Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Connectivity of spaces of directed paths in geometric models for concurrent
computation

Raussen, Martin

Creative Commons License
Unspecified

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Raussen, M. (2021). Connectivity of spaces of directed paths in geometric models for concurrent computation.
arXiv.org. https://arxiv.org/abs/2106.11703

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://vbn.aau.dk/en/publications/390c70e5-ef1f-46dd-b859-d5f173be7197
https://arxiv.org/abs/2106.11703

arXiv:2106.11703v1 [csFL] 22 Jun 2021

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC
MODELS FOR CONCURRENT COMPUTATION

MARTIN RAUSSEN

ABSTRACT. Higher Dimensional Automata (HDA) are higher dimensional relatives to tran-
sition systems in concurrency theory taking into account to which degree various actions
commute. Mathematically, they take the form of labelled cubical complexes. It is important
to know, and challenging from a geometric/topological perspective, whether the space of
directed paths (executions in the model) between two vertices (states) is connected; more
generally, to estimate higher connectedness of these path spaces.

This paper presents an approach for such an estimation for particularly simple HDA
modelling the access of a number of processors to a number of resources with given limited
capacity each. It defines a spare capacity for a concurrent program with prescribed periods
of access of the processors to the resources. It shows that the connectedness of spaces of
directed paths can be estimated (from above) by spare capacities. Moreover, spare capacities
can also be used to detect deadlocks and critical states in such a HDA.

The key theoretical ingredient is a transition from the calculation of local connectedness
bounds (of the upper links of vertices of an HDA) to global ones by applying a version of
the nerve lemma due to Anders Bjorner.

1. PV PROGRAMS AND THEIR GEOMETRIC SEMANTICS

1.1. Euclidean cubical complexes and path spaces. In this paper, we consider an old
and simple model for concurrent computation, the so-called PV models going back to Dijkstra
[4]: In the simplest situation, consider n processors p; € P each executing a linear program.
During execution, a processor may lock (Pr) and relinquish (Vr) one or several resources r
from a pool R of resources; possibly several times. Any resource r € R has capacity to serve
up to k(r) € N processors at any given time.

Every execution of a linear program for a given processor corresponds to a directed map
pj : I =10,1] = I;; here, I; is a finite closed interval; and directed means continuous and (not
necessarily strictly) increasing. Disregarding conflicting locks in the first place, any concurrent
execution corresponds to a (componentwise) directed path p : I — H;L:1 I; € R". Capacity
restrictions disallow these d-paths to enter a forbidden region F' C I; € R™ (at least one of
the resources locked by more processors than its capacity allows); the “allowed” state space
X C R" for such a PV program is the complement of the forbidden region F' within H?Zl I;.
For details cf Section or the more comprehensive description in Fajstrup etal. [6 ch. 3].

This state space is a very particular simple case of a pre-cubical set or rather its geometric
realization (cf [6, ch. 3.4|, Ziemianski [21], Sect. 1|, [22, Sect. 2.4]) underlying general Higher
Dimensional Automata introduced by Pratt [11] and analyzed by van Glabbeek, cf eg [18]). It
has a natural embedding into R"™ (a Euclidean cubical complex); as such, it is non-self-linked
and proper, cf Ziemianiski [21], Sect. 1].

Key words and phrases. Higher Dimensional Automata, directed path, spare capacity, connectivity, nerve
lemma, deadlock, critical state.
1

http://arxiv.org/abs/2106.11703v1

2 MARTIN RAUSSEN

The space of all executions from an initial state s to a final state t in state space X
corresponds to the space P(X)L of all directed paths p : I — X with p(0) = s and p(1) = ¢;
equipped with the compact-open topology (uniform convergence). Various simplicial models of
such spaces have (in far more general situations) been described in the literature (in particular
Raussen [14] [15], Fajstrup etal [6] and Ziemianiski [21,22]. The most notable result (Ziemianski
[20, Theorem 5.9]) reports that they can be arbitrarily complicated: For every finite simplicial
complex C there exists a PV program with a state space X and vertices v and w such that the
path space]3(X)% has a connected component that is homotopy equivalent to that complex C.
On the positive side, it was shown that, roughly speaking, path connectivity locally everywhere

—

implies global path connectivity of all path spaces P(X)% (cf Raussen [12, Prop. 2.18], Belton
etal [I, Theorem 2]). This is quite important: Connectedness of path space means that any
two directed paths are d-homotopic (homotopic through a one-parameter family of d-paths),
and thus any two executions are equivalent and yield the same result (cf [6]).

Throughout most of this paper, we stick to concurrent executions of linear programs. This
might seem very restrictive and unrealistic; processors usually execute programs on directed
graphs, allowing branchings and loops. The space of all such executions between a source and
a target decomposes (by unfolding) to a disjoint union of spaces of executions along the linear
directed paths within such a directed graph. As a consequence, the space of all executions in
a concurrent program splits into spaces of executions along n-tuples of such linear directed
paths; for these linear subspaces, the methods developed below apply. For details, consult

Section .3l
1.2. A short overview.

1.2.1. The main lines. The present paper yields a quite simple numerical criterion ensuring
local connectivity of path spaces which, by an inductive argument using machinery from
combinatorial topology (cf Bjorner [3, Theorem 6]), implies global connectivity. We call the
number in question the spare capacity of the program, cf Definition Il The spare capacity
allows to estimate not only path connectivity but also higher connectivity of spaces of directed
paths between vertices in the associated state space.

More precisely, take departure in a PV-program X on n processors p € P with several shared
resources 7 within a pool R of resources, each with a capacity x(r) < n. We determine, by a
simple calculation, the spare capacity x(X) of X, a numerical invariant — depending on the
individual capacities and on the intersection patterns of intervals on which these resources are
jointly called by the processors — that allows to determine the minimal (higher) connectivity
of path spaces P(X)% (with a fixed target ¢ that is reachable from a variable source s): There
exists a vertex s such that path space P(X)! is exactly (k(X)—2)-connected, and for all other
vertices s', P(X)!, is at least (k(X) — 2)-connected.

In particular, if this invariant £(X) > 2, it is guaranteed that all relevant (non-empty) path
spaces are path-connected. That means that all executions of the program X (same source,
same target, same individual execution, in particular same number of loops traversed) yield
the same result regardless the order of accesses to shared resources. Such a program can
thus not be used to solve a decision problem (cf eg Herlihy etal [8]). On the other hand, if
k(X) = 1, then there exists a vertex such that directed paths starting from that vertex are

not dihomotopic, and corresponding executions may lead to different results.

1.2.2. Content of the paper in more detail. In Section 2, we describe the point of depar-
ture: Given a number of processors, each following a linear program (linearity is not assumed

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATIOIS

throughout) and participating in a concurrent program with shared resources, each with a
given capacity, which are potentially locked and relinquished sequentially by every processor.
The geometric semantics corresponds to a state space in the form of a Euclidean cubical com-
plex, a subcomplex of a cubical subdivision of R"™; executions correspond to directed paths
from a source vertex to a target vertex. The aim is to study the space of all such executions
as a topological space; in particular to determine its connectivity. This section recapitulates
in essence the point of departure in Fajstrup etal [6], ch. 3].

