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Abstract
Nowadays, the analytic hierarchy process is an established method of multiple crite-
ria decision making in the field of Operations Research. Pairwise comparison matrix 
plays a crucial role in the analytic hierarchy process. The principal (maximum mag-
nitude) eigenvalue of the pairwise comparison matrix can be utilized for measuring 
the consistency of the decision maker’s judgment. The simple transformation of the 
maximum magnitude eigenvalue is known to be Saaty’s consistency index. In this 
short note, we shed light on the characteristic polynomial of a pairwise comparison 
matrix of third order. We will show that the only real-number root of the charac-
teristic equation is the maximum magnitude eigenvalue of the third-order pairwise 
comparison matrix. The unique real-number root appears in the area where it is 
greater than 3, which is equal to the order of the matrix. By applying usual New-
ton’s method to the characteristic polynomial of the third-order pairwise comparison 
matrix, we see that the sequence generated from the initial value of 3 always con-
verges to the maximum magnitude eigenvalue.
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1 Introduction

Analytic hierarchy process (AHP) is a scaling method for priorities in the hierar-
chical structure [1, 2]. When people (decision makers) make decisions, they should 
often treat multiple alternatives. Decision makers’ main task is to define the priori-
ties of alternatives.

Pairwise comparison is one of the most tangible ways to prioritize them. Let 
Ci, i = 1,… , n be alternatives to be prioritized. One defines the value aij in pairs 
between Ci and Cj . The value represents the priority of Ci as compared to Cj . In the 
context of AHP, one usually uses its value by Saaty’s discrete scale from 1 to 9 and 
their reciprocals. It is based on the verbal expressions in Table 1 [1].

For instance, suppose that one wishes to determine his/her preference for fruits. 
In comparison of apples ( Ci ) and oranges ( Cj ), if he/she prefers apples to oranges 
moderately, aij is assigned to 3 and aji to 1/3. Logically the value aji in pairs between 
Cj and Ci should be 1∕aij . After all pairwise comparisons, one obtains the following 
so-called pairwise comparison matrix:

In AHP, employing a pairwise comparison matrix enables the treatment of sub-
jective judgment.

In the context of AHP, evaluating the principal (maximum magnitude) eigenvalues 
of pairwise comparison matrices is a key ingredient. In AHP, solving the following lin-
ear system is called by the eigenvector method:

where �max is the maximum magnitude eigenvalue and w is the associated eigen-
vector. The maximum magnitude eigenvalue defines the first and most popular 
consistency index of pairwise comparison matrices [2, 3]. The associated eigen-
vector is utilized as a priority vector (weight vector) [1, 2, 4, 5]. From the view-
point of mathematical programming, the theoretical foundation of the eigenvector 
method was established by [6, 7]. In this note, we focus on third-order pairwise 
comparison matrix. The third-order pairwise comparison matrix has importance in 
AHP. The reason is that it is a source of inconsistency. There are several research 

A =

⎛⎜⎜⎜⎝

1 a12 ⋯ a1n
1∕a12 1 ⋯ a2n
⋮ ⋮ ⋱ ⋮

1∕a1n 1∕a2n ⋯ 1

⎞⎟⎟⎟⎠
.

Aw = �maxw,

Table 1  Saaty’s discrete scale Verbal expression Value of intensity

equal importance 1
moderate importance 3 or 1/3
essential or strong importance 5 or 1/5
demonstrated importance 7 or 1/7
absolute importance 9 or 1/9
intermediate values 2, 4, 6, 8 or their reciprocals
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articles devoted to third-order pairwise comparison matrix; see [8–10] and refer-
ences therein. In this note, we treat inconsistent third-order pairwise comparison 
matrix A. Inconsistency is characterized by detA > 0.

It is clear that the existence of the real-number root of the characteristic equation 
because the polynomial to be considered is odd order. In Sect. 2, we will specify the 
area where the real-number root exists. The root is shown to be the maximum magni-
tude eigenvalue among all eigenvalues of the pairwise comparison matrix.

