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Directed networks and self-similar systems

Katsushi Muramoto and Takeshi Sekiguchi

Abstract. The formula ∂Lr

∂r

∣∣
r= 1

2

= 2T in Hata and Yamaguti [1],

where Lr is Salem’s singular function and T is the Takagi function,

was generalized to the formula ∂kLr

∂rk
=k!Tr,k in Sekiguchi and Shiota

[17] by using the measure theoretic method, where Tr,k is the k-th or-
der Takagi function. In this paper we reconsider these functions from
the viewpoint of de Rham’s functional equation, and by investigating
such functional equation on a directed network we expand the above
formula without the measure theoretic method.

1. Introduction

Hata and Yamaguti [1] have obtained the formula ∂Lr
∂r

∣∣
r= 1

2
=2T , which

connects the Takagi function T with Salem’s singular function Lr. The

Takagi function takes the form T (x) = 1
2

∑∞
n=0

1
2n f(ψ

nx) for x ∈ [0, 1],

where f(x) = ||2x−1|−1| and ψ(x) = 2x(mod 1), and Salem’s singular

function Lr, which is called a “Lebesgue’s singular function”, is a unique

continuous solution with Lr(1) = 1 of the following functional equation:

Lr(x) = rLr(ψ(x))1J1,0(x)+{r+(1−r)Lr(ψ(x))}1J1,1(x) (x∈ [0, 1]), (1)

where r is a complex number with max{|r|, |1− r|} < 1. This formula has

been extended up to the k-th derivative of Lr in [17]. Namely, they took

notice of that Lr is the distribution of the binomial probability measure,

and by using the measure theoretical technique they proved the formula

Key words and phrases. fractal, Takagi function, network, graph, de Rham’s func-

tional equation.
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∂kLr

∂rk
=k!Tr,k, in which the higher-order Takagi function Tr,k was defined by

Tr,k(x) =

∞∑
n=0

2n−1∑
j=0

rn−s(j)(1− r)s(j)Br,k◦ψn(x)1Jn,j(x) (2)

where

Br,k(x) =

Lr◦ψ(x)1J1,0(x) + (1− Lr◦ψ(x))1J1,1(x) (k = 1),

Tr,k−1◦ψ(x)(1J1,0(x)− 1J1,1(x)) (k ≥ 2),

s(n) is the sum of digits in the binary expansion of n, Jn,j = [ j
2n ,

j+1
2n [ for

0 ≤ j < 2n−2 and Jn,2n−1=[2
n−1
2n , 1]. The higher-order Takagi function was

used for the explicit representation of power sums of digital sums in [12].

Furthermore those results were extended for the digital sum problems on

the different types of number system in [11], [3] and [2]. However it seems

that the way to define the higher-order Takagi function is too technical,

although their measure theoretic method is forceful.

In this paper we reconsider these functions from the viewpoint of some

functional equation without the measure theoretic method, and investigate

what causes the above definition of the higher-order Takagi function. We

take notice of that the above functional equation (1) is a special case of

de Rham’s functional equation in [18]. By differentiating the equation (1)

formally with respect to r, we get the functional equation

∂Lr
∂r (x) = {r ∂Lr

∂r (ψ(x))+Lr(ψ(x))}1J1,0(x)

+ {(1−r)∂Lr
∂r (ψ(x))+1−Lr(ψ(x))}1J1,1(x) (x∈ [0, 1]), (3)

and the Takagi function appears in its solution for the case r = 1
2 . Fur-

thermore, by setting that r =

[
r 1

0 r

]
and Lr(x) =

[
Lr(x)

∂Lr
∂r (x)

0 Lr(x)

]
, we

combine the above two functional equations (1) and (3) and then we get

the following

Lr(x) = rLr(ψ(x))1J1,0(x) + {r+(e−r)Lr(ψ(x))}1J1,1(x) (x∈ [0, 1]), (4)

where e is a unit matrix. The functional equation (4) is the same as (1)

except that those r and Lr(x) are matrices, and so (4) is an extension of
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(1). Moreover we reconsider (4) on
∏∞

1 {0, 1} instead of [0, 1], because [0, 1]

is considered to be
∏∞

1 {0, 1} by the dyadic expansion, and then each of ψ,

J1,0 and J1,1 in (4) are replaced by φ, {0} ×
∏∞

1 {0, 1} and {1} ×
∏∞

1 {0, 1},
where φ is the shift on

∏∞
1 {0, 1}. As generalization of this functional

equation, we define the system SRF(z) of functional equations on the di-

rected network (G,m, τ) and show its fundamental properties in Section 2.

This seems to be the first attempt to extending another aspect of Hata-

Yamaguchi’s formula. For more information on the relation between T , Lr

and (G,m, τ), refer to examples in Section 5. In Section 3, by introduc-

ing the two kinds of transformations Dn and Un, we show the existence

and uniqueness of solutions of SRF(z), and we also give some expansion to

its solutions. In Section 4 we investigate SRF(z) of the type like (4), and

by applying the result of Section 2 to it we get a general form of (2) for

SRF(z). In Section 5 we shall define the mappings Ψg and Ψ−1
g to translate

the functional equations on Ωg to the ones on [0, 1], and rewrite Theorem

4.1 in this case. In Section 6 we give glossary of symbols used in this paper.

We use the following notations. Let N, Z, R and C be the sets of nat-

ural numbers(including 0), integers, real numbers and complex numbers

respectively. Set N+ = N \ {0}. We denote the set of all mappings from a

set X to a set Y by Map(X,Y ), the set of all continuous mappings from

a set X to a set Y by C(X,Y ) if X and Y are topological spaces, the

direct sum of a family of sets {Ba : a ∈ A} with a parameter set A by∐
a∈ABa =

⋃
a∈A{a} × Ba, the set of all mappings from A to

⋃
a∈ABa

such that the image fa of a is in Ba for each a in A by Γ(
∐

a∈ABa), and

the number of all elements of a set C by ♯C. Moreover we denote the set

of d × d matrices with coefficients in C by M(d,C), and the set of upper

triangle matrices in M(d,C) by ∆(d,C) .

2. Functional equations on directed networks

We start introducing the directed network (G,m, τ).

Definition 2.1. Let G be a non empty finite set, S0=∅ and Sk={0, . . . , k−
1} for k in N+. Suppose that m :G−→N+ and τ :G▷−→G are mappings,

where G▷ =
∐

g∈G Sm(g). Then the triple (G,m, τ) is called the directed
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network. We also call an element of G a node, and an element (g, j) of

G▷ a (communication) path of (G,m, τ) with the start point g and the end

point τ(g, j).

In the following we suppose that (G,m, τ) be a directed network.

Definition 2.2. For each g in G and k in N, we denote by S∗k
g the set of

words with length k, which is defined by

S∗k
g =


{ϵ} (k = 0),

Sm(g) (k = 1),

{ij : i ∈ Sm(g), j = j1 . . . jk−1 ∈ S
∗(k−1)
τ(g,i) } (k ≥ 2),

where ϵ is the empty word and ij means ij1 . . . jk−1. We denote
∐

g∈G S
∗k
g

by G▷k
and also use the notation (h, jk) that means (g, j) in G▷k

such that

j = j1 . . . jk in S∗k
g and h = (g, j1 . . . jk−1) in G▷k−1

. Next we define the

mapping τ̃ :
⋃

n∈NG
▷n −→ G by

τ̃(g) =


g if g = (g, ϵ) ∈ G▷0

,

τ(g, j) if g = (g, j) ∈ G▷1
,

τ(τ̃(h), j) if g = (h, j) ∈ G▷k
,h ∈ G▷k−1

, j ∈ S∗1
τ̃(h) (k ≥ 2).

The mapping τ̃ is the extension of τ , and so we use the same notation

τ instead of τ̃ , and we call an element in G▷k
a path with length k, be-

cause (g, j1 . . . jk) is a connection of paths (g, j1), (τ(g, j1), j2), . . . and

(τ(g, j1 . . . jk−1), jk) sequentially. We note that G▷0
is identified with G

and G▷1
is G▷.

