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Serotonin (5-HT) receptors represent a class of receptors involved in a variety of 

physiological processes including regulation of mood, perception, cognition, appetite, and heart 

function, and thus serve as drug targets of several drugs such as antipsychotic agents, 

hallucinogenic drugs, and appetite suppressant drugs. Due to the structural similarity of certain 
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5-HT receptor subtypes, particularly 5-HT2 receptors (5-HT2A, 5-HT2B receptors) determination 

and refinement of pharmacophore models of these receptor subtypes can greatly improve the 

therapeutic efficacy of drugs that target them. 

The goals of this study were to define and/or refine existing pharmacophore models for 5-

HT2A and 5-HT2B receptors. Investigation of 5-HT2A receptors involved analysis of a previously 

published pharmacophore for 5-HT2A receptors based on the structure of the atypical 

antipsychotic risperidone. Investigation of a 5-HT2A receptor agonist quipazine and its positional 

isomers/analogues also aided in the elaboration of 5-HT2A receptor binding. Finally, to determine 

structural requirements for 5-HT2B agonist action, a series of phenyl-substituted amphetamine 

analogues and a series of 4-substituted-2,5-dimethoxyamphetamines (DOX-type 

phenylisopropylamine compounds) were analyzed for their 5-HT2B receptor functional activity. 

In the present study, a previously known pharmacophoric 5-HT2A antagonist compound 

was synthesized along with its N-propyl analogue. The pharmacophoric compound, along with 

several others in a series in which the piperidine substituent varies in both length and bulk, were 

screened across serotonin, dopamine, and adrenergic receptors to determine if high affinity and 

selectivity can be achieved for 5-HT2A receptors. The affinity screen revealed that, as the size and 

bulk of the piperidine substituent increases, affinity and selectivity for 5-HT2A receptors increased 

albeit with an accompanying increase in D2 receptor affinity – antagonism at D2 receptors is 

responsible for extrapyramidal stimulation (EPS) symptoms associated with several 

antipsychotics. Because D2 receptor affinity could not be abolished, it was determined that 

extending the chain size of the piperidine substituent is not an effective method for achieving more 

selective 5-HT2A antagonists. 

Computational analysis of quipazine and its analogues was conducted to determine their 

binding modes at 5-HT2A receptor crystal structures. Higher affinity ligands 1-NP and 2-NP were 

found to bind in a distinct pocket relative to the lower affinity ligands quipazine and isoquipazine. 
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It was predicted that the binding pocket occupied by 1-NP and 2-NP contains numerous 

hydrophobic amino acids and that hydrophobic interactions with these residues confer the high 

affinity for this class of compounds. 

Finally, evaluation of 5-HT2B receptors involved analyzing several 5-HT2B ligands in a Ca2+-

release assay to determine their functional activity. In particular, analogues of norfenfluramine 

(nFen) and DOB were analyzed and it was determined that the agonist activity of nFen is driven 

by hydrophobic interactions of its 3-CF3 substituent. To determine the SAR of related 

phenylisopropylamines at 5-HT2B receptors, a series of DOX analogues was analyzed for their 

functional activity. It was discovered that larger, more lipophilic 4-position halogens such as 

bromine (DOB) and iodine (DOI) are more accommodated than smaller less lipophilic halogens 

such as fluorine (DOF). Supporting the importance of a hydrophobic interaction with the 4-position 

substituent, DOPR and DOTB containing propyl and t-butyl 4-position substituents, respectively, 

produced potencies on par with that of DOI. These studies resulted in formulation of the first ever 

pharmacophore for agonist activity at 5-HT2B receptors. 
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I. Introduction 

Serotonin (5-HT) is a monoamine neurotransmitter that binds to and elicits many of its 

effects through serotonin receptors (5-HT1-7 family of serotonin receptors). Serotonin, along with 

all other monoamine neurotransmitters, contains a common scaffold: a basic nitrogen atom 

separated by a two-carbon alkyl chain from an aromatic moiety. The similarity of the structures of 

monoamine neurotransmitters (e.g., serotonin, dopamine, norepinephrine, epinephrine) is 

representative of the similarities in the binding site residues of all monoamine receptors. Thus, 

many drugs designed to target one of these receptors are likely to also display activity at the 

others, making the designing of selective compounds a challenging task. However, techniques 

such as the application of the Deconstruction, Reconstruction, and Elaboration (DRE) approach 

and the development of pharmacophore models can greatly ease difficulties in this area by 

determining minimal structural features necessary to produce biological activity. Once a simple 

scaffold is established, it can be elaborated by the addition of substituents that might result in 

selective compounds. This project is concerned with the development/refinement of 

pharmacophore models for 5-HT2A and 5-HT2B receptors. 

One area in which the development of more selective compounds can have an enormous 

impact is antipsychotic therapy. The issue with current antipsychotic drugs is that although they 

antagonize the desired 5-HT2A receptor, they also display desired antagonism at D2 receptors. 

This D2 antagonism also underlies the undesired extrapyramidal stimulation (EPS) side effects 

observed in patients prescribed certain antipsychotic medication. Unfortunately, although current 

antipsychotic drugs are very effective in treating schizophrenia, EPS symptoms cause patients to 

experience Parkinsonism-like symptoms such as tremors and dyskinesia. Thus, the development 

of more selective 5-HT2A antagonizing antipsychotic agents would alleviate the suffering 

experienced by millions of schizophrenic patients around the world. Here, we attempt to exploit a 
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new 5-HT2A receptor antagonist pharmacophore to identify compounds with an improved 5-HT2A 

receptor versus D2 receptor profile. 

Quipazine, a known but relatively non-selective 5-HT2A receptor agonist, represents an 

enigmatic ligand in that it does not conform to the structures of other known 5-HT2A agonists. In 

as much as it might provide new insight to how quipazine interacts with the receptor, quipazine, 

a related agonist, 2-NP, and two structurally-related antagonists will be examined at models of 

the active and inactive states, respectively, of 5-HT2A receptor models. 

Unlike 5-HT2A receptors which are mostly expressed in the central nervous system (CNS), 

5-HT2B receptors are mostly expressed peripherally in regions such as the liver, lung, heart, and 

kidney. One region of particular interest is the heart where 5-HT2B receptors regulate proper heart 

morphology and function. In fact, certain drugs such as the very effective anorectic drug 

fenfluramine have been removed from the market due to incidences of cardiac valvulopathy in 

patients – a condition characterized by thickening of the heart valves – resulting from the 

activation of cardiac 5-HT2B receptors. Thus, in the interest of preserving the therapeutic effects 

of these drugs (e.g., anorectic effect of fenfluramine) while dispelling negative side-effects (e.g., 

cardiac valvulopathy) produced by the activation of 5-HT2B receptors, pharmacophoric features 

for activation can be elucidated and these features can be omitted in the structures of drugs 

developed in the future, thus reducing the chances of activating 5-HT2B receptors and producing 

negative cardiac side-effects. These studies will involve molecular modeling, and the synthesis 

and pharmacological evaluation of known and novel agents. 
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II. Background 

A. Overview of Serotonin Receptors 

Serotonin (1) (5-HT, Figure 1), one of the most abundant signaling molecules,1 plays 

numerous physiological roles including the modulation of aggression, appetite, cognition, emesis, 

endocrine function, gastrointestinal function, motor function, neurotrophism, perception, sensory 

function, sex, sleep, and vascular function.1,2 It was initially found in the gastrointestinal mucosa 

(where it is in most abundance and produced by enterochromaffin cells) during the discovery that 

it produced contraction of the smooth muscle of rat uterus in 1937,3 it was later found in the brains 

of numerous animals in 19534 where it is produced by a cluster of cells within the raphe nuclei.5 

Since this discovery, numerous insights have been made in regard to serotonin’s function, 

including the crucial discovery that it is involved in the modulation of psychiatric disorders.5  

 

 

 

 

Figure 1. Structure of serotonin (1). 

 In the human body, serotonin is peripherally biosynthesized primarily in enterochromaffin 

cells and centrally in presynaptic serotonergic neurons, particularly in cell bodies known as the 

raphe nuclei.6 Its synthesis is consistent irrespective of location and involves two steps. First, the 

amino acid tryptophan is hydroxylated at the 5-position of the indole ring by tryptophan 

hydroxylase (TH) using the cofactor tetrahydrobiopterin (THB), forming 5-hydroxy-L-tryptophan 

(5-HTP, Figure 2). Second, 5-HTP is decarboxylated by L-aromatic amino acid decarboxylase 

(AADC) forming serotonin which is then stored in intracellular vesicles in enterochromaffin cells, 

Serotonin (5-HT; 1) 
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platelets, and serotonergic neurons, ready to be released extracellularly upon external stimuli. 

The binding of serotonin to presynaptic autoreceptors (i.e., 5-HT1A and 5-HT1B receptors) creates 

a negative feedback loop, resulting in the termination of serotonin’s effect via uptake through 

serotonin transporters (SERT) and storage into vesicles or cytoplasmic degradation by 

monoamine oxidase (MAO).6 MAO converts serotonin into 5-hydroxyindoleacetaldehyde which is 

then oxidized by aldehyde dehydrogenase (AD) using the cofactor nicotinamide adenine 

dinucleotide (NAD+) forming the primary metabolite 5-hydroxyindoleacetic acid. 

 
 
 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2. Synthesis and metabolism of serotonin.7 
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Serotonin produces its effects through the modulation of proteins known as the serotonin 

receptor family. This family currently consists of seven transmembrane protein subfamilies (5-

HT1-7), of which the 5-HT3 channel is the only ligand-gated ion channel receptor (LGICR) while 

the others are type A rhodopsin-like G-protein-coupled receptors (GPCRs). Serotonin receptors 

were originally classified into two groups, “D” type and “M” type receptors. “D” type receptors were 

found to be involved in the contraction of smooth muscle, the effect of which was blocked by the 

antagonist dibenzyline,8 whereas “M” type receptors, produced a depolarization effect of 

cholinergic neurons that was blocked by morphine.8 In 1979 Peroutka and Snyder reclassified 

serotonin receptors as 5-HT1 and 5-HT2 (previously “D” type receptors) receptors, based on the 

binding of agonists/antagonists at two distinct serotonin binding sites.9 in 1986, Bradley and 

colleagues reclassified type “M” type receptors as 5-HT3 receptors.10 Today, the seven sub-types 

of serotonin receptors are typically grouped according to which G-protein the receptor is coupled 

to during downstream signaling. 5-HT4, 5-HT6, and 5-HT7 receptors are coupled to the G-protein 

Gs which results in the activation of the effector protein adenylyl cyclase (AC) and an increase 

in the levels of the second messenger cyclic AMP (cAMP) , 5-HT1 and 5-HT5 receptors couple to 

Gi/o and deactivate AC and decrease levels of cAMP and 5-HT2 receptors couple to Gq resulting 

in activation of the effector protein phospholipase C (PLC) and increase in the levels of the second 

messenger inositol 1,4,5-triphosphate (IP3) (Figure 3) and diacylglycerol (DAG). Upon IP3 binding 

to IP3 receptors located on the endoplasmic reticulum (ER), Ca2+ is transported from the interior 

of the ER to the cytoplasm (this mechanism serves as a basis for Ca2+ binding assays employed 

to measure functional activity of ligands).11  

The 5-HT2 receptor subfamily consists of three receptor subtypes: 5-HT2A, 5-HT2B, and 5-

HT2C receptors. The 5-HT2A receptor contains a binding site which was originally labeled the “D” 

receptor site. After Leysen et al. discovered a serotonergic component to neurons labeled with 

[3H]spiperone in 1978,12 these receptors were later classified as 5-HT2 receptors by Peroutka and 
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Snyder in 1979. Eventually these receptors were designated 5-HT2A receptors. Examination of 

the distribution of 5-HT2A receptor mRNA in post-mortem humans revealed the presence of mRNA 

in pyramidal neurons (especially in layer V of the neocortex) and in very small levels in the 

hippocampus.13 Positron emission tomography (PET) imaging studies of living human brains 

using the imaging agent N1-([11C]-methyl)-2-Br-LSD ([11C]-MBL) revealed that 5-HT2A receptors 

label highest in regions of the brain associated with cognition and sensory input (e.g., frontal, 

temporal, and parietal lobes) and lowest in regions associated with motor functions such as the 

caudate nucleus and putamen,14 providing evidence for its involvement in the modulation of 

behavior. In the periphery, 5-HT2A receptors have been demonstrated to be expressed in cardiac 

cells and the modulation of cardiac hypertrophy;15 they have also been found on the membranes 

of blood platelets, serving a role in platelet aggregation.16 

 

 

 

 

 

 

Figure 3. Schematic diagram of classification of serotonin receptors based on their functional 

selectivity.17 

The 5-HT2B receptor, although not called as such at the time, was one of the first serotonin 

receptors to be characterized pharmacologically when in 1957, it was found to facilitate 

contraction of the rat stomach fundus in response to serotonin.18 Unlike 5-HT2A receptors, 5-HT2B 

receptors, originally designated 5-HT2F receptors,19 express very minimally in the central nervous 
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system (CNS) and more so in the human liver, lung, heart, and kidney (as elucidated by northern 

blot containing human RNA samples).20 Immunohistochemical analysis of rat brain sections 

showed that relative to the other 5-HT2 receptors, the few 5-HT2B receptors expressed in the CNS 

display a distribution pattern indicating involvement in locomotion, food behavior, perception, and 

aversion.21 In the lungs, activation of 5-HT2B receptors with dexfenfluramine is shown to lead to 

pulmonary hypertension symptoms independent of a vasoconstriction method,22 indicating its up-

stream involvement in the regulation of proper lung arterial pressure. The most infamous 

involvement of 5-HT2B receptors is in the heart, where they are involved in controlling proper 

morphology and function, an effect which will be discussed in greater detail below.  

5-HT2C receptors, initially labelled 5-HT1C, are shown in rat brains to be expressed in 

highest abundance in the amygdala, choroid plexus, cortex, hippocampus, thalamus, 

subthalamus and in several neurons associated with motor functions.23,24 This receptor is 

implicated in the regulation of anxiety25 and inhibition of drug abuse potential,26 both involving 

their activation. The latter effect is considered to be a result of the inhibition of dopamine release 

upon activation of 5-HT2C receptors.27 These receptors have also been implicated in regulating 

depression as shown by the initial anxiogenic effects of selective serotonin reuptake inhibitors 

(SSRIs) caused by 5-HT2C activation during the first few weeks of administration, followed by the 

intended antidepressant effects coupled with a downregulation of 5-HT2C receptors.28 Lastly 5-

HT2C receptors are thought to be involved in the regulation of obesity. Antagonism of 5-HT2C 

receptors increases food intake and weight gain,29 while 5-HT2C receptor agonists decrease food 

intake,30 as seen with the previously-marketed weight-loss drug, fenfluramine. 
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B. Schizophrenia Hypotheses 

1. Serotonin hypothesis of schizophrenia: The serotonin hypothesis of schizophrenia has its 

origins in the pharmacological research of hallucinogens, in particular LSD (2) (Figure 4). Due to 

the structural similarity between LSD and serotonin, in that they both contain an indolamine 

structural scaffold, and the similarity between the hallucinogenic effects of LSD and the psychotic 

symptoms of schizophrenia, research commenced into the possible relationship between 

serotonin and schizophrenia.31 Studies showing that indoles antagonize the effects of serotonin, 

in particular LSD antagonizing the contraction of uterine smooth muscle in rats,32 led researchers 

to initially believe that schizophrenia resulted from a reduction of serotonergic activity in the brain. 

This version of the serotonin hypothesis was amended, when numerous pharmacological studies 

were conducted revealing the similarities between the action of serotonin and LSD,33,34 

Specifically it was revealed that LSD produced contraction of oligodendroglia similar to that 

produced by serotonin, an effect that was not blocked by serotonin.34 Moreover, LSD stimulates 

the hearts of clams and raises the blood pressure of anesthetized dogs, similar to serotonin.33 

The dissimilarities in the mouse behavioral effects between administration of LSD versus other 

antiserotonin agents were also noted.34 The new hypothesis stated that the psychotic symptoms 

of schizophrenia were caused by an excess, as opposed to a deficit, of serotonergic activity in 

the brain. Soon after, researchers turned their interest to other hallucinogens, in particular 

mescaline which has a phenethylamine structural scaffold. It was revealed that mescaline 

produces a cross tolerance with LSD when administered to humans,35 indicating that the two 

compounds with distinct structural scaffolds, could be behaving in a similar manner 

physiologically. Several years later in 1984, Glennon et al. revealed significant correlations 

between the 5-HT2A binding affinities of a series of hallucinogens that included tryptamines and 

phenethylamines and their ED50 values in drug discrimination assays, as well as with their 

hallucinogenic potencies in humans.36 It was later revealed that the schizophrenia-like effects 
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produced by psilocybin, an indoleamine hallucinogen, are blocked by the 5-HT2A antagonist 

ketanserin and the atypical antipsychotic drug risperidone in humans,37 further indicating a 5-HT2A 

involvement in the hallucination symptoms of schizophrenia. 

A more accurate model of serotonin’s involvement in the pathogenesis and pathology of 

schizophrenia is excessive serotonergic activity in certain areas of the brain and diminished 

activity in others, as revealed by examination of postmortem human schizophrenic brains. In these 

studies, serotonin concentration was significantly lower in the hypothalamus, medulla oblongata, 

and hippocampus of schizophrenic brains compared with controls.38 Another group reported 

increased levels of serotonin and its primary metabolite 5-hydroxyindoleacetic acid (5-HIAA) in 

the nucleus accumbens and globus pallidus in postmortem schizophrenic brains.39 Therefore, it 

has been postulated that schizophrenia might be characterized as an “increase in 5-HT 

transmission in subcortical areas…and a decrease in cortical regions.”39 In support of this theory, 

several studies have reported a dysregulation in the density of 5-HT transporters and 5-HT2A 

receptors in the prefrontal cortex of schizophrenic patients.39 

 

Figure 4. Structure of LSD (2). 

2. Dopamine hypothesis of schizophrenia: Interest into the relationship between dopamine and 

schizophrenia began when it was revealed that administration of typical antipsychotic drugs 

haloperidol and chlorpromazine resulted in accumulation of dopamine in mouse brain through 

inhibition of monoamine oxidase (MAO).40 These results in combination with results of a previous 

study indicating that the tranquilizing effects of reserpine, a drug previously used to treat 

LSD (2) 
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psychosis,41 can be reversed by administration of the dopamine precursor 3,4-

dihydroxyphenylalanine,42 provided the framework for the dopamine hypothesis of schizophrenia. 

Specifically, it was stated that excessive neurotransmission of dopamine might be one of the 

reasons for psychosis.43 Further studies into the mechanistic relationship between dopamine and 

schizophrenia revealed a reduction of dopaminergic activity in the prefrontal cortex (where D1 

receptors are located) in schizophrenia patients44 and an inverse relationship between prefrontal 

cortex and subcortex (where D2 receptors are located) dopamine levels,44–46 providing evidence 

for a link between schizophrenia and prefrontal hypodopaminergia and subcortical 

hyperdopaminergia. The original hypothesis was further revised to include a theory that negative 

symptoms of schizophrenia are correlated with the former and positive symptoms are correlated 

with the latter.44 The pathophysiology of schizophrenia does not stop with the neurotransmission 

of dopamine as there is also evidence for dopamine neurons innervating and affecting the 

modulation of glutamatergic and GABAergic neurons.47 

 

3. Glutamate hypothesis of schizophrenia: Studies utilizing the general anesthetic phencyclidine 

(PCP) that revealed similarities in the behavioral effects of PCP and the psychotic symptoms of 

schizophrenia48 initiated the research into the possible link between glutamate neurotransmission 

and schizophrenia. PCP was thought to mimic psychotic symptoms more closely than LSD – the 

former producing more of the perceptual and cognitive deficits associated with schizophrenia 

while the latter producing more of the “secondary” effects such as visual and auditory hallucinatory 

events.49 Moreover, PCP was shown to exacerbate and reinforce preexisting psychotic symptoms 

in schizophrenia patients and produced symptoms in acute schizophrenic patients.49 PCP was 

first found to antagonize the excitatory effects of the NMDA channel (for which L-glutamate is the 

endogenous neurotransmitter) in the vertebrae of rats and cats.50 Furthermore, it was found that 

PCP binds at a distinct site relative to L-glutamate, thus producing its antagonism through a 

noncompetitive manner.51,52 Glutamate is known to be important for learning and memory, 
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processes that are dependent on glutamate’s ability to induce hippocampal long-term potentiation 

(LTP) which is related to synaptic plasticity. Lastly, a specific subunit (NR2A) of NMDA receptors 

is downregulated in GABAergic neurons of schizophrenia brains and disruptions in the modulation 

of GABA have also been linked to schizophrenia.53 Together, with the results of research with 

PCP and the physiological role of glutamate, it can be postulated that glutamate and its excitatory 

effects are crucial to maintaining healthy cognition and disruptions in its effects (antagonism) can 

produce behavioral effects similar to the psychotic symptoms of schizophrenia. 

