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Abstract: In recent years, the doubly fed induction generator (DFIG) operates in a weak grid, rather
than a strong grid due to the high proportion of wind energy into the power grid. The impedance
interaction between the DFIG system and series and parallel compensated weak grid might cause
the subsynchronous resonance (SSR) and high frequency resonance (HFR) in the DFIG system,
respectively. Phase locked loop (PLL) is a popular grid synchronization technique, and the high
bandwidth PLL can cause resonance at middle frequencies in the DFIG system. However, the impact
of PLL types and their controller dynamics on the resonance in the DFIG system are not adequately
researched. The impact of the PLL controller with different types, such as synchronous reference
frame (SRF) and Lead/Lag PLL, is studied in this paper to fill this gap. Additionally, an improved
PLL is proposed, which can guarantee the high phase margin and decrease the likelihood of the
resonance at middle frequencies in the DFIG system under a weak grid. Moreover, the phase margin
of the DFIG system impedance with an improved PLL is less sensitive to its controller parameters.
Simulation and experimental results verify the effectiveness of the proposed method.

Keywords: doubly fed induction generator; phase locked loop; phase margin; resonance

1. Introduction

The cost-effective variable speed operations and partial size power converter make the doubly fed
induction generator (DFIG) prevalent in a modern wind power plant [1]. In recent years, the increasing
growth of the DFIG system into a weak power system with large impedance might be seen [2–4],
where the stable and secure operation of the DFIG system is contestable.

The subsynchronous resonance (SSR) [5–11] and high frequency (HFR) [12–16] may occur, when the
DFIG system operates under a series and parallel compensated weak grid, respectively.

Vector control (VC) is the most widely used technique for a grid-connected DFIG system, and it
can be divided into a stator voltage oriented VC and stator flux oriented VC. The most crucial factor
for the stator voltage oriented VC is the phase locked loop (PLL) phase angle. While using the PLL
Phase angle information, the d-axis and q-axis values of stator and rotor current and grid voltage are
accurately computed through the park and inverse park transformation. Additionally, the rotor side
converter (RSC) and grid side converter (GSC) controller can be resolute by the phase angle information
provided by the PLL [17].
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In the literature [18–21], the impact of PLL on the harmonic stability and impedance modeling
of the grid-connected converter under a weak grid has been reported. Literature [18] introduced the
double second-order generalized integrator (DSOGI-PLL) to increase the phase margin and improve the
stability of the three-phase grid-connected converter. The harmonic stability improvement, taking the
frequency coupling characteristics of the PLL, has been studied in [19] for a single-phase grid-connected
converter. The authors in [20] have conducted the study revealing the grid-connected converter
with modified PLL parameters to augment the stability analysis. [21] investigated the impact of PLL
and current controller on the impedance modeling of the grid-connected converter in αβ stationary
frame. Additionally, in the dq synchronous frame, the grid-connected converter impedance modeling
is proposed by authors in [22,23]. Recently, [24] conducted a detailed study on the stability of grid
connected converter with PLL inclusions. The authors in [25] have proposed the symmetrical PLL for
single input single output (SISO) impedance modeling to improve the stability of the grid-connected
converter under a weak grid. Reference [26] put forward the two-port network based impedance
modeling and stability analysis method for a grid-connected converter. However, the literature [24–26]
only relies on the grid-connected converter.

Likewise, the grid-connected converter, Literatures [5] investigated the effect of PLL on the SSR in
the DFIG system. Literature [5], further reports that the high bandwidth PLL, i.e., the larger values
of KpPLL and KiPLL, increases the probability of the SSR incidence in the DFIG system due to the low
phase margin [27] studying the effect of PLL parameters on the SSR in a type-4 wind turbine. However,
the impact of PLL on the impedance modeling has been ignored for the analysis and damping of HFR
in the DFIG system [12–16].

There are numerous techniques for analyzing the resonance phenomena in the DFIG system under
a weak grid. Impedance modeling is widely employed for the resonance identification and mitigation
in the DFIG system. The dc-link voltage controller dynamics are ignored due to its relatively small
control bandwidth (10 Hz or lower), and the dc-link capacitance can then be simplified as an ideal
voltage source [7,28]. Additionally, the impedance modeling usually ignores the PLL impact, due to
the lower bandwidth when compared to the high bandwidth of the PI controller of the closed-loop
rotor and grid current. However, the high bandwidth PLL causes resonance at middle frequencies in
the DFIG system under a parallel compensated weak grid [29]. Therefore, the impact of PLL dynamics
cannot be ignored when the DFIG system is connected to a parallel compensated weak grid.

In this paper, the impact of PLL on impedance modeling and resonance in the DFIG system
under a parallel compensated weak grid is studied. Firstly, different types of PLL on the impedance
modeling of the DFIG system are investigated. Secondly, the PLL parameters, i.e., the bandwidth of
the different types of PLL on the impedance modeling and, hence, the resonance in the DFIG system,
is investigated in detail. Finally, an improved PLL is proposed, which can guarantee the improved
dynamic performance with a high phase margin and no resonance in the middle frequencies.