Definition 2.3. Let Ω =
∏∞

1 G▷. We define the mapping φ : Ω −→ Ω as

φ(ω) = (ω2, . . . , ωn, . . . ) for ω = (ω1, ω2, . . . , ωn, . . . ) in Ω,

and, for each g in
⋃

n∈NG
▷n

, we define the mapping σg : Ω −→ Ω by

σg(ω) =



ω if g = (g, ϵ) ∈ G▷0
,

(g, ω1, . . . , ωn, . . . ) if g = (g, j) ∈ G▷1
,

σh(σ(τ(h),j)(ω)) if g = (h, j) ∈ G▷k
,

h ∈ G▷k−1
, j ∈ S∗1

τ(h) (k ≥ 2),

where ω = (ω1, . . . , ωn, . . . ) in Ω.
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Definition 2.4. Let G▷ have the discrete topology and Ω have the product

topology. We define Ωg for each g in G by

Ωg =
{
((g1, j1), . . . , (gn, jn), . . . ) :

g1=g, j1 ∈ S∗1
g and gn+1=τ(gn, jn),

jn+1 ∈ S∗1
gn+1

for n ∈ N+

}
,

and we denote σg(Ωτ(g)) by Ig for each g in
⋃

n∈NG
▷n

. Then it is clear

that each Ig is open, closed and compact, and that Ig = Ωg =
⋃

j∈S∗n
g
I(g,j)

for each g in G and n in N.

Definition 2.5. For each g in G and n in N+, the mappings πππg,n :Ωg−→
S∗n
g and πg,n :Ωg−→

⋃
i∈S∗(n−1)

g
S∗1
τ(g,i) are defined by πππg,n(ω)= j1 . . . jn and

πg,n(ω) = jn, where ω= ((g1, j1), . . . , (gn, jn), . . . ) in Ωg. We use πππg,0 and

πg,0 as the mappings form Ωg to S∗0
g defined by πππg,0(ω)=πg,0(ω) = ϵ.

We remark that πππg,n(ω) = πg,0(ω) . . . πg,n(ω) and ω = σ(g,πππg,n(ω)) ◦φn(ω)

for ω in Ωgand n in N.

Definition 2.6. The mappings t, t+, t− : Ω −→ N ∪ {∞} are defined by

t(ω) = min{k ∈ N : supn>km(gn) = 1},

t+(ω) = min{k ∈ N : supn>kjn = 0},

t−(ω) = min{k ∈ N : supn>k(m(gn)− jn) = 1},

and the mapping s : N× Ω −→ N is defined by

s(n, ω) = ♯{k ∈ N+ : m(gk) > 1, k ≤ n},

where min ∅ = ∞ and ω = ((g1, j1), . . . , (gn, jn), . . . ) in Ω. Moreover we

denote by 0g and mg− the elements in Ωg satisfying t+(ω) = 0 and t−(ω) =

0 respectively, and we use the following notations ω− and ω+ for ω as

follows:

ω−=σ(g,i)(mτ(g,i)−) if 0 < t+(ω) <∞,

ω+=σ(g,j)(0τ(g,j)) if 0 < t−(ω) <∞,

where i=πππg,t+(ω)−1(ω)(πg,t+(ω)(ω)−1) and j=πππg,t−(ω)−1(ω)(πg,t−(ω)(ω)+1).

We also use 0g− as an imaginary point, which is not in Ωg.
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The next proposition is easily checked.

Proposition 2.1. The mappings s, t, t+, t− have the following properties:

1) t+ ≤ t, t− ≤ t and t− ∨ t+ = t.

2) if n ≤ t(ω), ω ∈ Ωg, then s(n, ω) ≥ b n
♯Gc.

Definition 2.7. Let the mapping z :G▷−→M(d,C) satisfy
∑

k∈S∗1
g
zg(k)=e

for g in G, where e is the unit matrix and zg(k) is the image of (g, k) in G▷.

We define the system of de Rham functional equations with the weighted

parameter z associated with (G,m, τ), that is abbreviated to be “ SRF(z)

on (G,m, τ) ”, by the following equations:Lg(mg−)=e,

Lg(ω)=
∑

0≤k<j zg(k) + zg(j)Lτ(g,j)(φ(ω)) (ω ∈ I(g,j), j ∈ S∗1
g )

(5)

for g in G. We only deal with continuous solutions Lz of (5). Strictly speak-

ing, we denote a continuous solution by Lz,g, which belongs to C(Ωg,M(d,C))
and which index z means its weighted parameter for each g in G.

In the subsequent, we assume that the mapping z :G▷−→M(d,C) satis-
fies

∑
k∈S∗1

g
zg(k)=e for each g in G, unless otherwise stated.

Lemma 2.1. Let Lz be a solution of SRF(z). Then we have

Lz,g(σ(g,ij)(mτ(g,ij)−)) = Lz,g(σ(g,i)(0τ(g,i))−)
∑

j<k<m(τ(g,i))zτ(g,i)(k)

+ Lz,g(σ(g,i)(mτ(g,i)−))
∑

0≤k≤jzτ(g,i)(k) (6)

for i in S∗n
g , j in S∗1

τ(g,i), n in N and g in G, where we set Lz,g(0g−)=0.

Proof. We prove this lemma by the induction. Let g in G and j in S∗1
g .

By substituting σ(g,j)(mτ(g,j)−) for ω in (5), we have

Lz,g(σ(g,j)(mτ(g,j)−)) =
∑

0≤k<jzg(k) + zg(j)Lz,τ(g,j)(φ(σ(g,j)(mτ(g,j)−)))

=
∑

0≤k≤jzg(k)

= Lz,g(0g−)
∑

j<k<m(g)zg(k)+Lz,g(mg−)
∑

0≤k≤jzg(k),

which is (6) in the case n=0. Next let h in S∗1
g , i in S∗n

τ(g,h) and j in S
∗1
τ(g,hi).

By using (5) again, we have the following three equations:

Lz,g(σ(g,hij)(mτ(g,hij)−))
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=
∑

0≤k<hzg(k) + zg(h)Lz,τ(g,h)(σ(τ(g,h),ij)(mτ(g,hij)−)) (7)

zg(h)Lz,τ(g,h)(σ(τ(g,h),i)(mτ(g,hi)−))

= Lz,g(σ(g,hi)(mτ(g,hi)−))−
∑

0≤k<hzg(k) (8)

zg(h)Lz,τ(g,h)(σ(τ(g,h),i)(0τ(g,hi))−)

= Lz,g(σ(g,hi)(0τ(g,hi))−)−
∑

0≤k<hzg(k), (9)

and, by the induction assumption, we have

Lz,τ(g,h)(σ(τ(g,h),ij)(mτ(g,hij)−))

= Lz,τ(g,h)(σ(τ(g,h),i)(0τ(g,hi))−)
∑

j<k<m(τ(g,hi))zτ(g,hi)(k)

+ Lz,τ(g,h)(σ(τ(g,h),i)(mτ(g,hi)−))
∑

0≤k≤jzτ(g,hi)(k). (10)

Then we substitute (10), (9) and (8) in (7) sequentially, and we have

Lz,g(σ(g,hij)(mτ(g,hij)−))

=
∑

0≤k<hzg(k)

+ zg(h){Lz,τ(g,h)(σ(τ(g,h),i)(0τ(g,hi))−)
∑

j<k<m(τ(g,hi))zτ(g,hi)(k)

+ Lz,τ(g,h)(σ(τ(g,h),i)(mτ(g,hi)−))
∑

0≤k≤jzτ(g,hi)(k)}

=
∑

0≤k<hzg(k)

+ {Lz,g(σ(g,hi)(0τ(g,hi))−)−
∑

0≤k<hzg(k)}
∑

j<k<m(τ(g,hi))zτ(g,hi)(k)

+ {Lz,g(σ(g,hi)(mτ(g,hi)−))−
∑

0≤k<hzg(k)}
∑

0≤k≤jzτ(g,hi)(k)

= Lz,g(σ(g,hi)(0τ(g,hi))−)
∑

j<k<m(τ(g,hi))zτ(g,hi)(k)

+ Lz,g(σ(g,hi)(mτ(g,hi)−))
∑

0≤k≤jzτ(g,hi)(k).

Namely we get (6) for the next n.

The above Lemma 2.1 means that any solution of SRF(z) is determined

only by the parameter z on the set {σ(g,i)(mτ(g,i)−) : i ∈ S∗n
g , n ∈ N}, which

is dense in Ωg, for each g in G. That implies the following proposition.

Proposition 2.2. The continuous solution Lz of SRF(z) is unique, and

each Lz,g belongs to C(Ωg,∆(d,C)) for g in G if z :G▷−→∆(d,C).
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Definition 2.8. For the mapping z :G▷−→M(d,C) we define the mapping

z̃ :
⋃

n∈NG
▷n −→M(d,C) by

z̃(g) =



e if g = (g, ϵ) ∈ G▷0
,

zg(j) if g = (g, j) ∈ G▷1
,

z̃(h)zτ(h)(j) if g = (h, j) ∈ G▷k
,h ∈ G▷k−1

,

j ∈ S∗1
τ(h) (k ≥ 2).