 

4. GABA hypothesis of schizophrenia: As opposed to glutamate, which is an excitatory 

neurotransmitter, gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in 

the mature central nervous system, effecting its inhibition on pyramidal neurons located in the 

hippocampus, cerebellum, thalamus, and neocortex (based on GABA-A receptor channel isoform 

and GABAB1/GABAB2 receptor distribution),54,55 all areas of the brain affected by schizophrenia. 

In contrast, GABA has been shown to act as an excitatory neurotransmitter in the developing 

brain.56 Disruptions in both the excitatory and inhibitory neural transmission of glutamate have 

been implicated in the pathogenesis of schizophrenia.57,58 GABA is synthesized in GABAergic 

presynaptic neurons where glutamate is decarboxylated by glutamic acid decarboxylase (GAD) 

to form GABA. It is then packaged into vesicles by the vesicular GABA transporter (VGAT) and is 

released into the synapse to bind at GABA receptors A and B upon depolarization of the 

membrane, after which its signal is terminated in part due to reuptake by the glutamate transporter 

(GAT).58 It has been reported that mRNA of GAD67, the enzyme responsible for maintaining basal 

levels of GABA, is significantly reduced in layers 3, 4 and 5 of the prefrontal cortex but is largely 

unaffected in most GABAergic neurons in postmortem brains of schizophrenia patients.59 This 

reduction of GAD67 levels is directly correlated with the reduction of the mRNA of parvalbumin,60 

an enzyme found in subsets of GABAergic neurons characterized by their high rate of firing action 

potentials, which might imply that the reduction in the levels of GAD67 mRNA is specific to a 
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subset of GABAergic neurons containing the enzyme parvalbumin.61 There is also evidence for 

the reduction of GAT-1 mRNA levels,62,63 a subset of GABA transporters that are responsible for 

the majority of GABA modulation, and also for the reduction of the 2 subunit of GABAA type 

receptor, a subunit found on a vast majority of pyramidal neurons synapsed by GABAergic 

neurons, in postmortem schizophrenia brains. This would suggest that the schizophrenia is 

associated with a reduction of GAT-1 and a subset of GABAA receptors and as a result of an 

increase in the level of GABA and inhibition of postsynaptic neurons. This is in contrast to the 

increased excitation that would result from a reduction GAD67 and therefore a reduction of GABA 

synthesis, suggesting that schizophrenia is characterized by hypofunction of both the excitatory 

and inhibitory pathways of GABA. Others have reported downregulation of several other GABAA 

receptor subunits including 1, 4, 5, 2, and . These results illuminate the complex and multi-

faceted relationship between GABAergic neurotransmission and schizophrenia.  

C. Antipsychotic Drugs 

Prior to the 1950s, treatment of schizophrenia was limited to crude methods such as 

electroconvulsive therapy, treatment with nonspecific sedatives such as morphine, opium, and 

codeine, physical restraint, and administration of insulin.64,65 It wasn’t until the discovery of 

chlorpromazine (3), a phenothiazine derivative originally used as part of a sedative concoction  in 

surgery,66 and reserpine (4) (Figure 5), originally used as a antihypertensive,67 that research into 

the treatment of psychosis started to look promising. These discoveries spawned what is known 

as the “psychopharmacological revolution”64 after both drugs were found to be efficacious in the 

alleviation of psychotic symptoms in schizophrenic patients through their tranquilizing effects and 

became widely used clinically.67,68 Their use clinically encouraged researchers to investigate the 

pharmacological action of these drugs and they found a dopaminergic component to 

chlorpromazine40 and a serotonergic component to reserpine.69 Discovery of other antipsychotic 

drugs soon followed including haloperidol (5), thiothixene (6), thioridazine  (7), and trifluoperazine 
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(8) (Figure 5), among others, which formed a class of drugs known as typical antipsychotic drugs 

along with chlorpromazine and reserpine.66  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Structure of typical antipsychotic drugs chlorpromazine (3), reserpine (4), haloperidol 

(5), thiothixene (6), thioridazine (7), and trifluoperazine (8). 

The problems with typical antipsychotic drugs are that they result in high incidences of 

extrapyramidal stimulation (EPS) symptoms related to primary antagonism of D2 receptors,70 such 

as Parkinsonism,68 and that they fail to alleviate the negative symptoms of schizophrenia such as 

Chlorpromazine (3) 

Reserpine (4) 

Haloperidol (5) 

Trifluoperazine (8) Thioridazine (7) 

Thiothixene (6) 
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apathy and lack of motivation.65 In the 1970s, the dibenzodiazepine antipsychotic clozapine (9) 

(Figure 6) was discovered and was shown to be very effective clinically in treating schizophrenia, 

including the negative symptoms, and did not produce EPS symptoms. Drugs exhibiting these 

characteristics became known as atypical antipsychotic drugs, display 5-HT2A/D2 receptor 

antagonism,70 and later included drugs discovered in the 1990s risperidone (10), olanzapine (11), 

sertindole (12), and quetiapine (13) (Figure 6).66 The latter group of drugs were essential because 

they failed to produce the agranulocytosis side effects seen with clozapine administration66 

 

 

 

 

 

 

 

 

 

Figure 6. Structure of atypical antipsychotic drugs clozapine (9), risperidone (10), olanzepine 

(11), sertindole (12), quetiapine (13). 
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D. 5-HT2A Receptor Antagonist Pharmacophore 

Since the discovery of atypical antipsychotic drugs, numerous studies have been 

conducted in an attempt to understand the structure-activity-relationship (SAR) of these drugs71–

73 to further increase their efficacy and decrease their incidence of EPS. One particular area of 

interest is in the pharmacophoric evaluation of risperidone (10) (Figure 6) at 5-HT2A receptors.74–

77 Risperidone was chosen for examination because it is used clinically and maintains a high 

affinity and potency at 5-HT2A receptors (Ki = 5.29 nM and IC50 = 5.59 μM, respectively).76  Our 

group has previously published results of a deconstruction study of risperidone in order to 

determine its minimal structural features necessary (pharmacophore) for antagonism of 5-HT2A 

receptors.76,77  

Developing a pharmacophore for a receptor is a highly illuminating method for rational 

drug design. This method usually involves the deconstruction step of the Deconstruction, 

Reconstruction, Elaboration (DRE) approach, first established by Glennon.78 In this step, a 

molecule is stripped down to determine essential substituents for activity. In the reconstruction 

step, the molecular scaffold is synthesized containing only these essential substituents and 

omitting nonessential ones. In the elaboration approach, substituents are added to the molecule 

in a rational way (usually incorporating the Craig Plot or Topliss Tree methods) to optimize 

activity.78 

5-HT2A receptors were the focus in this study because a reduction of EPS symptoms of 

atypical antipsychotic drugs is correlated with greater 5-HT2A activity and lower D2 activity and so 

a greater understanding of the structural requirements for antagonism of 5-HT2A receptors might 

aid researchers in developing more selective 5-HT2A receptor antagonists, and thus safer 

antipsychotic drugs. 
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A typical pharmacophoric model for 5-HT2A antagonism based on the structural 

requirements and distance investigations of 5-HT2A ligands by various groups79–82 is shown in 

Figure 7 (as summarized by Younkin et al.76) which consists of two aromatic centers separated 

by given distances from a basic nitrogen atom. The initial deconstruction of risperidone conducted 

by our laboratories revealed that the entire structure of risperidone is not required for antagonism 

at 5-HT2A receptors, a result corroborated by the comparable antagonist actions of compounds 

14 (Ki = 71.41 nM; IC50 ± 2.24 μM) and 15 (Ki = 12.27 nM; IC50 = 7.40 ± 1.45 μM) to that of 

risperidone. In particular, only one aromatic center might be required for antagonist activity. 

Figure 7. Composite of pharmacophoric model developed by various groups.76 

 

 

Figure 8. Structure of abbreviated compounds 14 and 15. 

In a more comprehensive deconstruction analysis of risperidone (10) and ketanserin (16) 

(Figure 9) by our group, Shah et al. examined several deconstructed analogues of risperidone 

(5.29 nM and 5.59 μM at 5-HT2A receptors) and ketanserin (Ki = 15.5 nM, IC50 = 32.4 μM at 5-

HT2A receptors) as well as hybrid molecules of the two.77 In this study, compound 14 was further 
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deconstructed by removing the 6-fluoro substituent on the benzisoxazole ring. The des-fluoro 

analog of 14 retained nanomolar affinity and micromolar potency (Ki = 271 nM and IC50 = 3.49 

μM), showing that, although beneficial for activity, the 6-fluoro substituent is not essential. The 

results of this study were utilized to revise the existing pharmacophoric model for 5-HT2A 

antagonism producing the model shown in Figure 10.  

 

Figure 9. Structure of ketanserin. 

 

Figure 10. Revised pharmacophoric model for 5-HT2A antagonism.77 

In the initial deconstruction study, results indicated that only the “right half” portion 

(benzisoxazole/piperidine-containing portion) of risperidone (10) is necessary for antagonist 

action at 5-HT2A receptors. This might suggest that the binding of this portion might be magnified 

by the presence of the “left half” portion (pyrimidinone-containing moiety). To test this hypothesis, 

two agents were developed in the new study containing either the right or left portions of 

Ketanserin (16) 
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risperidone and the right or left portions of ketanserin. Agents containing only the left half portion 

of risperidone did not have appreciable affinity for 5-HT2A receptors (Ki ≥ 5,000). However building 

onto these agents by adding the right half portion of ketanserin (16) as seen in Figure 11 produces 

a compound (17) with greater affinity and potency than ketanserin (Ki = 3.02 nM and IC50 = 25.7 

μM). The other hybrid compound containing the left half portion of ketanserin (16) and the right 

half portion of risperidone (10) (Figure 6) 18 displayed greater affinity and potency (Ki = 0.37 nM 

and IC50 = 0.7 μM) than either risperidone or ketanserin. It was also revealed that a tertiary amine 

is optimal for binding i.e. the piperidine nitrogen atom of risperidone. These results reveal multiple 

insights with regard to the structure-activity relationships of risperidone antagonism at 5-HT2A 

receptors.  

 

Figure 11. Structure of hybrid molecules with the “left half” portion of risperidone and the “right 

half” portion of ketanserin (17) and the “right half” portion of ketanserin and the “left half” portion 

of risperidone (18). 

 

E. Significance of 5-HT2B Receptors 

Although 5-HT2B receptors are generally considered to be anti-targets due to the 

prevalence of cardiac valvulopathic effects precipitated by their activation, the study of these 

receptors is still very crucial for drug development. Early studies reported that high levels of 

serotonin excreted into the blood stream by carcinoid tumors result in fibrosis of particular heart 

valves, supporting the role of serotonin in the modulation of cardiac function.83,84 Additionally, 

17 18 
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SSRIs are associated with abnormal heart function including arrhythmias, bradycardia, atrial 

fibrillation, and tachycardia.85 Despite this, there is evidence for 5-HT2B receptors being implicated 

in the therapeutic action of SSRIs with one group showing that the response of mice (i.e., mobility) 

in the forced swim test (FST) is absent in 5-HT2B
-/- mice86 and later showing that these mice fail 

to respond to long-term administration of SSRIs in a novelty-suppressed feeding test.87 However, 

focus has remained on the heart abnormalities that result upon activation of this receptor and 5-

HT2B receptors in particular have been linked to the shape and morphology of the heart, with one 

group reporting a reduction of ventricular mass in 5-HT2B receptor mutant mice.88 Furthermore, a 

later study reported that overexpression of 5-HT2B receptors in the heart leads to cardiac 

hypertrophy in mice.89 The research into the link between 5-HT2B receptor activation and cardiac 

dysfunction has led those in the field to investigate the possible therapeutic uses of 5-HT2B 

antagonists. One group demonstrated that administration of 5-HT2B antagonists SB204741 and 

terguride diminishes induced right ventricle fibrosis following pulmonary artery banding (PAB) 

treatment in mice.90 

Studies with fenfluramine (19) (Fen, Figure 12), a 5-HT2B agonist, prompted extensive 

research into the relationship between 5-HT2B receptors and cardiac abnormalities. Fen was 

initially prescribed as an anti-obesity drug in 1973, but was removed from the market in 1997 due 

to occurrences of cardiac disorders, specifically cardiac valvulopathy and pulmonary 

hypertension, in patients.91,92 The cardiac valvulopathy associated with Fen has been 

characterized by thickening of the aortic, mitral, and tricuspid valves with plaque-like deposits 

along the leaflets and chordae tendineae, as well as regurgitation of blood through the valves.92 

These symptoms are similar to those seen in patients with carcinoid valve disease.92 Fen and its 

metabolites act as both 5-HT2B agonists and serotonin releasers at serotonin transporters 

(SERT).93 However, the mitogenesis associated with the cardiac valvulopathic effect is thought to 

be precipitated by the downstream action of Gq-mediated activation and beta arrestin recruitment 
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rather than serotonin release;94 in fact, Fen was actually found to decrease platelet and plasma 

levels in both humans and animals.95–97 The popular street drug MDMA (or 3,4-

methylenedioxymethamphetamine, also a 5-HT2B receptor agonist), produces significant 

mitogenic changes in human heart valve interstitial cells and valvular regurgitation and 

morphological changes in patients.98,99 Administration of other 5-HT2B receptor agonists such as 

anti-Parkinsonism drugs, pergolide and cabergoline, induces cardiac valve regurgitation in 

patients.100 These results provide further evidence for the association between the activation of 

5-HT2B receptors and the incidence of cardiac valvulopathy.  

 

Figure 12. Structure of fenfluramine (Fen; 19) and its active metabolite norfenfluramine (nFen; 

20). 

Despite its adverse cardiological effects, Fen is a very effective anorectic101,102 shown to 

result from 5-HT2C receptor activation,103,104 and was very popular when available on the market 

(5 million US patients used prescription Fen between 1996-1998).98 Fen has recently been 

reevaluated for the treatment of Dravet’s syndrome and is currently in clinical trials. A low dose of 

Fen significantly diminished epilepsy-associated seizures, with patients experiencing freedom 

from seizures in as little as 3 days and a median reduction in seizure frequency of 80%.105 The 

antiepileptic effect of Fen is thought to be precipitated through action at 5-HT1D, 5-HT2A, 5-HT2C, 

and sigma-1 receptors.105–108 Fen clearly has therapeutic potential and structural modification to 

abolish its affinity for 5-HT2B receptors (and thus its adverse cardiac effects) can open the door to 

more effective treatment options without dangerous side effects. 

Fen (19) nFen (20) 
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Fenfluramine’s most active N-deethylated metabolite is norfenfluramine (nFen, 20) (Figure 

12), which has much higher affinity and functional activity at 5-HT2B receptors (Table 1). (±)nFen 

has an affinity of over 79-fold greater than that of (±)Fen, which also corresponds with almost two-

fold greater Vmax values of the isomers of nFen relative to those of Fen. This effect is also seen 

with regard to 5-HT2A receptors at which fenfluramine/norfenfluramine and their metabolites 

posess greater affinity and functional activity. Considering the greater activity of nFen compared 

with Fen at 5-HT2B receptors, it is believed that the majority of 5-HT2B activation and thus induction 

of cardiac valvulopathy that occurs upon Fen administration is due to the action of nFen and not 

Fen.93 Both nFen and Fen belong to a class of compounds known as phenylisopropylamines. 

Table 1. Affinity Ki values and Vmax values of the isomers of fenfluramine and its most active 

metabolite norfenfluramine.109 

 

 
5-HT2A 
Ki [nM]  
(rat: 
[3H]Ketanserin) 

5-HT2B 
Ki [nM]  
(human: [3H]5-
HT) 

5-HT2A  
Vmax 
(% of 5-HT 
response; PI 
hydrolysis) 

5-HT2B 
Vmax 
(% of 5-HT 
response; PI 
hydrolysis) 

(±)Fen 5216 4134 15 ND 

(+)Fen 11107 5099 ND 38 

(-)Fen 5463 5713 43 47 

(±)nFen 2316 52.1 ND ND 

(+)nFen 1516 11.2 88 73 

(-)nFen 3841 47.8 93 71 
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F. Phenylisopropylamines 

Phenylisopropylamines can have a broad range of activities from stimulant effects as seen 

with amphetamine110 to hallucinogenic effects as seen with classical hallucinogens in the DOX 

series (Table 2),111,112 to anorectic effects as seen with fenfluramine (19).102 The Ar-C-C-N (aryl-

carbon-carbon-nitrogen) moiety contained in the phenylisopropylamine scaffold is so common in 

a wide variety of drugs because they resemble neurotransmitters containing the same moiety 

(e.g. serotonin, dopamine, norepinephrine) with which they might share the same target 

proteins.113 The simplest version of a related class of compounds is phenethylamine (Figure 13) 

(43) which has no substituents on its phenyl ring or its alkyl chain. Phenethylamine is not known 

to produce significant central stimulating effects upon administration; however, adding an -

methyl substituent, forming amphetamine (42) (Table 2) (a phenylisopropylamine), adds a central 

stimulant component to the drug.113 With regard to phenylisopropylamine hallucinogens, 

mescaline is the prototypical phenethylamine compound.114 Modification of its structure by 

addition of an -methyl substituent results in the phenylisopropylamine trimethoxyamphetamine 

(TMA; 38) (Table 2). Shulgin, later, after investigating a series of substitution patterns of TMA, 

concluded that the 2,4,5-methoxy substitution pattern was optimal in terms of hallucinogenic 

activity as seen with TMA-2 (27) (Table 2).112 It should be noted that although the -methyl 

substituent distinguishes phenethylamines from phenylisopropylamines, the -methyl does not 

seem to improve the affinity101 or efficacy115 at 5-HT2A receptors in vitro. However, an improvement 

is seen in the ED50 values of phenylisopropylamines vs. phenethylamines in drug discrimination 

assays as represented by the lower ED50 value of DOM (25) (ED50 = 1.8 μmol/kg) than of its des-

-methyl counterpart 2C-D (44) (Figure 13) (ED50 = 5.6 μmol/kg). One reason for this effect is that 

the -methyl substituent may be adding lipophilic character to the compound and thus is able to 

cross the blood-brain barrier (BBB) more effectively to exert its central effects. 
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Table 2. Selected examples of the DOX series of phenylisopropylamines. 

 

 

 

 

 

Figure 13. Structures of phenethylamine (43) and 2C-D (44). 

Compound Name R1 R2 R3 R4 R5 R6 

21 DOF  NH2 OCH3 H F OCH3 H 
22 DOB NH2 OCH3 H B OCH3 H 
23 DOI NH2 OCH3 H I OCH3 H 
24 DOC NH2 OCH3 H Cl OCH3 H 
25 DOM NH2 OCH3 H CH3 OCH3 H 
26 2,5-DMA NH2 OCH3 H H OCH3 H 
27 TMA-2 NH2 OCH3 H OCH3 OCH3 H 
28 MEM NH2 OCH3 H OCH2CH3 OCH3 H 
29 DOAc NH2 OCH3 H COCH3 OCH3 H 
30 DON NH2 OCH3 H NO2 OCH3 H 
31 DOCN NH2 OCH3 H CN OCH3 H 
32 DOPR NH2 OCH3 H Propyl OCH3 H 
33 DOHx NH2 OCH3 H Hexyl OCH3 H 
34 DOTB NH2 OCH3 H t-Butyl OCH3 H 
35 DOBz NH2 OCH3 H Benzyl OCH3 H 
36 DOCT NH2 OCH3 H Octyl OCH3 H 
37 DOPP NH2 OCH3 H 3-(Phenyl)propyl OCH3 H 
38 TMA NH2 H OCH3 OCH3 OCH3 H 
39 M-154 N(CH3)2 OCH3 H Br OCH3 H 
40 D-367 NH-C3H7 OCH3 H Br OCH3 H 
41 QDOB N+(CH3)3

 OCH3 H Br OCH3 H 
42 Amphetamine NH2 H H H H H 

 

β 

Phenethylamine (43) 2-CD (44) 
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Phenylisopropylamines have chiral centers at the -carbon and the R(-) enantiomers are 

generally the most potent agonists at 5-HT2A receptors (fenfluramine/norfenfluramine and 

metabolites being exceptions). Glennon et al. investigated the additions of hydroxy and methoxy 

substituents to the β position of 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane DOB (Table 

2) (22), the brominated analogue in the DOX series of hallucinogens.116 β-Hyroxylation and β-

methoxylation, forming new chiral centers with the designation 1R,2R is well tolerated and 

produces compounds with similar affinities and efficacies as DOB at 5-HT2A receptors. However, 

the 1R,2R, β-methoxylated compound is the only one that has a significantly higher potency as 

compared with DOB (almost 2-fold). 

