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ABSTRACT Design features such as polishing strokes share similarities with defects; this makes defect
detection and quality assessment difficult to perform both manually and automatically. Human assessors
rotate objects to probe different incoming illumination angles and evaluate the defect dimension to limits
samples i.e. decide whether differences between defect candidates and design features qualify as a defect.
This process has poor access to quantifiable defect descriptors needed for automation and expose a gap in
the existing evaluation of defects. To integrate this notion into automated defect detection we propose a
spatio-temporal image acquisition setup capturing the defect descriptor Angle of Opportunity (AoO) which
can be used as a feature for image-based classification. The Random Forest approach classified defects with
an area under the ROC-curve of 92%.

INDEX TERMS Aesthetic quality, defect inspection, machine vision, visual appearance

I. INTRODUCTION

P
REMIUM products with low volume require expensive
human inspection to avoid customer rejection especially

when design features such as polishing strokes share simi-
larities with defects [1]. Defects are defined based on visual
descriptors and can be quantified and separated from design
features due to irregularities in area, contrast, width, length,
frequency etc. [2]. In their search for defects, human asses-
sors rotate objects to probe different incoming illumination
angles to make defects visible and compare them with design
features [2]. This technique is especially used when assess-
ing reflective surfaces. However, standard automatic visual
inspection (AVI) processes [3] identify defects from single
images. At inopportune angles this can render defects invisi-
ble or at many angles result in many defect candidates that in
fact are design features. Consequently, we propose using the
Angle of Opportunity (AoO), i.e. the total subtended angle
during which defects are visible, as a defect descriptor. The
contribution of AoO in defect detection tasks and whether
it can improve results with standard defect descriptors, such
as contrast, is currently unknown. The problem statement
include how AoO can improve defect detection on reflective
surfaces where high similarity between defects and design
features exists. Our results illustrates the importance of using

AoO in combination with other features as contrast, area,
width, length, and rotation for human-in-the-loop processes.
Additionally we quantify scratches based on different defect
descriptors and compare these to the human ordinary acuity,
existing quality limits and non-defects in our data set. The
non-defects include both design features such as polishing,
defect candidates just above the quality threshold and noise
in the images e.g. from reflections.

This paper contributes the defect descriptor Angle of Op-
portunity (AoO) which quantifies the subtended angle across
which defects are visible. Leveraging the AoO our model
provides recommendations in terms of picture acquisition
angles for automatic visual inspection tasks on brushed alu-
minium surfaces. Our results illustrate how capturing a series
of images and using spatio-temporal defect descriptors such
as AoO can improve detection of defects.

II. DEFECT APPEARANCE AND QUALITY STANDARDS
Since humans are highly sensitive to material appearance [4],
product designers meticulously craft the visual appearance of
consumer products to satisfy customer needs. Consequently,
companies invest extensive amounts of time on the design
and quality control of surface finishing. Levitt’s definition of
manufacturing quality is defined as conformance to specifica-
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FIGURE 1. Example of the surface of a unit (top) in five frames rotated 1°
apart and detailed view (bottom). From certain view angles the defect (red
box) has high visibility (frame 1). As the surface is rotated the visibility of the
polishing increases (frame 2) and the defect characteristics become more
similar to the polishing (frame 3 and frame 4) and continuously changes based
on rotation and view angle (frame 5).

tion [5]. In other words, quality should be measurable given
the design specifications (including tolerances) and can be
supported by standards providing universal methodologies
and descriptions agreed upon by international experts (e.g.
ISO8587 [6] and CIE TC1-65 [7]). Standards exists for
describing and measuring the main dimensions of visual
appearance: texture, color, translucency, light distribution,
gloss (e.g. ASTM D523 [8] and ISO 2813 [9]) and support
specifying visual appearance of different surface materials
and illumination. The ISO8587 standard defines a large range
of defect types linked to manufacturing, material purity and
more (e.g. scratches, dents, holes, color changes, etc.) [6] but
lack quantification of the defect descriptors. Some defects
cause geometrical changes in the surface structure and other
defect types constitutes only visually perceived differences
(e.g. color changes) [10]. We address our problem of quality
inspection of premium products by evaluating different visual
features in the context of brushed aluminium surfaces. As
follows, we narrow our scope to visually perceived defects
and more specifically line defects [2]. These include common
defect types as scratches, polishing fish etc. typically charac-
terized by long thin shapes. This constitutes a challenging
problem since line defects on brushed aluminium surfaces
have high visual similarity to the unique polishing patterns
that constitute a design feature.

Aesthetic quality assessment is a complex task to per-
form [11], and manual inspection can suffer from poor inter-
assessor reliability due to variances in attention, level of
training, individual state (mood, sleep etc.) and more [12].
Therefore, aesthetic quality assessment can benefit from
objective and automated systems which can minimize the
human bias and make this procedure more objective. Human

assessors search for defect candidates and evaluate whether
these are above or below the quality threshold of defects.
Surface anomalies include anything that does not meet the
designers’ norm. Defect candidates that exceed the quality
threshold are classified as defects. When assessors determine
whether a defect candidate is above or below the quality
threshold the design specifications are used as reference. The
design specifications include measurement rules, tolerance
levels and limit samples which are real-world examples
of anomalies and defects close to the thresholds. Specular
reflective metals, specifically brushed aluminium surfaces,
possess brush strokes across the surface. Deep brush strokes
can constitute anomalies since people perceive the brush
strokes as scratches instead of homogeneous polishing, and
thus this design feature can easily be mistaken for a defect.
Other examples include impurity in the material (e.g. pol-
ishing fish) and handling defects (e.g. scratches) that can
have an appearance similar to the design. Automatic systems
should provide evaluations of defect in line with the design
specifications and provide the same judgment performed by
the expert assessors. This includes leveraging the current
practice of assessors rotating objects and applying standard
defect descriptors (location, size, shape etc.) [1], [2]. Current
standards [6] are used for assessment of defect types within
manual inspection but do not quantify the defect descriptors
such than an automated system could use them to classify
defects.