The mapping z̃ is the extension of z, and so we use the same notation z

instead of z̃. We also use the notation zg(j) as z(g) if g=(g, j) for g in

G and j in S∗k
g .

Lemma 2.2. Let Lz be a solution of SRF(z). If ω in Ωg and t+(ω)<∞,

then we have

Lz,g(ω)− Lz,g(ω−) = zg(i)Lz,τ(g,i)(0τ(g,i)) (11)

for g in G, where i in S
∗t+(ω)
g and ω=σ(g,i)(0τ(g,i)).

Proof. If t+(ω)=0 then the left-hand side of (11) equals zg(ϵ)Lz,τ(g,ϵ)(0τ(g,ϵ))

because of ω=0g and i=ϵ. If t+(ω)=1 then there exists j in S∗1
g such that

j≥1 and ω=σ(g,j)(0τ(g,j)), and so ω−=σ(g,j−1)(mτ(g,j−1)−). Hence

Lz,g(ω) =
∑

0≤k<jzg(k) + zg(j)Lz,τ(g,j)(0τ(g,j))

and

Lz,g(ω−) =
∑

0≤k<j−1zg(k) + zg(j − 1)Lz,τ(g,j−1)(mτ(g,j−1)−)

by (5), and then the left-hand side of (11) equals zg(j)Lz,τ(g,j)(0τ(g,j)).

Next suppose that t+(ω)=n+2 and n∈N, that is, ω=σ(g,hij)(0τ(g,hij))

where h ∈ S∗1
g , i ∈ S∗n

τ(g,h) and 0 < j ∈ S∗1
τ(g,hi). Then we have ω− =

σ(g,hi(j−1))(mτ(g,hi(j−1))−) and φ(ω) = σ(τ(g,h),ij)(0τ(g,hij)). Moreover we

have φ(ω−) = σ(τ(g,h),i(j−1))(mτ(g,hi(j−1))−) = φ(ω)− and t+(φ(ω)) = n+1.

Hence

Lz,g(ω)− Lz,g(ω−) = zg(h){Lz,τ(g,h)(φ(ω))− Lz,τ(g,h)(φ(ω)−)}

by (5). Therefore (11) is obtained.
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3. The existence and some expansion formulas of solutions of

functional equations systems

We start by defining transformations Dn and Un.

Definition 3.1. For each n in N, we define the transformations Dn and

Un on Γ(
∐

g∈GMap(Ωg,M(d,C))), as follows:

(DnF)g(ω) =
∑

j∈S∗n
g
{Fg(σ(g,j)(mτ(g,j)−))−Fg(σ(g,j)(0τ(g,j))−)}1I(g,j)(ω),

(UnF)g(ω) =
∑

j∈S∗n
g
Fτ(g,j)(φ

n(ω))1I(g,j)(ω),

where F in Γ(
∐

g∈GMap(Ωg,M(d,C))), ω in Ωg, and Fg(0g−) = 0 by using

the imaginary point 0g−.

Definition 3.2. We define the mapping s :G▷ ×
⋃

n∈NG
▷n −→N by

s((g, j); (h, i)) = ♯{k : (τ(h, i1 . . . ik−1), ik) = (g, j), 1 ≤ k ≤ n},

where (g, j) ∈ G▷, i = i1 . . . in ∈ S∗n
h and h ∈ G. (Do not confuse with

s(n, ω) in Definition 2.6.)

Definition 3.3. We define ρ(z) and η(z) by

ρ(z) = maxg∈G,m(g)>1maxj∈S∗1
g
max1≤i≤d |(zg(j))i,i|,

η(z) = maxh∈Gmaxk∈S∗1
h
max1≤i<j≤d |(zh(k))i,j |

for z :G▷−→∆(d,C), and use the notation ‖F‖ by

‖F‖ = max
g∈G

sup
ω∈Ω

‖F(ω)‖ for F ∈ Γ(
∐
g∈G

Map(Ωg,M(d,C))).

We next show fundamental properties of Dn and Un.

Proposition 3.1. 1) For n in N, Dn and Un are M(d,C)-linear trans-

formations on Γ(
∐

g∈GMap(Ωg,M(d,C))), that is, these transformations

satisfy

Dn(aF+bG)=aDn(F)+bDn(G),

Un(aF+bG)=aUn(F)+bUn(G),

Dn(Fa+Gb)=Dn(F)a+Dn(G)b,

Un(Fa+Gb)=Un(F)a+Un(G)b
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for F and G in Γ(
∐

g∈GMap(Ωg,M(d,C)) and a and b in M(d,C), where
(aF)g(ω) = a(Fg(ω)) and (Fa)g(ω) = (Fg(ω))a for ω in Ωg and g in G.

2) If F is in Γ(
∐

g∈G C(Ωg,M(d,C))) then both UnF and DnF are so.

3) For n, n1 and n2 in N, Un satisfies that Un(FG) = (UnF)(UnG) and
Un1Un2F = Un1+n2F for F and G in Γ(

∐
g∈GMap(Ωg,M(d,C))) , where

FG is defined by (FG)g(ω) = Fg(ω)Gg(ω) for g in G and ω in Ωg.

4) Let Lz be a solution of SRF(z). Then we have the followings:

(DnLz)g(ω) =
∑

j∈S∗n
g
zg(j)1I(g,j)(ω) (ω ∈ Ωg, g ∈ G,n ∈ N), (12)

Dn1+n2Lz = (Dn1Lz)(Un1Dn2Lz) (n1, n2 ∈ N). (13)

Proof. We directly get 1), 2) and 3) from Definition 3.1. Since Lz is a

solution of (5), (12) with n=0, 1 and (13) with n1=n2 = 0 are clear. By

Definition 3.1, we have

(Dn+1Lz)g(ω) =
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)
{Lz,g(σ(g,ij)(mτ(g,ij)−))

− Lz,g(σ(g,ij)(0τ(g,ij))−)}1I(g,ij)(ω),

and by Lemma 2.1 we get

Lz,g(σ(g,ij)(mτ(g,ij)−)) = Lz,g(σ(g,i)(0τ(g,i))−)
∑

j<k<m(τ(g,i))zτ(g,i)(k)

+ Lz,g(σ(g,i)(mτ(g,i)−))
∑

0≤k≤jzτ(g,i)(k) (14)

and

Lz,g(σ(g,ij)(0τ(g,ij))−) = Lz,g(σ(g,i)(0τ(g,i))−)
∑

j≤k<m(τ(g,i))zτ(g,i)(k)

+ Lz,g(σ(g,i)(mτ(g,i)−))
∑

0≤k<jzτ(g,i)(k) (15)

for i in S∗n
g , j in S∗1

τ(g,i), n in N and g in G. Therefore we have

(Dn+1Lz)g(ω)

=
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)
{Lz,g(σ(g,i)(mτ(g,i)−))− Lz,g(σ(g,i)(0τ(g,i))−)}

× zτ(g,i)(j)1I(g,ij)(ω)

=
∑

i∈S∗n
g
{Lz,g(σ(g,i)(mτ(g,i)−))− Lz,g(σ(g,i)(0τ(g,i))−)}

× {
∑

j∈S∗1
τ(g,i)

zτ(g,i)(j)1I(τ(g,i),j)(φ
n(ω))}1I(g,i)(ω)
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=
∑

i∈S∗n
g
{Lz,g(σ(g,i)(mτ(g,i)−))− Lz,g(σ(g,i)(0τ(g,i))−)}

× (D1Lz)τ(g,i)(φ
n(ω))1I(g,i)(ω)

= (DnLz)g(ω)(UnD1Lz)g(ω),

that is, we get (13) with n1=n and n2=1. Next we shall prove (12) and

(13) with the remaining n, n1 and n2, by the induction as follows:

(Dn+1Lz)g(ω) = (DnLz)g(ω)(UnD1Lz)g(ω)

=
∑

i∈S∗n
g
zg(i)1I(g,i)(ω)

∑
k∈S∗n

g
(D1Lz)τ(g,k)(φ

n(ω))1I(g,k)(ω)

=
∑

i∈S∗n
g
zg(i)(D1Lz)τ(g,i)(φ

n(ω))1I(g,i)(ω)

=
∑

i∈S∗n
g
zg(i)

∑
j∈S∗1

τ(g,i)
zτ(g,i)(j)1I(τ(g,i),j)(φ

n(ω))1I(g,i)(ω)

=
∑

j∈S∗(n+1)
g

zg(j)1I(g,j)(ω),

Dn1+n2+1Lz = (Dn1+n2Lz)(Un1+n2D1Lz)

= (Dn1Lz)(Un1Dn2Lz)(Un1Un2D1Lz)

= (Dn1Lz)(Un1((Dn2Lz)(Un2D1Lz)))

= (Dn1Lz)(Un1Dn2+1Lz)

and

(Dn1Lz)(Un1Dn2+1Lz) = (Dn1Lz)(Un1((D1Lz)(U1Dn2Lz)))

= (Dn1Lz)(Un1D1Lz)(Un1+1Dn2Lz)

= (Dn1+1Lz)(Un1+1Dn2Lz).

