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Chevalley groups over Dedekind domains and

some problems for K2(2,ZS)

Jun Morita

Abstract. We review Chevalley groups over Dedekind domains and
associated K2 groups. We also recall some old results on K2(2,ZS).
Then, we show here several new examples and computations.

1. Introduction

Let Z be the ring of rational integers, and S a set of prime numbers. Put

ZS = Z[
1

q
]q∈S . We are interested in the following problems.

Problem 1. Determine the group structure of K2(2,ZS) for a new set S

of prime numbers.

Problem 2. Find a new set S of prime numbers such that

K2(2,ZS) ' Z⊕qq∈S(Z/qZ)× .

Problem 3. For a given prime number p, find a set S = {q1, · · · , qr} of

prime numbers, satisfying (∗) below, as small as possible.

(∗)

{
q1 < q2 < · · · < qr−1 < qr = p,

K2(2,ZS) ' Z⊕qq∈S(Z/qZ)×.
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Let pi be the i-th prime number. That is,

p1 = 2, p2 = 3, p3 = 5, · · · .

If we take p = pr and choose S = {p1, p2, p3, · · · , pr}, then S is the largest

set satisfying (∗) above (cf. Theorem 5.4 or [19]).

To discuss these problems, we will review Chevalley groups over Dedekind

domains in Section 2, and their presentations in Section 3. In the same

Section 3, we will also review K2(Φ, · ), where Φ is the root system corre-

sponding to a Chevalley group. We will specify SL(2, · ) in Section 4, and

we will recall several old results on K2(2,ZS) in Section 5. Then, we will

introduce a criterion, in Section 6, to have new examples. In Section 7, we

will mention several facts on Schur multipliers and loop groups, and so on.

2. Chevalley groups

Before explaining details, we just want to see what is interesting:

• A Chevalley group is a functor from the category of commutative rings

to the category of groups. We can discuss rings and groups at the same

time, which means that it is interesting to find a good relation between

rings and groups.

• Tits systems, presentations and universal central extensions are very

important in group theory. We discuss these topics for some algebraic

groups over Dedekind domains. Then, we frequently obtain such interesting

structures.

• Loop groups are Chevalley groups over Laurent polynomial rings, which

are finite dimensional algebraic groups. Also, loop groups can be viewed as

affine Kac-Moody groups, which are infinite dimensional algebraic groups.

We can approach in two ways.

• It is interesting to find a certain property of each prime number if one

takes ZS as a Dedekind domain. Many relations inK2(2,ZS) are dependent

on the choice of prime numbers in S. We can study prime numbers using

Steinberg symbols.
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In this sense, we can draw the following historical flow:

Eiichi Abe Nagayoshi Iwahori Robert V. Moody

Hopf Algebra p-adic Algebraic Group Kac-Moody Theory

Chevalley Group Iwahori Subgroup Infinite Root System

Algebraic K-theory Iwahori-Hecke Algebra Quasicrystal

↘ ↓ ↙

Chevalley Group over Dedekind Domain

・Loop Group (⇒ ∞ Dimension)

・Tits System (BN-Pair)

・Presentation ((A), (B), (B′), (C))

・Universal Central Extension

・K2 group (Symbol { · , · })
・Heredity Theorem (D ⇒ D[1/p])

The author is deeply obliged to great professors, named E.Abe, N. Iwahori

and R.V.Moody, to study Chevalley groups over Dedekind domains.

Let Φ ⊂ V be a reduced irreducible root system in the sense of Bourbaki

(cf. [3]), satisfying:

(RS1) |Φ | <∞, 〈Φ〉 = V, 0 6∈ Φ.

(RS2) Rα ∩ Φ = {±α} for all α ∈ Φ.

(RS3) σα(Φ) = Φ for all α ∈ Φ.

(RS4) 2
(α, β)

(α, α)
∈ Z for all α, β ∈ Φ.

Here V is an n-dimensional Euclidean space, and σα(v) = v − 2
(α, v)

(α, α)
α for

all v ∈ V (' Rn). We also assume that Φ is reduced and irreducible. Let g

be a finite dimensional complex simple Lie algebra of type Φ (cf. [6]). For

a finite dimensional faithful representation ρ of g on V , we obtain an affine

group scheme Gρ(Φ, · ), that is a representable covariant functor from

commutative rings to groups. This is simply called a Chevalley scheme and

represented by a Hopf algebra HZ over Z, i.e. Gρ(Φ, · ) = AlgZ(HZ, · ),
(cf. [1],[4]). A representation ρ is called simply connected if its weight

lattice is full. We fix a fundamental system (or a base) Π of Φ (cf. [3],[6]).
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For example, if Φ is of type An, then g = sl(n + 1,C). If ρ is simply

connected (or ρ is a natural action on Cn+1), then we obtain Gρ(An, · ) =
SL(n + 1, · ) and HZ = Z[ξij ]/(det(ξij) − 1), where 1 ≤ i, j ≤ n + 1 and

∆(ξij) =
∑n+1

k=1 ξik ⊗ ξkj .

For a commutative ring R, we call G(Φ, R) = Gρ(Φ, R) a Chevalley

group over R of type Φ associated with ρ. For each α ∈ Φ, there is

an “exponential” homomorphism xα of the additive group R+ to Gρ(Φ, R).

That is, xα(t) = exp ρ(teα) ∈ GL(VR) for t ∈ R and eα is a part of a fixed

Chevalley basis of g, where VR = R⊗VZ and VZ is an addmissible lattice in

V (cf. [6],[25]). Put E(Φ, R) = Eρ(Φ, R) = 〈xα(t) | α ∈ Φ, t ∈ R〉, which is

called the elementary subgroup of Gρ(Φ, R). If ρ is simply connected, then

we write Gsc(Φ, R) and Esc(Φ, R) respectively. If R is a field, a local ring,

or a Euclidean domain, then Gsc(Φ, R) = Esc(Φ, R), (cf. [1],[24],[25]).

In Eρ(Φ, R) ⊂ Gρ(Φ, R), we obtain the following:

(A) xα(s)xα(t) = xα(s+ t),

(B) [xβ(s), xγ(t)] =
∏

iβ + jγ ∈ Φ
i, j > 0

xiβ+jγ(Nβ,γ,i,js
itj),

(B′) wα(u)xα(t)wα(−u) = x−α(−u−2t),

(C) hα(u)hα(v) = hα(uv)

for all α, β, γ ∈ Φ (β ± γ 6= 0), s, t ∈ R and u, v ∈ R×, where wα(u) =

xα(u)x−α(−u−1)xα(u), hα(u) = wα(u)wα(−1), and Nβ,γ,i,j ∈ Z (structure

constants), and where R× is the multiplicative group of R (cf. [1],[24],[25]).

Let D be a Dedekind domain, and we choose p ∈ D as a nonzero prime

element. Suppose that D× −→ (D/pD)× is surjective. Then, we let

N = 〈wα(u) | α ∈ Φ, u ∈ D[1p ]
×〉,

T = 〈hα(u) | α ∈ Φ, u ∈ D[1p ]
×〉,

T0 = 〈hα(u) | α ∈ Φ, u ∈ D×〉,
W = N/T : “Weyl Group”,

Wa = N/T0 'W ⋉Q : “Affine Weyl Group”,

Q = T/T0 ' Zn, where n = dimV = rank(Φ) = rank(g),

Sa = {wα(1) | α ∈ Π} ∪ {w−α0(p)},
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where α0 ∈ Φ is the highest root. Set Q+ =
∑

α∈Π Z≥0α and Q− = −Q+,

and put Φ± = Φ ∩Q±. Then, Φ = Φ+ ∪ Φ− and Φ− = −Φ+ (cf. [3],[6]).

Let B be the subgroup of Eρ(Φ, D[1p ]) generated by

xα(t), hα(u), x−α(pt)

for all α ∈ Φ+, t ∈ D and u ∈ D×. This B is called an Iwahori subgroup,

which is usually denoted by BI (cf. [7],[24]).

Theorem 2.1. (cf. [2]) Notation is as above. Then, (E(Φ, D[1p ]), B,N, Sa)

is a Tits system, and

E(Φ, D[
1

p
]) =

∪
w∈Wa

BwB (disjoint).

Remark 2.2. (cf. [7]) If D = Zp and D[1p ] = Zp[
1
p ] = Qp, then we obtain

an original Iwahori-Matsumoto decomposition.

3. Presentations and K2(Φ, · )

Let St(Φ, R) be the group generated by x̂α(t) for all α ∈ Φ and t ∈ R

with the defining relations corresponding to (A), (B), (B′). It is called

a Steinberg group. There is a natural homomorphism φ of St(Φ, R) to

Gsc(Φ, R) such that φ(x̂α(t)) = xα(t), (cf. [1],[24],[25]).