III. AUTOMATIC VISUAL INSPECTION
Visual inspection depends on illumination that causes vary-
ing appearance of both materials and defects in terms of
surface properties such as texture, reflectivity, geometry
etc. [13]. Nondestructive methods, as machine vision, can be
used to inspect surfaces without permanently altering the in-
spected object and are exceedingly requested in industry [11].
Previous work involving machine vision for visual inspec-
tion focused on different materials including leather [14],
ceramic [15], stone [16], plastic [17], and metals [18], [19].
Searching for defects on diffuse materials as leather and stone
is easier than detecting defects on reflective surfaces as metal
and plastic due to the specular reflections causing overexpo-
sure and appearance variance from certain viewpoints. The
above approaches captured data from only a single viewpoint
and lacked multi-view assessment of defects. Highly reflec-
tive materials, such as brushed aluminium surfaces, requires
units to be inspected from various view angles [2]: a) for all
unit surfaces in 3D (e.g. front and back sides) b) for defects
only visible from certain view angles, and c) to account for
specular reflections in the images. It is important to know
the characteristics of different defect types to improve the
defect detection process through better data capturing e.g.
through multi-view assessment. As example, certain defect
types, such as line defects, become more visible as the image
variance increases since these defects reflects the light differ-
ently than their adjacent areas [2], in this way, supporting our
belief that brushed aluminium surfaces requires units to be
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FIGURE 2. Defect descriptors; length, width, area, Weber contrast, AoO
(angle where a defect candidate is visible), rotation (deviation from horizontal
lines), minimum angle (first visible) and max angle.

inspected from various view angles [20].
Data-driven deep learning (DL) has increased in popularity

and lead to increased performance in computer vision tasks
such as image classification [21], object detection [22], seg-
mentation [23] and tracking [24]. Real-time defect detection
has previously been explored on different reflective surfaces.
This includes inspection of highly reflective curved plastic
surfaces in the automotive industry [25], diagnosing the pen-
etration state of laser weld [26] or finding defects on highly
reflective ring components [27]. Tiny casting defects can be
detected with a CNN [28] or the surface quality of welds can
be predicted [29]. Detection can be improved using infor-

mation fusion [30], and has been considered for automatic
inspection of thermal fuses where incorporating machine
vision with artificial neural networks is used for detection
of four common defect types [31]. A deep neural network
can efficiently learn to recognise patterns in specific data
sets, but problems arise when DL performs as a black box
used for domain specific tasks where data is sparse (e.g. low-
volume products) [20]. This provides little insight into the
structure of the function being approximated and, therefore,
no findings on the effects of different visual characteristics of
defects. This is needed since companies defining aesthetics
wish to articulate the measured descriptors, and for this
reason a human-in-the-loop could be a first approach. Con-
sequently, we cannot relate the feature extraction or decision
process from the deep neural networks to the current manual
inspection practice. Concretely for our problem, detecting
defects (holes, stripes, scratches, dents, and pressure marks)
on low-volume brushed aluminium surfaces, previous work
showed that an off-the-shelf object detector (e.g. YOLOv5)
yielded poor results (under the precision-recall curve of 0.67)
due to many false positives [20]. The large number of false
positives were, among other, linked to the reflective surface
and were problematic since the false positives incorrectly
indicated the presence of defects when no defects were
present.

Other common methods used for defect detection in im-
ages include various texture analysis techniques. A signifi-
cant amount of previous texture analysis methods are based
on statistical (measuring and evaluating the spatial distribu-
tion of pixel values) and filter based approaches (computing
the energy of the filter responses) [32]. These methods take
advantage of the image characteristics (contrast and edges)
in the spatial and spatial-frequency domain. The descriptors
produced by the texture analysis models are often abstract
and it is difficult to explain the relationship to the human vi-
sual inspection process. Many different defect types exist [6],
where machine learning based on vision is limited by the size
of corpus of defects when classifying different defect types.
When working with low-volume production it is not possible
to obtain an representative corpus. Existing MVI solutions
are therefore often delimited; this includes limiting quality
control based on material properties [33] or constraining the
problem to individual product types in a controlled setup with
fixed object placement and illumination [34]. Consequently,
automatic quality inspection is lacking solutions for low
volume high quality manufacturing due to the lack of data
and the inadequacy of traditional statistical approaches [35].
In general comprehensive data sets are challenging to obtain
due to the randomness and uniqueness of the extensive num-
ber of different defect appearances [33]. For proper multi-
class classification of many different defect types industrial
applications require a representative corpus (e.g. the MVTec
AD data set used for anomaly detection of various surface
defects [36]). Due to the vast amount of different defect
types previous approaches reduce the defect space to a lim-
ited amount defect types e.g. welding, exfoliation, or sink
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marks [17], [18] and perform binary classification (defect
versus non-defect) [31] and/or anomaly detection [36]. In
other words, previous work limit the amount of classified
defect types or apply anomaly detection looking for anything
in-homogeneous on the surface. Limiting the classified defect
types include; (a) using a large data set for training one
classifier, or b) using different classifiers for different defect
types as a binary classification task. We choose to focus
on the defect detection of line defects including a binary
classification of defects versus non-defects. We also narrow
our scope to defect descriptors that can be easily explained
as well as linked to the current manual inspection process as
performed in industry i.e. using design specifications (writ-
ten descriptions supported by standards), rulers (measuring
defined metrics) and limit samples (physical examples of
defect types near the quality threshold). We concentrated
on working with hand-crafted features in our classification
and link our defect descriptors to the common industrial
practice. Building on the current manual inspection process
where objects are rotated to assess defects, we found a lack
in the general knowledge of the defect features, especially
spatio-temporal defect descriptors as AoO. Along these lines
we investigate six perceptual defect descriptors [2]: AoO,
rotation, contrast, area, length, width, minimum angle and
maximum angle (see Fig. 2) in relation to the human visual
system (i.e. ordinary acuity limits common for all humans)
and quality thresholds set by experts.