We must estimate the product of upper triangle matrices before describ-

ing the main result in this section.

Lemma 3.1. Let wk ∈ ∆(d,C) (k = 1, . . . , n) and set

α = max1≤k≤n,1≤i≤d|(wk)i,i| and β = max1≤k≤n,1≤i<j≤d|(wk)i,j |,

where (wk)i,j (1≤ i, j≤d) are components of the matrix wk. Then we have

‖w1w2 · · ·wn‖ ≤ C(n, α, β, d),
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where

C(n, α, β, d) = αn∏
0≤j<d∧n(n− j) exp(

√
d(d−1)

2
β
α) + αn(

√
d− 1).

We remark that
∑

n∈NC(n, α, β, d) <∞ if α < 1.

Proof. Let a = (ai,j) ∈ ∆(d,C) such that ai,i = α (i = 1, . . . , d) and

ai,j = β (1 ≤ i < j ≤ d). We also set w1w2 · · ·wn = (bi,j) and an = (a
(n)
i,j ),

then |bi,j | ≤ a
(n)
i,j (1 ≤ i, j ≤ d) and so ‖w1w2 · · ·wn‖ ≤ ‖an‖. On the

other hand, by letting c = a−αe, we have an =
∑

0≤j<d∧n
(
n
j

)
αn−jcj since

ck = 0 (k ≥ d). Therefore we have

‖an‖ ≤
∑

0≤j<d

(
n
j

)
αn−j‖c‖j + αn(

√
d− 1)

≤ αn∏
0≤k<d∧n(n− k)

∑
0≤j<d

1
j!(

∥c∥
α )j + αn(

√
d− 1)

≤ αn∏
0≤k<d∧n(n− k) exp(∥c∥α ) + αn(

√
d− 1)

≤ C(n, α, β, d).

Theorem 3.1. Let z :G▷−→∆(d,C) with
∑

k∈S∗1
g
zg(k)=e for g in G and

ρ(z)<1. Then we have the followings:

1) There exists a unique continuous solution Lz of SRF(z).

2) The mapping z 7−→ Lz,g is C(Ωg,M(d,C))-valued analytic.

3) By using the notations v, w, V and W defined by

(vg(j))k,l =

(zg(j))k,l (k = l)

0 (k 6= l)
(1 ≤ k, l ≤ d, j ∈ S∗1

g ),

z = v +w,

Vg(ω) =
∑

j∈S∗1
g
{
∑

0≤k<jvg(k)}1I(g,j)(ω),

Wg(ω) =
∑

j∈S∗1
g
{
∑

0≤k<jwg(k) +wg(j)Lz,τ(g,j)(φ(ω))}I(g,j)(ω)

for each ω in Ωg and g in G, the solution Lz is represented as

Lz,g =
∑

n∈N{(DnLv)g(UnV)g + (DnLv)g(UnW)g} (16)

uniformly on {ω ∈ Ωg : t(ω) = ∞} and

Lz,g(ω) =
∑

0≤n≤t(ω){(DnLv)g(ω)(UnV)g(ω)
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+ (DnLv)g(ω)(UnW)g(ω)}+ (Dt(ω)Lv)g(ω) (17)

for ω in Ωg with t(ω) <∞, where Lv appearing in the above expansions is

the continuous solution of SRF(v).

Proof. 1) The uniqueness comes from Proposition 2.2 and so we show the

existence by the mathematical inductive as the parameter d.

(i) We first show it in the case d = 1, that is, z is a mapping from G▷

to C. For n in N, g in G, i in S∗n
g and ω in Ωg, we set

Jn,g,i(ω) = zg(i)
∑

j∈S∗1
τ(g,i)

∑
0≤k<jzτ(g,i)(k)1I(τ(g,i),j)(φ

n(ω)).

Then we have that Jn,g,i(ω) = 0 if n > t(ω) and

‖Jn,g,i(ω)‖ ≤ C(s(n, ω), ρ(z), 0, 1) ·max
h∈G

m(h)

by Lemma 3.1, and so we can define the continuous mapping Kg : Ωg −→
C by

∑
n∈N

∑
i∈S∗n

g
Jn,g,i(ω)1I(g,i)(ω) for g in G, because the summation

converges uniformly by Proposition 2.1. By noticing that Jn+1,g,hi(ω) =

zg(h)Jn,τ(g,h),i(φ(ω)) and Jn,g,in(mg−)=zg(in)−zg(in+1), where h in S∗1
g ,

i in S∗n
τ(g,h) and ik= πππg,k(mg−), we have

Kg(ω) =J0,g,ϵ(ω) +
∑

n∈N
∑

h∈S∗1
g∑

i∈S∗n
τ(g,h)

Jn+1,g,hi(ω)1I(τ(g,h),i)(φ(ω))1I(g,h)(ω)

=
∑

j∈S∗1
g
{
∑

0≤k<jzg(k) + zg(j)Kτ(g,j)(φ(ω))}1I(g,j)(ω)

and Kg(mg−) =
∑

n∈N(zg(in) − zg(in+1)) = 1. Namely K is a continuous

solution of SRF(z).

(ii) Let z :G▷−→∆(d+1,C) with
∑

k∈S∗1
g
zg(k)=e for g in G and ρ(z)<1,

and let the mappings x :G▷ −→ C, y :G▷ −→∆(d,C) and r :G▷ −→ Cd

defined by z =

[
x r

0 y

]
. We assume that both X and Y are continuous

solutions of SRF(x) and SRF(y) respectively. We denote the continuous

mapping Qn,g,i :Ωg−→Cd by

xg(i)
∑

j∈S∗1
τ(g,i)

{
∑

0≤k<jrτ(g,i)(k)
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+ rτ(g,i)(j)Yτ(g,ij)(φ
n+1(ω))}1I(τ(g,i),j)(φ

n(ω))

for n in N, g in G and i in S∗n
g . Then we have Qn,g,i(ω) = 0 if n > t(ω)

and

‖Qn,g,i(ω)‖ ≤ |xg(i)|η(z){max
h∈G

m(h) + ‖Y‖}

by the same estimation of Jn,g,i(ω), and so we can define the continuous

mapping Rg :Ωg−→Cd by Rg(ω)=
∑

n∈N
∑

i∈S∗n
g
Qn,g,i(ω)1I(g,i)(ω) for g in

G. By noticing that

Q0,g,ϵ(ω) =
∑

0≤k<jrg(k) + rg(j)Yτ(g,j)(φ(ω)),

Qn+1,g,hi(ω) = xg(h)Qn,τ(g,h),i(φ(ω)) and Qn,g,i(mg−)=0,

we have

Rg(ω) =
∑

0≤k<jrg(k) + rg(j)Yτ(g,j)(φ(ω)) + xg(j)Rτ(g,j)(φ(ω))

for ω in I(g,j) andRg(mg−) = 0. Hence L, which is defined by L =

[
X R
0 Y

]
,

is a continuous solution of SRF(z).

2) The above Kg is analytic, because it is a limit of polynomials of z.

Hence, by using the same inductive method in 1), the above L is also

analytic.

Next before proving 3) we describe the terms in the right-hand sides

of (16) and (17) in detail as the next lemma, which is easy to prove by

Proposition 3.1 and Lemma 3.1.

Lemma 3.2. For ω in Ωg, g in G and n in N we have

(DnLv)g(ω) =
∑

i∈S∗n
g
vg(i)1I(g,i)(ω)

=
∑

i∈S∗n
g

∏
(h,j)∈G▷ vh(j)

s((h,j);(g,i))1I(g,i)(ω),

(UnV)g(ω) =
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)

∑
0≤k<jvτ(g,i)(k)1I(τ(g,i),j)(φ

n(ω))1I(g,i)(ω),

(UnW)g(ω) =
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)
{
∑

0≤k<jwτ(g,i)(k)

+wτ(g,i)(j)Lz,τ(g,ij)(φ
n+1(ω))}1I(τ(g,i),j)(φ

n(ω))1I(g,i)(ω),
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and also if n > t(ω) then we have

(UnV)g(ω) = (UnW)g(ω) = 0,

(UnLz)g(ω) = e,

(DnLv)g(ω) = (Dt(ω)Lv)g(ω).

