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SUMMARY 

The compressive behaviour and settlements of a soil deposit affect the performance 

of an over structure during all its life, from the ground improvement work before the 

construction, until the long-term period. To guarantee an optimal geotechnical design 

of the construction, it is important to investigate different aspects of soil compression 

behaviour, for example, the swelling potential of the underneath soil after an 

excavation before construction or the creep behaviour in the long-term. Therefore, it 

is fundamental to carry out a high quality-testing program, which usually requires a 

high cost and a long time. For this reason, the quality of testing is too often neglected, 

and this leads to an approximated interpretation of soil parameters. 

This thesis investigates the compression behaviour of a set of Danish clays and chalk, 

in relation to laboratory procedure, interpretation of results and influence of testing 

time. The experimental program comprises oedometer tests and constant volume 

swelling tests. The investigation covers, among others, Rørdal chalk, chalk found at 

variable depth in North Denmark and similar to the North Sea reservoir chalk, and 

Søvind Marl, a fissured clay with extremely high plasticity and swelling potential. 

Other oedometer tests were run on Aalborg clay, a clay characterised by thin sand 

layers. A database containing oedometer results on medium-stiff clays contributed to 

the investigations about the preconsolidation stress interpretation and the numerical 

validation through different constitutive soil models. 

The results obtained from testing Rørdal chalk and Søvind Marl clarify the influence 

of testing time on the interpretation of soil parameters. The long-lasting tests on chalk 

define the optimal procedure and equipment to deal with this material. Running 

swelling tests on Søvind Marl demonstrates that the full swelling potential could take 

weeks to develop. The preconsolidation pressure analysis on various Danish clays 

shows the variability of this parameter and the effect of the testing methodology on 

the results. In the final part of the project, different constitutive soil models represent 

the compressive behaviour of soft soil. The validation of oedometer tests proves how 

different soil models can simulate oedometer tests on Danish medium-stiff clays. The 

precautions presented in the papers, concerning both the laboratory procedure and the 

interpretation of the results, if introduced in the engineering practice, could improve 

the stiffness properties and settlement prediction useful to the geotechnical design. 

This thesis is a collection of five papers. Paper A deals with the interpretation of 

preconsolidation stress for different medium-stiff clays from Denmark. Paper B 

contributes with a guideline for the interpretation of oedometer tests on Rørdal chalk. 

Paper C interprets consolidation and creep strains and preconsolidation stress in 

Yoldia and Aalborg clays. Paper D shows the results of long-lasting constant volume 

swelling tests on Søvind Marl. Paper E presents some numerical validations of 

oedometer tests on medium stiff clays through different soil models.  



x 

  



xi 

RESUME 

En jords sammentrykkelighed og sætningsfølsomheden påvirker ydeevnen af en 

overkonstruktion i hele dens levetid, fra jordforbedringsarbejdet før konstruktionen 

indtil den langvarige periode. For at garantere et optimalt geoteknisk design af 

konstruktionen er det vigtigt at undersøge forskellige aspekter af jords 

sammentrykkelighed, for eksempel hævelsespotentialet for den underlæggende jord 

efter en udgravning før konstruktion eller krybeopførsel på lang sigt. Derfor er det 

grundlæggende at gennemføre et testprogram af høj kvalitet, som normalt kræver høje 

omkostninger og lang tid. På grund af dette er testkvaliteten ofte negligeret, hvilket 

fører til en ringere forståelse af jordparametre. 

Denne afhandling undersøger hvordan forskellige dansk ler og kridt opfører sig under 

sammentrykning i forhold til laboratorieprocedurer, tolkning af resultater og 

indflydelsen af tid under testen. Det eksperimentelle program omfatter 

konsolideringsforsøg og svelletest med konstant volumen. Undersøgelsen dækker 

blandt andet Rørdal-kridt som findes på variabel dybde i Norddanmark og den svarer 

til Nordsøens reservoirkridt, og Søvind Marl som er en sprækket lertype med ekstremt 

høj plasticitet og hævelsespotentiale. Andre konsolideringsforsøg blev udført på 

Aalborg ler som er karakteriseret ved tynde sandlag. En database, som indeholder 

resultater af konsolideringsforsøg på mellemstive lertyper, bidrog til undersøgelserne 

om fortolkning af forbelastningstrykket og den numeriske validering ved hjælp af 

forskellige konstituerende jordmodeller. 

Resultaterne opnået ved testning af Rørdal-kridt og Søvind Marl tydeliggør testtidens 

indflydelse på fortolkningen af jordparametre. De langvarige forsøg på kridt definerer 

den optimale procedure og udstyr til at håndtere dette materiale. Udførelse af svelle-

forsøg på Søvind Marl viser, at det kan tage uger at udvikle det fulde 

hævelsespotentiale. Forbelastningstrykketanalysen på forskellige danske lertyper 

viser variabiliteten af denne parameter og effekten af testmetoden på resultaterne. I 

den sidste del af afhandlingen anvendes forskellige konstitutive jordmodeller til at 

repræsentere den komprimerende egenskab af blød jord til den numeriske validering. 

Valideringen beviser, hvordan forskellige jordmodeller kan simulere 

konsolideringsforsøg af de danske mellemstive lertyper. Artiklerne introducerer 

forholdsregler vedrørende både laboratorieproceduren og tolkning af resultaterne. 

Hvis disse forholdsregler blev inkluderet i ingeniørpraksis kunne de forbedre 

estimeringen af stivhedsegenskaberne og sætningsegenskaberne af jordens, hvilket er 

nyttig information til det geotekniske design. 

Denne afhandling ineholder 5 artikler.  Artikel A beskriver tolkning af 

forbelastningstrykket for forskellige mellemstive lertyper fra Denmark.  Artikel B 

bidrager med en retningslinje til tolkning af konsolideringsforsøg på Rørdal kridt. 

Artikel C fortolker konsolidering og krybe-tøjninger og forbelastningstrykket i Yoldia 



xii 

og Aalborg ler. Artikel D viser resultaterne af langvarige svelletest med konstant 

volumen på Søvind Marl. Artikel E præsenterer nogle numeriske valideringer af 

konsolideringsforøger på mellemstive lertyper gennem forskellige jordmodeller. 
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CHAPTER 1. INTRODUCTION 

1.1. BACKGROUND 

Soil is a three-phase material, composed of mineral particles, water and air. Unlike 

rocks, soils are a relatively weak material, and applied stresses can lead to significant 

deformations. Soil deformations depend on soil initial state, stress history, stress path 

and time. 

When a load is applied to a saturated soil deposit, the water is squeezed out of the 

pores. A volume change occurs, and the soil stratum settles down. This process is 

known as consolidation. When the consolidation is over, i.e., the excess pore water 

pressure has dissipated, the soil deposit exhibits time-dependent deformations under 

constant load, the creep deformations, that are due to deformation in the soil skeleton. 

Some soils do not exhibit only a reduction in volume when consolidate, but also show 

a volume expansion when the water content increases. In some cases, a heave appears 

on the soil surface. 

It is fundamental to predict the soil deformations underneath a structure to not 

compromise the serviceability of it. A safe design implies that the deformations of a 

soil deposit under the infrastructure or structure do not cause any damage. A practical 

example of soil consolidation is a ground improvement intervention with preloading 

using an embankment (see Fig. 1). Such a process fastens the consolidation of a soil 

deposit before the construction work and makes the soil deposit a more appropriate 

foundation. To design an adequate embankment, the prediction of the deposit 

settlements over time needs careful investigation, as well as the development of excess 

pore pressure. 

It is well known that foundations laying on clayey layers are subjected to settlements 

for a long period, continuing at a steadily decreasing rate, but still appreciable after 

several years. When a soil deposit is investigated, before it is going to support any 

kind of construction, two important matters need an answer. The first one is to 

estimate what will be the final settlement of the structure. Secondly, the time that it 

will take to develop this settlement. Oedometer testing is a laboratory test that 

investigates deformation parameters useful to answer these questions. 

1.2. CONSOLIDATION THEORY 

Karl Terzaghi started in the 1920s to develop the first contribution to the consolidation 

theory. Terzaghi intended to evaluate the relationship between time and settlement 

and designed the oedometer, which worked as a support for his one-dimensional 

consolidation theory. In Terzaghi (1943), he stated that “Every process involving a 

decrease of water content of a saturated soil without replacement of the water by air 

is called a process of consolidation”. When a saturated clay deposit is loaded, the load 
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increase is initially taken by the water and generates an excess pore pressure. With 

time, the water escapes the soil pores, and the load increment is transferred to the soil 

particles. This causes the soil layer to settle. In other words, during the consolidation 

process, the excess pore pressure dissipates, and the soil particles are packed more 

tightly, meaning that the soil deposit settles. While the pore pressure decreases, the 

effective stress increases (see Fig. 2). 

The one-dimensional consolidation theory by Terzaghi describes the spatial-temporal 

variation of excess pore pressure through the primary consolidation coefficient. The 

coefficient of consolidation cv in equation (1.1) is the rate at which the soil undergoes 

the consolidation. Terzaghi’s theory of consolidation and its non-dimensional time 

factor Tv relate cv to a certain time t, needed to reach a specific degree of consolidation, 

and Hdr, drainage path of water. The root time method described by Taylor (1948) 

estimates cv = 0.848 at a time equal to T90, the time necessary to complete the 90% 

consolidation, equation (1.2). 

 

𝜕𝑢

𝜕𝑡
= 𝑐𝑣

𝜕𝑢2

𝜕𝑧2
 

(1.1) 

𝑐𝑣 =
𝑇90 · 𝐻𝑑𝑟

2

𝑡90
 (1.2) 

Taylor continued the research about the consolidation and introduced the importance 

of the plastic time lag, a phenomenon not considered in Terzaghi's theory (Taylor, 

1948). Terzaghi neglected the existence of secondary compression at the end of 

primary consolidation when the excess pore pressure is dissipated, and the load is 

constant. Instead, Taylor identified three parts of the total compression during a single 

oedometer loading increment: 1) the initial/immediate compression, 2) the primary 

compression, and 3) the secondary compression or creep. The sample is compressed 

at high speed at the beginning of the consolidation, while the speed of compression 

steadily decreases during the secondary compression. 

 

Fig. 1. Consolidation due to preloading in ground improvement intervention. 
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Fig. 2. Pore pressure and stress variation during the consolidation process. 

1.3. OEDOMETER TESTING: PRELIMINARIES 

The oedometer test is a fundamental procedure, widely used in geotechnical 

laboratories. The soil sample is horizontally confined in a ring, and a load vertically 

applied to it. This procedure investigates the one-dimensional consolidation of the soil 

sample and returns its deformation properties. An incremental load oedometer test 

(ILO) involves consecutive steps where increasing loads are applied to the sample. 

When a clay sample is subject to a constant load, its void ratio decreases with time. 

Fig. 3 shows the typical output of a single load step in a log(t)-e graph. The first part 

of the curve is related to the primary consolidation, controlled by the dissipation of 

pore excess water. The second part of the curve is creep deformation, defined by the 

secondary compression index C. It is common practice to let each load increment 

acting for 24 hours, but the full primary consolidation can be completed in shorter or 

longer times. 

The sequence of applied stress typically consists of doubling each subsequent stress 

(’/’ = 1). This practice, also suggested by the ISO 17892-5: 2017, guarantees a 

sequence of evenly spaced points. When the oedometer test is completed, the 

sequence of deformations from each load step returns the compression curve 

represented in the semilogarithmic plane log(’)-e (see Fig. 4). This curve generally 

shows a bilinear behaviour. The first part of the consolidation curve, the 

recompression line, presents smaller and elastic deformations; instead, in the second 

part, the soil exhibits a softer response and plastic deformations. From the 

recompression line, it is possible to determine the recompression index Cr, and, from 

the virgin compression line, the compression index Cc.  

Fine-grained soil exhibits ‘memory’ of the stress history previously experienced. The 

soil structure saves information about earlier stress states. In the zone where the 

compression curve shows a knee, the preconsolidation stress ’p finds place. This 

value is defined as the highest effective stress that the soil was ever subjected to. 
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Fig. 3. Example of the time-deformation curve of a single load step. 