IV. VISUAL PERCEPTION OF SCRATCHES
Human visual acuity (VA) is the ability to discriminate de-
tails. When measuring VA, instead of considering absolute
size (meters) we favor the angular size; minutes of arc (ar-
cmin). Arc minutes describes the visibility of details of a par-
ticular frequency as a function of viewing distance. Reading
characters (e.g. when measuring VA using a LogMAR chart)
covering 5 arcmin of the visual angle requires a VA high
enough to resolve 1 arcmin. This means that humans with
normal vision can resolve contrast differences (depending on
the spatial frequency) subtending an angle of approximately
1 arcmin (0.017°) [37] and under ideal conditions higher (we
performed a simple desk test on our data and calculated a
visual acuity of 0.7 arcmin, however, we define the VA as 1
arcmin). Visual defects by definition need to be visible, hence
irregularities below the VA are not visible and therefore not
defects. Brushed surfaces contain polishing strokes varying
in sizes with the smallest strokes often being below the
resolution of both human VA. Based on contextual inquiry
at a high quality manufacturing company we consider the
typical viewing distance of our inspected product type to
be equivalent to an arms length (50 cm) where 1 arcmin
translates to a size of 0.15 mm. The spatial contrast sensitivity
function (CSF) measure the amount of contrast required to
detect an object. The CSF can be measured using sine-wave
gratings (parallel lines that change in brightness over space)
where the larger the difference in brightness between the
dark and the lighter lines equals higher contrast. People can

discriminate differences given Weber’s law: constant = �I/I.
Weber’s law expresses that the human visual system is more
sensitive to light intensity changes in low light levels than in
strong ones and follows the Stevens effect which describes
that contrast increase with luminance (i.e. the relationship
between perceived brightness and measured luminance tends
to follow a power function) [38]. When seeking to distinguish
objects from a background (i.e. determining the luminance of
a polishing stroke and the luminance of the area surrounding
it) the human visual system is able to differentiate between
different spatial frequencies (either low spatial frequencies
composing generic shapes or high spatial frequencies in-
cluding considerable detail and edges). In the context of
brushed aluminium surfaces the contrast of the polishing
can be considered the difference in illumination between the
individual polishing strokes and the background. Thus the
perceived contrast between defects, polishing strokes and the
background surface will be affected by the contrast (i.e. spa-
tial frequency of the surface and defect candidates) and light
intensity changes depended on illumination and view angle.
In addition, the polishing strokes of brushed aluminium sur-
faces can be evaluated based on both spatial frequency and
orientation. The oblique effect describes that visual acuity
is better for gratings oriented at 0° or 90° (relative to the
line connecting the two eyes) than for gratings oriented at
45° [39]. Simple symmetric shapes and orientations in texture
also exhibits an oblique effect [40]. We assume that line
defects oriented at 90° relative to the polishing are easier
to perceive by the human perceptual system than defects
oriented at 45°.

V. DATA ACQUISITION
We obtained a set of 50 individual brushed aluminum
units (i.e. an end cap for a speaker) from a Dan-
ish high quality production company. The shape of the
front side can be described as a isosceles trapezoid
(dimensions: 173mm⇥57mm). The backside can be es-
timated by a rectangle with rounded corners (dimen-
sions: 133mm⇥70mm). All defects on the units were visually
assessed and classified by expert visual assessors from a
Danish high quality production company. The brushed alu-
minium surfaces possess handcrafted (i.e. unique) polishing.

A. ROBOTIC IMAGE CAPTURING
RGB images were captured using a Canon 5D (JPG with an
image resolution of 6050⇥3300px) using a 70-300 f/4-5.6L
IS USM lens. We used a fixed light source (Elinchrom Mod-
eling Lamp 100W, color temperature: 3200K, luminous flux:
2700 lumen) at a 45 degrees angle from the camera following
the CIE TC1-65 [7] and approximately 1.5 meter away from
the object (see Fig. 3). The light source approximated a point
light source, as polishing and defects will be most visible
when the light rays are closely originating from the same
point since this will produce less diffuse reflections mov-
ing in various directions. A robotic arm (Universal Robots
UR10e) held the brushed aluminium units upright (see Fig. 1
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FIGURE 3. Leveraging the current practice of assessors rotating objects our
camera setup consist of a camera, a point light source, and a robotic arm
rotating the object.

and 3) rotating the units around the yaw-axis. To replicate
the human assessment process the rotation of the units were
parallel to the polishing lines i.e. rotating around the yaw-
axis. Rotation going in the same direction as the polishing is
how the expert assessors checked the units during their visual
inspection process. The robotic arm rotated the unit in the
yaw-axis 1 degree between images for both front and back.
Pre-test revealed that 1 degree rotation of the unit generated
much image variance, and based on this we chose 1 degree
as a first approximation for the resolution in rotation. Due to
the curvature around the unit corner and the highly reflective
surface the robot rotated the unit 5 degrees per shot when
capturing the corner of each unit since these images were
often overexposed. This resulted in 96 images per unit and
a total of 96⇥50 = 4800 images. Images were later manually
inspected were a few images got discarded due to motion blur
etc.