The analytic form of the maximum magnitude eigenvalue is known; see [9] and 
references therein. Nevertheless, in this note, we shed light on Newton’s method 
to obtain the maximum magnitude eigenvalue. We will see mathematical nature of 
Newton’s method for third-order comparison matrix stands out. In Sect. 3, we will 
construct a sequence by the usual Newton’s method. We will take an initial value to 
be 3, which is equal to the order of the matrix. We rely on the favorable properties of 
inconsistent third-order pairwise comparison matrix; uniqueness of the real-number 
root and detA > 0 . We will theoretically prove that the sequence generated by New-
ton’s method converges to the maximum magnitude eigenvalue. We also confirm 
the property of convergence by Newton’s method by computational experiment in 
Sect. 4. Utilization of Newton’s method is expected to extend the result to possible 
application for fourth or more order pairwise comparison matrix.

2  Existence of the Root

We consider the third-order pairwise comparison matrix:

where aij > 0 . Its characteristic polynomial has the following form [11]:

We can calculate the determinant of the pairwise comparison matrix as follows.

The last inequality follows from the relationship between the arithmetic mean and 
the geometric mean. The equality holds if and only if 

a12a23

a13
=

a13

a12a23
 , which is equiv-

alent to a12a23 = a13 . We say the matrix A is consistent if a12a23 = a13 . For the third-
order pairwise comparison matrix, as we mentioned above, it is obvious that the con-
sistency of A and detA = 0 is equivalent. If A is consistent, the characteristic 

A =

⎛⎜⎜⎝

1 a12 a13
1∕a12 1 a23
1∕a13 1∕a23 1

⎞⎟⎟⎠
,

PA(�) = �3 − 3�2 − detA.

detA =

||||||

1 a12 a13
1∕a12 1 a23
1∕a13 1∕a23 1

||||||
=

a12a23

a13
+

a13

a12a23
− 2 ≥ 0.
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polynomial is PA(�) = �3 − 3�2 = �2(� − 3) . In this case, the roots of the characteris-
tic equation are � = 3, 0 (0 is a multiple root).

Hereafter, we treat the case when A is inconsistent (i.e., detA > 0 ). Taking the 
derivatives of PA(�) , we have P �

A
(�) = 3�(� − 2) . So PA(�) takes a local maximum at 

the point � = 0 and it takes a local minimum at the point � = 2 . Moreover, for 𝜆 > 2 , 
P �
A
(𝜆) = 3𝜆(𝜆 − 2) > 0 , so PA(�) is monotone increasing in this area. The vertical 

axis section is − detA < 0 . We indicate the shapes of the graph of PA(�) in Fig. 1.
An easy calculation shows the following:

We immediately have the following existence theorem of a root for the character-
istic equation.

PA(3) = 33 − 3 ⋅ 32 − detA = − detA < 0,

PA(3 + detA) = (3 + detA)3 − 3(3 + detA)2 − detA

= 27 + 27 detA + 9(detA)2 + (detA)3

− (27 + 18 detA + 3(detA)2) − detA

= 8 detA + 6(detA)2 + (detA)3 > 0.

Fig. 1  Graph of P
A
(�) in incon-

sistent case
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Theorem  1 For the inconsistent pairwise comparison matrix A, the characteristic 
equation has a unique real-number root in the interval (3, 3 + detA) . This root is the 
maximum magnitude eigenvalue.

Proof By the intermediate value theorem (p.206 in [12]), the existence of a real-
number root in the interval (3, 3 + detA) is clear. From the shape of the graph, this 
root is the unique real-number root. We denote it by �∗ . In general, other two conju-
gate complex-number roots exist, say a ± bi , b ≠ 0.

From the general theory of eigenvalues and the trace of the matrix [2], we have 
�∗ + (a + bi) + (a − bi) = 3 . So we have

Since a + bi is the root of the characteristic equation, we have

By expanding the left-hand-side of the formula, we have

Since b ≠ 0 , from the last formula, we have

So we finally have

Thus we have

This means �∗ is maximum magnitude.

3  Convergence of Newton’s Method

Here we use the usual Newton’s method (Chapter 8 in [13]). We give an elementary 
proof of convergence. We set the initial value to be �0 = 3 and generate a sequence 
by the following iteration.

a =
3 − �∗

2
.

(a + bi)3 − 3(a + bi)2 − detA = 0.