This paper is organized, as follows: Section 2 discusses the small-signal impedance modeling of
the traditional and improved PLL. The impedance modeling of the DFIG system with the inclusion of
PLL is put forward in Section 3. Section 4 discusses the simulation results with the traditional PLL and
an improved PLL. Time domain simulations of the DFIG system with traditional and the proposed
PLL are carried out in Section 5. Section 6 gives the experimental results. Section 7 sums up with
the conclusions.

2. Small-Signal Impedance Model of PLL

2.1. Common Sketch of Studied System

Figure 1 depicts the schematic diagram of the studied DFIG system. Wherein, Table 1 gives
the parameters of the studied system with a commercial Vestas V90-2MW DFIG system. The PLL is
adopted to obtain the phase angle for the coordinate transformation. Different types of PLL can be
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used, which will be discussed in the subsequent section of the paper. The PLL output angle θPLL is
used to control the rotor and grid current employing the RSC and GSC, respectively.

The outer power and inner current control loop constitute the RSC control system with proportional
and integral (PI) controllers. The deduction of PLL angle (θPLL) and the rotor position angle (θρ) are
the most critical information required for the park and inverse park transformation, which are required
in the control of the rotor current and voltage. The outer power control loop is ignored due to its large
time constant.

Likewise, the RSC, the GSC outer dc-link voltage control loop, requires the phase angle information
θPLL for the park and inverse park transformation in computing the reference for the converter-side
filter current. Similarly, the outer dc-link control loop is ignored, due to the larger time constant.
Consequently, the rotor/filter current and control voltage transformation results might be influenced,
which can degrade the accuracy of current tracking.
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Figure 1. Schematic diagram of the studied doubly fed induction generator (DFIG) system.

2.2. Synchronous reference frame-PLL (SRF-PLL): Small Signal Impedance Modeling

Figure 2 shows the schematic diagram of SRF-PLL. To synchronize the grid voltage with DFIG,
the phase angle for transformation is necessary, as can be seen in Figure 2.
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Figure 2. Schematic diagram of synchronous reference frame-phase locked loop (SRF-PLL).

The abc to αβ transformation does not require phase angle information, so it will not be included
in the subsequent calculation. However, phase angle information plays an important role in abc to
dq transformation.

The transformation from Vabc to Vαβ frame of reference is given by

[
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√

3
−

1
√

3




Va

Vb
Vc

 (1)



Energies 2020, 13, 1039 4 of 26

Similarly, the transformation from Vαβ to Vdq is given by[
Vd
Vq

]
=

[
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

][
Vα
Vβ

]
(2a)

Tαβ/dq =

[
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]
(2b)

Based on (2), it can be seen that this transformation is nonlinear, and its transfer function cannot
be directly obtained. The small-signal modeling method [22] is adopted to deduce its transfer function.
The PLL is supposed to be ideal in the steady state, such that the error in phase angle is zero. With this
approximation, we have  V(1)

d
V(1)

q

 =

[
cos(0) sin(0)
− sin(0) cos(0)

] V(2)
d

V(2)
q

 (3)

where the superscript “(1)” and “(2)” represent the components of PLL control output and PCC voltage,
respectively.

Considering a small perturbation to disrupt the steady state can be utilized to derive the transfer
function of the PLL, and then we have V(1)

d + ṽ(1)d
V(1)

q + ṽ(1)q

 =

 cos
(
0 + ∆θ̃

)
sin

(
0 + ∆θ̃

)
− sin

(
0 + ∆θ̃

)
cos

(
0 + ∆θ̃

) 
 V(2)

d + ṽ(2)d
V(2)

q + ṽ(2)q

 (4)

where V(1)
dq and V(2)

dq represent the steady state dq voltage component of PLL and PCC, respectively. ṽ(1)dq

and ṽ(2)dq represent the small-signal perturbation dq voltage components of PLL and PCC, respectively.

∆θ̃ represents the small-signal perturbation of the PLL phase angle.
While taking the trigonometric function small-angle approximation into consideration, we have V(1)

d + ṽ(1)d
V(1)

q + ṽ(1)q

 ≈
 1 ∆θ̃
−∆θ̃ 1


 V(2)

d + ṽ(2)d
V(2)

q + ṽ(2)q

 (5)

Ignoring the steady-state parameters in (5), we have ṽ(1)d
ṽ(1)q

 ≈
 ṽ(2)d + V(2)

q ∆θ̃

−V(2)
d ∆θ̃+ ṽ(2)q

 (6)

The output phase angle of PLL is given by

∆θ̃ = ṽ(1)q GPLL(s)
1
s

(7)

where GPLL(s) = KpPLL + KiPLL/s represents the PLL unit PI controller.
Combining (6) and (7), we have

