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Lifetime Maximization of an Internet of Things
(IoT) Network based on Graph Signal Processing

Josefine Holm, Federico Chiariotti, Member, IEEE, Morten Nielsen, and Petar Popovski, Fellow, IEEE.

Abstract—The lifetime of an Internet of Things (IoT) system
consisting of battery-powered devices can be increased by minimizing
the number of transmissions per device while not excessively deteri-
orating the correctness of the overall IoT monitoring. We propose a
graph signal processing based algorithm for partitioning the sensor
nodes into disjoint sampling sets. The sets can be sampled on a round-
robin basis and each one contains enough information to reconstruct
the entire signal within an acceptable error bound. Simulations on
different models of graphs, based on graph theory and on real-world
applications, show that our proposal consistently outperforms state-of-
the-art sampling schemes, with no additional computational burden.

Index Terms—Graph signal processing, Internet of Things,
sampling set selection.

I. INTRODUCTION

The expansion of Internet of Things (IoT) systems leads to
massive data produced from a vast variety of connected devices
and sensors, providing unprecedented knowledge about the state
and processes of the physical world [1] [2]. These IoT sensors are
often cheap, wireless and battery-powered. They transmit data spo-
radically to a Base Station (BS), which forwards the data to a data an-
alytics module. In order to increase the longevity of the massive IoT
network, each sensor should try to minimize the number of transmis-
sions, while not compromising the quality of the inference at the data
analytics module. This letter addresses the optimization of the con-
flicting objectives of network lifetime and correctness of inference
by casting the problem in the context of signal processing on graphs.

We consider a deployment of an IoT network in which the
underlying graph structure is induced naturally by the physical
deployment of the IoT devices. This concept is shown on Figure 1,
where the IoT sensors are attached at the vertices of a water supply
network. Other similar examples include IoT devices attached to
other types of utility networks, sensors deployed along streets, etc.
Each sensor transmits the data to a BS. Due to the physical setup,
the readings of the sensors connected within the physical graph are
correlated and sampling of one of them carries information about
the potential reading of the other sensor. The objective is to partition
the set of sensors into S subsets, such that the subsets are disjoint
and all sensors are assigned to exactly one set. In each sampling
round the data analytics module reconstructs the state of the graph
based only on the transmission of a subset of sensors. This reduces
the duty cycle requirements for each sensor, as it has to transmit S
times less often. Partition sampling can then, in principle, increase
the IoT network lifetime by S times, which can be equivalent to
an order of magnitude increase. However, it comes at the cost of
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Fig. 1: Concept drawing of the system on a slice of the test network.
Communication between base station and sensors (red arrows) and
associations between sensors (black lines).

increased error in the reconstructed signal at the receiver, as the
data are incomplete. Finding a partition that minimizes that error
is critical to achieve the best possible balance between increased
battery lifetime and reconstructed signal quality.

The reconstruction of the state can leverage the methods of the
emerging field of signal processing on graphs [3], [4]: the graph
structure, representing the correlation among the measurements from
the different sensors, can be exploited to improve the reconstruction
of the signal from each of these subsets. The optimal partition
of the graph, i.e., the one that provides the lowest reconstruction
Mean Square Error (MSE) for a given number of subsets S, is a
combinatorial problem, as the value of adding a node to the sampling
set depends on the other nodes already in the set. Most works in the
literature have concentrated on finding a single set, and not a com-
plete partition. To the best of our knowledge, the first work to do so
was [5], which considered band-limited signals, and find a sampling
set that allow for perfect reconstruction under certain conditions. A
later work [6] aimed at finding the smallest possible set for a given
MSE bound, while [7] concentrated on the opposite problem, i.e.,
finding the sampling set of fixed size with the minimum MSE. A
modification of [6] that is resilient to packet losses was presented
in [8], but the authors still do not take into account the fact that the
data stemming from the graph nodes are a time series, while [9]
considers the temporal aspect but neglects to consider the fact that
the importance of a node depends on the other nodes in the subset.

The possibility of exploiting graph structures and correlations
in the data from different IoT sensors has already been considered
for water distribution networks [10], which are uniquely suited for
this thanks to the strong correlation between nodes and lack of high-
frequency dynamics in the graph. In general, reducing the activity
of each sensor can give huge benefits in IoT networks, as sensors
are generally battery-powered and expected to last for several years.

