

Aalborg Universitet

Efficient Distributed Clustering Algorithms on Star-Schema Heterogeneous Graphs

Chen, Lu; Gao, Yunjun; Huang, Xingrui; Jensen, Christian S.; Zheng, Bolong

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2020.3047631

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Chen, L., Gao, Y., Huang, X., Jensen, C. S., & Zheng, B. (2020). Efficient Distributed Clustering Algorithms on
Star-Schema Heterogeneous Graphs. IEEE Transactions on Knowledge and Data Engineering.
https://doi.org/10.1109/TKDE.2020.3047631

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1109/TKDE.2020.3047631
https://vbn.aau.dk/en/publications/0e03945b-431d-45ca-af89-d6e466242cec
https://doi.org/10.1109/TKDE.2020.3047631

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX 1

Efficient Distributed Clustering Algorithms on
Star-Schema Heterogeneous Graphs

Lu Chen, Yunjun Gao, Member, IEEE, Xingrui Huang, Christian S. Jensen, Fellow, IEEE, Bolong Zheng

Abstract—Many datasets including social media data and bibliographic data can be modeled as graphs. Clustering such graphs is
able to provide useful insights into the structure of the data. To improve the quality of clustering, node attributes can be taken into
account, resulting in attributed graphs. Existing attributed graph clustering methods generally consider attribute similarity and structural
similarity separately. In this paper, we represent attributed graphs as star-schema heterogeneous graphs, where attributes are modeled
as different types of graph nodes. This enables the use of personalized pagerank (PPR) as a unified distance measure that captures
both structural and attribute similarities. We employ DBSCAN for clustering, and we update edge weights iteratively to balance the
importance of different attributes. The rapidly growing volume of data nowadays challenges traditional clustering algorithms, and thus,
a distributed method is required. Hence, we adopt a popular distributed graph computing system Blogel, based on which, we develop
four exact and approximate approaches that enable efficient PPR score computation when edge weights are updated. To improve the
effectiveness of the clustering, we propose a simple yet effective edge weight update strategy based on entropy. In addition, we present
a game theory based method that enables trading efficiency for result quality. Extensive experiments on real-life datasets offer insights
into the effectiveness and efficiency of our proposals.

Index Terms—Heterogeneous graph, Clustering, Distributed Processing, Algorithm

F

1 INTRODUCTION

Graphs are used to model the relationships between objects
in many settings such as web, social networks, and biological
networks. Clustering is able to offer useful insights into the
characteristics of a graph. The goal of clustering is to partition
a set of data objects into a set of clusters, such that objects in a
cluster are similar to each other, while objects in different clusters
are dissimilar. Recently, additional information (e.g., text) has
been taken into account to help improve the quality of clustering,
resulting in so-called attributed graphs. Each node in an attributed
graph may have many different kinds of attributes. DBLP is
a typical bibliographical database that can be modeled as an
attributed graph. Specifically, consider Fig. 1(a), where papers are
modeled as nodes, citations are modeled as edges, and each paper
has several attributes (e.g., keywords, authors, and venues).

When clustering an attributed graph, it is important to consider
both structural and attribute similarities. In particular, clustering
based on the features of objects (i.e., attribute similarity) has
been investigated widely, and many methods (e.g., k-means [1],
DBSCAN [2], etc. [3]) have been proposed in the literature. In
addition, clustering based on topological structures has also been
studied, yielding methods that utilize normalized cuts [4], modu-
larity [5], structural density [6], or flows [7] for clustering. Most
of the existing clustering algorithms for attributed graphs consider
attribute similarity and structural similarity separately [8], [9],
[10], [11], [12], where separate distance measures are used to

• L. Chen, Y. Gao (Corresponding Author), and X. Huang are with the Col-
lege of Computer Science, Zhejiang University, 38 Zheda Road, Hangzhou
310027, China. E-mail: {luchen, gaoyj, xrhuang}@zju.edu.cn.

• C. S. Jensen is with the Department of Computer Science, Aalborg
University, Aalborg, Denmark. E-mail: csj@cs.aau.dk.

• B. Zheng is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, 1037 Luoyu Road,
Wuhan 430074, China. E-mail: bolongzheng@hust.edu.cn.

U1 U2 U3 U4 U5

T1 T2 T3 T4 T5

P2

P1 P3 P5

C1

C2

P4P2 P4

P1 P3 P5

U3 U4 C1U1 U2 T2 C1

U1

T1

T2

C2

U3 T3 C1

U1

T4

T5

C2

(a) Attributed graph (b) Star-schema heterogeneous graph

Fig. 1. Graph Models of Bibliographic Information

measure attribute similarity and structural similarity. In addition,
they ignore differentiating the importance of different attributes.

Inspired by a recent line of studies [13], [14], we transform
attributed graphs to star-schema heterogeneous graphs, where
attributes (e.g., keywords, authors, and venues) are modeled as
different types of graph nodes that are connected to the hub nodes
(e.g., papers), as illustrated in Fig. 1(b). By doing this, we are able
to utilize Personalized PageRank (PPR) to achieve a unified notion
of similarity, and model the importance of different attributes
using the edge weight that is updated iteratively according to its
contribution to the clustering result. We give two examples below.

Example 1. Bibliographic information is often modeled as an
attributed graph, where papers are connected by citations, and each
paper has several attributes (e.g., keywords, authors, and venues).
An attributed graph can in turn be represented as a star-schema
heterogeneous graph as depicted in Fig. 1(b), which contains four
types of nodes. Each paper, modeled as a node, has edges of
different types that connect it to other papers and to descriptive
attribute values of different types, where the attribute values are
also modeled as nodes. The application of clustering to a graph
model of bibliographic information can help detect communities.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX

Example 2. Social image data can also be modeled as an
attributed graph. Images are connected to their k most similar
images [15], [16] according to their contents, and each image has
attributes (e.g., keywords and users). Again, the attributed graph
model can be transformed to a star-schema heterogeneous graph
model. In this example, the model contains three types of nodes.
The application of clustering to a social image graph can help
generate image recommendations.

As discussed in two examples above, clustering of attributed
graphs is useful in many application domains, such as recommen-
dation systems, community detection, and so on. The last years
featured a rapid growth of data volume. Thus, the attributed graphs
cannot be stored or processed in one centralized machine any
more, and a distributed method is required. Motivated by these,
we explore distributed clustering of attributed graphs. Although
distributed graph clustering methods have been studied [17], [18]
recently, they are not designed for attributed graphs that consider
both structure and attribute similarities. To our best knowledge,
this is the first attempt for efficient and effective distributed
clustering of attributed graphs. To support efficient and effective
attributed graph clustering, three challenges must be addressed.

The first challenge is how to define a unified distance measure
that captures both structural and attribute similarities. Existing
studies [13], [14] transform attributed graphs into star-schema
heterogeneous graphs, and use fixed-length random walks to define
a unified distance measure. Extending this line of work, we
consider arbitrary-length random walks and ensure the symmetric
property required by clustering methods. Specifically, we define
a symmetric distance measure based on PPR that takes mutual
neighborhoods into consideration.

The second challenge is how to increase the scalability, as
the data volume increases rapidly nowadays. To address this, we
adopt a popular distributed graph processing system Blogel that
supports scalable data storage and data processing over multiple
work nodes instead of a single work node.

The third challenge is how to further improve the clustering
performance. We present a simple yet efficient weight update
strategy based on entropy of intermediate clustering results to
control the importance of different attributes, and we propose
distributed PPR score computation methods over Blogel. We
also present two types of optimizations to boost the efficiency.
The first one is to avoid recomputing PPR scores when edge
weights are updated: (i) we partially compute and store the PPR
scores, and then recompute the exact scores based on the stored
values; and (ii) we perform approximate updates of PPR scores
to simulate edge weight updates. The second one is to reduce
the communication cost: particularly, we sample the message
transmission during distributed PPR score computation, which
trades accuracy for efficiency. In addition, a game-theory based
clustering approach is developed to refine the result by trading
efficiency for effectiveness.

To sum up, the key contributions are summarized as follows:

• We present an iterative framework for distributed cluster-
ing of attributed graphs, which utilizes PPR on the trans-
formed heterogeneous graphs to define a unified distance
and uses DBSCAN for clustering.

• We propose four distributed PPR score computation meth-
ods over Blogel to avoid PPR score re-computations and
reduce the communication cost in the distributed environ-
ment, thus further improving the efficiency of clustering.

• We develop a simple yet efficient strategy to update the
weights of different attribute types iteratively, and propose
a distributed game theory based approach that refines clus-
tering results, to improve the effectiveness of clustering.

• We report on extensive experiments using two real-life
datasets that offer insights into the scalability, efficiency,
and effectiveness of our proposed methods.

A preliminary report of this work is published in [19]. We
extend mainly it in this paper, by (1) studying distributed clus-
tering on star-schema heterogeneous graphs; (2) including related
work on distributed clustering over graphs; and (3) conducting
experimental evaluation that investigates the efficiency, effective-
ness, and scalablilty of the corresponding proposed methods. Note
that, due to space limitation, we remove the incremental methods
in previous conference version that are designed for centralized
clustering on star-schema heterogeneous graphs.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 presents preliminaries. Section 4 describes
our clustering framework. Sections 5 and 6 detail distributed PPR
score computation methods and the game theory based method,
respectively. Experimental results and our findings are reported in
Section 7. Finally, Section 8 concludes and offers directions for
future work.

2 RELATED WORK

In this section, we provide a brief overview of previous work on
clustering over heterogeneous graphs and distributed clustering
over graphs, respectively.

2.1 Clustering over Heterogeneous Graphs
Attributed graphs can be modeled as star-schema heterogeneous
graphs [13], [14], [20]. Two surveys on the clustering of het-
erogeneous graphs exist [9], [20]. Unlike homogeneous graphs,
attribute information is integrated into the clustering analysis on
heterogeneous graphs. Sun et al. [10] propose a model-based
clustering algorithm that takes into account incomplete attribute
information and the graph structure. Qi et al. [8] develop a
clustering algorithm based on heterogeneous random fields to
model the structure and content of social network graphs with
outlier links. Cruz et al. [21] integrate structural and compositional
dimension for the purpose of community detection. A recent
density-based clustering model [22] aims to detect clusters by
considering both the graph connections and the node attributes.
More recently, Li et al. [11] use a semi-supervised method, and
Baroni et al. [12] provide an efficient method, for large attributed
graphs. Nonetheless, these studies consider the attribute similarity
and the structural similarity separately. To consider attribute and
structural similarities together, one line of study [13], [14] uses
a fixed-length random walks as a unified distance measure with
limited scalability. In contrast, we utilize Personalized PageRank,
thus taking random walks of any length into consideration. We aim
to design more efficient and scalable star-schema heterogeneous
graph clustering methods.