∆θ̃ =
GPLL(s)

s + V(2)
d GPLL(s)

ṽ(2)q (8)

The transfer function from the phase angle of PLL to the PCC voltage q-component is given by

∆θ̃ = HPLL(s)ṽ
(2)
q (9a)
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HPLL(s) =
GPLL(s)

s + V(2)
d GPLL(s)

(9b)

While substituting (9b) into (5), the closed loop transfer function matrix including the
transformation from Vαβ to Vdq, the PLL unit, and an integral block can be obtained and is given by ṽ(1)d

ṽ(1)q

 ≈
 ṽ(2)d + V(2)

q HPLL(s)ṽ
(2)
q

−V(2)
d HPLL(s)ṽ

(2)
q + ṽ(2)q

 =

 1 V(2)
q HPLL(s)

0 1−V(2)
d HPLL(s)


 ṽ(2)d

ṽ(2)q

 (10)

The transfer function matrix in its final form (αβ to dq) is given by

Hαβ/dq =

 1 0

0 1−V(2)
d HPLL(s)

 (11)

Equations that are similar to (2) can be obtained for the transformation from Vdq to Vαβ and it is
given by [

Vα
Vβ

]
=

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

][
Vd
Vq

]
(12a)

Tdq/αβ =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
(12b)

Table 1. Simulation parameters for the studied system.

Element Symbol Value Symbol Value

DFIG

Ps 2 MW TD 300 µs

Vnom 690 V Pole
pairs 3

Pbase 2 MW Vbase 563 V

Nbase 750 rpm ωr 0.8 p.u.

Rs
0.0067
p.u. Rr

0.0063
p.u.

Lls
0.0528

p.u. Llr
0.0792

p.u.

LM
3.9592

p.u. p 3

fs 5 kHz fsw 2.5 kHz

L1 125 µH L2 125 µH

Cf 220 µF V1 480 V

V2 690 V VPCC 1 KV

Kr 2.08 Kg 1.45

Kp1 0.2 Ki1 2

Kp2 0.2 Ki2 2
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Table 1. Cont.

Element Symbol Value Symbol Value

Weak Grid
Rg2 3.2 mΩ Lg2

0.058
mH

Cg2 0.0032 F

PLL

SRF
KpPLL1 5 KiPLL1 50

KpPLL2 50 KiPLL2 500

KpPLL3 500 KiPLL3 5000

Lead/Lag

K1 13 T1a 0.0092

T2a 0.0003 K2 79

T1b 0.0072 T2b 0.0003

K3 444 T1c 0.0045

T2c 0.0003

Improved

KpPLL1 50 KiPLL1 5

KdPLL1 10 Tw1 0.04

KpPLL2 90.9 KiPLL2 9

KdPLL2 18.12 Tw2 0.04

KpPLL3 540.3 KiPLL3 18

KdPLL3 110.3 Tw3 0.04

K1 4.8 K2 4.8

K3 4.8

The closed loop transfer function matrix, including the transformation from Vdq to Vαβ, by
repeating the similar steps, as given above, the PLL unit and an integral block can be obtained, and is
given by  ṽ(2)d

ṽ(2)q

 ≈
 ṽ(1)d −V(1)

q HPLL(s)ṽ
(1)
q

V(1)
d HPLL(s)ṽ

(1)
q + ṽ(1)q

 =

 1 −V(1)
q HPLL(s)

0 1 + V(1)
d HPLL(s)


 ṽ(1)d

ṽ(1)q

 (13)

The transfer function matrix in its final form (dq to αβ) is given by

Hdq/αβ =

 1 0

0 1 + V(1)
d HPLL(s)

 (14)

2.3. Small Signal Modeling of Lead/Lag PLL

Figure 3 shows the schematic diagram of Lead/Lag PLL. The Lead/Lag Lag/lead controller in the
PLL structure is preferred due to the enhanced filtering features. More details regarding Lead/Lag PLL
can be found in [30].
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Based on Figure 3, the open and closed loop transfer function of the Lead/Lag PLL can be obtained
and it is expressed as

Go(s) = K
1 + T1s
1 + T2s

.
1
s

(15a)

Gcl(s) =
K(1 + T1s)

T2s2 + (1 + T1K)s + K
(15b)

The detailed deduction of the small signal impedance model of the Lead/Lag will not be discussed
here, as the derivations process is similar to the SRF-PLL. The final equation that is similar to (11) and
(14) can be obtained and is given as

H′′
αβ/dq =

 1 0

0 1−V(2)
d Gcl(s)

 (16)

H′′dq/αβ =

 1 0

0 1 + V(1)
d Gcl(s)

 (17)

2.4. Small Signal Modeling of Improved PLL

Figure 4 shows the schematic diagram of an improved PLL.
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The open and closed loop transfer function of the improved PLL that is based on Figure 4 can be
expressed as

Gm
o (s) = K

Tws
1 + Tws

.
(
KpPLL +

KiPLL
s

+ KdPLLs
)1

s
(18a)