Section 3 focusses on the local behaviour of the state space. As already explained by
Ziemianski [20] and Belton etal [1} 2], the key information is the topology (in particular, the
connectivity) of the future links (or past links) of vertices in the state space. It turns out that
these future links are joins (aka convex combinations) of skeleta of simplices. This observation
lets us determine the connectivity of the future link of a vertex v in terms of a spare capacity
k(X; V) defined at that vertex; this spare capacity can be calculated from the syntax of the
individual programs by a combinatorial formula; cf Definition B.7

In Section 4, we define the spare capacity of a concurrent program (or its state space) as
the minimum of the spare capacities of all its reachable vertices. Bjorner’s version of the
nerve theorem [3, Theorem 6| is then applied to conclude that the connectivity of the state
space is bounded below by the connectivities of the future links of all inbetween vertices. The
overall result holds also for unfoldings of individual programs modelled on a general digraph.
Moreover, the section contains reflections on what happens to spare capacities (and thus
connectivities) if processors are allowed to crash.

The final section is devoted to a sketch of algorithmic aspects. Particular care is devoted
to deadlock detection — corresponding to spare capacity 0 at a vertex — extending the results
of Fajstrup etal [7], and also to vertices with spare capacity 1 indicating potential “splits”
of the space of executions into several path components. Throughout, simple examples and
illustrations motivate the strategy.

2. FORBIDDEN REGION AND STATE SPACE

2.1. Resource consumption. Let R denote the set of resources and P = [1 : n] the set of
Processors.

2.1.1. One processor. A PV command line for a single processor j € P can be encoded by a
number of functions Pr;, Vr;j : [1: k;j(r)] — [1:1(j)], r € R, such that

o Pr;i(i) < Vr;(i), i <kj(r), and Vr;(i) < Prj(i+1), i <kj(r), and
* Urericpin, @y {Pr3(@), Viry(i)} = [1:1(5)]-

It is allowed that k;(r) = 0, ie that some resources are not called upon by processor j.

Forre Rand j € P, let crj: I;:=1[0,1(j) + 1] — {0,1} denote the characteristic function
of the subset Uie[l:kj(r)]]Prj(i)’ Vir;(i)[U{l(j) + 1} indicating whether j has a lock to r or not
(or has arrived at a the final state). Together, they assemble to a binary valued consumption
vector function c; : [0,1(5)] — {0,1}%.

Furthermore, we let dr; : [0 : I(j)] — {—1,0,1} denote the difference of the characteristic
function of the set of integers {Pr;(i)] 1 < i < k;j(r)} and of the characteristic function of
{Vrj(i)| 1 <i < kj(r)}, ie drj(k) = £1if k = Pr;(i), resp. k = Vr;(i) for some i € [1: k;(r)],
and 0 else. Then cr;(i +1t) = crj(i) +dr;(i), i € [1:1(j) — 1],¢ €]0,1[.

4 MARTIN RAUSSEN

2.1.2. Seweral processors. Information regarding consumption of resources by all processors
j € P is encoded by functions on || je p[0,1(5)+1)] € RP: In particular, the total consumption
Vector function ¢ : [[;p[0,1(j) +1)] — — (N>0)® is defined by c(x1,...,2,) = > jep Ci(T))
measuring how many locks to resources r € R have been acquired at (z1,...,x,). It has
component functions cr : [T;.p[0,1(j) + 1)] = (N>o) for every r € R.
How does the consumption function change when proceeding from an integer vertex v =
(i1, 1in) € [L;epl0: 1(j)] N Z"? The answer is given as

er(is +t1,. o yin +tn) = (i, ... i) + Y dri(i;), 0< ¢ < 1.
t; >0
This last sum encodes the number of Pr commands at the vertex v = (i1,...,7,) on a given
set of processors (those j with ¢t; > 0).

2.2. Forbidden region. State space.

2.2.1. A single shared resource. We start by considering the case of a concurrent program in
which processors in a set P := {1,...,n} compete for a single resource r with capacity x(r)
called upon (often several times) by programs each of the form (PrVr)ki, 1 < j <n, k; > 0;
the case k; = 0 is allowed in order to take care of processors that do not call on r at all Let
N(r) C [1 : n] denote the subset with the property: j € N(r) & k; > 0 < p; calls upon r at
least once.

The corresponding forbidden region F(r) is defined as

F(r) ={x=(z1,...,2p) GHOZ +1)]| er(z) > k== k(r)}.
jeP
It can be described as a union of subsets enumerated as follows: Consider any injection
i(r) : [1: x4+ 1] < N(r) C[1:n] and the dual projection i(r)* : R* — R**!. For every such
injection consider all (k + 1)-tuples 1 := (jl,...,j,ﬁl) such that 0 < ji < ki(1), 1 <1 <
%+ 1. For each combined choice let F(i,1) := (*)" ([Pr; (i), Vr;(i)]); a product that has
(n—k—1) factors consisting of an entire interval [0,[; +1] corresponding to j & i(r)([1 : k+1]).
The entire forbidden region is then F/(r) := (1); cf Figure[ll
The state space X (r) is the complement of the forbidden region:
X(r) = [J10,00k5) + Y\ F(r).

7j=1

We focus on properties of spaces P(X (r))L of directed paths in X (r) (cf Section 1) between
two vertices (in X)) with integer coordinates. It can be shown (cf Raussen-Ziemianski [17])
that this path space is homotopy equivalent to the path space in the x-skeleton — consisting of
all cubes of dimension at most x — of the cubical grid decomposition of []}[0,1(k;) + 1] with
integer vertices.
The common boundary of F'(r) and of X (r) consists of those = € [[}_,[0,1(k;)+1] satisfying
o cr(xz) < k(r)
o Jt=(t1,....tn), -1 <tj<1tj=0fora; €Z: cr(z+t) > rs(r).
In particular, a vertex v = (i1, ...,i,) with integer coordinates is contained in this boundary
if and only if
o cr(v) < k(r)

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATION

FIGURE 1. Forbidden region and state space (complement of the union of all
boxes): One resource r of capacity 2 (left), resp. 1 (right); three processors
each executing the program PrVrPrVr.

o cr(v) + [{jl 45 € Prj([0: ki (r)]) U V([0 k;(r)])} > w(r).
In the latter case, the point v + (¢1,...,t,) is contained in F(r) if
0 <t; <1forije Pri([0:k;j(r)]), =1 <t; <0 fori; € Vrj([0:k;(r)]) and t; = 0 else.

2.2.2. Several resources. The forbidden region F(R) corresponding to a set R of resources is
the union F :=|J F(r) of the forbidden regions F(r), r € R. It agrees with
{z = (21,...,20) € [[721[0,1(Ky) + 1] 3r € R er(w) > w(r)}.
The state space is its complement: X (R) := [[7_;[0,1(k;) + 1]\ F' =, cx X (7).
It agrees with {z = (21,...,2,) € [[[_1[0,1(kj) + 1]| Vr € R:er(x) < w(r)}.
A vertex v € X(R)p with integer coordinates in the common boundary 0F = 90X is

characterized by the following properties:

(1) er(v) < k(r) forall r € R

(2) Ire R:cr(v) + [{jl vj € Pri([0: k;(r)]) UVr;([0: kj(r)])} > &(r).

