmjopen-2020-044170
https://dx.doi.org/10.1136/bmjopen-2020-044170
www.covidence.org
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prioritised list of reasons (online supplemental appendix 
4). Reviewers were not blinded to author names, institu-
tions or journal titles.

Data collection process
We developed a standardised data collection form 
using Research Electronic Data Capture (REDCap),20 
a research electronic data capture software, following 
the Critical Appraisal and Data Extraction for System-
atic Reviews of Prediction Modelling Studies checklist.18 
Data extraction was performed in duplicate and inde-
pendently by two reviewers (GVG and JRi). Indepen-
dence between reviewers was ensured using a double data 
entry module in REDCap, thereby denying access to each 
other’s responses. Disagreements among the reviewers 
were discussed, and the third reviewer (MGJ) was not 
consulted during data collection since consensus was 
reached in all studies. We contacted all study authors for 
retrieval of information on data items not reported. None 
of the included studies were published more than once.

Data items
We extracted data on the following items: country, publi-
cation year, authors, inclusion criteria, exclusion criteria, 
age, outcome definition, number of falls and fallers, candi-
date predictors, missing data, choice of statistical analysis, 
C-statistic and area under the curve (AUC), internal and 
external validation procedures, final model presentation 
and sources of funding. If available, 51 data items were 
extracted from each paper as detailed in online supple-
mental appendix 5.

Risk of bias and reporting transparency
To follow current recommendations,21 the Prediction study 
Risk Of Bias Assessment Tool22 was used for the risk of bias 
assessment in individual studies. The tool comprises 20 
signalling questions in four domains: participants, predictors, 
outcomes, and analysis. The tool also includes an evaluation 
of each model’s applicability for the intended population, 
predictors and outcome of the review. Reporting trans-
parency was assessed using the Transparent reporting of a 
multivariable prediction model for individual prognosis or 
diagnosis (Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis, TRIPOD) 
adherence assessment form.23 The bias, applicability and 
reporting assessments were performed in duplicate and 
independently by two reviewers (GVG and JRi). Indepen-
dence between reviewers was ensured using a double data 
entry module in REDCap, thereby denying access to each 
other’s responses. Disagreements among the reviewers were 
discussed, and consensus was reached for all studies. Thus, 
a third reviewer was not consulted for a final decision. The 
reviewers were not blinded to study authors, institutions or 
journal titles. The results of the risk of bias assessments of 
all included studies were incorporated into the qualitative 
synthesis. We sought to investigate outcome reporting bias 
by comparing the study papers to their pertaining protocols 

to examine whether outcomes were prespecified and not 
differing from the published paper.

Summary measures and planned method of analysis
The principal summary measure of this systematic review 
was the discriminatory performance measured either in a 
C-index or AUC. In the prespecified protocol, we decided 
not to perform meta-analyses due to the presumed hetero-
geneity of the prognostic models. This assumption was 
confirmed after the review was complete. Furthermore, 
we summarised the study and model characteristics using 
ranges and percentage proportions when appropriate. 
When data were available, we summarised continuous 
measures using medians and IQRs.

Patient public involvement
We did not involve patients or the public in the research.

RESULTS
Study selection
The search yielded 19 612 publications with 11 789 
remaining after removal of duplicates. Screening titles 
and abstracts led to the exclusion of 11 611 publica-
tions leaving 178 for full-text reading. Of these, 148 were 
excluded due to: wrong outcome (n=45), wrong study 
design (n=45), not being a prediction model (n=25), 
no full-text paper published (n=14), wrong popula-
tion (n=8), not multifactorial (n=8) or wrong setting 
(n=3). Thirty studies met the eligibility criteria and were 
included.24–53 Figure 1 displays the PRISMA flow diagram 

Figure 1  PRISMA diagram of the study selection process. 
PRISMA, Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses.

https://dx.doi.org/10.1136/bmjopen-2020-044170
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for the study selection. Details on excluded papers can be 
found as online supplemental appendices 6‒8.

Characteristics of included studies
A summary of included studies along with models’ perfor-
mance can be found in online supplemental table 1 (online 
supplemental appendix 9). All studies were published in 
English from 1994 to 2019. Seventy-two prognostic models 
were reported, of which 69 models were developed, and 
three were validated.

Participants
Studies were conducted in Australia, Belgium, Canada, 
France, Germany, Israel, Italy, Japan, the Netherlands, 
Malaysia, Spain, the UK and the USA. Sample sizes ranged 
from 65 to 23 417 participants with median ages from 67.5 
to 83 years. Studies used primarily a probability sampling 
method (n=16), followed by convenience sampling (n=8) 
and consecutive sampling (n=2). Four studies did not report 
their sampling methods.

