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Lithium-ion batteries are used more and more extensively, and the state-of-charge estimation of 

lithium-ion batteries is essential for their efficient and reliable operation. In order to improve the 

accuracy and reliability of battery state-of-charge estimation, the Thevenin model was established and 

the parameters of the least square method model with forgetting factor were used for online 

identification estimation. To reduce the impact of noise, an adaptive extended Kalman algorithm is 

developed by combining Sage-Husa adaptive filter with extend Kalman filter algorithm for SOC 

estimation. The experimental results compared with ampere-time integral method and standard extend 

Kalman filter method, the improved adaptive extend Kalman filter algorithm has good convergence 

speed, higher estimation accuracy and stability. The initial SOC error is 5%, and the root mean square 

error of extend Kalman filter SOC estimation algorithm is 0.0124. In contrast, the root mean square 

error of the proposed adaptive extend Kalman filter SOC estimation algorithm is 0.0109.   

 

  

Keywords: lithium-ion battery; state-of-charge; adaptive extend Kalman filter; recursive least squares 

with forgetting factor; online parameters identification;  

  

  

1. INTRODUCTION  

Due to the high energy density and long cycle life of lithium-ion battery, it currently plays an 

important role in electric vehicles (EV) and energy storage [1-3]. However, when the lithium-ion battery 

is overcharged or over discharged, it may even cause fire and explosion [4]. In order to ensure the safe 

and reliable operation of lithium batteries, a battery management system (BMS) is essential. One of the 

main and core functions is SOC estimation. SOC can quantify the remaining battery power of the current 

http://www.electrochemsci.org/
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battery and remind personnel how long the battery can work before charging. Specifically, SOC is 

defined as the percentage of remaining capacity relative to its maximum available capacity, and its 

function is similar to the fuel gauge of gasoline-powered vehicles on EV [5, 6]. The SOC of lithium-ion 

battery is affected by factors such as temperature, charge and discharge status, self-discharge, and aging. 

Internal chemical reactions are variable and their characteristics are highly non-linear. These 

characteristics make SOC estimation difficult. Because the battery itself has strong nonlinear 

characteristics and complex application conditions, accurate SOC estimation is still an urgent problem 

to be solved.  

At present, many researchers have studied the SOC estimation of lithium-ion battery and lots of 

methods have been proposed to estimate the SOC. The existing SOC estimation methods are mainly 

divided into the following categories: (1) direct measurement method; (2) model-based estimation 

method; (3)data-driven estimation method [7, 8].  

(1) Direct measurement method: The direct measurement method mainly includes coulomb 

counting method and open circuit voltage (OCV) method. Knowing the initial value of SOC, the SOC 

value can be obtained by integrating the current. This method is called coulomb counting method or 

ampere-hour integral method which is an open-loop method. It is sensitive to the initial value and 

interference, and will cause the cumulative error to be uncorrectable. The relationship between open 

circuit voltage and SOC can be obtained by a fixed discharge rate, and then the value of the 

corresponding SOC is found in the relationship curve using the known OCV [9]. This method is called 

the open circuit voltage method [10]. Although the method can measure the value of SOC [11], the 

battery must be allowed to stand for more than one hour to start measurement, and the battery itself is 

susceptible to temperature and reproductive quality [12, 13]. In the same OCV, the SOC differs under 

varied conditions. Therefore, it is not suitable for SOC estimation in operation.   

(2) Data-driven estimation method: Data-driven control methods use the input-output data of 

the system to develop an estimator. Since these methods do not require an accurate plant model, the 

estimations and assumptions introduced in the plant modeling step are omitted [7]. The typical 

algorithms include the fuzzy controller, the neural network [14-17], and the support vector machine [18]. 

But data driven estimation method suffers from problems like extensive training, difficult online 

adaption, and high computational effort [19].  

(3) Model-based estimation method: With the development of battery research, many battery 

models for the power LIB have been proposed [20-24]. The most commonly used models can be roughly 

summarized into three types: electrochemical models (EM), equivalent circuit models (ECM) and 

electrochemical impedance models (EIM). In the model-based estimation method, the battery model is 

generally expressed as state equations. Several state observers have been applied to the models 

separately, including extended Kalman filter (EKF), unscented Kalman filter (UKF) sliding mode 

observer (SMO), particle filter (PF), H-infinity observer and their improved algorithms [2, 8, 16, 25-32].   

