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Abstract. The paper is a short survey of recent developments in
the area of first order descriptions of linear groups. It is aimed to
illuminate the known results and to pose the new problems relevant to
logical characterizations of Chevalley groups and Kac–Moody groups.

1. Introduction

Questions we are going to illuminate in this paper are concentrated

around the interaction between algebra, logic, model theory and geome-

try.

The main question behind further considerations is as follows. Suppose

we have two algebras equipped with a sort of logical description.

Problem 1. When the coincidence of logical descriptions provides an iso-

morphism between algebras in question?

With this aim we consider different kinds of logical equivalences between

algebras. Some of the notions we are dealing with are not formally defined

in the text. For precise definitions and references use [9], [16], [23], [24],

[26], [30], [31].

First, we make emphasis on elementary equivalence of groups. Impor-

tance of the elementary classification of algebraic structures goes back to

Key words and phrases. Chevalley group, Kac–Moody group, elementary equiva-
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the famous works of A. Tarski and A. Malcev. The main problem is to

figure out what are the algebras elementarily equivalent to a given one. We

will describe the current state of art of the problem: when elementary equiv-

alence of groups implies their isomorphism. Situation of such kind will be

called, for short, elementary rigidity.

Our second aim is to describe the notions of isotypicity of algebras and

logical equivalence of algebras. These notions are much less known than

elementary equivalence. However, they can logically characterize algebras

in a very rigid way and one can expect affirmative answers to most of the

problems formulated.

We discuss these notions from the perspectives of Chevalley groups and

some other linear groups, and Kac-Moody groups.

2. Elementary equivalence of algebras

2.1. Definitions

Given an algebra H, its elementary theory Th(H) is the set of all sen-

tences (closed formulas) valid on H.

Definition 2. Two algebras H1 and H2 are said to be elementarily equiv-

alent if their elementary theories coincide.

Very often we fix a class of algebras C and ask what are the algebras

elementarily equivalent to a given algebra inside the class C. So, the rigidity
question with respect to elementary equivalence looks as follows.

Problem 3. Let a class of algebras C and an algebra H ∈ C be given.

Suppose that the elementary theories of algebras H and A ∈ C coincide.

Are they elementarily rigid, that is, are H and A isomorphic?

For example, C can be the class of all groups, the class of finitely gener-

ated groups, the class of profinite groups, etc.

Remark 4. What we call elementary rigidity has different names. This

notion appeared in the papers by A. Nies [18] under the name of quasi

definability of groups. The corresponding name used in [1] with respect to

the class of finitely generated groups is first order rigidity. For some reasons

which will be clear later on we use another term.
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In other words we ask for which algebras their logical characterization

by means of the elementary theory is strong enough and defines the algebra

in the unique, up to an isomorphism, way?

We restrict our attention to the case of groups. Elementary rigidity of

groups occurs not very often. Usually various extra conditions are needed.

Consider examples of elementary rigidity for linear groups. First of all, a

group which is elementarily equivalent to a finitely generated linear group

is a residually finite linear group [12]. The incomplete list of known rigidity

cases is given in the following theorem.

2.2. Chevalley groups

Theorem 5. Historically, the first result was obtained by A. Malcev:

• If two linear groups GLn(K) and GLm(F ), where K and F are fields,

are elementarily equivalent, then n = m and the fields K and F are

elementarily equivalent, see [13].

• This result was generalized to the wide class of Chevalley groups. Let

G1 = Gπ(Φ, R) and G2 = Gµ(Ψ, S) be two elementarily equivalent

Chevalley groups. Here Φ, Ψ denote the root systems of rank > 1,

R and S are commutative rings, and π, µ are weight lattices. Then

root systems of G1 and G2 coincide, while the rings are elementarily

equivalent. In other words Chevalley groups over commutative rings

are elementarily rigid in the class of such groups modulo elementary

equivalence of ground rings [4].

• Let Gπ(Φ,K) be a simple Chevalley group over the algebraically closed

field K. Then Gπ(Φ,K) is elementarily rigid in the class of all groups

(cardinality is fixed). This result can be deduced from [42]. In fact,

this is true for a much wider class of algebraic groups over alge-

braically closed fields and, modulo elementary equivalence of fields,

over arbitrary fields [42].

• Any irreducible non-uniform higher-rank characteristic zero arith-

metic lattice is elementarily rigid in the class of all finitely generated

groups, see [1]. In particular, SLn(Z), n > 2 is elementarily rigid.
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• Recently, the results of [1] have been extended to a much wider class

of lattices, see [2].