Index/model
The median (IQR) number of predictors in the final models 
were five (3–9) and ranged from two to 96 predictors. 
Figure 2 shows the number of studies including a specific 
predictor. The most frequently applied predictors were prior 
falls, age, sex, measures of gait, balance and strength, along 
with vision and disability. Predictors were measured in homes 
(n=19), research centres (n=19), or both (n=12). Locations 
for measuring predictors were not reported for 22 models.

Outcomes and timing
The percentage of fallers ranged from 5.9% to 59%, and the 
number of recurrent fallers (≥2 falls) ranged from 6.3%–
54.1%. Models primarily predicted any falls (n=34), that is, 
single and recurrent falls, and recurrent falls only (n=34). 
Two models predicted first-time falls31 45 and two predicted 
time to a fall.34 46 Participants were followed for a median 
(IQR) time of 12 (9.75–12) months. Individual study 
data items extracted are available in online supplemental 
appendix 10.

Model performance
Discriminatory measures were reported for 40 (55.6%) 
models. AUCs were 0.49–0.87 and 0.62–0.69 for devel-
oped (n=37) and validated (n=3) models, respectively. 
Corresponding CIs were reported for 27 (37.5%) models. 
Calibration measures were available for seven (9.7%) 
models. For validated models (n=1), calibration was 
imperfect due to over- and underestimated predicted 
risks of falling for high-risk and low-risk participants, 
respectively.39 Regarding developed models (n=6), cali-
bration was found acceptable, but studies did not assess 
model calibration in new participants.41 44 47 49

Risk of bias, reporting transparency and applicability within 
studies
Risk of bias
Table 1 summarises ratings on risk of bias, applicability 
and reporting transparency for the individual studies. All 

studies had a high risk of bias mainly due to methods of 
analysis and outcome assessment along with restrictive 
eligibility criteria. Regarding analysis methods, missing 
data were excluded in 13 out of 30 studies, and no internal 
validation methods were applied. As to the outcome, only 
four studies recorded falls daily with monthly notifica-
tions.25 27 32 35 Also, the majority of studies did not report 
the outcome definition used or whether outcomes asses-
sors were blinded. Eligibility criteria were found restric-
tive for the majority of studies due to the exclusion of 
individuals with falls-risk-increasing conditions. These 
selective criteria limit the usability of models for the 
target population of community-dwellers. Overall, risk 
of bias and applicability assessments were complicated 
by studies only reporting, on average, 50% of all items 
recommended in reporting guidelines. Furthermore, this 

Figure 2  Number of studies using a specific predictor.
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was complicated by a low response rate with four out of 
30 study authors responding when contacted for clarifi-
cation on study characteristics and data extraction items. 
Finally, outcome reporting bias assessments were not 
possible due to studies not referring to a preregistered 
protocol for their prognostic modelling study.

Applicability
Seven (23%) studies, with a total of 21 models, had low 
applicability concerns for the review question. Regarding 
participants, 17 (56.7%) studies were rated as having high 
or unclear applicability concerns for the review question. 
This concern was primarily due to restrictive eligibility 
criteria impeding generalisation to the general popula-
tion of community dwellers. Restrictions were made by 
excluding participants with specific diseases or conditions 
that could increase the risk of falling, such as disability or 
impaired mobility. Furthermore, studies rated as having 
unclear applicability concerns did not sufficiently report 
whether the participants were community-dwellers or 
whether the setting was the general population rather 
than, for example, primary or secondary care. Regarding 
predictors, 28 (93.3%) studies had no concerns. The 
remaining two studies used specific laboratory measures 
which may be challenging to apply in a general popula-
tion setting.25 45 Regarding applicability concerns for the 
outcome, 18 (60%) studies had no concerns since they 
reported using the falls definition of the review or similar.

DISCUSSION
The current systematic review found 72 prognostic models 
on falls risk with the area under the curve ranging from 
0.49 to 0.87. All models had a high risk of bias mostly due 
to limitations in statistical methods and outcome assess-
ments, combined with restrictive eligibility criteria. Thus, 
using the models in clinical practice would entail unreli-
able predictions. This review provides an extensive over-
view of prediction models for falls and information for 
future study methodology.