Put K2(Φ, R) = Ker[St(Φ, R)
ϕ−→ Gsc(Φ, R)], and note Esc(Φ, R) =

Im[St(Φ, R)
ϕ−→ Gsc(Φ, R)]. For α ∈ Φ and u ∈ R×, we put

ŵα(u) = x̂α(u)x̂−α(−u−1)x̂α(u),

ĥα(u) = ŵα(u)ŵα(−1).

For a fixed long root α ∈ Φ, we define

{u, v} = {u, v}α = ĥα(u)ĥα(v)ĥα(uv)
−1,

called a Steinberg symbol. Let C(R) be the subgroup of St(Φ, R) generated

by {u, v} for all u, v ∈ R×. Then, C(R) is central, and C(R) ⊂ K2(Φ, R).

Let Eu(Φ, R) be the group generated by x̃α(t) for all α ∈ Φ and t ∈ R

with the defining relations corresponding to (A), (B), (B′), (C). Then, the

following two conditions are equivalent:
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• K2(Φ, R) = C(R);

• Eu(Φ, R)
∼−→ Esc(Φ, R).

A commutative ring R is called universal for Φ if K2(Φ, R) = C(R).

Theorem 3.1. (cf. [2]) Let D be a Dedekind domain, and p ∈ D a nonzero

prime element. Suppose that D× −→ (D/pD)× is surjective. If D is

universal for Φ, then D[1p ] is also universal for Φ.

Hence, we obtain the following two interesting topics:

• Surjectivity of D× → (D/pD)×, and Tits System;

• Surjectivity of D× → (D/pD)×, and Heredity of Universality.

Suppose that R is universal for Φ. If R satisfies some ideal or unit condition

(for example, there exists a unit u ∈ R× such that u2 − 1 ∈ R× for A1

type), or if rank(Φ) >> 0, then St(Φ, R) is a universal central extension of

Esc(Φ, R), and K2(Φ, R) is the Schur multiplier of Esc(Φ, R). Note that if

D× → (D/pD)× is surjective, then K2(Φ, D[1p ]) = K2(Φ, D)p · C(D[1p ]),

where K2(Φ, D)p = Im[K2(Φ, D) → K2(Φ, D[1p ])], (cf. [2],[19],[24],[25]).

Example 3.2. We obtain the following picture starting from Z.

↗ · · ·
Z[12 ,

1
q ] → · · ·

↗ ↘ · · ·
Z[12 ] → · · · · · · · · · e

↗ ↘ ↗ · · · |
Z Z[12 ,

1
3 ] → · · · “perfect”

↘ ↗ ↘ · · · |
Z[13 ] → · · · · · · · · · c

↘ ↗ · · ·
Z[13 ,

1
q′ ] → · · ·

↘ · · ·

Namely, D = Z[ 1q1 , · · · ,
1
qn
] (n ≥ 0) appeared in this picture is univer-

sal for Φ, where we assume that D× ↠ (D/pD)× is surjective in every

step D → D[1p ]. Here p is a prime number (see Theorem 3.1 above),
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and the word “perfect” means that SL(2, D) is perfect, i.e. SL(2, D) =

[SL(2, D), SL(2, D)]. Note that SL(2, D) is perfect if and only if 2, 3 ∈
{q1, · · · , qn} (cf. [25]). That is, we can see that 22 − 1 = 3 ∈ D× and

SL(2, D) = [SL(2, D), SL(2, D)] if 2, 3 ∈ {q1, · · · , qn}, and we can also

see that D/p′D ' Z/p′Z and SL(2,Z/p′Z) 6= [SL(2,Z/p′Z), SL(2,Z/p′Z)],
implying SL(2, D) 6= [SL(2, D), SL(2, D)], if p′ = 2 or 3 and if p′ 6∈
{q1, · · · , qn}. We also notice that D = Z and p = 2, 3 if n = 0.

4. SL(2, · ) and K2(2, · )

The standard stable K2 is given by

K2(R) = Ker[St(R) −→ SL(R)] = lim
n
K2(n,R),

(cf. [25]), where

St(R) = limn St(n,R), St(n,R) = St(An−1, R),

SL(R) = limn SL(n,R), SL(n,R) = Gsc(An−1, R),

K2(n,R) = Ker[St(n,R)
ϕ−→ SL(n,R)] = K2(An−1, R),

and the symbol limn means an inductive limit by inclusions SL(n,R) ↪→
SL(n + 1, R) or homomorphisms St(n,R) → St(n + 1, R). Note that

St(n,R) is not necessarily a subgroup of St(n+ 1, R).

Let S be a set of (finite or infinite) prime numbers, and put

ZS = Z[
1

q
]q∈S .

Then, as is well-known,

K2(ZS) = K2(n,ZS) ' Z/2Z⊕qq∈S(Z/qZ)×

for all n ≥ 3 (cf. [24],[25]).

For a commutative ring R, we define the Steinberg group St(2, R), as

before, by the generators

x̂12(t) and x̂21(t) for all t ∈ R

and the following defining relations

(A) x̂ij(s+ t) = x̂ij(s)x̂ij(t),
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(B′) ŵij(u)x̂ij(t)ŵij(−u) = x̂ji(−u−2t)

for all s, t ∈ R and u ∈ R×, where 1 ≤ i 6= j ≤ 2 and ŵij(u) =

x̂ij(u)x̂ji(−u−1)x̂ij(u), and where R× is the multiplicative group of R.

There is a canonical group homomorphism

φ : St(2, R) −→ SL(2, R) ⊂ GL(2, R)

defined by

φ(x̂12(t)) = x12(t) =

(
1 t

0 1

)
, φ(x̂21(t)) = x21(t) =

(
1 0

t 1

)
.

Put K2(2, R) = Ker(φ) and E(2, R) = Im(φ). If R is a field, a local ring,

or a Euclidean domain, then E(2, R) = SL(2, R).

For u, v ∈ R×, put

{u, v} = ĥ12(u)ĥ12(v)ĥ12(uv)
−1,

which is called a Steinberg symbol, where ĥ12(u) = ŵ12(u)ŵ12(−1). Then,

{u, v} ∈ K2(2, R), and {u, v} is central. Set

C(R) = 〈{u, v} | u, v ∈ R×〉,

and Eu(2, R) = St(2, R)/C(R). Then, we obtain the following Matsumoto

relations (cf. [10], Section 7.3).

Theorem 4.1. (cf. [10]) Notation is as above. Then:

(M1) If t, u, v ∈ R×, then {t, u}{tu, v} = {t, uv}{u, v}.

(M2) If t, u ∈ R×, then {t, u}{t,−u−1} = {t,−1}.

(M3) If t, u ∈ R×, then {t, u} = {u−1, t}.

(M4) If t, u ∈ R×, then {t, u} = {t,−tu}.

(M5) If t, u, v ∈ R×, then {t, u2v} = {t, u2}{t, v}.

(M6) If t, 1− t, u ∈ R×, then {t, u} = {t, (1− t)u}.

As easy direct consequences, we obtain:

(M7) If t ∈ R×, then {t2,−1} = 1.
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(M8) If t, u ∈ R× and t+ u = 1, then {t, u} = 1.

(M9) If t, u ∈ R× and t+ u = 1, then {t, uk} = 1 for all k ∈ Z.

(M10) If t, u, v ∈ R×, then {t2, u}{t2, v} = {t2, uv}.

By [2], we can reach the following two theorems.

Theorem 4.2. (cf. Theorem 2.1, [2]) Let D be a Dedekind domain, and

p ∈ D a nonzero prime element. Suppose that the canonical homomorphism

of D× into (D/pD)× is surjective. Then,

E(2, D[
1

p
]) =

∪
m∈Z

B

(
pm 0

0 p−m

)
B ∪ B

(
0 pm

−p−m 0

)
B,

where B is the Iwahori subgroup generated by(
1 t

0 1

)
,

(
u 0

0 u−1

)
,

(
1 0

pt 1

)

for all t ∈ D and u ∈ D×.

Theorem 4.3. (cf. [2]) Under the same assumption, we have:

St(2, D[
1

p
]) =

∪
m∈Z

B̂ĥ12(p
m)B̂ ∪ B̂ŵ12(p

m)B̂,

where B̂ is the Iwahori subgroup generated by

C(D[
1

p
]), x̂12(t), ĥ12(u), x̂21(tp)

for all t ∈ D and u ∈ D×.

Furthermore, we obtain the following as in Section 3.