3. FUTURE LINKS AND THEIR CONNECTIVITY

Let I™ = [0,1] denote the standard n-cube. Any subcube (face of) I"™ containing the
minimal vertex 0 is characterized by the set of l-coordinates of its maximal vertex. The
poset of the subcubes properly containing 0 as minimal vertex is thus in an order-preserving
correspondence with the non-empty subsets of [1 : n] and forms an (n — 1) dimensional
“future” simplex A,,_1. For a cubical subcomplex X C I" containing 0, consider the future
link lk*(X,0) in X consisting of those simplices corresponding to the subcubes contained in
X. This definition extends easily to the future link Ik (X,v) of a vertex v (with interger
coordinates; a state) in a Euclidean cubical complex X C R"™. By definition, it is a simplicial
complex embedded in the future simplex A,_; of all cubes in R™ properly containing v as
minimal vertex; cf Ziemianski [20, Def. 5.1] and Belton etal [1, Def. 4|, [2, Sect. 2.2] who deal
with analogously defined past links.

3.1. A single resource. Let v = (vi,...,v,) € X(r) C [[}_,[0,1(k;) + 1] denote a vertex in
the state space X (r) corresponding to a single resource r; cf Section 2221l Let m(v) denote
the number of coordinates that are not maximal (ie v; # l(k;) + 1). To the maximal cube

6 MARTIN RAUSSEN

M(v) C I[j-4[0,1(k;) + 1] with lower vertex v — of dimension m(v) — corresponds a future

simplex A™®)=1: the future link Ikt (X (r),v) € A™®~1 encodes those faces of M(v) that
are contained in X (r).
The capacity x(r) of resource r has the following consequence:

v

1) the (k(r) — 1)-skeleton AT~ of the future simplex A™V)=1 if all coordinates v; are
(k(r)— J
of the form Pr;(i) or the ﬁnal ()+ 1.

(2) contractible otherwise.

Lemma 3.1. The future link lk+(X(),v) s
m(

Proof. (1) The maximal subcubes in X (r) containing v as minimal vertex are in one-to-
one correspondence with subsets of cardinality x(r) among the coordinates in v that
are not final.

(2) Suppose v; is neither of the form Pr;(i) nor the final [(k;)+1. Consider the subsimplex
A™)=2 Am()=1 consisting of all subsets not containing j. For every subcube
@ C X(r) with minimal vertex v and future simplex contained in @, the product
@ x I (in direction j) is also contained in X(r). In other words, the future link
Ik*T(X(r),v) is a cone with apex corresponding to j; and hence contractible.

O
Corollary 3.2. The future link [k* (X (r),v) is

(1) contractible if either v has at least one coordinate not of the form Pr;(i) or the final
l(kj) + 1 or if m(v) < k(r)

(2) (k(r)—2)-connected but not (k(r) — 1)-connected if all coordinates v; are of the form
Pr;(i) or the final [(k;) + 1 and if m(v) > ¢(r).

Remark 3.3. For a resource r with given capacity &, information about the homology of the
path space P(X(r))%kJrl, k = (ki,...,ky), ie the Betti numbers, can be found in Meshulam-
Raussen [10, Corollary 5.2].

3.2. Several shared resources. Let us now consider a program on the resource set R and
a vertex v = (vy,...,v,) € Xo in the corresponding state space X := X(R), cf Section
Every coordinate v; is either 0 or maximal or in the range of one of the functions Pr, resp.
Vr, r € R. It is only relevant to investigate the future links of vertices v with all coordinates
either maximal or in the range of a function Pr;, r € R, j € P, since

Lemma 3.4. Let one of the coordinates v; be either O or of the form Vr(ij) for some resource
r € R. Then the future [k (X, v) is contractible.

Proof. As in the proof of Lemma B.1] the future link is then a cone and hence contractible. [

We need some notation to explore future links of the remaining vertices. We let XéD denote
the set of those vertices v € Xy with all coordinates maximal or in the range of one of the
Pr-functions. For such a vertex v:

e P(v) C P denotes the subset of active processors j such that v; # I(k;) + 1 (not a
final state); with cardinality m(v) := |P(v)].

e R(v) C R denotes the subset of resources such that there exists a j € [1 : n] with v;
in the range of Pr (a lock to r is requested at v).

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATION

e For r € R(v), we let Pr(v) denote {j € P(v)|v; € Pr([1: k;(r)])} the set of processors
with a call to resource r at v, with cardinality dr(v) := | (v)| ie the number of calls
to r issued at v. The sum ZreR dr(v) is equal to m(v) = |P(v)| — if every processor
calls exactly one resource at a “tlme”.

With this in place, we can formulate the following crucial simple technical result:

Proposition 3.5. Forv € X[, the future link k™ (X, v) is homeomorphic to a join (consisting
of all convex combinations; notation x) of skeleton spaces
lk+(X ’U) o * Adr(v _ * Adr(v)—l

k(r)—cr(v)—1 k(r)—cr(v)—1)"
reR(v (k(r)=er(v)=1) re€R(v), cr(v)<s(r) (k(r)=er(v)=1)

Here, join with an empty set — occuring on the left hand side if er(v) = k(r) — has to be
understood as A x () = A.

Proof. Decompose the maximal cube M (v) C []7_;[0,1(k;) + 1] with minimal vertex v € xF
— of dimension m(v) — as a product [[,¢pq,) M(r) of cubes M(r) in directions Pr(v), each
of dimension dr(v),r € R(v). A (future) subcube C' C M (v) decomposes correspondingly as
C = [l,epw) C(r). For a future cube C' in X (R), the capacity constraint regarding r € R
corresponds to dim C'(r) < k(r) — cr(v): since cr(v) locks are already active at v, only up to
k(r) — cr(v) locks can be acquired at v.

Products of cubes correspond to unions of sets of indices, and these correspond to joins of

the associated future links of v with respect to each of the C(r), r € R(v). Apply Lemma
3.1 O

Remark 3.6. Proposition is only true — on the nose — if one assumes that every processor
makes call to resources subsequently, not at the same “time”. If this is not the case, one
may split up two concurrent calls without changing the homotopy type of the path space, as
observed by Ziemianski |20 Sect. 3|.

For every vertex v € X{, let x,, : R — {0, 1} denote the characteristic function of R(v) C R.

Definition 3.7. The spare capacity k(X;v) of the state space X at the (allowed) vertex
v € Xt is defined as

Y rer Xo(r)(K(r) —cr(v)) else

Remark 3.8. (1) We remarked in Section 2222 that if a vertex v € X{ is reachable, then
cr(v) < k(r) for each 7 € R(v). Hence x(X;v) > 0 for every v € X{.

(2) For a (critical) vertex v € X{” in the boundary of the state space X, it follows from
Section that k(r) — cr(v) > 0 for all » € R. Moreover, dr(v) > k(r) — cr(v) for
all 7 € R(v). In particular, x(X;v) is finite for such a vertex.

(3) For v € X[, spare capacity x(X;v) is finite if and only if for every resource r € R(v)
either ¢r(v) = k(r) or dr(v) > k(r) — cr(v). Moreover, cr(v) < k(r) for all » € R, and
v is contained in the boundary of X.

