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Abstract

In this paper, a hybrid power generation company consisting of a concen-

trated solar power unit, wind turbines, a battery system, and a demand re-

sponse provider is established to take part in electricity markets. The operating

strategy of the hybrid power generation company in day-ahead and adjustment

(intraday) markets is determined based on their coordinated operation. To

tackle the intrinsic uncertainties, for the first time, a mixed stochastic-interval

model is proposed which addresses the uncertainty in demand response and

solar energy via interval optimization. The examined problem is formulated

as a multi-objective optimization problem in which the risk of both stochastic

and interval parameters can be involved. On this basis, the proposed operating

strategy covers three objective functions, namely, expected radius and midpoint

of the hybrid power generation company’s profit together with the conditional

value-at-risk. Accordingly, the normal boundary intersection and lexicographic

optimization techniques are utilized to derive feasible solutions. Lastly, numer-

ical results are presented and the performance of the proposed framework is
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investigated. The results indicate that the suggested model can be efficiently

used to handle the decision-maker’s preference over interval and stochastic pa-

rameters, and the risk criterion associated with interval parameters becomes

larger as the forecasting errors increase.

Keywords: Concentrated solar power, electricity markets, interval numbers,

stochastic parameters, risk-management.

1. Introduction

The interest in renewable sources is becoming increasingly prominent glob-

ally. Among various renewable sources, the most prominent growth across the

world is related to solar and wind energy [1]. However, running a 100% renew-

able electricity network without exploiting large-scale hydroelectric units and

energy storage facilities is not feasible on account of the intermittency of solar

and wind energy [2]. In this regard, harnessing the intermittent output power of

renewable energy sources has been known as one of the most significant factors

in the utilization of energy storage systems in electricity industries.

Concerning solar energy, two distinct technologies, namely, photovoltaic and

Concentrated Solar Power (CSP), can be exploited for electricity generation [3].

Aside from lower financial and investment risks of photovoltaic technology, 24-

hour electricity generation is the most promising advantage of CSP technologies

over photovoltaic units [4]. Simply put, overcoming the intermittency of solar

energy is the most prominent factor for governments and generation companies

to move towards CSP technologies. Spain and the United States are the leaders

of electricity generation by CSP technologies worldwide [5], while China ranked

first in the photovoltaic generation [4]. Following the increasing interest in CSP

technologies, the evaluation and examination of CSP units in numerous power

system studies have been one of the research priorities across the world. Du et

al. did two detailed studies on the role of the CSP units in short-term [6] and

long-term power system operations [7]. In [6], the unit commitment problem

in the presence of CSP units has been developed, while the generation and
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transmission expansion problem with CSP units has been discussed in [7]. Xu

and Zhang [8] addressed the joint look-ahead economic dispatch and Day-Ahead

(DA) unit commitment issue with CSP and wind resources. They found that

wind and CSP resources offer considerable advantages to decrease operational

costs.

From another perspective, the participation problem of CSP resources in

electricity markets has been another recent research interest [9]-[13]. As one of

the first studies within this context, Dominguez et al. [9] provided a short-term

trading model for a CSP unit in the DA market. The model proposed in [9]

has been developed based on a stochastic-robust framework. Zhao et al. [10]

established an Information Gap Decision Theory (IGDT)-based optimization

structure for the optimal behavior of a CSP-demand response system in the DA

market, while both uncertainties arising from market and CSP were modeled

using IGDT method. He et al. [11] extended the model proposed in [9] for joint

DA, reserve, and regulation markets, while the uncertainty appraisal technique

was similar to [9]. Yu et al. [12] employed the downside risk approach to

address the offering strategy of a CSP system in the DA market. Wu et al.

[13] proposed a profit-sharing architecture for a hybrid wind-CSP system using

a two-stage stochastic programming model. Fang and Zhao [14] developed a

look-ahead offering model for a CSP system along with wind turbines using

chance-constrained programming.

A broad domain of published works within the context of offering and bidding

problems arises from multifarious uncertainty appraisal techniques, electricity

market structures, systems under study, and target markets. Accordingly, Zhao

et al. [15] focused on the DA bidding and offering strategy of electric vehi-

cle aggregators by means of information gap decision theory. Moiseeva and

Hesamzadeh [16] suggested a modified Benders technique for addressing the

bidding strategy of a hydropower producer, whereas the uncertain sources were

handled with stochastic scenarios. By centering on pay-as bid markets, Mazzi

et al. [17] established a two-stage linear offering framework in DA and real-time

markets for thermal units. Shafiee et al. [18] utilized robust optimization to
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derive offering and bidding curves of a price-maker storage facility in the DA

market. In [19], Naziri Moghaddam et al. assessed the joint sizing and oper-

ation problem of a battery facility along with wind turbines. AlAshery et al.

[20] examined the application of second-order stochastic dominance on the op-

timal offering strategy of a wind farm in the DA energy market. A two-stage

data-driven risk-constrained operating strategy for combined-cycle units was

proposed in [21], concentrating on the real-time market. Hasankhani et al. [22]

and Koltsaklis et al. [23] proposed a stochastic and deterministic scheduling

models for microgrids. Moreover, Fazlalipour et al. [24] and Çavuş et al. [25]

utilized Conditional Value-at-risk (CVaR) to address risk in stochastic program-

ming models. Khaloie et al. in [26] and [27] developed robust and probabilistic-

possibilistic models for the self-scheduling problem of different energy entities.

Xu et al. [28] established a distributionally robust optimization model for the

self-scheduling of a wind-battery system in the DA electricity market. Faraji

et al. in [29] and [30] suggested various enhanced forecasting models based

on artificial neural networks to better capture uncertainties in self-scheduling

problems.

In the literature reviewed above, the following research shortcomings or un-

addressed issues are found:

1. The operating strategy for a market agent having wind turbines, CPS

unit, a battery system, and a Demand Response Provider (DRP) have

not been formulated yet.

2. Yet, no optimization has been conducted to accommodate the uncertainty

of DRP’s load via interval optimization. Accordingly, there is no related

work in the literature that addresses both DRP’s load and thermal power

of the CSP’s solar field simultaneously via interval optimization.

3. Concerning both stochastic and interval uncertain sources, no work exists

in the literature that models the financial risks emanating from multiple

stochastic and interval parameters.

Based on the above unaddressed issues, this paper establishes a Mixed
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Stochastic-Interval (MSI) model for the operating strategy of a CSP unit, a

battery system, wind turbines, and a DRP in the DA and adjustment markets.

A multi-stage scenario-based model is employed to reflect the uncertain nature

of market parameters and wind generation. In contrast, the interval optimiza-

tion is exploited as a remedy to the lack of adequate historical data to capture

the uncertainties emanating from DRP’s load and thermal power of the CSP’s

solar field with probability density functions. The proposed MSI methodology is

formulated as a multi-objective linear programming problem in which the Nor-

mal Boundary Intersection (NBI) and lexicographic optimization techniques are

employed to find Pareto optimal points. The main contributions of this paper

with respect to previous works, can be listed as follows:

1. For the first time in literature, an integrated operating strategy in the DA

and adjustment markets is proposed and formulated for a Hybrid Power

Generation Company (HPGC) considering the coordinated interactions

among wind turbines, a CSP unit, a battery system, and a DRP.