 

 

Fig. 4. Final compression curve returned by the oedometer test. 
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CHAPTER 2. AIM OF THE THESIS AND 

RESEARCH PROJECT 

2.1. MOTIVATION AND GENERAL SCOPE 

The soil deformation properties resulting from oedometer testing, like stiffness and 

creep parameters, are fundamental input for the definition of soil models. Only careful 

laboratory investigation and interpretation lead to a realistic understanding of the 

deformation properties and the soil behaviour. However, the oedometer test remained 

a procedure generally unchanged since it was introduced, and it is common practice 

to conduct oedometer testing by minimizing the testing time and treating different 

soils with the same procedure.  

This Ph.D. project aims to a better understanding of the specific compressive 

behaviour of different kinds of Danish soils, and its objective is to find the most 

accurate laboratory methodology and interpretation for each of them. An oedometer 

testing program was carried out to investigate the deformation properties and stress 

history of the soils. Part of the study focuses on finding the most accurate and 

consistent method to interpret the stress history of a set of Danish clays. An 

experimental program on Rørdal chalk evaluates the relationship between testing time 

and long-term chalk behaviour. Swelling tests on Søvind Marl predict the long-term 

swelling potential of this clay. The testing programs give special attention to the 

testing time and influence of the laboratory methodology on the resulting deformation 

properties. 

2.2. SPECIFIC OBJECTIVES 

1. Influence of separation of strain on the interpretation of preconsolidation 

pressure. 

2. Interpretation of preconsolidation pressure for different Danish clays. 

3. Understanding of compressive behaviour of Rørdal chalk. 

4. Interpretation of constant volume swelling of Søvind Marl. 

5. Understanding the performance of different constitutive soil models by 

numerically validating ILO tests. 

2.3. RESEARCH PROJECT 

To achieve the specific aims listed above, the following process was followed. 

1. ILO tests were performed on Yoldia clay, with a focus on the separation of 

strains methods and preconsolidation pressure interpretation. 

2. After the ILO on Yoldia clay, some questions on the interpretation of 

preconsolidation stress were raised. Therefore, different interpretation methods 
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of preconsolidation stress were compared for different clays. Moreover some 

ILO validation tests on remoulded clay were performed with pre-applied stress. 

3. Performing ILO on Rørdal chalk, with load steps lasting 14 days. 

4. Performing constant volume swelling test on Søvind Marl and comparison 

between different swelling duration. ILO test followed the swelling tests. 

5. Validation of ILO in Plaxis by using different soil models (Hardening Soil, Soft 

Soil Creep and Creep-SCLAY1S models). 

Fig. 5 illustrates a graphical overview of the research and a summary of the papers 

attached in the appendix. 

 

Fig. 5. Overview of the research project and papers. 
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CHAPTER 3. GENERAL DESCRIPTION 

OF THE SOILS 

This thesis presents the results of ILO and swelling tests for different soils. Paper A 

shows the interpretation of preconsolidation stress for clays from various locations in 

Denmark. These clays differ in depth, age and compressibility properties. Paper B 

investigates the deformation properties of Rørdal chalk from Aalborg. Paper C 

presents the results of tests on Aalborg Clay and Yoldia Clay. Paper D investigates 

the effect of time on the development of swelling pressure for Søvind Marl, a high 

plasticity Eocene clay. Rørdal chalk and Søvind Marl have some unique 

characteristics, and a more in-depth analysis is presented hereafter. 

Many geological events shaped the geology of Denmark over millions of years; 

however, what is visible today is the result only of the most recent glacial and 

postglacial ages during the Quaternary period. Under this most recent layer, older 

formations are dating back to more than one billion years. For example, in Northern 

Jutland and Eastern Zealand, the pre-Quaternary layer is formed of late cretaceous 

and Dania chalk; instead, plastic Paleogene clay is found in eastern Jutland and Funen 

(Nielsen, 1995). Fig. 6 divides in colour bands the pre-Quaternary geology of 

Denmark.  

3.1. RØRDAL CHALK 

In the North Sea basin, chalk is present both onshore and offshore. In offshore oil 

reservoirs, such as the Ekofisk oil field, the presence of chalk can lead to problems of 

subsidence beneath the extraction platforms (Alam et al., 2012; Dahou et al., 1995; 

Delage et al., 1996; Homand and Shao, 2000; Maranini and Brignoli, 1999). 

North Sea chalk is mainly composed of the debris of coccoliths, calcium carbonate 

plates formed by algae, of size equal to about 10 m (Fabricius, 2007; Risnes and 

Flaageng, 1999; Stenestad, 2006). Samples from different locations vary in many 

properties, for example, for the presence of microfossils and coccoliths, level of 

calcite cementation, porosity, carbonate content, gas permeability (Hjuler and 

Fabricius, 2009). In the literature, chalk is treated differently: some research considers 

it a fine-grained sedimentary rock (Hjuler and Fabricius, 2009; Korsnes et al., 2008), 

others handle it like soil (Leth et al., 2016) or describe it as a material between a 

poroelastic rock and a disaggregated material with yield zone and soil mechanical 

characteristics (Kågeson-Loe et al., 1993). 

Considering this variability, it is important to test specifically the chalk of interest, 

instead of relying only on previous and generic studies. This thesis discusses the 

compressive behaviour of Rørdal chalk. This kind of chalk formed during the 
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Maastrichtian Age, the period that spanned from 72.1 to 66 million years ago, and it 

presents high porosity. The analysed samples originate from the Rørdal quarry, 

located in eastern Aalborg. In this area, the chalk is present from the surface level to 

a variable depth between 500-750 m (Japsen, 2000). Other researchers that 

investigated Rørdal chalk are Håkansson et al. (1974), Leth et al. (2016), Stenestad 

(2006) and Strand et al. (2007). Some pictures captured by a stereomicroscope show 

3D details of the chalk surface (Fig. 7). 

 

Fig. 6. The pre-Quaternary geology of Denmark adapted from Japsen (1998). 
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Fig. 7. Images of Rørdal chalk core samples taken by stereomicroscope. 
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3.2. SØVIND MARL 

At the beginning of the Eocene era, which started 56 million years ago, Denmark was 

partly covered by water. The volcanic activity between Greenland and North-western 

Europe increased after the transition between the Paleocene and Eocene eras. The 

water level raised again after the beginning of the Eocene era, and, in the North Sea, 

all sediments following this period are very fine-grained plastic clays, originating 

from the chemical weathering of volcanic materials. Layers up to 200 m of plastic 

clay were deposited during the middle and late Eocene era (Heilmann-Clausen, 2010). 

These clays belong to three formations: Røsnes Clay, Little Belt Clay and Søvind 

Marl, from the oldest to the youngest, respectively (Heilmann-Clausen et al., 1985). 

From the Oligocene age, younger deposits covered and loaded the Søvind Marl. 

Further ice ages in the Quaternary period contributed to load and unload the Søvind 

Marl (Heilmann-Clausen, 2010). The unloading made the clay swelling, and this 

resulted in a large number of fissures running through the soil layer. 

These events made the Søvind Marl a highly overconsolidated clay, characterized by 

a special difficulty in identifying its preconsolidation stress. Krogsbøll et al. (2012) 

suggested that the debonding during laboratory tests causes the Danish Paleogene 

clays to ‘forget’ the preconsolidation stress, and so, to ‘lose their memory’. The 

Søvind Marl compression curves show a progressive and smooth yielding, instead of 

the typical bilinear behaviour. Previous studies identify two yield stresses in the 

compression curve of Søvind Marl, where the second-highest stress is the one related 

to geological preloading (Grønbech et al., 2015a; Okkels and Hansen, 2016).  

The Søvind Marl is also characterized by high plasticity and high swelling potential. 

Smectite is the clay mineral with the highest concentration (between 35-45%), and it 

is the cause of high plasticity and tendency to expand. The calcite content affects the 

colour of the clay, which varies from dark grey to whiter as the calcite increases 

(Grønbech et al., 2015a). 

The Søvind Marl samples tested in this thesis originate from Aarhus Harbour. At this 

location, the Søvind Marl layer was found starting from a depth equal to 11-12 m 

(Grønbech et al., 2015b), and the tested samples come from 35 and 63 m depth. Fig. 

8 shows one of the samples during the preparation for the swelling test. 
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Fig. 8. Sample preparation of Søvind Marl in the oedometer ring. 

3.3. DANISH CLAYS 

Paper C deals with clays from Nørre Lyngby and Aalborg, Paper A and Paper E 

present some additional ILO results of different Danish clays from an existing data 

set. These clays come from various locations and present different characteristics for 

aspect, depth, and period of origin.  

During the last glacial period, the Weichselian, Northern Europe and Scandinavia 

were covered by ice. When the ice sheet began to melt between 18,000 and 13,000 

years BP (Lagerlund and Houmark-Nielsen, 1993), the water covered a depressed 

area, including the north part of Denmark, forming the Yoldia Sea where marine 

sediments deposited. Samples of Nørre Lyngby clay contain Yoldia mussels and, 

therefore, are called Yoldia clay. The most superficial clay in this area was dated about 

14,650-12,650 years BP (Lagerlund and Houmark-Nielsen, 1993; Richardt, 1996). 

Abrahamsen and Readman (1980) define the clay Younger Yoldia clay, which varies 

between argillaceous sand and fine-grained clay. 

The Aalborg clay also belongs to the late glacial period. This clay does not contain 

mussels, and it is characterized by the presence of sand due to the summer-winter 

alternation (Iversen et al., 2010), see Fig. 9. On the other hand, a clay containing 
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molluscan fossils is the Gram clay from Rømø, belonging to the late Miocene and 

described by Piasecki (1980). Other samples from Anholt belong to the Eemian 

interglacial period (late Pleistocene) and were taken from about 77 meters depth. The 

most recent samples present in this research are the two samples from Skagen. They 

belong to the Holocene period and are sandy silty marine clay. Their depth of origin 

is equal to about 35-40 m below the sea level. 

Fig. 10 shows the sample’s area of origin and summarizes some of their peculiar 

features.  

 

 

Fig. 9. Samples of Aalborg clay with sand layers. 
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Fig. 10. Original sites of the clay samples. 
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CHAPTER 4. STATE OF THE ART 

4.1. INTERPRETATION OF CONSOLIDATION AND CREEP  

As anticipated in Section 1.2, settlement of a saturated soil deposit consists of two 

phases, a first primary consolidation, followed by a secondary consolidation phase. It 

is important to stress that the time of consolidation of a laboratory sample differs from 

the one of an in situ deposit. While a sample completes the dissipation of excess pore 

water pressure in few minutes, the soil deposit can take decades to dissipate the water; 

generally, the strain rates developed under an embankment are smaller than the ones 

generated in a laboratory test. To predict correctly the settlement in the field, it is 

necessary to define the creep process. Ladd et al. (1977) proposed two opposite creep 

theories. The first theory, so-called Hypothesis A, considers primary consolidation 

and creep two separate processes, where the end of primary (EOP) strain is not 

dependent on the consolidation time, so it is the same in the laboratory as in the field. 

Hypothesis A is experimentally supported by G. Mesri (2003). The second theory, 

Hypothesis B, implies that the EOP strain increases with the duration of primary 

consolidation, it includes a creep contribution in the primary consolidation, and it is 

supported by Serge Leroueil (2006). According to Hypothesis B, the EOP strain 

increases with the consolidation period, and the EOP strain in the field is higher than 

the one predicted by Hypothesis A (see Fig. 11). Several works were published in 

support of Hypothesis A (Mesri, 2009; Mesri and Vardhanabhuti, 2006) and 

Hypothesis B (Crawford, 1986; Degago et al., 2011; Imai et al., 2003). Hypotheses A 

and B can be represented on a set of isotache (Bjerrum, 1967; Šuklje, 1957), lines that 

have the same strain rate in the log(’)-e diagram, as in Fig. 12. The isotache model 

represents the compressibility of soil by a system of parallel timelines and shows the 

uniqueness of the relationship between time, stress and void ratio (or strain).  

Several methods separate the strains between primary consolidation and creep. Each 

of these methods presents different interpretations of the creep process. The 

commonly used 24 hours method consists of considering as consolidation strain the 

strain happening in the first 24 hours of each load step in an ILO test. Brinch Hansen 

(1961) proposed a graphical identification of the strains; the consolidation strain is 

linear when represented on the t-e plane, while the creep strain is linear on the log(t)-

e plane. Taylor (1948) suggested the square root of the time fitting method, which 

represents the strains on a t-e plane. The so-called Anaconda method is based on 

Jacobsen’s interpretation of creep and, among the methods applied, is the only one 

considering primary consolidation and creep two processes not separated (Jacobsen, 

1992a). Paper C, applying these methods to clay samples, evaluates their influence on 

the compression curve and the determination of preconsolidation stress. Another way 

to separate the consolidation and creep strains is according to the strain rate 
𝜕𝜀

𝜕𝑡
. By 

defining the strain rate associated with the EOP state, the corresponding strain defines 



CHAPTER 4. STATE OF THE ART 

16 

the compression curve. For clays that reach the EOP before 24 hours, the desired value 

of strain rate varies between 5x10-8 s-1 for low compressibility clays and 10-7 s-1 for 

high compressibility clays (Leroueil, 2006). 