(4) For k(X;v) < oo, the definition of spare capacity is equivalent to

K(X5v) = ZTGR(U) K(r) — ZreR(u) cr(v).

Corollary 3.9. Let v € XéD denote a vertex.
(1) If k(X;v) = oo, then lk*(X,v) is contractible.

(X:v) = {oo dr(v) < k(r) — er(v) > 0 for at least one r € R(v) .

8 MARTIN RAUSSEN

(2) v is a deadlock vertex if and only if kK(X;v) = 0.

(3) If kK(X;v) < oo, then K(X;v) <n —|R(v)|.

(4) The future link [k*(X,v) is disconnected if and only if £(X;v) = 1.

(5) The future link Ik (X, v) is path-connected but not simply connected if and only if
K(X;v) = 2.

(6) If 2 < K(X;v) < oo, then Ik (X, v) is (k(X;v) — 2)-connected but not (k(X;v) — 1)-
connected.

Proof. (1) If dr(v) < k(r) — cr(v) for r € R(v), then the skeleton corresponding to r
in the join decomposition from Proposition is the entire simplex A4 (v)—1 (non-
empty since dr(v) > 0) and hence contractible: All processors locking r at v can
proceed independently of each other. Moreover, a join with a contractible space (in
Proposition [B.3)) is contractible.

(2) Spare capacity k(X;v) = 0 for v € Xp if and only if er(v) = k(r) for all » € R(v).
Hence, none of the processors can acquire an additional lock at v; or more technically,
all skeleta Azl;g:;:ir(v)—l)’ r € R(v), are empty. If x(X;v) > 0, then cr(v) < k(r) for
some 7 € R(v). At least one processor can proceed from v; at least one of the skeleta
is non-empty.

(3) For each r € R(v) we have that cr(v) — k(r) < dr(v) — even if the left hand side is 0.
Since we are dealing with integers, this means that cr(v) —k(r) < dr(v) —1. Summing
up over all r € R(v), we get the spare capacity on the left and n — |R(v)| on the right.

(4) The spare capacity x(X;v) =1 if and only if k(r) = cr(v) for all r € R(v) apart from
a single g € R(v) with k(rg) = crg(v) + 1. In that case [k (X, v) is the 0-skeleton of
A@0®)=1 wwhich is not path-connected since drg(v) > k(rg) — cro(v) = 1.

(5) The spare capacity x(X;v) = 2 if and only if either there is a single resource ro € R(v)
with x(rg) = cro(v) + 2 and k(r) = er(v) for all others or if there are two resources
r1,72 € R(v) with k(r;) = cri(v) + 1 and k() = cr(v) for all others. In the first case,
Ikt (X,v) is the 1-skeleton of a simplex A4ro()—1 which is path-connected, but not
simply-connected, since dro(v) > k(rg) — cro(v) = 2. In the second case k™ (X, v) is
the join of two discrete spaces which is path-connected. It cannot be simply-connected:
Neither of them is a single point since dr;(v) > k(r;) — cri(v) = 1.

(6) If k(X ;v) > 3, then Ik* (X, v) is either the (k(X;v) — 1)-skeleton of a non-empty sim-
plex or the join of a path-connected space with another space, and therefore simply-
connected; connectivity can thus be read off from homology. The Mayer-Vietoris
sequence in homology (cf. [9, ch. 2.2] applied to a join Ax* B =CAx BUaxp AxCB
shows: If A k-connected and B is l-connected, then A x B is (k + [+ 1)-connected.
Inductively, this implies that the join in Proposition is trivial in dimensions up to
k(X;v) — 2 and non-trivial in dimension x(X;v) — 1. The Betti number in that di-
mension is the sum of the topdimensional Betti numbers of the skeleta of the simplices
involved.

O

Remark 3.10. Let us stress: A vertex v € X! has a future link Ik*(X;v) that is not path-
connected if and only if k(X ;v) =1 if and only if k(r) = er(v) for all r € R(v) apart from a
single resource rg € R(v) with drg(v) > k(rg) — cro(v) = 1.

We will call such a vertex v with x(X;v) =1 a critical vertex (or state)

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATION

L 72 of capacity three each, and four proces-

Example 3.11. (1) Consider two resources r
sors p;, 1 <i<4.

A: Processors p;,i < 3, start with Pr! Pr? and py starts with Pr2Pr!. At the vertex
v=1(2,2,2,2) € XéD with the final lock requests, ps cannot proceed whereas two
of the processors p;, i < 3, can proceed concurrently. Hence (kT (X;v) is the
I-skeleton of a 2-simplex homeomorphic to S! (path-connected, but not simply-
connected).

B: pi1,po start with PrlPr? and ps,ps starts with Pr2Prl. At the vertex v =
(2,2,2,2), one out of p1,ps and one out of ps, ps — but not both — can proceed.
Hence k1 (X;v) is the join of two spaces consisting of two points each; the re-
sulting graph is homotopy equivalent to S*.

In both cases, k(X;v) = 2.
(2) Now add a fifth processor pg starting with Pr!Pr2.

A: The vertex w = (2,2,2,2,2) is no longer reachable: cr!(w) =4 > 3 = x(r!).

B: At w, only one of processors pg, p1, p2 can proceed; ps and p4 have to wait. Hence
[kT(X,w) is a three-point space and not path-connected. This agrees with our
observation from Remark BI0t «(X;w) = 1.

Remark 3.12. Is it necessary to analyze the local future of (points on) faces of the state
spaes, as well? This is not the case as long as we only consider spaces of d-paths whose target
is a verter t. It is shown in Fajstrup [5] that P(X)! and P(X), are homotopy equivalent if
v is a point on a face with top vertex vyg.

4. GLOBAL CONNECTIVITY OF SPACES OF D-PATHS

We fix a PV-program with state space X and target vertex t. All future links have to be
understood with respect to that target . Our aim is to establish connectivity bounds for
spaces]3(X)¢ of directed paths within X starting at v and ending at ¢, endowed with the
compact-open (aka uniform convergence) topology; in particular, to find out whether such
spaces are path-connected, via directed homotopies, ie 1-parameter families of directed paths;

cf Fajstrup etal [6], ch. 4.2].

Definition 4.1. The spare capacity x(X) of a concurrent PV program with state space X
is defined as k(X)) := minge xr < k(X;v), ie the minimum of all spare capacities k(X;v) of
(allowed) vertices v € X from which ¢ is reachable.

Remark 4.2. It is possible to remove the doomed region (cf [6, ch. 5]) the set of all elements
that cannot be connected to ¢ by a d-path) from the state space in a first algorithmic step.
Only the spare capacities of vertices in the new smaller state space have to be estimated; cf
Section for details.

4.1. The spare capacity as a connectivity indicator.

Proposition 4.3. Given the state space X of a concurrent (linear) PV -program with final

state t and a vertex vy € XéD from which t is reachable. Then the path space ﬁ(X)ZO 18
(k(X) — 2)-connected.

Proof. The proof makes use of the future link (k™ (X, v) of a vertex vy € X viewed as a poset
category, with inclusion (of sets; or simplices) as partial order. It proceeds by induction on
the L; (aka taxicab) distance between vertices vy and ¢ in the cubical grid; cf Raussen [13],

10 MARTIN RAUSSEN

Sect. 2.2] in this context. It starts with distance 0, ie vg = t. Then the path space consists of
the constant path only, and it is hence contractible.