{
0 = a3 − 3ab2 − 3a2 + 3b2 − detA,

0 = 3a2b − b3 − 6ab.

3a2 − b2 − 6a = 0.

b2 = 3a2 − 6a.

| a ± bi |2 = a2 + b2 = 4a2 − 6a

= 4
(
3 − 𝜆∗

2

)2

− 6
(
3 − 𝜆∗

2

)

= 𝜆∗
2 − 3𝜆∗ < 𝜆∗

2
.



 Operations Research Forum            (2021) 2:30 

1 3

   30  Page 6 of 11

Denote the maximum magnitude eigenvalue guaranteed by Theorem 1 by �max . 
So PA(�max) = 0 and 3 < 𝜆max < 3 + detA.

Lemma 1 For all n ≥ 1 , we have 𝜆n > 𝜆max.

Proof We prove it by induction. Set n = 1 . 𝜆1 = 3 +
detA

9
> 3 and 

PA(𝜆1) =
2

27
(detA)2 + (

detA

9
)3 > 0 . So we have 𝜆1 > 𝜆max.

Assume 𝜆n > 𝜆max is true. Then from this assumption, we can take 𝜆max ≤ 𝜆 < 𝜆n . 
Since P �

A
(�) is monotone increasing for 𝜆 > 1 (because P ��

A
(�) = 6(� − 1) ) and 

𝜆max > 3 , we have

Thus we have

So we conclude

Taking account into PA(�max) = 0 , we have

Lemma 2 The sequence {�n} is monotone decreasing for n ≥ 1.

Proof From Lemma 1, we have 3 < 𝜆max < 𝜆n . Since PA(�) is monotone increasing 
for 𝜆 > 3 , we have PA(𝜆n) > PA(𝜆max) = 0 . Obviously P �

A
(𝜆n) > 0 and PA(𝜆n) > 0 , 

so we have

From Lemmas  1 and 2, the sequence is monotone decreasing and bounded 
below. So it converges, see p.183 in [12].

Theorem 2 The sequence {�n} converge to �max.

Proof From Lemmas  1 and 2, the sequence is monotone decreasing and bounded 
below. So it converges to, say �̂� ≥ 𝜆max . Taking the limit of the iteration

�0 = 3,

�n+1 = �n −
PA(�n)

P �
A
(�n)

, for n ≥ 0.

P �
A
(𝜆) < P �

A
(𝜆n) for𝜆 ∈ [𝜆max, 𝜆n).

∫
𝜆n

𝜆max

P �
A
(𝜆) d𝜆 < ∫

𝜆n

𝜆max

P �
A
(𝜆n) d𝜆.

PA(𝜆n) − PA(𝜆max) < P �
A
(𝜆n)(𝜆n − 𝜆max).

𝜆max < 𝜆n −
PA(𝜆n)

P �
A
(𝜆n)

= 𝜆n+1.

𝜆n+1 = 𝜆n −
PA(𝜆n)

P �
A
(𝜆n)

< 𝜆n.
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we have

by the continuity of PA(�) and P �
A
(�) . Since �̂� ≥ 𝜆max > 3 , the inequality P �

A
(�̂�) > 0 

holds. So we have PA(�̂�) = 0 . Because the root of PA(�) = 0 is unique, �̂� is identical 
to �max.

Now we state the rate of convergence.

Theorem 3 The sequence {�n} converge to �max quadratically.

Proof For each iteration of �n , by the second-order Taylor’s theorem (p.254 in [12]), 
there exists �n ∈ (�max, �n) , we have

Hence we have

By Theorem  1, we know 𝜆max > 3 , so P �
A
(𝜆max) = 3𝜆max(𝜆max − 2) > 0 and 

P ��
A
(𝜆max) = 6(𝜆max − 1) > 0 . We also know 𝜆n+1 − 𝜆max > 0 . Hence we have

which implies quadratic convergence.

�n+1 = �n −
PA(�n)

P �
A
(�n)

,

�̂� = �̂� −
PA(�̂�)

P �
A
(�̂�)

0 = PA(�max)

= PA(�n) + P �
A
(�n)(�max − �n) +

1

2
P ��
A
(�n)(�max − �n)

2.