 

Fig. 11. Influence of sample thickness according to Hypotheses A and B. 

 
Fig. 12. Representation of Hypotheses A and B on the isotache lines after Serge 

Leroueil (2006). 
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4.2. EFFECT OF SAMPLE DISTURBANCE 

Preserving the original soil structure in a sample is one of the main challenges of 

laboratory testing. Only an undisturbed sample can guarantee the correct evaluation 

of soil properties, stress-strain and strength behaviour. The sample disturbance 

induces destruction of the soil, leading to a decrease in preconsolidation stress and Cc 

and an increase in Cs (Leroueil and Hight, 2003; Lim et al., 2018). Several causes lead 

to sample disturbance (Ladd and Degroot, 2003). The disturbance of a sample can be 

due to sampling operation, transportation, adopted equipment and original sample 

depth. A long-term storage period contributes to the sample disturbance and reduces 

undrained shear strength and preconsolidation stress (Helene A Amundsen et al., 

2015). Sample preparation (handling, trimming), and the swelling due to the contact 

with the saturated porous stones, can cause sample disturbance. A more rounded 

compression curve characterises a poor quality sample, compared to the one of an 

undisturbed sample (see Fig. 13).  

It is important to define the degree of sample disturbance to have an understanding of 

the reliability of results. Lunne et al. (1997) suggested a procedure commonly adopted 

to describe the sample quality and based on tests on marine clays. The method by 

Lunne et al. calculates the ratio e/e0 (where e0 is the initial void ratio, and e is the 

change between e0 and the void ratio corresponding to the in situ stress) to classify the 

degree of disturbance among four categories (Table 1). 

Other criteria assessing the sample disturbance exist. For example, the one suggested 

by Karlsrud and Hernandez-Martinez (2013), which evaluates the trend of M. The best 

performance of this method is returned when it is applied on CRS tests, because of 

the higher amount of data points compared to ILO tests. The sample quality is not 

univocally defined: evaluating the disturbance with different criteria can change the 

quality rating (Helene Alexandra Amundsen et al., 2015). 

 

Fig. 13. Sketch of a compression curve affected by sample disturbance. 
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Table 1. Sample quality based on e/e0 from oedometer tests taking into account the 
OCR (after Lunne et al. 1997). 

Sample quality e/e0 OCR 1-2 e/e0 OCR 2-4 

Very good to 

excellent (1) 
<0.04 <0.03 

Good to fair (2) 0.04-0.07 0.03-0.05 

Poor (3) 0.07-0.14 0.05-0.10 

Very poor (4) >0.14 >0.10 

4.3. DEFORMATION PROPERTIES INVESTIGATED THROUGH 
OEDOMETER TESTING 

Oedometer testing provides deformation properties useful to define the consolidation 

and creep processes of the soil tested. The following paragraphs list the stiffness and 

permeability parameters interpreted through the different papers. 

4.3.1. COMPRESSION AND RECOMPRESSION INDEXES 

As anticipated in Section 1.3, the compression curve returns the compression index, 

Cc = elog(’), and the recompression index, Cr = elog(’). While Cr relates to 

soil settlements for loads before the preconsolidation stress ’p, Cc relates to the virgin 

compression curve and loads higher than the ’p. Cc and Cr are parameters of 

constitutive soil models that define the stiffness of soft soils. Alternatively, the 

stiffness is also represented in terms of * (4.1) and * (4.2), which refer to the 

compression curve in the plane ln(’)–. 

𝜆∗ =
𝐶𝑐

2.3(1 + e0)
 (4.1) 

𝜅∗ ≈
2𝐶𝑟

2.3(1 + e0)
 (4.2) 

4.3.2. COMPRESSIBILITY RATIO AND CONSOLIDATION MODULUS 

The compressibility ratio mv is the volume decrease per increase of effective pressure 

during compression (4.3). The primary consolidation settlements can be computed as 

in equation (4.4). 

𝑚𝑣 =
∆𝜀𝑣

∆𝜎′
 (4.3) 

𝑆 = ∫ 𝑚𝑣 ∙ ∆𝜎′ ∙ 𝑑𝑧
𝐻

0

 
(4.4) 
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The soil compressibility is represented by the oedometer modulus or consolidation 

modulus M (4.5), reciprocate of mv. The modulus M is a stress-dependent stiffness 

parameter. 

𝑀 =
∆𝜎′

∆𝜀𝑣

 
(4.5) 

4.3.3. PERMEABILITY K 

The coefficient cv (4.6) can be related to the ratio between the permeability k and the 

compressibility ratio mv by the volume weight of water w. 

 

𝑐𝑣 =  
𝑘𝑣

𝑚𝑣 ∙ 𝛾𝑤
  

(4.6) 

4.3.4. SECONDARY COMPRESSION INDEX C 

The secondary settlements continue at a decreasing rate over the life span of the 

structure. The creep contribution is relatively small in clays, but it can be the major 

deformation contribution in organic soil. It is possible to determine the secondary 

compression index C in the log(t)-e curve (see Fig. 14). Usually, C is calculated 

over a single log cycle (4.7). Mesri and Godlewski (1977) observed that the ratio 

CCc is between 0.025 and 0.10 for different kinds of soil and typically 0.037 for 

inorganic clays. The secondary settlements Ss in the field can be calculated as in 

equation (4.8). 

 

𝐶𝛼 =
∆𝑒

log
 𝑡2

𝑡1

 
(4.7) 

𝑆𝑠 =
𝐻0

1 + 𝑒𝐸𝑂𝑃
𝐶𝛼log

 𝑡𝑠

𝑡𝑝𝑐
 

 

(4.8) 

where H0 = thickness of the soil deposit to be evaluated after excavation, but before 

loading, eEOP = void ratio corresponding to complete primary consolidation in the test 

specimen, ts = time considered for the calculation of secondary compression, tpc = time 

to complete primary consolidation in the consolidating soil deposit in the field. 
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Fig. 14. Determination of C in the log(t)-e plane. 

Alternatively, as for the Cc and Cr indexes, C is also represented with the term *, 

which refers to the curve in the plane ln(t)–. 

𝜇∗ =
𝐶𝛼

2.3(1 + 𝑒0)
 

(4.9) 

4.3.5. PRECONSOLIDATION PRESSURE ’P 

The identification of ’p is important for the calculation of settlements and the 

interpretation of subsequent correlated parameters. Among them, for example, the 

undrained shear strength, as discussed by Skempton (1954) or by the SHANSEP 

method (Ladd and Foott, 1974), and the overconsolidation ratio OCR (’p/’vo). 

There are several methods to interpret ’p from an oedometer test. All of them assume 

that the soil changes stiffness in the zone where the ’p belongs, from a stiffer to a 

softer behaviour. Some interpretations directly rely on the compression curve and a 

graphical construction based on it; others evaluate a secondary parameter. In the first 

group, there are the methods developed by Casagrande (1936), Pacheco Silva (1970), 

Jacobsen (1992b) and the bi-logarithmic methods by Butterfield (1979), Oikawa 

(1987), Onitsuka et al. (1995). Other methods, relying on a subsequent parameter, are, 

for example, the one proposed by Janbu (1969), interpreting the modulus M, or the 

work criterion by Becker et al. (1987), or the interpretation of C by Akai (1960). Not 

all the interpretations are designed for all kinds of soft soil. For example, Jacobsen 

(1992b) proposed an empirical method based on the results of oedometer tests on 

overconsolidated marine Danish clay. 

It is worth mentioning that the compression curve plotted on a semi-logarithmic plane 

has been considered in the past an inaccurate representation of soil behaviour (Janbu, 

1969; Wesley, 2019). Wesley (2019) criticizes the fact that, on this plane, all the 

different soils appear to behave in the same bilinear way; the log scale is a reasonable 

representation only for soft normally consolidated sedimentary clays, while, for the 

other soils, the arithmetic plot is recommended.  
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The preconsolidation pressure, defined as the point where the compression curve 

bends, is more generally defined as yield stress or quasi-preconsolidation stress 

because the bending of the curve can also be caused by structural changes in the soil, 

like alteration of clay mineral, cementation, or aging (Augustensen et al., 2004; 

Bjerrum, 1967; Liingaard et al., 2004; Ma et al., 2014). Leonards and Ramiah (1960) 

termed the apparent preconsolidation stress due to such effects as the quasi-

preconsolidation pressure, and Leonards and Deschamps (1995) stressed the influence 

of a long period of secondary compression in the development of the quasi-

preconsolidation stress (see Fig. 15).  

This discussion wants to highlight the fact that the preconsolidation pressure is time-

dependent, and it is related to the adopted strain rate (Augustensen et al., 2004; 

Leroueil et al., 1985). According to the isotache model, a system of parallel lines in 

the log(’)-e plane represents a unique relationship between void, strain rate and 

stress. When an ILO test is performed, an increasing load increment duration causes 

the position of the virgin compression line to translate downwards (Graham et al., 

1983) (see Fig. 16). In the same way, a decrease in strain rate in CRS oedometer leads 

to a decrease in ’p (Crawford, 1965). Therefore, the ’p determination relies also on 

the conditions a test is performed, not only to the interpretation theory applied. 

 

Fig. 15. Development of quasi-preconsolidation due to secondary compression. 
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Fig. 16. An increasing load step duration shifts a compression curve downwards. 

4.4. ILO AND CONSTANT RATE OF STRAIN OEDOMETER TEST 

Even if this research does not present results from the Constant Rate of Strain 

oedometer testing, it is worth mentioning this kind of procedure in relationship with 

the ILO test. While the ILO test is a stress control test, a CRS test is performed not by 

applying incremental loads, but it is a continuous test during which the strain rate 𝜀𝑝̇ 

is constant.  

Hamilton and Crawford (1959), Smith and Wahls (1969), Wissa et al. (1971) 

developed the CRS oedometer testing method to remedy the disadvantages of ILO 

testing. Some of the weaknesses of the ILO are the long testing time, the widely 

spaced data points that make it difficult to define ’p, and the variable amount of creep 

taken into account in the different load steps (Leroueil et al., 1983). The main 

advantages of the CRS test in comparison with ILO tests are the possibility to obtain 

a continuous (less scattered) log(’)-e curve and to reduce the testing time.  

The choice of the 𝜀𝑝̇ is the major variable in a CRS test, and the most appropriate 𝜀𝑝̇ 

to adopt is unknown a priori. A too high strain rate (fast CRS test) leads to the 

development of pore water pressure; on the other hand, a low strain rate returns a 

log(’)-e curve including secondary deformations. The choice of an appropriate 𝜀𝑝̇ is 

based on prior ILO tests or following the Unified Soil Classification System, as 

suggested by ASTM D4186 (2012). The procedures that derive 𝜀𝑝̇ from ILO results 

rely on the quality of the ILO test (Mesri and Feng, 2018, 1986; Ozer et al., 2012). As 

an example, equation (4.10) is the relationship proposed by Mesri and Feng (1986) to 

find the axial strain rate 𝜀𝑝̇, associated to EOP state and expected to produce nearly 

zero excess pore pressure.  
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𝜀𝑝̇ =
𝑘𝑣0

2𝐶𝑐/𝐶𝑘𝐻2

𝜎′𝑝

𝛾𝑤

𝐶𝛼

𝐶𝑐
 

 

(4.10) 

where kv0 is the initial permeability of the specimen, and H is its maximum drainage 

distance. 

Some authors, after the choice of a proper 𝜀𝑝̇, presented test programs where the CRS 

results are in good agreement with the EOP compression curves from ILO tests 

(Andries et al., 2019; Mesri and Feng, 2018, 1986; Moozhikkal et al., 2019; Ozer et 

al., 2012). Fig. 17 shows different results for St. Hilaire clay from Mesri and Feng, 

(2018), where the compression curve from a CRS oedometer test is compared to the 

compression curve from an ILO test. 