Theorem 4.4. (cf. [2],[19]) Under the same assumption, we have:

K2(2, D[1p ]) ⊂ B̂,

K2(2, D[1p ]) = K2(2, D)p · C(D[1p ]),

K2(2, D[1p ]) = K2(2, D)p · 〈{p, u} | u ∈ D×〉,

where K2(2, D)p = Im[K2(2, D) −→ K2(2, D[1p ])].
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Proof. Put B̂′ = 〈x̂12(t), ĥ12(u), x̂21(tp) | t ∈ D, u ∈ D×〉 ⊂ B̂, then B̂ =

B̂′ ·C(D[1p ]). By Theorem 4.2 and Theorem 4.3, we obtainK2(2, D[1p ]) ⊂ B̂.

Let x̂ ∈ K2(2, D[1p ]). Then, we can write x̂ = ŷẑ for some ŷ ∈ B̂′ and

ẑ ∈ C(D[1p ]), which implies 1 = φ(x̂) = φ(ŷ)φ(ẑ) = φ(ŷ).

K2(2, D[1p ]) ⊂ B̂ = B̂′ · C(D[1p ]) ⊂ St(2, D[1p ]) → E(2, D[1p ])

↑ ↑
∪

K2(2, D) ⊂ St(2, D) → E(2, D)

Then, there is an element ŷ′ ∈ St(2, D) satisfying π̂(ŷ′) = ŷ under the

canonical map π̂ : St(2, D) → St(2, D[1p ]). Hence, ŷ′ ∈ K2(2, D) and ŷ ∈
K2(2, D)p, which implies K2(2, D[1p ]) = K2(2, D)p ·C(D[1p ]). In particular,

we have K2(2, D[1p ]) = K2(2, D)p · 〈{p, u} | u ∈ D×〉.

5. Old Results

By [19], we have the following additional relations (cf. Section 7.4, 7.5),

which are essentially obtained from Matsumoto relations in Theorem 4.1.

Theorem 5.1. (cf. [19]) Let R be a commutative ring, and let R× be the

multiplicative group of R. Then, in K2(2, R):

(1) If z, z′, r, p ∈ R× and z′ = z + rp, then, (cf. Section 7.3),

{p, z′} = {p, z}{ r
z′
,
1

r
}−1{ r

z′
,
z

rz′
} = {p, z}{z, r

z′
}−1{z′, r

z′
}.

(2) If t, u, 1− u ∈ R×, then

{t, u}{t, 1− u} = {t, u(1− u)}.

(3) If t, u, v, 1− u ∈ R×, then

{t, uv}{t, (1− u)v} = {t, v}{t, u(1− u)v}.

(4) If 2, 3, t ∈ R×, then

{t,−3}{t, 2} = {t,−1}{t, 6}.

(5) If t, u, v, a ∈ R× and u+ v = a2, then

{t, u}{t, v} = {t, uv}.

(6) If t, u ∈ R× and t = u2 + 1, then

{t,−1}2 = 1.
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(7) If 2, t, u ∈ R×, k ∈ Z and 2kt = u2 + 1, then

{t,−1}2 = 1.

(8) If 2, t, u ∈ R× and t = 2u2 + 1, then

{t,−1}2 = 1.

(9) If t, u ∈ R×, then

〈{t,±uk} | k ∈ Z〉 = 〈{t,−1}, {t,±u}, {t, u2}〉.

(10) If t, u ∈ R×, then the following two conditions (i) and (ii) are

equivalent.

(i) {t, u}{t,−1} = {t,−u}.
(ii) {t, u}{t, u−1} = 1.

(11) If one of the two conditions in (10) holds, then

{t, uk} = {t, u}k

and

{t,−uk} = {t,−1}{t, uk} = {t,−1}{t, u}k

for all k ∈ Z.

(12) If 2, t ∈ R×, then

{t, 2}{t,−1} = {t,−2}.

(13) If 2, t ∈ R×, then

{t, 2}{t, 12} = 1.

(14) If 2, t ∈ R×, then

{t, 2k} = {t, 2}k for all k ∈ Z.

(15) If 2, t ∈ R×, then

{t,−2k} = {t,−1}{t, 2k} = {t,−1}{t, 2}k for all k ∈ Z.

(16) If 2, t ∈ R×, then

〈{t,±2k} | k ∈ Z〉 = 〈{t,−1}, {t, 2}〉.

On the other hand, we already know the following two facts.

Theorem 5.2. (cf. [26],[19]) Let S be the set of all prime numbers. Then:

K2(2,ZS) = K2(2,Q) ' Z⊕qq∈S(Z/qZ)×.
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Theorem 5.3. (cf. [10],[12])

K2(2,Z) = 〈{−1,−1}〉 ' Z.

Furthermore, we obtain the following results using previous relations.

Theorem 5.4. (cf. [19]) Let S = {p1, p2, p3, · · · , pn} be the set of the first

n successive prime numbers, that is, p1 = 2, p2 = 3, p3 = 5, · · · . Put

ZS = Z[ 1p1 , · · · ,
1
pn
]. Then:

K2(2,ZS) ' Z⊕qq∈S(Z/qZ)×.

Theorem 5.5. (cf. [19]) Let S = {2, 5}, {2, 3, 7}, {2, 3, 11}, {2, 3, 5, 11},
{2, 3, 13}, {2, 3, 7, 13}, {2, 3, 17}, {2, 3, 5, 19}. Put ZS = Z[1q ]q∈S. Then,

K2(2,ZS) ' Z⊕qq∈S(Z/qZ)×.

Theorem 5.6. (Three Unit Formula, cf. [20]) Let t, u, v ∈ R× and put

a = u+ v − t ∈ R. Then :

x̂21(a)x̂12(−
1

u
)x̂21(

au

v
)x̂12(

v

tu
)x̂21(−

at

v
)x̂12(

1

t
) = { t

v
, u}{t,−v}−1.

Theorem 5.7. (cf. [20]) K2(2,Z[13 ]) ' Z⊕ (Z/3Z)×.

Here, we notice the following fact.

Theorem 5.8. (cf. [2]) Let p be a prime number. Then, the following four

conditions are equivalent.

(1) Z× ↠ (Z/pZ)×;

(2) p = 2, 3;

(3) K2(2,Z[1p ]) = C(Z[1p ]);

(4) Eu(2,Z[1p ])
∼−→ SL(2,Z[1p ]).

Proof. We can easily find (1) ⇔ (2) as well as (3) ⇔ (4). By Theorem 5.1,

we see (2) ⇒ (3). To prove (3) ⇒ (2), we suppose K2(2,Z[1p ]) = C(Z[1p ]).
Applying the surjection K2(2,Z[1p ]) → K2(Z[1p ]), (cf. [5]), we obtain

K2(Z[
1

p
]) ' Z/2Z⊕ (Z/pZ)× ' 〈{−1,−1}, {p,−1}〉 '

{
Z/2Z ;

Z/2Z⊕ Z/2Z ,

which shows p = 2, 3.
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6. New Examples

We may simply use a ≡ b instead of a ≡ b (mod K ′). In this section, we

will have several new examples and computations.

Theorem 6.1. (Criteiron) Let q1, · · · , qn, p be distinct prime numbers. Put

D = Z[ 1q1 , · · · ,
1
qn
]. Suppose that D is universal for Φ = A1, and that

D× → (D/pD)× is surjective. We also assume

K2(2, D) = C(D) ' Z⊕q1≤i≤n(Z/qiZ)×,

which is naturally corresponding to K2(2, D) → K2(D). Put K ′ = K2(2, D)p

= Im[K2(2, D) → K2(2, D[1p ])]. If there exists u ∈ D× such that

{p, u}p−1 ≡ 1 (mod K ′)

and

K2(2, D[
1

p
]) = K ′ · 〈{p, u}〉,

then we obtain:

K2(2, D[
1

p
]) = C(D[

1

p
]) ' Z⊕

(
q1≤i≤n (Z/qiZ)×

)
⊕ (Z/pZ)×.