B. DEFECT VISIBILITY IN RELATION TO HUMAN
PERCEPTION
The camera resolution was 0.03 mm/pixel. 0.03 mm is equiv-
alent to 0.21 arcminutes at a viewing distance of 0.5 meters
(an arms length). For comparison the human eye has an or-
dinary visual acuity of about 1 arcminute. Therefore, defects
equal to or less than one pixel are below the visual acuity
of the human eye. There might be visible defects smaller
than 1 pixel but they should hardly be recognised as shapes
by assessors since we find our cameras angular resolution
(0.21 arcminutes) smaller than the angular resolution of the
human eye (1 arcminute) at a normal a viewing distance

FIGURE 4. Polishing frequency under microscope. Based on thread-counting
and pixel-wise counting our polishing strokes had a width between 0.04-0.14
mm.

of 0.5 meters (an arms length). The polishing frequency
of our surface was estimated using thread-counting and a
microscope (see Fig. 4). This information was collected by
sampling one unit through different angles of a surface (i.e.
on 9 different images). With an average of 7 lines (individual
polishing strokes) per millimeters we identify that 1 line <
0.14 mm. To get a more precise estimate we also performed
pixel-wise counting where we observed an average polishing
stroke width of 6 pixels. With 1 mm = 160 px we potentially
had up to (160/6) 26 lines/mm thus an individual polishing
stroke has a width of 0.04 mm. Thus, polishing strokes had
a width between 0.04-0.14 mm. At a viewing distance of
0.5 meters the individual polishing strokes (0.04 mm = 0.27
arcmin and 0.14 mm = 0.96 arcmin) is near the ordinary
acuity limit of 1 arcmin. Generally, surface polishing with
high spatial frequencies (i.e. a very narrow polishing stroke
width) must have significantly higher contrast than lines
with lower spatial frequencies to be detected by the human
visual system. Our polishing orientation had an estimated
variation ⇡ 20°(±10°) and we expect high visual acuity
for line defects oriented at either 0° or 90° (roughly parallel
or perpendicular to the polishing strokes) than oblique an-
gles [39]). Additionally, line defects oriented at 90° relative
to the polishing should be easier to perceive than those
following the lines of the polishing strokes according to
the similarity principle in Gestalt theory applied to defect
detection [2]).

C. GROUND TRUTH VALIDATION BY EXPERTS
Human expert assessors from Bang & Olufsen validated all
defects on the physical surfaces. In general, defect candidates
close to the quality threshold are what makes this evaluation
process difficult. Defect candidates detectable by the human
VA not necessarily entailed that the candidate was classified
as a defect by the assessors. When expert assessors evaluated
that the defect candidate was below the quality threshold the
defect candidates were not annotated in our data set as a
defects. After expert assessors evaluated all physical surfaces
we mapped the assessors judgment onto the images based on
good judgment.
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FIGURE 5. Pipeline for extracting features based on common defect descriptors (e.g. length) and spatio-temporal defect descriptors (e.g. AoO). The pipeline
consist of 1) pre-processing including edge enhancement and region of interest, 2) tracking of all defect candidates and 3) extracting features based on set defect
descriptors.

FIGURE 6. Tracking and assigning unique IDs to BLOBs. All new BLOBs in a frame are provided with a unique ID (Frame 1). The current frame (Frame 2) is
compared to the previous frame and IDs will be assigned to match the previous frame. If several BLOBs overlap IDs will be assigned based on the largest area
intersection (Frame 3). Moving forward several BLOBs can be assigned with the same ID even though they are no longer connected (Frame 4).

VI. DEFECT TRACKING PIPELINE

The defect detection pipeline consist of edge enhancement,
region of interest, tracking, and defect feature extraction (see
Fig. 5). The spatio-temporal defect detectors are based on
rotation where we build the feature from tracking defect
candidates in the captured image series. The inspected object
consist of two flat surfaces connected by a round 90° corner
but can be simplified as two flat surfaces. We limited our
scope to detecting defects on flat surfaces where the light
is fixed and even. Expanding our calculations to curved
surfaces is possible but requires more complex estimations.
As follows, we mask out the background including the border
and the 90° corner of the objects and split the image series in
two; front and back side.

A. EDGE ENHANCEMENT AND REGION OF INTEREST

Our pre-processing steps include edge enhancement and
region of interest (ROI). We begin the edge enhancement
operation by converting our RGB image into a gray level
image (see Fig. 5, edge enhancement). Next a Gaussian blur
is applied before using a vertical and horizontal Sobel filter.
Different fixed binary thresholds are manually chosen based
on the rotation angle of the object (i.e. the image number
in the image series). We finalize the edge enhancement with
morphological operations (i.e. closing; dilation, erosion) to
remove noise and small holes. We cut out the ROI after edge
enhancement to avoid noise around edges. First we applied
a median filter on the input image as a noise reduction pre-
processing step (see Fig. 5, region of interest). Subsequently,
we use binary thresholding and perform a morphological
erosion (to cut off the borders of the object) resulting in
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a mask used for cutting out our region of interest (the flat
surfaces) in our output image from the edge enhancement.