Assume by induction that P(X)! is (k(X)—2)-connected for every vertex v with vy < v < t,
ie vy # v and there exist d-paths from vy to v and from v to ¢t. In Raussen-Ziemianski [17), Sect.
2.3|, subsequently exploited in Ziemianski [20] and Belton etal [I] Q]EL it is shown that P(X)
is the colimit (the union) of certain subspaces Fvﬁ(X)gO,v € Ikt (X,vg) with Fuﬁ(X)ZO
homotopy equivalent to P(X)!; in particular, Fvﬁ(X)ZO is (k(X) — 2)-connected for each
vertex v in the future link k™ (X, vg).

The geometric realization of the future link category (aka its nerve) is the future link space
IkT(X,vp) that is (at least) (k(X) — 2)-connected by Corollary We apply Bjorner’s
theorem [3, Theorem 6] on a colimit of spaces whose connectivity is limited below in a certain
pattern. These connectivity conditions are certainly (more than) met, and hence the colimit of
the spaces Fvﬁ(X)ZO, and therefore the path space ﬁ(X)f)o, has homotopy groups isomorphic
to those of the nerve of the (future link) category up to dimension x(X) — 2. In particular,
the path space ﬁ(X)f,o is also (k(X) — 2)-connected.

Bjorner’s theorem is formulated for simplicial complexes and their subcomplexes. All oc-
curing path spaces have the homotopy type of CW-complexes, cf Raussen [13 Prop. 3.15],
and hence of simplicial complexes, cf Hatcher [9, Theorem 2C.5]. O

As a special case, we obtain

Corollary 4.4. Let X denote a Euclidean cubical complex with spare capacity x(X) > 2 and
vertices vg,t € XéD . Then P(X)! is either empty or path-connected.

V0

Remark 4.5. (1) Corollary @4 has the following interpretation, under the stated assump-
tions: Every concurrent execution of individual programs on processors j € P starting
at vy and ending at t yields the same result, regardless of the order of access to shared
resources.

(2) The condition k(X) > 2 in Corollary [£4] is satisfied if and only if for each vertex
v € X{ one of the following conditions is met:
e Jr € R(v) with dr(v) < k(r) — er(v) (v is not contained in the boundary of XZ);
e Jry,re € R(v) with k(r;) > ¢(r;)+1 (two resources with non-exhausted capacity);
e Jr € R(v) with x(r) > ¢(r) + 2 (a resource that can admit two further locks).

Proposition [4.3] and Corollary [£.4] are strict in the following sense:

Proposition 4.6. Given the state space X of a PV-program with final state t and a vertex
vg € XL from which t is reachable. Assume that k(X;v) < k(X;v) for all vertices vg < v < t.
Then, the path space P(X)! is (k(X;v0) — 2)-connected but not (k(X;v) — 1)-connected.

vy
Proof. As in the proof of Proposition 3] we may assume inductively that all path spaces

P(X)! from vertices v € k™ (vg) are at least (r(X;vo) — 2)-connected. Hence, using [3, Theo-
rem 6], P(X)! has the same non-trivial homotopy in dimension x(X;vg)—1as lk*(X;vp). O

Corollary 4.7. Given the state space X of a concurrent program and a vertex vy € X with
minimal spare capacity, ie £(X) = k(X;v9). Then the path space P(X)! is (k(X) — 2)-
connected but not (k(X) — 1)-connected.

Lormulated for past links

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATION

Corollary 4.8. Given the state space X of a concurrent program and a vertex vy € Xéj with
spare capacity k(X ;vg) = 1. Then the path space P(X)f,o is not path-connected, ie potentially
giving rise to different results depending on access to shared resources.

See Figure [2 for an illustration. We have more to say on vertices v € Xéj “below vy” with
non path-connected path spaces P(X)! in Section 5.4.2]

v

Pr1 P’I’l--

Pr N

P’rl P?"Q

FIGURE 2. A disconnected path space arises for n = 3, R = {r1,ra2}, k(r;) = 2,
and PV-programs pip,ps starting both by PriPro and ps by ProPri. The
forbidden regions are indicated as F'(r1) in orange, resp. F(ry) in green. For
the indicated vertex vy = (2,2,2), we have dro(vg) = 2,cra(vg) = 1, and
¢r1(vg) = 2, and hence x(X;v9) = 1. Path space P(X)os is in fact disconnected
for every vertex t < vy.

Example 4.9. Consider [< n positive integers x; < n,1 < j <1, such that le k; > (I—=1)n.
We construct a PV program on n threads and [resources r; with capacities x(r;) = k; and
corresponding state space X and two vertices vo,v; € X such that P(X)op has first non-
trivial homology in dimension x(X) — 1 = le kj — (I —1)n — 1. In particular, ﬁ(X)gé is not
path-connected for le kj=({—=1)n+1:

Define ¢ = Z]f kj— (k—1)n,d, =n— ¢ = kn — Z]f kj. Remark that
(4.10) ¢+ dp_1 = Kp.

Consider a PV program where all n threads are of the form P, ... Py, Vi, ... Vin, with
(mq,...,my) a permutation in ¥, and P; is short for Pr;. More specifically, they are chosen ac-
cording to the following pattern (column j corresponds to the j-th P command): Pi,..., P_;
are successively filled into the columns until the capacity &; is exhausted; the remaining slots
in column [— 1 are occupied by P,. The slots in the last column [are occupied by those P
commands that do not occur in the particular thread in previous columns, cf Figure Bl

Let vg = (I—1,...,1—1) denote the vertex corresponding to the P commands after column
I —1. Then cri(vg) = k(r;),i < I: these capacities are exhausted. Moreover, cry(vg) = dj_1,

12 MARTIN RAUSSEN

1 2 e -1 1
Pl]32 fjl—l ;I:)l
Ci—1 | C—1
P | P
— Ci—1
P3 P2
Py Py
Jl JQ Jz_l n —ci

FIGURE 3. Start of a PV program

and hence k(X;v9) = Kk —dj_1 = ¢ = le ki — (I = 1)n by (@I0). The result follows from
Proposition and Corollary 7] since future links of all vertices above vy until the final
vertex v; = (2l +1,...,2l + 1) are contractible, cf Lemma [3.4]

4.2. Spare capacity in the presence of crashes. What happens to the spare capacity if
one (or several) of the processors crashes during a computation? For simplicity of notation, we
assume that processor n crashes. First of all, state space is reduced: The interval [0, {(k,)+1] is
reduced to [0, O] with 0 < C < I(k,)+1, and X¢ = 7, 1([0,C]). This makes all vertices v with
v, > C irrelevant. On the other hand, new vertices on the upper boundary x; = C appear.
We let B denote the largest integer strictly smaller than C and such that B € Pr,([1 : k;,])
for some r € R — ie the command issued at z, = B is Pr. We compare the connectivities of
future links at vertices ve = (v1,...v,-1,C0) € (Xe)& and vp = (v1,...,vn-1,B) € X{.

Lemma 4.11. If kT (X, vp) is k-connected, then lk™(X¢,ve) is at least (k—1)-connected. It
is not k-connected if and only if k™ (X,vp) is not (k+ 1)-connected and if the crash happens
before r was relinquished again.