Proof. Put G = K2(2, D[1p ]) and G′ = K2(D[1p ]), and let ϕ : G → G′

be a natural homomorphism. Set H = K ′ = K2(2, D)p = Im[K2(2, D) →
K2(D[1p ])], and H

′ = ϕ(H). Then, G/H = 〈{p, u} mod H〉 and {p, u}p−1 =

1 in G/H. On the other hand, G′/H ′ ' (Z/pZ)×. Since ϕ is surjective

(cf. [5]) and induces a natural epimorphism

G/H ↠ G′/H ′,

we obtainG/H ' G′/H ′, which means Ker ϕ ⊂ H and Ker ϕ = 〈{−1,−1}2〉.
Note that K2(2, D[1p ]) is a finitely generated abelian group. We also note

that there is a canonical homomorphism

ν : K2(2, D[
1

p
])

µ→ K2(2,Q)
λ↠ 〈{−1,−1}〉 ' Z,

where ν = λ ◦µ, and where λ is the projection (cf. Theorem 5.2) satisfying

{v, w} λ7→ 1, {±v,∓w} λ7→ 1, {−v,−w} λ7→ {−1,−1}
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for all v, w ∈ Q>0 (cf. [10],[12],[25]) and µ is induced by the embedding

D[
1

p
] → Q. Using ν and ϕ, we can show

{p, u}p−1 ∈ q1≤i≤n(Z/qiZ)× = the torsion part of K ′.

Hence,K2(2, D[1p ]) is a direct sum of a free abelian groupX = 〈{−1,−1}〉 '
Z and a finite abelian group Y . Using the fact Ker(ϕ) ⊂ X, we have

Y ' ϕ(Y ) ' q1≤i≤n(Z/qiZ)× ⊕ (Z/pZ)×,

which implies

K2(2, D[
1

p
]) = X ⊕ Y ' Z⊕

(
q1≤i≤n (Z/qiZ)×

)
⊕ (Z/pZ)×.

Theorem 6.2. Let S = {2, 3, 11, 23}, {2, 3, 5, 7, 29}, {2, 3, 5, 31}, {2, 3, 37},
{2, 3, 5, 7, 41}, {2, 3, 7, 43}, {2, 3, 7, 11, 43}, {2, 3, 11, 23, 47}. Then,

K2(2,ZS) ' Z⊕qq∈S(Z/qZ)×.

Proof 1. Suppose S = {2, 3, 11, 23}.

Let K = K2(2, D[
1

23
]), D = Z[

1

2
,
1

3
,
1

11
], p = 23 and put

K ′ = K2(2, D)23 = Im[K2(2, D) → K2(2, D[
1

23
])].

Then,

K = K ′ · 〈{−23,±2k3ℓ11m} | k, `,m ∈ Z〉
= K ′ · 〈{−23,±2k11ℓ} | k, ` ∈ Z〉
= K ′ · 〈{23,±2k11ℓ} | k, ` ∈ Z〉
= K ′ · 〈{23,±2k} | k ∈ Z〉
= K ′ · 〈{23,−1}, {23, 2}〉.
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Note 11 + (−2) = 32. Then

{23,−1}2 = {23,−1
2}{23, 2}{23,−1}

= {23, 11}{23, 2}{23,−1}
= {23, 11}{23,−2}
= {23,−22}
= 1.

Note 11·23
28

+ 3
28

= 1. Then, we obtain

{23, 11·23
28

}{23, 3
28
} = {23, 11·23

28
· 3
28
},

{23,−11
28
}{23, 3

28
} = {23,−11

28
· 3
28
},

{23, 1
29
}{23, 3

28
} = {23, 1

29
· 3
28
},

{23, 12}{23, 3} = {23, 32}

and

{23, 2}{23, 3} = {23, 6}.

Hence,

{23, 2}3{23, 3} = {23, 4}{23, 2}{23, 3}
= {23, 4}{23, 6}
= {23, 24}
= {24, 1

23}
= {24,−1}
≡ 1.

Note 28 = 256 = 11 · 23 + 3. Then,

{23, 28} ≡ {23, 3},
{23, 2}8 = {23, 28} ≡ {23, 3} ≡ {23, 2}−3,

{23, 2}11 ≡ 1.

Hence, we obtain {23,−2}11 ≡ {23,−1} and {23,−2}22 ≡ 1. Then,

K = K ′ · 〈{23,−1}, {23, 2}〉 = K ′ · 〈{23,−2}〉

and {23,−2}22 ≡ 1. Therefore,

K2(2,Z[
1

2
,
1

3
,
1

11
,
1

23
]) ' Z⊕ (Z/3Z)× ⊕ (Z/11Z)× ⊕ (Z/23Z)×.

Proof 2. Suppose S = {2, 3, 5, 7, 29}.
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Let K = K2(2, D[
1

29
]), D = Z[

1

2
,
1

3
,
1

5
,
1

7
], p = 29 and put

K ′ = K2(2, D)29 = Im[K2(2, D) → K2(2, D[
1

29
])].

Then,

K = K ′ · 〈{−29,±2k3ℓ5m7n} | k, `,m, n ∈ Z〉
= K ′ · 〈{−29,±2k3ℓ7m} | k, `,m ∈ Z〉
= K ′ · 〈{29,±2k3ℓ7m} | k, `,m ∈ Z〉
= K ′ · 〈{29,±2k3ℓ} | k, ` ∈ Z〉.

Note 2
29 + 33

29 = 1. Then we obtain

{29, 2
29}{29,

33

29} = {29, 2·33
292

},
{29,−2}{29,−33} = {29, 2 · 33},
{29,−2}{29,−3}{29, 32} = {29, 6}{29, 32}

and

{29,−2}{29,−3} = {29, 6}.

Here we notice {29,−2}{29, 3} = {29,−6}.

Note 25

3 − 29
3 = 1. Then,

{29, 253 }{29,−
29
3 } = {29, 2

5·(−29)
32

},
{29, 253 }{29,

1
3} = {29, 25

32
},

{29, 25 · 3}{29, 3} = {29, 25}{29, 32},
{29, 6}{29, 3} = {29, 2}{29, 32},
{29,−2}{29,−3}{29, 3} = {29, 2}{29, 32},
{29,−1}{29,−3}{29, 13} = 1

and

{29,−1}2 = 1.

Since 211 = 2 · 5 · 7 · 29 + 2 · 32, we obtain

{29, 211} ≡ {29, 2 · 32} = {29, 2}{29, 32},
{29, 210} ≡ {29, 32}.

Note 25 = 29 + 3. Then,

{29, 25} ≡ {29, 3}.
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Since −25 = (−1) · 29 + (−3), we obtain

{29,−3} ≡ {29,−25}
= {29,−1}{29, 25}
≡ {29,−1}{29, 3}.

Hence,

K = K ′ · 〈{29,±2k3ℓ} | k, ` ∈ Z〉
= K ′ · 〈{29,−1}, {29, 2}, {29,±3}, {29, 32}, {29,±6}〉
= K ′ · 〈{29,−1}, {29, 2}〉.

Note 33 = 29− 2. Then

{29, 33} ≡ {29,−2} = {29,−1}{29, 2},

which implies

{29, 214} = {29, 210}{29, 24}
≡ {29, 32}{29, 24}
≡ {29, 3}2{29, 2}4

≡ {29, 3}3{29, 2}−1

≡ {29,−1}.

Therefore,

K = K ′ · 〈{29, 2}〉

and {29, 2}28 ≡ 1. Hence,

K2(2,Z[
1

2
,
1

3
,
1

5
,
1

7
,
1

29
])

' Z⊕ (Z/3Z)× ⊕ (Z/5Z)× ⊕ (Z/7Z)× ⊕ (Z/29Z)×.

Proof 3. Suppose S = {2, 3, 5, 31}.

Let K = K2(2, D[
1

31
]), D = Z[

1

2
,
1

3
,
1

5
], p = 31 and put

K ′ = K2(2, D)31 = Im[K2(2, D) → K2(2, D[
1

31
])].
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Then,

K = K ′ · 〈{31,±2k3ℓ5m} | k, `,m ∈ Z〉
= K ′ · 〈{31,±2k3ℓ} | k, ` ∈ Z〉
= K ′ · 〈{31,−1}, {31, 2}, {31,±3}, {31, 32}, {31,±6}〉

Note 6
5 − 1

5 = 1. Then,

{31, 65}{31,−
1
5} = {31, 65 · (−1)

5 },
{31,−62}{31, 6} = {31,−63},
{31, 62}{31,−1}{31, 6} = {31,−6}{31, 62},
{31,−1}{31, 6} = {31,−6} = {31,−1}{31, 2}{31, 3}

and

{31, 6} = {31, 2}{31, 3}.

Since 52

31 + 6
31 = 1, we obtain

{31, 5231}{31,
6
31} = {31, 5231 · 6

31},
{31,−52}{31,−6} = {31, 52 · 6},
{31,−1}{31, 52}{31,−6} = {31, 52}{31, 6},
{31,−1}{31,−1}{31, 2}{31, 3} = {31, 6}

and

{31,−1}2 = 1.