Moreover, we get the inequalities:

‖(DnLv)g(ω)‖ ≤ C(s(n, ω), ρ(z), 0, d),

‖(UnV)g(ω)‖ ≤ C(s(n, ω), ρ(z), 0, d) ·maxh∈Gm(h),

‖(UnW)g(ω)‖ ≤ d · η(z) · (maxh∈Gm(h) + ‖Lz‖).

3) Since Lz is a continuous solution of SRF(z), we get

Lz,g(ω) =
∑

j∈S∗1
g
{
∑

0≤k<jzg(k) + zg(j)Lz,τ(g,j)(φ(ω))}1I(g,j)(ω)

= Vg(ω) +Wg(ω) +
∑

j∈S∗1
g
vg(j)Lz,τ(g,j)(φ(ω))1I(g,j)(ω)

= Vg(ω) +Wg(ω) + (D1Lv)g(ω)(U1Lz)g(ω)

for ω in Ωg and g in G, that means

Lz = V +W + (D1Lv)(U1Lz)

= (D0Lv)(U0V) + (D0Lv)(U0W) + (D1Lv)(U1Lz).

By using Proposition 3.1 we get

U1Lz = (U1D0Lv)(U1V) + (U1D0Lv)(U1W) + (U1D1Lv)(U2Lz),

and so we get

(D1Lv)(U1Lz) = (D1Lv)(U1V) + (D1Lv)(U1W) + (D2Lv)(U2Lz).

By repeating the above we get

Lz =
∑

0≤k≤n{(DkLv)(UkV) + (DkLv)(UkW)}+ (Dn+1Lv)(Un+1Lz).

Hence (16) and (17) are obtained by Lemma 3.2.

Finally we shall add a few properties on SRF(z).
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Theorem 3.2. Let z : G▷ −→M(d,C) with
∑

k∈S∗1
g
zg(k) = e for g in G,

and L be in Γ(
∐

g∈G C(Ωg,M(d,C))). Then the followings 1), 2) and 3) are

equivalent.

1) L is a solution of SRF(z).

2) L satisfies the following system of difference equations:

Lg(mg−)=e,

Lg(σ(g,ij)(mτ(g,ij)−))=Lg(σ(g,i)(0τ(g,i))−)
∑

j<k<m(τ(g,i))zτ(g,i)(k)

+ Lg(σ(g,i)(mτ(g,i)−))
∑

0≤k≤jzτ(g,i)(k)

(i ∈ S∗n
g , j ∈ S∗1

τ(g,i), n ∈ N)

(18)

for g in G.

3) L satisfies the following equations:
(D0L)g(ω)=e (ω ∈ Ωg, g ∈ G),

(D1L)g(ω)=
∑

j∈S∗1
g
zg(j)1I(g,j)(ω) (ω ∈ Ωg, g ∈ G),

Dn+1L=(DnL)(UnD1L) (n ∈ N).

(19)

Proof. In Proposition 3.1,4) we already proved that 1) implies 3).

By calculating according to the definitions of Dn and Un we get

(D0L)g(ω)=Lg(mg−),

(Dn+1L)g(σ(g,ij)(mτ(g,ij)−))=Lg(σ(g,ij)(mτ(g,ij)−))−Lg(σ(g,ij)(0τ(g,ij))−),

(DnL)g(σ(g,ij)(mτ(g,ij)−))=Lg(σ(g,i)(mτ(g,i)−))−Lg(σ(g,i)(0τ(g,i))−)

and

(UnD1L)g(σ(g,ij)(mτ(g,ij)−))=(D1L)τ(g,i)(σ(τ(g,i),j)(mτ(g,ij)−))

for g in G, i in S∗n
g , j in S∗1

τ(g,i) and n in N. Then we assume 3) and we get

Lg(mg−)=e and

Lg(σ(g,ij)(mτ(g,ij)−))−Lg(σ(g,ij)(0τ(g,ij))−)

={Lg(σ(g,i)(mτ(g,i)−))−Lg(σ(g,i)(0τ(g,i))−)}zτ(g,i)(j)

because of (D1L)τ(g,i)(σ(τ(g,i),j)(mτ(g,ij)−)) = zτ(g,i)(j). We then notice

that σ(g,ij)(0τ(g,ij))−= σ(g,ij)(mτ(g,i(j−1))−) for j > 0 and σ(g,i0)(0τ(g,i0)) =

σ(g,i)(0τ(g,i)), and so we get 2).
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Finally we shall show that 2) implies 1). It is sufficient to prove the

equation (5) for ω in Ωg such that t−(ω) < ∞ and g in G. It is clear for

ω with t−(ω) ≤ 1 and so we assume the induction assumption, that is, we

assume (5) for ω with t−(ω) ≤ n and g in G. Let ω in Ωg, g in G and

t−(ω) = n + 1, and set j=πg,1(ω), i=πππτ(g,j),n−1(φ(ω)) and ℓ=πg,n+1(ω).

Since ω=σ(g,jiℓ)(mτ(g,jiℓ)−) and φ(ω)=σ(τ(g,j),iℓ)(mτ(g,jiℓ)−), the equation

(18) implies

Lg(ω)=Lg(σ(g,ji)(0τ(g,ji))−)
∑

ℓ<k<m(τ(g,ji))zτ(g,ji)(k)

+ Lg(σ(g,ji)(mτ(g,ji)−))
∑

0≤k≤ℓzτ(g,ji)(k) (20)

and

Lτ(g,j)(φ(ω))=Lτ(g,j)(σ(τ(g,j),i)(0τ(g,ji))−)
∑

ℓ<k<m(τ(g,ji))zτ(g,ji)(k)

+ Lτ(g,j)(σ(τ(g,j),i)(mτ(g,ji)−))
∑

0≤k≤ℓzτ(g,ji)(k). (21)

The induction assumption also implies

Lg(σ(g,ji)(mτ(g,ji)−))

=
∑

0≤k<jzg(k) + zg(j)Lτ(g,j)(φ(σ(g,ji)(mτ(g,ji)−))), (22)

because of σ(g,ji)(mτ(g,ji)−) in I(g,j). Now we substitute (22) for (20) and,

by combining with (21), we have

Lg(ω)−
∑

0≤k<jzg(k)− zg(j)Lτ(g,j)(φ(ω))

={Lg(σ(g,ji)(0τ(g,ji))−)−
∑

0≤k<jzg(k)

−zg(j)Lτ(g,j)(σ(τ(g,j),i)(0τ(g,ji))−)}
∑

ℓ<k<m(τ(g,ji))zτ(g,ji)(k). (23)

Since φ(σ(g,ji)(0τ(g,ji))−) = σ(τ(g,j),i)(0τ(g,ji))− and t−(σ(g,ji)(0τ(g,ji))−) ≤ n

if t+(σ(g,ji)(0τ(g,ji))−) ≥ 2, the first factor of the right-hand side of (23) is

0 and so we complete the proof.

Proposition 3.2. Suppose the same assumption in Theorem 3.1. Then we

have the following.

1) If g in G and t−(0g) = ∞, then Lz,g(0g) = 0.

2) If ω in Ωg, t
+(ω) <∞ and t−(ω) = ∞, then Lz,g(ω) = Lz,g(ω−).
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Proof. By using n times (5), we get

Lz,g(0g) = zg(0 . . . 0)Lz,τ(g,0...0)(0τ(g,0...0)),

where 0 . . . 0 ∈ S∗n
g . By Lemma 3.1

‖Lz,g(0g)‖ ≤ ‖zg(0 . . . 0)‖‖Lz,τ(g,0...0)(0τ(g,0...0))‖

≤ C(s(n, 0g), ρ(z), η(z), d)‖Lz‖,

and so if t−(0g) = ∞ then ‖Lz,g(0g)‖ = 0 by Proposition 2.1, that is , 1) is

obtained.

Suppose that ω in Ωg, t+(ω) < ∞ and t−(ω) = ∞. By Lemma 2.2

Lz,g(ω) − Lz,g(ω−) = zg(i)Lz,τ(g,i)(0τ(g,i)) when i in S
∗t+(ω)
g , and by 1)

Lz,τ(g,i)(0τ(g,i)) = 0 because of t−(0τ(g,i)) = ∞. Hence 2) is obtained.

Proposition 3.3. Let Lz be a solution of SRF(z) and Xg = Lz,g(Ωg), and

define the mappings Φ(g,j) :M(d,C)−→M(d,C) by

Φ(g,j)(w) =
∑

0≤k<jzg(k) + zg(j)w (w ∈ M(d,C))

for (g, j) in G▷. Then each Xg is compact and satisfies

Xg =
⋃

j∈S∗1
g
Φ(g,j)(Xτ(g,j)) (24)

for g in G.