Gm
cl (s) =

KTwKdPLLs2 + KKpPLLTws + KKiPLLTw

Tws3 + (1 + KTwKdPLL)s2 + KKpPLLTws + KKiPLLTw
(18b)

The detailed deduction of the small signal impedance model of the improved will not be discussed
here, as the derivations process is similar to the SRF-PLL. The final equation similar to (11) and (14)
can be obtained and is given as

Hm
αβ/dq =

 1 0

0 1−V(2)
d Gm

cl(s)

 (19)

Hm
dq/αβ =

 1 0

0 1 + V(1)
d Gm

cl(s)

 (20)

3. Impedance Modeling: DFIG System with PLL Inclusions

The impedance modeling of the DFIG system can be established based on the modeling of different
PLL types. In this paper, for simplifying the DFIG system impedance modeling, the transformation
from abc to αβ is ignored in the impedance modeling, as it does not interact with the PLL and controller
of the DFIG system. Furthermore, the dc-link voltage controller dynamics is ignored (because of the
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lower bandwidth (10 Hz or less) of the dc-link voltage controller) to more clearly show the PLL impact
on the impedance modeling. It should be noted that the PLLs of the DFIG system causes resonances at
the middle frequency range from 200 Hz to 800 Hz.

3.1. Impedance Modeling with SRF-PLL

Figure 5 depicts the rotor current controller of the RSC. The different control units used in Figure 5
are discussed, as follows. The PI controller of the rotor current can be expressed as

Gc1(s) = Kp1 +
Ki1
s

(21)

where Kp1 and Ki1 are the RSC current controller proportional and integral parameters, respectively.
The PWM digital delay can be expressed as

GD(s) = e−sTD (22)

where TD is the digital control delay.
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Figure 5. Schematic diagram of rotor side converter (RSC) rotor current control.

Figure 6a shows the equivalent circuit of the DFIG machine. Rs and Rr are the stator and rotor
resistance, respectively. Lls, Llr, and LM are the stator leakage inductance, rotor leakage inductance,
and magnetizing inductance, respectively. The magnetizing inductance branch can be ignored due to
the high value of stator and rotor leakage inductance. Subsequently, the simplified equivalent circuit
of the DFIG machine can be drawn, as shown in Figure 6b.

The impedance of the DFIG machine, which is based on Figure 5, is given by

Gd f ig(s) =
Irαβ

V∗rαβ −V1αβ
=

1
Rr + s(Llr + Lls) + Rs

(23)

Based on Figure 5, as seen from the PCC, the rotor part DFIG impedance is given by

Z1(s) = K2
1

V1αβ

−Irαβ
= K2

1

1 + Gd f ig(s)Gαβ/dq(s)Gc1(s)GD(s)Gdq/αβ(s)

Gd f ig(s)
(24)

where K1 = VPCC/V1.
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Figure 6. DFIG machine equivalent circuit (a) Overall; (b) simplified.

Equation (24) contains both α and β components. It can be separated into α and β components,
as follows:

Z1α(s) = K2
1

V1α

−Irα
= K2

1

1 + Gd f ig(s)Gc1(s)GD(s)

Gd f ig(s)
(25a)

Z1β(s) = K2
1

V1β

−Irβ
= K2

1

1 + Gd f ig(s)
(
1−V(2)

d HPLL(s)
)
Gc1(s)GD(s)

(
1 + V(1)

d HPLL(s)
)

Gd f ig(s)
(25b)

Likewise, Figure 7 shows the DFIG machine and RSC impedance modeling, the simplified diagram
of the grid current controller of the LCL filter, and GSC impedance.
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Figure 7. Simplified control diagram of GSC and LCL filter.

Figure 8a shows the equivalent circuit of the LCL filter and GSC. The filter reactance Cf can be
ignored due to the high reactance contrary to L1 and L2. Subsequently, the current Ifαβ and Igαβ are the
same, and the simplified equivalent circuit is redrawn, as shown in Figure 8b.

Based on Figure 8b, the Gc2(s) and Gf(s) can be expressed as

Gc2(s) = Kp2 +
Ki2
s

(26)

where Kp2 and Ki2 are the GSC current controller proportional and integral parameters, respectively.

G f (s) =
I fαβ

V∗fαβ −V2αβ
=

1
s3L1L2C f + s(L1 + L2)

(27)

Based on Figure 8, the grid part DFIG impedance, as seen from the PCC, is given by

Z2(s) = K2
2

V2αβ

−I fαβ
= K2

2

1 + G f (s)Gαβ/dq(s)Gc2(s)GD(s)Gdq/αβ(s)

G f (s)
(28)

where K2 = VPCC/V2.
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Figure 8. LCL filter equivalent circuit (a) Overall; (b) simplified.