Note 10− 32 = 1. Then,

{31, 10}{31,−32} = {31,−10 · 32},
{31,−1

3}{31,−1}{31, 32} = {31, 3}.

Therefore, we have [
{31,−3} = {31,−1}{31, 3},
{31, 3}{31, 3−1} = 1.

Since 33 = 31− 22, we obtain

{31, 3}3 = {31, 33} ≡ {31,−22} = {31− 1}{31, 2}2.
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Note 25 = 31 + 1. Then,

{31, 2}5 = {31, 25}
= {25, 1

31}
= {32, 1

31}
= {32,−1}
= {−1, 25}
= {−1, 2}5 = 1.

Therefore,

{31, 2} = {31, 2}−4

≡ {31,−1}−2{31, 3}−6

= {31, 3}−6

and

{31, 3}30 ≡ {31, 2}−5 = 1.

Hence,

{31, 3}15 ≡ {31− 1}5{31, 2}10

= {31,−1}.

Thus, we obtain

K = K ′ · 〈{31, 3}〉

and {31, 3}30 ≡ 1. Hence, we obtain

K2(2,Z[
1

2
,
1

3
,
1

5
,
1

31
]) ' Z⊕ (Z/3Z)× ⊕ (Z/5Z)× ⊕ (Z/31Z)×.

Proof 4. Suppose S = {2, 3, 37}.

Let K = K2(2, D[
1

37
]), D = Z[

1

2
,
1

3
], p = 37 and put

K ′ = K2(2, D)37 = Im[K2(2, D) → K2(2, D[
1

37
])].

Then, we obtain

K = K ′ · 〈{37,±2k3ℓ} | k, ` ∈ Z〉
= K ′ · 〈{37,−1}, {37, 2}, {37,±3}, {37, 32}, {37,±6}〉.
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Note 37− 1 = 36 = 62. Then,

{37,−1}2 = {37,−1}{37,−1} = {37, 37}{37,−1} = {37,−37} = 1.

On the other hand,

{37, 22}{37, 32} = {37, 36} = {37,−1}.

Since 26 = 64 = 37 + 33, we obtain

{37, 26} ≡ {37, 33}.

Note 26

37 − 33

37 = 1. Then,

{37, 2637}{37,−
33

37} = {37, 2637 · −33

37 },
{37,−26}{37, 33} = {37,−26 · 33},
{37,−1}{37, 3} = {37,−3}.

Since {37, 6} = {37,−1
6}, we obtain

{37, 6}2 = {37,−1
6}

2 = {37, 6}{37,−1
6} = {37,−1}.

Therefore,

{37,−1} = {37,−6}{37, 16}
= {37,−1}{37, 2}{37, 3}{37, 16}.

Hence, we obtain

{37, 2}−1{37, 3}−1 = {37, 16},
{37, 12}{37,

1
3} = {37, 16}

and

{37, 2}{37, 3} = {37, 12}{37,
1
3}{37, 2

2}{37, 32} = {37, 16}{37, 6
2} = {37, 6}.

Hence,

〈{37,±2k3ℓ} | k, ` ∈ Z〉

= 〈{37,−1}, {37, 2}, {37,±3}, {37, 32}, {37,±6}〉

= 〈{37,−1}, {37, 2}, {37, 3}〉.

Since {37, 2}4{37, 3}4 = {37,−1}2 = 1, we obtain[
{37, 2}6 ≡ {37, 3}3,
{37, 2}4 = {37, 3}−4.

Hence,

{37, 2}2 ≡ {37, 3}7,
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{37, 3}14 ≡ {37, 2}4 = {37, 3}−4

and

{37, 3}18 ≡ 1.

Thus,

{37, 2}18 ≡ {37, 2}18{37, 3}18

≡ {37, 22}9{37, 32}9

= {37,−1}9

= {37,−1}.

Since {37, 3}9 ≡ {37, 2}18 ≡ {37,−1}, we obtain

{37,−1}{37, 2}8 = {37,−1}{37, 2}6{37, 2}2

≡ {37,−1}{37, 3}3{37, 2}2

= {37,−1}{37, 3}{37, 3}2{37, 2}2

= {37,−1}{37, 3}{37,−1} = {37, 3}.

Hence,

{37, 2}2{37, 3}2{37, 2}8 ≡ {37, 3},
{37, 2}10{37, 3}2 ≡ {37, 3}

and

{37, 3} ≡ {37, 2}−10.

Since

K = K ′ · 〈{37, 2}〉

and {37, 2}36 ≡ 1, we obtain

K2(2,Z[
1

2
,
1

3
,
1

37
]) ' Z⊕ (Z/3Z)× ⊕ (Z/37Z)×.

Proof 5. Suppose S = {2, 3, 5, 7, 41}.

Let K = K2(2, D[
1

41
]), D = Z[

1

2
,
1

3
,
1

5
,
1

7
], p = 41, and put

K ′ = K2(2, D)41 = Im[K2(2, D) → K2(2, D[
1

41
])].
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Then, we obtain

K = K ′ · 〈{−41,±2k3ℓ5m7n} | k, `,m, n ∈ Z〉
= K ′ · 〈{−41,±2k3ℓ5m} | k, `,m ∈ Z〉
= K ′ · 〈{41,±2k3ℓ5m} | k, `,m ∈ Z〉
= K ′ · 〈{41,±2k3ℓ} | k, ` ∈ Z〉.

Note 24

41 + 52

41 = 1. Then,

{41, 2441}{41,
52

41} = {41, 24·52
412

},
{41, 1

41}{41,
1
41} = {41, 1

412
}

and

{41,−1}2 = 1.

Since

{41,−1}{−41, u} = {41,−u}{−1, u},

we obtain

{−41, u} ≡ {41,−1}{41,−u} for u ∈ D×.

Note 34 = 81 = 2 · 41− 1. This implies

{41, 34} ≡ {41,−1}

and

{41, 38} = {41, 34}2 ≡ {41,−1}2 = 1.

Since 25 = 32 = 41− 32, we obtain

{41, 25} ≡ {41,−32} = {41,−1}{41, 32},
{41, 210} ≡ {41,−1}2{41, 34} ≡ {41,−1}

and

{41, 220} = {41, 210}2 ≡ {41,−1}2 = 1.

Note −33 = −41 + 14. Then,

{41, 33}{41,−1} ≡ {−41,−33}
≡ {−41, 14}
= {−41, 13}
= {41,−1

3}{41,−1}

and

{41, 33} = {41, 3}{41, 32} ≡ {41,−1

3
}.
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Hence,

{41, 3}2{41, 32} ≡ {41,−1
3}{41, 3}

= {41,−1}
≡ {41, 34}
= {41, 32}2.

.

Therefore, 
{41, 3}2 ≡ {41, 32},

{41, 3}{41, 13} ≡ 1,

{41,−1}{41, 3} ≡ {41,−3}.

On the other hand,

{41, 2}{41, 3} ≡ {41,−1}{41, 2}{41,−3}
≡ {−41,−2}{41,−1}{−41, 3}
= {41,−1}{−41,−6}
≡ {41, 6}.

Note 2 + 7 = 32. Then,

{41, 6}{41, 7} ≡ {41, 2}{41, 3}{41, 7}
= {41, 3}{41, 14}
≡ {41, 3}{41,−1}{−41,−14}
= {41, 3}{41,−1}{−41,−1

3}
≡ {41, 3}{41, 13}
≡ 1.

Hence,

{41, 6}2 ≡ {41, 2}2{41, 3}2

≡ {41, 22}{41, 32}
≡ {41, 22}{41,−25}
= {41,−1}{41, 27}
≡ {41, 210}{41, 27}
= {41, 217}
≡ {41, 2−3}.

Therefore,

{41, 6}14 ≡ {41, 2−21} ≡ {41, 2−1},
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{41, 7}14 ≡ {41, 6}−14 ≡ {41, 2}

and
{41, 7}−15 ≡ {41, 7}−1{41, 7}−14

≡ {41, 6}{41, 2}−1

≡ {41, 3}.

Thus, we obtain

K = K ′ · 〈{41,±2k3ℓ} | k, ` ∈ Z〉
= K ′ · 〈{41,−1}, {41, 2}, {41, 3}〉
= K ′ · 〈{41, 7}〉

and {41, 7}40 ≡ {41, 6}−40 ≡ {41, 2}60 ≡ 1, which implies

K2(2,Z[
1

2
,
1

3
,
1

5
,
1

7
,
1

41
])

' Z⊕ (Z/3Z)× ⊕ (Z/5Z)× ⊕ (Z/7Z)× ⊕ (Z/41Z)×.

Proof 6. Suppose S = {2, 3, 7, 43}.