Proof. Comparing the resource calls and resource consumptions, we have:

dr(ve) = dr(vp) — 1 and dr'(ve) = dr'(vg) for r # r' and er(vp) < er(ve) < er(vp) + 1
(depending on whether r was relinquished between B and C) and cr'(ve) = cr'(vp), r # 1.
Hence k(r) —er(vg) > k(r) —cr(ve) > k(r) — er(vp) — 1 whereas for v’ # r, k(') — er' (ve) =
k(r") — er’(vg). Apply Definition 3771 The spare capacity decreases by one if and only if
cr(ve) = er(vp) + 1. O

This result allows us to compare the spare capacity x(X) of a concurrent program without
crash with the spare capacity x(X¢) of that program with a crash at x,, = C' (used as estimate
for connectivities of path spaces, cf Section [.1)):

Proposition 4.12. The spare capacity of Xc¢ is at least K(X¢) > k(X) — 1.

It is less than k(X) if and only if the last command issued at x,, = B before the crash is of
type Pr for some r € R and if there exists a verter vg = (vi,...,vn_1,B) € X&' (with last
coordinate B) of minimal spare capacity, ie k(X) = k(X;vp).

The spare capacity of Xc is larger than k(Xc) > k(X) if and only if the minimal spare
capacity k(X;v) occurs only at vertices v after the crash (ie vy, > C).

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATIOIS

Proof. For the last claim, remark that every vertex v € XéD with last coordinate less than C
is contained in (X¢)f, as well. O

Example 4.13. Consider the following simple example resulting in a drop of spare capacity
and hence connectivity after a crash: Three processors compete for a single use of one resource
r of capacity k(r) = 2 resulting in spare capacity x(X) = k(X;vp) =2 — 0 = 2. If one of the
processors crashes while having acquired a lock, the remaining two processors compete at vo
with k(X¢) = k(Xc;ve) =2 — 1 =1, cf Figure @

FIGURE 4. spare capacities — with X in front ot the crash wall (in pink):
K(X;vp) =2,k(Xcsv0) =1

4.3. Programs with branches and loops. Allowing branches and loops changes the pic-
ture, but not dramatically. Every single processor p; proceeds then along (the geometric
realization of) a directed graph G; instead of along an interval. A concurrent execution corre-
sponds to a directed path in the product [G; of graphs from which certain forbidden regions
have to be removed.

The space of directed paths in any of the graphs G; from source to target is homotopy
discrete: Every connected component of the path space can be represented by a constant speed
path p; with a directed interval within G; as range; other directed paths in this component
are reparametrizations of the given one. The space of directed paths in [[{ G; (without
considering conflicting resource consumption) is a disjoint union of the spaces of directed paths
corresponding to n-tuples of such components, represented by n-tuples of paths (p1,...,pn)
— an “unfolding”. The space of directed paths corresponding to a particular unfolding can
then be described via directed paths in a product of intervals, and analyzed as in the previous
sections. We are led to capacities and connectivity bounds that will often differ among the
unfoldings, ie among the homotopy classes of directed paths in [[G;.

5. ALGORITHMICS

5.1. Notation. The start data consist of a PV program on n threads and [resources r* € R.
For a non-empty subset R’ C R, let
o PL(X):={lel:1(j)]| Ire R ie[l:kij(r)]|l=Prj@@)}U{l(j)} C[1:1(j)] denote
the subset of P-calls from j € P to a resource € R’ including the final position; with
predecessor function pl, : Pp, — P}, U{0}, phy(v) = max{l € P}, U{0}| I < v};

14 MARTIN RAUSSEN

o VI, (X):={le1:1()]| Ir e Ryie[l:kjr)l=Vr)} C[l:1(j)] denote the
subset of V-calls from j € P to a resource r € R’; with successor function
St 2 Pl = Vi, spi(v) = min{l € V},| v <1}
We introduce the following integer (sub-)lattices in R = R™:

o [(X):= Hjep[O:l(j)—i-l]; |
o Ppi(X) = [ljep Ph(X) C Pr/(X) := [Ljep Pp(X) U {0} C L(X); with predecessor
function Pr: PR’(X) - PR’(X)7 pR’([UD s 7vn]) = [p}{’(vl)7 s 7]9%/ (,Un)],
o Vr/(X) :=[Ljcp Vi, (X) C L(X); with successor function sp : Ppi(X) — Vg (X),
SR’([Ulv s 7UTL]) = [S}E’(Ul)v oo 787}12’(’0“)];
Capacities r(r?) of individual resources r* € R are collected in an | = |R|-dimensional
capacity vector k = [rr',... krl] € N\ To a grid vector v € P(X) = Pgr(X), associate
resource consumption vectors

o c(v) = [ert(v),...,crl(v)] € leo (resource consumption “at/just before” v)
o d(v) = [dri(v),...,dr'(v)] € Nl20 (“new” locks asked for at v; all drf(v) > 0; often

S dri(v) = n).

o 1(v) = [I'(v),...,I'(v)] = c(v) + d(v) (resource consumption “right after” v)

For a non-empty subset R’ C R, the projection Z — Zf map k,c(v),d(v) to kg, cr (v), dg (v).
This is particularly relevant for the subset R' = R(v) := {r € R| dr(v) > 0} C R, the set of
resources actually called for at a vertex v.

5.2. Determining spare capacities algorithmically. In this section, we will only need
an implementation of the grid/array P(X) := Pr(X) C L(X). We assume throughout that
vectors, including vector addition and dot product, are implemented on that entire array.

5.2.1. Calculations required for a single processor. To initialize, consider a single processor
j € P at a time: For every processor r € R, we defined in Section 2] the call function
drj : [0 :1(j) +1] — {0,1,—1}. Taken over all resources r € R, they define a call vector
function d; : [0 : I(§)] + 1 — {0,1,—1}£. It is directly read off from the command line for
processor j in [(j) steps resulting in |R|-dimensional vectors. If only one call is issued at every
node, then d; takes signed unit vectors as values; apart from at the ends 0 and I(j) + 1 with
fixed value 0. Moreover, we determine the vector function d; : [0 : I(j) + 1] — {0,1}® with
drj(l) = 0 if and only if dr;(I) = 1 in another I(j) steps.

Resource consumption cr; : [0 : I(j)] — {0,1} can be calculated inductively: We set
crj(0) = 0 and update by cr;(l) = 0if dr;(l) = 1, and erj(l) = crj(l — 1) +dr;j(1 — 1) + dr;(1)
otherwise; which is equivalent to cr;(l) = cr;(1—1) +dr;(1)(dr;(1—1)+dr;(l)): Check case by
case’! Again, taken together over all resources r € R, they calculate the resource consumption
function ¢; : [0:1(5)] — {0, 1},

Its determination affords another 2I(j) (vector addition) steps. Establishing the resource
consumption function c¢; for each processor j € P, requires in total 4 7 1(j) steps.