This work extends the heuristic from [6] towards finding the
largest complete partition, all subsets of which respect the MSE
constraint. Our main contribution is a new algorithm that allows
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us to find the largest partition of the set of nodes in the graph that
respects an MSE constraint. While our algorithm is a heuristic,
it can be very close to the optimal by considering the effect
of the existing nodes in each subset when adding nodes. This
work shares some similarities with [9], but we take the correct
importance of each node, considering the elements already in the
various subsets, instead of simplifying the problem by assuming
its independence from other elements. Our algorithm can run with
a similar computational cost to [6] even though we find a complete
partitioning, and reduces the average MSE by approximately 5%.

II. SYSTEM MODEL

Consider a network of IoT devices wirelessly transmitting to a
Base Station. Such a network can be described as a graph where
the sensors are represented with nodes and the edges represent
similarity between the sensors in terms of what values they observe.
The edges can be organized into an adjacency matrix A∈RN×N ,
whereN is the number of nodes andAi,j 6=0 if and only if there is
an edge between node i and j. The observations of the sensors are
considered a signal, this signal exist in both time and space, such
that for each sensor there is a time series and for each timestamp
there is a graph signal. We will denote the graph signals by x∈RN .
In this letter we propose a method of prolonging the lifespan of
the sensors. We split the sensors in disjoint sets and, at a given
timestamp, the Base Station (BS) samples only one set. If the
sets are sampled on a round-robin basis, then the channel usage is
reduced and thus the network lifetime is prolonged. The problem
is how to do this and still be able to reconstruct the full graph signal
at each timestamp within a reasonable margin of error.

In order to solve this problem we utilize concepts from graph sig-
nal processing [3]. The graph Fourier transform is defined in terms of
the of the eigenvectors of the graph Laplacian defined asL=D−A,
where D is the degree matrix, i.e. a diagonal matrix whose i-th
element is the sum of the weights going into vertex i. We write the
eigen decomposition as L=VEV H , where V = [v1···vN ]H is a
matrix with the eigenvectors of L andE is a diagonal matrix with
the corresponding eigenvalues. We use the eigen decomposition to
define the Fourier transform of x on the graph as x̄=V Hx.

If we assume that x ∈RN is a spectrally sparse signal on the
graph, i.e., x = VKx̄K, where |K| � N and VK ∈ RN×|K| are
the columns of V with index in the set K, then compression is
obtained in the graph Fourier domain. Each node i can measure one
component of the signal, with an additional noise component: the
fully sampled signal is then y=x+w, where the noise, w, follows
a zero mean circular distribution with Λw =diag(λw,i). We remark
that this noise is inherent in the measurement operation, and is not
due to the communication link with the BS. It is further assumed
that the noise has full rank. Even if the sampling set contains every
node in the graph, the reconstruction of the signal at the BS will
never be perfect due to this measurement noise. If we consider
sampling sets that are strict subsets of the graph, the reconstruction
quality will degrade accordingly.

This imperfect reconstruction from smaller sampling sets is
the one we consider: as in [9], the goal is to divide the sensors
into disjoint sampling sets, where each set produce good enough
representation of the entire graph signal on its own. The approach
in [9] is to calculate the importance of of each node individually

and then use that to group the nodes. However, that approach does
not take into account that the importance of the nodes depends on
which nodes they are grouped with. This is the main difference
from our approach, as we recalculate the importance at each step
to take maximum advantage of the graph structure. To this end,
we use the reconstruction MSE for a sampling set as in [6]. The
authors in [6] define the optimal linear interpolation operator to
obtain the reconstructed signal x̂ = By, accounting for the fact
that the importance of the nodes depends on the other nodes in the
set; however, the objective is to construct only one sampling set.
Specifically, the goal in [6] is to make the smallest possible sampling
set with reconstruction error below a given threshold. An optimal
linear interpolation operator B∗ can be found for each sampling
set by minimizing the interpolation error covariance matrix

B∗=argmin
B

E[(x−By)(x−By)H|x,w]. (1)