Proof. Since Lz is a solution of SRF(z), we have

Lz,g(I(g,j)) =
∑

0≤k<jzg(k) + zg(j)Lz,τ(g,j)(φ(I(g,j)))

= Φ(g,j)(Xτ(g,j))

for j in S∗1
g and g in G, and so we obtain (24) because of Lz,g(Ωg) =⋃

j∈S∗1
g
Lz,g(I(g,j)).

4. Representations of differentials of Lz with respect to the pa-

rameter z

In this section, we suppose that z : G▷−→C satisfy
∑

j∈S∗1
g
zg(j)=1 and

ρ(z) < 1. Then there exists a unique continuous solution of SRF(z), that

is denoted by Lz, because of Theorem 3.1,1). We use the notations:

∂g(j) =
∂

∂zg(j)
((g, j) ∈ G▷),
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∂p =
∏

(g,j)∈G▷,j<m(g)−1∂g(j)
pg(j) (p ∈ Map(G▷,N)),

a · ∂ =
∑

(g,j)∈G▷,j<m(g)−1ag(j)∂g(j) (a ∈ Map(G▷,C)),

L
(p)
z,g (ω) = ∂pLz,g(ω) (p ∈ Map(G▷,N), ω ∈ Ωg, g ∈ G),

p! =
∏

(g,j)∈G▷,j<m(g)−1pg(j)! (p ∈ Map(G▷,N)),

|p| =
∑

(g,j)∈G▷,j<m(g)−1pg(j),

where we do not need the notations ∂g(m(g)−1), because zg(m(g)−1) =

1−
∑

0≤j<m(g)−1 zg(j). By using the special upper triangle matrices as the

weighted parameter, we shall show that Theorem 3.1 implies the represen-

tations of differentiation of Lz with respect to the parameter z.

Theorem 4.1. Let a :G▷−→C satisfy
∑

j∈S∗1
g
ag(j)=0, and let z :G▷−→

M(d,C) be defined by zg(j)=zg(j)e+ag(j)n for (g, j)in G▷, where n is the

d × d-matrix (nk,l) such that nk,l = 0 except ni,i+1 = 1 (i = 1, . . . , d − 1).

Then we have

1) The continuous solution Lz of SRF(z) is given by

Lz,g =
∑

0≤q<d
(a·∂)q
q! Lz,gn

q (g ∈ G). (25)

2) The differentials of Lz are expanded as follows:

(a · ∂)qLz,g(ω) = q!
∑

n∈N
∑

i∈S∗n
g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Az,τ(g,i),q(a) ◦ φn(ω)1I(g,i)(ω) (q ∈ N), (26)

1
p!L

(p)
z,g (ω) =

∑
n∈N

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Bz,τ(g,i),p ◦ φn(ω)1I(g,i)(ω) (p∈Map(G▷,N)) (27)

uniformly on {ω ∈ Ωg : t(ω)=∞} for g in G, and

Lz,g(ω) =
∑

0≤n≤t(ω)

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Az,τ(g,i),0(a) ◦ φn(ω)1I(g,i)(ω)

+
∑

i∈S∗t(ω)
g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i)), (28)

(a · ∂)qLz,g(ω) = q!
∑

0≤n≤t(ω)

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Az,τ(g,i),q(a) ◦ φn(ω)1I(g,i)(ω) (q ∈ N+), (29)
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1
p!L

(p)
z,g (ω) =

∑
0≤n≤t(ω)

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Bz,τ(g,i),p◦φn(ω)1I(g,i)(ω) (p∈Map(G▷,N), |p|>0) (30)

for ω in Ωg with t(ω) <∞ and g in G, where

Az,g,q(a)(ω)=



∑
j∈S∗1

g

∑
0≤k<j zg(k)1I(g,j)(ω) (q = 0),∑

j∈S∗1
g

(∑
0≤k<j ag(k)

+ag(j)Lz,τ(g,j)◦φ(ω)
)
1I(g,j)(ω) (q = 1),∑

j∈S∗1
g
ag(j)

(a·∂)q−1

(q−1)! Lz,τ(g,j)◦φ(ω)1I(g,j)(ω) (q ≥ 2)

and

Bz,g,p(ω)

=



∑
j∈S∗1

g

∑
0≤k<j zg(k)1I(g,j)(ω) (|p| = 0),∑

0≤j<m(g)−1 pg(j)
{
Lz,τ(g,j)◦φ(ω)1I(g,j)(ω)

+
∑

j<k<m(g)−1 1I(g,k)(ω)

+(1− Lz,τ(g,m(g)−1)◦φ(ω))1I(g,m(g)−1)
(ω)

}
(|p| = 1),∑

0≤j<m(g)−1 pg(j)
∂p−δ(g,j)

(p−δ(g,j))!

{
Lz,τ(g,j)◦φ(ω)1I(g,j)(ω)

−Lz,τ(g,m(g)−1)◦φ(ω)1I(g,m(g)−1)
(ω)

}
(|p| ≥ 2)

for ω in Ωg, where δ(g, j) is in Map(G▷,N) such that δ(g, j)h(l) = 0 for

(h, l) ∈ G▷ and 0 ≤ l < m(h)− 1 without δ(g, j)g(j) = 1.

Proof. 1) We apply the Leibniz formula to the equation

Lz,g(ω) =
∑

0≤k<jzg(k) + zg(j)Lz,τ(g,j)(φ(ω))

by using
∑

i∈S1
g
zg(i)=1 and

∑
i∈S1

g
ag(i)=0 for g in G, and get

(a·∂)Lz,g(ω)=
∑

0≤k<jag(k)+zg(j)(a·∂)Lz,τ(g,j)(φ(ω))+ag(j)Lz,τ(g,j)(φ(ω)),

and

(a·∂)n
n! Lz,g(ω)=zg(j)

(a·∂)n
n! Lz,τ(g,j)(φ(ω))+ag(j)

(a·∂)n−1

(n−1)! Lz,τ(g,j)(φ(ω)),
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where n≥ 2 and ω∈ I(g,j). Hence we can verify that Lz defined by (25) is

a solution of SRF(z) as follows:∑
0≤k<j zg(k) + zg(j)Lz,τ(g,j)(φ(ω))

=
∑

0≤k<j

(
zg(k)e+ag(k)n

)
+
(
zg(j)e+ag(j)n

)∑
0≤q<d

(a·∂)q
q! Lz,τ(g,j)(φ(ω))n

q

=
{∑

0≤k<jzg(k) + zg(j)Lz,τ(g,j)(φ(ω))
}
e

+
{∑

0≤k<jag(k) + zg(j)(a · ∂)Lz,τ(g,j)(φ(ω)) + ag(j)Lz,τ(g,j)(φ(ω))
}
n

+
∑

2≤q<d

{
zg(j)

(a·∂)q
q! Lz,τ(g,j)(φ(ω)) + ag(j)

(a·∂)q−1

(q−1)! Lz,τ(g,j)(φ(ω))
}
nq

=
∑

0≤q<d
(a·∂)q
q! Lz,g(ω)n

q

= Lz,g(ω)

for g in G and ω in Ωg.

2) The notations v and w in Theorem 3.1 are given by

vg(j) = zg(j)e, wg(j) = ag(j)n ((g, j) ∈ G▷)

for z in this case, and by Lemma 3.2 we get

(DnLv)g(ω) =
∑

i∈S∗n
g

∏
(h,l)∈G▷ zh(l)

s((h,l);(g,i))e1I(g,i)(ω),

(UnV)g(ω)

=
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)

∑
0≤k<j zτ(g,i)(k)e1I(τ(g,i),j)(φ

n(ω))1I(g,i)(ω)

=
∑

i∈S∗n
g
Az,τ(g,i),0(a)(φ

n(ω))e1I(g,i)(ω),

(UnW)g(ω)

=
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)
{
∑

0≤k<j aτ(g,i)(k)n

+ aτ(g,i)(j)nLz,τ(g,ij)(φ
n+1(ω))}1I(τ(g,i),j)(φ

n(ω))1I(g,i)(ω)

=
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)
{
∑

0≤k<j aτ(g,i)(k)n

+ aτ(g,i)(j)n
∑

0≤q<d
(a·∂)q
q! Lz,τ(g,ij)(φ

n+1(ω))nq}1I(τ(g,i),j)(φn(ω))1I(g,i)(ω)

=
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)
{
∑

0≤k<j aτ(g,i)(k)n

+ aτ(g,i)(j)
∑

1≤q<d
(a·∂)q−1

(q−1)! Lz,τ(g,ij)(φ
n+1(ω))nq}1I(τ(g,i),j)(φn(ω))1I(g,i)(ω)

=
∑

i∈S∗n
g

∑
j∈S∗1

τ(g,i)

{(∑
0≤k<j aτ(g,i)(k) + aτ(g,i)(j)Lz,τ(g,ij)(φ

n+1(ω))
)
n

+ aτ(g,i)(j)
∑

2≤q<d
(a·∂)q−1

(q−1)! Lz,τ(g,ij)(φ
n+1(ω))nq

}
1I(τ(g,i),j)(φ

n(ω))1I(g,i)(ω)
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=
∑

i∈S∗n
g

{
Az,τ(g,i),1(a)(φ

n(ω))n+
∑

2≤q<dAz,τ(g,i),q(a)(φ
n(ω))nq

}
1I(g,i)(ω).