Instead of using a distance measure, a Bayesian probabilistic
model is developed for attributed graphs [23]. In addition, user
information [24], [25], [26] and social influence [27] can also be
integrated into clustering analysis to improve clustering quality.
Furthermore, clustering can also be integrated with other mining
tasks (e.g., ranking [28], [29], [30], [31]) to improve the overall

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

CHEN et al.: EFFICIENTLY DISTRIBUTED CLUSTERING ALGORITHMS ON STAR-SCHEMA HETEROGENEOUS GRAPHS 3

TABLE 1
Symbols and Description

Notation Description
G(V,E, ϕ,
ψ,w)

heterogeneous graph with a set V of nodes, a set
E of edges, a node mapping function ϕ, a edge
mapping function ψ, and a weight function w

A, R sets of node and edge types
|A|, |R| numbers of node and edge types
Ai, Ri particular node and edge type
|Ai| number of objects of type Ai
u, v nodes in a heterogeneous graph
e edge in a heterogeneous graph
ci, c weight constant for Ai and for all attribute types
P transition probability matrix
p[v, u] transition probability from node v to node u
h(v, u) incidence function: h(v, u) = 1 if (v, u) ∈ E
α positive restart probability of a random walk
rmax a threshold (i.e., an error bound) for PPR
π(s, t) PPR score from start node s to target node t
π̂(s, t) reserve of π(s, t) in backward search method
r(s, t) residue of π(s, t) in backward search method
Π̂v reserve map contains pairs (u, π̂(u, v)) (u ∈ V)
Rv residue map contains pairs (u, r(u, v)) (u ∈ V)
d(s, t) symmetric distance between nodes s and t
δ positive real value used to define density
minPts positive integer used to define density
β real value in the range [0, 1]
rs sample rate in the range (0, 1]
nw number of work nodes

performance through joint processing. In this paper, we do not
assume the availability of additional information, and do not
assume the integration with other mining tasks. Hence, we solve a
different and less specialized problem.

2.2 Distributed Clustering over Graphs

Although distributed graph clustering methods have been stud-
ied [32], [33], there is, to the best of our knowledge, no previ-
ous work that investigates distributed clustering over attributed
graphs. Several studies [34], [35] explore distributed clustering
on heterogeneous sensor networks. However, those heterogeneous
clustering methods aim to save energy, and only focus on the spe-
cific heterogeneous graphs, which is different from our problem
studied in this paper. In contrast, we aim at distributed clustering
on attributed graphs modeled as heterogeneous graphs, which aims
to improve its scalablity, efficiency, and effectiveness. McClean et
al. [36] study clustering of heterogeneous distributed databases,
and propose a hybrid metric to measure the distance between two
databases. However, the problem is different from our work, as
we focus on graphs and present a distributed method to cluster
one graph dataset, while they develop a centralized method to
cluster multiple heterogeneous datasets.

Many distributed graph processing platforms exist, which in-
cludes MapReduce [37], Pregel [38], Giraph++ [39], Blogel [40],
GraphLab [41], Trinity [42], Spark [43], and GraphX [44]. We
choose Blogel as the underlying distributed framework, because i)
it is a popular Pregel-like system, which is good for iterative graph
query processing and supports massage combiners; ii) it extends
Pregel with a block-computing functionality, which can achieve
high performance in processing large real world graphs; and iii) it
provides global interfaces for programming algorithms in C++.

3 PRELIMINARIES

We first introduce attributed and heterogeneous graphs, and then,
we describe Personalized PageRank as a unified distance measure.
Table 1 summarizes frequently used notations in this paper.

3.1 Attributed Graphs
Graphs are used to model real-world settings consisting of objects
and relationships or interactions among the objects. For attributed
graphs, each node in the graph can also be associated with various
attribute values to represent valuable information.
Definition 1. (Attributed Graph) A attributed graph is defined

as a directed graph G = (V,E), in which V denotes a set of
nodes and E represents a set of edges. Here, each node v in
V is associated with a set of attributes.

Fig. 1(a) gives an attributed graph example, where V = {P1,
P2, P3, P4, P5}. Each paper has a set of attributes. For instance,
P2 has authors U1 and U2, a keyword T2, and the venue C1. Next,
we present the definition of clustering in a attributed graph.
Definition 2. (Clustering in a Attributed Graph) Clustering in

a attributed graph G is to partition the node set V in G into
k disjoint sets Vi (1 ≤ i ≤ k), where V = ∪ki=1Vi and
Vi ∩ Vj = ∅ for any i 6= j. It needs to achieve a good balance
between the following two objectives: (i) nodes in a cluster
are close to each other in terms of structure, while nodes in
different clusters are distant from each other; and (ii) nodes
in a cluster have similar attributes, while nodes in different
clusters have quite different attributes.

The first objective concerns structural similarity, whereas the
second concerns attribute similarity. In Fig. 1(a), the papers can
be clustered into two sets {P1, P2} and {P3, P4, P5}.

3.2 Heterogeneous Graphs
Since heterogeneous graphs can model objects and relationships
of different types, we transform attributed graphs to heterogeneous
graphs for a unified representation.
Definition 3. (Heterogeneous Graph) A heterogeneous graph is

defined as a directed and weighted graphG = (V,E, ϕ, ψ,w)
with (i) a node type mapping function ϕ : V → A, that maps
each node v (∈ V) to a node type Ai (∈ A); (ii) an edge
type mapping function ψ : E → R, that maps each edge e
(∈ E) to an edge type Ri (∈ R); and (iii) a weight function
w : E → R?, that maps each edge e (∈ E) to a non-negative
real value. Here, |A| > 1 and |R| > 1.

We use w(e) to represent the weight of edge e, and we use
v ∈ Ai to denote that node v has the node type Ai.

Different categories of heterogeneous graphs exist, including
star-schema, bipartite, and multiple Hub [9]. In this paper, we only
focus on the star-schema graphs, since they are quite versatile and
can model attributed graphs. A star-schema graph contains a main
node type and several attribute node types. Nodes of the former
type are called hub nodes, and nodes of the latter types are called
attribute nodes.

Fig. 1(b) depicts a star-schema heterogeneous graph for bib-
liographic information. Let A0 be a hub node type, and Ai
(1 ≤ i ≤ |A| − 1) be attribute node types. As illustrated in
Fig. 1(b), papers P1, ..., P5 are hub nodes of type A0; while au-
thors U1, ..., U5, keywords T1, ..., T5, and publication venues C1,
..., C2 are attribute nodes of types A1, A2, and A3, respectively.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX

In addition, edges of type R0 connects two hub nodes, while Ri
(1 ≤ i ≤ |R| − 1) connect a hub node and an attribute node
of type Ai. Back to Fig. 1(b), the black solid lines denote the
edges of type R0 that connect two papers, while the black, red,
and green dotted lines represent the edges of types R1, R2, and
R3, respectively, which connect a paper and an attribute node (i.e.,
author, keyword, or venue).

A heterogeneous graph G can be encoded in a |V | × |V |
incidence matrix H where

h(v, u) =

{
1 (v, u) ∈ E
0 (v, u) /∈ E

(1)

We assume that, for each hub node v, the sum of the weights
of the edges from v to all outgoing nodes u ∈ Ai equals to a
constant ci. The constant ci is used to capture the importance
of the node type Ai when forming clusters. For simplicity, ci is
evenly distributed among the outgoing edges that have type Ai.
We fix c0 = 1 and

∑|A|−1
i=1 ci = c, where c is a constant, so that

ci can be updated according to its contribution to the clustering
result. In our experiments, c is set to the number of attribute types
as default, and ci (1 ≤ i ≤ |A| − 1) for each attribute type is
initialized as 1. In addition, we also explore the impact of c on the
clustering via experiments in Section 7. As a result, the weight of
edge e = (v, u) is defined as follows.

w(v, u) =

ci·h(v,u)∑
x∈Ai

h(v,x) v ∈ A0 ∧ u ∈ Ai
h(v,u)∑

x∈V h(v,x) v /∈ A0

(2)

In Fig. 1(b), let ci (0 ≤ i ≤ 3) be initialized to 1. For hub
node P2, we can get that w(P2, P1) = 0.5, w(P2, P3) =
0.5, w(P2, U1) = 0.5, w(P2, U2) = 0.5, w(P2, T2) = 1,
and w(P2, C1) = 1. For attribute node U1, we can get that
w(U1, P1) = 0.5 and w(U1, P2) = 0.5. Next, we formalize
clustering on a star-schema heterogeneous graph.

Definition 4. (Clustering on a Star-Schema Heterogeneous
Graph) Clustering on a star-schema heterogeneous graph G is
to partition nodes V in G into k disjoint sets Vi (1 ≤ i ≤ k),
where V = ∪ki=1Vi and Vi∩Vj = ∅ for any i 6= j, to achieve
the goal that nodes within one cluster are close to each other
in terms of structure and attribute similarities, while nodes
between clusters are distant from each other.

Here, we only focus on clustering the hub nodes. This is
because, attribute nodes are only attribute values of hub nodes,
which are helpful for clustering hub nodes. As an example, in
Fig. 1(b), the hub nodes (i.e., papers) can be clustered into two
sets, i.e., {P1, P2} and {P3, P4, P5}.

3.3 Personalized PageRank

To consider both structural and attribute similarities, we utilize
Personalized PageRank (PPR) [45], [46] to measure the similarity
between two nodes. This is possible because attribute values are
modeled as nodes in the star-schema heterogeneous graph. Further,
PPR is among the most popular node similarity measures. PPR
is proposed based on random walks. A random walk starts at a
source node s. At each step in a random walk, PPR either restarts
the random walk with probability α or selects an outgoing node
with probability 1 − α. Let P be a transition probability matrix,
where p[u, v] in P denotes the probability of the outgoing node

Algorithm 1: Backward Search Algorithm
Input: a graph G = (V,E, ϕ, ψ,w), a target node t, a restart

probability α, an error bound rmax
Output: π̂(v, t) for all v ∈ V

1 r(t, t)← 1, r(v, t)← 0 for all v 6= t
2 π̂(v, t)← 0 for all v ∈ V
3 while ∃v ∈ V having r(v, t) > rmax do
4 pick any node v ∈ V with r(v, t) > rmax
5 for each node u ∈ V having h(u, v) = 1 do
6 r(u, t)← r(u, t) + (1− α) · r(v, t) · p[u, v]

7 π̂(v, t)← π̂(v, t) + α · r(v, t)
8 r(v, t)← 0

9 return π̂(v, t) for all v ∈ V

v from the current node u, i.e., P is used to choose the outgoing
node of a random walk. Specifically, p[u, v] can be computed as:

p[v, u] =

{
w(v,u)
1+c v ∈ A0

w(v, u) v /∈ A0

(3)

Here, the weight for all types of nodes (i.e., 1 + c) is used to
normalize the probability for hub nodes. In Fig. 1(b), let ci (0 ≤
i ≤ 3) be initialized to 1. For hub node P2, p(P2, P1) = 0.125,
p(P2, P3) = 0.125, p(P2, U1) = 0.125, p(P2, U2) = 0.125,
p(P2, T2) = 0.25, and p(P2, C1) = 0.25. For attribute node U1,
p(U1, P1) = 0.5 and p(U1, P2) = 0.5.