2. Uncertainties stemming from DRP’s load and the thermal power of the

CSP’s solar field are simultaneously modeled by means of interval num-

bers. In this regard, interval optimization merely requires the confidence

interval of uncertain parameters, without essentially being aware of the ex-

act probability density function of uncertainties. Besides, a better insight

will be gained to the decision-making process by obtaining the optimal

interval of output variables via employing this method.

3. An innovative risk-involved MSI methodology is constructed that enables

the HPGC to concurrently evaluate the financial risks faced by the HPGC,

emanating from multiple interval and stochastic uncertain sources. The

proposed MSI methodology in this paper differs from the approach sug-

gested in [31]. In [31], the risk of stochastic parameters is not controlled,

and besides, the MSI architecture was formulated as a single-objective

optimization approach.

This paper is organized as follows: Assumptions, methods, and materials are
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presented in Section 2. Case studies are detailed in Section 3, and Section 4

summarizes the conclusions.

2. Assumptions, Methods, and Materials

As a first step, this section describes the model assumptions, and secondly,

our proposed model for the considered HPGC is developed. Underlying assump-

tions include:

1. The HPGC is a price-taker agent, meaning that its operating strategy

does not affect market outcomes.

2. The HPGC presents offering and bidding powers to the DA and adjust-

ment markets while only coping with its over- and under-generation energy

deviations in the real-time market.

3. The historical data on market prices and wind generation is available for

the HPGC. Therefore, stochastic scenarios [32] under a three-stage model

account for the uncertainty of the above parameters, as shown in Fig. 1.

Any stage of the considered three-stage model signifies a spot in time in

which the HPGC makes a specific decision. From the viewpoint of the

HPGC, the volume of attainable data varies from one stage to another

one.

4. The HPGC does not have access to enough historical data on DRP’s load

and thermal power of the CSP’s solar field. Hence, we introduce the

uncertainty of the these parameters through interval numbers.

As we argued above, the uncertainty of market prices and wind generation

are addressed by scenarios, and the uncertainty of DRP’s load and thermal

power of the CSP’s solar field is covered through interval numbers [33]. To

hedge against the risk of both stochastic scenarios and interval numbers, a new

methodology is adopted in this paper. In the proposed methodology, the radius

of the HPGC profit and CVaR are the risk criteria corresponding to interval

numbers and stochastic scenarios, respectively. The procedure of the elaborated

risk-based MSI architecture embraces the following steps:
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First-Stage Decisions

Offering and Bidding Curves 
of All Available Units in the 

DA Market

Second-Stage 

Decisions

Offering and Bidding 

Quantities of All Available 

Units in the Adjustment 

(intraday) Market

Third-Stage Decisions

Positive and Negative Energy 

Deviations in the Real-time 

Market

Figure 1: The overview of the proposed three-stage decision-making model.

1. Collect all stochastic scenarios and interval numbers associated with the

uncertainty origins.

2. Formulate the objective function and technical constraints of the HPGC

based on stochastic programming while treating interval numbers as de-

terministic parameters. The HPGC is seeking to maximize its daily profit

(e), which mathematically is equal to the sum of the obtained profits by

each member of the HPGC as follows:

Max FSys =

NS∑
s=1

πs[ProfitCs + ProfitWs + ProfitBs + ProfitDR
s ] (1)

where ProfitCs , ProfitWs , ProfitBs , ProfitDR
s are profit (e) per scenario for

the CSP system, wind turbines, battery system, and DRP, respectively,

and πs refers to the probability of each scenario. The operating profit of

the CSP system is equivalent to its total earning made by participation in

the DA and adjustment markets, as expressed in (2).

ProfitCs =

NT∑
t=1

%Dt,sξ
D,C
t,s qt + %At,sξ

A,C
t,s qt ∀s (2)

where %Dt,s and %At,s denote the DA and adjustment market prices, respec-

tively, ξD,Ct,s and ξA,Ct,s are related to the corresponding offering powers of

the CSP system in the DA and adjustment markets, respectively, and qt

is time period duration which is set to one hour in this paper. The second

profit term of (1), i.e., the gained profit by wind turbines, is presented in

(3). The positive terms of the first row state the income from submitting
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offering powers in the DA and adjustment markets, while the negative

term represents the expenses due to energy procurement in the adjust-

ment market. The second row of (3) addresses the income and expense

terms of the wind turbines in the real-time market, resulting from energy

deviations.

ProfitWs =

NT∑
t=1

%Dt,sξ
D,W
t,s qt + %At,sξ

A,W,se
t,s qt − %At,sξ

A,W,bu
t,s qt

+
(
%Dt,sι

+
t,sΛ

+
t,s

)
−
(
%Dt,sι

−
t,sΛ

−
t,s

)
∀s (3)

where ξD,Wt,s and ξA,W,se
t,s represent the offering powers of the wind turbines

in the DA and adjustment markets, whereas ξA,W,bu
t,s refers to their bid-

ding power in the adjustment market. ι+t,s and ι−t,s stand for over- and

under-generation imbalance price ratios, while Λ+
t,s and Λ−

t,s are corre-

sponding over- and under-generation energy deviations in the real-time

market. The earned profit by the battery system is formulated in (4).

The positive terms of (4) are related to the battery’s income through sub-

mitting offering powers in the DA and adjustment markets. In contrast,

the negative terms denote the battery’s expenses owing to submitting the

bidding powers in the aforementioned markets.

ProfitBs =

NT∑
t=1

%Dt,sξ
D,B,dis
t,s qt − %Dt,sξ

D,B,ch
t,s qt + %At,sξ

A,B,dis
t,s qt − %At,sξ

A,B,ch
t,s qt

∀s (4)

where ξD,B,dist,s and ξA,B,dist,s are battery’s offering powers in the DA and

adjustment markets, while ξD,B,cht,s and ξA,B,cht,s stand for corresponding

bidding powers. The last term of (1), namely, the profit arising from

DRP’s operating strategy, is presented in (5). The first term of (5) denotes

the DRP’s income from the DA market, while the next term appertains

to its revenue from the adjustment market. The third term is the DRP’s

incentive owing to its participation in the DA and adjustment markets,

whereas the last term denotes the received income of the DRP resulting
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from the elastic demand. It has to be noted that a fixed incentive rate

scheme is taken into account to model the incentive.

ProfitDR
s =

NT∑
t=1

%Dt,s$
D
t,sqt + %At,s$

A
t,sqt + %∗

(
$D

t,s +$A
t,s

)
qt

+
1

2ϕL0,t

NB∑
b=1

Sb$
Tot b
b,t,s ∀s (5)

where $D
t,s and $A

t,s are the load shedding offer of the DRP in the DA and

adjustment markets. %∗ stands for the rate of the incentive payment and

$Tot b
b,t,s refers to the final planned load shedding offer in each piecewise

linearized block, while Sb represents blocks’ slope. It is noteworthy to say

that the basic quadratic model is linearized with a discrete set of piecewise

blocks to maintain the linear essence of the mathematical programming

problem [34]. Finally, ϕ is a constant factor linking load and price, and

L0,t defines the DRP’s load prior to the load shedding. The constraints of

the (1) are given in the following subitems.