 

Fig. 17. A compression curve from a CRS test compared to the EOP curves from 
ILO tests (Mesri and Feng, 2018). 
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4.5. EXPANSIVE SOILS AND SWELL PRESSURE 

Expansive soils are soils that expand or shrink when water is added or when they dry 

out, respectively. Two phenomena causing a volume alteration in soils are, for 

example, the seasonal dry and wet cycles and the movement of the groundwater table. 

Expansive soils can cause different damages to structures, as cracks on basement 

floors and walls. 

Expansive soils swell because they contain swelling clay minerals, for example, 

montmorillonite and bentonite (Foster, 1954; Norrish, 1954). The swelling process 

presents two phases, not distinct clearly; the first phase is an initial crystalline phase, 

which is followed by an osmotic phase (Slade et al., 1991). Crystalline swelling 

happens because clay minerals, having a concentration of cations near the surface, 

attract water molecules. Osmotic swelling (or diffuse double layer swelling) occurs at 

inter-layer separations because of the presence of cations between the soil particles. 

Besides the soil minerals, other factors have an impact on the swelling potential and 

influence the swell behaviour: initial dry density, initial water content, confining 

pressure and cry-wetting history (Buzzi et al., 2011; Seed et al., 1961; Tripathy et al., 

2002). 

4.5.1. OEDOMETER TESTING AND HEAVE PREDICTION METHODS 

A proper design can predict the soil heave due to the swell, and oedometer testing is 

the most accepted method to quantify the swelling potential. Two are the oedometer 

procedures commonly applied to identify the swelling pressure. One is the 

Consolidation-Swell (CS) test, and the second one is the Constant-Volume (CV) test. 

During a CS test, the sample firstly swells loaded by the inundation stress ’i (stress 

under which the sample is inundated by water), after it is loaded through several steps 

to reach its initial height again. The pressure corresponding to this height is the so-

called consolidation swell pressure 'cs. During a CV test, the sample volume is kept 

constant under the effect of vertical stress that prevents the sample from swelling and 

varies during the time. The highest registered pressure is the constant-volume swelling 

pressure ’cv. These two methods are schematically represented in Fig. 18. The value 

of ’cv is lower than the value of 'cs; this is because it is easier to prevent the sample 

from swelling than to compress it back to the original height (Nelson et al., 2015). 

The prediction of the heave is a fundamental step in the design of shallow and deep 

foundations in expansive soils. The calculation of the heave can be based on empirical 

or oedometer test methods. The oedometer methods rely on results from CV and CS 

tests. Nelson et al. (2006) calculated the heave starting from the definition of the heave 

index CH (4.11). The percent swell s at a particular value of ’i and the ’cv are both 

needed to determine CH. Common geotechnical engineering practice is running only 

the CS test, and only the CS swelling pressure is measured. There are empirical 

relationships that return the value ’cv, for example, the ones suggested by Thompson 
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et al. (2006) or by John D. Nelson and Chao (2014). From Fig. 18, the strain in the 

layer can be written as: 

𝜀𝑠%

100
= 𝐶𝐻 ∙ log

𝜎′𝑐𝑣

𝜎′𝑖
 

 

(4.11) 

Using the definition of CH above, J. D. Nelson et al. (2006) calculated the heave of a 

soil layer as: 

∆𝐻 = 𝐶𝐻 ∙ 𝐻 ∙ log
𝜎′𝑐𝑣

𝜎′𝑓
 

 

(4.12) 

where H is the thickness of the soil layer, and the final vertical net normal stress ’f 
replaces the inundation stress ’i in equation (4.11). The value ’f is calculated from 

the weight of the soil layers above the swelling deposit and the self-weight of the 

structure. Vanapalli and Lu (2012) describe other heave prediction methods. 

ASTM D4546-08 suggests an inundation period between 24 and 72 hours. Instead, it 

is not precisely defined how long a sample should be allowed to swell in a CS test (or 

prevented to swell in a CV test) to make the sample develop its full swelling potential. 

This time varies from one soil to another. The increase of swelling pressure at a 

decreasing rate was shown by Seed et al. (1961). Previous experimental investigation 

shows that a sample of highly plastic claystone still exhibits swelling potential after 

40 days (Nelson, 2015). 

 

Fig. 18. Schematic procedure for CV and CS tests. 

  



CHAPTER 4. STATE OF THE ART 

26 

4.6. NUMERICAL MODELLING 

Paper E focuses on the representation of soft soil by three different constitutive soil 

models. Oedometer tests are numerically validated in Plaxis with the Hardening Soil 

model, the Soft Soil Creep model and the Creep-1CLAY1S model, which features are 

summed up in the next paragraphs. 

Soil shows a non-linear, time-dependent and often anisotropic behaviour. Many 

constitutive models describe the different aspects of soil behaviour in a more or less 

sophisticated way. The more complicated is a model, the more input parameters are 

needed. There is often a lack of laboratory or in situ tests to get the input parameters, 

and it is necessary to derive indirectly part of them. The selection of a soil model 

compromises between an accurate representation of the soil and the number of tests 

available. Choosing a soil model depends on the dominant load situation, for example, 

a tunnelling problem involves primarily the unloading, and therefore it is important to 

select a model able to represent this condition. Brinkgrere (2005) presents an overview 

of the tests needed to derive (directly or indirectly) the strength and deformation 

parameters; the ILO test is the one that allows the most complete derivation of 

stiffness parameters. After the constitutive model is selected and the parameters 

derived, it is important to evaluate the performance of the “artificial soil”, i.e., the 

chosen soil model with the input parameters (Brinkgreve and Engin, 2013). The test 

validation permits to compare the laboratory results and the model result, but also to 

calibrate the parameters to have the best fit.  

4.6.1. HARDENING SOIL MODEL 

The Hardening Soil model (Schanz et al., 1999) can simulate both soft and stiff soils. 

In contrast to the simpler Mohr-Coulomb model, plastic behaviour in the Hardening 

Soil (HS) model can occur before failure, and the yield surface can expand due to 

plastic straining. The HS model permits plastic strain due to deviatoric loading and 

compression, it has stress-dependent stiffness, permits soil dilatancy and follows the 

Mohr-Coulomb failure criterion (defined by parameters c, , ). In the p-q plane, the 

elastic region of the HS model is closed by a shear hardening yield surface and a cap 

yield surface, which intersects the p axis at stress equal to the isotropic 

preconsolidation stress pp (see Fig. 19).  

Limitations of the HS model are the impossibility to reproduce creep and softening 

behaviour and to represent hysteresis in cyclic loading and difficulties in representing 

very soft soil with E50 > 2Eoed. Kharaghani et al. (2018) investigate the performance 

of the HS model on simulating soft soil and finds a good agreement for test validation 

on Bangkok clay. 

From an ILO test, it is possible to directly determine the stiffness parameters Eeod 

(tangent stiffness for primary oedometer loading), and Eur (unloading / reloading 

stiffness) through their alternatives *, *; and indirectly E50 (secant stiffness in 
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standard drained triaxial test). It may be possible to find the K0 directly if the 

horizontal stresses have been measured while performing an ILO. 

 

Fig. 19. Yield surfaces for the HS model. 

4.6.2. SOFT SOIL CREEP MODEL 

As the HS model, the Soft Soil Creep (SSC) model presents stress-dependent stiffness, 

expanding yield surface and failure according to the Mohr-Coulomb criterion. 

However, it considers time-dependent deformation, and it can simulate isotache 

behaviour following Hypothesis B. The SSC model (Vermeer and Neher, 1999) 

assumes that all the plastic strains are time-dependent and that the preconsolidation 

stress increases with the longer a sample is left to creep. The SSC model adopts the 

yield surface from the Modified Cam-Clay model (see Fig. 20), which expands to the 

right side and an associated flow rule, meaning that the plastic strain increment is 

perpendicular to the yield surface. The value peq is a generalized stress calculated by 

using the critical state line slope M, as in equation (4.13), and pp
eq is a generalized 

equivalent preconsolidation stress. The creep strain depends on the stiffness parameter 

described in Section 4.3, and on pp
eq. Relevant creep strains are calculated only when 

peq > pp
eq. The SSC model should be limited to situations where the compression is 

the main loading conditions. Another limitation is the fact that the creep rate is 

considered constant with stress level and time, while, in reality, it is a decreasing 

value.  

 

Fig. 20. Yield surfaces of the SSC model. 

𝑝𝑒𝑞 = 𝑝 +
𝑞2

𝑀2 ∙ (𝑝 + 𝑐 ∙ 𝑐𝑜𝑡𝜑)
 

 

(4.13) 
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𝜀𝑣̇
𝑐 =

𝜇∗

𝜏
(

𝑝′𝑒𝑞

𝑝′𝑝
𝑒𝑞)

𝜆∗−𝑘∗

𝜇∗ 𝜕𝑝′𝑒𝑞

𝜕𝑝′
 (4.14) 

4.6.3. CREEP-1CLAY1S MODEL 

Among the models applied in Paper E, the Creep-1CLAY1S model (Sivasithamparam 

et al., 2015, 2013) is the most advanced, it can simulate creep, anisotropic behaviour 

and bonding. To model the presented clays, this research ignored anisotropy and 

bonding. By neglecting these two phenomena, the creep formulation in the Creep-

1CLAY1S model is the same as in the SSC model, and the plastic deformation is only 

time-dependent. In the p-q plane (see Fig. 21), the strain increments are based on the 

Normal Consolidation Surface (NCS) and the Current Stress Surface (CSS), and they 

follow an associated flow rule. The surface is rotated at an angle , the degree of 

initial anisotropy, which, if it is equal to zero, represents isotropic behaviour. The 

Creep-1CLAY1S model is a complicated model that includes many features here not 

investigated; this research uses this model as a term of comparison with the SSC for 

the long term deformation. 

This model requires deriving intrinsic stiffness parameters from a sample that has lost 

any bonding. To do so, remoulded samples should be used to get intrinsic modified 

compression index i* and intrinsic modified creep index i*. This would require 

additional laboratory work. Another option is to calculate intrinsic values from tests 

where very high stresses were applied; however, in this case, there is uncertainty about 

the level of stress needed to erase the sample structure, and this can lead to 

inaccuracies. 

 

Fig. 21. NCS and CSS of the Creep-1CLAY1S model. 
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CHAPTER 5. METHOD 

This thesis project presents the results of ILO tests and CV swelling tests performed 

on different Danish soils. The oedometer testing procedure has been shortly presented 

in Section 1.3, and Section 5.1 describes the two oedometer equipment used in the test 

programs: the oedometer with a floating ring and the automatic oedometer with a fixed 

ring. Section 5.2 presents a summary of the experimental program and an overview 

of the sample preparations. Finally, Section 5.3 describes the interpretation and 

correction applied to the CV swelling tests on the Søvind Marl samples. 

5.1. ILO OEDOMETER EQUIPMENT 

This project presents the results obtained by using two kinds of oedometer equipment. 

One is the automatic oedometer, which applies stress through a mechanical pressure-

controlled system (see Fig. 22). This tool does not require placing the weight 

manually; after the user inserts the load sequence in the computer program, the test 

starts and the transition between a load step to the next one is automatic. During each 

load step, the contact between the head cap and the sample surface is constant since 

the controllers follow the sample settlement with a displacement accuracy equal to 

0.2%. A fixed ring 4 mm thick confines the sample, and the maximum load applied is 

equal to 10 kN. The automatic oedometer is the equipment also employed to perform 

the constant volume swelling tests presented in this thesis. The mechanical pressure 

head kept constant the height of the sample, preventing it from swelling, while the 

transducers recorded the swelling pressure applied to the pressure head by the sample. 

The second oedometer employed is the so-called AAU oedometer developed at 

Aalborg University. This equipment is inspired by the oedometer designed by Moust 

Jacobsen (Jacobsen, 1970) and shown in Fig. 23. The AAU oedometer (see Fig. 24) 

aims to reduce the inaccuracy stemming from the deformations of the equipment 

itself. The load is applied through a dead weight, and it is transferred firstly to a ball 

and after to the head cap. The maximum applicable load is equal to 27.5 kN; this 

makes it possible to apply high stresses to the sample. A floating ring of 1.5 cm 

thickness confines the sample and moves downwards during the loading, following 

the sample’s displacement. This characteristic should minimize the friction between 

the soil sample and the ring.  
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Fig. 22. Automatic oedometer. 

 

 

Fig. 23. The oedometer designed by Moust Jacobsen, Jacobsen (1970). 
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Fig. 24. AAU oedometers with applied dead weights. 