• Let O be the ring of integers of a number field, and let n ⩾ 3. Then

every group G which is elementarily equivalent to SLn(O) is isomor-

phic to SLn(R), where the rings O and R are elementarily equiva-

lent. In other words SLn(O) is elementarily rigid in the class of all

groups modulo elementary equivalence of rings. The similar results

are valid with respect to GLn(O) and to the triangular group Tn(O)

[39]. These results intersect in part with the previous items, since the

ring R = Z is elementarily rigid in the class of all finitely generated

rings [18], and thus SLn(Z) is elementarily rigid in the class of all

finitely generated groups.

• For the case of arbitrary Chevalley groups the results similar to above

cited are obtained in [35] by different machinery for a wide class of

ground rings. Suppose the Chevalley group G = G(Φ, R) of rank ⩾ 2

over the ring R is given. Suppose that the ring R is elementarily rigid

in the class C of rings. Then G = G(Φ, R) is elementarily rigid in the

corresponding class C1 of groups if R is a field, R is a local ring and

G is simply connected, R is a Dedekind ring of arithmetic type, that

is the ring of S-integers of a number field, R is Dedekind ring with

at least 4 units and G is adjoint. In particular, if a ring of such kind

is finitely generated then it gives rise to elementary rigidity of G =

G(Φ, R) in the class of all finitely generated groups (see [3]). If R of

such kind is not elementarily rigid then G = G(Φ, R) is elementarily

rigid in the class of all groups modulo elementary equivalence of rings.

• The Chevalley group G = G(Φ, R) of rank ⩾ 2 is elementarily rigid in

the class of all finitely generated groups, if R is a ring of one-variable

polynomials over the finite field, i.e., R = Fq[x], charFq ̸= 2, see

[35], [3] and [5], where the bounded generation of such G(Φ, R) in

elementary generators is proven.

• The Chevalley group G = G(Φ, R) is elementarily rigid in the class

of all finitely generated groups, if R is a ring of Laurent polynomials
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over the finite field, i.e., R = Fq[x, x
−1], charFq ̸= 2. The proof also

relies on [35], [3] and [5].

• The Chevalley group G = G(Φ, R) is elementarily rigid in the class

of all finitely generated groups, if R is a finitely generated ring of S-

integers in a global function field of positive characteristic which has

infinitely many units and satisfy some additional condition on S, see

[35], [3], [5] and [34].

For rank 1 simple linear groups the situation is quite different. For R = Z
and G = PSL2(Z) there is the following result of Z. Sela, cf. [37], see [10].

Theorem 6. A finitely generated group G is elementarily equivalent to

PSL(2,Z) if and only if G is a hyperbolic tower (over PSL(2,Z)).

Let us make some comments regarding Theorem 6. It was A. Tarski who

asked whether one can distinguish between finitely generated free groups

by means of their elementary theories. This formidable problem has been

solved in affirmative, that is all free groups have one and the same elemen-

tary theory. Moreover, all finitely generated groups elementarily equivalent

to a given non-abelian free group have been explicitly described, see [11],

[36]. Paper [37] extends this line.

The result for SL2(Z) can be deduced from Theorem 6, see [10].

Theorem 7. ∗1 A finitely generated group G is elementarily equivalent to

SL2(Z) if and only if G is the central extension of a hyperbolic tower over

PSL2(Z) by Z2 with the cocycle f : PSL2(Z) × PSL2(Z) → Z2, where

f(x, x) = 1 for all x ∈ PSL2(Z) of order 2, and f(x, y) = 0, otherwise.

However, the situation in rank one Chevalley groups over the rings with

infinitely many invertible elements looks different. Bounded generation of

SL2(R) in elementary generators, where R is a ring of S-integers of a num-

ber field with infinitely many units is proved in [14]. The same fact is true

if R is a ring of S-integers in a global function field of positive characteristic

which has infinitely many units and satisfies some additional condition on

S, see [34]. Hence, in these cases one can think about elementary rigidity.

∗1The proof of Theorem 7 contains а gap (I.Kazachkov, private correspondence).
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Before going over the situation for Kac-Moody groups we shall cite an

important model-theoretic fact noticed by F. Point on collaboration be-

tween Chevalley-Demazure functor and the operation of taking ultraprod-

ucts. Let F be a non-principal ultrafilter on the set I and let GΦ(, ) be a

simple Chevalley-Demazure group scheme over Z defined by a root system

Φ. Let Ki, i ∈ I be a collection of fields and Gi = GΦ(Ki) be the corre-

sponding set of Chevalley groups. Denote by
∏

F Gi the ultraproduct of

the groups Gi with respect to ultrafilter F . Theorem of F. Point (see [33])

basically says that the functors GΦ(, ) and
∏

F commute. Namely,

Theorem 8. GΦ(
∏

F Ki) =
∏

F GΦ(Ki). Moreover the ultraproducts of

the unipotent, diagonal and monomial subgroups of GΦ(Ki) are isomorphic

to the corresponding subgroups of GΦ(
∏

F Ki).