Let a |V |×1 vector es denote a source node s, where es[s] =
1 and es[v] = 0 (v ∈ V ∧ v 6= s). The recursive PPR propagates
similarity scores until convergence, i.e., the PPR score from source
node s to any node in V is computed as:

π(s, ?) = αes + (1− α)PTπ(s, ?)

= α(I− (1− α)PT)−1es

= α
∞∑
i=0

(1− α)i(PT)ies

(4)

Many proposals on efficient PPR score computation exist, in-
cluding matrix based methods [46], [47], [48] and Monte Carlo
based approaches [49], [50]. We utilize a backward search method
(BSA) [45] to compute the PPR scores from every node v (∈ V) to
a target node t that satisfies the absolute approximation guarantee.
We choose BSA because (i) it is a simple yet fast method; and
(ii) DBSCAN only aims at large PPR scores above a threshold,
and thus, an absolute error bound (e.g., 10−3) is appropriate when
using DBSCAN.

BSA starts from the target node t, and propagates information
along the reverse direction of the edges. The search iteratively
updates two properties for each node v, i.e., residue r(v, t) and
reserve π̂(v, t). The former represents the information to be
propagated to other nodes, and the latter denotes the estimated
PPR value of target t with respect to node v.

Algorithm 1 presents the pseudo-code of BSA. It takes as
inputs a graph G, a target node t, a restart probability α, and
an error bound rmax, and outputs π̂(v, t) for all v ∈ V . First of
all, BSA sets residue r(t, t) = 1 and residue r(v, t) = 0 where
v ∈ V and v 6= t (line 1). Then, it initializes every node v in G to
have reserve π̂(v, t) = 0 (line 2). Next, a while loop is performed
until every node v ∈ V satisfying r(v, t) ≤ rmax (lines 3–8). In
each iteration, BSA picks any node v ∈ V with r(v, t) > rmax
(line 4), and it updates all r(u, t) for nodes u belonged to in-edges
(u, v) (i.e., h(u, v) = 1) (lines 5–6). Then, the algorithm converts

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

CHEN et al.: EFFICIENTLY DISTRIBUTED CLUSTERING ALGORITHMS ON STAR-SCHEMA HETEROGENEOUS GRAPHS 5

Distributed PPR based DBSCAN Clustering

Distributed Game Theory based Refinement

Algorithms 7 8

Edge Weight Update

Equation 8

1) Distributed PPR Score
Computation

Algorithms 3 6

2) Distributed DBSCAN
Clustering

Algorithm 2

Fig. 2. Framework of Clustering Algorithms

the α portion of residue r(v, t) to the reserve π̂(v, t) (line 7), and
it updates the residue r(v, t) to 0 (line 8). Finally, BSA returns all
π̂(v, t) (v ∈ V) (line 9).

PPR score is computation asymmetric. For any two nodes
u and v in a heterogeneous graph, we can get that π(u, v) 6=
π(v, u). As stated in [51], for any two nodes in the same
cluster, the symmetric similarity is required. Motivated by this,
we define the distance between two nodes in heterogeneous
graph d(u, v) = max{π(u, v), π(v, u)}. Note that, the higher
PPR score is, the more similar between two nodes.

4 FRAMEWORK OF CLUSTERING

In this section, we first describe the framework of clustering
algorithms, and then present our edge weight update strategy.

4.1 Clustering Framework
In order to improve the scalability of clustering, a distributed
underlying processing system is needed. We choose Blogel, a
popular and efficient graph processing distributed system, where
vertex-centric distributed computation mode is used for graph
clustering. However, GVD partitioner in Blogel can divide the
whole graph into different workers, where adjacent nodes are
distributed to be at the same worker. Therefore, the communication
cost (i.e., the number of messages) between workers drops a lot.

Fig. 2 illustrates the overview of our framework. Similar as the
previous work [13], our algorithms are iterative so that the attribute
weights can be updated iteratively based on the clustering result.
Each iteration contains three phases, i.e., distributed PPR based
DBSCAN clustering, distributed game theory based refinement,
and edge weight update, where the first phase contains two steps,
i.e., distributed PPR score computation and distributed DBSCAN
clustering. Hence, we have four steps in total every iteration, that
is, we i) first compute PPR scores to measure the similarity of
nodes, ii) cluster the nodes according to PPR scores, iii) refine
the clustering result, and iv) update the edge weights accordingly.
Note that, the third step (i.e., refinement) is optional that further
improves the result quality using game theory.

Distributed PPR Score Computation: PPR score compu-
tation is costly. Based on Blogel, we present a distributed ver-
sion of BSA (discussed in Section 3.3), and three distributed
incremental approaches (i.e., Partial PPR Algorithm, Approximate
PPR Algorithm, and Sampling PPR Algorithm) that aim to enable
efficient PPR score computation when edge weights are updated.
The corresponding methods (Algorithms 3–6) will be detailed in
Section 5. The obtained PPR score is utilized to measure the
similarity between two nodes.

1 2

3

2 2

3

2 22

4 5 4

2

5

2 2

22 2

2

1 2

3

2

4 5

1

1

2
2

2 2

21 2

2

2 2 2

22 2

Step 1 Step 2 Step 3

Two

Phases

One

Phase

cid: 1 cid: 2

cid: -1 cid: -1 cid: -1

cid: 2 cid: 2

cid: -1 cid: -1 cid: -1

cid: 2 cid: 2

cid: 2 cid: 2 cid: 2

cid: 1 cid: 2

cid: -1 cid: -1 cid: -1

cid: 2 cid: 2

cid: 1 cid: 2 cid: 2

cid: 2 cid: 2

cid: 2 cid: 2 cid: 2

Fig. 3. The Example of Distributed DBSCAN

Distributed DBSCAN Clustering: After obtaining the PPR
scores between nodes in the heterogeneous graph, we propose an
improved distributed DBSCAN Algorithm (Algorithm 2) to detect
the clusters, as to be described in the following subsection 4.2.

Distributed Game Theory based Refinement: The quality
of clustering can be further improved. Clustering can also be
regarded as a strategic game [52], [53]. Thus, the result of
DBSCAN method can be refined by the game theory. We present
a distributed game theory based method, as the corresponding
method (Algorithms 7–8) is to be presented in Section 6.

Edge Weight Update: As stated in Section 3.2, edge weights
can be computed by using Equation 2, which depends on weight
constants ci (0 ≤ i ≤ |A| − 1). Some attribute types contribute
more to the quality of clustering, and thus, the weight constants
can be updated according to the clusters obtained in every iter-
ation. The detailed update method is discussed in the following
subsection 4.3.

4.2 Distributed DBSCAN Clustering
DBSCAN is a popular density-based clustering method. It relies
on two parameters to characterize density or sparsity, i.e., a
positive real value δ and a positive integer minPts. Next, we
introduce the definitions of core node and density reachable node
to capture the density.
Definition 5. (Core node) A node u is a core node if at least

minPts nodes v (including u itself) satisfy d(u, v) ≥ δ,
where d(u, v) denotes the similarity between u and v.

Definition 6. (Density reachable node) A node u is a density
reachable from node v if there exist a sequence of nodes
x1, x2, ..., xt(t ≥ 2) such that (i) x1 = v and xt = u; (ii)
xi (1 ≤ i ≤ t − 1) are core nodes; and (iii) d(xi, xi+1) ≥ δ
(1 ≤ i ≤ t− 1).

Based on Definitions 5 and 6, we design a distributed DB-
SCAN algorithm to obtain clusters. Inspired by existing distributed
DBSCAN method NG-DBSCAN [17], we can construct a new
graph called δ-graph on the hub nodes in the heterogeneous graph
to facilitate vertex-centric distributed DBSCAN clustering. More
specifically, if the distance between the hub node u and the hub
node v, d(u, v) ≥ δ, there exists an edge in δ-graph to connect u
and v. Hence, δ-graph connects nodes with high similarity.

Based on Blogel, every node in the δ-graph can be pro-
cessed parallelly, and every node can send messages to its con-
nected/neighbor nodes. Algorithm 2 depicts the pseudo-code of
Distributed DBSCAN Algorithm. It takes δ-graph and minPts
as inputs. Initially, the algorithm sets cids (the cluster id) of core
nodes to their unique non-negative vertexId, and sets cids of non-
core nodes to -1 (lines 1–5). Then, a while loop is performed until

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX

Algorithm 2: Distributed DBSCAN Algorithm
Input: a δ-graph G′ = (V,E), a positive integer minPts
Output: cid(v) for all nodes v ∈ G′

1 for each node v in G parallelly do
2 if |{∀u ∈ V (h(u, v) = 1)}| ≥ minPts− 1 then
3 v.cid = v.vertexId

4 else
5 v.cid = −1

6 while active node exists do
7 for each active node v parallelly do
8 msgv ← message(v)
9 v.cid = max(v.cid,msgv)

10 for each core node v parallelly do
11 for each core node u parallelly do
12 if h(u, v) = 1∧ v.vertexId > u.vertexId then
13 msg = v.cid
14 send msg to node u

15 while active node exists do
16 for each active node v parallelly do
17 msgv ← message(v)
18 v.cid = max(v.cid,msgv)

19 for each core node v parallelly do
20 for each non-core node u parallelly do
21 if h(u, v) = 1 then
22 msg = v.cid
23 send msg to node u

24 return cid(v) for all nodes v ∈ G′

no node receives message (i.e., no active node exists) (lines 6–14).
In each iteration, each active node updates its cid to the largest
number among the received messages and its original cid (lines
7–9). After that, each core node sends its cid to the neighbor nodes
if its vertexID is bigger than that of neighbor node (lines 10–14).
Next, another while loop is performed until no active node exists
(lines 15–23). The difference between these two loops is that, core
nodes send messages to other core nodes in the former loop, while
messages are sent between core nodes and non-core nodes in the
latter loop. Finally, DBSCAN returns cids of all nodes (line 24).

Different from NG-DBSCAN that detects clusters among all
the nodes in one-phase, our method is divided into two phases
(i.e., two while loops) which first handles core nodes and then
handles density reachable nodes. This optimization reduces the
number of the messages sent between nodes, and thus can improve
DBSCAN efficiency. A example is shown in Fig. 3, where the grey
nodes are core nodes and white nodes are density reachable nodes.
The digits in the nodes denote the vertexIds, the texts in red are
cids (i.e., cluster ids) of nodes, and the black arrows with digits
represent the messages. In this example, two-phases processing
needs 5 messages but one-phase processing needs 7 messages in
total. Hence, our method is more efficient.