Likewise (24), (28) contain both α and β components. It can be separated into α and β components,
as follows:

Z2α(s) = K2
2

V2α

−I fα
= K2

2

1 + G f (s)Gc2(s)GD(s)

G f (s)
(29a)

Z2β(s) = K2
2

V2β

−I fβ
= K2

2

1 + G f (s)
(
1−V(2)

d HPLL(s)
)
Gc2(s)GD(s)

(
1 + V(1)

d HPLL(s)
)

G f (s)
(29b)

The overall DFIG impedance can be seen as the parallel combination of rotor part DFIG impedance
and grid part DFIG impedance. The overall DFIG system impedance in α and β axis can be expressed as

ZTα(s) =
Z1α(s)Z2α(s)

Z1α(s) + Z2α(s)
(30a)

ZTβ(s) =
Z1β(s)Z2α(s)

Z1β(s) + Z2β(s)
(30b)

The parallel compensated weak grid impedance is given by

Zgp = (sLg2 + Rg2)
1

sCg2
/(sLg2 + Rg2) +

1
sCg2

(31)

where Rg2, Lg2, and Cg2 are resistance, inductance, and capacitance of parallel compensated weak grid,
respectively. Table 1 gives the parameters of the weak grid.

3.2. Impedance Modeling with Lead/Lag PLL

The impedance model of the DFIG system with Lead/Lag PLL can be deduced in a similar way as
with the SRF-PLL. The α and β components of the DFIG system rotor part impedance and grid part
impedance with the Lead/Lag PLL can be expressed as

Z′′1α(s) = K2
1

1 + Gd f ig(s)Gc1(s)GD(s)

Gd f ig(s)
(32a)

Z′′1β(s) = K2
1

1 + Gd f ig(s)
(
1−V(2)

d Gcl(s)
)
Gc1(s)GD(s)

(
1 + V(1)

d Gcl(s)
)

Gd f ig(s)
(32b)

Z′′2α(s) = K2
2

1 + G f (s)Gc2(s)GD(s)

G f (s)
(33a)

Z′′2β(s) = K2
2

1 + G f (s)
(
1−V(2)

d Gcl(s)
)
Gc2(s)GD(s)

(
1 + V(1)

d Gcl(s)
)

G f (s)
(33b)
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The overall DFIG system impedance while considering Lead/Lag PLL can be expressed as

Z′′Tα(s) =
Z′′1α(s)Z

′′

2α(s)

Z′′1α(s) + Z′′2α(s)
(34a)

Z′′Tβ(s) =
Z′′1β(s)Z

′′

2β(s)

Z′′1β(s) + Z′′2β(s)
(34b)

3.3. Impedance Modeling with Improved PLL

The impedance model of the DFIG system with an improved PLL can be deduced in a similar
way to the SRF-PLL. The α and β component of the DFIG system rotor part impedance and grid part
impedance with an improved PLL can be expressed as

Zm
1α (s) = K2

1

1 + Gd f ig(s)Gc1(s)GD(s)

Gd f ig(s)
(35a)

Zm
1β(s) = K2

1

1 + Gd f ig(s)
(
1−V(2)

d Gm
cl (s)

)
Gc1(s)GD(s)

(
1 + V(1)

d Gm
cl (s)

)
Gd f ig(s)

(35b)

Zm
2α(s) = K2

2

1 + G f (s)Gc2(s)GD(s)

G f (s)
(36a)

Zm
2β(s) = K2

2

1 + G f (s)
(
1−V(2)

d Gm
cl (s)

)
Gc2(s)GD(s)

(
1 + V(1)

d Gm
cl (s)

)
G f (s)

(36b)

The overall DFIG system impedance considering improved PLL is given by

Zm
Tα(s) =

Zm
1α(s)Z

m
2α(s)

Zm
1α(s) + Zm

2α(s)
(37a)

Zm
Tβ(s) =

Zm
1β(s)Z

m
2β(s)

Zm
1β(s) + Zm

2β(s)
(38)

4. Simulation Results

4.1. Simulation Results with SRF-PLL

Figure 9 shows the Bode plot of the closed loop transfer function of PLL with the parameters
given in Table 1. It can be seen in Figure 9 that the PLL bandwidth with different parameters varies in
direct proportion with the proportional and integral gains of PLL, resulting in low, medium, and high
bandwidth PLL.