Greater interest in phenylisopropylamine hallucinogens prompted researchers to 

determine the ideal substitution of methoxy substituents with regard to affinity and efficacy. It was 

revealed that the 2,5-dimethoxy pattern is best tolerated.117 Glennon et al. further reported that 

substitution of the 2-methoxy substituent with a 2-hydroxy substituent in DOM (Table 2) (25) 

produced similar behavioral responses in drug discrimination assays but this same tolerance was 

not seen with substitution of the 5-methoxy substituent.117 In the same study, it was further 

revealed that removal of the 4-position methyl substituent followed by addition of a methyl 

substituent at the 3-position failed to produce the same behavioral responses as DOM, indicating 

that a substituent at the 4-position is necessary for hallucinogenic-like activity in animals. This 

effect is corroborated by the result that DOM displays ten times the potency of TMA-2 (27), also 

indicating that a hydrophobic substituent at the 4-position might improve the activity of this 

series.118  Glennon et al. reported in a later study involving DOB that both the 2- and 5-position 

methoxy substituents are necessary for 5-HT2A binding, and removal of the former results in 

complete abolishment of affinity.119 Demethylation of the 2-methoxy substituent results in a 3-fold 

reduction in 5-HT2A affinity. Alkylation of the terminal nitrogen via addition of a propyl substituent 
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drastically reduced affinity by about 30-fold, indicating that alkyl substituents on the terminal 

amine are not very well tolerated.119 

As mentioned earlier, hydrophobic substituents at the 4-position of phenylisopropylamines 

seem to be beneficial for activating 5-HT2A receptors. Glennon and coworkers118 examined a 

series of analogues with variation of substituents at the 4-position of 2,5-DMA (26) (Table 2) with 

polar and hydrophobic substituents and found that polar substituents dramatically reduced the 

affinity at 5-HT2A receptors with carboxy, hydroxy, and amino substituents displaying the lowest 

affinity (Ki > 25,000 nM). Lipophilic substituents on the other hand (alkyl or branched alkyl groups) 

were very well tolerated. Halogen substitution showed that the bromo substituent is the most 

favorable (Ki = 41 nM), followed by the chloro substituent (Ki = 218 nM), followed by the fluoro 

substituent (Ki = 1100 nM). Furthermore, two of the high affinity ligands (4-t-Bu and 4-pentyl 

analogs) were found not to generalize to DOM in drug discrimination and so were suspected of 

being antagonists. Four compounds, 4-hexyl (i.e., 33) (DOHx), 4-benzyl (i.e., 35) (DOBz), 4-octyl 

(i.e., 36) (DOCT), and 4-[3-(phenyl)propyl] (i.e., 37) (DOPP) (Table 2) analogues, were evaluated 

in an isolated tissue assay in rat thoracic aorta to test for agonist activity and all four were found 

to be antagonists.118 This result raised the possibility of producing 5-HT2A antagonists by the 

addition of bulk at the 4-position of phenylisopropylamines. 

Although much research has involved developing structure-activity-relationships (SAR) of 

phenylisopropylamines, much more data are needed to fully characterize this class of 

compounds. For example, although there are numerous reports for the 5-HT2A affinity data for this 

class, their functional activity at 5-HT2A receptors has been limited to a relatively few compounds, 

e.g., DOI, DOB, DOM, DON, 2,5-DMA, and TMA.120–122 Glennon, et al. has also conducted PI 

hydrolysis studies and provided intrinsic efficacy values for a series of DOX analogues and 

positional isomers of TMA.123 A comprehensive affinity analysis for a series of DOX compounds 



26 
 

at 5-HT2A and 5-HT2B receptors has been conducted by Nelson et al.111 but a greater degree of 

functional data at these receptors, especially 5-HT2B, is still needed for these analogues. 

Table 3.  Affinity values of a series of DOX compounds at 5-HT2A and 5-HT2B receptors.111 

Compound Name 
5-HT2A Ki[nM]  

 [125I]DOI 
5-HT2B Ki[nM]  

[3H]5-HT 

21 DOF 41.7 227 

22 DOB 0.6 26.9 

23 DOI 0.7 20.0 

24 DOC 1.4 31.8 

26 2,5-DMA 211 1039 

27 TMA-2 57.9 307 

28 MEM 73.0 763 

29 DOAc 80.5 313 

30 DON 5.5 166 

31 DOCN 45.7 774 

32 DOPR 0.9 54.4 

33 DOHx 0.1 30.3 

34 DOTB 3.7 24.6 

35 DOBz 0.4 35.0 

39 M-154 94.2 341 

40 D-367 88.5 521 

41 QDOB 2155 >10,000 

 

 

G. Quipazine 

Quipazine (45) (Figure 14) is considered to be an enigmatic 5-HT2A receptor agonist 

because it does not share the structural scaffold common to classical hallucinogens such as the 

tryptamine, phenethylamine, or ergoline scaffolds and instead contains an arylpiperazine scaffold. 

Despite this, quipazine binds at 5-HT2 receptors and produces behavioral effects in drug 

discrimination124 and head-twitch response (HTR)125 assays similar to those of classical 
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hallucinogens, However, it is unknown if quipazine is hallucinogenic because human data are 

limited to anecdotal evidence.126 

 

Figure 14. Structures of quipazine (45) and its structural analogues isoquipazine (46), 2-NP 

(47), and 1-NP (48). 

Originally developed having antidepressant implications, quipazine was found to 

antagonize the sedative effects of reserpine and tetrabenazine (similar to the clinically used 

antidepressant imipramine) and inhibited the mouse-killing behavior of rats, effects that were 

thought to be indicators of potential antidepressant activity.127 However, in the same study it was 

revealed that quipazine had no effect on the inhibition of monoamine oxidase (MAO) nor on the 

uptake of norepinephrine or serotonin, which were known to be the mechanisms of 

antidepressants until that point. Subsequent studies with quipazine in drug discrimination assays 

revealed that quipazine can generalize to the response of LSD in rats trained to discriminate LSD 

from saline.128 Similarly, rats trained to discriminate between quipazine and saline recognized the 

LSD cue, an effect that was blocked by 5-HT antagonists cyproheptadine, methysergide, and 

methiothepin but not dopamine antagonists fluphenazine and haloperidol.129 Together these 

results indicated that, like LSD, quipazine might have a serotonergic component to its behavioral 

effects.  

Quipazine (45) 1-NP (48) 2-NP (47) Isoquipazine (46) 
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Other compounds in the same class (arylpiperazine) as quipazine are 1-(3-

trifluoromethylphenyl)piperazine (TFMPP) (49) and its chloro analogue 1-(3-

chlorophenyl)piperazine (mCPP) (50) (Figure 15), both of which are agonists at various serotonin 

receptors. Animals trained to recognize TFMPP in drug discrimination assays generalized to the 

mCPP cue. However, this effect is not seen with quipazine. Instead quipazine generalizes to DOM 

(and LSD as mentioned earlier), a compound with known 5-HT2A receptor agonist activity, 

indicating that the action of quipazine is through 5-HT2A receptors unlike TFMPP and mCPP.124 

The similarities of the effects of quipazine to hallucinogens such as LSD and DOM is 

understandable considering the similarities in their structural scaffolds: they all contain a 

protonatable nitrogen separated by an aliphatic chain to a substituted aromatic ring.  

 

 

 

Figure 15. Structures of TFMPP (49) and mCPP (50). 

Quipazine binds with nanomolar affinity at 5-HT2A receptors as reported by multiple 

laboratories (Table 4). However, there are discrepancies in the binding affinity of quipazine which 

depend on the radioligand used in the assays. For example, quipazine binds with lower affinity at 

5-HT2A receptors labeled with the antagonist [3H]-ketanserin, compared to when agonists [125I]-

DOI or [3H]-DOB are used as radioligands (~4-26x lower). This is consistent with literature data 

showing that agonists such as 5-HT, DOI, and quipazine and partial agonist mCPP display higher 

affinities at 5-HT2A receptors radiolabeled with [3H]-DOB (~2-8x higher) than at 5-HT2A receptors 

radiolabeled with [3H]-ketanserin.130 This same effect is not observed with antagonists spiperone, 

mesulergine, and ketanserin. Literature also shows that [3H]-ketanserin binds to a much higher 

population of receptors than [125I]-DOI in both brain tissue and HEK-293 cell preparations.131,132 

TFMPP (49) mCPP (50) 
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Although binding assay calculations are conducted by accommodating for nonspecific binding, 

the higher amount of agonist needed to displace [3H]-ketanserin at a higher population of 5-HT2A 

receptors might factor in to the higher affinity of agonists at [3H]-DOB/[125I]-DOI labeled 5-HT2A 

receptors than at [3H]-ketanserin labeled receptors. 

Table 4. Comparison of binding affinities of quipazine (45), 2-NP (47), isoquipazine (46), and 1-

NP (48) at 5-HT2A receptors using radioligands [3H]-ketanserin, [125I]-DOI, and [3H]-DOB across 

human, mouse, and rat species. 

 Quipazine Ki 
[nM] 

2-NP Ki [nM] 
Isoquipazine 

Ki [nM] 
1-NP Ki [nM] 

[3H]-Ketanserin,       
h5-HT2A 

[3H]-Ketanserin,      
m5-HT2A 

5129125 
 

2506125 

710125 
 

NAb 

3,800125 
 

NA 

98125 
 

NA 

[3H]-Ketanserin,       
h5-HT2A 

362133 NA NA NA 

[3H]-Ketanserin,        
r5-HT2A 

230124 
447*124,134–139 70124 NA 18124 

[125I]-DOI, h5-HT2A 129132 NA NA NA 

[125I]-DOI, h5-HT2A 5131 NA NA NA 

[3H]-DOB, h5-HT2A 59133 NA NA NA 

[3H]-DOB, r5-HT2A 
17135 
25139 

NA NA NA 

*Average data collected from PDSP Ki database. bNA = unavailable; not reported. 

Very few SAR studies have been conducted on quipazine’s action at 5-HT2A receptors. In 

one study by Glennon et al.124 quipazine and its structurally related analogues including 1-NP (46) 

and 2-NP (47) (Figure 14) were assessed in radioligand binding and drug discrimination assays. 

2-NP (Ki = 70 nM) displayed a higher affinity at 5-HT2A receptors than quipazine (Ki = 230) and 

achieved greater selectivity for 5-HT2 over 5-HT1 receptors. 1-NP displayed an even higher affinity 

for 5-HT2A receptors (Ki = 18 nM) but was not selective for 5-HT2A. These results indicate that the 

quinoline nitrogen atom of quipazine is not necessary for activity and might even diminish its 

affinity for 5-HT2A receptors; this might be due to some electrostatic clash with amino acids in the 

binding site. Furthermore translocation of the piperazine ring from the 2-position to the 1-position 
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of the naphthalene ring of 2-NP (as seen in 1-NP) is more favorable for binding. In drug 

discrimination assays, animals were trained using either TFMPP or DOM as the stimulus drug. It 

was found that the DOM stimulus generalized to 2-NP but not to 1-NP and the TFMPP stimulus 

generalized to 1-NP but not to 2-NP;124 1-NP has been shown to be a 5-HT2A receptor 

antagonist.124,125 Several other compounds were also investigated to understand the SAR of 

quipazine. Through these compounds it was demonstrated that the 4-position nitrogen atom of 

quipazine (i.e., N4) is essential and an 8-methoxy substituent on the quinoline ring of quipazine is 

tolerated with respect to binding at 5-HT2A receptors. 

Quipazine also displayed very high affinity (Ki = 1.5 nM)140 and potent antagonism of 5-

HT3 receptors141 and [3H]quipazine was used to label 5-HT3 recognition sites in rat cortical 

membranes.142 5-HT3 receptor channels are implicated in the functioning of the gastrointestinal 

tract in actions such as release of gastrointestinal (GI) secretions, control of vomiting, peristalsis 

as well as in the modulation of GI disorders such as gastroesophageal reflux disease and irritable 

bowel syndrome. In the few anecdotal reports126 of quipazine’s effect in humans, patients reported 

GI disturbances, diarrhea, vomiting, and “low dose mescaline-like effects” and similar effects were 

seen in monkeys except they exhibited behavior as seen upon administration of LSD, indicating 

that the hallucinogenic effects were stronger in monkeys than in humans. These observations 

have raised questions regarding the hallucinogenic action of quipazine. Specifically, it has been 

proposed that a higher dose of quipazine might produce hallucinogenic experiences in humans if 

it were not for the accompanying higher incidences of GI disturbances. Thus, administration of an 

antiemetic such as ondansetron prior to quipazine might allow users to consume a high enough 

dose of quipazine to experience its hallucinogenic action.126 Additionally, pretreatment with 

ondansetron significantly reduced the fecal count of mice given quipazine.125 Furthermore, 

pretreatment with ondansetron in mice administered quipazine in the HTR assay had no 

significant effect on the HTR counts revealing that the behavioral effects of mice in the HTR assay 
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by quipazine is not linked with its agonism at 5-HT3 receptors.125 Regardless of these indications, 

published data from studies with human subjects consuming quipazine are required to definitively 

determine if or if not quipazine is indeed hallucinogenic. 
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III. Specific Aims and Rationale 

5-HT2A and 5-HT2B serotonin receptors share high sequence identity (39.96% - UniProt 

Allignment Data), especially in their respective ligand binding sites and transmembrane regions 

(Figure 16). They both contain a highly conserved aspartic acid amino acid in transmembrane 3 

(TM3), a residue that is conserved across all aminergic GPCRs.143–145 This residue serves as an 

anchor point for ligands of 5-HT2A and 5-HT2B receptors by forming salt bridge interactions (i.e. 

ionic bonds) between its negatively charged oxygen atoms and the positively charged amines of 

ligands. Agonists of both receptors interact with specific residues that share similar positions in 

the binding site, specifically residues in TM5 and TM6.146,147  
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Figure 16. Sequence alignment of human 5-HT2A and 5-HT2B receptor sequences. Blue regions 

highlight sequence identity and red regions highlight transmembrane regions. 

The similarities in the binding and activation of ligands binding at 5-HT2A and 5-HT2B 

receptors can be clearly elucidated by comparing bound crystal structures of the agonist LSD at 

both receptor subtypes, published by Roth and collegues while our investigation was in 

progress.146–148 Their results indicated that LSD interacts with similar residues and only displays 

slight differences in the binding site of both receptors. These interactions include hydrophobic  

stacking interactions with adjacent phenylalanine residues in TM6 (Phe3396.51 and Phe3406.52 in 
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5-HT2A and Phe3406.51 and Phe3416.52 in 5-HT2B). In TM5 LSD (2) hydrogen bonds with S2425.46 

in 5-HT2A receptors. An analogous residue Ala2255.46 at the same position in 5-HT2B receptors 

was shown to be essential for agonism in studies with agonist methylergonovine.146 Along with 

binding similarities, LSD displays similarities in its kinetic and pharmacological activity at 5-HT2A 

and 5-HT2B receptors. LSD displays relatively slow dissociation rates at both receptors (koff = 

0.003 ± 0.0005 min-1 and 0.022 ± 0.004 min-1, respectively).147,148 It has been proposed that this 

effect is caused by residues in extracellular loop 2 (EL2) forming a “lid” in the binding sites of both 

5-HT2A and 5-HT2B receptors, preventing LSD from dissociating. Specific residues such as 

Ser2425.46 and Leu229EL2 in 5-HT2A and Leu209EL2 in 5-HT2B have been implicated in the slow 

kinetics exhibited by LSD, as supported by mutagenesis studies. Additionally, LSD displays β-

arrestin recruitment along with G-protein activation at both receptors. LSD’s similarity in both 

binding and pharmacological activity at 5-HT2A and 5-HT2B receptors adds credence to the 

difficulty in separating activity at these receptor subtypes. This is the reason why pharmacological 

efforts are underway for developing pharmacophores for both receptors. Determining the 

minimum structural features necessary for activity at these receptors can assist in the design of 

more selective ligands. 

Initial investigation into the pharmacophoric implications for 5-HT2A functional activity was 

conducted by Hӧltje et al.81 following Glennon et al.’s affinity SAR studies of a series of 

phenethylamine/phenylisopropylamine (discussed earlier) and indolalkylamine derivaties.149 

Hӧltje and co-workers revealed through conformational analysis using crystal structures of 

different isomers of phenylisopropylamines and indolalkylamines, that specific isomers might elicit 

more potency due to possible spatial accommodation limitations in the binding site for the -alkyl 

substituent. The most important finding of this study was that a specific distance between the six-

membered aromatic ring and the basic nitrogen (5.2 Å) is necessary for the agonist activities of 

the compounds examined. Since then, conformational analyses and computational modeling 
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such as CoMFA and 3D-QSAR conducted by several groups,79,82,150–152 revealed structural 

overlap between agonists and antagonists as well as structural requirements for the binding of 

antagonists. These requirements include two aromatic center moieties separated by given 

distances from a basic nitrogen atom as summarized in Figure 7. Since these studies, Shah et 

al.77 have refined this model using a sophisticated DRE approach and produced the 

pharmacophoric model seen in Figure 10. As mentioned in the background regarding the history 

of the development of antipsychotic drugs, EPS symptoms result from excessive D2 receptor 

antagonism and so reducing the D2 component (and increasing the 5-HT2A antagonist component) 

has been the focus in the further development of atypical antipsychotic drugs. In the elaboration 

step of the DRE evaluation of risperidone, substituents can be added to the deconstructed 

pharmacophoric structure 14 to form new compounds. Determination of their activity across 

multiple receptor types, e.g., 5-HT2A-2C, D1-5, 1A, and 1B receptors, can reveal what structural 

features might confer selectivity for 5-HT2A receptors. These receptors were chosen because 

atypical antipsychotic drugs have been hypothesized and/or shown to display activity at a variety 

of serotonin receptors, dopamine receptors, and adrenergic receptors.153 These insights, in turn, 

can assist medicinal chemists in designing more effective therapeutics for schizophrenia (through 

improved, selective 5-HT2A antagonism). 

Pharmacophoric exploration of 5-HT2B receptors has been much more limited than of 5-

HT2A receptors. Multiple researchers have performed SAR studies to produce selective 

antagonism at 5-HT2B receptors154–156 and one group has developed a broad antagonist 

pharmacophore model (Figure 17) consisting of lipophilic/aromatic centers and hydrogen bonding 

donor/acceptor moieties,156 similar to the model produced for 5-HT2A antagonism as seen in 

Figure 7. However, these studies failed to define one of the hallmarks of pharmacophoric analysis 

that is the minimum structural features necessary to elicit an effect. Instead high-throughput 

screening was used to determine hits and minor modifications were made to selected compounds 
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in order to develop selective and effective compounds, i.e., a thorough deconstruction analysis 

was not performed. The development of a selective antagonist for receptors is generally a less 

demanding method than developing selective agonists because of engagement of auxiliary 

binding sites not engaged by agonists. Because of this, antagonists can bind in a manner that is 

very specific to its receptor, thereby conferring high selectivity. This can also result in the loss of 

application of the pharmacophoric insights to antagonists with other scaffolds, as the insights 

might be specific to the evaluated class of compounds containing a unique scaffold. Research 

into the pharmacophoric requirements of 5-HT2B agonism has been essentially nonexistent, 

although it could greatly expand on the methods to reduce 5-HT2B-induced cardiac valvulopathy. 