4.3 Edge Weight Update

As discussed in Section 3.2, we fix c0 at 1 for the hub type of nodes
(e.g., papers in a bibliographic network). However, the weight
constant ci for the specific attribute type Ai is initialized to 1 and
then is updated iteratively. Similar as [14], ci in the (y + 1)th

iteration is computed as:

cy+1
i =

1

2
(cyi + ∆cyi) (5)

To accurately determine the extent of weight increment ∆cyi ,
a majority mechanism can be used: if a large portion of nodes
within clusters share the same value of a certain attribute type Ai,
Ai has a good clustering tendency, and thus, the weight constant
ci of Ai is increased. On the other hand, if nodes within clusters
have a random distribution on values of a certain attribute typeAi,
Ai is not a good clustering attribute, and hence, the corresponding
weight constant ci should be decreased. Thus, the entropy of each
attribute type in yth iteration can be used to define the weight
increment ∆cyi .

Assume that the node set V in a heterogeneous graph G can
be clustered into k parts Vj (1 ≤ j ≤ k ∧ |Vj | ≥ 2) in the yth

iteration. As DBSCAN can find outliers, we only focus on clusters
Vj with |Vj | ≥ 2. Based on this, the entropy of a certain attribute
type Ai on k clusters is defined as:

entropy(Ai) =
k∑
j=1

|Vj |∑k
x=1 |Vx|

|Ai|∑
x=1

(−pxj log2pxj) (6)

where pxj denotes the percentage of nodes in cluster Vj having the
same attribute value ax ∈ Ai, and |Ai| represents the total number
of attribute values in a certain attribute type Ai. According to the
definition of entropy, the smaller entropy(Ai) is, the better the
clustering attribute Ai is. Hence, the increment ∆cyi is defined as:

∆cyi =

c
entropy(Ai)∑|A|−1

j=1
1

entropy(Aj)

(7)

Equation 7 can ensure
∑|A|−1
i=1 cy+1

i = c after weight constant
updates. To sum up, we can get that

cy+1
i =

1

2
(cyi +

c∑|A|−1
j=1

entropy(Ai)
entropy(Aj)

) (8)

After each cy+1
i updates, PPR scores will be updated accordingly.

To compute PPR scores efficiently, we develop incremental meth-
ods to avoid unnecessary computation at the next section.

4.4 Discussions

Overall, there are five common parameters used in our proposed
framework: i) c used to control the total weight of all the attribute
types; ii) δ and minPts used for DBSCAN; and iii) restart
probability α and an error bound rmax for PPR computation. The
optimal values of c, δ, and minPts depend on the distribution of
dataset (as verified via experiments in Section 7), α is set to 0.2
by following previous studies [49], [50], and rmax is set to 10−3

to ensure the accuracy of PPR scores.

5 INCREMENTAL PPR COMPUTATION

We detail distributed BSA algorithm and three distributed incre-
mental PPR computation approaches that aim to reduce the cost
of PPR score recomputation after edge weight updates.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

CHEN et al.: EFFICIENTLY DISTRIBUTED CLUSTERING ALGORITHMS ON STAR-SCHEMA HETEROGENEOUS GRAPHS 7

Algorithm 3: Distributed Backward Search Algorithm
Input: a heterogeneous graph G(V,E, ϕ, ψ,w), a restart

probability α, an error bound rmax
Output: Π̂v for all v ∈ V

1 for each node v ∈ V parallelly do
2 if v is a hub node then
3 insert (v, 1) in Rv

4 while active node exists do
5 for each active node v parallelly do
6 msgv ← message(v)
7 Rv ← Rv+ : +msgv

8 for each node v st. (∃t, Rv[t] > rmax) parallelly do
9 for each node u having h(u, v) = 1 parallelly do

10 msg ← (1−α)·p[u, v]·Rv[t](∀t, Rv[t] > rmax)
11 send msg to node u

12 Rv ← Rv[t] (∀t, Rv[t] ≤ rmax)

13 Π̂v ← Π̂v+ : +α ·Rv[t](∀t, Rv[t] > rmax)

14 return Π̂v for all hub nodes v ∈ V

5.1 Distributed PPR Computation

Distributed Backward Search Algorithm (DBSA) is a distributed
version of BSA (discussed in Section 3.3). The centralized version
BSA computes the PPR scores between all nodes to a particular
target node t. In contrast, DBSA computes all the PPR scores of
all pairs of nodes simultaneously. In order to maintain the reserve
and residue values of all pairs of nodes, we create two maps Π̂v

and Rv for each node v to store all the reserve and residue values
between any node u ∈ V and v, respectively. Here, we use map
because it can avoid storing zero values to reduce the storage
complexity, and the maximum size of Rv or Π̂v is |V |. DBSA
computes PPR scores iteratively. In each iteration, each node v
propagates information to its neighbor nodes, and updates its two
maps, i.e., the residue map Rv and the reserve map Π̂v . Here,
instead of propagating one qualified r(v, u) value each time by
BSA, DBSA will propagate all qualified r(v, u) values at the same
time, where a qualified value means r(v, u) > rmax.

Algorithm 3 presents the pseudo-code of DBSA. It takes as
inputs a heterogeneous graph G, a restart probability α, and an
error bound rmax, and outputs Π̂v for all nodes v ∈ V . First of all,
DBSA parallelly inserts (v, 1) in the residue map Rv if v is a hub
node (lines 1–3). Here, only Rv[v] of the hub nodes v is set to 1 as
we only cluster hub nodes. Next, a while loop is performed until no
active node exists (lines 4–13). In each iteration, each active node
v updates its residue map Rv parallelly according to messages
received from its neighbor nodes (lines 5–7). Here, “+:+” denotes
the add operation on two maps, as the message is also denoted as
a map. More specifically, for any key exists in two maps, we sum
up two corresponding values; while for any key exists in only one
map, we will first create a new entry (key, 0) in the other map and
then sum up two values. Then, each node v having any t satisfying
Rv[t] > rmax sends messages to its neighbor nodes (lines 9–11),
and updates its two maps corresponding (lines 12–13). Finally, it
returns Π̂v for all nodes v ∈ V (line 14).

5.2 Distributed Partial PPR Computation

According to DBSA, the PPR score depends on p[u, v], which
changes when a weight update occurs. According to Equation 3,

Algorithm 4: Distributed Partial PPR Algorithm
Input: a heterogeneous graph G(V,E, ϕ, ψ,w), current

iteration y, a restart probability α, an error bound rmax

Output: Π̂v for all v ∈ V
1 read R0

v and Π̂0
v computed by DPPA for all nodes v ∈ V

2 for each node v ∈ V parallelly do
3 Rv ← R0

v

4 Π̂v ← Π̂0
v

5 while active node exists do
6 for each active node v parallelly do
7 msgv ← message(v)
8 Rv ← Rv+ : +msgv

9 for each node v st. (∃t, Rv[t] > rmax) parallelly do
10 for each node u having h(u, v) = 1 parallelly do
11 msg ← (1−α)·Rv[t]·py[u, v](∀t, Rv[t] > rmax)
12 send msg to node u

13 Rv ← Rv[t] (∀t, Rv[t] ≤ rmax)

14 Π̂v ← Π̂v+ : +α ·Rv[t](∀t, Rv[t] > rmax)

15 return Π̂v for all v ∈ V

the transition probability py[u, v] in the yth iteration is defined as:

py[u, v] =

cyi ·h(u,v)

c0i ·(1+c)·
∑

x∈Ai
h(u,x)

u ∈ A0 ∧ v ∈ Ai
h(u,v)∑

x∈V h(u,x) u /∈ A0

(9)

According to Equation 9, for a hub node u and any node v
(belonging to Ai), py[u, v] =

cyi
c0i
p0[u, v]; and for an attribute

node u and any node v, py[u, v] = p0[u, v]. Motivated by this,
we present a Distributed Partial PPR Algorithm (DPPA), which
only processes the hub nodes instead of the whole graph nodes in
advance, and stores the corresponding residues and reserves of all
nodes for later reuse.

DPBSA is similar to DBSA, and thus, its pseudo-code is
omitted. The only difference between DPBSA and DBSA is that,
in line 9 of Algorithm 3, DPBSA only processes hub nodes while
DBSA processes all graph nodes, i.e., DPBSA only propagates
the residue Rv of hub nodes v to other nodes. Finally, we store
non-empty Rv and Π̂v for all nodes v ∈ V that can be used in
PPR score recomputation.

Based on DPBSA, a Distributed Partial PPR Algorithm
(DPPA) is developed, with the corresponding pseudo-code shown
in Algorithm 4. First, DPPA reads Π̂0

v and S0
v computed by

DPBSA, and then initializes Π̂v and Sv for all v ∈ V (lines 1–4).
Thereafter, the processing is the same as lines 5–15 of Algorithm
3. Hence, by applying DPBSA once, the pre-computed scores can
be reused by DPPA in every iteration after edge weight updates.

5.3 Distributed Approximate PPR Computation
Following the basic idea of an existing approach [54], we keep the
reserve for every node (computed by BSA) unchanged but update
the residue (computed by BSA) for each node, to approximately
simulate edge weight updates. In the following, we derive how to
update the residue for every node.