Moreover, by substituting the above DnLv, UnV and UnW for the ones in

the equations (16) and (17), we get

Lz,g(ω)=
∑

n∈N
∑

i∈S∗n
g

∏
(h,l)∈G▷ zh(l)

s((h,l);(g,i))
{
Az,τ(g,i),0(a)(φ

n(ω))e

+Az,τ(g,i),1(a)(φ
n(ω))n+

∑
2≤q<dAz,τ(g,i),q(a)(φ

n(ω))nq
}
1I(g,i)(ω)

uniformly on {ω ∈ Ωg : t(ω)=∞}, and

Lz,g(ω)=
∑

0≤n≤t(ω)

∑
i∈S∗n

g

∏
(h,l)∈G▷ zh(l)

s((h,l);(g,i))
{
Az,τ(g,i),0(a)(φ

n(ω))e

+Az,τ(g,i),1(a)(φ
n(ω))n+

∑
2≤q<dAz,τ(g,i),q(a)(φ

n(ω))nq
}
1I(g,i)(ω)

+
∑

i∈S∗t(ω)
g

∏
(h,l)∈G▷ zh(l)

s((h,l);(g,i))e1I(g,i)(ω)

for ω in Ωg with t(ω) <∞. Hence we write out the components of Lz and

get (26), (28) and (29). Finally, by removing the parameter a from (26)

and (29) we obtain (27) and (30).

5. Fractal functions with the parameter space [0, 1] on directed

networks

We start this section to define the mappings Ψg and Ψ−1+
g for translating

the functional equations on Ωg to the ones on [0, 1].

Definition 5.1. Let us set zg(j)=
1

m(g) for j in S∗1
g and g in G. Since the

mapping z :G▷ −→R satisfies the assumption of Theorem 3.1, the unique

continuous solution of SRF(z) exist, and we denote it by Ψ. It is clear that

Ψg(0g−)=0, Ψg(mg−)=1, 0≤Ψg(ω)≤1 and

Ψg(ω) =
∑

n∈N+

jn∏n
k=1 m(gk)

+ limn→∞
1∏n

k=1 m(gk)
, (31)

for g in G and ω in Ωg, where g1=g, jn=πg,n(ω) and gn+1=τ(gn, jn) for

n in N+.

Then it is easy to check the following properties of Ψg, and so we can

define Ψ−1+
g .
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Lemma 5.1. Let x in [0, 1] and g in G. Then the set Ψ−1
g ({x}) has at

most two elements, and Ψ−1
g ({x}) is empty if and only if there exists ω in

Ωg such that t(ω) < ∞ and Ψg(ω−) < x < Ψg(ω). In more detail, let ω in

Ωg and Ψg(ω)=x, we have

1) Ψ−1
g ({x}) = {ω} if t−(ω)= t+(ω)=∞,

2) Ψ−1
g ({x}) = {ω−, ω} if t−(ω)=∞ and t+(ω) <∞,

3) Ψ−1
g ({x}) = {ω, ω+} if 0 < t−(ω) <∞ and t−(ω+)=∞,

4) Ψg(ω) = x < Ψg(ω+) if 0 < t−(ω) <∞ and t−(ω+) <∞.

5) ω = mg− and Ψg(ω) = 1 if t−(ω) = 0.

Definition 5.2. Define the mapping Ψ−1+
g : [0, 1] −→ Ωg for g in G as

follows:

Ψ−1+
g (x) =


ω if t(ω) <∞ and Ψg(ω−) ≤ x < Ψg(ω),

ω if t−(ω)=∞ and Ψg(ω)=x,

mg− if x=1,

where x in [0, 1] and ω in Ωg.

Definition 5.3. Let g in G, j in S∗n
g and n in N. We denote by the set I+g,j

{x ∈ [0, 1];Ψ−1+
g (x) ∈ I(g,j)}\{Ψg(σ(g,j)(mτ(g,j)−))} for σ(g,j)(mτ(g,j)−) 6=

mg−, and {x ∈ [0, 1];Ψ−1+
g (x) ∈ I(g,j)} for σ(g,j)(mτ(g,j)−) =mg−. Define

ϕg,n : [0, 1]−→ [0, 1] as follows:

ϕg,n(x) =


∏n

k=1m(gk)
(
x−

∑
1≤k≤n

jk∏k
l=1 m(gl)

)
for x ∈ I+g,j if n ≥ 1,

x for x ∈ I+g,ϵ if n=0,

where j= j1 . . . jn and gk = τ(g, j1 . . . jk−1) for k=1, . . . , n. For simplicity

we denote ϕg,1 by ϕg.

Lemma 5.2. Let g in G and j in S∗1
g . We have

I+g,ϵ = [0, 1], (32)

I+g,j =

[ j
m(g) ,

j+1
m(g) [ if 0 ≤ j < m(g)− 1,

[ j
m(g) ,

j+1
m(g) ] if j = m(g)− 1,

(33)

Ψτ(g,j)(φ(ω)) = m(g)(Ψg(ω)− j
m(g)) for ω ∈ I(g,j), (34)

φ ◦Ψ−1+
g (x) = Ψ−1+

τ(g,j) ◦ ϕg(x) for x ∈ I+g,j . (35)
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Proof. (32), (33) and (34) are clear from Definition 5.2 and 5.3. Next we

show (35). In the case x=1, j=m(g)− 1 and so

φ ◦Ψ−1+
g (1) = φ(mg−) = mτ(g,m(g)−1)−

= Ψ−1+
τ(g,m(g)−1)(1) = Ψ−1+

τ(g,m(g)−1) ◦ ϕg(1).

If ω ∈ Ωg, t(ω) < ∞ and Ψg(ω−) ≤ x < Ψg(ω), then φ(ω) ∈ Ωτ(g,j),

t(φ(ω)) <∞ and Ψτ(g,j)(φ(ω)−) ≤ ϕg(x) < Ψτ(g,j)(φ(ω)) by (34). Hence

φ ◦Ψ−1+
g (x) = φ(ω) = Ψ−1+

τ(g,j) ◦ ϕg(x).

We can check other cases by similar method mentioned above.

Proposition 5.1. Let g in G, j in S∗n
g and n in N+. In addition, let

g1=g, j=j1 . . . jn and gk+1=τ(g, j1 . . . jk) for k=1, . . . , n− 1. Suppose x

in I+g,j. Then x in I+g1,j1 and ϕgk ◦ · · · ◦ϕg1(x) in I
+
gk+1,jk+1

(k=1, . . . , n−1).

Moreover

ϕg,n = ϕgn ◦ · · · ◦ ϕg1 on I+g,j , (36)

φn ◦Ψ−1+
g = Ψ−1+

τ(g,j) ◦ ϕg,n on I+g,j . (37)

Proof. Let x in I+g,j . By using (35), we get x ∈ I+g,j ⊂ I+g1,j1...jn−1
⊂

· · · ⊂ I+g1,j1j2 ⊂ I+g1,j1 , and ϕg1(x) ∈ I+g2,j2...jn ⊂ · · · ⊂ I+g2,j2j3 ⊂ I+g2,j2 . By

repeating the process, ϕgk ◦ · · · ◦ϕg1(x) ∈ I+gk+1,jk+1...jn
⊂ · · · ⊂ I+gk+1,jk+1

for

k = 1, . . . , n−1. Since ϕgk(y) = m(gk)(y− jk
m(gk)

) on I+gk,jk for k = 1, . . . , n,

ϕgn ◦ · · · ◦ ϕg1(x) =
∏n

k=1m(gk)(x −
∑

1≤k≤n
jk∏k

l=1 m(gl)
), and so (36) is

obtained.