Some groups, e.g. Roth and colleagues,146 have attempted to determine specific structural 

features of ligands necessary for activation and functional selectivity using specific classes of 

compound such as ergolines. Several insights were made with respect to the activity of these 

compounds, however the same issue, as mentioned above, holds true in these studies: extensive 

deconstruction analyses were not performed to determine the minimal structural features 

necessary for producing activity. 
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Figure 17. Broad 5-HT2B antagonist pharmacophore consisting of hydrophobic regions (yellow), 

ionizable groups (blue), and hydrogen bond donors (green).156 

Because of the high sequence homology between 5-HT2A and 5-HT2B receptors (60% in 

rats),157 the binding affinities of the series of compounds in Table 3 show strong correlation 

between these receptors as seen in Figure 18. It would be interesting to conduct similar correlation 

analyses between functional activity and affinity for this series at 5-HT2A receptors to test the 

capability of affinity to predict functional activity and vice versa. The same should be done with 5-

HT2B and additional correlations should be developed correlating the functional activity of 

compounds at 5-HT2A receptors with their functional activity at 5-HT2B receptors to determine 

which structural features are unique to the activation of 5-HT2B receptors. This would aid in the 

development of a pharmacophore for agonism at 5-HT2B receptors. Identification of a 

pharmacophore will reveal which specific ligand structural features to avoid to prevent 5-HT2B 

activity, aiding in the development of more effective novel therapeutics which do not elicit cardiac 

valvulopathy. 
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Figure 18. Correlation of DOX series compound binding data for compounds 21-40 (data taken 

from Table 3) between human 5-HT2A and 5-HT2B receptors. Slope = 0.937; r = 0.935; n = 16.111  

 

Clearly the study of the pharmacophoric requirements of 5-HT2A and 5-HT2B receptor 

activity, specifically 5-HT2A antagonism and 5-HT2B agonism, has important therapeutic 

implications in schizophrenia and proper cardiac function, respectively. The goal of this project is 

to evaluate specific compounds that target these receptors such as 5-HT2A antagonists, e.g., 

analogues of risperidone, and certain quipazine analogues (1-NP, isoquipazine), and 5-HT2B 

agonists, e.g., DOX series of phenylisopropylamines to formulate or expand on existing 

pharmacophoric models. 
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The specific aims of this project are: 

1. Exploitation of a 5-HT2A receptor antagonist pharmacophore via affinity screening 

of compound 14 and elaboration of (i.e. adding specific substituents to) compound 

14 in an attempt to delineate the structural features necessary for conferring 5-HT2A 

selectivity 

 

 

 

a. Synthesis of 14 and analysis of affinity screening data of 14 across multiple 

receptors 

b. Synthesis of an analogue of 14 to determine lipophilic/bulk tolerance in 5-HT2A 

receptors through propylation of the piperidine nitrogen 

c. Affinity studies of the analogue(s) synthesized in b. and elucidation of binding 

requirements at 5-HT2A receptors 

2. In silico 3D molecular modeling studies of plausible quipazine (45) binding modes 

at 5-HT2A receptors 

a. Docking studies of quipazine (45), isoquipazine (46), 2-NP (47), and 1-NP (48) at 

a crystal structure of the 5-HT2A receptor 

b. Hydropathic INTeraction (HINT) analysis of the identified poses in study 2a 

c. Comparison of the identified binding modes to crystal structures of known 5-HT2A 

ligand-protein complexes 

3. Development of a pharmacophore for 5-HT2B agonism 

a. Molecular modeling of nFen (20) and DOB (22) at 5-HT2A receptors to aid in 

the design of specific analogues 

14 
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b. Synthesis of new analogues of amphetamine (42) and DOB (22) on the basis 

of the above study 

c. Functional studies of the synthesized analogues utilizing a calcium (Ca2+) -

release assay to determine potencies 

d. Determination of agonist/antagonist properties of selected DOX 

phenylisopropylamine analogues in a Ca2+-release assay 

e. Formulation a pharmacophore for 5-HT2B agonism based on acquired 

functional data 

The conceptual relationship of these three studies is shown in Figure 19. 

 

 

 

 

 

 

 

 

Figure 19. Relationship between the three specific aims of this investigation. 
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IV. Approach, Results and Discussion 

 

A. Specific Aim 1: Exploitation of a 5-HT2A receptor antagonist pharmacophore via affinity 

screening of compound 14 and elaboration of (i.e. adding specific substituents to) 

compound 14 in an attempt to delineate the structural features necessary for conferring 5-

HT2A selectivity 

1. Approach 

In the deconstruction/elaboration analysis study of risperidone conducted by our 

group,76,77 it was revealed that a structure containing only the “left half” of risperidone does not 

bind to 5-HT2A receptors whereas structures containing only the “right half” of risperidone, as seen 

with abbreviated analogues 14 (Ki = 71.41 nM and IC50 = 20.12 μM) and 15 (Ki = 12.27 nM and 

IC50 = 7.40 μM), retain both nanomolar affinity and micromolar potency at 5-HT2A receptors, as 

compared to risperidone. This finding stresses the essential nature of the 6-fluoro-3-(4-

piperidinyl)-1,2-benz[d]isoxazole moiety for the binding of risperidone. Other important findings 

were that a tertiary amine is optimal for binding as secondary amine-containing analogues 

displayed significantly lower affinity than their tertiary amine counterparts, and a 6-fluoro 

substituent while beneficial, is not essential for binding at 5-HT2A receptors. These two findings 

are corroborated by similar results analyzing a series of truncated analogues of ketanserin.158 

In the same study, to determine the structural requirements of the “left half” of risperidone, 

UHS-308 (51; Figure 20) was synthesized. UHS-308 is a truncated analogue of risperidone 

containing only half of the “left half” (i.e. the 2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]-

pyrimidin-4-one) portion of risperidone. Specifically, the activity data of this compound at 5-HT2A 

receptors determined if the entire “left half” portion of risperidone is necessary. It was revealed 

that UHS-308 displays higher affinity (Ki = 1.9 nM) and potency (IC50 = 5.44 nM) than risperidone, 

suggesting that although activity is lost with a structure containing solely the “left half” portion, 
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some portion of the “left half” contributes to 5-HT2A receptor affinity and activity. Thus, these 

findings also suggest that the entire “left half” portion of risperidone is not necessary for activity. 

 

 

 

Figure 20.  Structure of UHS-308 (51). 

One avenue that was still yet to be explored regarded the bulk and lipophilic tolerance of 

the piperidinyl substituent. Thus far, it had been revealed that not all of the “left half” portion of 

risperidone is necessary (as in 51) for activity and that substituting the “left half” of risperidone 

with the “left half” of ketanserin produces a compound (18, Ki = 0.37 nM and IC50 = 0.7 μM) with 

the highest affinity and potency out of all the analogues analyzed, including risperidone. However, 

both compounds 18 and 51 contain lipophilic elements, electronegative atoms, and 6-membered 

rings within their piperidinyl substituents and so at this point it was still too early to determine bulk 

and lipophilic tolerance of the “left half” of risperidone. Compound 15 which contains a methyl 

substituent on the piperidinyl nitrogen showed improvement in both affinity and potency (Ki = 

12.27 nM; IC50 = 7.40 ± 1.45 μM) as compared to its des-methyl counterpart 14. This indicates 

that alkyl substituents are well tolerated at the piperidinyl nitrogen and thus poses a question: 

what is the effect of extending the alkyl chain at the piperidinyl nitrogen on affinity for 5-HT2A 

receptors? 

To answer this, in the current study a series of analogues of compound 14 with piperidinyl 

alkyl substituents of various lengths and sizes were designed (Figure 21). Extending the alkyl 

chain to ethyl (i.e., 52), propyl (i.e., 53), and butyl (i.e., 54) substituents would reveal what length 

of a purely lipophilic alkyl chain is tolerated and if at some length affinity is abolished. The benzyl 

51 
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substituent of analogue 55 is the same length as the butyl substituent of 54 but differs in bulk due 

to the benzene ring and so 55 would be a further probe of bulk tolerance. 

 

 

 

 

 

 

 

 

 

 

Figure 21. Proposed analogues of compound 14. 

 

2. Results and Discussion 

a. Synthesis of 14 and analysis of affinity screening data across multiple receptors 

Before initiating the synthesis of compounds 52-55, compound 14 was synthesized in greater 

quantity for screening across various receptor types (5-HT2A-2C receptors, D1-5 dopamine 

receptors, and 1A,1B adrenergic receptors) along with its N-methyl counterpart 15, hybrid 

analogues 17 and 18, truncated analogue 51, risperidone (10), and ketanserin (16). The synthetic 

scheme for compound 14 is outlined in Scheme 1. 
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Scheme 1. Synthesis of compound 14 and 53.a 

 

       

 

 

 

 

aReagents and conditions: (i) Ac2O/HCOOH, 60 °C, 1 h; (ii) SOCl2/DMF, 3 h; (iii) 1,3-
difluorobenzene, AlCl3, reflux, 3 h; (iv) H2NOH·HCl/EtOH, NaOH/H2O, reflux, overnight; (v) 
NaH/DMF, 75 °C, 4 h; (vi) conc. HCl/EtOH, reflux, 3 h; (vii) 1-iodopropane, K2CO3, acetonitrile. 
 

Compound 14 was synthesized using a modified literature procedure.159 Intermediate 57 

was formed by protecting the amine of 56 using a formyl group donated by formic acid (HCOOH) 

to prevent the amine from forming bonds in subsequent reactions. This was a revised procedure 

as compared to that in the literature in that HCOOH and acetic anhydride (Ac2O) were used as 

separate reagents instead of using acetic-formic anhydride as in the literature. Compound 57 was 

then treated with thionyl chloride (SOCl2) to convert the carboxylic acid into an acid chloride. 

Careful attention was paid to not expose the reaction and products to air and moisture as this 

61 

58 

i ii 

iii 

iv v 

vi 

56 
57 

59 60 

14 

vii 
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resulted in the acid chloride hydrolyzing back into the carboxylic acid. This was done by utilizing 

a guard tube filled with calcium chloride (CaCl2), flushing the reaction vessel with N2 gas before 

and during the reaction, and quickly opening and closing any rubber septa or stoppers during 

additions and transfers of materials. Compound 58 was then coupled with 1,3-difluorobenzene 

using a Friedel-Crafts reaction resulting in the ketone 59. Freshly sublimed aluminum chloride 

(AlCl3) was used for this reaction, as using un-sublimed AlCl3 resulted in multiple side products. 

Also, the reaction mixture was given enough time to cool to room temperature and was slowly 

added to water for quenching. Failure to do so resulted in the formation of a greyish, foam-like 

substance and decomposition of products. The carbonyl group of 59 was converted to an oxime 

using hydroxylamine hydrochloride (H2NOH·HCl) resulting in 60. The crude solid formed in this 

reaction was dissolved in water, the recrystallization solvent; however, solid remained regardless 

of how much water was added. After removing the water under reduced pressure and redissolving 

the remaining solid, again solid remained. Melting point analysis indicated that this solid is a salt 

formed in the reaction, most likely NaCl, due to its very high melting point (>400 °C). Eventually, 

enough water was added to dissolve most of the crude solid and the remaining solid was removed 

using a spatula. Recrystallization using this method was successful and resulted in the formation 

of a solid in the form of small white crystals. This reaction did not produce a specific isomeric 

product so both the E and Z isomers of the oxime are formed, producing two stacked spots on 

TLC. However, during the ring closure reaction forming the benzisoxazole ring in 61, only the Z 

isomer reacts, corresponding to one of the spots disappearing and the formation of a new spot 

(representing 61). The sodium hydride that was used for this reaction was dispersed 60% in 

mineral oil and so was washed in toluene prior to mixing with the other reagents. Finally, the 

formyl protecting group attached to the piperidine nitrogen in the first reaction was hydrolyzed and 

removed using hydrochloric acid (HCl), simultaneously forming the HCl salt, resulting in the target 

compound 14. 
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The affinity data from the radioligand binding screen revealed information regarding the 

selectivity of compounds 14, 15, 17, 18, 51, risperidone (10), and ketanserin (16) for 5-HT2A 

receptors. The acquired data are shown in Table 5. The affinity data acquired for the compounds 

from the UNC-Chapel Hill Psychoactive Drug Screening Program at 5-HT2A receptors 

corroborates the 5-HT2A receptor radioligand binding results that we recently published.77 

Synthesized compound 14 displays nanomolar affinity (Ki = 39.1 nM) at 5-HT2A receptors as 

expected. However, one new finding from this screen is that it also displays selectivity for 5-HT2A 

receptors over the other receptor types analyzed. Closer analysis of the data reveals certain 

trends in affinity. For example, increasing the length and bulk of the piperidinyl substituent of 

compound 14, as seen with compounds 15, 51, and 18, results in greater 5-HT2A receptor affinity 

(Ki = 10.6, 3.0, 0.62 nM, respectively) and greater selectivity for 5-HT2A receptors over the 

“undesirable” receptors (5-HT2B, D1-4, and 1A,1B adrenergic receptors). However, this same 

increase in the piperidinyl substituent size is correlated with an increase in D2 receptor affinity (Ki 

= 1081, 374, 154 nM, respectively). Decreasing bulk of the piperidinyl nitrogen results in lower 

affinity for “undesirable” receptors but also results in a loss of selectivity for 5-HT2A receptors. 
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Table 5. Radioligand binding screen of compounds risperidone (10), 14, 15, ketanserin (16), 17, 

18, and 51 across multiple receptor types.a 
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b. Synthesis of an analogue of 14 to determine lipophilic/bulk tolerance in 5-HT2A receptors 

through propylation of the piperidine nitrogen 

Initially, we proposed to prepare and examine four N-substituted analogues of 14, shown 

in Figure 21. As mentioned previously, antipsychotic-induced extrapyramidal stimulation is 

primarily precipitated by D2 receptor antagonism. Therefore, one of the primary objectives of this 

study was to elaborate on the pharmacophoric requirements of 5-HT2A antagonists necessary for 

achieving greater selectivity for 5-HT2A receptors versus D2 receptors, as well as low affinity for 

D2 receptors. The results in Table 5 reveal that extension of the chain on the piperidinyl nitrogen 

results in greater affinity and selectivity for 5-HT2A receptors, but also higher affinity for D2 

receptors. Furthermore, the N-propyl compound 53 has been reported to possess high affinity for 

D2 receptors (Ki = 34 nM),160 suggesting that extending the chain beyond the length of a propyl 

substituent might confer greater D2 affinity – thus calling into question our original plan to probe 

the binding site of 5-HT2A receptors by gradually extending the alkyl chain on the piperidinyl 

nitrogen. Therefore, it was our decision to change directions and forgo the synthesis of the N-

ethyl (i.e., 52), N-butyl (i.e., 54), and N-benzyl (i.e. 55) analogues.  

Although the D2 receptor affinity of 53 has been reported, its 5-HT2A receptor affinity has 

not. The propyl chain of 53 might represent an intermediate substituent length (i.e. a “Goldilocks” 

length) in relation to the other analogues in Figure 21 and so its affinity at 5-HT2A receptors might 

best elaborate the lipophilic and bulk requirements of the piperidinyl substituent. Hence, 53 was 

chosen to be synthesized and analyzed for 5-HT2A receptor affinity in a radioligand binding assay 

using HEK293 cells stably expressing human 5-HT2A receptors and [3H]-ketanserin as the 

radioligand. 

Compound 53 was synthesized using a standard alkylation reaction that proceeds through 

an SN2 reaction mechanism as represented in Scheme 1. The nucleophilic nitrogen atom of the 

piperidine ring of 14 contains a lone pair of electrons which form a bond to the  carbon atom of 
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1-iodopropane, displacing the iodide atom. The purpose of the weak base K2CO3 is to trap the HI 

formed. Salt formation of the free base form of 53 was originally attempted by the dropwise 

addition of concentrated HCl in methanol (MeOH) directly onto the crude free base oil. However, 

this resulted in a black solution and TLC of the solution indicated that the free base had 

decomposed, resulting in numerous spots. This suggested that directly adding HCl/MeOH onto 

the free base is too harsh and exothermic, causing the breaking of bonds and fragment formation. 

Compound 53 was eventually successfully formed by dissolving its free base form in Et2O and 

adding HCl/Et2O in a dropwise manner into the solution, resulting in the formation of a white 

precipitate. This precipitate was initially purified using only MeOH as the recrystallization solvent, 

however, this resulted in a low yield of crystals. Using a two-solvent system of MeOH and Et2O 

resulted in a much higher yield of precipitated crystals because of the nonpolar environment in 

the solution. 

c. Affinity data for 53 and discussion of results 

Compound 53 displayed a pKi value of 6.97 ± 0.23 (or a Ki value of 107.3 nM) in our binding assay 

for 5-HT2A receptors (Figure 22), relative to 15 (Ki = 12.3 nM) (Table 5). 

 

 

 

 

 

  

Figure 22. Saturation binding curve for 53. 
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The affinity value for 53 (107.3 nM) was unexpected considering the trend of greater piperidinyl 

substituent length/bulk accompanied by greater affinity for 5-HT2A receptors, as seen in Table 5. 

Adding a methyl substituent onto the piperidine nitrogen atom of 14 resulted in an increase in 

affinity from 71.4 nM to 12.3 nM for 15. The next compound in Table 5, 51, a compound that 

introduces a bulky aromatic ring in addition to greater piperidinyl substituent length, produced an 

affinity of 1.9 nM. Following this trend, one would expect a compound containing a piperidinyl 

substituent of intermediate length (i.e. 53) to display an affinity higher than that of 15 but less than 

that of 51 (i.e. less than 12.3 but greater than 1.9 nM). Instead, we observed a jump to 107.3 nM 

upon increasing the chain length to a propyl chain as in 53. This might be explained by there 

being a tolerance for length of simple alkyl chains on the piperidinyl nitrogen. Perhaps, only alkyl 

chain substituents shorter than propyl chains are well tolerated and any longer substituent 

requires an associated aromatic ring and/or heteroatoms as in 51. This would be explained by 

phenylalanine or tyrosine residues forming - interactions with aromatic moieties in the molecule 

or hydrogen bonding between polar amino acids such as serine or threonine and heteroatoms. 

An alkyl chain substituent as long as a propyl chain might not make adequate interactions with 

these amino acids or may result in a steric clash with amino acids. To test this theory, the other 

compounds in Figure 21 (52, 54, and 55) can be synthesized and tested for their affinity for 5-

HT2A receptors. Affinity data of these compounds will reveal the limit of bulk tolerance of the region 

of the binding site occupied by alkyl chain substituents. With our affinity data for 53, the most we 

can conclude is that a propyl chain is not well tolerated. However, the ethyl group may follow the 

trend in affinity mentioned above. Assuming that a three-carbon chain is the longest alkyl chain 

tolerated at the piperidine nitrogen atom, the N-butyl compound 54 should possess lower affinity 

than 53. If an aromatic moiety contained within the substituent increases affinity via participation 

in - aromatic interactions, the N-benzyl compound 55 should have higher affinity as compared 

to 53 and 54. 
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B. Specific Aim 2: In silico 3D molecular modeling studies of plausible quipazine (45) 

binding modes at 5-HT2A receptors 

1. Approach 

Elucidation of the binding mode of quipazine (45) at 5-HT2A receptors would be an 

important step toward the determination of its possible hallucinogenic activity. Due to quipazine’s 

unique structural scaffold (as compared to other classical hallucinogens), its binding mode may 

represent a new way of eliciting hallucinogenic activity, via interactions with specific amino acids 

in the binding site of 5-HT2A receptors that were never considered before. Hence, computational 

docking and analysis of quipazine could provide essential information. Aiding this effort, the bound 

crystal structures of hallucinogens 25CN-NBOH (PDB ID: 6WHA) and LSD (PDB ID: 6WGT) have 

been published. This allows for comparison of docked poses of quipazine to those of known 

hallucinogens and 5-HT2A agonists, providing more evidence for, or lack thereof, of quipazine’s 

unique manner of binding. 