In the following, we use the simplified notationB∗y= x̂ to indicate
the reconstructed vector after interpolation. Using the approach
from [6] as a starting point and putting it in the context of network
longevity, we create several disjoint sampling sets that are all suffi-
ciently good to reconstruct the original graph signal below the error
tolerance. We will denote the partitioningG,Gp is set number p and
Gp,j is iteration j of set p. It is defined as MSE(x̂) =E‖x−x̂‖22.
As we follow the same model as defined in [6], we can exploit their
derivation of the maximum MSE for the sampling set:

MSE(Gp)=Tr[K(Gp)], (2)

where

K(Gp)=VK

Λ−1+
∑
i∈Gp

λ−1w,iviv
H
i

−1V H
K . (3)

In [6, Prop 1] it is shown that (3) is the error covariance matrix of x̂ if
we use the optimal interpolation x̂=B∗y from (1) given a sampling
set. This can be rewritten to calculate the MSE iteratively as follows:

Tr[K(Gp)]=V H
K VK

Λ−1+
∑
i∈Gp

λ−1w,iviv
H
i

−1, (4)

because trace is rotational, i.e., Tr[ABCD] = Tr[CDAB]. We
then define:

A=Λ−1+
∑
i∈Gp

λ−1w,iviv
H
i . (5)

LetKj be a shorthand forK(Gp) whereGp has j nodes. We will
use this for the iterative calculation ofK(Gp).

Tr[Kj−1]=Tr[V
H
K VKA

−1] (6)

Tr[Kj]=Tr[V
H
K VK(A+λ−1w,svsv

H
s )−1]. (7)

We then use the matrix inversion lemma

(A+UCV )
−1

=A−1−A−1U
(
C−1+VA−1U

)−1
VA−1, (8)

usingA=A, U=vs, V =vHs and C=λ−1w,s we get

Tr[Kj]=Tr[Kj−1−V H
K VK

A−1vsv
H
s A
−1

(λ−1w,s)−1+vHs A
−1vs

]. (9)
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Therefore, the iterative calculation of of the MSE becomes:

MSE(Gp,j∪vs)=Tr[Kj]−
vHs KjV

H
K VKKjvs

λw,s+vHs Kjvs
, (10)

where

Kj =Kj−1−V H
K VK

Kj−1vuv
H
u Kj−1

λw,u+vHu Kj−1vu
, (11)

K0=Λ and u is the index for the most recently added node. Note
that V H

K VK=I for |K|=N , as well as:

MSE(vs)=MSE(∅∪vs). (12)

The main problem we will propose a solution to is formulated as:

maximize k

subject to MSE(Gp)≤ε ∀ p=0,...,k.
(13)

III. ALGORITHM

The problem in (13) is combinatorial, as the MSE of each
subset depends on all the elements of the set, and cannot be solved
efficiently. For this reason, we propose a heuristic Joint Iterative
Partitioning (JIP) algorithm which builds on the basic idea of the
Individual Iterative Partitioning (IIP) algorithm from [9, Algorithm
1]. However, the importance of each node is not considered to
be fixed, but we compute the possible gain from adding it to a
sampling set considering the nodes already in the set: in this way,
we can improve the balance between the sets by putting each node
in the subset where it can improve the MSE the most.

The idea behind JIP is to start by calculating the MSE for all possi-
ble sampling sets with one node and sorting the nodes based on this.
We take the largest node and add it to the first set. If MSE<ε the
process is done, otherwise we search for the best node to add. If more
than one node makes MSE<ε we choose the one with the smallest
MSE alone and the set is finished. If no such node exists, we choose
the one that minimizes the MSE for the set. Then we find the next
node to add to the set. An example of how this partition is made can
be seen in Fig. 2. The graph is divided into three sets by JIP, which
iteratively adds the nodes to the sets. The numbers on the nodes in
the figure indicate the order in which they were added, while their
color indicates the set in which they were placed. The first node to
be assigned is the one with the most neighbors, which makes sense,
as its low distance from several others means that the reconstruction
drawn only from that node has the lowest MSE. The second node
added covers a part of the graph that is far from the first node, but
it is still connected to several other nodes. After the third node, the
green set is over the threshold, so the algorithm moves to a new set.
As the best nodes are selected first, the number of nodes in the sets
increases, and the red set has 7 nodes. The last node is allocated
to a random set, as it cannot form a set on its own and all existing
sets are below the threshold MSE. The allocation of these “orphan”
nodes, which cannot form another set with the required MSE, can
be performed in various ways, with the effect of further reducing
the MSE, but it cannot increase the number of sets in the partition.