(a) Technical constraints of the CSP system [9]: Constraint (6) expresses

the submitted energy of the CSP system in the DA and adjustment

markets, emanating from the power produced by the thermal storage

system ξ
D/A,SE
t,s and the solar field ξ

D/A,FE
t,s . Constraint (7) describes

the final planned energy of the CSP system ξTot,Ct,s , the thermal stor-

age system ξTot,SEt,s , and the solar field ξTot,FEt,s . The electric power

output by the thermal storage and the solar field are denoted in (8)

and (9), respectively, calculated by multiplying their corresponding

thermal powers (ςSEt,s and ςFEt,s ) and conversion efficiencies (β3 and β1).

Constraints (10) and (11) enforce the ramp-up and ramp-down con-

straints of the thermal storage, respectively. Note in (10) and (11),

ςFSt,s and β2 are the conveyed thermal power from the solar field to the

thermal storage and its corresponding efficiency, respectively, while

RURch and RDRdis represent ramp-up and ramp-down bounds of

the thermal storage system during charging and discharging, respec-

tively. To bind the maximum limit of the whole exploited thermal
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energy in the solar field, constraint (12) is imposed, where EFt is the

forecasted output thermal power of the solar field. This constraint

enforces that the overall thermal power transferred from the solar

field to the power block and thermal storage should be lower than

the forecasted output thermal power of the solar field. To keep the

whole exploited thermal power for generating electricity within its

permissible upper and lower boundaries, constraint (13) is enforced.

In other words, constraint (13) limits the transferred thermal power

to the powerblock. It is worth noting that xt is a binary variable

reflecting the commitment state of the CSP system. The stored en-

ergy update function of the storage system ςSt,s is captured via (14)

and (15). In fact, these constraints calculate the amount of available

thermal energy in the thermal storage. Constraint (16) guarantees

to maintain this variable inside its technical maximum and minimum

values (ςS,Max and ςS,Min). To save space, the limits pertaining to

minimum down and up times of the CSP system are not given here,

while they can be found in [32].

 ξD,Ct,s

ξA,Ct,s

 =

 ξD,SEt,s

ξA,SEt,s

+

 ξD,FEt,s

ξA,FEt,s

 ∀t,∀s (6)


ξTot,Ct,s

ξTot,SEt,s

ξTot,FEt,s

 =


ξD,Ct,s

ξD,SEt,s

ξD,FEt,s

+


ξA,Ct,s

ξA,SEt,s

ξA,FEt,s

 ∀t,∀s (7)

ξTot,SEt,s = β3ς
SE
t,s ∀t,∀s (8)

ξTot,FEt,s = β1ς
FE
t,s ∀t,∀s (9)

β2
(
ςFSt+1,s − ςFSt,s

)
≤ RURch ∀t = 0, . . . ,NT − 1,∀s (10)
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ξTot,SEt,s − ξTot,SEt+1,s ≤ RDRdis ∀t = 0, . . . ,NT − 1,∀s (11)

ςFEt,s + ςFSt,s ≤ EFt ∀t,∀s (12)

ςE,Minxt ≤ ςFEt,s + ςSEt,s ≤ ςE,Maxxt ∀t,∀s (13)

ςSt,s = ς0 + β2ς
FS
t,s − ςSEt,s ∀t = 1,∀s (14)

ςSt,s = ςSt−1,s + β2ς
FS
t,s − ςSEt,s ∀t ≥ 2,∀s (15)

ςS,Min ≤ ςSt,s ≤ ςS,Max ∀t,∀s (16)

(b) Technical constraints of the battery system [35]: Constraint (17)

states the final planned energy of the battery system in any com-

mitment state. Constraint (18) is fulfilled to prevent concurrent dis-

charging and charging of the battery system at a given hour. The

volume of the stored energy in the battery system at each period κB
t,s

is updated by (19), and hence, constraint (20) holds this value inside

the permitted limit.

 ξTot,B,dist,s

ξTot,B,cht,s

 =

 ξD,B,dist,s

ξD,B,cht,s

+

 ξA,B,dist,s

ξA,B,cht,s

 ∀t,∀s (17)

zdist + zcht ≤ 1, ∀t (18)

κB
t,s = κB

t−1,s −
(

1

εB,dis

)
ξTot,B,dist,s + εB,chξTot,B,cht,s ∀t,∀s (19)

0 ≤ κB
t,s ≤ κB,Max, ∀t,∀s (20)

where ξTot,B,dist,s and ξTot,B,cht,s represent the battery’s final planned

energy under discharging and charging states. Binary variables zdist
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and zcht denote the battery’s running state, i.e., discharging (zdist = 1)

and charging (zcht = 1). εB,dis and εB,ch stand for discharging and

charging efficiencies of the battery system, and κB,Max is the upper

boundary of the stored energy in the battery.

(c) Technical constraints of wind turbines and DRP [34],[36]: The sum of

the selling powers in the DA and adjustment markets minus the pur-

chasing powers in the adjustment market specifies the final planned

energy of wind turbines ξTot,Wt,s , as formulated in (21). Likewise, the

final planned load shedding of the DRP $Tot
t,s is stated in (22) and

(23). Constraint (24) imposes boundaries on the final planned load

shedding offers in the time frame, while ρ determines the extent of

the load shedding offers that can be submitted by the DRP in the

designated markets within the time frame. Recently, blockchain tech-

nology has been defined as a new alternative to enhance the partici-

pation of DRPs in all sectors of power systems, especially in energy

trading [37]. This technology determines predefined parameter of the

DRP smartly. However, in this paper, we consider fixed values for

predefined parameters pertaining to the participation of DRP in the

energy markets.

ξTot,Wt,s = ξD,Wt,s + ξA,W,se
t,s − ξA,W,bu

t,s , ∀t,∀s (21)

$Tot
t,s = $D

t,s +$A
t,s ∀t,∀s (22)

$Tot
t,s =

NB∑
b=1

$Tot b
b,t,s ∀t,∀s (23)

0 ≤
NT∑
t=1

$Tot
t,s ≤ ρ

NT∑
t=1

L0,t ∀t,∀s (24)

(d) Integrated operating strategy constraints: The participation extent

of the CSP system, battery, and DRP in the DA market, together
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with their final planned energy, must be limited within their techni-

cal capacity, as denoted in (25)-(28). Similarly, the submitted power

of wind turbines in the DA market is limited employing (29). In con-

straints (25)-(29), CaC and CaW refer to the nominal capacity of the

CSP system and wind turbines. Meanwhile, CaB,dis and CaB,ch in-

dicate the battery’s nominal discharging and charging capacities. It

has to be noted that λ specifies the extent of the load shedding offer

that can be submitted by the DRP in the designated markets in an

hour. From the perspective of the HPGC, the final planned energy

is defined as presented in (30). The greatest permissible extent for

submitting offering CaA,Sys,se and bidding CaA,Sys,bu powers in the

adjustment market are defined in (31) and (32), while (33) and (34)

guarantee the equivalent constraints. Inequality (35) binds the final

planned energy of the HPGC to the permissible limits. The overall

deviation in the real-time market Λt,s is defined by (36), whereas the

next two constraints, namely, (37) and (38), are applied to maintain

the under- and over-generation deviations in the real-time market

within the acceptable boundaries. Note that PW
t,s stands for the fore-

casted power of wind turbines.