B. TRACKING
Our input image consist of enhanced edges on the flat surface
of the object for all frames in our image series. Using
OpenCV [41] we find the contours of all Binary Large
Objects (BLOBs) and assign unique IDs to all BLOBs in
the current frame (see Fig. 5, tracking). We provide this
temporary ID for all BLOBs in the frame which will later be
updated if the area of the BLOB is overlapping with BLOBs
in the previous frames. We assign unique IDs to all new
BLOBs and try to match new BLOBs with previous BLOBs
based on area intersection. We then perform image shifting
on frames in our image series based on the 1° rotation of
the object to match alignment with the previous frame. The
next step of assigning IDs was not optimized as it checked
for overlaps of all BLOBs in the current with all BLOBs
in the previous frame (see Fig. 6); 1) if a BLOB overlaps
with only one BLOB in the previous frame we assign the
current BLOB with the same ID as in the previous frame, 2)
if a BLOB in the current frame overlaps with several BLOBs
from the previous one we check area intersection and the ID
is then assigned based on the largest area intersection, 3) if
a BLOB does not overlap with any BLOBs in the previous
frame we maintain a unique ID. This will allow us to track
all defects candidates on the rotated surface using a simple
implementation of tracking.

C. FEATURE EXTRACTION
We provided a unique ID for all BLOBs in the frame and cal-
culate the polygon shape including features as area, length,
etc. (see Fig. 5/feature extraction and Fig. 7). The area is
calculated from the polygon shape approximating the BLOB.
The length is given by the largest distance between any two
points in the polygon. The rotation is calculated from the
slope between these two points. The width is calculated as
area/length. The contrast is calculated based on the difference
between the brightness of the BLOB and the brightness of
the area surrounding the BLOB. We draw out all IDs and
their bounding boxes to visualise our results. We finalize
the pipeline by saving all features (BLOB IDs, length, area,
rotation, and contrast) in a text file.

VII. DEFECT DESCRIPTORS
The data set consist of 395 true positives (i.e. individually
tracked defects) and 14.017 false positives (i.e. non-defects
as individually tracked design features, anomalies below the
quality threshold, noise etc.). Whenever we loose a tracklet
in our tracking pipeline we introduce a new tracklet for the
same defect candidates, thus, these numbers (395/14.017) are
artificially higher than the total number of defects in the data
set.

For all tracked defect candidates we extract the defect
descriptors; length, width, area, contrast, rotation, AoO, min-
imum angle and maximum angle. Scratches typically rep-

FIGURE 7. Polishing has vague visibility (left) but when light was reflected at
the right view angle polishing becomes visible (right). Most of the false
positives came from the majority of images where polishing had reduced
visibility (left) and consequently the false positives were on average smaller in
length, width and area. The defect is marked with a red circle and (in this case)
clearly has an orientation perpendicular to the polishing strokes.

resents a line (i.e. they are long and thin) hence related to
the length of the defect candidates. The length of all defect
candidates is measured in pixels. With a camera resolution of
0.03mm/pixels this can be converted into millimeters (mm)
and arc minutes (arcmin). The area is measured in pixels and
the width is approximated based on width = area/length.
The contrast is calculated as spatial contrast in cycles per
degree (cpd) and the Weber contrast. Weber contrast is given
by C = (I�Ib)/Ib. Traditionally I represents the luminance
but we calculate the contrast based on the measured lightness
(L) in the CIE L*a*b* color space. The rotation is defined
as the deviation from the polishing pattern. The polishing
pattern was horizontal with an estimated variance of ± 30
degrees. Based on our defect tracking we compute the angle
of opportunity (AoO) i.e. how many degrees a potential
defect candidate is visible. With a rotation of 1° between
each image capture each image counts 1 degree (± 0.5°). The
minimum and maximum angle corresponds to the minimum
and maximum rotation of the object surface. When the angle
equals 0° the surface is orthogonal to the view direction. The
AoO is then calculated based on the difference between the
minimum and maximum angle where the defect candidate is
visible.

For each defect descriptor we provided the set quality limit
i.e. the threshold between non-defects and defects demanding
product rejection (see Table 1). We based the limit of ordinary
acuity on normal vision (20/20 or 6/6 = 1.0 acuity). As
visual acuity has high variance and depends on several factors
(e.g. age) we let our ordinary acuity limit act as a rule of
thumb and recognize that the limit is not uniform across
individuals. The defect minimum was the lowest measured
score per defect descriptor measured in our complete data
set. The defect and non-defect average was calculated based
on the mean value per defect descriptor. The non-defects
consist of all defects below the quality limit, brush strokes
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TABLE 1. Quality limits, limits for ordinary acuity and data breakdown. Numbers in parenthesis are based on single measures that are repeated to calculate an
estimated spatial contrast. The second line in the rows displays the standard deviation (SD).

Length

(arcmin)

Width

(arcmin)

Area

(mm2)

Spatial

contrast (cpd)

Weber

contrast

Rotation

(deg)

AoO

(deg)

Minimum

angle (deg)

Maximum

angle (deg)

Quality limit 68.76 0.34 0.40 - - - - - -
Ordinary acuity 1.00 1.00 0.02 30 0.01 - - - -
Defects

minimum
mean
SD

4.47
38.34

5.24

0.22
0.50
0.03

0.03
0.45
0.55

(40)
(17.45)

-

0.00006
0.08
0.16

0.00
53.60
55.94

1.00
3.56
4.52

-
20.03
12.69

-
22.60
12.31

Non-defects

mean
SD

28.20
2.50

0.43
0.03

0.27
0.39

(60)
-

0.03
0.12

48.92
43.22

1.11
0.49

16.86
10.81

16.97
10.84

from polishing and noise in the edge-enhanced images. Most
data captured presents the surface with diffuse reflection.
Non-defects on average had a shorter width (0.43 arcmin)
compared to defects (0.50 arcmin) and are close to the quality
limit (0.34 arcmin) though a bit under the ordinary acuity
limit (1.00 arcmin) at the calculated view distance. The
length of defects (38.34 arcmin, SD: ±5.24) was similarly
longer than non-defect (28.20 arcmin, SD: ±2.50). In most
images the surface reflection was diffuse and the non-defect
were short since polishing strokes were less visible. However,
in those view angles where specular reflection was high
and the individual polishing strokes are clearly visible those
individual strokes are typically longer than a common scratch
(see Fig. 7). The length of the non-defects were either very
short (noise, defect candidates below the quality limit etc.) or
very long (polishing strokes). On average defects had a larger
valued length, width, area, Weber contrast, rotation, AoO,
minimum angle, maximum angle than non-defects (see Table
1). On average defects are most visible when the surface
normal is rotated between 20°-23° (±13°) away from the
view direction. The AoO is on average 3.56° and thus visible
for 2.45° more than non-defects.