In this study quipazine and its isostere 2-NP (47), as well as its positional isomers 

isoquipazine (46) and 1-NP (48) were docked into the crystal structures of 5-HT2A receptors. To 

corroborate our computational results, we obtained affinity and functional activity data for all four 

compounds (Table 6), from Dr. Maeso’s laboratory.125 The differences in the activity of these 

compounds are quite revealing. For example, comparison of the activities of quipazine and 2-NP, 

as well as isoquipazine and 1-NP reveals that the aromatic nitrogen atoms detract from both 

affinity and functional activity. Furthermore, translocating the piperazine substituent from the 2-

position to the 1-position of the aromatic ring results in antagonism as seen with isoquipazine and 

1-NP. Computational analyses including HINT analyses of these compounds might assist in 

explaining these trends in activity. 

 



53 
 

Table 6. Affinity, calcium mobilization, drug discrimination (DD), and heat twitch response (HTR) 

data for quipazine, 2-NP, isoquipazine, and 1-NP. 

 
5-HT2AR 

Affinity Ki 

[nM]125 

Ca2+ Mobilization 
Ki[nM]125 

DD ED50 
[mg/kg]124 

HTR ED50 
[mg/kg]125 

Quipazine 
(45) 

1995 EC50 = 7261 1.7 ED50 = 3.4 

2-NP 
(47) 

724 EC50 = 150 2.9 ED50 = 0.2 

Isoquipazine 
(46) 

3872 IC50 = 24,661 Not tested 
Blocked 

quipazine 

1-NP 
(48) 

100 IC50 = 396 Blocked DOM 
Blocked 

quipazine 

 

To gain insight on how quipazine and its analogs might bind at 5-HT2A receptors, we 

generated two models of the h5-HT2A receptor-based X-ray crystal structures of the active state 

(PDB ID: 6WHA) and the inactive state (PDB ID: 6A94). Docking studies using the models and 

quipazine analogs were conducted to identify potential binding modes of the agonists and 

antagonists. Agonists, quipazine (45) and 2-NP (47), were docked to the active state model and 

antagonists, isoquipazine (46) and 1-NP (48), were docked to the inactive state model. A built-in 

clustering program was used to cluster the docked solutions with an RMSD cutoff of 0.75 Å. Both 

solutions in the most populated cluster and solutions in the highest scoring cluster were analyzed. 

Individual interactions were then analyzed using Hydropathic INTeractions (HINT) analysis.161 

HINT classifies and scores hydrophobic and polar interactions, collectively known as hydropathy, 

for each atom; the higher the score, the more favorable the interaction. The software utilizes 

experimental data from solvent partitioning experiments between water and 1-octanol (LogPo/w) 

to determine HINT scores of interactions by assigning positive scores for favorable interactions 
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(hydrogen bonding, acid-base, and hydrophobic) and negative scores for unfavorable interactions 

(acid-acid, base-base, hydrophobic/polar).161 

 

2. Results and Discussion 

Docked solutions revealed two possible binding pockets occupied by the aromatic 

moieties of the compounds. Regardless of which binding pocket is utilized, all ligand-protein 

complexes formed a salt bridge between the N4’ atom and conserved Asp1553.32 within hydrogen 

bond (HB) distance (3.5 Å). The observed ionic, hydrophobic and polar interactions between 

ligands and protein are supported by HINT analysis (Table 7). 

Table 7. GOLD and HINT interaction scores (total, hydrogen bonding, hydrophobic, acid/base) of 

quipazine (45), 2-NP (47), isoquipazine (46) and 1-NP (48) at 5-HT2A receptors. 

 

Score Quipazine 2-NP Isoquipazine 1-NP 

GOLD 41 41 44 45 
Total HINT 899 1496 1121 1454 

Total H-Bond 818 1082 916 1009 
Total Hydrophobic 239 501 479 649 
Total Acid/Base 409 362 476 439 

 

Examination of the various clusters as well as the HINT analysis of the compounds 

revealed their likely binding poses. Gold docking of quipazine and 2-NP at the active state 

receptor model revealed two primary clusters – one containing the highest scoring pose (in the 

binding pocket designated as the large principal pocket) and another containing the greatest 

population of solutions (in the binding pocket designated as the small sub-pocket). An analysis of 

the top scoring solution from each cluster is shown in Figure 23. Our selection of their probable 

pose was dependent on their individual interactions as elucidated by HINT. For example, HINT 

Inactive Active 
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revealed that the selected pose for 2-NP has a much higher total interaction score (1496) than 

quipazine (899). Furthermore, 2-NP has a significant hydrogen bond between the backbone 

oxygen atom of Ile1523.29 and N4, an interaction that is lacking in the quipazine docked solution. 

Quipazine has a moderate hydrogen bond score between Ser1593.36 and N1. Due to quipazine’s 

possible proclivity for forming this reaction, it might forgo the numerous hydrophobic interactions 

as seen with 2-NP (forcing it to occupy a different binding site), supported by their total 

hydrophobic scores: 239 for quipazine and 501 for 2-NP. All these results are in accordance with 

the higher affinity of 2-NP as compared to that of quipazine. 

 

 

 

 

 

 

 

 

 

Figure 23. Top GOLD scoring solutions of quipazine (45) (capped sticks rendering; green carbon 

atoms), 2-NP (47) (capped sticks rendering; magenta carbon atoms), isoquipazine (46) (cyan 

carbon atoms), and 1-NP (48) (capped sticks rendering; yellow carbon atoms) in the binding site 

of their respective [i.e., active (PDB ID: 6WHA) or inactive (PDB ID: 6A94) state] 5-HT2A receptor. 
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Gold docking of 1-NP and isoquipazine revealed two primary clusters – one containing the 

highest scoring pose (in the binding pocket designated as the large principal pocket) and another 

containing the greatest population of solutions (in the binding pocket designated as the small sub-

pocket) (Figure 24). HINT analysis resulted in a higher total interaction score for the chosen pose 

of 1-NP (1454) than for the chosen pose of isoquipazine (1121). Inspection of individual 

interactions revealed an acid/base interaction between N2 in isoquipazine and Asn3436.55. This 

possible interaction might be the reason for isoqupazine occupying a different binding site 

compared to 1-NP. As a result, isoquipazine does not have as many hydrophobic interactions as 

1-NP, supported by their total hydrophobic scores: 479 for isoquipazine and 649 for 1-NP. These 

results are in accordance with the higher affinity of 1-NP as compared to that of isoquipazine. 

Analysis of the chosen complexes (Figure 24) revealed that the two compounds with the 

highest affinity (1-NP and 2-NP) faced the same binding pocket and participated in similar 

hydrophobic interactions – numerous interactions with Leu228ECL2 and Leu3627.35. 1-NP 

additionally displayed hydrophobic interactions with Val2355.39 and Val3667.39. Quipazine and 

isoquipazine faced a different binding pocket, although the two molecules did not overlap. As a 

result, quipazine primarily displayed hydrophobic interactions with Gly3697.42 and Val3667.39 and 

isoquipazine displayed hydrophobic interactions with Val1563.33 and Leu229ECL2. 
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Figure 24. Binding modes of quipazine (45) (capped sticks rendering; cyan carbon atoms), 2-NP 

(47) (capped sticks rendering; magenta carbon atoms), isoquipazine (46) (white carbon atoms), 

and 1-NP (48) (capped sticks rendering; blue carbon atoms) in the binding site of the 5-HT2A 

receptor using both the active (6WHA) and inactive (6A94) states of the receptor. 

 

It appears that hydrophobic interactions predominate for the examined analogues to elicit 

binding at 5-HT2A. This assertion is based on the simplicity (lack of substituents/hydrophobic 

nature) of the compounds along with the numerous hydrophobic interactions revealed by HINT 

analysis. Because 1-NP and 2-NP face a similar binding pocket, it can be suggested that 

compounds interacting with residues in this pocket possess the highest affinity. Furthermore 

F3396.51, a residue that has been implicated in the binding of both agonists and antagonists,162,163 
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is shown to be in an edge-to-face position (4.0 - 4.6 Å) relative to the aromatic moieties of 1-NP 

and 2-NP (not shown by HINT analysis). Quipazine and isoquipazine, however, face away from 

this pocket and this might be the reason for their low affinity. These two compounds also have 

aromatic nitrogen atoms in their structures (which 1-NP and 2-NP lack); this suggests that 

heteroatoms within the aromatic ring structure of these analogues decrease their affinity and the 

greater the hydrophobic nature of the aromatic ring, the greater the affinity. 

Our modeling results also revealed similarities in the binding of agonists quipazine and 2-

NP and agonists/hallucinogens LSD and 25CN-NBOH. Similarities were also observed in the 

binding of antagonists isoquipazine and 1-NP and antagonist risperidone (Figure 25). The bound 

crystal structures of LSD (PDB ID: 6WGT), 25CN-NBOH (PDB ID: 6WHA), and risperidone (PDB 

ID: 6A93) have been published.  The comparison of the binding modes of these ligands with the 

binding modes of quipazine and its analogues revealed that certain features of LSD, 25CN-

NBOH, and risperidone might be essential for their binding and activity at 5-HT2A receptors.  

Quipazine utilized amino acids common to the binding of 25CN-NBOH. Specifically the oxygen 

atom of the 2-hydroxy benzyl moiety of 25CN-NBOH and the nitrogen atom of the quinoline ring 

of quipazine participated in hydrogen bonding with Ser1593.36. The two moieties also shared 

significant overlap in the binding pocket. Comparison of the binding of LSD and 2-NP revealed 

that the diethyl amide moiety of LSD and the naphthalene moiety of 2-NP occupy a similar region 

of the binding pocket indicating that they might participate in similar hydrophobic interactions. The 

antagonists isoquipazine and 1-NP share space with key features of the antagonist risperidone. 

For example, the naphthalene moiety of 1-NP shares a binding pocket occupied by the 

pyrimidinone moiety of risperidone. Isoquipazine on the other hand shares a distinct binding 

pocket occupied by the benzisoxazole moiety of risperidone. This observation is in accordance to 

findings previously published by our group76,77 indicating that the entire structure of risperidone is 

not required for antagonism of 5-HT2A receptors. 
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Figure 25. Comparison of binding poses of (A) quipazine (45) (capped sticks rendering; cyan 

carbon atoms) and 2-NP (47) (capped sticks rendering magenta carbon atoms) with 25CN-NBOH 

(capped sticks rendering; green carbon atoms), (B) quipazine and 2-NP with LSD (capped sticks 

rendering; yellow carbon atoms), and (C) isoquipazine (46) (capped sticks rendering; white 

carbon atoms), and 1-NP (48) (capped sticks rendering; blue carbon atoms) with risperidone 

(capped sticks rendering; dark pink carbon atoms) in the binding site of the 5-HT2AR using both 

the active (6WHA) and inactive (6A94) states of the receptor. Hydrogen bonds are indicated by 

dashed yellow lines. 
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C. Specific Aim 3: Development of a pharmacophore for 5-HT2B agonism 

1. Approach 

As mentioned previously, there is value in elucidating the structure-activity relationship of 

phenylisopropylamines at 5-HT2B receptors in relation to prevention of cardiac valvulopathy as 

well as to breaking ground in pharmacophoric evaluation of 5-HT2B receptors. To this aim, 

molecular docking and Hydropathic INTeraction (HINT) score analysis of two representative 

phenylisopropylamines DOB (22) and nFen (20) were performed. DOB possesses high affinity for 

5-HT2B receptors (Ki = 26.9 nM) and even higher affinity for 5-HT2A receptors (Ki = 0.6 nM).111 

DOB exhibits agonist action at 5-HT2B receptors (EC50 = 2.88 nM) along with its iodo-substituted 

counterpart, DOI (EC50 = 1.41 nM).121 Both compounds, DOB and nFen, share similar structural 

scaffolds – both contain the structure of amphetamine (42) in their structures. This is a peculiar 

insight because both DOB and nFen have been shown to display affinity for and activity at 5-HT2B 

receptors; however, there is no evidence for amphetamine displaying any such activity. 

Furthermore, there has been no evidence for amphetamine resulting in cardiac valvulopathy in 

patients despite being used clinically for decades, indicating amphetamine’s inability to activate 

5-HT2B receptors. This leads to the conclusion that the 3-position CF3 substituent of nFen must 

be responsible for nFen’s affinity for 5-HT2B receptors. Thus, the interactions of the 3-CF3 

substituent with specific amino acids in the binding pocket of 5-HT2B receptors represent crucial 

points of interest in regard to eliciting affinity and activity at these receptors. Similar insights can 

be claimed when considering DOB: DOB’s affinity for 5-HT2B receptors must be dependent on the 

interactions of one or more substituents of its phenyl ring (2-OCH3, 4-Br, 5-OCH3) with key amino 

acids in the binding pocket. Because crystal structures of 5-HT2B receptors had been published,146 

it was decided that computational analysis of these compounds would be the best method to 

begin determining the identity of these important amino acids. 
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2. Results and Discussion 

a. Molecular docking of R(-)-DOB and S(+)-nFen using the crystal structure of the 5-HT2B 

receptor 

The 5-HT2B crystal structure (PDB ID: 6DRY) was used due to its relatively high resolution (2.9 Å) 

and it being crystallized with the known 5-HT2B agonist methylergonovine, thus representing an 

active state of the 5-HT2B receptor appropriate for the docking of the representative agonists DOB 

(22) and nFen (20). Specifically R(-)-DOB, S(+)-DOB, and S(+)-nFen were analyzed using this 

crystal structure. Both isomers of DOB were analyzed because there is a lack of data 

distinguishing the activity of individual isomers of DOB at 5-HT2B serotonin receptors. However, it 

should be noted that R(-)-DOI (Ki = 9.9 nM) binds with higher affinity than S(+)-DOI (Ki = 35 nM) 

at 5-HT2A receptors;119 hence, there is evidence for differences in the activity of individual isomers 

of phenylisopropylamines at serotonin receptors. S(+)-nFen was chosen due to its higher 5-HT2B 

receptor affinity (Ki = 11.2 nM) and greater functional activity in phosphoinositide hydrolysis (Kact 

= 18.4 nmol/L) than its enantiomer R(-)-nFen (Ki = 47.8 nM and Kact = 357 nmol/L) and was thus 

deemed a better indicator for agonism at 5-HT2B receptors than R(-)-nFen. 

All three structures, R(-)-DOB, S(+)-DOB, and S(+)-nFen, were drawn using SYBYL-X 

2.1.1 and were energy minimized utilizing the Tripos Force Field with Gasteiger-Hückel charges, 

a non-bonded interaction cutoff of 8 Å, dielectric constant (ε) of 4.00 D/Å, and a termination 

gradient of 0.05 kcal/(mol*Å). The structures were then docked at the 5-HT2B receptor crystal 

structure using GOLD v5.6 which generated 100 protein-ligand complexes for each compound 

and GOLD scores, based on an in-program scoring system, for each complex. Each complex was 

then energy minimized using SYBYL-X 2.1.1 and evaluated by HINT score analysis within SYBYL 

8.1  
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All of the complexes with S(+)-DOB docked at the 5-HT2B receptor resulted in much lower 

GOLD and HINT scores than the complexes with R(-)-DOB. As a result, S(+)-DOB was eliminated 

from further consideration and focus was on R(-)-DOB. The most significant observation from the 

docking results was that the phenyl rings of R(-)-DOB and nFen were shifted relative to each other 

but they participated in similar interactions in the binding site (Figure 26). Both formed salt bridge 

interactions with the conserved Asp1353.32 residue. R(-)-DOB participated in hydrogen bonding 

with Asn3446.55 via the 5-OCH3 group oxygen atom and the 4-Br substituent; additionally, the 4-

Br substituent participated in hydrogen bonding with Ser2225.43. One of the fluoro (F) atoms of 

nFen participated in bifurcated hydrogen bonds with Asn3446.55 and Ser2225.43; another F atom 

was involved in a single hydrogen bond with Asn3446.55. These results indicate that both R(-)-

DOB and nFen participate in the same specific hydrogen bonding interactions (with Asp1353.32, 

Asn3446.55, and Ser2225.43). HINT analysis agreed with the observed interactions of R(-)-DOB and 

nFen (Table 8 and Table 9). The R(-)-DOB 4-Br substituent interactions with Asn3446.55 and 

Ser2225.43, and the hydrogen bond of the oxygen atom of the 5-OCH3 substituent with Asn3446.55, 

produced favorable HINT scores. One of the F atoms of the CF3 substituent of nFen hydrogen 

bonded with Asn3446.55 and Ser2225.43 with positive HINT scores whereas another F atom formed 

favorable hydrogen bonds with Asn3446.55 with a positive HINT score. The nitrogen atoms of R(-

)-DOB and nFen formed bidentate hydrogen bonding interactions with the Asp1353.32 residue with 

very high HINT scores, highlighting the importance of this conserved interaction.  
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Figure 26. Docked poses of R(-)-DOB (capped sticks rendering; cyan carbon atoms) and nFen 

(capped sticks rendering; magenta carbon atoms) in the binding site of the 5-HT2B receptor. 

Table 8. HINT scores of R(-)-DOB interactions with the 5-HT2B receptor. 

 

 

 

      *500 units = 1 kcal/mol 

 Table 9. HINT scores of S(+)-nFen interactions with the 5-HT2B receptor. 

 

 

 

 

R(-)-DOB 
Interactions 

Hydrogen Bond HINT 
Score* 

4-Br to Asn344 108 

4-Br to Ser222 34 

5-O to Asn344 39 

N to Asp135 1637, 1580 

nFen 
Interactions 

Hydrogen Bond HINT 
Score 

F to Asn344 36 

F to Ser222 14 

F’ to Asn344 34 

N to Asp135 1716, 1698 

TM3 

TM6 

TM5 

Asp135 

Ser222 
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Because of the structural similarity between R(-)-DOB and nFen, it was expected that the 

phenyl moieties would be strictly superimposed in the binding site. Instead, my modeling studies 

showed that the phenyl moieties were skewed relative to one another, with the 4-Br substituent 

of R(-)-DOB and the 3-CF3 group of nFen being located in the same position (Figure 26). The 4-

Br atom of R(-)-DOB and 3-CF3 of nFen both utilized Asn344 and Ser222 for hydrogen bonding 

interactions, supporting the hypothesis that these interactions are crucial for the binding of 

phenylisopropylamines. However, because only two F atoms of nFen participated in hydrogen 

bonds with the receptor, the third F might not be required for activity. Furthermore, although 

required for 5-HT2A binding,119 the oxygen atom of the 2-OCH3 group of R(-)-DOB might not be 

necessary for binding at the 5-HT2B receptor as shown by the lack of strong interactions (i.e. 

hydrogen bonding), supported by the HINT analysis. These results allowed us to propose the first 

working pharmacophore for 5-HT2B ligands (Figure 27) which consists of an amine (N) separated 

by 5.2 Å from an aryl ring containing electrostatic (or possibly hydrophobic) substituents at either 

the 3- and/or 4-positions.  Based on this putative pharmacophore, new analogs were designed to 

further probe the binding site of 5-HT2B receptors to determine their structural requirements for 

activity. 

 

 

 

 

 

 

Figure 27. First working pharmacophore for 5-HT2B receptors. 
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There are two primary questions that need to be addressed through the functional activity 

analysis of the designed compounds. The first question is this: is the binding of nFen at 5-HT2B 

receptors dependent on the lipophilic or electronic character of the phenyl substituent? As 

surmised above, the 3-CF3 substituent of nFen is required for binding at 5-HT2B receptors. 

However, the CF3 substituent forms both lipophilic and electronic interactions with the binding site 

( = 0.88, σ = 0.43).164 Therefore, compounds would need to be designed whose functional data 

will help elucidate this binding requirement. One of these compounds that was proposed was 

compound 65 (Scheme 2). Replacing the 3-CF3 with 3-CH3 as in 65 will allow us to determine if 

lipophilic character of the phenyl substituent is most essential for the binding of nFen (20) because 

the CH3 substituent ( = 0.56, σ = -0.07) has similar lipophilic character but opposite electronic 

character as compared with CF3. If 65 is equipotent to nFen then it can be concluded that lipophilic 

character predominates for the binding of nFen at 5-HT2B receptors; if 65 is less potent than nFen, 

then electronic character predominates. Another proposed compound was compound 68, a 

positional isomer of 65, which contains a CH3 substituent in the 4-position as opposed to the 3-

position as in 65. If lipophilic character of the phenyl substituent is determined to be most essential 

for the binding of nFen, then 68 should display similar activity as 65. This might be possible 

through a relative shift of the phenyl rings of 68 as compared with 65 in the binding site (as 

proposed in Figure 26) to allow their phenyl substituents to participate in the appropriate 

interactions with residues to elicit activity at 5-HT2B receptors. 