 0

0

 ≤
 ξD,CS

t,s

ξTot,CS
t,s

 ≤
 CaCxt

CaCxt

 ∀t,∀s (25)

 0

0

 ≤
 ξD,B,dist,s

ξD,B,cht,s

 ≤
 CaB,diszdist

CaB,chzcht

 ∀t,∀s (26)

 0

0

 ≤
 ξTot,B,dist,s

ξTot,B,cht,s

 ≤
 CaB,diszdist

CaB,chzcht

 ∀t,∀s (27)

 0

0

 ≤
 $D

t,s

$Tot
t,s

 ≤ λ
 L0,t

L0,t

 ∀t,∀s (28)
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0 ≤ ξD,Wt,s ≤ CaW ∀t,∀s (29)

ξTot,Syst,s = ξTot,Ct,s + ξTot,Wt,s + ξTot,B,dist,s +$Tot
t,s ∀t,∀s (30)

CaA,Sys,se = Φ× (CaC + CaB,dis + CaW + λL0,t) (31)

CaA,Sys,bu = Φ× (CaB,ch + CaW) (32)

0 ≤ ξA,Ct,s + ξA,B,dist,s + ξA,W,se
t,s +$A

t,s ≤ CaA,Sys,se ∀t,∀s (33)

0 ≤ ξA,B,cht,s + ξA,W,bu
t,s ≤ CaA,Sys,bu ∀t,∀s (34)

0 ≤ ξTot,Syst,s ≤ (CaCxt + CaB,diszdist + CaW + λL0,t) ∀t,∀s (35)

Λt,s = Λ+
t,s − Λ−

t,s = PW
t,s − ξ

Tot,W
t,s ∀t,∀s (36)

0 ≤ Λ−
t,s ≤ (CaCxt + CaB,diszdist + CaW + λL0,t) ∀t,∀s (37)

0 ≤ Λ+
t,s ≤ PW

t,s + ξTot,Ct,s + ξTot,B,dist,s +$Tot
t,s ∀t,∀s (38)

(e) Constraints related to constructing offering and bidding curves [34]:

The HPGC is obliged to observe the non-decreasing and decreasing

conditions for submitting its DA offering and bidding curves. To-

wards this end, constraints (39) and (40) account for non-decreasing

modeling of the DA energy offers; meanwhile, constraint (41) con-

siders the decreasing state of DA energy bids. Lastly, the non-

anticipativity provision of the DA and adjustment offering and bid-

ding powers are modeled by (42)-(44).

ξD,θ1t,s ≤ ξD,θ1t,̃s , ∀s, s̃ : [%Dt,s ≤ %Dt,̃s], ∀t &

θ1 =
[
C,W, (B,dis)

]
(39)
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$D
t,s ≤ $D

t,̃s, ∀ω, s̃ : [%Dt,s ≤ %Dt,̃s], ∀t (40)

ξD,B,cht,s ≤ ξD,B,cht,̃s , ∀s, s̃ : [%Dt,s ≥ %Dt,̃s], ∀t (41)

ξD,θ2t,s = ξD,θ2t,̃s , ∀s, s̃ : [%Dt,s = %Dt,̃s], ∀t &

θ2 =
[
C,W, (B,dis), (B, ch)

]
(42)

$θ3
t,s = $θ3

t,̃s, ∀ω, s̃ : [%Dt,s = %Dt,̃s], ∀t & θ3 = [D,A] (43)

ξA,θ2t,s = ξA,θ2t,̃s , ∀s, s̃ : [%Dt,s = %Dt,̃s], ∀t &

θ2 =
[
C, (W, se), (W,bu), (B,dis), (B, ch)

]
(44)

3. Reformulate the developed mathematical formulation in the previous step

in accordance with the upper boundary of interval numbers (EFt and

L0,t). This reformulation (45a)-(45ar) corresponds to obtaining the upper

boundary of the HPGC profit (FSys).

FSys =

NS∑
s=1

πs[ProfitCs + ProfitWs + ProfitBs + ProfitDR
s ] (45a)

Profit
C

s =

NT∑
t=1

%Dt,sξ
D,C
t,s qt + %At,sξ

A,C
t,s qt ∀s (45b)

ProfitWs =

NT∑
t=1

%Dt,sξ
D,W
t,s qt + %At,sξ

A,W,se
t,s qt − %At,sξ

A,W,bu
t,s qt

+
(
%Dt,sι

+
t,sΛ

+
t,s

)
−
(
%Dt,sι

−
t,sΛ

−
t,s

)
∀s (45c)

ProfitBs =

NT∑
t=1

%Dt,sξ
D,B,dis
t,s qt − %Dt,sξ

D,B,ch
t,s qt + %At,sξ

A,B,dis
t,s qt − %At,sξ

A,B,ch
t,s qt ∀s

(45d)
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ProfitDR
s =

NT∑
t=1

%Dt,s$
D
t,sqt + %At,s$

A
t,sqt + %∗

(
$D

t,s +$A
t,s

)
qt

+
1

2ϕL0,t

NB∑
b=1

Sb$Tot b
b,t,s ∀s (45e)

 ξD,Ct,s

ξA,Ct,s

 =

 ξD,SEt,s

ξA,SEt,s

+

 ξD,FEt,s

ξA,FEt,s

 ∀t,∀s (45f)


ξTot,Ct,s

ξTot,SEt,s

ξTot,FEt,s

 =


ξD,Ct,s

ξD,SEt,s

ξD,FEt,s

+


ξA,Ct,s

ξA,SEt,s

ξA,FEt,s

 ∀t,∀s (45g)

ξTot,SEt,s = β3ςSEt,s ∀t,∀s (45h)

ξTot,FEt,s = β1ςFEt,s ∀t,∀s (45i)

β2

(
ςFSt+1,s − ςFSt,s

)
≤ RURch ∀t = 0, . . . ,NT − 1,∀s (45j)

ξTot,SEt,s − ξTot,SEt+1,s ≤ RDRdis ∀t = 0, . . . ,NT − 1,∀s (45k)

ςFEt,s + ςFSt,s ≤ EFt ∀t,∀s (45l)

ςE,Minxt ≤ ςFEt,s + ςSEt,s ≤ ςE,Maxxt ∀t,∀s (45m)

ςSt,s = ς0 + β2ςFSt,s − ςSEt,s ∀t = 1,∀s (45n)

ςSt,s = ςSt−1,s + β2ςFSt,s − ςSEt,s ∀t ≥ 2,∀s (45o)

ςS,Min ≤ ςSt,s ≤ ςS,Max ∀t,∀s (45p)
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 ξTot,B,dist,s