VIII. RESULTS
We present a comparison of different classification mod-
els and evaluate their performances. Subsequent we inspect
the performance of the defect descriptors with individually
trained classifiers. We use our defined defect descriptors as
features for our classification models and compute the feature
importance based on mean decrease accuracy for our best
performing model including all features. Based on the feature
importance we rank the features and evaluate the top ranked
features for feature selection. We investigate different data
splits, review the differences in the data sets and evaluate the
performances. In conclusion we assess feature interpretation
using a single decision tree to explain the classification cut-
off limits to better understand the relation to our quality and
ordinary acuity limit.

A. MODEL COMPARISON
Classifying defect vs. non-defects constitute a binary clas-
sification problem. The Receiver Operating Characteristics

FIGURE 8. ROC curve for model comparison: Random Forest (RF,
AUC=0.91), Decision Tree (DT, AUC=0.86) Logistic Regression (LR,
AUC=0.82), and Support Vector Machine (SVM, AUC=0.80).

(ROC) curve evaluates model performance across all possible
thresholds and the model ROC curve is quantified as a single
metric; the Area Under the Curve (AUC) [42]. A large AUC
indicates that a high sensitivity (true positive rate) and speci-
ficity (true negative rate) can be achieved concurrently. We
tested four different classification models; Random Forest
(RF) using 50 trees, Decision Tree (DT), Logistic Regression
(LR) and Support Vector Machine (SVM). Given our binary
classification problem (defect vs. non-defects) we balanced
the data set and performed 5-fold cross validation. We plotted
the ROC curve for our four different models (see Fig. 8) and
evaluated their performances. The RF classifier provided the
best performance with an accuracy of 83.16% and an AUC
of 91.14% (see Table 2).

B. SINGLE FEATURE PERFORMANCE
Based on our eight defect descriptors (AoO, area, length,
width, rotation, contrast, minimum angle and maximum
angle) we plotted the ROC-curve per individual feature
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FIGURE 9. ROC curve for single features: AoO, maximum angle, minimum
angle, rotation, width, area, and length.

(see Fig. 9). The performance for the single features in
chronological order were: minimum angle (AUC=76.37),
AoO (AUC=74.06), maximum angle (AUC=72.99), con-
trast (AUC=71.53), area (AUC=61.76), width (AUC=59.86),
length (AUC=55.51), and rotation (AUC=53.05). Based on
individual features the minimum angle provided the best clas-
sification performance and alone rotation produces the worst
performance. The AoO, minimum angle and maximum angle
are linear depended and thus one feature can be explained as
a linear combination of the other two.

C. FEATURE IMPORTANCE AND FEATURE SELECTION
Based on the out-of-bag (OOB) error (i.e. the average pre-
diction error calculated of each training sample using predic-
tions only from the trees not containing the same data as the
respective training sample) of the RF classifier we calculated
the scaled mean decrease in accuracy (sMDA) (see Fig. 10).
The sMDA was computed for all our features as sMDA =
mean difference between trees / standard deviation of the
differences [43]. We trained all trees (50) in the RF based
on the balanced data set (n ⇡ 800). We then compared the
accuracy of the OOB samples with the accuracy of OOB
samples where one feature is permuted [44]. The feature per-
mutation was repeated for all features and was split between
the classes defect and non-defect. For each tree we measured

TABLE 2. Model comparison: The Random Forest classifier provides the best
performance with an accuracy of 83% and an AUC of 91%.

RF DT LR SVM
Accuracy (%) 83.16 80.61 77.68 74.74
AUC (%) 91.14 85.77 82.19 80.10

FIGURE 10. Based on the sMDA the feature importance order for defects is;
AoO, contrast, maximum angle, minimum angle, rotation, width, area, and
length. The feature importance order is very similar for non-defects with only
the two least important features being swapped.

the difference in accuracy with and without feature permu-
tation. We identified that AoO has the largest sMDA for
both defects (sMDA=10.99) and non-defects (sMDA=10.08)
where large sMDA scores represents that the feature had
substantial importance and a consistent decrease in accuracy.
Based the sMDA (using RF, 50 trees) we concluded the
feature importance in the order; AoO, contrast, maximum
angle, minimum angle, rotation, width, area, and length.

Based on the computed sMDA feature importance we
compared RF classifiers trained on the top n features (see
Fig. 11). Using the top three features (AoO, contrast and
maximum angle) we observed similar performance (Top 3,
AUC=89.50) to training an RF using the top eight features
(Top 8/all features, AUC=91.14). Using only a RF trained
on the top two features we noticed a cutback in performance
(Top 2, AUC=80.58). We concluded that the feature space
can be reduced to include only the top three features with a
limited reduction in classification performance.