�n −
PA(�n)

P �
A
(�n)

− �max =
1

2

P ��
A
(�n)

P �
A
(�n)

(�n − �max)
2,

�n+1 − �max =
1

2

P ��
A
(�n)

P �
A
(�n)

(�n − �max)
2

≈
1

2

P ��
A
(�max)

P �
A
(�max)

(�n − �max)
2.

�n+1 − �max ≈
1

2

P ��
A
(�max)

P �
A
(�max)

(�n − �max)
2,
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4  Computational Experiment

We have a computational experiment to compare Newton’s method with other root-
finding methods. The experiment consists of the following steps.

Step 1. Generate an inconsistent pairwise comparison matrix A of order 3, at 
random.

Step 2. Iterate the following three methods until the differences between �max and 
the obtained values become below the threshold and store the numbers of iterations.

– Newton’s method with the initial value of �0 = 3 . 

– Secant method1 with initial values of �−1 = 3 and �0 = 3 + detA . 

– Bisection method2 with initial interval of [�lower
0

, �
upper

0
] = [3, 3 + detA] . 

where 

if PA(�n+1) and PA(�
lower
n

) have the same sign, and 

if PA(�n+1) and PA(�
upper
n ) have the same sign, for n = 0, 1, 2.….

Figure 2 shows the distributions of the numbers of iterations until convergence by 
each method, after repeating these steps 5,000 times. We set the threshold of conver-
gence to 10−12 here.

The summary statistics of the 5,000 numbers of iterations until convergence by 
each method are shown in Table 2.

For example, for the pairwise comparison matrix of

�n+1 = �n −
PA(�n)

P �
A
(�n)

, n = 0, 1, 2.… .

�n+1 = �n −
PA(�n)(�n − �n−1)

PA(�n) − PA(�n−1)
, n = 0, 1, 2.… .

�n+1 =
�lower
n

+ �
upper
n

2
, n = 0, 1, 2.… ,

[�lower
n+1

, �
upper

n+1
] = [�n+1, �

upper
n

]

[�lower
n+1

, �
upper

n+1
] = [�lower

n
, �n+1],

A =

⎛⎜⎜⎝

1 5 5

1∕5 1 1∕7

1∕5 7 1

⎞⎟⎟⎠
,

1 https:// encyc loped iaofm ath. org/ wiki/ Secant_ method
2 https:// encyc loped iaofm ath. org/ wiki/ Dicho tomy_ method

https://encyclopediaofmath.org/wiki/Secant_method
https://encyclopediaofmath.org/wiki/Dichotomy_method
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obtained values converge in 5, 8, and 41 iterations by Newton’s method, the secant 
method, and the bisection method, respectively. This case can be considered typical 
because these are the median of each method. The transitions of the values toward 
convergence for this matrix are shown in Fig. 3.

This experiment confirms the speed of convergence of Newton’s method 
empirically.

Newton secant bisection

10
20

30
40

Fig. 2  Distributions of the number of iterations until convergence

Table 2  Summary statistics 
of the distributions of three 
methods

minimum median mode mean maximum

Newton 2 5 5 5.3926 11
secant 3 8 8 8.9066 25
bisection 30 41 41 40.3576 48
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5  Conclusion

In this note, we entirely use the favorable properties from which A is third order. 
About other properties concerning third-order pairwise comparison matrices, 
see [9]. The key contribution of this note is findings of the possible area where 
the root of the characteristic equation and to show the convergence of Newton’s 
method from the initial value �0 = 3 . We also confirm the superiority of New-
ton’s method compared to other root-finding methods—the secant method and 
the bisection method. This is considered as a direct consequence of the quadratic 
convergence of Newton’s method.

For the matrices for fourth and more order dimensions, expanding this note is 
left to future research.

2 4 6 8 10

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

iteration

ob
te

in
ed

 v
al

ue

Newton
secant
bisection

Fig. 3  Transition toward convergence in a typical case



1 3

Operations Research Forum            (2021) 2:30  Page 11 of 11    30 

– For fourth-order pairwise comparison matrix, there usually exist two roots of the 
characteristic equation. So, if we set the initial value �0 = 4 , Newton’s method 
does not generally converge to �max.

– We need to study the appropriate initial value and the convergence property.
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