Let K = K2(2, D[
1

43
]), D = Z[

1

2
,
1

3
,
1

7
], p = 43, and put

K ′ = K2(2, D)43 = Im[K2(2, D) → K2(2, D[
1

43
])].

Then, we obtain

K = K ′ · 〈{43,±2k3ℓ7m} | k, `,m ∈ Z〉
= K ′ · 〈{43,±2k3ℓ} | k, ` ∈ Z〉.

Note 24

43 + 33

43 = 1. Then,

{43, 2443}{43,
33

43} = {43, 24·33
432

},
{43,−24}{43,−33} = {43, 24 · 33}

and

{43,−1}{43,−3} = {43, 3}.

Since −62 = (−1) · 43 + 7, we obtain

{43,−62} ≡ {43, 7}
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and
{43, 62}−1 = {43, 1

62
}

= {43,−1}{43,−62}−1

≡ {43,−1}{43, 7}−1

= {43,−1
7}

= {43, 6}.

Therefore, we obtain

{43, 63} ≡ 1.

Note −63 = (−6) · 43 + 42. Then, we have

{43,−1} = {43, 42}
≡ {43,−63}
= {43,−6}{43, 62}
= {43,−1}{43, 2}{43, 3}{43, 62},

which implies

{43, 2}{43, 3}{43, 62} ≡ 1,

{43, 2}{43, 3}{43, 63} ≡ {43, 6}

and

{43, 2}{43, 3} ≡ {43, 6}.

In particular, we obtain

{43,−1}{43, 6} ≡ {43,−1}{43, 2}{43, 3} = {43,−6}.

Since 2 · 62 = 72 = 2 · 43− 14, we calculate

{43, 13} = {43,−14}
≡ {43, 2 · 62}
= {43, 2}{43, 62}
≡ {43, 2}{43, 6}−1

and
{43, 2}{43, 32} ≡ {43, 13}{43, 6}{43, 3

2}
= {43, 3}{43, 6}
≡ {43, 3}2{43, 2}.

Hence, we obtain

{43, 3}2 ≡ {43, 32},
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{43, 3}{43, 13} ≡ 1

and

{43,−1}{43, 3} ≡ {43,−3}.

Thus,

{43,−1}2 ≡ {43,−1}{43, 7}{43,−1
7}

= {43,−1}{43, 7}{43, 6}
≡ {43, 7}{43,−6}
≡ {43,−42}
= 1

and

〈{43,±2k3ℓ} | k, ` ∈ Z〉 = 〈{43,−1}, {43, 2}, {43, 3}〉.

Note 26 = 64 = 43 + 3 · 7. Then,

{43, 26} ≡ {43, 21} = {43,−1
2},

{43, 27} ≡ {43,−1}

and

{43, 2}14 ≡ 1.

Therefore,

{43, 2}3{43, 3}3 = {43, 22}{43, 2}{43, 32}{43, 3}
= {43, 62}{43, 6}
≡ {43, 63}
≡ 1.

Thus,

{43, 23}5{43, 33}5 ≡ 1,

{43, 2}14{43, 2}{43, 3}15 ≡ 1

and

{43, 2} ≡ {43, 3}−15,

which shows

{43, 3}42 ≡ {43, 3}3·14 ≡ {43, 2}−3·14 ≡ 1.

Hence, we obtain

K = K ′ · 〈{43,−1}, {43, 2}, {43, 3}〉
= K ′ · 〈{43, 3}〉
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and {43, 3}42 ≡ 1. Thus,

K2(2,Z[
1

2
,
1

3
,
1

7
,
1

43
]) ' Z⊕ (Z/3Z)× ⊕ (Z/7Z)× ⊕ (Z/43Z)×.

Proof 7. Suppose S = {2, 3, 7, 11, 43}.

Let D = Z[12 ,
1
3 ,

1
7 ,

1
11 ] 3 p = 43. Then, we already know by Proof 6,

K = K ′ · 〈{−43,±2k3ℓ7m11n} | k, `,m, n ∈ Z〉
= K ′ · 〈{−43,±2k3ℓ7m} | k, `,m, n ∈ Z〉
= K ′ · 〈{43,±2k3ℓ7m} | k, `,m, n ∈ Z〉
= K ′ · 〈{43,±2k3ℓ} | k, ` ∈ Z〉
= K ′ · 〈{43,−1}, {43, 2}, {43, 3}〉
= K ′ · 〈{43, 3}〉

and {43, 3}42 ≡ 1. Hence, we obtain

K2(2,Z[
1

2
,
1

3
,
1

7
,
1

11
,
1

43
])

' Z⊕ (Z/3Z)× ⊕ (Z/7Z)× ⊕ (Z/11Z)× ⊕ (Z/43Z)×.

Proof 8. Suppose S = {2, 3, 11, 23, 47}.

Let K = K2(2, D[
1

47
]), D = Z[

1

2
,
1

3
,
1

11
,
1

23
], p = 47, and put

K ′ = K2(2, D)47 = Im[K2(2, D) → K2(2, D[
1

47
])].

Then, we obtain

K = K ′ · 〈{−47,±2k3ℓ11m23n} | k, `,m, n ∈ Z〉
= K ′ · 〈{−47,±2k11ℓ23m} | k, `,m ∈ Z〉
= K ′ · 〈{47,±2k11ℓ23m} | k, `,m ∈ Z〉
= K ′ · 〈{47,±2k11ℓ} | k, ` ∈ Z〉.

Since

±11 = ±47∓ 62, ±22 = ±2 · 47∓ 2 · 62, 112 = 11 · 47− 62 · 11,
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we obtain

{47, 11} ≡ {47,−62}, {47,−11} ≡ {47, 62},
{47, 22} ≡ {47,−2}{47, 62}, {47,−22} ≡ {47, 2}{47, 62},
{47, 112} ≡ {47,−62 · 11} ≡ {47,−11}{47, 62} ≡ {47, 64}.

Note 24
47 + 23

47 = 1. Then,

{47, 2447}{47,
23
47} = {47, 24·23

472
},

{47,−24}{47,−23} = {47, 24 · 23},
{47,−6}{47, 22}{47, 12} = {47, 22}{47, 6 · 23},
{47,−6}{47, 12} = {47,−3},
{47,−1}{47, 2}{47, 3}{47, 12} = {47,−3}

and

{47,−1}{47, 3} = {47,−3}.

On the other hand,

{47,−1}{47,−11} ≡ {47,−1}{47, 62} = {47,−62} ≡ {47, 11}.

Note 23− 22 = 1. Then,

{47, 23}{47,−22} = {47,−23. · 22}

and

{47,−1
2}{47,−22} = {47, 11}.

Therefore

{47,−1}{47,−22} = {47,−1
2}{47, 2}{47,−22}

= {46, 11}{47, 2}
≡ {47,−1}{47,−11}{47, 2}

and

{47,−22} ≡ {47, 2}{47,−11}.

Note 11− 2 = 32. Then,

{47, 11}{47,−2} = {47,−22} ≡ {47, 2}{47,−11}

and

{47,−1}{47, 11} ≡ {47,−11}.

Hence, we obtain
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{47,−1}2{47, 11} ≡ {47,−1}{47,−11} ≡ {47, 11}

and

{47,−1}2 ≡ 1.

Note ±2 · 11 = ±2 · 47∓ 2 · 62 again. Then,

{47,±2 · 11} ≡ {47,∓2 · 62},
and

{47, 22} ≡ {47,−2 · 62} = {47,−1}{47, 2}{47, 62}
= {47, 2}{47,−62} ≡ {47, 2}{47, 11}

Recall

{t, 2}{t,−3} = {t,−1}{t, 6}.

Therefore, we obtain

〈{47,±2k11ℓ} | k, ` ∈ Z〉
= 〈{47,−1}, {47, 2}, {47,±11}, {47, 112}, {47,±22}〉
= 〈{47,−1}, {47, 2}, {47, 11}〉
= 〈{47,−1}, {47, 2}, {47, 3}〉

Note 27 = 47 + 34. Then,

{47, 27} ≡ {47, 34}.

Recall

{47, u} ≡ {47,−1}{−47,−u} for all u ∈ D×.

Then,

{47, 3} ≡ {47,−1}{−47,−3}
= {47,−1}{−47,− 1

24
}

= {47, 2}−4.