D. DATA SPLIT BASED ON REFLECTED LIGHT
The visual appearance, and consequently the visual appear-
ance of our features, varied depended on view angle (see
Fig. 1). From our data we observed that polishing was visible
only when we had high specular reflection in the images, and
thus our non-defects drastically changed appearance when
polishing was visible i.e. the non-defects were on average
smaller when the surface was diffuse versus non-defects were
longer and had larger areas with higher specular reflection
(see Fig. 7). Based on the surface view angle we hypothesize
that we could split the data set in two sets; diffuse and
specular. We defined the specular data set based on the
appearance of individual polishing strokes and an increase in
the overall brightness of the image for a 5° angle. The diffuse
data set constitute the remaining data where the polishing is
not clearly visible. We trained a RF classifier on the full data
set and compared performance to a RF classifier trained on
the diffuse data and the specular data separately. Our data
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FIGURE 11. ROC curve for feature selection based on the feature
importance. Top 8 includes all features. Top 7 includes the top seven features
based on their feature importance (sMDA) etc.

sets were balanced and performance was measured using
5-fold cross validation. We transfer the already obtained
information about AoO across the different data sets to keep
the effect of AoO constant. We get the best performance
from the diffuse data set with an accuracy=84.38% and
AUC=91.64% closely followed by the full data set with an
accuracy=83.16% and AUC=91.14% (see Fig. 12 and Table
3). From the specular data set we see a decrease in per-
formance (accuracy=80.31% and AUC=85.96%). Since data
splits are not of equal size they are not directly comparable
and thus the performance reduction for the specular data set
may be due to the reduction in data. Our hypothesis is that
the features (especially for non-defects) are different between
our two new data splits: specular and diffuse. Based on cal-
culated sMDA scores from the 5-fold cross validated models
we compute the ranking (from 1-8, 1 having the highest
sMDA and 8 the lowest sMDA) for all features. We average
the ranking across the different cross validated models for
each data set diffuse, specular and full (see Table 4). For
the full and diffuse data set we recognise similar ranking
with ascending order of AoO (ranking between R: 1.0-1.6),
contrast (R: 1.6-3.4) and maximum angle (R: 1.8-3.2). For
the specular data see that the ranking order have highest rank
for maximum angle (R: 1.8-2.0) minimum angle (R: 1.6-4.0),
and rotation (R: 2.4-3.2). This means that different features
become important when training a classifier on the specular
data set.

E. FEATURE INTERPRETATION
To better understand and explain the features we simplified
the model to a decision tree using only the top three features;
AoO, contrast and maximum angle. The DT work as an

FIGURE 12. ROC curves for the different datasplits: diffuse, specular, and full
data set. The full (AUC=91.14) and diffuse (AUC=91.64) data set have similar
performance whereas the specular data set have decreased performance
(AUC=85.96).

example and provide an explanation of the features involved
in defect detection on brushed aluminium surfaces. We used
the classifier on a balanced a data set with a 80/20 for
train/test split (see Fig. 13). In the decision tree and AoO
of 1.5° yielded an 87% defect probability. We identified that
an AoO above or equal to 1.5° yielded a probability of a
defect of 87% with 32% of all data going to this node (node
2, Fig. 13). A contrast above or equal to 0.0057 produced

TABLE 3. Data Splits: The diffuse data split provides the best performance
with an accuracy of 84% and an AUC of 92%.

Diffuse Full Specular
Accuracy (%) 84.38 83.16 80.31
AUC (%) 91.64 91.14 85.96

TABLE 4. Feature ranking based on the calculated sMDA scores from the
5-fold cross validated models we calculate the average ranking between 1-8.
The text is formatted to present the best rank, second best rank, third best
rank and the remaining data.

RANKING AoO C Max Min R W A L

Diffuse

defect 1.4 3.4 1.8 3.4 5.6 6.2 7.2 7.0
non-defect 1.4 1.8 3.0 4.6 7.2 6.8 6.2 5.0
total 1.6 1.6 3.2 3.6 7.4 6.2 6.6 5.8
Specular

defect 2.8 5.0 2.2 4.0 2.8 5.8 7.0 6.4
non-defect 4.0 5.0 1.8 2.0 2.4 7.2 7.8 5.8
total 3.4 5.4 2.0 1.6 3.2 6.8 7.6 6.0
Full

defect 1.0 2.6 3.0 3.6 5.0 5.8 7.4 7.6
non-defect 1.4 1.6 3.2 3.8 6.0 6.2 7.2 5.0
total 1.4 2.4 3.2 3.0 5.0 6.2 7.2 7.6
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FIGURE 13. Using only the top three features (AoO, contrast and maximum angle) we use a Decision Tree to provide an explanation of the effects of the features
involved in defect detection.

a 92% probability of a defect and thus classified 29% of
the data as defects. The remaining approximately 20% (node
10-1%, node 24-5%, node 100-3%, node 202-7%, node 28-
4%) of defects are classified from a mixed contribution from
the features AoO, contrast, and maximum angle. The nodes
displaying thresholds with the maximum angle (where maxi-
mum angle=0 is equal to a surface orthogonal to the viewing
direction) imply that images when the surface rotation is
30-40 degrees have influence on the predictions determining
defects from non-defects.