Energies 2020, 13, 1039 12 of 26

Energies 2020, 13, 1039 10 of 24 

 

3.3. Impedance Modeling with Improved PLL 

The impedance model of the DFIG system with an improved PLL can be deduced in a similar 
way to the SRF-PLL. The α and β component of the DFIG system rotor part impedance and grid part 
impedance with an improved PLL can be expressed as  

 ( )
)(

)()()(1 12
11 sG

sGsGsG
KsZ

dfig

Dcdfigm +
=α                               (35a)                  

( ) ( ) ( )
)(

)(1)()()(1)(1 )1(
1

)2(
2
11 sG

sGVsGsGsGVsG
KsZ

dfig

m
cldDc

m
clddfigm +−+

=β                    (35b)                  

       ( )
)(

)()()(1 22
22 sG

sGsGsG
KsZ

f

Dcfm +
=α                               (36a)                  

( )
( ) ( )

)(
)(1)()()(1)(1 )1(

2
)2(

2
22 sG

sGVsGsGsGVsG
KsZ

f

m
cldDc

m
cldfm +−+

=β                    (36b)                  

The overall DFIG system impedance considering improved PLL is given by 

 ( ) ( ) ( )
( ) ( )sZsZ

sZsZsZ mm

mm
m
T

αα

αα
α

21

21
+

=                                  (37a)                  

( ) ( ) ( )
( ) ( )sZsZ

sZsZ
sZ mm

mm
m
T

ββ

ββ
β

21

21

+
=                                  (37b)                  

4. Simulation Results  

4.1. Simulation Results with SRF-PLL 

Figure 9 shows the Bode plot of the closed loop transfer function of PLL with the parameters 
given in Table 1. It can be seen in Figure 9 that the PLL bandwidth with different parameters varies 
in direct proportion with the proportional and integral gains of PLL, resulting in low, medium, and 
high bandwidth PLL. 

 
Figure 9. Closed-loop frequency response of SRF-PLL. 

The Bode plot of parallel compensated weak grid impedance in (31) with (Cg2 = 0.0032 F and 
0.0062 constituting Zgp1 and Zgp2), and the DFIG system impedance in (30) is shown in Figure 10.  

Figure 9. Closed-loop frequency response of SRF-PLL.

The Bode plot of parallel compensated weak grid impedance in (31) with (Cg2 = 0.0032 F and
0.0062 constituting Zgp1 and Zgp2), and the DFIG system impedance in (30) is shown in Figure 10.
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Figure 10. Bode plot of DFIG impedance and parallel compensated weak grid with low, medium,
and high bandwidth SRF-PLL.

It can be seen in Figure 10 that α component of DFIG impedance in pink has the magnitude
intersection point with weak grid impedance at point A1 and A2. The corresponding phase difference
at point A1 and A2 is less than 180◦. Accordingly, the resonance at the middle frequency is not likely
to occur. The reason is that there is no PLL involved in the α component of DFIG impedance. The β
components of DFIG impedance while taking the low bandwidth PLL into consideration have the
magnitude intersection points C1 and C2 with weak grid impedance. The phase differences at the
corresponding points are less than 180◦. The resonance at the middle frequencies is not likely to occur
due to the low bandwidth of PLL. However, if the medium and high bandwidth PLL is taken into
consideration, the β component of DFIG impedance has two magnitude intersection points with weak
grid impedance, namely B1 and B2. Additionally, the corresponding phase difference at the point B1

and B2 are higher than 180◦ at frequencies 210 Hz and 290 Hz, respectively. This shows that the high
bandwidth of PLL can cause resonance to occur at the middle frequencies, i.e., from 200 Hz to 800
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Hz. The aforementioned analysis and simulation results show that PLL parameters have a significant
impact on the resonance.

Figure 11 shows the Bode diagram with different SRF-PLL control parameters.
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Choosing the small KpPLL and KiPLL for PLL, the high phase margin can be guaranteed, and the
resonance is not likely to occur, as can be seen in Figure 11. However, when the PLL parameters are
increased, i.e., the high bandwidth PLL can cause less phase margin, as shown in Figure 11. It is
noteworthy that the DFIG system impedance does not rely on PLL impedance. Other parameters, like
the digital delay of PWM and the parameters of the current controller, can also affect the impedance
modeling of the DFIG system.

4.2. Simulation Results with Lead/Lag PLL

Selecting three different Lead/Lag PLL with the same bandwidth (low, medium, and high) as
SRF-PLL and Lead/Lag PLL is shown in Figure 12. Table 1 provides the Lead/Lag PLL parameters.
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The Bode plot of parallel compensated weak grid impedance in (31) (Cg2 = 0.0032 F and 0.0062
constituting Zgp1 and Zgp2), and the DFIG system impedance in (34) for three Lead/Lag PLL with
different parameters is shown in Figure 13.
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It can be seen in Figure 13 that α component of DFIG impedance in pink has the magnitude
intersection point with weak grid impedance at point C1 and C2. The corresponding phase difference
at point C1 and C2 is less than 180◦. Accordingly, the resonance at the middle frequency is not likely
to occur. The reason is that there is no PLL involved in the α component of DFIG impedance. The β
component of DFIG impedance taking the low and high bandwidth Lead/Lag PLL into consideration
have the magnitude intersection points A, A1, and A2 for grid impedance Zgp2 and B, B1, and B2 for grid
impedance Zgp1. The phase differences at the corresponding points are less than 180◦. The resonance at
the middle frequencies is not likely to occur due to the low bandwidth of PLL. However, if the medium
and high bandwidth PLL is taken into consideration, then the β component of DFIG impedance might
cause resonance at middle frequencies. The aforementioned analysis and simulation results show
that Lead/Lag PLL parameters have little impact on the impedance modeling of the DFIG system as
compared to SRF-PLL.