Accurate model is essential for SOC estimation of lithium-ion battery. The battery model 

parameters are affected by the environment and aging. In order to avoid the problem of adaptability of 

offline parameter identification, the on-line parameter identification of battery in Thevenin model where 

ohmic internal resistance, polarization resistance, polarization capacitance and other parameters are 

based on the recursive least squares with forgetting factor (FFRLS). The Thevenin equivalent circuit 
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model that adapts to changes is accurately established. Both the Kalman algorithm and the EKF 

algorithm treat system noise as white noise, ignoring the noise characteristics in practical applications, 

resulting in the noise affecting the accuracy of SOC estimation. The noise is adjusted by Sage-Husa 

adaptive filter, and the adaptive extended Kalman filter (AEKF) is a combined algorithm.  

The rest of this paper is organized as follows. The mathematical theoretical analysis is conducted 

in section 2 including a definition of SOC, modeling of the LIB and AEKF algorithm. In section 3, the 

experiments are illustrated as well as its estimation effect results. The conclusions and future works are 

finally reported in Section 4.  

  

  

Table 1. List of symbols used in the paper  

  

Symbol  Full-name  Symbol  Full-name  

BMS  Battery management system  EV  Electric vehicle  

SOC  State of charge  ECM   Equivalent circuit model  

FFRLS  recursive least squares with forgetting factor  RC  Resistor-capacitor  

PF  Particle filter  UKF  Unscented Kalman filter  

KF  Kalman filter  AEKF  Adaptive extended Kalman filter  

EKF  Extended Kalman filter  ANN  Artificial neural network  

HPPC  Hybrid Pulse Power Characteristic  CC-CV  Constant current-constant 

voltage  

OCV  Open circuit voltage  RMSE  Root mean square error 

  

  

  

2. MATHEMATICAL ANALYSIS  

The basic definition of SOC is introduced firstly in this section. Then, the established Thevenin 

equivalent model and the corresponding parameter identification method are described. Finally, the 

proposed AEKF is introduced in detail and the framework of SOC estimation is given.  

  

2.1. Definition of state-of-charge   

The SOC of lithium-ion battery characterizes the remaining capacity, and it is defined as the ratio 

of the remaining capacity to the maximum available capacity which can be expressed as Eq. (1) [8].  
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(1)  

In the Eq. (1), St is the current estimated SOC. Ct is the remaining battery capacity. CMAX is the 

maximum available capacity when the battery is fully charged. S0 is the initial SOC when the estimation 

process starts, h denotes the Coulombic efficiency, and I(t) is the load current (assumed discharging is 

positive).  
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2.2. Battery Equivalent Model Construction   

In order to accurately estimate the SOC, a reliable battery model is needed. The general lithium 

battery equivalent models mainly include neural network models, electrochemical models and the 

equivalent circuit models [33]. Since the equivalent circuit model (ECM) has the advantages of clear 

physical meaning and simple calculation, many researchers use it for SOC estimation [20-25]. Compared 

the effects of different order models on the estimation results, and the results show that ECMs with 

Thevenin and second-order RC models are consistently more accurate and reliable than other models 

[34]. Therefore, considering model complexity, Thevenin equivalent circuit model is selected for 

equivalent modeling in many research [1, 4, 8, 19, 23]. The specific circuit is shown in Fig.1 [21].  

 

  

 
  

Figure 1.  Thevenin equivalent circuit model  

   

In Fig.1, Uoc represents the open-circuit voltage of the lithium-ion battery, RO represents the 

ohmic internal resistance, RO characterizes the ohmic effect of the battery, RP represents the polarization 

resistance of the lithium battery, CP represents the polarization capacitance, and the RC network 

characterizes the polarization phenomenon of the lithium-ion battery, i(t) indicates the load current, 

where the discharge direction is positive, and UL indicates the closed-circuit voltage when the battery is 

externally connected. The circuit equation shown in Fig.1 can be listed according to the circuit law as 

shown in Eq. (2) [35].  
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 (2)  

Combined with the state-of-charge definition, the state-space variable ,
,

T

k k p k
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variable k ku I , and the output variable ,k L ky U  are selected. The discrete state-space equation can be 

obtained as shown in Eq. (3) [36].  
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 (3)  

Wherein, 𝛥𝑡 is the sampling interval time and it has little influence on the SOC estimation results 

during the simulation process, but the smaller the test the actual computing power of the BMS 

equipment. τ= RpCp, w is the state error and v is the measurement error, which are the zero-mean white 

noises of the covariance matrices Q and R, respectively. where the subscript k represents the value of 

the corresponding variable at time step k.  

 

2.3. The battery OCV model  

Improvement in the accuracy and robustness of OCV model can also significantly increase the 

accuracy of SOC estimation. The OCV can be characterized by the state variable SOC relationship, 

which the nonlinear function can be obtained from. The simplified electrochemical model (SE), whose 

terms is shown in Eq. (4) [8].  