Strengths
The current review followed guidelines on predic-
tion modelling reviews strictly for search strings,19 data 
extraction,18 risk of bias assessment,22 along with develop-
ment12 18 and transparent reporting of the review.11

Limitations
Review level
We excluded potentially eligible studies without full text 
(n=14) or published in other languages (n=7) during 
screening of titles and abstracts. These studies are listed 
in the data supplement. Furthermore, we excluded 
randomised controlled trials and retrospective cohort 
studies. Consequently, we were only able to include 
0.25% (30/11 789) of studies screened even though other 
models, based on other study designs, may had been avail-
able. As prespecified in the study protocol, this exclusion 

criterion was chosen due to limitations with generalis-
ability and missing data when developing or validating 
prediction models using these designs. Thus, this system-
atic review only provides an overview of models based on 
a specific study design, but we consider this exclusion of 
the other studies to be justified.

Study level
Limitations were found in the studies with a high risk of 
bias, poor quality of reporting, and finally, a low response 
rate when contacting authors for retrieval of missing data 
extraction items.

Risk of bias
We found a high risk of bias within all studies. Hence, 
the predictive performance may be low, and predictions 
unreliable when models are used in clinical practice. The 
bias ratings were primarily based on eligibility criteria, 
methods of outcome assessments, and statistical analysis. 
Building prediction models on selected subgroups of the 
target population can yield biased performance estimates 
when used in clinical practice on a different population.17 
Thus, study eligibility criteria should be aligned with the 
research questions, that is, broad and with as few exclu-
sion criteria as possible. In terms of outcome assessments, 
we found the definition of falls missing for one-third of 
studies along with varying falls recording methods. These 
findings are similar to results of a previous review on 
methodology in falls prevention trials, where only half 
of the studies provided a falls definition and recording 
methods varied highly.14 The problem with not defining 
a fall is that the notion of falls is taken for granted. As 
seen in our review, the prevalence of falls differed mark-
edly between studies, which could be due to different 
understandings of the fall’s definition. Consequently, 
falls become harder to predict17 while at the same time, 
comparing and combining studies in systematic reviews 
with meta-analyses becomes complicated. To address 
these issues, a common outcome data set on falls trials is 
available along with a falls definition and recommenda-
tions for falls recording methods.13 Finally, statistical anal-
ysis methods raised concerns for risk of bias. Primarily, 
this was due to the handling of missing data with most 
of the studies applying a complete-case analysis method. 
Significant limitations can arise from the exclusion of 
participants due to missing data, for example, on a single 
predictor among many, since otherwise useful predictors 
on each participant are lost. Consequently, this can lead 
to low sample sizes and biased model performances. In 
such cases, imputation methods have proved useful when 
dealing with missing data.17 Furthermore, for the majority 
of developed models, no internal validation procedures 
were applied. This shortcoming typically causes models' 
predictive performance to be optimistic.54 Finally, the 
critical appraisal was compromised due to incomplete 
reporting. We believe that future studies and systematic 
reviews would benefit from adhering to reporting guide-
lines for prediction modelling studies.16
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Implications for clinical practice
Only seven studies could address the review question 
appropriately, and all of these had a high risk of bias. 
Consequently, the evidence available to inform health-
care professionals is limited and, as mentioned, possibly 
biased. Thus, no model can currently be recommended 
for clinical practice.

Implications for research
We recognise that most studies (n=23/30) were 
conducted before the publishing of prediction model-
ling guidelines.16 22 Thus, with the benefit of hindsight, 
studies would be expected to have different shortcomings 
within their methods and reporting. On the other hand, 
this also supports the reason for publishing guidelines in 
the first place. Despite this, the included studies provide 
valuable information on future candidate predictors. 
Thus, selecting predictors for prediction models on non-
statistical grounds, that is, based on literature and clinical 
knowledge, is commonly used to avoid predictor selec-
tion bias.55 Therefore, future development studies may 
include the most frequently applied predictors found in 
this review. Lastly, it is essential to test the generalisability 
of developed models by performing validation studies 
to determine which models provide stable predictions 
across different populations.56

CONCLUSIONS
There are several studies on falls prognostic models 
intended for a general population setting, but only a few 
are fully applicable to the heterogeneous population of 
community-dwelling older adults. Thus, the evidence avail-
able to address this is limited. From all included studies, 
we found an abundance of falls prognostic models avail-
able. However, the discriminatory performance of these 
varied and was only reported for half of the models. Each 
model had concerns regarding risk of bias mainly due to 
restrictive eligibility criteria along with methods of statis-
tical analysis and outcome assessments. Consequently, 
this could give rise to unreliable predictions should the 
models be used in clinical practice. Future prognostic 
prediction models should comply with TRIPOD.
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