ξTot,B,cht,s

 =

 ξD,B,dist,s

ξD,B,cht,s

+

 ξA,B,dist,s

ξA,B,cht,s

 ∀t,∀s (45q)

zdist + zcht ≤ 1, ∀t (45r)

κB
t,s = κB

t−1,s −
(

1

εB,dis

)
ξTot,B,dist,s + εB,chξTot,B,cht,s ∀t,∀s (45s)

0 ≤ κB
t,s ≤ κB,Max, ∀t,∀s (45t)

ξTot,Wt,s = ξD,Wt,s + ξA,W,se
t,s − ξA,W,bu

t,s , ∀t,∀s (45u)

$Tot
t,s = $D

t,s +$A
t,s ∀t,∀s (45v)

$Tot
t,s =

NB∑
b=1

$Tot b
b,t,s ∀t,∀s (45w)

0 ≤
NT∑
t=1

$Tot
t,s ≤ ρ

NT∑
t=1

L0,t ∀t,∀s (45x)

 0

0

 ≤
 ξD,CS

t,s

ξTot,CS
t,s

 ≤
 CaCxt

CaCxt

 ∀t,∀s (45y)

 0

0

 ≤
 ξD,B,dist,s

ξD,B,cht,s

 ≤
 CaB,diszdist

CaB,chzcht

 ∀t,∀s (45z)

 0

0

 ≤
 ξTot,B,dist,s

ξTot,B,cht,s

 ≤
 CaB,diszdist

CaB,chzcht

 ∀t,∀s (45aa)

 0

0

 ≤
 $D

t,s

$Tot
t,s

 ≤ λ
 L0,t

L0,t

 ∀t,∀s (45ab)
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0 ≤ ξD,Wt,s ≤ CaW ∀t,∀s (45ac)

ξTot,Syst,s = ξTot,Ct,s + ξTot,Wt,s + ξTot,B,dist,s +$Tot
t,s ∀t,∀s (45ad)

CaA,Sys,se = Φ× (CaC + CaB,dis + CaW + λL0,t) (45ae)

CaA,Sys,bu = Φ× (CaB,ch + CaW) (45af)

0 ≤ ξA,Ct,s + ξA,B,dist,s + ξA,W,se
t,s +$A

t,s ≤ CaA,Sys,se ∀t,∀s (45ag)

0 ≤ ξA,B,cht,s + ξA,W,bu
t,s ≤ CaA,Sys,bu ∀t,∀s (45ah)

0 ≤ ξTot,Syst,s ≤ (CaCxt + CaB,diszdist + CaW + λL0,t) ∀t,∀s (45ai)

Λt,s = Λ+
t,s − Λ−

t,s = PW
t,s − ξ

Tot,W
t,s ∀t,∀s (45aj)

0 ≤ Λ−
t,s ≤ (CaCxt + CaB,diszdist + CaW + λL0,t) ∀t,∀s (45ak)

0 ≤ Λ+
t,s ≤ PW

t,s + ξTot,Ct,s + ξTot,B,dist,s +$Tot
t,s ∀t,∀s (45al)

ξD,θ1t,s ≤ ξD,θ1t,̃s , ∀s, s̃ : [%Dt,s ≤ %Dt,̃s], ∀t &

θ1 =
[
C,W, (B,dis)

]
(45am)

$D
t,s ≤ $D

t,̃s, ∀ω, s̃ : [%Dt,s ≤ %Dt,̃s], ∀t (45an)

ξD,B,cht,s ≤ ξD,B,cht,̃s , ∀s, s̃ : [%Dt,s ≥ %Dt,̃s], ∀t (45ao)

ξD,θ2t,s = ξD,θ2t,̃s , ∀s, s̃ : [%Dt,s = %Dt,̃s], ∀t &

θ2 =
[
C,W, (B,dis), (B, ch)

]
(45ap)
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$θ3
t,s = $θ3

t,̃s, ∀ω, s̃ : [%Dt,s = %Dt,̃s], ∀t & θ3 = [D,A] (45aq)

ξA,θ2t,s = ξA,θ2t,̃s , ∀s, s̃ : [%Dt,s = %Dt,̃s], ∀t &

θ2 =
[
C, (W, se), (W,bu), (B,dis), (B, ch)

]
(45ar)

In order to obtain the mathematical formulation (45a)-(45ar), we need to

apply the following changes to the formulas given in (45a)-(45ar):

(a) All interval parameters must be replaced with their upper bound-

aries, i.e., EFt and L0,t. Given the theorem proposed in [38] and its

implementation in our study, the upper boundary of the objective

function is related to a state in which both interval parameters are

at their upper boundaries, i.e., EFt and L0,t

(b) No changes must be applied to binary variables.

(c) All nonbinary variables must be replaced with new variables denoting

their upper boundaries, namely, (.).

Note that the explanations of formulas (45a)-(45ar) are similar to those

of (1)-(44).

4. Reformulate the developed mathematical formulation in step 2 in accor-

dance with the lower boundary of interval numbers (EFt and L0,t). This

reformulation (46a)-(46ar) corresponds to obtaining the lower boundary

of the HPGC profit (FSys).

FSys =

NS∑
s=1

πs[ProfitCs + ProfitWs + ProfitBs + ProfitDR
s ] (46a)

ProfitCs =

NT∑
t=1

%Dt,sξ
D,C
t,s qt + %At,sξ

A,C
t,s qt ∀s (46b)

ProfitWs =

NT∑
t=1

%Dt,sξ
D,W
t,s qt + %At,sξ

A,W,se
t,s qt − %At,sξ

A,W,bu
t,s qt

+
(
%Dt,sι

+
t,sΛ

+
t,s

)
−
(
%Dt,sι

−
t,sΛ

−
t,s

)
∀s (46c)
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ProfitBs =

NT∑
t=1

%Dt,sξ
D,B,dis
t,s qt − %Dt,sξ

D,B,ch
t,s qt + %At,sξ

A,B,dis
t,s qt − %At,sξ

A,B,ch
t,s qt ∀s

(46d)

ProfitDR
s =

NT∑
t=1

%Dt,s$
D
t,sqt + %At,s$

A
t,sqt + %∗

(
$D

t,s +$A
t,s

)
qt

+
1

2ϕL0,t

NB∑
b=1

Sb$
Tot b
b,t,s ∀s (46e)

 ξD,Ct,s

ξA,Ct,s

 =

 ξD,SEt,s

ξA,SEt,s

+

 ξD,FEt,s

ξA,FEt,s

 ∀t,∀s (46f)


ξTot,Ct,s

ξTot,SEt,s

ξTot,FEt,s

 =


ξD,Ct,s

ξD,SEt,s

ξD,FEt,s

+


ξA,Ct,s

ξA,SEt,s

ξA,FEt,s

 ∀t,∀s (46g)

ξTot,SEt,s = β3ς
SE
t,s ∀t,∀s (46h)

ξTot,FEt,s = β1ς
FE
t,s ∀t,∀s (46i)

β2

(
ςFSt+1,s − ςFSt,s

)
≤ RURch ∀t = 0, . . . ,NT − 1,∀s (46j)