5.2. TEST PROGRAM OVERVIEW  

5.2.1. THE CHALK INVESTIGATION 

The experimental program began with ILO tests on chalk (Paper B). The preparation 

of chalk samples started from rough blocks excavated mechanically and collected in 

the Aalborg Portland chalk pit. The sample preparation proved to be challenging and 

time-consuming (Nielsen et al., 2019), and several attempts were made before finding 

the most efficient preparation method. The first method consisted of placing a 

cylindrical ring directly on the block of chalk and pressing it down. The core sample 

inside this ring was pushed into the consolidation ring afterward. This procedure 

showed a low rate of success, and many cracks developed on the sample surface, 

especially when attempting to prepare samples of 70mm in diameter. A second 

procedure started with a drilling phase employing a hole saw cutter, followed by a 

pressing phase, when the sample was pushed into the oedometer ring. Finally, the 

sample surface was levelled by hand through a smooth blade. The second procedure 

proved to be the most successful, thanks to the hole saw cutter holding the sample and 

preventing the crack formation during the pressing phase. The chalk preparation was 

the most time consuming, and it implied the roughest manipulation of the samples. At 

the end of the preparation phase, nine ILO samples were ready to be tested in both the 
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oedometer equipment. A test counted about 16-18 load steps and each single load step 

lasted one week. 

5.2.2. UNDISTURBED CLAY SAMPLES 

Papers A, C and D present some results of clay samples tested during the Ph.D. 

project, and some results coming from a database of samples previously tested at the 

AAU laboratory. To the first group belong the samples of Aalborg clay, Søvind Marl 

and remoulded clay from Vejle. 

The core samples of the clays tested were collected through a rotary tube and stored 

in plastic tubes afterward. Before testing, the samples were hand-trimmed and fit into 

the oedometer rings. Swelling during sampling and at the beginning of the test, and 

desiccation during the storage period are among the factors that can cause sample 

disturbance. Paper A and Paper E evaluate the degree of disturbance of the clay 

samples according to the Lunne criteria (Lunne et al., 1997). In the example in Fig. 

25, the sample disturbance is evaluated for an oedometer test on a marine clay from 

Nørre Lyngby. Given an in situ stress equal to 220 kPa, the degree of sample 

disturbance is equal to e/e0= 0.055. Considering that the sample has an OCR between 

1 and 2, the quality category is equal to 2. 

While Paper C applied different separation of strains methods, Paper A represented 

the compression curves by selecting the void ratio corresponding to a strain rate equal 

to 5 x 10-8 s-1 for each load step. By doing so, the compression curve does not take 

into account the creep. Exceptions were the compression curves of Søvind Marl 

samples, which took into account the full strain developed during the 24-hours step 

since the consolidation process is slower in comparison to the other clays. 

 

Fig. 25. Evaluation of sample disturbance on a Nørre Lyngby clay by Lunne et al. 
criteria. 
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5.2.3. REMOULDED CLAY SAMPLES 

Paper A presents the results of nine validation tests on remoulded clay. To remould 

the samples, the clay was mechanically mixed at a water content equal to 25%. The 

clay slurry filled some block forms with dimensions 5x10x20cm. After a storage 

period, the oedometer ring was pushed into the clay block and the sample levelled by 

hand. This validation program involved both the automatic and AAU oedometer. An 

initial load (100, 250, 500, or 1000 kPa) was applied for two weeks. When it was 

removed, a swelling happened and it did not cause the sample to reach a void ratio 

larger than the initial one. Afterward, a standard ILO test started from 10 kPa. This 

investigation aimed to understand the correct method to identify the artificial “pre-

applied” stress history. Seven validation tests doubled the consecutive load steps 

(’=’), while the other two counted intermediate steps (’=0.5’). As done for 

the undisturbed clay samples, the compression curves were drawn by selecting a strain 

rate equal to 5 x 10-8 s-1. 

5.3. INTERPRETATION OF SWELLING PRESSURE  

Paper D evaluates the long term swelling pressure of Søvind Marl. Four constant 

volume swelling tests, followed by a standard ILO, were performed by the automatic 

oedometer equipment. Two CV swelling tests lasted 24 hours, and two CV swelling 

tests lasted 19 weeks. By doing so, it was possible to compare for two samples the 

value of ’cv at 24 hours with the ’cv over a longer period.  

Besides the uncertainty about the time required to develop the full swell pressure, the 

sample disturbance introduces some ambiguities too. A disturbance to the soil 

structure can cause a reduction in matric suction, and this leads to an underestimation 

of 'CV. When an ILO test is run after a CV phase, different graphical correction 

methods can be applied to the compressibility curve. For example, the method 

suggested by Fredlund et al. (2012) is a graphical construction based on the point of 

maximum curvature in the compression curve. Nelson and Miller (1992) proposed a 

second graphical method. On the log(’)-e plane, a horizontal line is drawn passing 

through the estimated uncorrected ('CV)U. Afterward, a tangent to the virgin 

compression line is added. The intersection between these two lines is the corrected 

value of swelling pressure ('CV)C. The effect of this kind of correction can be 

remarkable. Fredlund et al. (2012) showed a corrected swelling pressure 300% higher 

than the uncorrected one. John D. Nelson et al. (2015) found out that the difference 

can be around 100% for highly overconsolidated clays, and the higher is the estimated 

swelling pressure, the greater the effect of the correction. It is important to stress how 

these methods, based on graphical constructions, heavily rely on the quality of the 

ILO test. When tangents to the maximum point of curvature or tangents to the virgin 

curve are drawn, the amount of load steps plays an important role in the result of the 

correction. 
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Fig. 26. Correction method by Nelson and Miller (1992). 
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CHAPTER 6. SUMMARY OF 

RESEARCH 

This chapter is based on the results of the five papers collected in the thesis. The 

following paragraphs present the specific objectives achieved and show some of the 

papers’ key figures.  

Different soils show different compression behaviour, affected by soil initial state, 

stress history, stress path and time. The followed laboratory methodology plays an 

important role in the evaluation of the deformation properties as well. The oedometer 

testing is a widespread method carried out to identify the consolidation and creep 

properties of a soil, and traditionally, this procedure involves double loading and load 

steps lasting 24 hours. However, when interpreting oedometer results, it is necessary 

to keep in mind that deformation properties are time-dependent and strongly affected 

by laboratory procedure, as, for example, preconsolidation pressure, compression and 

secondary compression indexes and swelling pressure. Therefore, for a specific soil, 

it is worth developing a testing procedure that allows getting the best out of the often 

limited number of soil samples available. After the laboratory results are complete, 

other factors affect the final understanding of a soil behaviour, like the interpretation 

chosen to elaborate the data. This study shows, for example, that not every theory 

interpreting the preconsolidation stress suits every soil; and the swelling pressure, as 

a direct result of a constant volume swelling test, risks to underestimate the swelling 

potential if the value is not corrected. 

The initial part of the experimental program consisted of four ILO tests on Aalborg 

clays samples carried out in the AAU equipment. The aim of this investigation was to 

understand what the most representative interpretative methodology for this specific 

clay is. More specifically, the scope of these tests was to investigate the effect of 

different separation of strains theories on the compression curve, and afterwards, on 

the preconsolidation stress determination. In a first phase, the separation of strains 

between consolidation and creep strain was achieved by four different theories, i.e., 

24 hours, Brinch-Hansen, Taylor and ANACONDA theories. In a second phase, the 

preconsolidation stress was found for every compression curve through Akai, Janbu 

and Jacobsen’s methods. Three additional samples of Yoldia clay from Nørre Lyngby 

underwent the same two-phases process. Both the two clays lead to the same 

conclusions. The application of different separation of strains methods does not show 

any relevant change in the compression curve nor the resulting preconsolidation 

pressure. However, it is evident how considering the consolidation over after 24 hours 

overestimates the consolidation time. In opposition, the choice of preconsolidation 

pressure theory largely affects the preconsolidation pressure. Jacobsen’s construction 

predicts a preconsolidation pressure larger than the one interpreted through Akai and 
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Janbu’s theories, in some cases, even more than the double. Some sources of error 

influencing the separation of strain methods and definition of preconsolidation 

pressure are the personal judgment and experience of the user, and, in general, an 

inaccurate laboratory practice. Peri et al. (2019), i.e., Paper C in this thesis, presents 

the results of ILO on Aalborg and Yoldia clays, which gave the opportunity to begin 

a discussion on the determination of preconsolidation pressure ’p in Danish clays. 

The determination of ’p encounters several issues that make it difficult to define ’p 

as a clear and unique value. The value ’p is affected by subjective interpretation and 

the interpretative theory chosen. Moreover, ’p is time-dependent and strictly 

influenced by the followed laboratory methodology. In fact, it is known that the longer 

a load step lasts, the smaller is the value of ’p and vice versa. Finally, a poor sample 

quality complicates further the identification of a clear ’p on the compression curve. 

The results of fourteen ILO tests on medium-stiff Danish clays are analysed with the 

purpose to understand what is the optimal interpretation methodology that returns the 

most accurate value of ’p. The samples originate from Rømø, Anholt, Aalborg, Nørre 

Lyngby and Aarhus. They differ for initial in situ stress, void ratio, water content and 

degree of disturbance, which is defined according to the criteria by Lunne et al. 

(1997). To draw the compression curve, a unique value of strain rate was selected for 

each sample, i.e., the compression curves are represented by the EOP void ratio for 

every load step. The ’p interpretative theories applied are both graphical (Onitsuka, 

Pacheco-Silva and Jacobsen’s theories) and based on a parameter related to ’p (Janbu 

and Becker’s theories). In addition to the results of undisturbed samples, this part of 

the study includes the interpretation of ’p on nine remoulded clay samples from 

Vejle. These are validation tests with an artificial pre-applied ’p. The scope was 

finding out which theories return the ’p closest to the pre-applied one. It is possible 

to draw some considerations on the interpretative theories applicability from the 

results of the fourteen Danish clays. For example, the Jacobsen’s theory, an empirical 

formula calibrated only on results of overconsolidated marine clays, is not meaningful 

for other kinds of clays. The Onitsuka’s theory does not perform correctly on a 

compression curve without a clear bilinear trend. In general, the Jacobsen’s theory 

tends to overestimate ’p, and the best agreement is found between the Onitsuka and 

Becker’s theories. The Janbu’s theory is often the most difficult to apply. The results 

on the undisturbed samples show a relationship between ’p and initial void ratio, and 

a relationship between ’p and dispersion of the ’p from different theories. Large 

variability in the ’p determination is due to the chosen interpretative theory (see Fig. 

27). Fig. 27 shows that, for most of the samples, the average resulting ’p decreases 

for higher e0. For higher level of sample disturbance, there is a larger dispersion of 

’p. The validation tests on remoulded clay confirm the difficulties in applying the 

Janbu’s theory and the similarity between the ’p evaluated by Becker and Onitsuka 

(see Fig. 28). The validation test results also show how all the applied interpretative 

theories generally overestimate the artificial pre-applied ’p. Moreover, the reduction 

of the load increment ratio, for example, from ’=’ to ’=0.5’, would benefit 

both the graphical methods and the interpretations based on a subsequent parameter. 
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This work is included in Peri et al. (2020c), called Paper A in this thesis. The same 

paper includes also a discussion about the determination of Søvind Marl, a Paleogene 

clay studied further during the PhD because of its high swelling potential.  

 

Fig. 27: Void ratio e0 and preconsolidation stresses ’p for clays from Nørre 
Lyngby, Aalborg, Anholt and Rømø, from Peri, Zwanenburg, et al. (2020c). 

 

Fig. 28: Results of Becker and Onitsuka et al. interpretations for the validation tests 
on remoulded clay, from Peri, Zwanenburg, et al. (2020c). 
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Besides its characteristic “loss of memory” and high plasticity, the Søvind Marl 

presents high swelling potential. Four samples of Søvind Marl were tested in the 

automatic oedometer. The samples underwent a constant volume swelling test, 

followed by an ILO test. For two samples taken at 63 meters depth, the CV swelling 

test lasted 24 hours (Test 1 and 2), for the other two samples, originating from 35 

meters depth, the CV test lasted about 19 weeks (Test 3 and 4). Over the 19 weeks of 

the CV tests, Test 3 and 4 show a swelling potential constantly developing. Even 

though the value of ’cv seems constant after one day, it keeps increasing at a lower 

rate until five weeks (see Fig. 29). The change between the swelling pressure at 24 

hours and the maximum ’cv, equal to about 270 kPa, is 30-38% for the two tests. 