    , 0 1 2 3 4/ ln ln(1 )OC k k k k kU K K S K S K S K S       (4)  

 

2.4. Model parameters online identification  

With the battery's working environment, working conditions, aging, etc., battery model 

parameters will change, offline parameter identification is difficult to accurately reflect changes in 

battery characteristics. In order to better follow the battery model parameter changes, the recursive least 

squares with forgetting factor is used to perform online parameter identification of the battery model 

[19]. According to the circuit knowledge, the Eq. (5) can be obtained. 

( ) ( )
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 (5)  

The open circuit voltage UOC is the voltage at which the battery is stable at both positive and 

negative terminals when the battery is left for a long time. Experiments have shown that the voltage after 

the battery has been allowed to stand for 40 minutes is stable and can be considered to be equal to the 

open circuit voltage of the battery. Using the bilinear transform rule, the discrete-time form of the system 

transfer function in Eq. (6) can be obtained as:  
1
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(7)  

Define  
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The vector θ(k) in Equation (8) can be further solved using the recursive least square algorithm 

with forgetting factor λ (typically λ = [0.95, 1]) formulated as: 
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 (9)  

The value of the parameters involving Ro, Rp and Cp can be obtained by calculation such as Eq. 

(10).   
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(10)  

2.5. Adaptive Extend Kalman filter   

The current SOC estimation method is mainly based on the equivalent model, combined with the 

Kalman filter (KF) algorithm and its extended algorithm [2, 8, 16, 25-32], as well as fuzzy logic and 

neural network related algorithms [14-17]. KF algorithm is one of the most widely used intelligent 

algorithms, and is usually used in practical situations, such as path planning, target tracking, and SOC 

estimation of lithium batteries. The basic principle of the algorithm is to take the minimum mean square 

error as the best estimation criterion, by establishing a state equation and an observation equation model, 

a state space model of signals and noise is used to introduce the relationship between the state variables 
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and the observed variables. Time estimates and observations of the current time update the estimates of 

the state variables [20].  

The Kalman filter algorithm estimates the properties of the SOC of the lithium battery by 

calculating the SOC using the amperage time integration method, and uses the measured voltage value 

to correct the SOC value obtained by the amperage time integration method. When the SOC of a battery 

is estimated by Kalman filtering, a suitable equivalent battery model needs to be established, and the 

accuracy of the Kalman algorithm depends on the accuracy of the battery model. When the Kalman 

filtering method is used to estimate the SOC of a battery, the battery is considered to be a power system, 

the SOC is the state of the system, the charge and discharge current of the battery is used as the input to 

the system, and the terminal voltage is used as the output. The state of the system is continuously updated 

by the error of the observed value of the terminal voltage and the estimated value of the SOC, thereby 

obtaining the SOC value of the minimum variance estimate.   

The model is the premise basis for the application of the algorithm. Because the model 

parameters are affected by battery aging, environment, working conditions, etc. The above-mentioned 

FFRLS method is used in this paper to perform online real-time identification and update of battery 

model parameters. The mathematical expression of the state space equation of the Thevenin equivalent 

circuit model of the lithium battery in Eq. (3) can be simplified as shown in Eq. (11).  

1 1= ( , )

( , )

k k k k

k k k k

x f x u w

y h x u v

  


 
 (11)  

The functions of f (*) and h (*) are nonlinear equations. The upper equation in Eq. (11) is the 

state equation, where xk is the n-dimensional system state vector at time point k, and v is the ndimensional 

system noise vector. The function f (xk, uk) is a non-linear state transition function. The second equation 

in equation (11) is an observation equation, where y is an observation vector, and v is a multi-dimensional 

system interference vector at time point k. The function h (xk, uk) is a non-linear measurement function. 

The above function can be explored by using the Tailor method on the prior estimation point xk of the 

state xk + 1 [31]. The higher-order components of the process can be ignored, and linear approximations 

of off (*) and h (*) can be used as shown below:  
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 (12)  

The estimation process of the Kalman filter algorithm includes time update and measurement 

update. The time update process is also known as the forecast process. It is a one-step prediction of the 

current state variable and provides a prior estimation process for the next moment. The measurement 

update process is the process of feeding back observations and correcting deviations. The EKF algorithm 

formula is as follows.  