According to the derivations in our previous work [19], in the
yth and (y + 1)th iteration, for each hub node s,

π̂y(s, t) + αry(s, t) = αe−1t [s]+

(1− α)

|A|−1∑
i=0

∑
x∈Ai

cyi · h(s, x)

(1 + c) ·
∑
u∈Ai

h(s, u)
· π̂y(x, t)

(10)

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX

Algorithm 5: Distributed Approximate PPR Algorithm
Input: a heterogeneous graph G(V,E, ϕ, ψ,w), current

iteration y, a restart probability α, an error bound rmax

Output: Π̂v for all v ∈ V
1 read R0

v and Π0
v computed by DPBSA for all v ∈ V

2 for each node v ∈ V parallelly do
3 Π̂v ← Π0

v

4 if v is hub node then
5 for each u ∈ V parallelly do
6 Ryv [u]← R0

v[u] +∑|A|−1
i=0

(1−α)(cyi−c
0
i)

α(1+c)

∑
x∈Ai

h(v,x)·π̂0(x,u)∑
t∈Ai

h(v,t)

7 else
8 Ryv ← R0

v

9 while active node exists do
10 for each active node v parallelly do
11 msgv ← message(v)
12 Rv ← Rv+ : +msgv

13 for each node v st. (∃t, Rv[t] > rmax) parallelly do
14 for each node u having h(u, v) = 1 parallelly do
15 msg ← (1−α)·Rv[t]·py[u, v](∀t, Rv[t] > rmax)
16 send msg to node u

17 Rv ← Rv[t] (∀t, Rv[t] ≤ rmax)

18 Π̂v ← Π̂v+ : +α ·Rv[t](∀t, Rv[t] > rmax)

19 return Π̂v for all v ∈ V

π̂y+1(s, t) + αry+1(s, t) = αe−1t [s]+

(1− α)

|A|−1∑
i=0

∑
x∈Ai

cy+1
i · h(s, x)

(1 + c) ·
∑
u∈Ai

h(s, u)
· π̂y+1(x, t)

(11)

By combining Equations 10 and 11 as well as assuming that
π̂y(s, t) = π̂y+1(s, t), we can get that:

ry+1(s, t) = ry(s, t)+

|A|−1∑
i=0

(1− α)(cy+1
i − cyi)

α(1 + c)

∑
x∈Ai

h(s, x) · π̂y(x, t)∑
u∈Ai

h(s, u)

(12)

Based on Equation 12, we propose an Distributed Approximate
PPR Algorithm (DAPA). In the first iteration, DPBSA (discussed
in Section 5.2) is run to store Rv and Π̂v for all v ∈ V for reuse.
Algorithm 5 shows the pseudo-code of DAPA for iterations y ≥ 1.
It first reads R0

v and Π̂0
v for all v ∈ V . Then, Π̂v is initialized as

Π̂0
v for every v ∈ V . According to Equation 12,Ryv [u] is parallelly

initialized to ryv [u] +
∑|A|−1
i=0

(1−α)(cyi−c
0
i)

α(1+c)

∑
x∈Ai

h(s,x)·π̂0(x,t)∑
u∈Ai

h(s,u)

for each hub node v ∈ A0 (lines 4–6), while Ryv is initialized
to Ryv for each attribute node v (lines 7–8). In the sequel, the
processing (lines 9–19) is the same as lines 5–15 of Algorithm 3.

5.4 Distributed Sampling PPR Computation
The previous two methods DPPA and DAPA aim to reduce the
cost of PPR score recomputation after updating the edge weights
by partially storing the pre-computed scores for reuse and by
approximately updating PPR scores to simulate the edge weight
updates. Furthermore, we can reduce the communication cost
among all the nodes to improve the efficiency of PPR score re-
computation. According to DBSA, the information/message sent
from node v to node u is below:

msg(u← v) = (1− α) ·Rv[u] · p[u, v] (13)

Algorithm 6: Distributed Sampling PPR Algorithm
Input: a heterogeneous graph G(V,E, ϕ, ψ,w), current

iteration y, a restart probability α, an error bound
rmax, a sampling bound pmax, a sampling rate rs

Output: Π̂v for all v ∈ V
1 read R0

v and Π̂0
v computed by DPBSA for all v ∈ V

2 for each node v ∈ V parallelly do
3 Rv ← R0

v

4 Π̂v ← Π̂0
v

5 while active node exists do
6 for each active node v parallelly do
7 msgv ← message(v)
8 Rv ← Rv+ : +msgv

9 for each node v st. (∃t, Rv[t] > rmax) parallelly do
10 for each node u having h(u, v) = 1 parallelly do
11 if py[u, v] ≤ pmax ∧ rand()%100 > 100rs then
12 continue

13 msg ← (1−α)·Rv[t]·py[u, v](∀t, Rv[t] > rmax)
14 send msg to node u

15 Rv ← Rv[t] (∀t, Rv[t] ≤ rmax)

16 Π̂v ← Π̂v+ : +α ·Rv[t](∀t, Rv[t] > rmax)

17 return Π̂v for all v ∈ V

According to Equation 13, the larger p[u, v] is, the more
information the node u receives. Moreover, the information sent
from node v drops exponentially as τ (i.e. the number of steps
of random walk) increases. As a result, when p[u, v] is small,
the information transmission between node u and node v has
little influence on the final PPR scores. Consider the situation
that a node v is connected with massive nodes. For example, in
DBLP dataset, a conference attribute node is connected to massive
paper nodes. In this case, p[?, v] is extremely small, and thus,
the information transmission has little impact on the final result.
Motivated by this, we present a Distributed Sampling PPR Algo-
rithm (DSPA), which samples the messages between node u and
node v, if their transition probability is small. Specifically, given
a sampling bound pmax and a sample rate rs, if p[u, v] < pmax,
the message will be sent from node v to node u with probability
rs. Note that, rs ∈ (0, 1] is used to trade quality for efficiency, as
verified in Section 7. In this paper, we set pmax to 10−3 as default.
This is because, if p[u, v] ≤ 10−3, then msg(u← v) < 10−3 =
rmax. In other words, if pmax is set to 10−3, then the corresponding
information transmission has little impact on the result PPR score.

Algorithm 6 depicts the pseudo-code of DSPA. The only dif-
ference between Algorithm 4 and Algorithm 6 is that, Algorithm
6 samples before sending messages between node u and node v
(lines 11–12), in order to further reduce the communication cost.

6 GAME THEORY BASED APPROACH

As discussed in Section 4, the game theory technique can be
used to further improve the quality of the clustering obtained by
DBSCAN. Here, we introduce an objective function, and then, we
present a detailed algorithm.

6.1 Objective Function
The basic idea of game theory is that, in strategic games, players
compete for same resources to optimize their individual objective
functions. Specifically, each player chooses a strategy to minimize

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

CHEN et al.: EFFICIENTLY DISTRIBUTED CLUSTERING ALGORITHMS ON STAR-SCHEMA HETEROGENEOUS GRAPHS 9

Algorithm 7: Distributed Initial Algorithm
Input: a heterogeneous graph G(V,E, ϕ, ψ,w), a parameter

β in range [0, 1], Πv(v ∈ V) that stores non-zero
distances between v and other nodes

1 create a map num to store the size of every cluster
2 for each node v ∈ V parallelly do
3 if v.cid /∈ num then
4 insert (v.cid, 0) in num

5 num[v.cid]← num[v.cid] + 1

6 for each node v ∈ V parallelly do
7 for each other node u ∈ Πv ∧ u.cid = v.cid do
8 ACostv[u.cid]+ = Πv[u]

9 for each node u having h(u, v) = 1 ∧ u.cid 6= v.cid do
10 SCostv[u.cid]+ = 1

2
· w[v, w]

11 Costv ← (1− β) · SCostv − : −β · ACostv
num[v.cid]−1

12 cidmin ← arg minx Costv[x]
13 if v.cid 6= cidmin then
14 cidpre ← v.cid, v.cid← cidmin
15 for each u st. u ∈ Πv ∨ h(u, v) = 1 parallelly do
16 msg ← (v, v.cid, cidpre)
17 send msg to node u

his/her own cost without taking into account the effect of his/her
choice on other players’ objectives. A strategic game has a pure
Nash equilibrium, i.e., no player has an incentive to deviate from
his/her current strategy.

In our setting, each node can be regarded as a player. In order
to apply the above idea, it is important to design an effective
objective function. According to Definition 2, each node should be
(i) similar to the other nodes in the same cluster, but (ii) dissimilar
to nodes in different clusters. Hence, the first part of the objective
function for each node v in a cluster Vi can be defined based on
PPR scores.

AssignmentCost(v, Vi) =
1

|Vi| − 1

∑
u∈Vi−{v}

d(v, u) (14)

Obviously, the larger AssignmentCost(v, Vi) is, the more similar
v is to other nodes in cluster Vi. To take into account the
dissimilarity to nodes in different clusters, we utilize structure
property instead of PPR scores. We do this because the sum of
PPR scores from node v to other nodes u ∈ V equals 1. Based on
this, the second part of the objective function for each node v in a
cluster Vi can be defined below.

StructureCost(v, Vi) =
∑
u/∈Vi

1

2
w(v, u) (15)

Clearly, the larger StructureCost(v, Vi), the more dissimilar be-
tween node v and nodes in other clusters Vj 6= Vi.

We combine the two costs, and use a parameter β in range
[0, 1] to control their relative importance. Thus, the objective
function of a node is defined as:

cost(v, Vi) =(1− β) · StructureCost(v, Vi)

− β · AssignmentCost(v, Vi)
(16)

where β is usually set to 0.5 to balance AssignmentCost and
StructureCost.

Algorithm 8: Distributed Game Theory Algorithm
Input: a heterogeneous graph G(V,E, ϕ, ψ,w), a parameter

β in range [0, 1], Πv(v ∈ V) that stores non-zero
distances between v and other nodes

Output: v.cid for every node v ∈ V
1 while active node exists do
2 for each active node v ∈ V parallelly do
3 msgv = {t, t.cid, t.cidpre} ← message(v)
4 num[t.cid] = num[t.cid] + 1
5 num[t.cidpre] = num[t.cidpre]− 1
6 if t ∈ Πv then
7 ACostv[t.cidpre]− = Sv[t]
8 ACostv[t.cid]+ = Sv[t]

9 if h(v, t) = 1 then
10 SCostv[t.cidpre]− = 1

2
w[t, v]

11 Scostv[t.cid]+ = 1
2
w[t, v]

12 Costv ← (1− β) · SCostv − : −β · ACostv
num[v.cid]−1

13 cidmin ← arg minx Costv[x]
14 if v.cid 6= cidmin then
15 v.cidpre ← v.cid, v.cid← cidmin
16 for each u ∈ Πv ∨ h(u, v) = 1 parallelly do
17 msg ← (v, v.cid, v.cidpre)
18 send msg to node u

19 return v.cid for all v ∈ V

6.2 Game Theory Algorithm

At first, each node is assigned to a cluster Vi according to the
result of DBSCAN, as DBSCAN can find k (> 1) clusters Vi
(1 ≤ i ≤ k). Then, in each iteration, every node v in Vi is re-
assigned to a new cluster Vj (i 6= j) with the minimum cost(v, Vj)
defined in Equation 16. When a Nash equilibrium exists (i.e., no
node will be moved to other cluster), the updated cluster of each
node is return.

We use v.cid returned from previous Distributed DBSCAN
algorithm to indicate which cluster each node v belongs to. The
whole process using game theory to refine the cluster result is
divided into two phases. At first, we compute a initial Assign-
mentCost (ACost), StructureCost (SCost), and Cost for each node
according to Equations 14−16, and find the nodes can be refined.
Thereafter, we update the corresponding ACost, SCost, and Cost
based on the refined nodes until it comes to a Nash equilibrium.
Here, the refined node is a node moved from the original cluster to
a different cluster with the minimum Cost defined in Equation 16.

Algorithm 7 shows the pseudo-code of the Distributed Initial
Algorithm. It takes as inputs a heterogeneous graphG, a parameter
β in range [0,1], and Πv(v ∈ V) that stores non-zero distances
between v and other nodes. Initially, it creates a map num to
count the size of every cluster (lines 1–5). Then, each node v
computes the Costv by combining ACost and SCost (lines 6–11),
and obtains the corresponding cidmin with the minimal cost for
each node v (line 12). Next, if cidmin 6= v.cid (i.e., the node v
can be refined), the algorithm updates v.cid, and sends a message
to the related nodes (lines 13–17). Here, the related nodes u are
neighbors of the refined node v or have non-zero distances Πv[u],
to help update the Assignmentcost and StructureCost in future.
Hence, each message sent from v contains the related node u, the
current node cluster id u.cid, and the previous cluster id cidpre.