ξTot,SEt,s − ξTot,SEt+1,s ≤ RDRdis ∀t = 0, . . . ,NT − 1,∀s (46k)

ςFEt,s + ςFSt,s ≤ EFt ∀t,∀s (46l)

ςE,Minxt ≤ ςFEt,s + ςSEt,s ≤ ςE,Maxxt ∀t,∀s (46m)

ςSt,s = ς0 + β2ς
FS
t,s − ςSEt,s ∀t = 1,∀s (46n)
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ςSt,s = ςSt−1,s + β2ς
FS
t,s − ςSEt,s ∀t ≥ 2,∀s (46o)

ςS,Min ≤ ςSt,s ≤ ςS,Max ∀t,∀s (46p)

 ξTot,B,dist,s

ξTot,B,cht,s

 =

 ξD,B,dist,s

ξD,B,cht,s

+

 ξA,B,dist,s

ξA,B,cht,s

 ∀t,∀s (46q)

zdist + zcht ≤ 1, ∀t (46r)

κB
t,s = κB

t−1,s −
(

1

εB,dis

)
ξTot,B,dist,s + εB,chξTot,B,cht,s ∀t,∀s (46s)

0 ≤ κB
t,s ≤ κB,Max, ∀t,∀s (46t)

ξTot,Wt,s = ξD,Wt,s + ξA,W,se
t,s − ξA,W,bu

t,s , ∀t,∀s (46u)

$Tot
t,s = $D

t,s +$A
t,s ∀t,∀s (46v)

$Tot
t,s =

NB∑
b=1

$Tot b
b,t,s ∀t,∀s (46w)

0 ≤
NT∑
t=1

$Tot
t,s ≤ ρ

NT∑
t=1

L0,t ∀t,∀s (46x)

 0

0

 ≤
 ξD,CS

t,s

ξTot,CS
t,s

 ≤
 CaCxt

CaCxt

 ∀t,∀s (46y)

 0

0

 ≤
 ξD,B,dist,s

ξD,B,cht,s

 ≤
 CaB,diszdist

CaB,chzcht

 ∀t,∀s (46z)
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 0

0

 ≤
 ξTot,B,dist,s

ξTot,B,cht,s

 ≤
 CaB,diszdist

CaB,chzcht

 ∀t,∀s (46aa)

 0

0

 ≤
 $D

t,s

$Tot
t,s

 ≤ λ
 L0,t

L0,t

 ∀t,∀s (46ab)

0 ≤ ξD,Wt,s ≤ CaW ∀t,∀s (46ac)

ξTot,Syst,s = ξTot,Ct,s + ξTot,Wt,s + ξTot,B,dist,s +$Tot
t,s ∀t,∀s (46ad)

CaA,Sys,se = Φ× (CaC + CaB,dis + CaW + λL0,t) (46ae)

CaA,Sys,bu = Φ× (CaB,ch + CaW) (46af)

0 ≤ ξA,Ct,s + ξA,B,dist,s + ξA,W,se
t,s +$A

t,s ≤ CaA,Sys,se ∀t,∀s (46ag)

0 ≤ ξA,B,cht,s + ξA,W,bu
t,s ≤ CaA,Sys,bu ∀t,∀s (46ah)

0 ≤ ξTot,Syst,s ≤ (CaCxt + CaB,diszdist + CaW + λL0,t) ∀t,∀s (46ai)

Λt,s = Λ+
t,s − Λ−

t,s = PW
t,s − ξ

Tot,W
t,s ∀t,∀s (46aj)

0 ≤ Λ−
t,s ≤ (CaCxt + CaB,diszdist + CaW + λL0,t) ∀t,∀s (46ak)

0 ≤ Λ+
t,s ≤ PW

t,s + ξTot,Ct,s + ξTot,B,dist,s +$Tot
t,s ∀t,∀s (46al)

ξD,θ1t,s ≤ ξD,θ1t,̃s , ∀s, s̃ : [%Dt,s ≤ %Dt,̃s], ∀t &

θ1 =
[
C,W, (B,dis)

]
(46am)
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$D
t,s ≤ $D

t,̃s, ∀ω, s̃ : [%Dt,s ≤ %Dt,̃s], ∀t (46an)

ξD,B,cht,s ≤ ξD,B,cht,̃s , ∀s, s̃ : [%Dt,s ≥ %Dt,̃s], ∀t (46ao)

ξD,θ2t,s = ξD,θ2t,̃s , ∀s, s̃ : [%Dt,s = %Dt,̃s], ∀t &

θ2 =
[
C,W, (B,dis), (B, ch)

]
(46ap)

$θ3
t,s = $θ3

t,̃s, ∀ω, s̃ : [%Dt,s = %Dt,̃s], ∀t & θ3 = [D,A] (46aq)

ξA,θ2t,s = ξA,θ2t,̃s , ∀s, s̃ : [%Dt,s = %Dt,̃s], ∀t &

θ2 =
[
C, (W, se), (W,bu), (B,dis), (B, ch)

]
(46ar)

The following modifications have to be made to the formulas in (1)-(44)

in order to obtain the mathematical formulation (46a)-(46ar).

(a) All interval parameters must be replaced with their lower boundaries,

i.e., EFt and L0,t. Given the theorem proposed in [38] and its imple-

mentation in our study, the lower boundary of the objective function

is related to a state in which both interval parameters are at their

lower boundaries, i.e., EFt and L0,t

(b) No changes must be applied to binary variables.

(c) All nonbinary variables must be replaced with new variables denoting

their lower boundaries, namely, (.).

Note that the formulas (46a)-(46ar) describe the same property as the

formulas (1)-(44).

5. Develop the expected radius and midpoint of the objective function, i.e.,

FSys,r and FSys,m, respectively, based on the following formulas.

FSys,r =
FSys − FSys

2
(47)

FSys,m =
FSys + FSys

2
(48)

where FSys,r shows the expected risk faced by the HPGC due to the interval

numbers and FSys,m expresses its expected average profit.
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6. Incorporate the risk caused by the stochastic scenarios by means of the

CVaR criterion into the proposed methodology. To do so, the CVaR ob-

jective function (49) and its relevant constraints (50)-(51) are included in

the foregoing model.

CVaR = σ − 1

1− α

NS∑
s=1

πsεs (49)

−ProfitC,ms −ProfitW,m
s −ProfitB,ms −ProfitDR,m

s +σ − εs ≤ 0 ∀s (50)

εs ≥ 0, ∀s (51)

where σ and εs are supplementary variables employed for CVaR compu-

tation and α stands for the confidence level.