Therefore,

{47, 2}23 ≡ {47, 2}16{47, 2}7 ≡ {47, 3}−4{47, 3}4 = 1

and

{47,−2}23 ≡ {47,−1},

which implies

{47,−2}46 ≡ 1.
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Hence,

K = K ′ · 〈{47,−1}, {47, 2}, {47, 3}〉
K = K ′ · 〈{47,−1}, {47, 2}〉

= K ′ · 〈{47,−2}〉

and {47,−2}46 ≡ 1, which shows

K2(2,Z[
1

2
,
1

3
,
1

11
,
1

47
])

' Z⊕ (Z/3Z)× ⊕ (Z/11Z)× ⊕ (Z/23Z)× ⊕ (Z/47Z)×.

□

7. Appendices

7.1. Schur Multipliers

A group epimorphism ψ : G′ → G is called an extension of G. It is called

a central extension if Ker(ψ) is central. If a central extension uniquely

dominates all other central extensions, then it is called a universal central

extension. For a universal central extension ψ̂ : Ĝ → G, the Schur mul-

tiplier of G is given by M(G) = Ker(ψ̂). For a group G, there exists a

universal central extension of G if and only if G = [G,G], i.e. G is perfect

(cf. [25]).

Fact 1. (cf. Theorem 6.2 and [19]) Let S = {2, 3, 7}, {2, 3, 11}, {2, 3, 5, 11},
{2, 3, 13}, {2, 3, 7, 13}, {2, 3, 17}, {2, 3, 5, 19}, {2, 3, 11, 23}, {2, 3, 5, 7, 29},
{2, 3, 5, 31}, {2, 3, 37}, {2, 3, 5, 7, 41}, {2, 3, 7, 43}, {2, 3, 7, 11, 43}, {2, 3, 11,
23, 47}. Then, St(2,ZS) is a universal central extension of SL(2,ZS), and

the Schur multiplier of SL(2,ZS) is as follows.

M(SL(2,ZS)) ' Z⊕qq∈S(Z/qZ)×

Fact 2. (cf. [19]) Let S = {p1, p2, · · · , pn}, where pi is the i-th prime num-

ber, i.e. p1 = 2, p2 = 3, p3 = 5, · · · etc. Suppose n ≥ 2. Then, St(2,ZS)

is a universal central extension of SL(2,ZS), and the Schur multiplier of

SL(2,ZS) is as follows.

M(SL(2,ZS)) ' Z⊕qq∈S(Z/qZ)×
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Fact 3. (cf. [25],[26],[19]) Let S be the set of all prime numbers. That is,

ZS = Q. Then, St(2,Q) is a universal central extension of SL(2,Q), and

the Schur multiplier of SL(2,Q) is as follows.

M(SL(2,Q)) ' Z⊕qq∈S(Z/qZ)×

7.2. Loop Groups

Let F be a field, and F [ξ, ξ−1] the ring of Laurent polynomials in ξ over F .

If D = F [ξ] and p = ξ ∈ D, then D is a Dedekind domain and p ∈ D is a

nonzero prime element. Using this setting, Gρ(Φ, D[1p ]) = Gρ(Φ, F [ξ, ξ
−1])

is a loop group, which is a Kac-Moody group (cf. [2],[15],[21],[22],[23],[27]).

We already know Iwahori-Matsumoto decompositions and universal central

extensions of loop groups (cf. [16],[18]). Note that loop algebras are related

to affine Kac-Moody Lie algebras (cf. [8],[14]). Recently we also discussed

some word maps in Kac-Moody setting (cf. [9]).

Using Witt rings and Kac-Moody groups, we obtain the following two

exact sequences.

Fact 4. (cf. [11],[26])

0 → I3(F ) → K2(2, F ) → K2(F ) → 0

Fact 5. (cf. [21],[22])

0 → I3(F )⊕ I2(F ) → K2(2, F [ξ, ξ
−1]) → K2(F [ξ, ξ

−1]) → 0

Here I(F ) is the fundamental ideal of the Witt ring W (F ), (cf. [13]).

On the other hand, twisted loop groups are also important (cf. [17]),

since they are affine Kac-Moody groups.

7.3. Matsumoto relations

We compute the following relations.

(M1):

{t, u}{tu, v}
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= ĥ12(t)ĥ12(u)ĥ12(tu)
−1ĥ12(tu)ĥ12(v)ĥ12(tuv)

−1

= ĥ12(t)ĥ12(u)ĥ12(v)ĥ12(tuv)
−1

= ĥ12(t)ĥ12(u)ĥ12(v) · ĥ12(uv)−1ĥ12(uv) · ĥ12(tuv)−1

= ĥ12(t) · {u, v} · ĥ12(uv)ĥ12(tuv)−1

= ĥ12(t)ĥ12(uv)ĥ12(tuv)
−1 · {u, v}

= {t, uv}{u, v}.

(Remark):

ŵ12(t) = ŵ12(t)ŵ12(t)ŵ12(−t) = ŵ21(−t−1).

(Remark):

ŵ12(t)ŵ12(u)ŵ12(−t) = ŵ21(−t−2u) = ŵ12(t
2u−1).

(Remark):

x̂12(t)x̂21(−t−1)x̂12(t) = ŵ12(t) = ŵ21(−t−1) = x̂21(−t−1)x̂12(t)x̂21(−t−1).

(Remark):

ŵ12(t)ĥ12(u)ŵ12(−t)
= ŵ12(t)ŵ12(u)ŵ12(−1)ŵ12(−t)
= ŵ12(t

2u−1)ŵ12(−t2)
= ŵ12(t

2u−1) · ŵ12(−1)ŵ12(1) · ŵ12(−t2)
= ĥ12(t

2u−1)ĥ12(t
2)−1.

(Remark):

ĥ12(t)ĥ12(u)ĥ12(t)
−1

= ŵ12(t)ŵ12(−1)ĥ12(u)ŵ12(1)ŵ12(−t)
= ŵ12(t)ĥ12(u

−1)ŵ12(−t)
= ĥ12(t

2u)ĥ12(t
2)−1.

(Remark):

{t, u} = ĥ12(t)ĥ12(u)ĥ12(tu)
−1 = ĥ12(u)ĥ12(tu)

−1ĥ12(t) = ĥ12(tu)
−1ĥ12(t)ĥ12(u).

(M3):

{t, u}{u−1, t}−1

= ĥ12(t)ĥ12(u)ĥ12(tu)
−1 · {u−1, t}−1

= ĥ12(t) · {u−1, t}−1 · ĥ12(u)ĥ12(tu)−1

= ĥ12(t) · (ĥ12(u−1)ĥ12(t)ĥ12(u
−1t)−1)−1 · ĥ12(u)ĥ12(tu)−1

= ĥ12(t) · (ĥ12(tu−1)−1ĥ12(u
−1)ĥ12(t))

−1 · ĥ12(u)ĥ12(tu)−1

= ĥ12(t) · ĥ12(t)−1ĥ12(u
−1)−1ĥ12(tu

−1) · ĥ12(u)ĥ12(tu)−1
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= ĥ12(u
−1)−1ĥ12(tu

−1)ĥ12(u)ĥ12(tu)
−1

= ŵ12(1)ŵ12(−u−1)ŵ12(tu
−1)ŵ12(−1) · ŵ12(u)ŵ12(−tu)

= ŵ12(−u)ŵ12(t
−1u)ŵ12(u)ŵ12(−tu)

= ŵ12(tu)ŵ12(−tu) = 1.

(M4):

{t,−tu}−1{t, u}
= (ĥ12(t)ĥ12(−tu)ĥ12(−t2u)−1)−1 · ĥ12(t)ĥ12(u)ĥ12(tu)−1

= ĥ12(−t2u)ĥ12(−tu)−1ĥ12(t)
−1 · ĥ12(t)ĥ12(u)ĥ12(tu)−1

= ĥ12(−t2u)ĥ12(−tu)−1ĥ12(u)ĥ12(tu)
−1

= ŵ12(−t2u) · ŵ12(tu)ŵ12(u)ŵ12(−tu)
= ŵ12(−t2u)ŵ12(t

2u) = 1.

(M2):

{t, u}{t,−u−1} = {t, u}{−u, t} = {t, u}{−u, tu}
= {t, u}{tu,−u−1} = {t, u(−u−1)}{u,−u−1}
= {t,−1}.

(M5):

{t, u2}−1{t, u2v}
= ĥ12(tu

2)ĥ12(u
2)−1ĥ12(t)

−1 · ĥ12(t)ĥ12(u2v)ĥ12(tu2v)−1

= ĥ12(tu
2)ĥ12(u

2)−1 · ĥ12(u2v)ĥ12(u2)−1 · ĥ12(u2)ĥ12(tu2v)−1

= ĥ12(u) · ĥ12(t)ĥ12(v)ĥ12(tv)−1 · ĥ12(u)−1

= ĥ12(u) · {t, v} · ĥ12(u)−1 = {t, v}.