1) The initial condition of the filter equation is:  

0 0 ar( ), ( )Vx E x P x   (13)  

2) State vector estimation time update:  
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| 1 1 1( , )k k k kf xx u    (14)  

3) State covariance update time update: 

| 1 1

T

k k k kP FP F Q    (15)  

4) Calculate Kalman gain coefficient:  

| 1 | 1( )T T

k k k k k kK P H HP H R    (16)  

5) State vector measurement update:  

| 1 | 1(( , ))k k k k k k k kx x K h x uy    (17)  

6) update state covariance matrix:  

| 1=( )k k k kP I K H P   (18)  

In the above formula, xk|k-1 is direct time estimate at time k, xk-1 is the optimal estimate state value 

at the last moment. Pk is the covariance update of xk, Qk is the covariance of process noise w, Kk is the 

Kalman gain coefficient. Rk is the covariance of observation noise v. Sage-Husa adaptively updates the 

noise variables, and by comparing the final estimated value with the estimated value. The calculation 

process of the estimator-related quantities is shown in Eq. (19).  
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(19)  

In order to make the estimation of noise more accurate and to avoid the influence on the observed 

value, this paper considers the noise at the previous moment and the moment at the same time, and 

adopts the weighting coefficients dk and dk =(1-b)/(1-bk+1), n = 0,1, ... k. b is the forgetting factor. In 

practice, the smaller the value of b, the smaller the impact at the previous moment; if the value of b is 

small, the estimated noise will oscillate, so it can be determined according to the specific situation. Then 

the calculation formula of the noise matrix is as shown in Eq. (20). 

   

   
1 1 1 / 1
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 (20)  

The process noise and observation noise are corrected by Eq. (14), and the AEKF algorithm is 

combined with Eq. (13) to Eq. (20).  

 In this paper, the battery is modeled equivalently, and the estimated results of EKF and the 

AEKF algorithm are compared based on the established model. The complete iterative calculation 

flowchart is shown in Fig.2.  
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Figure 2. The iterative SOC estimation flowchart  

  

  

  

3. EXPERIMENTAL ANALYSIS  

3.1. Test platform construction  

Table 2. Basic technical parameters of the battery  

  

Cell nominal 

capacity/Ah  

50  Standard charge 

current  

1C  

Rated voltage/V  3.65  Standard discharge 

current  

3C  

Charge cut-off voltage/V  4.2±0.05  Maximum load  

current   

5C  

Discharge cutoff 

voltage/V  

2.65±0.05  Internal resistance/  

mΩ  

0.8   

Size: l * w * h/ mm  148×27×93   Working 

temperature/    

-20~60  

  

All the data in this article are derived from the comparison and verification for ternary lithium 

battery LFP50Ah for parameter identification at 25 degrees Celsius. The basic information of the battery 

is shown in Table 2. The battery test equipment used is CT-4016-5V100A-NTFA, and the temperature 

box is BTT-331C of Bell Test Equipment Co., Ltd.  

The LFP50Ah ternary power lithium battery was used as the experimental object, and its rated 

capacity was 50 ampere (Ah), the charge cut-off voltage was 4.2V, and the discharge cut-off voltage 
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was 2.75V. The test equipment is the sub-source CT-4016-5V100A-NTFA, which has a maximum 

current of 100A, and a maximum voltage of 5V. The thermostat model is BTT-331C.  

  

3.2. Battery test and results analysis  

The above-mentioned lithium battery as an experimental object was placed in a 25 ° C incubator, 

connected to a test device, and a capacity measurement experiment. An HPPC experiment was 

performed on the battery according to the following steps [37]. The experimental current voltage curve 

is shown in Fig. 3.  

(1) Charge the battery with constant current and constant voltage. The process is to charge 

the battery with a constant current of 1C (here 50A) to a cut-off voltage of 4.2V, and change to a constant 

voltage of 4.2V until the charging current is less than 0.05C (here 2.5A) is considered complete. Let the 

battery have a rest for 1 hour.  

(2) Constant-current discharge of the battery to a cut-off voltage of 2.7V and a discharge 

current of 1C (here 50A) . Let the battery have a rest for 1 hour.  

(3) Repeat steps (1) and (2) three times, and take the average value of the three discharges as 

the maximum available capacity of the battery. The measured discharge capacity here is 48.07Ah,  

48.26Ah, 48.15Ah, and the average is 48.16Ah.  

(4) After performing step (1) on the lithium battery, SOC = 1.  

(5) Discharge the experimental battery at a constant current of 1C for 10s, leave it for 40s, 

and charge at 1C for 10s, then leave it.  

(6) Discharge the battery with a current value of 50A for 6 minutes to decrease the battery 

SOC to the next SOC point and leave it for 30 minutes.  