Tests 1 and 2 present lower ’cv values (about 30 and 80 kPa) compared to the 24 

hours ’cv in Tests 3 and 4. A swelling test lasting almost five months is not realistic 

in the engineering practice. However, the development of ’cv over the CV test 

stresses the importance of following the evolution of the swelling pressure while the 

test runs. If there are already some data available showing that the examined soil 

exhibits high swelling potential, a compromise could be running, for example, a one-

week test and adding 20% to ’cv. Besides the underestimation of swelling potential 

due to the shortening of laboratory time, errors in the ’cv estimation stem from the 

sample disturbance during sampling. To overcome this problem, the graphical 

construction by Nelson and Miller (1992) is applied, and the initial ’cv is almost 

doubled. This correction relies on the quality of the compression curve, and it is made 

difficult by the typical not clearly bilinear behaviour of Søvind Marl. The correction 

can be helped by having a less scattered curve, i.e., by applying more load steps, and 

by starting the ILO test with a stress close to the ’cv. This work is included in Peri et 

al. (2021), called Paper D in this thesis. 

 

Fig. 29: Swelling pressure development over 19 weeks, from Peri et al. (2021). 
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As for clay, each kind of chalk presents specific behaviour. This project only evaluates 

the compressive behaviour of Rørdal chalk, a stiff soil found in the North Sea basin. 

Among the prepared soil samples, the chalk proved to be the most difficult material 

to deal with, and many attempts were made in order to have high quality samples. 

This part of the project presents a reliable procedure to prepare chalk samples for 

oedometer test from blocks. Results of ILO tests, run both in the automatic and AAU 

oedometer, and the precautions needed to achieve the optimal methodology are 

presented in Peri et al. (2020b), called Paper B in this thesis. Reliable oedometer 

results are guaranteed only by applying stresses high enough to reach the virgin 

compression curve. Moreover, each load step should run long enough to identify the 

complete long-term behaviour. Therefore, the load steps lasted one-week. This 

lengthy procedure (about five months for each test) makes it possible to complete the 

consolidation and to identify three strain contributions. The three strain contributions 

that compose the chalk deformation under constant load are an initial crushing, a 

consolidation strain and a creep strain. The initial crushing is due to grain crushing or 

progressive pore breakdown, and its estimation helps to predict the settlements during 

the construction phase. Thanks to the one-week steps, it is possible to clearly evaluate 

the creep contribution for this material (see Fig. 30), which it is important because 

chalk’s long-term deformation is relevant for understanding the collapse of oil fields 

in chalk reservoirs. Among the three strains, the crushing and creep strains account 

for about 6% of the total strain, where the creep is the minor contribution. To draw 

the compression curves accounting only for the consolidation strains, the crushing is 

filtered manually, and the creep is filtered by the ANACONDA method. A 

comparison between the different compression curves shows large variability in the 

final deformation and the necessity of applying high loads not to underestimate both 

the ’p and the compression index. 

 

Fig. 30: Rørdal chalk creep strains under the loading applied by the AAU 
oedometer, from Peri et al. (2020b). 
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When the experimental program ended, a numerical investigation took place. The 

FEM program used is the commercial software Plaxis 2D. This part of the project 

highlights the importance of a test validation, which permits to select a suitable 

constitutive soil model and to calibrate the soil parameters. If there is not a good fit 

between the laboratory curve and simulated curve, it is impossible to assume that the 

“artificial soil” is ready to simulate a real situation in a more complicated model. The 

validated samples originate from Anholt, Nørre Lyngby and Skagen. These medium-

stiff Danish clay samples differ for initial in situ stress, OCR, void ratio, water content 

and degree of disturbance, which is defined according to the criteria by Lunne et al. 

(1997). Three constitutive soil models are employed: Hardening Soil, Soft Soil Creep 

and isotropic Creep-1CLAY1S models. Altogether, the three soil models return a final 

deformation very similar to the laboratory results. The SSC model returns the best fit 

for the NC clay samples, and the HS model suits the presented clays since they are 

not too soft. The Creep-1CLAY1S model tends to overestimate the deformation in the 

recompression curve and the stiffness during the unloading for all the samples; 

therefore, it is not the model to be chosen in a situation with expected swelling. 

Besides the correct definition of the deformation properties, this study shows the 

effects of the vertical and horizontal permeability and the change of permeability with 

void ratio ck. The smaller the permeability and the change in permeability of a deposit, 

the smaller are the settlements (see Fig. 31). The relationship 𝑐𝑘 ≈ 0.15~0.3𝑒0 fits the 

tested samples. The simulation of a sand embankment over a clay deposit investigates 

the long-term settlement predictions for the three soil models, the influence that some 

input parameters have on that prediction and the development of pore pressure over 

1370 days (the construction time plus consolidation periods). As for the validation of 

oedometer tests, the Creep-SClay1S model and the SSC model predict the largest and 

smallest final settlement, respectively. While the * and * parameters have the 

largest influence, the permeability parameters kv and kh have a secondary effect, and 

ck does not show any relevant change in the final settlement prediction of this kind of 

application. The pore pressure excess development shows how the consolidation 

process is faster for the SSC model than for the other two (see Fig. 32), meaning that 

the HS and Creep-SClay1S models will still develop some further settlements after 

the final 1000 days of consolidation. This work is included in Peri et al. (2020a), called 

Paper E in this thesis. 
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Fig. 31: Evaluation of the permeability influence for different soil models, from 
Peri, Koteras, et al. (2020a). 

 

Fig. 32. Development of excess pore pressure, pexc, for soil NLR02, from Peri, 
Koteras, et al. (2020a). 
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CHAPTER 7. CONCLUSION 

The results presented in this Ph.D. thesis show the compression behaviour of a set of 

Danish clays and chalk, particularly concerning laboratory procedure, interpretation 

of results and influence of testing time. This research highlights the consequences of 

laboratory procedure and interpretation of oedometer testing on deformation and 

stiffness parameters. Laboratory results and interpretation of different Danish soils 

confirmed how each soil needs special attention and specific laboratory testing 

procedure. What is the influence of ILO test methodology on chalk compressive 

behaviour? What is the time a tertiary highly plastic clay takes to develop its full 

swelling potential? Can different constitutive soil models represent medium-stiff 

Danish clays? These are some of the questions this project answered. This chapter 

presents the general final considerations drawn during this Ph.D. project. 

This Ph.D. thesis stresses the importance of correct execution and interpretation of 

oedometer testing. The different experimental results showed that generic laboratory 

procedures and saving testing time could lead to inaccurate and poor quality data. No 

shortcut can provide the same data quality as a test program designed for specific soil 

and run for a time long enough to define the complete parameters. For example, this 

was proven in the case of empirical formulas to derive Cc and C, used in case of lack 

of data, that could lead to inaccurate parameters for soil modeling. On the other hand, 

it is not realistic to assume that a laboratory facility, performing numerous analyses, 

can run an oedometer test or a swelling test lasting months. Therefore, the solution is 

to find a compromise between time and accuracy; for instance, by inspecting the 

output of a test while the test is still running, and not just relying on the standard 

procedure. This rule can be applied to several aspects of oedometer testing, for 

example, to each load step in an ILO, to establish the end of the consolidation; or to 

draw the compression curve progressively, checking if the virgin compression line is 

well defined; or to a swelling pressure test, where the swelling potential is evolving 

during the time. By introducing these measures, a test runs enough time to fully 

develop the searched features, for example, swelling potential or long-term 

settlements, and, at the same time, the test is not extended further. 

It is known that some soils require steps lasting longer than 24 hours to reach the 

creep, and others complete the consolidation in a shorter period. Even if the different 

separation of strain methods did not lead to a noticeable difference in representing the 

EOP compression curve, they show how a 24 hours long-lasting load step in an ILO 

is an approximated procedure that cannot be applied to every soil. To overcome these 

ambiguities, a valid separation of strains was achieved by the identification of a unique 

strain rate at which the consolidation ends. This procedure requires inspecting 

carefully the time-deformation curve, but, in comparison to the other methods, permits 

to save some time during the interpretation and it is less subjective. 
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The results of different preconsolidation pressure interpretations highlight how 

varying can be the identification of this parameter. The dependency on the testing 

procedure (as seen in the case of Rørdal chalk), the testing time, the initial void ratio 

(as seen for different clays) and the applied interpretative method are all attributes of 

the preconsolidation pressure and need to be kept in mind. Moreover, the 

preconsolidation pressure is not always a univocal value, as seen, for example, in the 

case of the Søvind Marl. The obtained wide range of preconsolidation pressure for 

each sample suggests applying more than one interpretative method. An option, in the 

case of medium-stiff clays like the ones investigated in the thesis, could be applying 

both Becker and Onitsuka et al. interpretations. These methods provide a fast 

interpretation and are often in agreement with each other. The way a test is performed 

affects the choice of the method to be applied. It is noted, for example, how 

compression curves with few points in the recompression line were difficult to 

interpret by a bi-logarithmic construction.  

The simulations of ILO tests carried out in Plaxis underlined the importance of 

validating a laboratory test. A complete representation of the sample, with its 

boundaries and real size, allows the selection of the most suitable soil constitutive 

model and the calibration of the deformation parameters, even in case of some input 

are just approximated (for example, the strength parameters in Paper E). It is advised 

to simulate the test by using more than one soil model, but not to limit the definition 

of the artificial soil only to a validation model on a laboratory scale. In fact, studying 

the artificial soil in a complete application permits understanding the soil model's 

performance in terms of long-term development of creep and excess pore pressure. 

7.1. RECOMMENDATIONS FOR FUTURE RESEARCH 

The results found have raised several questions that future research could answer. 

1. A testing program with more samples of Søvind Marl could clarify if the 

swelling potential depends on depth. Some consolidation-swell tests, in addition 

to the constant volume swelling tests, could expand the knowledge about 

swelling behaviour and the heave index CH for highly plastic clays.  

2. A wider range of remoulded clay samples with different pre-applied 

preconsolidation pressure could be tested. In this way, it might be possible to 

clarify if the applicability and variability of the preconsolidation pressure 

interpretative theories depend on the preconsolidation stress value. 

3. A deeper investigation of the Creep-1CLAY1S model could expand the 

knowledge of this soil model not widely used yet. The definition of the intrinsic 

modified indexes (i* and i*), through the interpretation of remoulded samples, 

could evaluate the accuracy of the modified indexes obtained at very high stress. 

The full potential of the model could be achieved by the definition of the 

anisotropy and bonding parameters.  
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APPENDIX 

Søvind Marl 

SM_01 e0 = 1.168 H0 = 35 mm  

 
     

 
' (kPa) e eps % time (h) M (kPa) 

 2.08 1.168 0 - - 

' CV 28.06 1.168 0 24 - 

 300 1.15722194 0.49714286 24 54701 

 600 1.11161342 2.60085714 24 14260 

 1200 1.04269889 5.77957143 24 18876 

 600 1.0485401 5.51014286 24 222694 

 300 1.06016368 4.974 24 55955 

 600 1.05522683 5.20171429 24 131744 

 1200 1.0434453 5.74514286 24 110410 

 2400 0.95659213 9.75128571 24 29954 

 4800 0.80939422 16.5408571 24 35348 

 2400 0.83513457 15.3535714 24 202142 

 1200 0.87872066 13.3431429 24 59689 

 2400 0.85568721 14.4055714 24 112949 

 4800 0.79141221 17.3702857 24 80952 

 10000 0.61160758 25.6638571 24 62699 

 300 0.86482069 13.9842857 24 83051 
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Test SM_01 
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SM_02  e0 = 1.143 H0 = 35 mm 

 
     

 ' (kPa) e eps % time (h) M (kPa) 

 2 1.143 0 - - 

' CV 83 1.143 0 24 - 

 300 1.12003622 1.07157143 24 20251 

 600 1.07287798 3.27214286 24 13633 

 1200 1.00871044 6.26642857 24 20038 

 600 1.02038979 5.72142857 24 110092 

 300 1.04195143 4.71528571 24 29817 

 600 1.0340009 5.08628571 24 80863 

 1200 1.00608985 6.38871429 24 46068 

 2400 0.93252066 9.82171429 24 34955 

 4800 0.79272053 16.3452857 24 36790 

 2400 0.81981723 15.0808571 24 189809 

 1200 0.86091997 13.1628571 24 62565 

 2400 0.83696429 14.2807143 24 107348 

 4800 0.77687151 17.0848571 24 85588 

 10000 0.54402538 27.9502857 24 47858 

 300 0.79763106 16.1161429 24 81966 
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Test SM_02 
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SM_03  e0 = 1.1 H0 = 35 mm 