The second question that must be addressed is: is the 2-position OCH3 substituent of DOB 

necessary for 5-HT2B receptor activity? Preliminary modeling studies indicated that there are no 

substantial interactions such as hydrogen bonding between the 2-OCH3 of DOB and the binding 

site residues. To assess the necessity of this substituent the des-2-methoxy-DOB compound 71 

will be prepared. If 71 produces similar activity as DOB in functional studies, we can conclude 

that the 2-OCH3 is not required for activity. However, if activity decreases with removal of the 2-
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OCH3 substituent, then it is required and participates in electronic and/or hydrophobic interactions 

with the binding site of 5-HT2B receptors. 

Functional activity analysis of all three designed compounds as well as a series of DOX 

phenylisopropylamine compounds [DOF (21), DOB (22), DOI (23), MEM (28), DON (30), DOPR 

(32), DOHx (33), DOTB (34), and DOBz (35)] will be conducted to obtain EC50 values. This 

information will allow us to elaborate on the SAR of phenylisopropylamines and furthermore on 

the pharmacophoric requirements to activate 5-HT2B receptors. 

 

b. Synthesis of compound 65, 68, 71 

The syntheses of 65 and 68 are illustrated in Scheme 2. The nitrostyrene intermediate 64 

was synthesized using a Henry reaction during which a base-catalyzed addition of nitroethane 

occurs followed by expulsion of water and formation of a double bond. The resulting product was 

successfully purified using a CombiFlash purification method and bright yellow needle-like 

crystals precipitated upon addition of EtOH and cooling. The nitrostyrene intermediate 67 was 

also synthesized using the Henry reaction; however, the purified product remained an oil rather 

than being converted into a solid like 64. 
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Scheme 2. Synthesis of compounds 65, 68, and 71.a 

 

 

 

 

 

 

 

 

 

 

 

 

 

aReagents and conditions: (i) NH4OAc/Nitroethane, reflux, 48 h; (ii) LiAlH4/THF, reflux, 2 h; (iii) 

NH4OAc/Nitroethane, reflux, overnight; (iv) LiAlH4/THF, reflux, 2 h; (v) NH4OAc/Nitroethane, 

reflux, overnight; (vi) NaBH4/THF, boron trifluoride diethyl etherate, 5.5 h. 

 

The final amines 65 and 68 were synthesized from their respective nitrostyrene 

intermediates via a LiAlH4 reduction reaction. The reduction was initially attempted with 64 before 

proceeding to and applying the same method to the synthesis of 68. I initially attempted to purify 

the crude product of 65 using a Kugelrohr apparatus, as recommended in the literature. However, 
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TLC analysis of the collected fractions revealed that numerous products distilled together, thus 

not allowing purification. Next, an attempt was made to purify the crude oil product of 65 by 

precipitating the HCl salt of the final amine via addition of ethereal HCl into a solution of the crude 

oil dissolved in Et2O. However, this resulted in the solution slowly turning black; a TLC analysis 

of this black solution revealed numerous spots, suggesting decomposition of the product. Clearly, 

precipitating a pure salt from a crude oil is not possible using this method and a purer oil is possibly 

needed to prevent decomposition. Another issue with this reaction was that I was likely not using 

enough LiAlH4 in the reductions. Equivalences of 1:1.77 and 1:4 of the nitrostyrene:LiAlH4 proved 

unsuccessful in completely consuming the nitrostyrene during the reaction. Finally an equivalence 

of 1:7 was used that successfully consumed the starting material, indicating the need of a large 

excess of reducing agent in the reduction of these nitrostyrenes. Using this equivalence and a 

purification method using the CombiFlash proved successful in producing the final amine as a 

pure free base in oil form which was successfully converted into an HCl salt via addition of ethereal 

HCl to a solution of the pure free base dissolved in Et2O. 

The synthesis of 71 is also displayed in Scheme 2. The Henry reaction was also used in 

the synthesis of the nitrostyrene intermediate. Based on prior knowledge of the possibility of the 

removal of bromo substituents from phenyl rings through the use of strong reducing agents such 

as LiAlH4. The reduction was attempted using mild reducing agent NaBH4/BF3. After performing 

an acid base extraction to purify the resulting crude product, ethereal HCl was added in a dropwise 

manner to a solution of the purified oil in Et2O to successfully form the HCl salt of 71. 
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c. Functional activity studies of 65, 68, 71, and a series of DOX compounds 

 Functional analysis of the selected compounds mentioned above was initially attempted 

using the Flexstation 3 Multimode Microplate Reader, which is an automated instrument designed 

to acquire functional data of compounds in a high-throughput manner. This method utilized 

HEK293 cells transiently transfected with a 5-HT2B plasmid using the transfection agent 

Lipofectamine Reagent and the fluorescent dye Fura-2 to measure the calcium signal. However, 

this method ultimately proved unsuccessful. Despite spending months developing proper 

technique in areas such as cell culturing, pipetting/aspirating, making solutions, and general 

laboratory procedure, as well as optimizing numerous experimental variables such as cell density, 

amount of Lipofectamine Reagent, and amount of 5-HT2B plasmid used, the cells would not 

produce appreciable signals and required massive concentrations of the test compound 5-HT to 

elicit any effect. A representative concentration response curve is displayed in Figure 28 showing 

the inaccuracy of the data acquired using the Flexstation 3. The pEC50 of 5-HT from this curve is 

3.36 while the pEC50 of 5-HT from the literature is 8.68.121 

 

 

 

 

 

 

Figure 28. Representative concentration-response curve of 5-HT at 5-HT2B receptors using the 

Flexstation 3 Multimode Microplate Reader with transiently transfected HEK293 cells. pEC50 = 

3.36. 
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 Because collection of proper signals from the Flexstation 3 was unsuccessful, the 

fluorescent microscope was employed in hopes of achieving greater sensitivity. The fluorescent 

microscope (Figure 29) that was used is connected to a constant perfusion system by which 

imaging solution and solutions of the drug of interest are constantly perfused through the wells 

while simultaneously being evacuated through a vacuum hose. This enables constant exposure 

of the cells to the drug during the drug phases of a trial and quick and thorough washing of the 

cells with imaging solution during the washing phases. This is in contrast to the Flexstation 3 

which only has one addition of the drug solution to the wells containing the cells in imaging 

solution, thereby requiring the drug solution to diffuse through the imaging solution down to the 

cells at which point the cells very slowly react to the drug which might prevent the full potential of 

the signal caused by the drug from being reached. The fluorescent microscope methodology also 

includes individual selection of cells for the recording of data. The microscopy analysis system 

Live Acquisition is used during the trials to produce a video of the cells within the selected region 

of the wells. During activation of the receptors upon addition of an agonist, the cells display 

fluorescence, corresponding to the cells becoming brighter (whiter) in the video. The image 

processing software Fiji is then used to select individual cells that are representatives of this 

change in brightness. This difference is then averaged across all the selected cells from different 

wells and the average value represents the degree of activation of the cells. This is a much more 

sensitive method of recording signal as compared to the Flexstation 3. In the Flexstation 3 the 

overall fluorescence from the entire well is recorded by the instrument upon addition of a drug. 

This fluorescence is then subtracted by the baseline fluorescence, which is again a recording of 

the fluorescence from the entire well (but before any additions). This baseline fluorescence is 

quite high already due to the steady level of fluorescence constantly produced by the cells 

themselves. This would cause the signal from the addition of the drug to be extremely diminished. 

When processing data from the fluorescent microscope, the baseline fluorescence is collected for 

each individual cell, thus ensuring that any fluorescent signal from a drug is fully recognized for 
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that cell. In addition all fluorescent signals collected are subtracted by the background of the well 

– a black area in the video containing no cells – further amplifying the signals from the cells. 

 

 

 

 

 

 

 

 

 

 

Figure 29.  Photo of the fluorescent microscope used to acquire functional data of compounds at 

5-HT2B receptors. 

 

 When initially using the fluorescent microscope, the transfection agent Fugene and the 

calcium indicator GCaMP were employed. GCaMP is a fluorescent protein that is a chimera of 

green fluorescent protein, calmodulin (calcium binding protein), and the calmodulin interacting 

peptide M13.165 During the transfection phase of the experimental preparation, both the 5-HT2B 

plasmid and the GCaMP plasmid are transiently transfected into the HEK293 T cells using 

Fugene. When the cells divide and multiply, they will express the plasmids for a temporary amount 
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of time (i.e. transient transfection). When cells intracellularly release calcium upon agonist binding 

to 5-HT2B receptors, calcium binds to GCaMP thus producing measurable fluorescence. 

 Using the fluorescent microscope, greater sensitivity in the signal from the cells was 

achieved. I was able to produce signal at much lower concentrations of 5-HT than used previously 

with the Flexstation 3 (Figure 30). Although the data acquired from the fluorescent microscope 

was a much better representation of the actual functional data of the compounds tested, there 

were still some issues which needed to be addressed. Out of all cells cultured in the 96-well plates 

used for experiment, only a small percentage (~30%) of cells appeared to be transfected – i.e. 

few cells fluoresced at 490 nm of light when viewed under the microscope. The pEC50 value of 5-

HT (pEC50 = 7.44) was still not as high as that reported in the literature (pEC50 = 8.68)121 where 

Porter et al.121 also employed a calcium-flux assay, albeit with CHO-K1 cells stably transfected 

with 5-HT2B receptors. Another significant issue was regarding the variability in the signal being 

produced, represented both by the large standard error values/standard error of mean bars in the 

concentration-response curves as well as in the videos of the cells producing signal on the day of 

the experiment. The videos revealed that, although there were cells which were transfected (i.e., 

accepted and expressed the GCamP plasmid), not all of the transfected cells produced signal. 

Furthermore, amongst the cells producing signal, there were inconsistencies in the degree of 

signal being produced; some cells released more calcium than others and in turn fluoresced much 

more brightly than other cells. This would indeed result in large variability in the concentration-

response curves produced by these cells. 
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Figure 30. Normalized (to 1 μM 5-HT) concentration-response curve of 5-HT at 5-HT2B receptors 

using the fluorescent microscope and transiently transfected HEK293 cells. pEC50 = 7.44 ± 0.22 

(EC50 = ~36.73 nM). 

 

Due to the inadequacies in transient transfection of the cells using the 5-HT2B plasmid 

available, we surmised that the cells either did not harbor the plasmid within their DNA for very 

long or did not accept the 5-HT2B plasmid to any great degree to begin with. The 5-HT2B plasmid 

that was used contained a 3x-hemagglutinin (HA) tag sequence at the N-terminus of the main 

sequence. These HA-tags are generally added to proteins to allow for simple means of purification 

such as metal-affinity chromatography using a Ni2+ column. However, we hypothesized that this 

HA-tag might be interfering with some step in the transfection process, either in the transfection 

itself or in the post-expression translocation of the protein to the membrane of the cell. Therefore, 

we deemed it prudent to acquire a new plasmid of 5-HT2B without the HA-tag sequence. When 

using this new plasmid, videos of the cells fluorescing showed that the transfection was slightly 

better and the cells fluoresced with slightly more consistency than with using the plasmid 

containing the HA-tag. In hopes of achieving greater improvement in the signal being produced 
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by the cells and in the degree/consistency of transfection, I decided to use this new plasmid 

(without the HA-tag) to produce a stable cell line containing 5-HT2B receptors with the HEK-293 T 

cells used for experiment. 

 After successful production of the stable cell line, data acquired from these cells was 

greatly improved with regards to transfection and signal generation. A majority of the cells cultured 

in the 96-well plates appeared to be transfected (~90%), when viewed under the microscope with 

the selected wavelengths (340 and 380 nm) and the new fluorescent indicator used, Fura-2. Fura-

2 is a calcium indicator which emits light at 510 nm when subjected to light with wavelengths of 

around 340 nm and 380 nm. A ratio of the fluorescence signal measured at both wavelengths is 

taken to generate a more accurate reading of Ca2+ release. Amongst the transfected cells ~80-

90% of cells appeared to produce consistent signals (i.e. produced approximately equal levels of 

fluorescence) when tested with 1 μM 5-HT. A concentration-response curve representing 5-HT 

activity is displayed in Figure 31. The pEC50 value from this curve (pEC50 = 8.8) is much closer to 

the literature value (pEC50 = 8.68)121 and variability in the concentration-response curve is much 

more mitigated as compared to when transient transfection was employed. 
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Figure 31. Normalized (to 1 μM 5-HT) concentration-response curve of 5-HT at 5-HT2B receptors 

using the fluorescent microscope with stably transfected HEK293 cells. pEC50 = 8.8 ± 0.14 (EC50 

= 1.4 nM). 

  

Having finally developed a method by which to record accurate functional data for 

compounds at 5-HT2B receptors, the compounds mentioned above were tested. To address the 

first question of this aim (Is the binding of nFen at 5-HT2B receptors dependent on the electronic 

or lipophilic character of its 3-CF3 substituent?) concentration-response curves were acquired for 

nFen (20), 65, and 68 and are displayed below in Figure 32. The 3-CH3 analogue 65 is over five-

fold less potent (EC50 = 331 nM) than racemic nFen (EC50 = 65 nM), supporting the importance 

of the electronic character of the 3-CF3 substituent of nFen. However, activity of nFen was not 

completely abolished by replacement of 3-CF3 with 3-CH3 and this change still results in a 

compound with nanomolar potency (i.e., 65). Considering this small difference in potency, one 

possibility is that the 3-position substituent contributes little to nothing to the potency of the 3-

unsubstituted compound (i.e., amphetamine, 42). Hence, racemic amphetamine was evaluated 

for functional activity and was found to be inactive when examined at 10 μM concentration. From 
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this, it is evident that the 3-position substituents of 20 and 65 play an important role in agonist 

potency/action. There might be two possibilities: either the 3-CF3 substituent of nFen participates 

in both electronic and lipophilic interactions with binding site residues, or only participates in 

electronic interactions although lipophilic interactions with residues in a similar binding site region 

also elicit activity at 5-HT2B receptors (i.e. nFen and 65 participate in unique interactions via their 

3-position substituents e.g., rotameric binding). Translocation of the 3-CH3 substituent of 65 to 

the 4-position as in 68 resulted in similar potency (EC50 = 246 nM) as did 65. This supports the 

possibility of activating 5-HT2B receptors via lipophilic interactions with the phenyl substituents of 

these amphetamine analogues. Due to the similarity of the potencies of 65 and 68, it was 

predicted that the methyl substituents of both compounds participate in similar interactions with 

common residues in the binding site. The preliminary computational model with nFen and DOB 

supports this prediction: just as the phenyl rings of nFen and DOB were shifted in the binding 

pocket to accommodate similar interactions, so too might 65 and 68 be shifted relative to one 

another to allow their methyl substituents to participate in common interactions with lipophilic 

residues. 

 

 

 

 

 

 

 

 



77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Normalized (to 1 μM 5-HT) concentration-response curves for functional activity of 

nFen (20), 65, and 68 at 5-HT2B receptors. pEC50 for nFen = 7.2 ± 0.20 (EC50 = 65 nM); pEC50 for 

65 = 6.5 ± 0.11 (EC50 = 331 nM); pEC50 for 68 = 6.6 ± 0.12 (EC50 = 246 nM). 

 

Computational docking and HINT analysis using the crystal structure of the 5-HT2B 

receptor (PDB ID: 6DRY) were conducted on 65 and 68 to determine their possible binding 

modes. Protein-ligand complexes were chosen based on those with the highest overall HINT 

score. Docked poses (Figure 33) revealed that both compounds bind very similarly to nFen and 

all three structures are nearly superimposed in the binding pocket. As expected, all three 

compounds participate in hydrogen bonding with Asp1353.32 via their amine nitrogen atoms. Just 
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as predicted above, 68 assumed a shifted orientation with regard to its phenyl ring and the phenyl 

rings of nFen and 65, presumably to orient its phenyl substituent to be in the proper location in 

space for optimal interactions. Unlike in the case of norfenfluramine, HINT analysis did not reveal 

any hydrogen bonding between the phenyl substituents of 65 and 68 and binding site residues – 

which is expected as methyl groups are unable to form hydrogen bonds. Instead HINT analysis 

revealed several hydrophobic interactions with these substituents. For example, the 3-CH3 

substituent of 65 forms hydrophobic interactions with Val1363.33, Leu209EL2, and Phe2175.38, 

according to HINT. Similarly 4-methyl substituent of 68 interacts with Val1363.33 and Phe2175.38; 

additionally, HINT revealed hydrophobic interactions between the 4-methyl substituent and 

Ile1864.56, the β-carbon atom of Ser2225.43, and Ala2255.46. The modeling results add credence to 

the hypothesis that although electronic interactions with the phenyl substituents of these 

amphetamine compounds can elicit high activity, hydrophobic interactions with these substituents 

can also elicit activity, albeit to a slightly lower degree. It should be noted that HINT analysis failed 

to reveal any hydrophobic interactions involving the fluoro atoms of nFen; although, due to the 

close proximity between the fluoro atoms and hydrophobic residues (e.g. the hydrophobic 

residues that interact with the 3-CH3 substituent of 65), hydrophobic interactions may still 

contribute to nFen’s agonist activity. 
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Figure 33. Docking results of 65 and 68 in the binding site of the 5-HT2B receptor (cartoon 

helices/capped sticks rendering; green carbon atoms). A) Compound 65 (capped sticks rendering; 

cyan carbon atoms); B) Compound 68 (capped sticks rendering; orange carbon atoms); C) 

Overlay of 65, 68, and nFen (capped sticks rendering; magenta carbon atoms). Hydrogen bonds 

are indicated by yellow dashed lines. 

A. B. 

C. 
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To address the second question of this aim (Is the 2-OCH3 substituent of DOB required 

for binding at 5-HT2B receptors?), DOB (22) and its des-2-methoxy analogue 71 were examined 

for their functional activity at 5-HT2B receptors. Concentration-response curves for both 

compounds are shown below in Figure 34. Removal of the 2-OCH3 substituent of DOB (EC50 = 

8.7 nM) as in 71 (EC50 = 67 nM) resulted in an almost eight-fold reduction in potency. This 

supports the necessity of the 2-OCH3 substituent of DOB for activity at 5-HT2B receptors. 

However, because 71 still retains nanomolar potency, it was concluded that although the 2-OCH3 

substituent might contribute to the greater potency of DOB through its electronic interactions with 

the oxygen atom or lipophilic interactions with the methyl group, it is not absolutely required for 

activity. These data are in accordance with very recent literature data166 indicating an 

approximately six-fold reduction in 5-HT2B receptor affinity of 71 as compared with DOB. 

 

 

 

 

 

 

 

 

Figure 34. Normalized (to 1 μM 5-HT) concentration-response curves for functional activity of 

DOB (22) and 71 at 5-HT2B receptors. pEC50 for DOB = 8.1 ± 0.20 (EC50 = 8.7 nM); pEC50 for 71 

= 7.2 ± 0.08 (EC50 = 67 nM). 

 

Computational docking and HINT analysis using the crystal structure of the 5-HT2B 

receptor (PDB ID: 6DRY) was re-conducted on 71; the selected protein-ligand complex produced 
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the highest overall total interaction HINT score (2317) and is displayed in Figure 35 (Panel A). As 

expected, 71 participated in hydrogen bonding with Asp1353.32 via its amine nitrogen atom. 

Instead of forming a hydrogen bond with Asn3446.55 as observed in the docked model of DOB, 

the 4-Br substituent of 71 formed a weaker acid/base interaction. The docked poses of 71 and 

DOB were oriented similarly in the binding site but were slightly shifted relative to their phenyl 

rings. Furthermore, the phenyl rings are flipped relative to one another so the 3-OCH3 substituent 

of 71 and the 2-OCH3 substituent of DOB are facing the same direction. As a result, the methyl 

groups of both substituents participate in hydrophobic interactions with exactly the same residues, 

according to HINT analysis. They both form hydrophobic interactions with Val1363.33, the β-carbon 

of Ser1393.36, the -carbon of Thr1403.37, Ile1433.40, Ala2255.46, and Phe3416.52. However, unlike 

DOB which failed to possess any hydrogen bonding involving the 2-OCH3 oxygen atom, HINT 

analysis revealed a hydrogen bond interaction between the side-chain oxygen atom of Thr1403.37 

and the 3-OCH3 atom of 71. This is presumably made possible by the lower positioning of the 3-

OCH3 substituent of 71 compared to the 2-OCH3 substituent of DOB, thus being in a closer 

proximity for hydrogen bonding with Thr1403.37. Such a hydrogen bond might help salvage the 

activity of 71 and keep its activity in the nanomolar range, despite not producing any hydrogen 

bonding with Asn3446.55 as seen with DOB.  