(7) Repeat steps (5) (6) 9 times to obtain the complete current-voltage curve as shown in the 

Fig. 3(b) below.  

  

  

 
(a) Battery discharge capacity test                   (b) Hybrid Pulse Power Characteristic  

  

Figure 3. Battery current voltage curve  
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Fig. 4(a) shows the UOC-SOC relationship. After the lithium-ion battery has a rest for 30 minutes, 

the internal reaction ceases. We can think that the terminal voltage is equal to the open circuit voltage at 

this time. So 10 open-circuit voltage data points can be obtained from Fig. 3(b). According to Eq. (4), 

the data is fitted by least square method to obtain the function curve Uoc1(Here, when SOC=1 is 

regarded as 0.9999). The fitting parameter results are shown in Table 3.  

  

  

Table 3. Basic technical parameters of the battery  

  

parameter K0 K1 K1 K1 K1 

value 2.6960 -1.4846 0.0400 -0.4602 -0.0043 

  

 
(a) The Uoc and SOC relationship diagram           (b) ohmic resistance RO identification result  

 
 0 5000 10000 15000 20000 0 5000 10000 15000 20000 
 t (s) t (s)   

(c) Polarization resistance RP identification result        (d) Polarization capacitance CP identification result  

  

Figure 4. Model parameters identification results  

  

  

In Fig.3, U represents the terminal voltage of the lithium ion battery, I represents the charging 

and discharging current. Use the current and voltage in Fig. 3 as input data and program it in Matlab 

according to section 2 mathematical analysis. The battery Thevenin model parameters change as shown 

in Fig. 4.  
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RO RP CP In Fig. 4 (b), Fig. 4 (b) and Fig. 4 (b), RO1, RP1 and CP1 are parameters change curves 

online identified by FFRLS algorithm for identification combined with EKF for SOC estimation. RO2, 

RP2 and CP2 are parameters change curves online identified by FFRLS algorithm for identification 

combined with EKF for SOC estimation. RO3, RP3 and CP3 are parameter data for offline identification. 

It can be seen from the figure that due to the 5% error in the initial SOC setting of the EKF and AEKF 

algorithms, there is a certain deviation in the parameter values. As the algorithm iterates, the model 

parameter values begin to approach offline data.  

 

  

3.3. Analysis of state-of-charge estimation results  
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(a)   SOC estimation results curve                                            (b) SOC estimation error curve 

 

Figure 5. Comparison of SOC estimation results  

Based on the HPPC operating conditions in Fig. 4(b), the initial SOC error of lithium ion battery 

is set at 5%, and the SOC estimation is performed using the ampere-hour integration method, EKF and 

AEKF respectively. The SOC estimation results are shown in Fig. 5.  

In Fig. 5 (a), S0 is the reference lithium-ion battery SOC. S1 is the estimation results based on 

ampere-hour integration method, S2 and S3 is the estimation results by EKF and AEKF respectively 

based on online Thevenin model. S4 is the estimation results by EKF based on offline Thevenin model. 

Fig. 5(b) is the SOC estimation error curve obtained by subtracting the reference SOC curve S0 from 

S1, S2, S3 and S4 respectively. The ampere-hour integration method cannot correct the initial SOC 

deviation, and the error remains at about 5%. EKF and AEKF algorithms can correct the initial error, 

and the error gradually converges with the iteration. The RSME of extend Kalman filter SOC estimation 

algorithm online parameter identification is 0.0124. In contrast, the RMSE of the proposed adaptive 

extend Kalman filter SOC estimation algorithm is 0.0109 and AEKF algorithm has higher accuracy. 

Furthermore, the RMSE of EKF SOC estimation algorithm based on offline parameter identification is 

0.0183. The accuracy of SOC estimation based on online parameter identification is higher.  
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4. CONCLUSIONS  

In this study, Thevenin model was established and the parameters of the least square method 

model with forgetting factor were used for online identification estimation. In order to improve the 

accuracy and reliability of battery state-of-charge estimation, Thevenin model was established and the 

parameters of the least square method model with forgetting factor were used for online identification 

estimation. In order to reduce the impact of noise, an adaptive extended Kalman algorithm is obtained 

by combining Sage-Husa adaptive filter with extended Kalman filter algorithm for SOC estimation. The 

results show that FFRLS can effectively identify the battery Thevenin model parameters online and 

better than offline parameter identification. Compared with ampere-time integral method and standard 

extend Kalman filter method, the improved adaptive extended Kalman filter algorithm has good 

convergence speed, higher estimation accuracy and stability under the condition of HPPC.   
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