5.2.2. Array calculations: spare capacities of vertices. In the next steps, calculate the vector
function d : P(X) — {0,1}® — with information on “new calls” — by d(v) = > jep dj(vj).
Likewise the vector function ¢ : P(X) — (Nx>q)f — encapsulating information of previous
resource consumption — by ¢(v) = > .. pc;(v;). Each of these calculations requires n +1 =

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATIOIS

|P| + 1 steps: After initializing the entire array with O-vectors, the same vector functions d;,
resp. ¢j, j € P, are added to all cells (in different “directions” j € P, of course).

Next, calculate the difference & — ¢ : P(X) — Z® of the fixed capacity vector k € N¥ and
the capacity function c. Every vertex v for which k —c(v) has at least one negative component
(|R| comparison steps) belongs to the forbidden region and is flagged.

Finally, spare capacities for (non-flagged) vertices v are determined by one dot product
operation per cell: kK(X)(v) = d(v)-(k—c(v)) € Z on the entire array. Under our assumptions,
the total number of steps is thus linear in the number of PV -steps on each of the processors
in P and on the number of resources in R.

5.2.3. Determining the spare capacity of a complex. In a final round, probe successively equa-
tions k(X)(v) = k starting with and increasing from k£ = 0 on the (non-flagged) vertices of
the entire array. The minimal %k for which an equation (X)(v)(v) = k yields the answer true
for some vertex v € P(X) corresponds to the spare capacity x(X) of the state space. The
number of steps needed is at most |P| — 1 for a (non-void) PV program on n processors.
Well, this answer is not always true; it has to be modified if deadlocks (with spare capacity
0) arise. In that case, one has to flag the entire “doomed regions” (no d-path from there to the
top vertex) associated with them in a first step. This is explained in detail in Section

5.3. Deadlocks and doomed regions. In the remaining sections, particular consideration
is given to vertices v with spare capacity x(X;v) = 0 (ie deadlocks) and those with k(X;v) =1
(ie with disconnected future link (k7 (X, v)).

5.3.1. Deadlock detection. Deadlock detection in Fajstrup etal. [7] was only provided in detail
if all participating resources r € R have capacity x(r) = n—1. In a way, the general case, with
other and variable capacities, was still included, since the forbidden region F'(r) associated to
a resource r of smaller capacity can be modelled as the union of many resources of capacity
n—1. But it is preferable to give a formulation for deadlocks in the general case, with resources
of various capacities participating: In view of Corollay [3.9(1), a vertex v € P(X) is a deadlock,
if

e c(v) — k > 0 (ie v is not contained in the forbidden region)

® Cr(v) (V) = KR(y) (All resources asked for at v have been locked already before up to

full capacity; none of the processors can advance).

A deadlock at v — detected as in Section [5.2.2]1 — comes thus with the following data:

e A subset R’ C R of resources (ie R’ = R(v));

e For each r € R/, a subset C(r) C P of locking processors of cardinality |C(r)| = k(r)
and a non-empty subset D(r) € P\ C(r) of its complement such that | | D(r) =
P =[1:n]is a partition of P (ie the D(r) are disjoint);

e Every processor j € C(r), r € R’ has delivered a call Pr in front of and still active at
vj (ier € R',j € C(r) = crj(vj) =1, hence cr(v) > k(r));

e For j € D(r), a call Pr is issued at v; (ie drj(v) = 1);

e No other call Pr,r € R, is (still) active at v (= cr(v) = k(r));

e For all 7’ € R\ R, at most x(r’) calls Pr’ are active at v (ie cr’(v) < k(r')).

The last two requirements make sure that v is not a forbidden vertex.

16 MARTIN RAUSSEN

5.3.2. Doomed regions. Compare with Fajstrup etal [7] (where these regions are called “un-
safe”) and Fajstrup etal [6].

Let v denote a deadlock vertex with resource calls to R(v) C R and predecessor vertex
w = PRr)(v), cf Section BTl Remark that lp(w) = cpey(w) + dpw)(w) = cpu)(v) =
KR(v)- Hence, every resource r € R(v) is locked by k(r) processors within the hyperrectangle
D(v) :=]w,v] = [[}_]vj, ;] spanned by w and v, and no directed path can leave D(v).

One may eliminate this “primary” doomed region D(v) from the state space X by a modi-
fication of the original PV -program: Add an extra resource 7 of capacity n — 1 and, for each
Jj € P, calls Pr at predecessors w; = pﬁ(v) (vj) to be relinquished by V7 at the successor
sﬁ(v) (vj). Then D(v) = F(7) :=|w, x|, © = sp(,)(v), becomes part of the forbidden region of
the modified program — but path spaces with target not included in D(v) remain unchanged!

Including F(7) =]w, z] as an additional forbidden region, one can, in the same way as de-
scribed in [7], inductively define higher order doomed regions: With the updated capacity
consumption, new deadlocks may arise at the intersection of the boundaries of the new for-
bidden region F'(7) and the previous forbidden region F. Modifying the recursive algorithm
in [7], one obtains a program that is deadlockfree and with literally the same path spaces as
before - if just the target is not contained in any of the doomed regions (from which it cannot
terminate correctly).

5.4. Disconnected futures.

5.4.1. Vertices with disconnected future links. As a consequence of Corollary 3.9(4), a vertex
v has a disconnected non-empty future link [k*(X;v) if and only if

(1) c¢(v) — k > 0 (ie v is not contained in the forbidden region);
(2) crw)(v) — KR is a standard unit vector e, r € R(v) (with a single coordinate 1, all
others 0);
(3) dr(v) > 1.
Such a critical vertex v can be characterized by the following data (just a small variation
compared to the characterization of deadlocks in Section [5.3.1)):

e A subset R’ C R of resources including a particular element % € R’ (ie R’ = R(v));

e For each r € R a subset C(r) C P of processors such that |C(r%)| = k(r)—1,|C(r)| =
k(r),r € R\ {r’}, and a non-empty subset D(r) C P\ C(r) of its complement such
that |[D(r%)| > 2 and | |, D(r) = P = [1 : n] is a partition of P (ie the D(r) are
disjoint)

e Every processor j € C(r), r € R, has delivered a call Pr in front of and still active
at v; (ie r € R = erj(vj) = 1,er(v) > k(r),r # 19, er®(v) > k(r%) — 1);

e For j € D(r), a call Pr is issued at v; (ie drj(v) = 1);

e No other call Pr,r € R, is (still) active at v
(= cr(v) = 6(r%) — 1, er(v) = K(r), r #1°);

e For all 7/ € R\ R/, at most x(r’) calls Pr’ are active at v (ie cr'(v) < K(r")).

5.4.2. Doomed region for disconnectivity. Analogous to the doomed region D(v) below a dead-
lock vertex v from Section [5.3.2] there is a critical region D' (v) below a vertex v with discon-
nected future link such that path spaces P(X)l are disconnected for y € D*(v):

Let v denote a vertex satisfying the conditions in Section B.4.1] with resource calls to
R(v) € R and predecessor vertex w = pp(,)(v). Define D*(v) :=]w,v]. Note that a d-path can

CONNECTIVITY OF SPACES OF DIRECTED PATHS IN GEOMETRIC MODELS FOR CONCURRENT COMPUTATIOIY

leave this hyperrectangle only through a hyperplane z; = v; for i € C(r%); at all other upper
boundary hyperplanes z; = v;,j ¢ C (r0), it would enter the forbidden region. Moreover, such
a d-path can enter z; > v; for only one i € C(r") without entering the forbidden region.