Alternatively, docking results also produced a binding pose which most closely resembles 

the binding mode of DOB, with the 3-OCH3 substituent of 71 positioned in the same location as 

the 5-OCH3 substituent of DOB (Figure 35; Panel C); however, this solution had a slightly lower 

total interaction score (2240) than the solution in Panel A of Figure 35, described above.  As a 

result, the 4-Br substituent and the oxygen atom of the 3-OCH3 substituent formed hydrogen 

bonds with Asn3446.55 and the 4-Br substituent formed an additional hydrogen bond with 

Ser2225.43 – similar to the interactions involving DOB displayed in Figure 26. Furthermore, the 

methyl group of the 3-OCH3 substituent of 71 forms the same hydrophobic interactions as the 
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methyl group of the 5-OCH3 substituent of DOB: with Leu209EL2, Met2185.40, Phe3406.51, and 

Leu3627.35. Using this model, the reduced activity of 71 as compared with DOB can be supported 

by its lack of hydrophobic interactions: according to HINT analysis, DOB displays numerous 

hydrophobic interactions involving the methyl group of the 2-OCH3 substituent. Because 71 lacks 

the 2-position substituent, it is unable to form these hydrophobic interactions and this might result 

in its lower activity. The total energy for each suggested protein-ligand complex (shown in Figure 

35, panel A and C) was calculated using SYBYL. The energy for 71’s binding pose displayed in 

Panel A (-888 kcal/mol) is very similar to the energy for its binding pose displayed in Panel C (-

892 kcal/mol) indicating that both binding modes are equally probable. 
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Figure 35. Docking results of 71 in the binding site of the 5-HT2B receptor (cartoon helices/capped 

sticks rendering; green carbon atoms). A) Compound 71 (capped sticks rendering; yellow carbon 

atoms); B) Overlay of top total HINT interaction scoring 71 and DOB (capped sticks rendering; 

cyan carbon atoms); C) Overlay of top total HINT interaction scoring 71 (capped sticks rendering; 

peach carbon atoms) which most closely resembles the binding of DOB (capped sticks rendering; 

cyan carbon atoms). Hydrogen bonds are indicated by yellow dashed lines. 

A. B. 

C. 
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A series of other DOX phenylisopropylamine compounds was tested in 5-HT2B cells with 

the intent of elaborating their SAR for functional activity at 5-HT2B receptors. A total of nine 

phenylisopropylamine compounds with variable substituents at their 4-positions, DOB, DOI, DOF, 

DON, DOPR, DOTB, and MEM, were examined and concentration-response curves for six are 

displayed in Figure 36; data for DOB was shown in Figure 34. DOHx (33) and DOBz (35) failed 

to produce an agonist effect at a concentration of 10 μM. Data for seven agents are tabulated in 

Table 10. 
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Figure 36. Normalized (to 1 μM 5-HT) concentration-response curves for DOI (23), DOF (21), 

DON (30), DOPR (32), DOTB (34), and MEM (28). pEC50 for DOI = 7.4 ± 0.17 (EC50 = 39 nM); 

pEC50 for DOF = 6.4 ± 0.12 (EC50 = 439 nM); pEC50 for DON = 7.1 ± 0.12 (EC50 = 86 nM); pEC50 

for DOPR = 7.5 ± 0.17 (EC50 = 29 nM); pEC50 for DOTB = 7.4 ± 0.15 (EC50 = 37 nM); pEC50 for 

MEM = 6.3 ± 0.23 (EC50 = 557 nM). 
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Table 10. 5-HT2B potency, intrinsic efficacy, and affinity values of a series of DOX compounds: 

DOB (22), DOI (23), DOF (21), DON (30), DOPR (32), DOTB (34), and MEM (28). 

 

 

 

 X 
5-HT2B Potency, (EC50

 ± 
SEM, nM)* 

5-HT2B Intrinsic 
Efficacy* 5-HT2B Ki (nM)111 

DOB (22) Br 8.7 ± 5.5 0.70 26.9 

DOI (23) I  39 ± 15 0.71 20.0 

DOF (21) F 439 ± 120 0.82 227 

DON (30) NO2  86 ± 24 0.77 166 

DOPR (32) n-Pr  29 ± 11 0.75 54.4 

DOTB (34) t-Bu 37 ± 13 0.69 24.6 

MEM (28) OC2H5 557 ± 296 0.70 763 

 
Note: 5-HT potency and efficacy at 5-HT2B receptors: 1.7 nM ± 0.59 and 0.92, respectively 
*Potency and intrinsic efficacy values normalized to 1 μM 5-HT 
  

When considering the effect of halogens occupying the 4-position of 

phenylisopropylamine compounds, it is evident that more lipophilic halogens with larger atomic 

radii are well tolerated. Compared to DOB (EC50 = 8.7 nM) and DOI (EC50 = 39 nM) which share 

similar functional activity, the activity of DOF is far lower (EC50 = 439 nM). This suggests that a 

strong lipophilic interaction between the 4-position substituent and lipophilic amino acids in the 

binding site might be beneficial for increasing activity at 5-HT2B receptors. Another possibility is 

that the halogen atoms are interacting with polar amino acids via halogen bonding through their 

positively charged σ-holes.  This can be resolved by considering the activity of DOPR (EC50 = 29 

nM) and DOTB (EC50 = 37 nM) which both contain 4-position alkyl chains capable of forming 
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significant hydrophobic interactions and have similar activity as DOB and DOI. This suggests that 

lipophilic interactions with the 4-position substituent can increase activity; however, polar 

interactions may still play a part. To test the importance of polar interactions with the 4-position 

substituent, DON and MEM were examined that contain 4-NO2 and 4-OCH2CH3 substituents, 

respectively. The activity of DON (EC50 = 86 nM) is almost 10-fold lower than its 4-bromo 

counterpart DOB, suggesting that charged substituents at the 4-position are tolerated but not 

optimal for activity. This might be due to a lack of polar amino acids capable of forming 

electrostatic interactions with the nitro substituent of DON such as arginine, lysine, aspartic acid, 

or glutamic acid in that region of the binding site. Furthermore, the activity of MEM, containing a 

hydrogen bond accepting oxygen atom, is far lower (EC50 = 557 nM) suggesting that there is even 

a lack of polar amino acids capable of forming hydrogen bonding interactions with the 4-position 

substituent. 

Because 5-HT2B receptor affinity data have been previously published by our group, it was 

of interest to correlate 5-HT2B functional activity to 5-HT2B affinity for the phenylisopropylamines 

examined above (Figure 37). These data would allow the determination of the predictive capability 

of affinity data to predict functional data (or vice versa) for these compounds. The correlation 

coefficient (r) for this plot is substantial (0.879), indicating that affinity and agonist potency are 

correlated to one another and thus Ki is a decent indicator of EC50. Nevertheless, 5-HT2B receptor 

affinity is not a valid predictor of functional activity because DOHx (33) and DOBz (35), although 

displaying high affinity (Table 3) were without agonist action at concentrations of up to 10,000 nM. 

Hence, the relationship shown in Figure 37 would seem to hold only for agonists. 
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Figure 37. Relationship between 5-HT2B receptor affinity (pKi) and 5-HT2B receptor potency 

(pEC50) for seven DOX phenylisopropylamine compounds (slope = 0.962, r = 0.879). 

 

To examine the role of a 4-position substituent for binding affinity at 5-HT2B receptors, 

correlations were sought between 4-position substituent -values of phenylisopropylamine 

agonists and their affinity at 5-HT2B receptors as well as between 4-position substituent σp-values 

and affinity (Figure 38). There is a much stronger correlation between -values and affinity (r = 

0.787) than between σp-values and affinity (r = 0.064), suggesting that hydrophobic interactions 

with the 4-position substituent might be the primary driving force for the binding of these 

compounds at 5-HT2B receptors. 
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Figure 38. A) Relationship between 4-position substituent -values of phenylisopropylamine 

agonists and their 5-HT2B receptor affinity (pKi) (slope = 0.554, r = 0.787). B) Relationship between 

4-position substituent σp-values of 4-position substituents of phenylisopropylamines and their 5-

HT2B receptor affinity (pKi). (slope = 0.108, r = 0.064). 

A. 

B. 
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 To determine if the potency values of these compounds follow the same trend as their 

affinity values, their EC50 values, acquired in the present study, were analyzed and compared with 

both the 4-position substituent -values of phenylisopropylamine agonists as well as with their 4-

position substituent σp-values (Figure 39). The correlation between pEC50 values and  values 

was greater (r = 0.634) than the correlation between pEC50 values and σp-values (r = 0.193). 

Thus, similarly to the case of affinity, potency also might be driven by the lipophilicity of the 4-

position substituent of phenylisopropylamines and the resulting hydrophobic interactions it 

participates in. It is entirely possible that both the lipophilic and electronic character of DOX 4-

position substituents contribute to activity. Thus, a relating equation involving both  and σ might 

be developed. Indeed, a preliminary study was conducted employing both variables and resulted 

in a relating equation where r > 0.8. However, given that data on only seven compounds were 

available, the equation was not statistically valid. Additional agonists will need to be examined in 

order to provide additional support for this concept. 

 

 

 

 

 

 

 

 

 



91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. A) Relationship between 4-position substituent -values of phenylisopropylamine 

agonists and their 5-HT2B receptor potency (pEC50) (slope = 0.489, r = 0.634). B) Relationship 

between 4-position substituent σp-values of 4-position substituents of phenylisopropylamines and 

their 5-HT2B receptor affinity (pEC50). (slope = 0.354, r = 0.193). 
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V. Conclusions 

The overall goal of this project was to elaborate on the pharmacophoric requirements of 

5-HT2A and 5-HT2B receptors. In Aim 1, the pharmacophoric requirements of 5-HT2A receptor 

antagonism was investigated – based on the structure of risperidone and with the specific 

intention of “elaborating” (using the DRE approach) the fluorinated pharmacophore 14 to 

determine the effects of adding N-substituents on 5-HT2A affinity. Previous studies revealed that 

the entire structure of risperidone is not required for activity and only the right half portion as in 14 

is necessary for activity. A 5-HT2A receptor affinity screen conducted on 14, its N-methylated 

analogue 15, and other analogues containing substituents on the piperidinyl nitrogen atom of 

varying length and sizes (10, 16-18, and 51) revealed that although increasing the length and bulk 

of the piperidinyl substituent is correlated with greater 5-HT2A receptor affinity and selectivity, it is 

also correlated with increased D2 receptor affinity. One potential application of this project was to 

develop a safer antipsychotic drug by increasing the 5-HT2A receptor antagonism and selectivity 

of atypical antipsychotic drugs and concurrently decreasing their D2 receptor antagonism (and 

thus increasing the safety of these drugs by reducing their incidence of EPS symptoms). In this 

scope, the results of the affinity screen conducted and the resulting trends surmised from the data 

indicate that extension of the piperidinyl substituent of 14 might not result in a compound that 

would make a better antipsychotic drug due to the associated trend in greater D2 receptor affinity. 

In addition, affinity data of the synthesized compound 53, containing a propyl substituent on the 

piperidinyl nitrogen atom, revealed that although a methyl substituent is well tolerated as in 15 

and results in greater affinity (Ki = 12.3 nM) relative to 14 (Ki = 71.4 nM), increasing the length to 

a propyl chain results in a reduction of affinity (Ki = 107 nM). This indicates that longer alkyl chains 

than methyl are less tolerated at 5-HT2A receptors, further supporting the indication that extension 

of the piperidinyl nitrogen atom substituent might not result in a good antipsychotic drug. However, 

putting the intention of developing safer antipsychotic drugs aside, further SAR evaluation based 
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on the structure of 14 is still essential for having a more comprehensive understanding of the 

structural requirements for 5-HT2A affinity and selectivity. To accomplish this, future affinity 

screens of the compounds designed in this aim (52, 54, and 55) can be conducted. These data 

would refine the trend in SAR of simple alkyl chain substituents on the piperidinyl nitrogen atom 

on 5-HT2A affinity and selectivity. Possibly, the reason why the affinity of 53 decreases relative to 

15 is that longer substituents than a methyl group require an aromatic and/or a heteroatom-

containing moiety. If there exists an aromatic requirement, 55 should result in greater affinity than 

53 and 54. Other longer alkyl chains (containing four carbon atoms or more) containing amine or 

hydroxy moieties should also be examined to determine if electrostatic interactions are crucial to 

5-HT2A affinity. 

 To further refine the SAR for 5-HT2A receptor activity, quipazine (45), isoquipazine (46), 2-

NP (47), and 1-NP (48) were examined in Aim 2 in a computational modeling study using crystal 

structures of the 5-HT2A receptor. Specifically, the intention was to determine probable binding 

modes of these compounds to suggest reasons for their peculiar activities. HINT analysis results 

of the chosen binding poses are in accordance with the binding activities of these compounds. 

For example, the higher affinity compounds 2-NP and 1-NP display greater total interaction scores 

(1496 and 1454, respectively) than their structural counterparts and lower affinity compounds 

quipazine (899) and isoquipazine (1121), respectively. It is predicted that hydrophobic interactions 

might be paramount for the high affinity of this class of compounds as both 2-NP and 1-NP occupy 

a distinct binding pocket that contains more hydrophobic residues as compared to the binding 

pocket occupied by quipazine and isoquipazine. This is supported by the higher total hydrophobic 

scores of 2-NP (501) and 1-NP (649) compared with quipazine (239) and isoquipazine (479). One 

important question of this aim was: why does the addition of a nitrogen atom in the aromatic rings 

of 2-NP and 1-NP (as with quipazine and isoquipazine) result in such a reduction of affinity? The 

identified binding poses for these compounds addresses this question. Both quipazine and 
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isoquipazine formed electrostatic interactions with Ser1593.36 and Asn3436.55, respectively. It is 

predicted that because they participate in these interactions, quipazine and isoquipazine are 

“forced” to occupy a distinct pocket as compared to 2-NP and 1-NP, thus rendering them unable 

to participate in hydrophobic interactions that would otherwise confer higher affinity. 

 It should be noted that isoquipazine and 1-NP, the antagonists in this study, are 

structurally simple compounds and represent another pharmacophore for 5-HT2A receptor 

antagonism. It could be argued that 1-NP represents a truer antagonist pharmacophore as 

compared to that derived in Aim 1 (des-fluoro analogue of 14) due to its simpler structure: while 

both structures contain biaryl ring moieties bonded to unconjugated six-membered nitrogen atom-

containing rings, 1-NP contains one fewer heteroatom in its structure. Based on the structure of 

1-NP, simple deconstruction analyses can be conducted, particularly one that determines the 

necessity of the tertiary nitrogen atom. The piperazine ring can also be broken open, resulting in 

a long chain, to determine the importance of the ring for activity. If the piperazine ring is important 

for activity, the ring nitrogen atoms can be translocated through the ring to determine their optimal 

location. 

 The premise for the third aim was contrived from preliminary modeling studies utilizing 

docked structures DOB and nFen in the binding site of the 5-HT2B receptor. These modeling 

studies drew attention to potential electrostatic interactions employed by both molecules to bind 

with residues. Specifically, HINT analysis revealed hydrogen bonds/acid base interactions 

involving the 5-OCH3 and 4-Br substituents of DOB and the 3-CF3 substituent of nFen. These 

results thus called into question the necessity of the 2-OCH3 substituent of DOB and the 

electrastic/hydrophobic participation of the 3-CF3 substituent of nFen (because fluoro atoms are 

capable of forming both hydrogen bonds and hydrophobic interactions with residues). To 

determine the involvement of these substituents, 65, 68, and 71 were synthesized and examined 

in a Ca2+-release assay utilizing HEK-293T cells stably transfected with the 5-HT2B receptor 
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plasmid, along with nFen and DOB as standards. To confirm that nFen’s agonist activity at 5-HT2B 

receptors is dependent on the 3-CF3 substituent, amphetamine was also examined. Results 

indicated amphetamine is inactive as an agonist (at 10 μM) at 5-HT2B receptors, confirming the 

essential nature of the 3-CF3 substituent. Furthermore, this substituent most likely interacts with 

the binding site in a hydrophobic or both a hydrophobic and an electrostatic manner with the 

binding site, supported by functional activity results: although 65 (EC50 = 331 nM) resulted in over 

five-fold lower potency as compared with nFen (EC50 = 65 nM); both 65 and its positional isomer 

68 (EC50 = 246 nM) resulted in low-nanomolar potency suggesting that hydrophobic interactions 

are very favorable for 5-HT2B agonist activity. If electrostatic interactions were paramount for 

agonist activity, it is unlikely to observe such a large increase in agonist activity when comparing 

amphetamine to 65. Not only did we observe high potency for the 3-CH3 analogue 65, we also 

observed similarly high potency for the 4-CH3 analogue 66, suggesting hydrophobic interactions 

might be so crucial, interaction can occur with both the 3- and 4-position substituents without 

much difference in potency.   

Computational docking studies of nFen, 65, and 68 revealed a similar positioning of their 

phenyl substituents in the binding site of the 5-HT2B receptor as well as numerous hydrophobic 

residues near this region capable of interacting with 3- and 4-position substituents of these 

amphetamine analogues, supporting the hypothesis that hydrophobic interactions are paramount 

for the activity of nFen.  

 Functional activity analysis of 71 revealed that although the 2-OCH3 substituent of DOB is 

not absolutely essential for functional activity, it does contribute: compound 71 (EC50 = 67 nM) 

resulted in an almost eight-fold reduction in potency as compared to DOB (EC50 = 8.7 nM). 

Computational docking results produced a potential binding pose for 71 based on the highest total 

interaction score from HINT analysis. This binding pose does not have its 3-OCH3 substituent 

superimposed with the 5-OCH3 substituent of DOB. Instead, 71’s 3-OCH3 substituent faces the 
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same direction as the 2-OCH3 substituent of DOB, enabling methyl groups from both substituents 

to participate in identical hydrophobic interactions with the same binding site residues, supported 

by HINT. The 3-OCH3 oxygen atom also forms a hydrogen bond with Thr1403.37, which might 

contribute to 71’s retention of nanomolar potency; 71 lacks the hydrogen bonds with Ser2225.43 

and Asn3446.55 as observed in the model of DOB, therefore the hydrogen bonding with Thr1403.37 

might make up for this deficit of interaction. 

 A more logical representation of the binding of 71 at 5-HT2B receptors is depicted in Panel 

C of Figure 35 which displays 71 essentially superimposed with DOB in the binding site. Due to 

the structural similarity between 71 and DOB, logic would suggest that both compounds would 

bind similarly. Although this binding pose did not produce the highest total interaction HINT score, 

it was still amongst the top 20 highest scoring solutions out of the 100 solutions generated and 

examined. Thus, this model is still a very viable candidate for the accurate representation of 71’s 

binding. HINT analysis revealed that 71 participates in identical hydrogen bond interactions with 

Ser2225.43 and Asn3446.55 via its 4-Br and 3-OCH3 substituents, as compared with DOB. The 

almost eight-fold lower potency of 71 compared with DOB can be explained by its lack of a 2-

OCH3 substituent, thus rendering it unable to participate in hydrophobic interactions via the methyl 

group (as observed with DOB). This model is a better representation of this difference in activity 

than the model discussed previously. In the previous model, 71 did not display any hydrogen 

bonding with Ser2225.43 nor with Asn3446.55 via its 4-Br substituent. Such a loss of hydrogen bond 

interaction is likely to result in a much more drastic reduction in potency, due to the high energy 

of these bonds. Instead, the slightly lower potency of 71 compared with DOB is much better 

explained by the lower hydrophobic interactions (a weaker type of bond) experienced by 71.  