Figure 14 depicts the Bode diagram with different Lead/Lag PLL control parameters to give a more
clear insight into the resonance. It can be seen in Figure 14 that selecting the low bandwidth Lead/Lag
PLL, the high phase margin can be guaranteed, and the resonance is not likely to occur. However,
the high bandwidth Lead/Lag PLL can cause less phase margin, as shown in Figure 14. It is noteworthy,
that phase margin taking high bandwidth Lead/Lag PLL is high when compared to SRF-PLL with
high bandwidth.
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4.3. Simulation Results with Improved PLL

Figure 15 shows three different improved PLL with the same bandwidth (low, medium, and high)
as SRF-PLL, and Lead/Lag PLL, with the parameters being given in Table 1.
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Figure 16 depicts the Bode plot of parallel compensated weak grid impedance in (31) (Cg2 = 0.0032
F and 0.0062 F constituting Zgp1 and Zgp2), and the DFIG system impedance in (37).
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and high bandwidth improved PLL.

Figure 16 shows that the α component of DFIG impedance in pink and the β component with
low and high bandwidth improved PLL have approximately the same impedance shape. There exist
two magnitude intersection points with weak grid impedance at points a and B. The corresponding
phase difference at points A and B is less than 180◦. Hence, the resonance at the middle frequency is
not likely to occur, even with the high bandwidth improved PLL. The aforementioned analysis and
simulation results show that improved PLL parameters have an insignificant impact on the DFIG
system impedance modeling when compared to SRF-PLL and Lead/Lag PLL.

The Bode plot of parallel compensated weak grid, and the DFIG system with improved PLL of
different control parameters is shown in Figure 17 to give a more clear insight into the resonance.
Contrary to SRF-PLL and Lead/Lag PLL, the high phase margin can be guaranteed in the case of
improved PLL. Additionally, it can be seen in Figure 17 that the control parameters of improved
PLL have a minimal effect on the phase margin. Accordingly, the improved PLL can be used as an
alternative to SRF-PLL and Lead/Lag PLL for the DFIG system under the weak grid to guarantee the
improved dynamic performance and stability enhancement.
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5. Time Domain Simulations

This section validates impedance modeling through time domain simulations.

5.1. Simulation Results with SRF-PLL

Two cases of low and high bandwidth SRF-PLL are validated through time-domain simulations.
Figure 18a,b depict the stator voltage, stator and rotor current, active and reactive power, and torque for
the DFIG system operated under weak grid employing the low bandwidth PLL (KpPL = 5, KiPLL = 50)
and high bandwidth PLL (KpPLL = 500, KiPLL = 5000), respectively. With the low bandwidth PLL,
the resonance at middle frequency will not exist, as can be seen in Figure 18a. Contrary to Figure 18a,
the resonance is likely to exist, as can be seen in Figure 18b. The resonance frequency in the stator and
rotor current induce resonance in the active and reactive power and electromagnetic torque.
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Figures 19a,b show the FFT analysis of the DFIG stator voltage with low and high bandwidth PLL,
respectively. There is no resonance at the middle frequencies, as can be seen in Figure 19a However,
the resonance at 295 Hz and 3955 Hz exists if the high bandwidth SRF-PLL is considered, as reflected
in Figure 19b.
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5.2. Simulation Results with Lead/Lag PLL

Likewise, the SRF-PLL, Figure 20a, and Figure 20b depict the stator voltage, stator, and rotor
current, active and reactive power, and torque employing the low bandwidth (K = 13, T1 = 0.0092,
T2 = 0.0003) and high bandwidth (K = 493, T1 = 0.0012, T2 = 0.0003) Lead/Lag PLL, respectively. If the
low bandwidth Lead/Lag PLL is chosen for the DFIG system, the resonance at middle frequency will
not exist, as indicated in Figure 20a. Contrary to Figure 20a, the resonance is likely to exist in the
aforementioned quantities, as demonstrated in Figure 20b.

Figure 21a,b portray the FFT analysis of the DFIG stator voltage with low and high bandwidth
Lead/Lag PLL, respectively. It can be seen in Figure 21a that there is no resonance at the middle
frequencies. However, the resonance at 305 Hz and 405 Hz occurs if the high bandwidth Lead/Lag PLL
is considered, as evident in Figure 21b.
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5.3. Simulation Results with Improved PLL

Two cases of low and high bandwidth improved PLL is validated through time domain simulations.
Figure 22a, and Figure 22b show the stator voltage, stator and rotor current, active and reactive power,
and torque for the DFIG system operated under weak grid employing the low bandwidth (KpPLL = 50,
KiPLL = 5, KdPLL = 10) and high bandwidth PLL (KpPLL = 5000, KiPLL = 500, KdPLL = 1000) improved PLL,
respectively. It can be seen in Figure 22a if the low bandwidth improved PLL is chosen for the DFIG
system, the resonance at middle frequency will not exist. Contrary to the case of SRF-PLL and Lead/Lag
PLL with high bandwidth, the resonance will not be likely to exist in stator voltage and current, rotor
current, active and reactive power, and electromagnetic torque, as can be seen in Figure 22b.