Algorithm 8 depicts the pseudo-code of Distributed Game
Theory Algorithm (DGTA). There are only two differences be-

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX

TABLE 2
Complexity Analysis of Our Framework

Methods Time Complexity Space Complexity
Inc-Cluster [14] O(Ln3) O(n2)
SToC [12] O(mhlognh) O(nhlognh)

Our Framework

Distributed PPR Score Computation O((nh + nt)/nw)

O(nx/nw) (1 ≤ x ≤ 2)
Distributed DBSCAN Clustering O((nx +mcDp +md)/nw)
Distributed Game Theory based Refinement O((nx +mh + knactive)/nw)
Edge weight update O(na/nw)
Overall O(t(nx +m/rmax +mcDp + knactive)/nw)

tween Algorithm 8 and Algorithm 7. The first one is that Algo-
rithm 8 performs a loop until it comes into a Nash equilibrium
(i.e., no message is sent between nodes) (line 1). The second one
is that Algorithm 8 updates num, Acostv , Scostv , and Costv
based on messages received (lines 4–12). Finally, Algorithm 8
returns the cluster result, i.e., v.cid of all v ∈ V (line 19).

6.3 Discussion
In this subsection, we provide the time complexity and space
complexity of our framework compared with existing methods,
as shown in Table 2. Note that, Inc-Cluster [14] and SToC [12]
are two state-of-the-art attributed graph clustering methods, where
L denotes the length of the random walk. Assume that n, nh, and
na represent the number of nodes, hub nodes, and attribute nodes,
respectively; m, mh, and ma are the number of edges to connect
all the nodes, to connect hub nodes, and to connect hub nodes and
attribute nodes, respectively.

GVD partitioner used in Blogel can achieve good performance
of load balance, and thus, we assume that the workload is dis-
tributed evenly among the work nodes. Hence, the space complex-
ity of our framework on each work node is O(nx/nw)(1 ≤ x ≤
2), where nw denotes the number of workers and nx represents
the number of node pairs with non-zero PPR scores. A lot of zero
PPR scores of node pairs exist especially for a large graph, and
hence, x is much smaller than 2.

Our framework is iterative and contains four steps. Thus, the
overall time complexity of our framework is O(t × (Cost1 +
Cost2 + Cost3 + Cost4)), where t denotes the number of
iterations and Costi (1 ≤ i ≤ 4) for each step is shown below.

Cost1 for Distributed PPR Score Computation. The cor-
responding time complexity on each work node is O((nh +
nt)/nw), where nt denotes the number of information propa-
gations during PPR score computations. We develop four meth-
ods for distributed PPR score computations, i.e., DBSA, DPPA,
DAPA, and DSPA, and hence, nt varies for these four methods.

• For DBSA, nt is O(m/(αrmax)) [50], and thus, its time
complexity is O(m/(αrmaxnw)).

• For DPPA, it uses DBSA to process hub nodes in advance,
and stores the corresponding values for reuse. According
to the proof in our previous work [19], DPPA is regarded
that part of processing is done in advance. Hence, nt of
DPPA is much smaller than that of DBSA, and the time
complexity of DPPA is much smaller than that of DBSA.

• For DAPA, it can provide estimation of the residue and
reserve values for every node to simulate edge weight
updates according to Equation 12. This holds the potential
to reduce the number of information propagations substan-
tially in every iteration, and thus, the time complexity of
DAPA is smaller than that of DPPA.

• For DSPA, its nt falls into the range [O(rsm/(αrmax)),
O(m/(αrmax))], where rs ∈ (0, 1] denotes the sample
rate. Hence, the time complexity of DSPA is much smaller
than that of DPPA, especially when rs is small.

Cost2 for Distributed DBSCAN clustering. Assume that
Dp equals to the maximum shortest path distance between any
two hub nodes, mc denotes the number of edges that connect
core nodes, and md represents the number of edges that connect
core nodes and density reachable nodes. The corresponding time
complexity is O((nx + mcDp + md)/nw), where O(nx/nw) is
the cost to find the core nodes, O(mcDp/nw) is the cost to update
the cluster id of core nodes, and O(md/nw) is the cost to update
the cluster id of density reachable nodes. However, the real time
complexity is much smaller than O((nx +mcDp +md)/nw), as
the number of iterations is much smaller than Dp when updating
the cluster id of core nodes.

Cost3 for Distributed Game Theory based Refinement.
Assume that nactive denotes the number of re-assigned nodes
before reaching Nash equilibrium, and k is the number of clusters
obtained. The time complexity is O((nx +mh + knactive)/nw),
where O(nx/nw) is the cost to compute the initial Assignment-
Cost, O(mh/nw) is the cost to calculate the initial StructureCost,
and O((knactive)/nw) is the cost to reassign nodes and update
AssignmentCost and StructureCost.

Cost4 for Edge Weight Update. Since we only update the
edges between attribute nodes and hub nodes, its time complexity
on each work node is O(ma/nw).

As a summary, the overall time complexity of our framework
is O(t(nx + m/rmax + mcDp + knactive)/nw). We can see
the time and space complexities of our framework are better
than those of Inc-Cluster, but worse than SToC. However, the
clustering quality of our framework is better than that of SToC, as
verified in our previous work [19], where we have compared our
centralized methods with Inc-Cluster and SToC. In the presented
clustering framework, distributed PPR score computation methods
DPPA, DAPA, and DSPA aim to improve the efficiency, while
DGTA aims to further enhance the quality. Note that, DGTA is
independent of DPPA, DAPA, and DSPA, and thus, DGTA can be
applied to any other clustering algorithm in the refinement step.

7 EXPERIMENTAL EVALUATION

In this section, we proceed to evaluate experimentally the effec-
tiveness, efficiency and scalability of our proposed techniques.

7.1 Experimental Settings
In our experiments, we employ two real-life datasets DBLP and
Flickr, as shown in Table 3. The DBLP dataset is extracted from
a website http://dblp.uni-trier.de/, which is a typical bibliographic

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

CHEN et al.: EFFICIENTLY DISTRIBUTED CLUSTERING ALGORITHMS ON STAR-SCHEMA HETEROGENEOUS GRAPHS 11

TABLE 3
Statistics of Two Real-life Datasets

DBLP
Objects and Relations Type Cardinality
Papers A0 236,098
Authors A1 734,593
Keywords A2 20,704
Publication venues A3 405
Edges between papers R0 126,855
Edges between papers and authors R1 1,257,028
Edges between papers and keywords R2 846,283
Edges between papers and venues R3 236,098

Flickr
Objects and Relations Type Cardinality
Images A0 260,921
Users A1 173,282
Tags A2 27,555
Edges between images R0 146,523
Edges between images and tags R1 272,491
Edges between images and users R2 1,278,141

ru
n
n
in
g
ti
m
e
(s
)

0.025 0.03 0.035 0.04 0.045
102

103

104

DBA DPPA DAPA

DSPA DGTA

(a) DBLP

ru
n
n
in
g
ti
m
e
(s
)

0.025 0.03 0.035 0.04 0.045
0

1000

2000

3000

4000

DGTA

DBA DPPA

DAPA DSPA

(b) Flickr

d
en
si
ty

0.025 0.03 0.035 0.04 0.045
0.85

0.9

0.95

1

DBA DPPA DAPA

DSPA DGTA

(c) DBLP

d
en
si
ty

0.025 0.03 0.035 0.04 0.045
0.4

0.6

0.8

1

DBA

DSPA DGTA

DAPADPPA

(d) Flickr

en
tr
o
p
y

0.025 0.03 0.035 0.04 0.045
6.5

6.6

6.7

6.8

6.9

DBA DPPA DAPA

DSPA DGTA

(e) DBLP

en
tr
o
p
y

0.025 0.03 0.035 0.04 0.045
5

6

7

8

DBA DPPA DAPA

DSPA DGTA

(f) Flickr

Fig. 4. Performance of Our Methods vs. δ

information dataset. The Flickr dataset is extracted from a website
https://www.flickr.com/, which is a typical social image dataset.
DBLP contains about 1 million nodes while Flickr includes about
0.44 million nodes, where our previous centralized clustering
methods [19] cannot run on these two big attributed graphs.

As discussed in Section 2, no previous distributed at-
tributed/heterogeneous graph clustering method is available and
can be used for comparisons. Hence, we extend our centralized
methods [19] to the distributed ones to improve the scalablity. In
our experiments, we adopt a baseline method (denoted as DBA),
which uses DBSA (depicted in Algorithm 3) to compute the PPR
scores and utilizes Distributed DBSCAN Algorithm (shown in
Algorithm 2) to do the clustering.

The efficiency of our clustering methods is reported in terms
of the running time. Since large DBLP and Flickr datasets without
ground truths, the effectiveness, i.e., the quality of the generated
clusters Vj (1 ≤ j ≤ k), is measured using density and entropy,

TABLE 4
Parameter Ranges and Default Values

Parameter Range Default
δ (×10−3) 2.5, 3, 3.5, 4, 4.5 3.5
minPts 3, 4, 5, 6, 7 5
β 0.2, 0.35, 0.5, 0.65, 0.8 0.5
rs 0.2, 0.4, 0.6, 0.8, 1 0.6
nw 4, 6, 8, 10, 12 12
c 0.1875, 0.375, 1.5, 3, 6 3 or 2
pe (×10−5) 0.125, 0.625, 1.125, 1.625, 2.125 1.125

minPts

ru
n
n
in
g
ti
m
e
(s
)

3 4 5 6 7
102

103

104

DBA DPPA DAPA

DSPA DGTA

(a) DBLP

minPts

ru
n
n
in
g
ti
m
e
(s
)

3 4 5 6 7
0

2000

4000

6000

8000

DBA DPPA DAPA

DSPA DGTA

(b) Flickr

DBA DPPA

DSPA DGTADAPA

minPts

d
en
si
ty

3 4 5 6 7
0.8

0.85

0.9

0.95

1

(c) DBLP

DBA

DSPA DGTA

DAPADPPA

minPts

d
en
si
ty

3 4 5 6 7
0.5

0.7

0.9

1.1

(d) Flickr

minPts

en
tr
o
p
y

3 4 5 6 7
6.2

6.5

6.8

7.1

7.4
DBA DPPA DAPA

DSPA DGTA

(e) DBLP

minPts

en
tr
o
p
y

3 4 5 6 7
5

7

9

11

13

DBA DPPA DAPA

DSPA DGTA

(f) Flickr

Fig. 5. Performance of Our Methods vs. minPts

thus following two existing studies [13], [14].

density =

∑k
j=1

∑
v∈Vj ,u∈Vj

h(v, u)∑
v∈{∪k

j=1Vj},u∈{∪k
j=1Vj} h(v, u)

(17)

entropy =

|A|−1∑
i=0

ci
∑k
j=1(|Vj |

∑|Ai|
x=1 (−pxj log2pxj))

c
∑k
j=1 |Vj |

(18)

Here, pxj denotes the percentage of nodes in cluster Vj that have
the same attribute value ax ∈ Ai, and |Ai| represents the total
number of attribute values inAi. A clustering is good, if its density
is high, and its entropy is low.