Note that Theorem 8 remains true (modulo minor conditions on the

fields) also in the case of twisted Chevalley groups. From the perspectives

of Kac-Moody groups and elementary rigidity of Chevalley groups, the

following question is of interest.

Question 9. ∗2 Does the statement of Theorem 8 remain true for arbitrary

rings?

2.3. Kac–Moody groups

Given a generalized Cartan matrix A and a field k (or a ring R), the

value GA(k) of the Tits functor GA : Z-Alg → Grp defines a minimal Kac–

Moody group over k, see [40] (cf. [7], [16]). One can view this functor as a

generalization of the Chevalley–Demazure group scheme. We assume that

A is indecomposable. As a rule, we assume that the functor GA is simply

connected. However, speaking about isomorphisms of affine Kac-Moody

groups over fields and Chevalley groups over rings, we will freely, often

without special notice, use the common language abuse, assuming that we

go over to its subquotient, taking the derived subgroup (resp. subalgebra)

and factoring out the centre, if necessary.

∗2This question is answered in positive in [4].
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If A is a definite matrix, the group GA(k) is a Chevalley group GΦ(k)

where Φ is the root system corresponding to A. These groups were con-

sidered in the previous section. If A is of affine type, GA(k) is isomorphic

to the Chevalley group GΦ(k[t, t
−1]) where k[t, t−1] is the ring of Laurent

polynomials. The general case of Kac-Moody groups is covered by A of

indefinite type. The first question is related to Theorem 8.

Let F be a non-principal ultrafilter on the set I, let Ki, i ∈ I be a

collection of fields and let the Tits functor GA : Z-Alg → Grp defines a

minimal Kac–Moody group over Ki. Denote by
∏

F Gi the ultraproduct of

the groups Gi with respect to ultrafilter F .

Question 10. Let A be of affine type. Is it true that the Tits functor and

ultraproducts commute, that is the formula GA(
∏

F Ki) =
∏

F GA(Ki)

holds? Is it true that the same property is satisfied for arbitrary A? Con-

sider separately the hyperbolic case.

The penultimate item of Theorem 5 implies that

Theorem 11. Let GA(k) be an affine Kac-Moody group over a finite field

k. Then GA(k) is elementarily rigid in the class of all finitely generated

groups.

Let now GA(k) be a Kac–Moody group of indefinite type. B. Rémy [21]

and P.-E. Caprace–B. Rémy [8] showed that the minimal indefinite adjoint

Kac–Moody groups GA(Fq) are simple provided q > n > 2 where n is the

size of A. These groups are also simple for some matrices A if n = 2 and

q > 3. J. Morita and B. Rémy [15] proved that in the case where k is the

algebraic closure of Fq the groups GA(k) are simple. P.-E. Caprace and

K. Fujiwara [6] showed that over finite fields these (infinite) simple groups

have infinite commutator width. It seems extremely unlikely that these

groups are elementarily rigid.

Let GA(k) be an incomplete Kac–Moody group. There are several ways

to complete this group with respect to an appropriate topology.

Let A be of affine type, that is, GA(k) is a complete affine Kac–Moody

group. ThenGA(k) is isomorphic to a Chevalley group of the formGΦ(k((t)))

where k((t)) is the field of formal Laurent series over k. By Theorem 5 this
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group is elementarily rigid modulo elementary equivalence of the ground

field. If the field k is finite then this group is elementarily rigid in the class

of finitely generated groups.

3. Isotypic equivalence of algebras

The aim of this section is to introduce another logical invariant which

describes algebras more rigidly than elementary equivalence. Elementary

equivalence of algebras H1 and H2 assumes coincidence of all first order

sentences valid on H1 and H2. What we are going to introduce requires

coincidence of all types valid on H1 and H2. We call such a situation

isotypicity of algebras. Before going over results in this direction, we need

to make some preparations.