Figure 23a,b demonstrate the FFT analysis of the DFIG stator voltage with low and high bandwidth
improved PLL, respectively. The resonance does not exist at the middle frequencies, as reflected in
Figure 23a. Similarly, the resonance at middle frequencies in the stator and rotor current, active and
reactive power, and electromagnetic torque will not exist if the high bandwidth improved PLL is
considered, as reflected in Figure 23b.
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6. Experimental Results

The impact of PLL on the resonance in the DFIG system is validated while using the experimental
setup, as shown in Figure 24.
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Figure 24. Experimental set up of the proposed DFIG system.

The proportional and integral gain of three types PLL is the same as in Table 1. The experiments
are conducted to show the stator voltage and stator current with low and high bandwidth SRF-PLL,
Lead/Lag PLL, and an improved PLL. Similar results can be deduced for electromagnetic torque and
active and reactive power, but it will not be discussed here in this paper.

Figures 25 and 26 show the stator voltage and stator current of the DFIG system operated under
a weak grid employing the low bandwidth PLL (KpPLL = 5, KiPLL = 50) and high bandwidth PLL
(KpPLL = 500, KiPLL = 5000), respectively. With the low bandwidth PLL, the resonance at middle
frequency will not exist in the DFIG stator voltage and stator current, as can be seen in Figure 25a,b.
The resonance in the DFIG stator voltage and current is likely to exist, contrary to Figure 25a,b, as can
be seen in Figure 26a,b, respectively.
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Likewise, Figures 27 and 28 show the stator voltage and stator current of the DFIG system operated
under a weak grid employing the low bandwidth (K = 13, T1 = 0.0092, T2 = 0.0003) and high bandwidth
(K = 493, T1 = 0.0012, T2 = 0.0003) Lead/Lag PLL, respectively. If the low bandwidth Lead/Lag PLL is
chosen for the DFIG system, the resonance at middle frequency will not exist in the stator voltage and
stator current, as can be seen in Figure 27a,b, respectively. The resonance in the DFIG stator voltage
and stator current is likely to exist, contrary to Figure 27a,b, as can be seen in Figure 28a,b, respectively.
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Similar to SRF and Lead/Lag PLL, the stator voltage and stator current with low bandwidth
(KpPLL = 50, KiPLL = 5, KdPLL = 10) and high bandwidth (KpPLL = 5000, KiPLL = 500, KdPLL = 1000) are
shown in Figures 29 and 30b, respectively. It can be seen in Figure 29a,b that the resonance at middle
frequency does not exist in the DFIG stator voltage and stator current with low bandwidth improved
PLL. Contrary to the case of SRF-PLL and Lead/Lag PLL with high bandwidth, the resonance will not
be likely to exist in stator voltage and stator current of the DFIG system, as can be seen in Figure 30a,b,
when an improved PLL is taken into consideration.
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The aforementioned experimental results validate the time domain simulations for the DFIG
system operated in a weak grid with the inclusion of PLL. The experimental results have good
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7. Conclusions

This paper has studied the impact of PLL on resonance at the middle frequencies in the DFIG
system under a weak grid. Firstly, the small signal model of two types of traditional PLL and an
improved PLL is established. Secondly, the impedance model of the DFIG system, while considering
the impact of the small signal model of PLLs, is established. Subsequently, based on the impedance
modeling, the resonance at middle frequencies with different controller parameters and different types
of PLL has been investigated. The conclusions could be drawn, as follows:
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1. The low bandwidth of any PLL (SRF, Lead/Lag, and improved) has no effect on the resonance at
middle frequencies due to an acceptable phase margin.

2. Resonance at middle frequencies exists in the DFIG system with high bandwidth SRF, and Lead/Lag
PLL. However, there is no resonance at middle frequencies with the employment of improved
PLL, even with the high bandwidth.

3. The performance of the Lead/Lag PLL is superior to the same high bandwidth SRF-PLL due to
the higher phase margin of the Lead/Lag PLL.

4. The phase margin with the Lead/Lag PLL is less dependent on the PLL controller parameters as
compared to SRF-PLL.

5. The improved PLL controller parameters have an insignificant effect on the impedance modeling,
as the phase margin is approximately the same for different bandwidth improved PLL.

6. The α and β component DFIG system impedance with improved PLL has approximately the
same impedance shape. Additionally, a high phase margin with improved PLL guaranteed better
dynamic performance than the SRF-PLL and Lead/Lag PLL.

7. The experimental results are in good agreement with the time domain simulations.
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