We evaluate the performance of our clustering approaches
under various parameters, as summarized in Table 4. Here, δ and
minPts are two DBSCAN parameters, β is used in the game
theory objective function, rs is the sample rate for DSPA, nw
denotes the number of work nodes, c is the weight constant for
all attribute types, and pe is the probability to generated ER
random network. Note that, c is set to the number of attribute
types (i.e., 2 for Flickr and 3 for DBLP) as default. In each
experiment, we vary one parameter, and fix the others to their
default values. All the methods were implemented in C++. We
conducted the experiments on a 12-node Dell cluster, where cluster
nodes are connected via Gigabit Ethernet. Each node has two 12-
core processors (Intel Xeon E5-2640 v4@2.40GHz) and 128GB

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX

β

ru
n
n
in
g
ti
m
e
(s
)

0.2 0.35 0.5 0.65 0.8
0

1000

2000

3000

4000
DBA DPPA

DSPA DGTADAPA

(a) DBLP

β

d
en
si
ty

0.2 0.35 0.5 0.65 0.8
0.91

0.94

0.97

1

DSPA DGTA

DBA DPPA DAPA

(b) DBLP

DBA DPPA DAPA

DSPA DGTA

β

en
tr
o
p
y

0.2 0.35 0.5 0.65 0.8
6.5

6.6

6.7

6.8

6.9

(c) DBLP

Fig. 6. Performance of Our Methods vs. β

rs

ru
n
n
in
g
ti
m
e
(s
)

0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

DSPA DGTA

DBA DPPA DAPA

(a) DBLP

rs

d
en
si
ty

0.2 0.4 0.6 0.8 1
0.88

0.92

0.96

1

DBA DPPA

DSPA DGTADAPA

(b) DBLP

rs

en
tr
o
p
y

0.2 0.4 0.6 0.8 1
6

6.25

6.5

6.75

7

DBA DPPA DAPA

DSPA DGTA

(c) DBLP

Fig. 7. Performance of Our Methods vs. rs

nw

ru
n
n
in
g
ti
m
e
(
1
0
3
s)

4 6 8 10 12
0

4

8

12
DBA DPPA DAPA

DSPA DGTA

(a) DBLP

nw

d
en
si
ty

4 6 8 10 12
0.91

0.94

0.97

1

DBA DPPA DAPA

DSPA DGTA

(b) DBLP

nw

en
tr
o
p
y

4 6 8 10 12
6.5

6.6

6.7

6.8

6.9

DBA DPPA DAPA

DSPA DGTA

(c) DBLP

Fig. 8. Performance of Our Methods vs. nw

RAM. Although each work node is a multi-core machine, only
one core is used to run our experiments.

7.2 Performance Study
We investigate the performance of our presented four distributed
methods when varying different parameters, including the clus-
tering method that uses the Distributed Partial PPR Algorithm to
compute PPR scores (DPPA), the method that uses the Distributed
Approximate PPR Algorithm to compute PPR scores (DAPA), the
method that utilizes the Distributed Sampling PPR Algorithm to
compute PPR scores (DSPA), and the method that utilizes the
Distributed Game Theory Algorithm to refine the result (DGTA),
compared with the baseline algorithmm (DBA).

First, we study the impact of δ on the efficiency and ef-
fectiveness of DBA, DPPA, DAPA, DSPA, and DGTA. Fig. 4
depicts the performance when changing δ on two datasets DBLP
and Flickr. The first observation is that, the efficiency (i.e., the
running time) of DGTA is the worst, followed by DBA, DPPA,
and DAPA, while DSPA is the best. This is because, DGTA
needs additional cost to refine the result, whereas DPPA, DSPA,
and DAPA are incremental PPR score computation methods that
store residues and reserves of nodes for reuse, which eliminates
substantial computation costs. In addition, DSPA samples the
messages propagated between nodes, resulting in better perfor-
mance in terms of efficiency. However, the running time of DGTA
decreases rapidly with the growth of δ on Flickr, while others
are affected slightly. The possible reason is that, as δ increases,

fewer nodes are included in clusters, and less cost is then required
by DGTA to refine the result. The second observation is that, the
effectiveness (i.e., density and entropy) of DSPA is the worst,
followed by DAPA, DPPA, and DBA, while DGTA performs
the best. The reason behind is that, DSPA trades the accuracy
for efficiency, while DGTA can improve the quality due to the
designed objective function. Finally, the density of our methods
increases while the entropy drops (i.e., the quality improves) when
δ grows. This is because, more compact partitions can be obtained
when δ increases.

Second, we investigate the impact ofminPts on the efficiency
and effectiveness of DBA, DPPA, DAPA, and DGTA. Fig. 5 shows
the results when varying minPts on DBLP and Flickr. As δ
and minPts are both used to define the density for DBSCAN,
the observations of increasing the value of minPts are similar
to those of increasing the value of δ. However, the entropy first
drops and then increases when minPts ascends on DBLP, and
the density first drops and then increases on Flickr. The reason is
that, when minPts grows, the clustering quality may drop due
to more separated partitions, and the quality may increase due to
more compact partitions. Hence, minPts value that achieves the
highest quality depends on the dataset distribution.

Third, we explore the impact of β on the performance of
DGTA. Fig. 6 plots the results when changing β on DBLP. Note
that, β only affects the performance of DGTA, as β controls the
importance between AssignmentCost and StructuralCost in the
game theory objective function. As observed, with the growth of β,

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

CHEN et al.: EFFICIENTLY DISTRIBUTED CLUSTERING ALGORITHMS ON STAR-SCHEMA HETEROGENEOUS GRAPHS 13

c

(a) DBLP

c

(b) DBLP

c

(c) DBLP

Fig. 9. Performance of Our Methods vs. c

pe 10
-5

(a) DBLP

pe 10
-5

(b) DBLP

pe 10
-5

(c) DBLP

Fig. 10. Performance of Our Methods vs. pe

the running time and the entropy slightly drop in most cases. This
is because, when β ascends, the importance of AssignmentCost
increases that has influence on both density and entropy, while
the importance of StructureCost decreases which has influence on
density.

Next, we explore the impact of the sample rate rs on the
performance of DSPA. Fig. 7 shows the results when varying
rs on DBLP. Note that, only DSPA is influenced by rs, which
keeps consistency with discussions in Section 6.3. As expected,
as rs grows, the running time of DSPA increases, while the result
quality (i.e., density and entropy) is improved. The reason behind
is that, the larger rs, the less messages are discarded by DSPA.
Note that, when rs reaches 1, the running time of DSPA is more
than that of DPPA and DAPA. This is because, DSPA needs
additional cost to do the sampling.

Then, we explore the impact of the number of worker nodes
nw on the performance of our methods on DBLP. Fig. 8 plots
the results when changing nw. It is observed that, as the number
of worker nodes increases, the density and the entropy are stable
while the running time drops. The reason is that, more worker
nodes can provide stronger computing power, but can not improve
the quality of clustering result. In addition, DBA and DGTA need
much more computations (e.g., the PPR score computations and
the objective function computations), and thus, their performance
can be improved significantly with the growth of nw.

In the sequel, we evaluate the impact of c on the performance
of our methods. Fig. 9 illustrates the results by varying c from
0.1875 to 6 on DBLP. The first observation is that the quality of
clustering result first improves and then drops with the growth of
c. This is because the contribution of attribute similarity cannot
be too small or too large. As observed, it achieves the best
density performance when c = 3, and achieves the best entropy
performance when c = 0.75. In addition, the running time increases
as c grows. The reason behind is that the growth of c results in
more information propagations between nodes when computing
PPR scores.

Finally, we verify the influence of network topology on the
performance of our methods. Here, we directly keep the hub and
attribute nodes in DBLP, and generate the edges between nodes

according to ER random network generation strategy, i.e., two
nodes are connected with the probability pe. Fig. 10 plots the
results by varying pe from 1.25×10−5 to 2.125×10−5, where the
corresponding number of generated edges are 1.3M, 1.9M, 3.03M,
3.77M, and 4.78M. Here, we fix minPts to 3, while δ is set to
0.055, 0.05, 0.035, 0.023, and 0.022 accordingly. This is because,
as the number of edges increases, the PPR score between two
nodes decreases that requires smaller δ for DBSCAN. The first
observation is that the clustering quality drops with the growth of
pe. This is because, as the node degree ascends, the probability that
nodes in different clusters are connected also increases, resulting
in worse clustering quality. In addition, the running time increases
with the growth of pe. The reason behind is that more connected
nodes incur larger number of information propagations between
nodes when computing PPR scores.

8 CONCLUSIONS

Star-schema heterogeneous graphs are a useful tool to represent
and study a wide range of real-world attributed graphs, such as bib-
liographic information and social media graphs. Clustering such
graphs can provide useful insights into underlying data and reality
that the data concerns. With the rapidly growth of data volume,
a distributed method is required. In view of this, we explore the
problem of distributed clustering on star-schema heterogeneous
graphs. We propose a Blogel based clustering framework, which
uses a symmetric unified distance measure based on PPR, employs
distributed DBSCAN for clustering, and updates the edge weights
iteratively in order to balance the importance of different attribute
types. Four methods are developed for computing PPR scores, i.e.,
distributed backward search algorithm (DBSA), distributed partial
PPR algorithm (DPPA), distributed approximate PPR algorithm
(DAPA), distributed sampling PPR algorithm (DSPA), where
DPPA and DAPA improve efficiency by avoiding recomputing the
PPR scores when edge weights are updated, while DSPA samples
the messages between nodes to reduce the communication cost. In
addition, distributed game theory based algorithm (DGTA) uses
game theory to trade efficiency for high quality results. Extensive
experiments using real-life datasets confirm the effectiveness and

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX

efficiency of our presented methods. In the future, it is interest to
further improve the efficiency of our framework. Also, the inter-
active result quality improvement is another promising direction.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant No. 2018YFB1004003, the NSFC
under Grant No. 62025206 and 61972338, and the NSFC Zhe-
jiang Joint und under Grant No. U1609217. Yunjun Gao is the
corresponding author of the work.

REFERENCES

[1] Y. Dodge, Statistical data analysis based on the L1-norm and related
methods. Birkhäuser, 2012.