The algorithm requires O(n2|K|2) operations, the same as [6]
in the worst case scenario. The pseudo-code for our approach is
given in Algorithm 1.

Ones the sampling sets are selected we create the sampling
matrix S by setting Si,j as 1 if i∈Gj and 0 otherwise, and then
get the samples yj =Sjx.

12 4

5

7

1132 6 1

1413 98

010

Fig. 2: Graph partitioned into 3 sets.

Algorithm 1 Joint Iterative Partitioning (JIP)

1: Input: Λ,Λw,V,ε
2: K0=Λ,p=0,j=1
3: Ls=MSE(vs)
4: L_index=argsort(L) (largest first)
5: while L_index 6=∅ do
6: u=pop(L_index−1)
7: Gp,j =u
8: while MSE(Gp,j)>ε and L_index 6=∅ do
9: CalculateKj according to (11)

10: for i in L_index do
11: if MSE(Gp,j∪Li)<ε then
12: Gp,j+1={Gp,j∪Li}
13: j=0,p=p+1,delete(L_index=i)
14: goto 5
15: Gp,j+1={Gp,j∪argmin(MSE(L))}
16: remove chosen node from L_index, j=j+1

17: if MSE(G−1,−1)>ε then
18: Split the nodes inG−1 among the other sets
19: ReturnG

Adaptation of IIP for comparison: In this section we adapt the
IIP algorithm from [9] to this setting. The setting is similar in that
we also want to minimize the energy consumption of the network
by splitting the nodes into disjoint sampling sets. The Authors in [9]
assumes that data from the sensors are available and use this to infer
a graph structure. In this paper we assume that the graph structure is
given, but we have no assumption about the availability of data from
the nodes. Therefore, we will skip step 2 and 3 in IIP and instead
add the known graph structure to the initialization step. Once a
graph structure has been established, the algorithm orders the nodes
in descending order of sampling importance in steps 4 and 5. We
make a slight modification to this step, as the original algorithm
used a Root MSE (RMSE) measure to sort the nodes, while we
take the expected MSE which can be computed by creating the
sampling matrix for the known graph structure. Once the nodes
are sorted, they are iteratively assigned to sampling sets following
a greedy approach: the first nodes, i.e., the ones with the lowest
RMSE, are put in the first set, until the RMSE of the reconstruction
is below the threshold, in steps 10 and 11. As we use the expected
value of the RMSE instead of the statistical average, we cannot
preform a reconstruction to perform this check, so we just check
if the expected RMSE is below the threshold. With this adaptation,
IIP from [9] can be compared fairly to the proposed algorithm.

IV. NUMERICAL RESULTS

Figure 3d shows the results of three partitioning methods used on
the ER graph structure. It shows a small gain from using JIP rather
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(a) Graph of the Erdős–Rényi (ER) network. (b) Graph of the Watts–Strogatz (WS) network. (c) Graph of the EPANET network.
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(d) Relative error for different number of sets
created for the ER graph structure.
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(e) Relative error for different number of sets
created for the WS graph structure.
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(f) Relative error for different number of sets
created for the EPANET graph structure.

Fig. 3: The graphs and the results.

Algorithm 2 Random Partitioning (RP)

1: Input: Λ,Λw,V,ε
2: K0=Λ,p=0,j=1
3: L_index=[0,1,...,N ]
4: while L_index 6=∅ do
5: r=random(0,|L_index|)
6: u=pop(L_indexr)
7: Gp,j =u
8: while MSE(Gp)>ε and L_index 6=∅ do
9: CalculateKj according to (11)

10: r=random(0,|L_index|)
11: u=pop(L_indexr)
12: Gp,j+1={Gp,j∪u}
13: if MSE(Gp,j+1)<ε then
14: j=0,p=p+1
15: goto 4
16: j=j+1

17: if MSE(G−1,−1)>ε then
18: Split the nodes inG−1 among the other sets
19: ReturnG

than IIP or Random Partitioning (RP). However, for the method
to work well we need to have some structure to the graph. The
advantage of the JIP method over simple IIP is that it considers
the relations between the nodes already in a sampling set and the
new node to be added, so the difference between the methods is
expected to be starker for graphs with highly local structures, i.e.,
more clustered ones. Figure 3e shows the results for a WS graph

structure with β=0.5. As expected the gain from using JIP is mush
bigger and the relative error is lower for all partitioning methods.