7. The final risk-based MSI architecture is a mathematical programming

problem with three objective functions as follows:

Maximize FSys,m

Minimize FSys,r

Maximize CVaR

(52)

The set of constraints for these objective functions include:

Constraints (45a)− (45ar), (46a)− (46ar), (47)− (51) (53)

β2

(
ςFSt+1,s − ςFSt,s

)
≤ RURch ∀t = 0, . . . ,NT − 1,∀s

β2

(
ςFSt+1,s − ςFSt,s

)
≤ RURch ∀t = 0, . . . ,NT − 1,∀s

ξTot,SEt,s − ξTot,SEt+1,s ≤ RDRdis ∀t = 0, . . . ,NT − 1,∀s

ξTot,SEt,s − ξTot,SEt+1,s ≤ RDRdis ∀t = 0, . . . ,NT − 1,∀s

(54)

Note that the set of constraints (54) are added to the previously devel-

oped constraints to avoid impractical CSP’s ramping materializations. To

obtain the Pareto frontier of the developed mathematical programming

problem (52)-(54), both NBI technique and lexicographic optimization

are adopted [39].
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Figure 2: Daily forecast of interval parameters with ±20% uncertainty interval.

3. Case Study

3.1. Data

The test system is an HPGC with a 50 MW CSP system, a 50 MW wind

power plant, a battery system with 50 MW power and 250 MWh storage, and

lastly, a DRP. It is noteworthy to say that the examined CSP system in this

work is quite similar to that tested in [9]. Both interval parameters, namely,

DRP’s load before load shedding and thermal power of the CSP’s solar field,

are shown in Fig. 2. Parameters εB,dis, εB,ch, %∗, α [40], ρ, λ, ϕ, and Φ are set

to 0.95, 0.8, 0.3, 0.95, 0.04, 0.2, -0.3, and 0.3, respectively.

Towards the intended three-stage decision-making model, we need to extract

the stochastic scenarios of the wind speed and market parameters. Following

this, the hourly data of the aforementioned parameters for a specific period (e.g.,

in this paper, the first six months of 2018) are collected [41]-[42]. Subsequently,

similar to [32], plenty of scenarios are made and then reduced to finally attain

a scenario tree with 625 scenarios, meaning that each stochastic parameter has

five scenarios. The elaborated mixed-integer programming model is coded in

GAMS and solved via CPLEX with a relative gap equal to zero.
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Figure 3: The set of Pareto solutions of the proposed hybrid stochastic-interval architecture

for ±10% uncertainty interval.

3.2. Results

The suggested risk-based hybrid stochastic-interval architecture by adopting

lexicographic optimization and NBI-technique is executed. As stated in Sec-

tion 2, the proposed methodology embraces three objective functions, whereby

FSys,m(q, i) tackles the profit maximization and FSys,r(q, i) and CVaR serve as

risk management tools. The Pareto sets obtained for the considered methodol-

ogy for ±10% and ±20% uncertainty intervals are depicted in Fig. 3 and Fig.

4, while any of the axes represents the aforesaid objective functions’ values. We

observe that for the higher uncertainty intervals, the risk associated with inter-

val numbers, i.e., expected radius of profit, covers a broader range. Simply put,

greater uncertainty intervals increase the risk of decision-making, as expected.

According to Fig. 3 and Fig. 4, a set of different solutions, representing

various levels of risk and financial profit, is obtained through the proposed MSI

model. Accordingly, any specific solution with the desired level of risk and

profit can be chosen by the decision-maker as its final operating strategy. To

investigate the characteristics of different solutions obtained by the proposed

MSI methodology, two distinct operating strategies, i.e., Pareto A and Pareto
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Figure 4: The set of Pareto solutions of the proposed hybrid stochastic-interval architecture

for ±20% uncertainty interval.

Table 1: Profit intervals of the HPGC for two operating strategies.

Strategy Lower bound (e) Upper bound (e) Midpoint (e)

Pareto A (±10%) 67,130.440 72,686.903 69,908.671

Pareto B (±10%) 67,040.826 68,885.112 67,962.969

Pareto A (±20%) 63,801.010 75,071.993 69,436.502

Pareto B (±20%) 63,579.305 67,364.783 65,472.044

B, have been selected, as shown in Fig. 3 and Fig. 4. A comparison between

the characteristics of these two operating strategies can be summarized as:

FSys,m(A) ≥ FSys,m(B), FSys,r(A) ≥ FSys,r(B),

CVaR(A) ≤ CVaR(B)

From the above, it can be interpreted that higher FSys,m and FSys,r and lower

CVaR of Pareto A denotes it as an optimistic operating model, whereas Pareto

B symbolizes a pessimistic one. It is not pointless to state that the higher the

CVaR, the lower the risk. Correspondingly, the lower the expected radius of
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Table 2: Model’s performance and statistics

Laptop computer [RAM= 8 GB, Processor=Core i5 @ 2.30 GHz]

# of continuous variables 13,725

# of binary variables 120

# of equations variables 19,006

Computation time [Pareto A (±10%)] 20.8 Sec

Computation time [Pareto B (±10%)] 33.2 Sec

Computation time [Pareto A (±20%)] 75.4 Sec

Computation time [Pareto B (±20%)] 99.8 Sec

profit, the more conservative the HPGC. From now on, Pareto A and B refer

to optimistic and pessimistic operating strategies, respectively. Table 1 reports

the comparison results of the optimistic and pessimistic operating strategies in

terms of the profit intervals. As shown in Table 1, the maximum quantities of

the upper and lower boundaries are obtained for greater and smaller prediction

intervals of the interval numbers, respectively. In contrast, the minimum values

of the upper and lower boundaries are achieved for smaller and greater prediction

intervals, respectively. Furthermore, to realize pessimistic operating states, the

proposed methodology lessens the profit intervals, and as a result, the radius

of the profit decreases. The model’s performance and statistics are reported in

Table 2.

The optimistic and pessimistic bidding curves of the battery in the DA mar-

ket for two sample hours have been compared in Fig. 5a, while Fig. 5b provides

its offering curves. In addition, Fig. 6a and Fig. 6b display the offering behav-

ior of the CSP system and wind turbines in the DA market from the optimistic

and pessimistic perspectives. It is necessary to mention that, in these figures,

the midpoint values of output variables are exploited to compare optimistic and
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(a) bid curves at hour 4.
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(b) Offer curves at hour 18.

Figure 5: Effects of optimistic and pessimistic strategies on submitting curves of the battery

in the DA market.
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(a) CSP system at hour 18.
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(b) Wind turbines at hour 18.

Figure 6: Effects of optimistic and pessimistic strategies on submitting offering curves of the

CSP system and wind turbines in the DA market.

pessimistic actions. These midpoint values are obtained similar to what was

introduced for the midpoint of the objective function in Eq. (48). According to

Fig. 5a, we perceive that the bidding strategy of the battery at hour 4 is not

affected by optimistic or pessimistic actions. Conversely, in the optimistic strat-

egy, a significant increment in the offering value of the battery for the highest
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Table 3: Commitment status of the battery system and the CSP unit.

Unit Strategy Hours (1-24)

Battery
Pareto A (±20%) 222222211111210021111100

Pareto B (±20%) 222222211111222011111111

CSP
Pareto A (±20%) 000000111111111111111111

Pareto B (±20%) 000000111111111111111111

N ote ⇒ For Battery: 1, 2, and 0 stand for discharging, charging, and offline statuses,

respectively; For CSPP: 1 and 0 indicate online and offline statuses, respectively.

DA price materialization at hour 18 is seen compared to the pessimistic one.