3.1. Basics of universal algebraic geometry

Fix a variety of algebras Θ. Let W (X), X = {x1, . . . , xn} denote the

finitely generated free algebra in Θ. By equations in Θ we mean expressions

of the form w ≡ w′, where w, w′ are words in W (X) for some X. This is

our first syntactic object. Next, let Φ̃ = (Φ(X), X ∈ Γ) be the multi-sorted

Halmos algebra of first order logical formulas based on atoms w ≡ w′, w,

w′ in W (X), see [26], [27], [31]. There is a special procedure to construct

such an algebraic object which plays the same role with respect to First

Order Logic as Boolean algebras do with respect to Propositional calculus.

One can view elements of Φ̃ = (Φ(X), X ∈ Γ) just as first order formulas

over w ≡ w′.
Let X = {x1, . . . , xn} and let H be an algebra in the variety Θ. We have

an affine space Hn = HX of points µ : X → H. For every µ we have also

the n-tuple (a1, . . . , an) = ā ∈ Hn with ai = µ(xi). For the given Θ we

have the homomorphism µ : W (X) → H and, hence, the affine space Hn is

viewed as the set of homomorphisms Hom(W (X),H). The classical kernel

Ker(µ) corresponds to each point µ : W (X) → H. This is exactly the set

of equations for which the point µ is a solution. Every point µ has also the

logical kernel LKer(µ), see [30], [25], [27]. Logical kernel LKer(µ) consists

of all formulas u ∈ Φ(X) valid on the point µ. This is always an ultrafilter
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in Φ(X).

So we define syntactic and semantic areas where logic and geometry

operate, respectively. Connect them by a sort of Galois correspondence.

Let T be a system of equations in W (X). The set A = T ′ in the affine

space Hom(W (X),H) consisting of all solutions of the system T corre-

sponds to T . Sets of such kind are called algebraic sets. Vice versa, given

a set A of points in the affine space consider all equations T = A′ having

A as the set of solutions. Sets T of such kind are called closed congruences

over W .

We can do the same correspondence with respect to arbitrary sets of

formulas. Given a set T of formulas in algebra of formulas (set of elements)

Φ(X), consider the set A = TL in the affine space, such that every point of

A satisfies every formula of Φ. Sets of such kind are called definable sets.

Points of A are called solutions of the set of formulas T . Conversely, given a

set A of points in the affine space consider all formulas (elements) T = AL

having A as the set of solutions. Sets T of such kind are closed filters in

Φ(X). Given arbitrary T and A we can make their Galois closures T
′′
and

A
′′
, and TLL and ALL.

3.2. Logical equivalence of algebras

All algebraic sets constitute a category with special rational maps as

morphisms [31]. The same is true with respect to definable sets [31]. So,

we can formulate logical closeness of algebras geometrically.

Definition 12. We call algebras H1 and H2 logically similar, if the cate-

gories of definable sets LGΘ(H1) and LGΘ(H2) are isomorphic.

Definition 13. Algebras are called logically equivalent, if for every X and

every set of formulas T in Φ(X) the equality TLL
H1

= TLL
H2

holds .

The set TLL
H is called the logical radical of T with respect to H. So

algebras H1 and H2 are logically equivalent if for every set of formulas T

the logical radicals with respect to H1 and H2 coincide.

First of all, it is easy to see that if algebras H1 and H2 are logically

equivalent then they are logically similar. Now we want to understand

what is the meaning of logical equivalence.
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Definition 14. Two algebras H1 and H2 are called LG-isotypic if for every

point µ : W (X) → H1 there exists a point ν : W (X) → H2 such that

LKer(µ) = LKer(ν) and, conversely, for every point ν : W (X) → H2

there exists a point µ : W (X) → H1 such that LKer(ν) = LKer(µ).

We can reformulate isotypicity of algebras in more standard logical no-

tations.

Definition 15. Let L be a first-order language, H and G be L-algebras.
Then H and G are isotypic, if for any finite tuple ā in Hn, there exists a

tuple b̄ in Gn such that tpH(ā) = tpG(b̄) and vice versa.

The meaning of the Definition 14 is the following. Two algebras are

isotypic if the sets of realizable types over H1 and H2 coincide. So, by

some abuse of language these algebras have the same logic of types. Some

references for the notion of isotypic algebras are contained in [29], [28], [30],

[31], [32], [41]. Note that the notion was introduced in [32], [29] while [31]

gives the most updated survey.

The principal property is as follows, see [41].

Theorem 16. Algebras H1 and H2 are logically equivalent if and only if

they are isotypic.

Definition 17. We call the condition A rigid (or A-rigid) in the class of

algebras C if two algebras H1 and H2 from C subject to A are isomorphic.