 
     

 
' (kPa) e eps % 

time 

(weeks) 
M (kPa) 

 10 1.1 0 - - 

' CV 276 1.1 0 18.85 - 

 300 1.09928 0.03428571 2 70000 

 600 1.0934 0.31428571 0.24 107143 

 1200 1.01792 3.90857143 2 16693 

 600 1.03058 3.30571429 2 99526 

 300 1.05788 2.00571429 2 23077 

 600 1.04558 2.59142857 2 51220 

 1200 1.01462 4.06571429 1.88 40698 

 2400 0.93566 7.82571429 2 31915 

 4800 0.81458 13.5914286 2 41625 

 2400 0.83756 12.4971429 1.81 219321 

 1200 0.89078 9.96285714 2 47351 

 2400 0.8618 11.3428571 2 86957 

 4800 0.79334 14.6028571 2 73620 

 10000 0.60002 23.8085714 2 56487 

 300 0.90578 9.24857143 2 66621 

 0 0.96866 6.25428571 0.14 10019 
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Test SM_03 
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SM_04  e0 = 1.08 H0 = 35 mm 

 
     

 
' (kPa) e eps % 

time 

(weeks) 
M (kPa) 

 10 1.084 0 - - 

' CV 267.12 1.084 0 18.73 - 

 300 1.08304731 0.0458022 2 71787 

 600 1.07393726 0.48378571 2 68496 

 1200 1.03303131 2.45041758 2 30509 

 600 1.04035509 2.09831319 2 170404 

 300 1.05381177 1.45135714 2 46371 

 600 1.04809566 1.72617033 2 109165 

 1200 1.02928011 2.63076374 0.17 66328 

 2400 0.93442834 7.19094505 2 26315 

 4800 0.82695349 12.3580055 2 46448 

 2400 0.84779349 11.3560824 1.81 239539 

 1200 0.89346286 9.16043956 2 54654 

 2400 0.86678766 10.4429011 2 93570 

 4800 0.80915017 13.2139341 2 86610 

 10000 0.62581771 22.0279945 2 58997 

 300 0.90953943 8.38752747 2 71112 

 0 0.97301211 5.33595604 0.14 9831 
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Test SM_04 
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Clays from Nørre Lyngby 

Test NL02   e0 = 0.9 H0 = 30 mm 

Time (day) ' (kPa)  % e 
M 

(kPa) 
cv (m2/s) k (m/s) 

0.06 37.12 0.08 0.90 34696 1.80E-06 5.08E-10 

0.71 71.82 0.12 0.90 86739 1.30E-06 1.47E-10 

2.18 141.21 0.88 0.88 10130 5.00E-08 4.84E-11 

2.84 210.6 1.63 0.87 9190 3.70E-08 3.95E-11 

2.98 279.99 2.28 0.86 11192 3.70E-08 3.24E-11 

4.00 349.39 2.88 0.85 12391 3.30E-08 2.61E-11 

3.10 418.78 3.38 0.84 13474 3.30E-08 2.40E-11 

4.11 522.87 4.21 0.82 13786 3.10E-08 2.20E-11 

2.81 696.34 5.51 0.80 14827 4.00E-08 2.64E-11 

4.06 869.82 6.78 0.77 14457 2.80E-08 1.90E-11 

3.18 1043.3 7.85 0.75 21684 5.60E-08 2.53E-11 

3.75 1390.26 10.07 0.71 16924 3.70E-08 2.14E-11 

4.05 1737.22 11.73 0.68 21286 4.00E-08 1.84E-11 

3.32 2084.18 12.95 0.65 27106 6.30E-08 2.28E-11 

3.64 2778.09 15.23 0.61 30978 3.70E-08 1.17E-11 

4.07 3472.01 16.85 0.58 39995 3.70E-08 9.07E-12 

2.01 4512.88 18.58 0.55 55219 3.80E-08 6.74E-12 

1.27 5553.75 19.86 0.52 76535 5.60E-08 7.17E-12 

2.72 3472.01 19.77 0.52    

0.98 696.34 18.08 0.56    

0.98 71.82 15.89 0.60    

6.00 2.43 11.66 0.68    
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Test NL N02 

e0 = 0.90    
efin =  0.52    
k =  7.17E-12 m/s = 6.20E-07 m/day 

k0 =  5.08E-10 m/s = 4.39E-05 m/day 

ck = 0.203073    
kx =  1.10E-04 m/day   
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Test 

NL61 

  
e0 =1.03 H0 =30 mm 

Time 

(day) 
' (kPa)  % e 

M 

(kPa) 
cv (m2/s) k (m/s) 

0.23 11.1 -0.04 1.03 86739 1.80E-06 2.03E-10 

1.70 19.78 -0.05 1.03 -19275 6.70E-08 -3.41E-11 

2.92 37.12 0.21 1.03 8068 1.90E-08 2.31E-11 

3.19 71.82 1.23 1.01 3988 1.20E-08 2.95E-11 

4.84 141.21 2.89 0.97 3876 1.40E-08 3.54E-11 

7.20 314.69 4.84 0.93 9082 3.30E-08 3.56E-11 

3.85 661.65 7.16 0.88 15420 4.50E-08 2.86E-11 

1.91 1008.61 9.23 0.84 20901 5.00E-08 2.34E-11 

2.08 1355.56 11.31 0.80 18070 4.50E-08 2.71E-11 

2.91 1702.52 13.17 0.76 19713 4.50E-08 2.24E-11 

3.00 2396.44 15.92 0.71 26792 4.50E-08 1.65E-11 

4.21 3437.31 19.09 0.64 33794 4.00E-08 1.30E-11 

24.02 4478.18 21.4 0.60 49098 4.50E-08 7.98E-12 

4.06 3437.31 21.27 0.60 
   

3.70 1355.56 19.83 0.63 
   

3.04 314.69 16.1 0.70 
   

2.98 2.43 10.63 0.81 
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Tst NL K61 

e0 = 1.03    

efin = 0.60    

k = 7.98E-12 m/s = 6.90E-07 m/day 

k0 = 2.03E-10 m/s = 1.76E-05 m/day 

ck = 0.31    

kx = 4.39E-05 m/day   

 

 

  



COMPRESSION AND TIME-DEPENDENT BEHAVIOUR IN DANISH CLAYS AND CHALK - AN EXPERIMENTAL STUDY 

67 

TestNL 

R02 

  
e0 = 0.61 H0 = 30 mm 

Time 

(day) 
' (kPa)  % e 

M 

(kPa) 
cv (m2/s) k (m/s) 

 
2.4 

 
0.61 

   

0.92 11.1 0.10 0.61 8560 1.60E-05 1.83E-08 

1.97 19.8 0.23 0.61 7033 7.20E-06 1.00E-08 

4.05 37.1 0.59 0.60 4731 1.60E-05 3.31E-08 

1.96 71.8 1.14 0.59 6347 1.60E-05 2.47E-08 

1.31 141.2 1.91 0.58 8973 1.60E-05 1.75E-08 

2.73 314.7 3.38 0.56 11815 1.60E-05 1.33E-08 

2.06 661.6 5.33 0.52 17762 1.60E-05 8.83E-09 

1.90 1355.6 7.64 0.49 30148 1.60E-05 5.20E-09 

3.04 2743.4 10.12 0.45 55774 1.60E-05 2.81E-09 

2.08 4131.2 11.48 0.43 102423 1.60E-05 1.53E-09 

1.88 5519.1 12.47 0.41 140421 1.60E-05 1.12E-09 

3.00 4131.2 12.42 0.41 3084069 6.50E-05 2.07E-10 

2.00 661.6 11.67 0.42 460563 2.50E-05 5.32E-10 

2.09 314.7 11.24 0.43 81002 1.60E-05 1.94E-09 

4.15 2.4 7.73 0.49 8888 4.00E-06 4.41E-09 
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Test NL R02 

e0 = 0.61 
   

efin =  0.41 
   

k =  1.12E-09 m/s = 9.65E-05 m/day 

k0 =  1.83E-08 m/s = 1.58E-03 m/day 

ck = 0.16 
   

kx = 4.58E-08 m/s = 3.96E-03 m/day 
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Test NL 

R01 

  e0= 0.78 H0= 30 mm 

Time 

(day) 
' (kPa)  % e M (kPa) cv (m2/s) k (m/s) 

0.01 2.4 0 0.78    

2.06 11.1 0.12 0.77 7168 1.80E-07 2.46E-10 

3.71 19.78 0.4 0.77 3629 4.00E-08 1.08E-10 

1.99 37.12 1.09 0.76 2843 5.00E-08 1.72E-10 

1.99 71.82 2.2 0.74 3043 4.30E-08 1.38E-10 

3.01 141.21 3.55 0.71 5178 4.50E-08 8.52E-11 

1.98 314.69 5.47 0.68 3203 5.60E-08 1.71E-10 

2.00 661.65 7.8 0.64 15052 6.30E-08 4.1E-11 

4.02 1355.56 10.85 0.58 23602 7.20E-08 2.99E-11 

2.99 2743.4 14.23 0.52 42967 8.20E-08 1.87E-11 

3.01 4131.23 16.28 0.49 68030 8.20E-08 1.18E-11 

2.37 5519.06 17.66 0.46 94410 7.20E-08 7.47E-12 

2.05 2743.4 17.37 0.47    

3.57 37.12 12.24 0.56    

13.21 2.43 9.37 0.61    
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Test NL R01 

e0 = 0.78 
   

efin =  0.46 
   

k =  7.47E-12 m/s = 6.46E-07 m/day 

k0 =  2.46E-10 m/s = 2.13E-05 m/day 

ck = 0.21 
   

kx = 6.15E-10 m/s = 5.32E-05 m/day 
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Test 

NLK10 

 e0 =  1.1 H0 =  30 mm 
 

Time (day) ' (kPa)  % e M (kPa) cv (m2/s) k (m/s) 

0.20 11.1 0.07 1.10 8674 5.00E-06 5.65E-09 

5.73 19.78 0.24 1.09 12391 4.50E-08 3.56E-11 

1.98 37.12 1.04 1.08 2090 2.10E-08 9.85E-11 

6.00 71.82 2.7 1.04 2168 2.40E-08 1.08E-10 

4.30 141.21 4.41 1.01 4130 3.30E-08 7.83E-11 

2.72 314.69 7.33 0.95 6151 7.20E-08 1.15E-10 

5.03 661.65 13.89 0.81 5542 5.00E-08 8.84E-11 

2.19 1008.61 17.61 0.73 10514 4.50E-08 4.19E-11 

3.86 1355.56 20.38 0.67 12303 3.30E-08 2.63E-11 

2.92 2049.48 24.32 0.59 17049 4.00E-08 2.30E-11 

4.01 3090.35 28.16 0.51 27035 5.30E-08 1.92E-11 

1.96 4131.23 30.02 0.47 49565 6.30E-08 1.25E-11 

2.27 5172.1 31.58 0.44 65054 4.70E-08 7.08E-12 

2.81 4131.23 31.55 0.44    

1.21 2049.48 31.32 0.44    

1.75 661.65 30.48 0.46    

3.83 2.43 27.21 0.53    
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Test NLK10 

e0 = 1.10    

efin = 0.44    

k = 7.08E-12 m/s = 6.12E-07 m/day 

k0 = 5.65E-09 m/s = 4.88E-04 m/day 

ck = 0.23    

kx = 1.41E-08 m/s = 1.22E-03 m/day 
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Test NL 

K16 
  e0 = 0.51 H0 = 30 mm 

Time 

(day) 

' 

(kPa) 
 % e 

M 

(kPa) 
cv (m2/s) k (m/s) 

 2  0.51    

0.01 11 0.01 0.51 66723 8.20E-06 1.20E-09 

0.92 20 0.05 0.51 25512 1.80E-06 6.91E-10 

0.86 37 0.10 0.51 40344 4.50E-07 1.09E-10 

4.01 72 0.46 0.50 10842 2.50E-07 2.26E-10 

3.10 141 1.22 0.49 9377 1.60E-07 1.67E-10 

4.08 280 2.33 0.47 12732 3.30E-07 2.54E-10 

2.01 627 3.90 0.45 22677 6.50E-07 2.81E-10 

2.17 1321 5.65 0.42 40110 1.00E-07 2.44E-11 

2.76 3403 8.32 0.38 84623 1.60E-07 1.85E-11 

3.87 5137 9.61 0.36 143371 1.30E-07 8.89E-12 

3.03 3403 9.57 0.37    

1.08 627 8.73 0.38    

7.91 2 5.67 0.42    
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Test NL K16 

e0 = 0.51    

efin = 0.36    

k = 8.89E-12 m/s = 7.68E-07 m/day 

k0 = 1.20E-09 m/s = 1.04E-04 m/day 

ck = 0.068    

kx = 3.01E-09 m/s = 2.60E-04 m/day 
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Clays from Anholt 