From figure 5, the effect of optimistic and pessimistic operating strategies can

only be discerned at the lowest DA price realizations, namely, 48.77 and 46.51

e/MWh.

The influence of different operating strategies on the commitment status of

the battery and the CSP unit has been illustrated in Table 3. As the operating

strategy changes, the commitment states of the battery alters at hours 14, 15,

17, 23, and 24. By contrast, no alteration in the commitment status of the CSP

unit occurs by changing the HPGC approach. The CSP unit is offline during

the first six hours owing to zero solar irradiation, while it starts running at

hour 7 and remains online for the rest of the day on account of the available

solar energy and embedded thermal energy storage. To sum up, the flexibility

of a unit has a direct impact on its commitment status under various operating

strategies.

The hourly transacted DA and adjustment energy, as well as the overall

real-time deviation of the HPGC for both designated optimistic and pessimistic

operating strategies, have been depicted in Fig. 7, Fig. 8, and Fig. 9, re-

spectively. It can be seen from Fig. 7 that, for the peak periods, the HPGC

possesses greater hourly intervals of the transacted DA energy in the optimistic

strategy, whereas wider intervals during the off-peak periods are experienced in
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Figure 7: The hourly intervals of the transacted DA energy of the entire system under ±20%

uncertainty interval.
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Figure 8: The hourly intervals of the transacted adjustment energy of the entire system under

±20% uncertainty interval.

the pessimistic one. On the other hand, as can be observed from the overall

trend in Fig. 8, wider intervals of the hourly transacted adjustment energy

are observed for the risk-mitigating strategy. The reason lies in dropping the

overall deviation of the HPGC in the real-time market by further exploiting

the adjustment market. This issue is shown in Fig. 9. As the HPGC goes

toward the pessimistic strategy, the hourly intervals of the overall deviation in

the real-time market grow narrower. Following the above, the total daily inter-

vals of the aforementioned variables are exhibited in Fig. 10. The midpoint of

the daily transacted energy in the DA market for both risk-involved strategies
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Figure 9: The hourly intervals of the overall real-time deviation under ±20% uncertainty

interval.

is approximately equal, while the optimistic action possesses wider intervals.

Moreover, the midpoint of the daily transacted energy in the adjustment mar-

ket in the optimistic strategy is greater than the pessimistic one, meaning that

the system’s attention in the pessimistic behavior is further on buying energy

rather than selling it. Eventually, the larger midpoint of the overall real-time

deviation in the pessimistic operating strategy reveals that the system’s trend

in the risk-mitigating strategy is to increase its total positive deviation, hoping

to lower its risk at this market.

4. Conclusions

In this work, an MSI methodology was proposed to efficaciously tackle the

operating strategy problem of a CSP unit, a battery system, wind turbines,

and a DRP, focusing on the DA and adjustment markets, while the owner of

the aforementioned resources was the HPGC. The elaborated MSI methodol-

ogy aimed at covering drastic uncertainty origins, including market parameters,

wind generation, DRP’s load, and the thermal power of the CSP’s solar field.

The proposed innovative MSI framework was run under a multi-objective pro-

gramming structure. By testing the proposed setup using two case studies, it

was found that: 1) The risk preference of the decision-maker concerning inter-
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Figure 10: The intervals of the daily transacted DA and adjustment energy as well as daily

overall real-time deviation under ±20% forecasting error.

val and stochastic parameters can be efficiently handled using the suggested

methodology, 2) As the forecasting error of interval parameters increases, the

risk criterion associated with these parameters covers a broader scope, 3) The

risk related to interval numbers is lessened by means of lowering the interval

of the objective function, 4) The commitment status of the battery is further

subordinate to the risk preference of the HPGC compared to the CSP unit ow-
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ing to less technical operating constraints, 5) As the conservatism of the HPGC

increases, the interval of the total transacted DA energy decreases. At the same

time, further participation in the adjustment market is exploited to lessen the

interval of overall real-time deviations. Future work will address the following

aspects: 1) Presenting a comprehensive risk assessment study on the existing

risk-controlling models, 2) Investigating the role of ancillary service markets

on the profitability of the considered HPGC, and 3) Examining the impact of

strategic reserve purchasing to cope with imbalances caused by wind generation

in the developed framework.

Nomenclature

Indices

b Blocks’ slope index, 1 to NB .

s Scenarios index, 1 to NS .

t Periods index, 1 to NT .

Superscripts

A Superscript denoting parameters/variables of the adjustment market.

B Superscript denoting parameters/variables of the battery system.

bu, se Superscripts denoting selling or buying actions in the adjustment market.

C Superscript denoting parameters/variables of the CSP system.

ch,dis Superscripts denoting the operating status of the battery system, charging or discharging.

D Superscript denoting parameters/variables of the DA market.

DR Superscript denoting parameters/variables of the DRP.

FE Superscript denoting the state of producing power directly by the solar field.

34



FS Superscript denoting the state of transfering power from the solar field to thermal storage.

S Superscript denoting parameters/variables of the thermal storage.

SE Superscript denoting the state of producing power directly by the thermal storage.

Sys Superscript denoting parameters/variables of the entire system.

Tot Superscript denoting the final planned energy.

W Superscript denoting parameters/variables of wind turbines.

Variables

Profit Variable indicating the obtained profit, e.

x Commitment state of the CSP system, 0 or 1.

z Battery’s running state, 0 or 1.

εs, σ Supplementary variables employed for CVaR computation.

κ Volume of stored electric power, MWh.

Λ+,Λ− Over- and under-generation energy deviation, MWh.

ξ Electric offering powers, MW.

$ Load shedding offer, MW.

ς Thermal power, MW.

Parameters

Ca Nominal capacity, MW.

EF Forecasted power profile of the solar field, MW.

L0 DRP’s load prior to the load shedding, MW.

P Forecasted power profile of wind turbines, MW.

q Time period duration, h.

RUR,RDR Ramp-up and ramp-down bounds of thermal storage, MW/h.

S Blocks’ slope.

α Confidence level.

β1, β2, β3 Conversion efficiencies in various parts of the CSP system.

ε Battery’s efficiency in various running states.

ι+, ι− Over- and under-generation imbalance price ratio.

κB,Max Upper boundary of stored electric energy in the battery, MWh.

λ Parameter determining the extent of load shedding offers in an hour.

πs Probability of scenario s.

ρ Parameter determining the extent of load shedding offers within the time frame.
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% Market price, e/MWh.

%∗ Rate of incentive payment, e/MWh.

ςS,Max, ςS,Min Technical maximum and minimum values of stored energy in thermal storage, MWh.

ϕ Constant factor linking load and price.

Other Symbols

F Objective function.

(.), (.) Symbols denoting lower and upper boundaries of parameters/variables.

(.)r, (.)m Symbols denoting radius and midpoint of variables.

Abbreviations

CSP Concentrated Solar Power.

CVaR Conditional Value-at-Risk.

DA Day-ahead.

DRP Demand Response Provider.

HPGC Hybrid Power Generation Company.

MSI Mixed Stochastic-Interval.

IGDT Information Gap Decision Theory.

NBI Normal boundary intersection.
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