Now we are in a position to study rigidity of algebras with respect to

isotypicity property. It is easy to see that

Proposition 18. If algebras H1 and H2 are logically equivalent then they

are elementarily equivalent.

3.3. Isotypic algebras

It is clear, that since isotypicity is stronger than elementary equivalence,

this phenomenon can occur quite often. Let us state this problem explicitly.

Problem 19. Let a class of algebras C and an algebra H ∈ C be given.

Suppose that algebras H ∈ C and A ∈ C are isotypic. Are they isotypically

rigid, that is are H and A isomorphic?
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Remark 20. In many papers isotypically rigid algebras are called logically

separable [31], [28], or type definable [17].

The following principal problem was stated in [31], see also [17] and is

widely open.

Problem 21 (Rigidity problem, B.Plotkin). Is it true that every two iso-

typic finitely generated groups are isomorphic?

Meantime, Problem 21 is answered in affirmative for many groups. Some

of the cases are collected in Theorem 22 and in the consequent Corollary.

Theorem 22. The following cases of isotypically rigid groups are known:

• Every finitely generated co-Hopfian group is isotypically rigid in the

class of all groups, see [41], [38].

• Every finitely presented Hopfian group is isotypically rigid in the class

of all groups, see [38].

• Let Θ be a variety of groups. If a finitely generated free group in Θ

is Hopfian then it is isotypically rigid in the class of all groups, see

[41].

• Finitely generated metabelian groups are isotypically rigid in the class

of all groups [17].

• Finitely generated virtually polycyclic groups are isotypically rigid in

the class of all groups [17].

• Finitely generated torsion free hyperbolic groups are isotypically rigid

in the class of all groups [38].

• All surface groups, which are not non-orientable surface groups of

genus 1,2 or 3 are isotypically rigid in the class of all groups [17].

Corollary 23. Finitely generated absolutely free, free abelian, free nilpo-

tent, free solvable groups are isotypically rigid.

Conjecture 24. Every finitely generated linear group is isotypically rigid.
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Conjecture 25. Let a Chevalley group GΦ(R) over a ring R be isotypic to

a group H. Then H is isomorphic to GΦ(S) such that R and S are isotypic

rings.

Problem 26. What are the isotypicity classes of fields? When two isotypic

fields are isomorphic?

Remark 27. In fact, using either logical equivalence of algebras, or what

is the same, the isotypicity of algebras, we compare the possibilities of

individual points in the affine space to define the sets of formulas (in fact

ultrafilters in Φ(X)) which are valid in these points. Given a point µ in the

affine space, the collection of formulas valid in the point µ is a type of µ.

If these individual types are, roughly speaking, the same for both algebras,

then these algebras are declared isotypic. Thus, for isotypic algebras we

compare types of formulas realizable on these algebras. Of course, this is

significantly stronger than elementary equivalence, where the individuality

of points disappeared and we compare only formulas valid in all points of

the affine space.

Acknowledgements. The research was supported by ISF grant 1994/20

and the Emmy Noether Research Institute for Mathematics.

References

[1] N. Avni, A. Lubotzky, C. Meiri, First order rigidity of non-uniform

higher-rank arithmetic groups, Invent. Math. (2019), 219–240.

[2] N. Avni, C. Meiri, On the model theory of higher rank arithmetic

groups, arXiv 2008.01793v1 (2020), 59pp.

[3] M. Aschenbrenner, A. Khelif, E. Naziazeno and T. Scanlon, The Log-

ical Complexity of Finitely Generated Commutative Rings, Int. Math.

Research Notices, rny023, https://doi.org/10.1093/imrn/rny023.

[4] E. I. Bunina, Isomorphisms and elementary equivalence of Chevalley

groups over commutative rings, Sb. Math. 210 (2019), 1067–1091.

[5] I. Capdeboscq, B. Kunyavskii, E. Plotkin and N. Vavilov, Commutator

width of Kac- Moody groups over finite fields, to appear.



On first order rigidity for linear groups 57

[6] P.-E. Caprace, K. Fujiwara, Rank-one isometries of buildings and

quasi-morphisms of Kac–Moody groups, Geom. Funct. Anal. 19 (2010),

1296–1319.

[7] R. Carter, Kac–Moody groups and their automorphisms, Groups, Com-

binatorics and Geometry (Durham, 1990) (M. Liebeck, J. Saxl, eds.),

London Math. Soc. Lecture Note Ser., 165, Cambridge Univ. Press,

Cambridge (1992), 218–228.
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