Test 

A01 

  
e0 = 0.61 H0 = 35 mm 

Time 

(day) 
' (kPa)  % e 

M 

(kPa) 
cv (m2/s) k (m/s) 

 
2.3 

 
0.61 

   

0.01 8.7 0.00 0.61 
   

0.04 15.0 -0.02 0.61 
   

0.05 27.8 0.00 0.61 49020 3.30E-06 6.60E-10 

0.04 53.3 0.11 0.61 31086 1.60E-06 5.04E-10 

0.72 104.3 0.23 0.61 21974 8.80E-07 3.92E-10 

3.00 231.7 0.77 0.60 32266 2.70E-07 8.20E-11 

0.98 486.6 1.81 0.58 24557 1.50E-07 5.99E-11 

2.00 741.5 2.66 0.57 31200 1.80E-07 5.65E-11 

2.15 996.4 3.28 0.56 41516 6.80E-08 1.61E-11 

1.85 1251.3 3.80 0.55 46944 4.50E-08 9.39E-12 

9.99 1506.2 4.39 0.54 53892 4.50E-08 8.18E-12 

4.00 1761.2 4.76 0.53 62172 3.50E-08 5.52E-12 

2.00 2525.9 6.03 0.51 64862 1.10E-07 5.29E-12 

2.07 4055.3 8.31 0.48 78473 8.60E-08 1.37E-11 

0.01 2.3 7.24 0.49 
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Test A01 

e0 = 0.61    

efin = 0.48    

k = 1.37E-11 m/s = 1.19E-06 m/day 

k0 = 6.60E-10 m/s = 5.70E-05 m/day 

ck = 0.08    

kx = 1.65E-09 m/s = 0.000143 m/day 
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Test 

A02 
  e0 = 0.68 H0 = 30 mm 

Time 

(day) 
' (kPa)  % e 

M 

(kPa) 
cv (m2/s) k (m/s) 

0.01 11.1 -0.01 0.68 
   

0.04 19.8 -0.10 0.68 
   

0.04 37.1 -0.10 0.68 
   

0.04 71.8 -0.08 0.68 
   

0.69 141.2 -0.01 0.68 49565 1.30E-06 2.57E-10 

3.00 314.7 0.39 0.67 59820 6.50E-07 1.06E-10 

0.99 661.6 1.38 0.66 35046 2.50E-07 6.99E-11 

1.99 1008.6 2.23 0.64 42834 1.60E-07 3.66E-11 

2.15 1355.6 2.89 0.63 53378 8.20E-08 1.51E-11 

1.84 1702.5 3.45 0.62 60869 5.60E-08 9.02E-12 

9.99 2049.5 4.11 0.61 64851 3.30E-08 4.99E-12 

4.00 2396.4 4.54 0.60 71982 3.10E-08 4.22E-12 

1.99 3437.3 6.07 0.58 74454 7.20E-08 9.48E-12 

0.98 5519.1 8.68 0.53 87726 8.20E-08 9.16E-12 

0.01 2.4 7.80 0.55 
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Test A02 

e0 = 0.68    

efin = 0.53    

k = 9.16E-12 m/s = 7.91E-07 m/day 

k0 = 2.57E-10 m/s = 2.22E-05 m/day 

ck = 0.101    

kx = 6.43E-10 m/s = 5.55E-05 m/day 
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Clays from Skagen 

Test S 521 
  

e0 = 0.67 H0 = 30 mm 

Time (day) 
' 

(kPa) 
 % e M (kPa) cv (m2/s) k (m/s) 

 
2 

 
0.67 

   

2.87 37 0.83 0.66 4209 4.04E-06 9.41E-09 

1.97 72 1.37 0.65 6425 4.04E-06 6.16E-09 

2.04 245 2.93 0.62 11109 1.62E-05 1.43E-08 

3.02 419 3.83 0.61 19311 4.04E-06 2.05E-09 

1.98 592 4.47 0.60 27036 4.04E-06 1.46E-09 

1.97 939 5.48 0.58 34239 7.18E-06 2.06E-09 

3.03 1286 6.25 0.57 45354 1.79E-06 3.87E-10 

2.05 1980 7.34 0.55 63468 7.18E-06 1.11E-09 

1.93 3021 8.58 0.53 83941 1.62E-05 1.89E-09 

3.04 4409 9.86 0.51 108283 7.18E-06 6.50E-10 

1.95 6144 11.04 0.49 147432 7.18E-06 4.77E-10 

28.04 5450 11.06 0.49 -2602183 1.62E-05 -6.10E-11 

5.09 6144 11.24 0.48 392782 1.62E-05 4.04E-10 

1.98 5450 11.23 0.48 4626104 1.62E-05 3.43E-11 

1.91 1980 10.98 0.49 1406586 6.47E-05 4.51E-10 

1.43 72 10.16 0.50 231773 6.47E-05 2.74E-09 

7.33 2 9.35 0.51 8620 1.62E-07 1.84E-10 
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Test S521 

e0 = 0.66    

efin = 0.49    

k = 4.77E-10 m/s = 4.12E-05 m/day 

k0 = 9.41E-09 m/s = 8.13E-04 m/day 

ck = 0.13    

kx = 2.35E-08 m/s = 2.03E-03 m/day 
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Test S524 
  

e0 = 0.75 H0 = 30 mm 

Time (day) ' (kPa)  % e M (kPa) cv (m2/s) k (m/s) 
 

2 
 

0.75 
   

1.88 37 0.55 0.74 6425.1 1.62E-05 2.47E-08 

3.00 72 0.91 0.73 10204 7.18E-06 6.90E-09 

2.00 245 2.08 0.71 15770.8 1.62E-05 1.01E-08 

2.09 419 3.04 0.70 19492 7.18E-06 3.61E-09 

2.94 766 4.91 0.66 24961 7.18E-06 2.82E-09 

2.23 1460 7.21 0.62 29654.5 1.12E-05 3.70E-09 

1.74 2154 8.63 0.60 44768.7 7.18E-06 1.57E-09 

3.00 3194 10.28 0.57 65463.7 7.18E-06 1.07E-09 

3.04 4582 11.91 0.54 88963.5 7.18E-06 7.91E-10 

2.00 5970 13.06 0.52 106756.2 7.18E-06 6.59E-10 

2.08 7358 14.00 0.50 150851.2 7.18E-06 4.66E-10 

1.96 5970 13.97 0.51 
   

5.02 766 13.42 0.52 
   

1.89 245 13.11 0.52 
   

5.00 2 11.23 0.55 
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Test S524 

e0 = 0.74    

efin = 0.50    

k = 4.66E-10 m/s = 4.03E-05 m/day 

k0 = 2.47E-08 m/s = 2.13E-03 m/day 

ck = 0.14    

kx = 6.18E-08 m/s = 5.34E-03 m/day 
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Aalborg Clay 

Test Y_01 

 
e0 = 0.97 H0 = 35 mm 

Time 

(day) 
’ (kPa) e  % M (kPa) 

     

2.76 38 0.97 0 - 

3 76 0.96 0.68 5599.438 

2 153 0.92 2.36 4555.798 

2 76 0.93 1.95 18587.02 

2.83 153 0.92 2.49 14124.18 

2 306 0.87 4.92 6297.721 

2 612 0.80 8.40 8793.532 

2.83 1224 0.72 12.49 14947.47 

2.17 2498 0.64 16.83 29405.97 

4.53 1224 0.65 16.40 296404.4 

2 612 0.67 15.32 57023.31 

1.83 1224 0.66 15.75 143706.4 

4 2498 0.63 17.23 86034.44 

5.83 5047 0.55 21.36 61721.01 

9.83 0 0.88 4.50 
 

 

 

  



APPENDIX 

84 

Test Y_02 

 
e0 = 0.88 H0 = 35 mm 

Time 

(day) 
’ (kPa) e  % 

M 

(kPa)      

2.58 38.24 0.88 0 
 

3 76.47 0.87 0.30 12868 

2 152.94 0.85 1.62 5775 

2 76.47 0.85 1.37 30073 

2.83 152.94 0.85 1.68 24113 

2 305.89 0.81 3.72 7518 

2 611.78 0.75 6.90 9602 

2.83 1223.56 0.67 10.87 15438 

2.17 2498.10 0.59 15.30 28734 

4.53 1223.56 0.60 14.71 216024 

2 611.78 0.62 13.73 62336 

1.83 1223.56 0.61 14.27 112993 

4 2498.10 0.58 15.80 83459 

5.83 5047.17 0.50 20.05 59918 

10 0.03 0.75 6.72  
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Test Y_03 

 
e0 = 0.86 H0 = 35 mm 

Time 

(day) 
’ (kPa) e  % 

M 

(kPa) 

2.60 38 0.86 0 
 

3 76 0.85 0.18 21075 

2 153 0.85 0.72 14313 

2 76 0.85 0.65 111522 

2.83 153 0.84 0.76 69520 

2 306 0.82 2.23 10404 

2 612 0.77 4.78 11969 

2.83 1224 0.71 8.06 18684 

2.17 2498 0.63 12.04 32012 

4.52 1224 0.64 11.92 1037415 

2 612 0.64 11.49 142274 

1.83 1224 0.64 11.51 3058893 

3.17 2498 0.63 12.42 139621 

5.83 5047 0.55 16.55 61742 

10 0 0.79 3.48 38621 
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Test Y_04 

 e0 = 0.84 H0 = 35 

Time 

(day) 
’ (kPa) e  % 

M 

(kPa) 

2.60 38.24 0.84 0  

3 76.47 0.83 0.45 8476 

2 152.94 0.82 1.47 7519 

2 76.47 0.82 1.20 28524 

2.83 152.94 0.82 1.52 23960 

2 305.89 0.79 3.08 9793 

2 611.78 0.74 5.60 12121 

2.83 1223.56 0.68 8.83 18949 

2.17 2498.10 0.61 12.67 33204 

4.50 1223.56 0.62 12.26 306657 

2 611.78 0.63 11.37 69116 

1.83 1223.56 0.62 11.77 155138 

4 2498.10 0.60 13.06 98628 

5.83 5047.17 0.53 16.71 69706 

10 0.03 0.78 3.39 37888 
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Clays from Rømø 

Test R01 e0 = 0.82 H0 = 20 mm 

Time (day) ’ (kPa)  % e M (kPa) 
 5 0 0.82 - 

0.01 103 0.42 0.81 23212 

0.18 202 0.78 0.81 27945 

1.68 398 1.98 0.78 16245 

1.01 790 3.75 0.75 22198 

3.02 1477 5.94 0.71 31340 

0.99 2948 8.72 0.66 53038 

0.98 5891 12.31 0.60 81919 

6.04 11777 17.40 0.50 115591 

2.83 20606 21.61 0.43 209843 
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Test 

R341 
e0 = 0.68 H0 = 30 mm 

Time 

(day) 
’ (kPa)  % e M (kPa) 

 2 0.00 0.68 - 

0.08 176 0.72 0.67 24210 

0.85 349 1.68 0.65 18039 

1.00 696 3.37 0.62 20510 

1.10 1390 5.44 0.59 33577 

3.02 2431 7.48 0.55 50898 

2.00 3819 9.30 0.52 76535 

2.01 5207 10.72 0.50 97506 

2.95 6595 11.94 0.48 113447 

3.96 7982 12.96 0.46 136508 

3.04 8676 13.36 0.46 171337 
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Test 

¤R343 
e0 = 0.73 H0 = 30 mm 

Time 

(day) 
’ (kPa)  % e M (kPa) 

 2 0 0.73 - 

1.74 176 0.60 0.72 28758 

4.21 349 2.17 0.69 11050 

3.03 696 4.77 0.65 13387 

3.77 1390 8.18 0.59 20320 

3.03 2431 11.07 0.54 36037 

4.05 3819 13.78 0.49 51275 

3.90 5207 15.54 0.46 78556 

4.00 6595 16.86 0.44 105139 

3.27 7982 17.89 0.42 134959 

6.87 8676 18.61 0.41 95933 
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