(M6):

{t, u} = ĥ12(t)ĥ12(u)ĥ12(tu)
−1

= ĥ12(t)ŵ12(u)ŵ12(−tu)
= ĥ12(t) · x̂12(u)x̂21(−u−1)x̂12(u) · ŵ12(−tu)
= ĥ12(t)x̂12(u) · ŵ12(−tu)x̂12(t2u)x̂21(−t−2u−1)

= ĥ12(t)x̂12(u)ŵ12(−tu)x̂12(t2u)
×x̂21((1− t)−1t−1u−1)x̂21(−(1− t)−1t−2u−1)

= ĥ12(t)x̂12(u)ŵ12(−tu)x̂12(t2u)
×x̂12((1− t)tu)ŵ12(−(1− t)tu)x̂12((1− t)tu) · x̂21(−(1− t)−1t−2u−1)

= ĥ12(t)x̂12(u)ŵ12(−tu)x̂12(tu)
×ŵ12(−(1− t)tu)x̂12((1− t)tu) · x̂21(−(1− t)−1t−2u−1)

= ĥ12(t)x̂12(u)ŵ12(−tu) · x̂12(tu)
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×x̂21(−(1− t)−1t−1u−1)x̂12((1− t)u)ŵ12(−(1− t)tu)

= ĥ12(t)x̂12(u) · x̂12(−tu)x̂21(t−1u−1)x̂12(−tu) · x̂12(tu)
×x̂21(−(1− t)−1t−1u−1)x̂12((1− t)u)ŵ12(−(1− t)tu)

= ĥ12(t)x̂12((1− t)u)x̂21(t
−1u−1)

×x̂21(−(1− t)−1t−1u−1)x̂12((1− t)u)ŵ12(−(1− t)tu)

= ĥ12(t)x̂12((1− t)u)x̂21(−(1− t)−1u−1)x̂12((1− t)u)ŵ12(−(1− t)tu)

= ĥ12(t)ŵ12((1− t)u)ŵ12(−(1− t)tu)

= ĥ12(t)ĥ12((1− t)u)ĥ12((1− t)tu)−1 = {t, (1− t)u}.

(M7):

{t2,−1} = {t, t}−1{t,−t}{t,−1} = {t,−1}−1{t, 1}{t,−1} = 1.

(M8):

{t, u} = {t, 1− t} = {t, 1} = 1.

(M9):

{t, uk} = {t, (1− t)k} = · · · = {t, 1− t} = {t, u} = 1.

(M10):

{t2, uv} = {t2, u}{t2u, v}{u, v}−1 = {t, u2}{t2, v}{t, v}−1 = {t2, u}{t2, v}.

7.4. Remark on Theorem 5.1(1)

For ζ ∈ R×, we take σ[ζ] ∈ Aut(St(2, R)) defined by

σ[ζ] :

{
x̂12(s) 7→ x̂12(ζs),

x̂21(s) 7→ x̂21(ζ
−1s).

Then, (cf. [19],[20]),

ŵ12(u) 7→ ŵ12(ζu),

ŵ21(u) 7→ ŵ21(ζ
−1u),

ĥ12(u) 7→ ĥ12(ζu)ĥ12(ζ)
−1,

{u, v} 7→ {u, ζ}−1{u, ζv}.

Let z, z′, r, p ∈ R× and suppose z′ = z + rp.

First, note p
r

z′
+
z

z′
= 1. Then,

{p r
z′
,
z

z′
} = 1.
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Therefore, we obtain

{p, r
z′
}−1{p, rz

z′2
}{ r
z′
,
z

z′
} = 1,

and

{p, rz′} = {p, rz}{ r
z′
,
z

z′
}.

Applying σ[
1

r
] to both sides, we have

{p, 1
r
}−1{p, z′} = {p, 1

r
}−1{p, z}{ r

z′
,
1

r
}−1{ r

z′
,
z

rz′
},

which implies the following.

Fact 6. {p, z′} = {p, z}{ r
z′
,
1

r
}−1{ r

z′
,
z

rz′
}

Second, notice again p
r

z′
+
z

z′
= 1 and

{p r
z′
,
z

z′
} = 1.

Applying σ[z′] to the left hand side, we obtain

{p r
z′
, z′}−1{p r

z′
, z} = 1.

Therefore,

{p r
z′
, z} = {p r

z′
, z′} and {z, z

′

pr
} = {z′, z

′

pr
}.

Applying σ[
r

z′
] to both sides, we obtain

{z, r
z′
}−1{z, 1

p
} = {z′, r

z′
}−1{z′, 1

p
},

which implies the following.

Fact 7. {p, z′} = {p, z}{z, r
z′
}−1{z′, r

z′
}

Using Fact 6 and Fact 7, we obtain

{ r
z′
,
1

r
}−1{ r

z′
,
z

rz′
} = {z, r

z′
}−1{z′, r

z′
}.

Hence, we have the following.

Fact 8. {z, r
z′
}{rz

′

z
,
r

z′
} = {z′, r

z′
}{r, r

z′
}
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In fact, there is a direct proof of Fact 8. Let us start from

{ r
z′
,−1} = { r

z′
,−r}{ r

z′
,
1

r
} = { r

z′
, z′}{ r

z′
,
1

r
}.

Then, we obtain the desired result as follows:

{ r
z′
,
1

r
}−1{ r

z′
,−1} = { r

z′
, z′},

{ r
z′
,
1

r
}−1{ r

z′
,−z}{ r

z′
,
1

z
} = { r

z′
, z′} = { r

z′
,
1

z′
}{ r
z′
, z′2},

{ r
z′
,
1

r
}−1{ r

z′
,− z

z′2
} = { r

z′
,
1

z
}−1{ r

z′
,
1

z′
},

{ r
z′
,
1

r
}−1{ r

z′
,
z

rz′
} = {z, r

z′
}−1{z′, r

z′
, }.

7.5. Remarks on Theorem 5.1 (2) - (16)

We will make the following remarks.

(2):

{t, u} = {u, t−1} = {u, t−1(1− u)−1} = {t(1− u), u}
= {t, 1−u}−1{t, (1−u)u}{1−u, u} = {t, 1−u}−1{t, (1−u)u} by (M1,3,6,8).

(3):

{t, v}{t, (1− u)uv} = {t, v}{v, (1− u)u}−1{tv, (1− u)u}{t, v}
= {t, v}{v, 1− u}−1{v, u}−1{tv, 1− u}{tv, u}{t, v}
= {t, (1− u)v}{t, uv} by (M1) and (2).

(4):

{t,−1}{t, 6} = {t, 2}{t,−3} by u = −2 and v = −1 in (3).

(5):

{t, ua−2}{t, va−2} = {t, uva−4} implies {t, u}{t, v} = {t, uv} by (2).

(6):

{t,−1}2 = {t,−1}{t, t − 1} = {t,−1}{t, u2} = {t,−u2} = {t, 1 − t} = 1

by (M5,6,8).

(7):

{t,−1} = {−1, t} = {−1, 2kt} = {2kt,−1} implies {t,−1}2 = {2kt,−1}2

= 1 by (6).

(8):

{t,−1}2 = {t,−1}{t, t− 1} = {t,−1}{t, 2u2} = {t,−1}{t, 2}{t, u2}
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= {t,−2}{t, u2} = {t,−2u2} = {t, 1− t} = 1 by (M5,6) and (2).

(9):

Note {t,±uk} = {t,±uk−2}{t, u2} by (M5).

(10):

This is true by {t, u}{t,−1} = {t, u}{t, u−1}{t,−u}.

(11):

Note {t, u}2 = {t, u}{t, u−1}{t, u2} = {t, u2} by (M5) and (10)(ii). Then,

for k = 2m and k = 2m + 1, we see {t, uk} = {t, u}k and {t,−uk} =

{t,−1}{t, u}k by (10).

(12):

Since 2− 1 = 1, we have {t, 2}{t,−1} = {t,−2} by (2).

(13):

We have {t, 2}{t, 12} = 1 by (11) and (12).

(14):

We have {t, 2k} = {t, 2}k by (11).

(15):

We have {t,−2k} = {t,−1}{t, 2}k by (10),(12) and (13).

(16):

We have 〈{t,±2k} | k ∈ Z〉 = 〈{t,−1}, {t, 2}〉 by (9),(14) and (15).

Acknowledgements. This work was partially supported by the Grants-

in-Aid for Scientific Research of Japan (Grant No. 26400005).

References

[1] E. Abe, Chevalley groups over local rings, Tôhoku Math. J., 21(1969),
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