[2] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in
SIGKDD, 1996, pp. 226–231.

[3] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[4] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised graph
clustering: A kernel approach,” Machine learning, vol. 74, no. 1, pp.
1–22, 2009.

[5] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, 026113, 2004.

[6] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “Scan: A structural
clustering algorithm for networks,” in SIGKDD, 2007, pp. 824–833.

[7] V. Satuluri and S. Parthasarathy, “Scalable graph clustering using
stochastic flows: Applications to community discovery,” in SIGKDD,
2009, pp. 737–746.

[8] G.-J. Qi, C. C. Aggarwal, and T. S. Huang, “On clustering heterogeneous
social media objects with outlier links,” in WSDM, 2012, pp. 553–562.

[9] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” TKDE, vol. 29, no. 1, pp.
17–37, 2017.

[10] Y. Sun, C. C. Aggarwal, and J. Han, “Relation strength-aware cluster-
ing of heterogeneous information networks with incomplete attributes,”
PVLDB, vol. 5, no. 5, pp. 394–405, 2012.

[11] X. Li, Y. Wu, M. Ester, B. Kao, X. Wang, and Y. Zheng, “Semi-
supervised clustering in attributed heterogeneous information networks,”
in WWW, 2017, pp. 1621–1629.

[12] A. Baroni, A. Conte, M. Patrignani, and S. Ruggieri, “Efficiently cluster-
ing very large attributed graphs,” in ASONAM, 2017, pp. 369–376.

[13] H. Cheng, Y. Zhou, and J. X. Yu, “Clustering large attributed graphs:
A balance between structural and attribute similarities,” TKDD, vol. 5,
no. 2, article no. 12, 2011.

[14] Y. Zhou, H. Cheng, and J. X. Yu, “Clustering large attributed graphs: An
efficient incremental approach,” in ICDM, 2010, pp. 689–698.

[15] L. Chen, Y. Gao, Z. Xing, C. S. Jensen, and G. Chen, “I2RS: A distributed
geo-textual image retrieval and recommendation system,” PVLDB, vol. 8,
no. 12, pp. 1884–1887, 2015.

[16] H. Ma, J. Zhu, M. R.-T. Lyu, and I. King, “Bridging the semantic gap
between image contents and tags,” IEEE Transactions on Multimedia,
vol. 12, no. 5, pp. 462–473, 2010.

[17] A. Lulli, M. Dell’Amico, P. Michiardi, and L. Ricci, “NG-DBSCAN:
Scalable density-based clustering for arbitrary data,” PVLDB, vol. 10,
no. 3, pp. 157–168, 2016.

[18] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, and E. M. Nguifo, “A
distributed and incremental algorithm for large-scale graph clustering,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 3, 2020.

[19] L. Chen, Y. Gao, Y. Zhang, C. S. Jensen, and B. Zheng, “Efficient and
incremental clustering algorithms on star-schema heterogeneous graphs,”
in ICDE, 2019, pp. 256–267.

[20] C. Bothorel, J. D. Cruz, M. Magnani, and B. Micenkova, “Clustering
attributed graphs: Models, measures and methods,” Network Science,
vol. 3, no. 3, pp. 408–444, 2015.

[21] J. D. Cruz, C. Bothorel, and F. Poulet, “Integrating heterogeneous infor-
mation within a social network for detecting communities,” in ASONAM,
2013, pp. 1453–1454.

[22] B. Boden, M. Ester, and T. Seidl, “Density-based subspace clustering
in heterogeneous networks,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2014, pp. 149–164.

[23] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, “A model-based
approach to attributed graph clustering,” in SIGMOD, 2012, pp. 505–
516.

[24] C. Luo, W. Pang, and Z. Wang, “Semi-supervised clustering on hetero-
geneous information networks,” in PAKDD, 2014, pp. 548–559.

[25] Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and X. Yu, “Pathselclus:
Integrating meta-path selection with user-guided object clustering in
heterogeneous information networks,” TKDD, vol. 7, no. 3, article no.
11, 2013.

[26] B. Zheng, K. Zheng, P. Scheuermann, X. Zhou, Q. V. H. Nguyen, and
C. Li, “Searching activity trajectory with keywords,” WWW Journal,
vol. 22, no. 3, pp. 967–1000, 2019.

[27] Y. Zhou and L. Liu, “Social influence based clustering and optimization
over heterogeneous information networks,” TKDD, vol. 10, no. 1, article
no. 2, 2015.

[28] J. Chen, W. Dai, Y. Sun, and J. Dy, “Clustering and ranking in heteroge-
neous information networks via gamma-poisson model,” in SDM, 2015,
pp. 424–432.

[29] C. Shi, R. Wang, Y. Li, P. S. Yu, and B. Wu, “Ranking-based clustering
on general heterogeneous information networks by network projection,”
in CIKM, 2014, pp. 699–708.

[30] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu, “Rankclus:
Integrating clustering with ranking for heterogeneous information net-
work analysis,” in EDBT, 2009, pp. 565–576.

[31] R. Wang, C. Shi, S. Y. Philip, and B. Wu, “Integrating clustering and
ranking on hybrid heterogeneous information network,” in PAKDD,
2013, pp. 583–594.

[32] M.-F. Balcan, S. Ehrlich, and Y. Liang, “Distributed clustering on
graphs,” NIPS, 2013.

[33] K. Hosseini, H. Dahrouj, and R. Adve, “Distributed clustering and
interference management in two-tier networks,” in 2012 IEEE Global
Communications Conference, 2012, pp. 4267–4272.

[34] O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” IEEE Transactions on
mobile computing, vol. 3, no. 4, pp. 366–379, 2004.

[35] L. Qing, Q. Zhu, and M. Wang, “Design of a distributed energy-efficient
clustering algorithm for heterogeneous wireless sensor networks,” Com-
puter communications, vol. 29, no. 12, pp. 2230–2237, 2006.

[36] S. McClean, B. Scotney, K. Greer, and R. Pairceir, “Conceptual clustering
of heterogeneous distributed databases,” in PKDD, 2001, pp. 46–55.

[37] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[38] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in SIGMOD, 2010, pp. 135–146.

[39] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From
”think like a vertex” to ”think like a graph”,” PVLDB, vol. 7, no. 3, pp.
193–204, 2013.

[40] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework
for distributed computation on real-world graphs,” PVLDB, vol. 7, no. 14,
pp. 1981–1992, 2014.

[41] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning in
the cloud,” PVLDB, vol. 5, no. 8, pp. 716–727, 2012.

[42] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a
memory cloud,” in SIGMOD, 2013, pp. 505–516.

[43] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012, pp. 15–28.

[44] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed dataflow
framework,” in OSDI, 2014, pp. 599–613.

[45] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. Mirrokni, and S.-H.
Teng, “Local computation of pagerank contributions,” Algorithms and
Models for the Web-Graph, pp. 150–165, 2007.

[46] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and M. Onizuka,
“Efficient ad-hoc search for personalized pagerank,” in SIGMOD, 2013,
pp. 445–456.

[47] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa, “Fast and
exact top-k search for random walk with restart,” PVLDB, vol. 5, no. 5,
pp. 442–453, 2012.

[48] T. Guo, X. Cao, G. Cong, J. Lu, and X. Lin, “Distributed algorithms on
exact personalized pagerank,” in SIGMOD, 2017, pp. 479–494.

[49] P. Lofgren, S. Banerjee, and A. Goel, “Personalized pagerank estimation
and search: A bidirectional approach,” in WSDM, 2016, pp. 163–172.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047631, IEEE
Transactions on Knowledge and Data Engineering

CHEN et al.: EFFICIENTLY DISTRIBUTED CLUSTERING ALGORITHMS ON STAR-SCHEMA HETEROGENEOUS GRAPHS 15

[50] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li, “HubPPR: Effective
indexing for approximate personalized pagerank,” PVLDB, vol. 10, no. 3,
pp. 205–216, 2016.

[51] H. Huang, Y. Gao, K. Chiew, L. Chen, and Q. He, “Towards effective and
efficient mining of arbitrary shaped clusters,” in ICDE, 2014, pp. 28–39.

[52] Z. Bu, H. J. Li, J. Cao, Z. Wang, and G. Gao, “Dynamic cluster formation
game for attributed graph clustering,” IEEE Transactions on Cybernetics,
pp. 1–14, 2017.

[53] N. Armenatzoglou, H. Pham, V. Ntranos, D. Papadias, and C. Shahabi,
“Real-time multi-criteria social graph partitioning: A game theoretic
approach,” in SIGMOD, 2015, pp. 1617–1628.

[54] H. Zhang, P. Lofgren, and A. Goel, “Approximate personalized pagerank
on dynamic graphs,” in SIGKDD, 2016, pp. 1315–1324.

Lu Chen received the PhD degree in computer
science from Zhejiang University, China, in 2016.
She was an assistant professor in Aalborg Uni-
versity for a 2-year period from 2017 to 2019,
and she was an associated professor in Aalborg
University for a 1-year period from 2019 to 2020.
She is currently a ZJU Plan 100 Professor in
the College of Computer Science, Zhejiang Uni-
versity, Hangzhou, China. Her research interests
include indexing and querying metric spaces,
graph databases, and database usability.

Yunjun Gao received the PhD degree in com-
puter science from Zhejiang University, China,
in 2008. He is currently a professor in the
College of Computer Science, Zhejiang Univer-
sity, China. His research interests include spa-
tial and spatio-temporal databases, metric and
incomplete/uncertain data management, graph
databases, spatio-textual data processing, and
database usability. He is a member of the ACM
and the IEEE.

Xingrui Huang is currently working toward the
MS degree in College of Computer Science,
Zhejiang University, China. His research interest
includes graph databases.

Christian S. Jensen is an Obel professor of
computer science with Aalborg University, Den-
mark. He was a professor with Aarhus University
for a 3-year period from 2010 to 2013, and he
was previously with Aalborg University for two
decades. He recently spent a 1-year sabbati-
cal with Google Inc., Mountain View, CA. His
research concerns data management and data
intensive systems, and its focus is on temporal
and spatio-temporal data management. He is a
member of the Academia Europaea, the Royal

Danish Academy of Sciences and Letters, and the Danish Academy of
Technical Sciences. He has received several national and international
awards for his research. He is editor-in-chief of the ACM Transactions
on Database Systems and was an editor-in-chief of the VLDB Journal
from 2008 to 2014. He is a fellow of the IEEE and ACM.

Bolong Zheng received the bachelor’s and
master’s degrees in computer science from the
Huazhong University of Science and Technol-
ogy, in 2011 and 2013, respectively, and the
PhD degree from the University of Queens-
land, in 2017. He is an associate professor with
the Huazhong University of Science and Tech-
nology (HUST). His research interests include
spatio-temporal data management and graph
data management.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 07,2021 at 09:07:31 UTC from IEEE Xplore. Restrictions apply.