Another explanation is that the majority of DOB’s agonist effect is elicited by hydrophobic 

interactions via its 4-Br substituent, which would be more congruent with the hypothesis stated 

above (hydrophobic interactions are paramount for the 5-HT2B activity of these analogues). 
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Continuing with the same reasoning, the methoxy substituents of DOB may contribute very little 

to its potency. It was determined in this study that the 2-OCH3 substituent is not essential for 

activity, however there is also evidence that the 5-OCH3 might not be necessary as supported by 

the high potency of 65 that contains no substituents capable of forming electrostatic interactions 

such as a methoxy substituent. Because of the similar lipophilicity of bromo ( = 0.86)164 and 

methyl ( = 0.56)164 substituents, simply a 4-Br substituent with no other phenyl substituents might 

be enough to elicit high potency. However, the bromo and methyl substituents contain opposite 

electronic character (σp = 0.23 and -0.17, respectively), thus there is still a possibility for electronic 

contribution of the 4-Br substituent of DOB. To conclude, the 2-OCH3 substituent of DOB is not 

required for its agonist activity at 5-HT2B receptors, unlike in the case of 5-HT2A receptors where 

removal of the 2-OCH3 substituent results in abolishment of affinity. With this simple revelation, 

we can already begin to separate the activity of compounds at 5-HT2A and 5-HT2B receptors. 

Furthermore, removal of the 5-OCH3 substituent results in a drastic reduction of affinity for 5-HT2A 

receptors. Future studies examining other amphetamine analogues such as 4-

bromoamphetamine should be conducted to definitively test for the necessity of the 3-OCH3 

substituent of 71. 

 Another goal of this aim was to gain understanding with regards to the SAR of 

phenylisopropylamines at 5-HT2B receptors. To accomplish this, a series of 

phenylisopropylamines (DOB, DOI, DOF, DON, DOPR, DOTB, and MEM) were examined for 

their functional activity at 5-HT2B receptors. It was discovered that larger, more lipophilic halogen 

substituents are best tolerated, as supported by the vast difference in activity of DOF (EC50 = 439 

nM) which contains a smaller, less lipophilic 4-F substituent, compared to the activity of DOB 

(EC50 = 8.7 nM) and DOI (EC50 = 39 nM) which contain larger and much more lipophilic 4-position 

substituents. The importance of the lipophilic nature of the 4-position substituent is substantiated 

by the data obtained from DOPR and DOTB. Both compounds produced approximately equal 
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potency, similar to that produced by DOI. Assuming that these phenylisopropylamines bind 

similarly to the proposed binding mode of the amphetamine analogues examined above (65 and 

68, Figure 33), and 71 and DOB (Figure 35), numerous hydrophobic residues (Val1363.33, 

Leu209EL2, Phe2175.38, Ile1864.56, and Ala2255.46) are available within interacting distance of the 

4-position substituent, thus explaining the high activities of DOPR (EC50 = 29 nM) and DOTB 

(EC50 = 37 nM) which both contain lipophilic 4-position alkyl chain substituents capable of forming 

hydrophobic interactions. DOB and DOI might additionally participate in hydrogen bonding 

interactions with residues such as Ser2225.43 and Asn3446.55 as depicted in the docked model of 

DOB (Figure 35), contributing to their high activities. The lower activity of MEM might suggest that 

electron withdrawing substituents are not very well tolerated at the 4-position.  

Given the combined results from Aim 3, the pharmacophore model in Figure 27 can be 

refined. It was proposed that the phenyl substituents of the pharmacophore can contain 

substituents either in the 3- or 4-positions capable of forming electrostatic or hydrophobic 

interactions with the binding site. Our functional assay data for 65 and 68 revealed that methyl 

substituents are well tolerated at both the 3- and 4-positions of the phenyl rings. Thus our model 

can be refined to specify that both hydrophobic interactions with 3- and 4-position phenyl 

substituents of amphetamine-like compounds elicit activity at 5-HT2B receptors (Figure 40); 

however, electrostatic interactions might still contribute to greater activity as portrayed by the 

higher potency of nFen as compared with either 65 or 68. 
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Figure 40. Revised pharmacophore for 5-HT2B receptor agonist action. 

This revised model also accounts for the agonist actions of the DOX analogues. Although 

a role for possible electrostatic interactions cannot be eliminated, it would appear that hydrophobic 

interactions play a dominant role, but that the site these substituents interact with is of limited size. 

Compounds with large lipophilic substituents bind (e.g., DOHx, DOBz) with affinities nearly 

comparable to DOB, but are without agonist action. 
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VI. Experimental 

 

A. Synthesis 

Compounds were characterized using mass spectrometry (MS), proton nuclear magnetic 

resonance (1H NMR), and melting point analysis using the Thomas Hoover melting point 

apparatus. The 1H NMR used was a Bruker AXR 400 MHz spectrometer using tetramethylsilane 

(TMS) as an internal standard. The positions of the peaks in the 1H NMR spectra were reported 

as parts per million (δ). The coupling constants (J, Hz) and integration values were reported for 

all compounds. The splitting pattern of the peaks were also reported as containing either singlets 

(s), doublets (d), triplets (t), quartets (dd) doublet of doublets (td), triplet of doublets, (td), or 

multiplets (m). Reactions were monitored using thin layer chromatography (TLC) using silica gel 

GHLF plates. Purification of compounds was done using flash chromatography (ComiFlash 

Companion/TS) and recrystallization methods. All compounds were prepared as hydrochloride 

salts. 

 

6-Fluoro-3-(piperidin-4-yl)benz[d]isoxazole Hydrochloride (14) 

Crude compound 61 (1.0 g, 4.03 mmol) was dissolved in anhydrous EtOH (25 mL) and was added 

to a stirred mixture of HCl (1.4 mL) in anhydrous EtOH (10 mL) under an N2 atmosphere.  The 

resulting mixture was heated at reflux for 3 h and was allowed to stand at room temperature for 

five days.  The resulting precipitate was collected by filtration and was recrystallized from 

MeOH/Et2O to yield 0.07 g of 14 (8%) as a buff colored solid: mp 298-302 °C (lit.159 293-295 °C). 

No further characterization of the compound was conducted. 

 

6-Fluoro-3-(1-propyl-4-piperidyl)-1,2-benzoxazole Hydrochloride (53) 

Compound 14 (1.0 g, 4.5 mmol) was dissolved in acetonitrile and 1-iodopropane (0.53 mL, 5.45 

mmol) and K2CO3 (1.9 g, 13.6 mmol) were added. The mixture was heated at reflux for 15 h, 
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cooled to rt and K2CO3 was filtered and washed with acetonitrile. The filtrate was concentrated to 

an oil and the oil was purified using column chromatography (EtOAc/MeOH). Ethereal HCl was 

added in a dropwise manner to the freebase dissolved in Et2O forming the final compound 53 as 

an HCl salt which was purified by recrystallization using MeOH/Et2O yielding 0.07 g of 53: mp 

200-204 °C (lit.160 mp 208-210 °C); 1H NMR (DMSO-d6) δ 0.88-1.04 (m, 3H, CH3), 1.62 (s, 1H, 

CH), 1.80-2.23 (m, 4H, CH2, CH2), 2.70-3.01 (m, 4H, CH2, CH2), 3.01-3.26 (m, 2H, CH2), 3.27-

3.50 (m, 1H, CH), 3.60-3.75 (m, 2H, CH2), 7.01-7.27 (m, 1H, CH), 7.54 (dd, J = 4.99, 3.77 Hz, 1H, 

CH), 8.32 (dd, J = 5.11, 3.78 Hz, 1H, NH+); HRMS (ESI-TOF) m/z [M + H]+ calcd for C15H20FN2O, 

236.1556; found, 236.1550. 

 

N-Formylpiperidine-4-carboxylic acid (57) 

AC2O (28.5 mL) and HCOOH (11.4 mL) were stirred for 1 h at 60 °C under an N2 atmosphere and 

gradually cooled to 0 °C using an ice-bath.  Isonipecotic acid (6.5 g, 50.3 mmol) was added 

portionwise and the reaction mixture was stirred for 16 h at room temperature.  The solvent was 

evaporated under reduced pressure and the resulting pale white solid was recrystallized from i-

PrOH to yield 5.3 g (68%) of 57 as a white solid: mp 134-137 °C (lit.167 136-138 °C). 

 

N-Formylpiperidine-4-carboxylic acid chloride (58) 

Compound 57 (5.3 g, 34.0 mmol) was added portionwise to SOCl2 (5.1 mL) which had been stirred 

and cooled to 0 °C.  DMF was added and the reaction mixture was allowed to stir at room 

temperature overnight under an N2 atmosphere.  SOCl2 was evaporated under reduced pressure 

to yield 9.0 g of an orange oil.  The crude oil was used without further characterization for the 

preparation of 59. 
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N-Formyl-4-(2,4-difluorobenzoyl)piperidine (59) 

AlCl3 (11.7 g, 87.7 mmol) was added portionwise to a stirred mixture of 58 (9.0 g, 51.3 mmol) in 

1,3-difluorobenzene (36.2 mL), under an N2 atmosphere.  The reaction mixture was heated at 

reflux for 3 h and was quenched by pouring the reaction mixture into ice-H2O.  The aqueous 

mixture was extracted with CHCl3 (3 x 50 mL) and the combined organic portion was washed with 

H2O (1 x 50 mL), dried (MgSO4) and evaporated under reduced pressure to yield 11.9 g of a dark 

brown oil.  The oil was purified using column chromatography to yield 3.0 g (23%) of 59 as a 

brown oil. 

 

N-Formyl-4-((2,4-difluorophenyl)(hydroxyimino)methyl)piperidine (60) 

Compound 59 (3.0 g, 12 mmol) was dissolved in anhydrous EtOH (45 mL) and the resulting 

solution was added dropwise to a stirred solution of hydroxylamine hydrochloride (2.5 g, 36 mmol) 

in anhydrous EtOH (48 mL) under an N2 atmosphere.  A solution of NaOH (1.49 g, 37.2 mmol) in 

H2O (9.3 mL) was added to the reaction mixture.  The reaction mixture was heated at reflux 

overnight under an N2 atmosphere.  The resulting precipitate was removed by filtration and the 

filtrate was evaporated under reduced pressure, yielding a yellow solid which was recrystallized 

from H2O, yielding 1.2 g (36%) of 60 as a pale yellow solid: mp 182-186 °C (lit.159 182-184 °C). 

 

N-Formyl-4-(6-fluorobenz[d]isoxazol-3-yl)piperidine (61) 

Compound 60 (1.2 g, 4.4 mmol) was dissolved in anhydrous DMF (12 mL) and was stirred under 

an N2 atmosphere.  The solution was added dropwise to toluene-washed NaH (0.2 g, 8.7 mmol).  

The reaction mixture was heated at 75 °C for 4 h and was allowed to stir under an N2 atmosphere 

for 96 h.  The reaction mixture was quenched by pouring the mixture into H2O.  The aqueous 

mixture was extracted with EtOAc (3 x 30 mL) and the combined organic portion was washed with 

H2O (1 x 50 mL), dried (MgSO4) and concentrated under reduced pressure, yielding 1.0 g (93%) 

of 61 as an orange oil which was used crude in the preparation of 14. 
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(E)-1-Methyl-3-(2-nitropropen-1-yl)benzene (64) 

3-Methylbenzaldehyde (63, 2.0 g, 16.6 mmol) and NH4OAc (1.8 g, 22.7 mmol) were stirred and 

heated at reflux in nitroethane (33.3 mL for 48 h. The reaction mixture was poured into H2O (10 

mL). The mixture was extracted (3 x 30 mL) with EtOAc and the combined EtOAc fraction was 

washed with brine and dried (MgSO4). Evaporation of EtOAc under reduced pressure resulted in 

a crude oil which was purified using column chromatography resulting in 1.6 g (54%) of the pure 

oil 64 which was used in the preparation of 65. 

 

1-(3-Methylphenyl)propan-2-amine Hydrochloride (65) 

A suspension of LiAlH4 (2.4 g, 62.5 mmol) in THF (47 mL) was added using an addition funnel to 

64 (1.6 g, 8.9 mmol). The solution was heated under reflux for 2 h. Reaction mixture was 

quenched with H2O (2.4 mL), 15% NaOH aq. solution (2.4 mL), and H2O (7.1 mL), resulting in 

white crystals (Li and Al salts) which were filtered off and washed with Et2O. The filtrate was dried 

(MgSO4) and concentrated to an oil. The oil was purified using column chromatography (silica 

gel; CHCl3/MeOH). The oil was dissolved in Et2O and concentrated ethereal HCl was added in a 

dropwise manner until the solution turned acidic. 0.2 g (13%) of the solid 65 was collected by 

vacuum filtration: mp 134-135 °C (lit.168 mp 113-115 °C); 1.15 (d, J = 6.5 Hz, 3H, CH3), 2.35 (s, 

3H, CH3), 2.66 (dd, J = 9.4 Hz, 1H, CH2), 3.07 (dd, J = 4.9 Hz, 1H CH), 3.38-3.43 (m, 1H, CH), 

7.07-7.13 (m, 3H, CH), 7.27 (tr, J = 7.5 Hz, 1H, CH), 8.22 (s, 3H, NH3
+). 

 

(E)-1-Methyl-4-(2-nitropropen-1-yl)benzene (67) 

4-Methylbenzaldehyde (66, 2.0 g, 16.6 mmol) and NH4OAc (1.8 g, 22.7 mmol) were stirred and 

heated at reflux in nitroethane (33.3 mL) overnight. The reaction mixture was poured into H2O (10 

mL). The mixture was extracted with EtOAc (3 x 30 mL) and the combined EtOAc fraction was 

washed with brine and dried (MgSO4). Evaporation of EtOAc under reduced pressure resulted in 
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a crude oil, which mostly solidified under vacuum. The solid was filtered and washed with cold 

EtOH. The solid was recrystallized from EtOH affording 1.52 g (52%) of 67 as a yellow colored 

solid. 67 was used in the preparation of 68. mp 55-56 °C (lit.169 mp 53-54 °C). 

 

1-(4-Methylphenyl)propan-2-amine Hydrochloride (68) 

A suspension of LiAlH4 (1.5 g, 39.5 mmol) in THF (30 mL) was added using an addition funnel to 

67 (1 g, 5.6 mmol). The solution was heated at reflux for 2 h. The reaction mixture was quenched 

with H2O (1.5 mL), 15% NaOH aq. solution (1.5 mL), and H2O (4.5 mL), resulting in white crystals 

(Li and Al salts) which were filtered off and washed with Et2O. The filtrate was dried (MgSO4) and 

concentrated to an oil. The oil was purified using column chromatography (silica gel; 

CHCl3/MeOH). The resulting oil was dissolved in Et2O and concentrated ethereal HCl was added 

in a dropwise manner until the solution turned acidic. The resulting solid was collected by vacuum 

filtration affording 0.04 g (13%) of the final compound 68 as a white solid. mp 155-156 °C (lit.168 

mp 148-150 °C); 1H NMR (DMSO-d6) δ 1.10 (d, J = 6.5 Hz, 3H, CH3), 2.29 (s, 3H, CH3), 2.62 (dd, 

J = 9.2 Hz, 1H, CH2), 2.99 (dd, J = 13.2 Hz, 1H, CH2), 3.34 (m, 1H, CH), 7.14 (dd, J = 8.2 Hz, 2H, 

CH), 8.09 (s, 3H, NH3
+). 

 

(E)-1-Bromo-2-methoxy-4-(2-nitropropen-1-yl)benzene (70) 

3-Methoxy-4-bromobenzaldehyde (69, 0.3 g, 1.4 mmol) and NH4OAc (0.7 g, 9.1 mmol) were 

heated to reflux in nitroethane (10 mL) overnight. The reaction mixture was poured into H2O (10 

mL). The mixture was extracted with EtOAc (3 x 15 mL) and the EtOAc layer was washed with 

brine and dried over MgSO4. Evaporation of EtOAc under reduced pressure resulted in a crude 

oil, which was purified using column chromatography (silica gel; hexane/EtOAc) affording 0.2 g 

of 70 (63%) as a brown oil. Compound 70 was used in the preparation of 71. 
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1-(4-Bromo-3-methoxyphenyl)propan-2-amine Hydrochloride (71) 

NaBH4/BF3 (0.97 g, 2.6 mmol) was added to a round bottom flask and cooled to 0 °C. THF (7 mL) 

was added, the ice bath was removed, and the contents were stirred for 15 min; 70 in THF (3 mL) 

was added and the reaction mixture was stirred at reflux for 5.5 h. The mixture was cooled to rt, 

quenched with H2O (6.8 mL), acidified (1 N HCl, 6.8 mL) and heated at 85 °C for 2 h. The mixture 

was cooled to rt and the acid layer was washed with Et2O (2 x 10 mL) and basified with 5 M 

NaOH. The solution was extracted with Et2O (3 x 15 mL). The organic layer was dried (MgSO4) 

and concentrated to an oil. The oil was dissolved in Et2O and ethereal HCl was added to form a 

solid. The solid was filtered and recrystallized with MeOH/Et2O affording 0.048 g (32%) of 71. mp 

= 145-150 °C (lit.166 mp = 151-152 °C); 1H NMR (DMSO-d6) δ (d, J = 1.15, 6.5 Hz, 3H, CH3), (dd, 

J = 2.72, 8.2 Hz 1H, CH), (dd, J = 2.97, 5.8 Hz 1H, CH), (s, J = 3.45, 1H CH), (s, J = 3.86, 3H, 

CH3), (d, J = 6.78, 8 Hz, 1H, CH), (s, J = 7.04, 8.2 Hz, 1H, CH), (d, J = 7.51, 8 Hz, 1H, CH), (s, J 

= 8.11, 3H, NH3
+) 

 

B. Computational Docking 

All compounds were sketched using SYBYL-X 2.1.1 and were energy minimized utilizing 

the Tripos Force Field with Gasteiger-Hückel charges, a non-bonded interaction cutoff of 8 Å, 

dielectric constant (ε) of 4.00 D/Å, and a termination gradient of 0.05 kcal/(mol*Å). The structures 

were then docked at either the 5-HT2B receptor crystal structure (active, PDB: 6DRY) or 5-HT2A 

crystal structures [active (PDB: 6WHA) or inactive (PDB: 6A94)] using GOLD v5.6 which 

generated up to 100 protein-ligand complexes for each compound and GOLD scores, based on 

an in-program scoring system, for each complex. Complexes were then energy minimized using 

SYBYL-X 2.1.1 and evaluated by HINT score analysis within SYBYL 8.1. A built-in GOLD 

clustering program (using an RMSD cutoff of 0.75 Å) was used in conjunction with the docking of 

quipazine (45), isoquipazine (46), 2-NP (47), and 1-NP (48). The resulting clusters were analyzed 

according to which one contained the highest scoring GOLD solution [highest scoring cluster 
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(HSC)] and which one contained the most number of solutions [most populated cluster (MPC)]. 

The final binding poses for quipazine and isoquipazine were selected because they were the 

highest GOLD-scoring solutions. The binding poses for 2-NP and 1-NP were selected because 

they were the highest scoring solutions within the MPC. The binding mode of R(-)-DOB was 

selected because it produced the highest GOLD score. The binding mode of S(+)-nFen was 

selected because it produced the highest GOLD-scoring solution that most closely resembled the 

binding mode of R(-)-DOB. The binding modes for S-64, S-68, and R-71 were selected because 

they produced the highest overall HINT interaction scores. An additional binding mode for R-71 

was proposed because it was the highest HINT interaction-scoring pose which most closely 

resembled the binding mode of R(-)-DOB. PYMOL was used to produce high quality images of 

docked structures. 

 

 

C. Functional Activity Studies 

Functional activity studies of the compounds were conducted using a Ca2+ binding assay 

using the epifluorescent microscope (Olympus IX71). Cells used for experiments were cultured 

using Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) and 

5% penicillin/streptomycin. The fluorescent indicator used during experiments was Fura 2-AM. 

Cells were analyzed using wavelengths of 340 nm and 380 nm, bandwidth of 12 nm, light intensity 

of 15%, and exposure of 70 ms. Three wells containing cells were analyzed for each concentration 

per experiment day. Two experiments were conducted for each drug. All data was processed 

used Fiji software by ImageJ2 which allowed manual selection of cells and measurement of 

fluorescence. Logarithmic concentration-response curves were generated using Graphpad Prism 

8. Curves were generated with a Hill slope of 1.0 to allow easier comparison of potencies of the 

various compound analyzed. 
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