In this section we compare the proposed JIP algorithm to the IIP
algorithm and a RP algorithm. The RP algorithm creates one set at a
time by adding randomly chosen nodes to the set until it is below the
given threshold, the pseudo-code for the RP algorithm is given in
Algorithm 2. We will compare the three methods on three different
graph structures, namely, an ER graph, a WS graph and a graph
simulated with EPANET, [11], a tool made for simulation of water
supply networks, as shown in Figure 3c. The EPANET graph can
represent a real-world application of the use of our graph sampling
technique in IoT networks, although it is still simulated. All graphs
are undirected, unweighted and has a similar edge density.

The sampling noise λw is included in the calculation of the MSE,
therefore we want to present the results of the different algorithms
and graphs relative to the MSE sampling set that is only affected
by noise i.e. the set with all nodes, F :RMSE(G)= MSE(G)

MSE(F) .
Lastly, Figure 3f shows the results for the graph simulated with

the EPANET tool. This graph has some clustering, but not as mush
as the WS graph, and the results show that both the relative error and
the gain form using JIP is somewhere in between the results for ER
and WS, which is what we can expect from most real world graphs.

In order to show the optimality gap of our heuristic, we have
performed an Exhaustive Search (ES) for all possible partitions on
two graphs with 15 nodes, a WS graph and an ER graph. Performing
ES on larger graphs is infeasible, because the computation time
grows exponentially. Figure 4 shows the MSE of the best possible
partitioning with two, three and four sets, measured by the maximum
MSE for any set in the partitioning. For the three greedy sampling
algorithms it shows the lowest possible threshold that gives the
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Fig. 4: Exhaustive search for best partition on two graphs with 15
nodes.

same amount of sets. As the figure shows, JIP is significantly closer
to the optimum than IIP or RP in most cases, particularly on the WS
graph structure. For the ER graph all sampling algorithms struggled
with the partition in two sets, but for three and four sets we lower the
MSE threshold by 30-40% compared to IIP and 40-50% compared
to RP. For a theoretical analysis of the optimality of the proposed
algorithm we refer to [6]. They perform an in-depth analysis of the
approximate supermodularity of using (2) for greedy optimization.

The main advantage of our proposed scheme can be summarized
as follows. Given that the underlying graph structure is known
a priori, the algorithm can be run before the sensors start to
collect any data and they can thus be preconfigured. Although very
infrequently, the graph structure may change over time; it is then
important to update the sampling scheme accordingly. However,
how to do that efficiently is a subject of future work.

The method works well for cases where the graph structure can
be induced from some physical aspects of the setup. An example
of this is the case of a network of water pipes, here the connections
of the pipes gives a natural way of connecting the nodes. Because
the sampling scheme is derived before deployment and all sensors
sample periodically, as seen from the sensor perspective, the strain
on the sensors from computations is practically nonexistent. To
reconstruct the entire dataset we must assume that the server has
a reasonable amount of computation power and memory available
and that we allow for some error ε.

V. CONCLUSION

We have considered the problem of energy-efficient sampling of
IoT sensors that are deployed in a system with an underlying graph
structure. We leverage this structure through a graph signal process-
ing framework to obtain the maximal number of disjoint sets to be
sampled, while the the expected mean square error for each set is

below a given error threshold. We have evaluated the algorithm in a
scenario where the underlying graph is build according to a water net-
work. The results show that JIP gives a lower error than IIP and RP.
Although the gains are not particularly high, the methodologically
novel approach shows promises through its consistent improvement
over the other approaches and incurs no additional computational
cost. Furthermore, our results show that the gain from using our
scheme increases for more clustered graphs like the WS small-world
model, making JIP particularly suited for those scenarios. As a future
work, we will generalize the approach to allow for efficient update
of the partitions upon changes in the underlying physical graph.
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