IX. DISCUSSION
Based on our data of brushed aluminium surfaces defects
had an average AoO of 3.56° (SD: ±4.52) (see Table 1).
Non-defects had a lower average AoO of 1.11° (SD. ±0.49).
Based on the decision tree trained on the top three features an
AoO of 1.5° yielded a 87% defect probability in node 2 with
32% of the data going through this node (see Figure 13). This
means that defects had a higher AoO than non-defect or in
other words, defect were visible for a larger total subtended
angle. Designers of a semi-automated system in this case
would need a resolution in rotation of 1° or higher when
capturing data in order to use AoO as a defect descriptor.
Especially highly reflective materials with brush strokes re-
quires units to be inspected from various view angles but

previous approaches regularly captured data from only a
single viewpoint [14], [15], [17], [19], [26] and generally
lacked multi-view assessment of defects taking advantage of
the spatio-temporal domain [20]. Capturing single viewpoint
means that defects only visible in certain view angles will
not guarantee being captured and the number of false pos-
itives for a single frame can be numerous (see Figure 7).
All features (AoO, contrast, etc.) can be used for defect
detection (see Figure 9). Using these defect descriptors in
similar defect detection tasks such as on transparent materials
(e.g. glass) or non-polished materials (e.g. plastic) might im-
prove classification results and should be investigated in fu-
ture research. However, limiting the scope to scratches could
be a reason why we see good results based on ROC-curve
and accuracy, while we see mediocre results in a previous
study applying AoO and deep learning for the detection task
on similar data with the same brushed material (precision-
recall curve of 67%) [20]. Defect detection on other materials
have provided better result (accuracy of 89% for detection of
defects on highly reflective ring components [27] compared
to our accuracy of 84%), but the considered surfaces differ
in visual appearance of both defect and material properties.
We argue that an automated system assisting human assessors
in low-volume premium production (where all defect can-
didates were thoroughly evaluated) should afford (capturing
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images, setting quality thresholds etc.) identifying all true
positives, even though this entail a large number of false
positives. In conclusion, leveraging the current practice of
assessors rotating objects we investigated a spatio-temporal
image capturing setup. Our pipeline construct defect descrip-
tors such as AoO, which were less depended on single-image
appearance but instead was a measure of the subtended angle
during which a defect was visible.

Our simple pipeline has limitations and tracking was not
optimized for fast processing. Our tracking pipeline provided
unique IDs to all defect candidates and updated the IDs
based on area intersection from the previous frame. However,
sometimes we loose tracking, several BLOBs overlaps, or
several BLOBs constitute only one defect candidate but our
approach force assigning unique IDs to all new BLOBs (see
Fig. 6). Since our pipeline did not track defects consistently,
whenever we lost track of a defect candidate or assigned IDs
to ambiguous defect candidates (see Fig. 6) this influenced
our measured AoO. This results in creating more defect can-
didates with smaller AoO since the defects are not connected.
While performance was high (our trained RF classifier had a
performance of AUC=91.14) we expect even better results if
tracking is further improved since we from our data judge
the true positives (defects) to have longer AoO than false
positives (non-defects). We expect even better results since
improved tracking will make the difference between true
positives and false positives larger.

Defects had higher values for the measured defect descrip-
tors: length, width, area, rotation and contrast (see Table 1).
On average defect were bigger than non-defects and defects
were visible for longer than non-defect (potentially due to the
fact the defects were bigger). The spatial contrast was lower
for defects than for non-defects and shows that when the de-
fect width is shorter the estimated spatial frequency becomes
higher. The minimum and maximum angle represented the
rotation of the surface (i.e. surface normal) in comparison
to the illumination and view angle, where we identified an
average of 21° rotation (min.: 20.03, max.: 22.60) for defects
with an averaged standard deviation of ±13°. We recommend
placing the light source at a 45° angle. Based on our data we
recommend placing a light source at a 45° angle compared
to the view direction. Line defects such as scratches are often
captured at an object surface rotation of a 21° (±13°) whereas
non-defects is mostly visible at a 17° rotation (±11°). The
illumination caused varying appearance of defects and non-
defect (see Fig. 7) and consequently a high variance in the
common defect descriptors such as length, width and contrast
(see Table 1, standard deviation). Our analysis suggest that
we can benefit from using spatio-temporal data. Based on
the analysis of our image series we identified a difference
in feature importance between specular and diffuse data (see
Table 4). For images with diffuse reflection the AoO, contrast
and maximum angle had the best ranking based on sMDA
and thus the highest importance when classifying defects.
The full and diffuse data set had similar performance (Full:
AUC=91.14 versus Diffuse: AUC=91.64) but performance

decrease for the specular data split (Full: AUC=85.96). We
had a minor increase in performance (AUC: +0.5) when
using only the diffuse data set. This could argue for improv-
ing performance by excluding images that had high specular
reflection since the specular reflective images contain many
false positives in the form of long polishing strokes. This
could prove effective when detecting common defect types as
scratches. However, the total measured AoO will be shorter
since the defects will not be tracked in the excluded frames.
In other words, by excluding the specular data we can expect
fewer false positives but we loose information in the form of;
a) images potentially including rare defect types (e.g. stripes
or crazing) only reflecting light in frames with high specular
reflection thus not being detected at all and b) we reduce our
best predictor AoO.

X. CONCLUSION
We provide evidence for the value of spatio-temporal defect
descriptors as AoO (the total subtended angle during which
defects are visible) in classification of defects on low-volume
premium products, specifically for line defects on brushed
aluminium surfaces. In this setup, we constructed AoO using
a bespoke tracking pipeline using edge enhancement and
defect tracking, which allowed for extracting other defect
descriptors such as contrast, area, width, length, and rotation.
AoO is found when the setup mimics the human visual
inspection and was applied in our context of defect detec-
tion on brushed aluminium surfaces. Out of four different
models, Random Forest had the highest AUC of 91%. We
could reduce the number of features to the top three (AoO,
contrast and maximum angle) with a performance AUC of
90%. For defect detection on brushed and reflective surfaces
we recommend capturing different angles in the order of
single degrees rotation or lower dependent on granularity of
polishing. Capturing spatio-temporal data allowed for high
classification performance since AoO, as a defect descriptor,
depends less on a defect’s appearance from a single view
angle and can therefore be combined with other defect de-
scriptors to make classification more robust.
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