Let © = sp)(v) € Vg (X) C L(X) denote the successor vertex of v with respect to
R’ = R(v); cf Section 5.1l The intersection of the state space X with Jw, z[\|w, v] — that every
d-path from D!(v) needs to enter — has the form [Licowoylvis] x T1;]wj, vj[. Remark that
the subspaces in that disjoint union are not connected to each other: exactly one coordinate
is larger than v;.

As for deadlocks, one can eliminate Jw, z[— and hence the critical region D'(v) — from the
state space by adding an additional resource of capacity n—1 locked, for each processor j € P,
at w; and relinquished at ;. The arising new state space may contain further deadlocks at
the intersection of old and new forbidden regions: the associated doomed regions consist of
those points u such that every d-path starting at u needs to pass through the critical region
D*'(v) — with disconnected path spaces (with source u) as a consequence; these new doomed
regions are higher order critical regions with respect to the vertex v. Eliminating all critical
regions and associated higher order critical regions regions results in a state space X C X
with all spaces of d-paths between vertices being path-connected.

5.4.3. Estimation of the number of path components. Mutually reachable critical vertices (with
spare capacity 1), or rather their future links allow estimating the number of path components
of the space of d-paths between vertices: For every critical vertex ¢ € Xj, consider the
connected components ¢; of its future link (there are at most n of them) and the partial order
relation < given by reachability (within X) between components of various critical vertices.
A (possibly empty) chain of components of future links (between a given source s and target
vertex t) can be realized by a d-path since reachability was assumed. It is known that every
d-path in P(X) is d-homotopic to a tame d-path with source s and target ¢ (Ziemiariski |19,
Prop. 6.28|,[21, Theorem 5.6], Raussen [16, Theorem 2.6]) that can only transit from one cube
to another at a vertex. If a tame path enters a critical region D!(v), it has to leave it at its
top vertex ¢ and along one of the 1-cubes ¢;.

Moreover, two d-paths realizing a chain of components (no other critical vertices and critical
regions involved!) are d-homotopic to each other. This can be seen by a minor modification of
the proof of Corollary [£.4l At every critical vertex, only one of the possible future components
is allowed. Excluding deadlocks and non-selected components of future links, all remaining
vertices have a spare capacity at least 2.

Hence, the number of path components of ﬁ(X)! can be estimated (from above) by the
number of chains described above. If this number is not too large, the possible outcomes of
all executions can thus be determined by running one execution along every such chain.

REFERENCES

[1] R. Belton etal., Towards Directed Collapsibility, In: Advances in Mathematical Sciences: AWM Research
Symposium, Springer (2020), 255 -271. 21 B B [0

[2] R. Belton etal., Combinatorial Conditions for Directed Collapsing, arXiv:2106.01524. [3] [l 10l

[3] A. Bjorner, Nerves, fibers and homotopy groups, J. Combin. Theory Ser. A 102 (2003), no. 1, 88 — 93.[2]
R

[4] E.W. Dijkstra, Co-operating sequential processes, Programming Languages (F. Genuys, ed.), Academic
Press, New York, 1968, 43 — 110. 1]

[5] L. Fajstrup, Dipaths and dihomotopies in a cubical complex, Adv. Appl. Math. 35, no. 2, 188 — 206.

http://arxiv.org/abs/2106.01524

18
6
7
B

[9
[10

11
[12
13
[14
15
[16
[17
[18
[19
[20
21

[22

s

MARTIN RAUSSEN

] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, M. Raussen, Directed Algebraic Topology and Con-
currency, Springer, Cham, 2016. [21 [3, @

] L. Fajstrup, E. Goubault and M. Raussen, Detecting deadlocks in concurrent systems. CONCUR 98, Lect.
Notes Comput. Sci. (Springer) 1466 (1998), 332 — 347. 3] [13]

| M. Herlihy, D. Kozlov and S. Rajsbaum, Distributed Computing through Combinatorial Topology, Morgan
Kaufman, Waltham, MA, USA, 2014.

| A. Hatcher, Algebraic Topology, Cambridge Univ. Press, 2002. 8 [I0]

| R. Meshulam and M. Raussen, Homology of spaces of directed paths in Euclidean pattern spaces. in: A
journey through discrete mathematics, 593 — 614, Springer, Cham, 2017.

| V. Pratt, Modelling concurrency with geometry, Proc. of the 18th ACM Symposium on Principles of
Programming Languages. (1991), 311-322.0]

| M. Raussen, On the classification of dipaths in geometric models for concurrency, Math. Struct. Comput.
Sci. 10 (2000), no. 4, 427 — 457.

| M. Raussen, Trace spaces in a pre-cubical complex, Topology Appl. 156 (2009), no. 9, 1717 — 1728. 10

| M. Raussen, Simplicial models of trace spaces, Algebr. Geom. Topol. 10 (2010), no. 3, 1683 — 1714.

| M. Raussen, Simplicial models of trace spaces II: General Higher Dimensional Automata, Algebr. Geom.
Topol. 12, no. 3 (2012), 1745 — 1765.

| M. Raussen, Strictifying and taming directed paths in Higher Dimensional Automata, larXiv:2006.05797;
to appear in Math. Struct. Comput. Sci. [I7]

| M. Raussen and K. Ziemiariski, Homology of spaces of directed paths on Euclidean cubical complexes, J.
Homotopy Relat. Struct. 9, no. 1 (2014), 67 — 84. @ 10

| R.J. van Glabbeek, On the Ezpressiveness of Higher Dimensional Automata, Theor. Comput. Sci. 368
(2006), no. 1-2, 168 — 194. [

| K. Ziemianiski, A cubical model for path spaces in d-simplicial complezes, Topology Appl. 159, no. 8,
2127- 2145. [T

| K. Ziemianski, On ezecution spaces of PV-programs, Theoret. Comput. Sci. 619 (2016), 87 — 98. 21 B] [

| K. Ziemianski, Spaces of directed paths on pre-cubical sets, Appl. Algebra Eng. Commun. Comput. 28
(2017), 497 - 525. [21 07

| K. Ziemianski, Spaces of directed paths on pre-cubical sets II, J. Appl. Comput. Topol. 4 (2020), 45 — 78.
m

DEPARTMENT OF MATHEMATICAL SCIENCES, AALBORG UNIVERSITY, SKJERNVEJ 4A | DK-9220 AALBORG
T, DENMARK
Email address: raussen@math.aau.dk

http://arxiv.org/abs/2006.05797

	1. PV programs and their geometric semantics
	1.1. Euclidean cubical complexes and path spaces
	1.2. A short overview

	2. Forbidden region and state space
	2.1. Resource consumption
	2.2. Forbidden region. State space

	3. Future links and their connectivity
	3.1. A single resource
	3.2. Several shared resources

	4. Global connectivity of spaces of d-paths
	4.1. The spare capacity as a connectivity indicator
	4.2. Spare capacity in the presence of crashes
	4.3. Programs with branches and loops

	5. Algorithmics
	5.1. Notation
	5.2. Determining spare capacities algorithmically
	5.3. Deadlocks and doomed regions
	5.4. Disconnected futures

	References