(37) is also obtained by (35) and (36) as follows:

φn ◦Ψ−1+
g (x) = φn−1 ◦ φ ◦Ψ−1+

g (x) = φn−1 ◦Ψ−1+
g2 ◦ ϕg1(x)

= Ψ−1+
τ(g,j) ◦ ϕgn ◦ · · · ◦ ϕg1

= Ψ−1+
τ(g,j) ◦ ϕg,n.

Proposition 5.2. Ψ−1+
g has the following properties for each g in G.

1) The mapping Ψ−1+
g : [0, 1] −→ Ωg is right continuous with left-hand

limits.
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2) Ψ−1+
g is discontinuous at x0 if and only if there exist ω ∈ Ωg such

that (i) t(ω)<∞ or (ii) t−(ω) =∞ and t+(ω)<∞, and Ψg(ω−) = x0. In

this case, limx↑x0 Ψ
−1+
g (x) = ω−.

Proof. By noticing that {I(g,j1...jn) : n ∈ N+} is a basis of neighbourhoods

at ω = ((g1, j1), . . . , (gn, jn), . . . ) in Ωg, these properties are immediately

obtained from Definition 5.2.

Proposition 5.3. Let Lz be the continuous solution of SRF(z). Define Lz

by

Lz,g(x) = Lz,g ◦Ψ−1+
g (x) for x ∈ [0, 1] and g ∈ G. (38)

Then Lz has the following properties.

1) The mapping x 7−→ Lz,g(x) is M(d,C)-valued right continuous with

left-hand limits on [0, 1] for each g in G.

2) If there is ω in Ωg with Ψg(ω−) = x0 such that (i) t(ω) <∞ or (ii)

t−(ω)=∞ and t+(ω)<∞, then Lz,g(x0)−Lz,g(x0−) = Lz,g(ω)−Lz,g(ω−),

where Lz,g(x0−) = limy↗x0 Lz,g(y) for x0 > 0 and Lz,g(0−) = 0.

3) Lz satisfies the following system of functional equations with the weighted

parameter z:
Lz,g(1) = e,

Lz,g(x)=
∑

0≤k<j zg(k)+zg(j)Lz,τ(g,j)◦ ϕg(x) (x∈I+g,j , j∈S∗1
g ),

Lz,g(x)=e (x ∈ [0, 1]) if t(0g) = 0

(39)

for each g in G.

We call the above system SRF(z) with the parameter space [0, 1] on

(G,m, τ), that is abbreviated to be “ SRF(z) with [0, 1] on (G,m, τ)” or

“ SRF(z) with [0, 1] ”.

Proof. 1) and 2) follow directly from Proposition 5.2, and also 3) is easily

checked by using (5) and (37).

Theorem 5.1. Let z :G▷−→∆(d,C) with
∑

k∈S∗1
g
zg(k)=e for g in G and

ρ(z)<1. Then we have

1) There exists a unique right continuous solution Lz with left-hand limits

of SRF(z) with [0, 1].
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2) The mapping z 7−→Lz,g is B([0, 1],C)-valued analytic for each g in G,

where B([0, 1],C) is the set of all bounded mappings from [0, 1] to C with

the uniform norm.

3) If the mapping x 7−→Lz,g(x) is discontinuous at x0, then there exists

ω in Ωg such that t(ω) < ∞, Ψg(ω−) = x0 and Lz,g(x0) − Lz,g(x0−) =

zg(i)Lz,τ(g,i)(0τ(g,i)), where g in G, i in S
∗t(ω)
g and ω=σ(g,i)(0τ(g,i)).

Proof. It is sufficient to prove the uniqueness of the solution of SRF(z)

with [0, 1], because of Theorem 3.1, Proposition 3.2 and Proposition 5.3 .

Let Lz and L′
z be two solutions of SRF(z) with [0, 1]. For x ∈ I+g,j1j2 , where

j1j2 ∈ S∗2
g ,

Lz,g(x)− L′
z,g(x) = zg(j1){Lz,τ(g,j1)◦ ϕg(x)− L′

z,τ(g,j1)
◦ ϕg(x)}

= zg(j1j2){Lz,τ(g,j1j2)◦ ϕg,2(x)− L′
z,τ(g,j1j2)

◦ ϕg,2(x)},

because of ϕg(x)∈I+τ(g,j1),j2 and ϕg,2(x)=ϕτ(g,j1) ◦ϕg(x) by Proposition 5.1.

By repeating this operation, for x in I+g,j , where j in S∗n
g and n in N,

Lz,g(x)− L′
z,g(x) = zg(j){Lz,τ(g,j)◦ ϕg,n(x)− L′

z,τ(g,j)◦ ϕg,n(x)}.

Since Ψ−1+
g (x) in I(g,j), if t−(Ψ−1+

g (x)) = ∞ then zg(j) → 0 as n → ∞
by Lemma 3.1, and if t(Ψ−1+

g (x)) < ∞ then there exists n such that

t(Ψ−1+
τ(g,j)(x))=0 and Ψ−1+

g (x)=σ(g,j)(Ψ
−1+
τ(g,j)(x)). Hence Lz = L′

z.

Theorem 5.2. Let z : G▷ −→ C and a : G▷ −→ C be the mappings such

that
∑

j∈Sm(g)
zg(j) = 1 and

∑
j∈Sm(g)

ag(j) = 0 for g in G. Suppose that

ρ(z) < 1, and let Lz be a unique right continuous solution with left-hand

limits of SRF(z) with [0, 1]. Then the mapping z 7−→ Lz,g is B([0, 1],C)-
valued analytic, and is expanded as follows:

(a · ∂)qLz,g(x) = q!
∑

n∈N
∑

i∈S∗n
g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Az,τ(g,i),q(a) ◦ ϕg,n(x)1I+g,i(x) (q ∈ N), (40)

1
p!L

(p)
z,g (x) =

∑
n∈N

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Bz,τ(g,i),p ◦ ϕg,n(x)1I+g,i(x) (p∈Map(G▷,N)) (41)
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uniformly on {x ∈ [0, 1]; t(Ψ−1+
g (x)) = ∞}, and

Lz,g(x) =
∑

0≤n≤t(Ψ−1+
g (x))

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Az,τ(g,i),0(a) ◦ ϕg,n(x)1I+g,i(x)

+
∑

i∈S
∗t(Ψ−1+

g (x))
g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i)), (42)

(a · ∂)qLz,g(x) = q!
∑

0≤n≤t(Ψ−1+
g (x))

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Az,τ(g,i),q(a) ◦ ϕg,n(x)1I+g,i(x) (q ∈ N+), (43)

1
p!L

(p)
z,g (x) =

∑
0≤n≤t(Ψ−1+

g (x))

∑
i∈S∗n

g

∏
(h,l)∈G▷zh(l)

s((h,l);(g,i))

×Bz,τ(g,i),p◦ϕg,n(x)1I+g,i(x) (p∈Map(G▷,N), |p|>0) (44)

for x in [0, 1] and g in G with t(Ψ−1+
g (x)) <∞, where

Az,g,q(a)(x)=



∑
j∈S∗1

g

∑
0≤k<j zg(k)1I+g,j

(x) (q = 0),∑
j∈S∗1

g

(∑
0≤k<j ag(k)

+ag(j)Lz,τ(g,j)◦ϕg(x)
)
1I+g,j

(x) (q = 1),∑
j∈S∗1

g
ag(j)

(a·∂)q−1

(q−1)! Lz,τ(g,j)◦ϕg(x)1I+g,j(x) (q ≥ 2)

and

Bz,g,p(x)

=



∑
j∈S∗1

g

∑
0≤k<j zg(k)1I+g,j

(x) (|p| = 0),∑
0≤j<m(g)−1 pg(j)

{
Lz,τ(g,j)◦ϕg(x)1I+g,j(x)

+
∑

j<k<m(g)−1 1I+g,k
(x)

+(1− Lz,τ(g,m(g)−1)◦ϕg(x))1I+
g,m(g)−1

(x)
}

(|p| = 1),∑
0≤j<m(g)−1 pg(j)

∂p−δ(g,j)

(p−δ(g,j))!

{
Lz,τ(g,j)◦ϕg(x)1I+g,j(x)

−Lz,τ(g,m(g)−1)◦ϕg(x)1I+
g,m(g)−1

(x)
}

(|p| ≥ 2)

for x in [0, 1] and g in G, where δ(g, j) is in Map(G▷,N) such that δ(g, j)h(l) =

0 for (h, l) ∈ G▷ and 0 ≤ l < m(h)− 1 without δ(g, j)g(j) = 1.

Proof. By using Lz,g, Az,g,q(a) and Bz,g,q in Theorem 4.1, we define Lz,

Az,g,q and Bz,g,q by

Lz,g(x) = Lz,g ◦Ψ−1+
g (x),
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Az,g,q(a)(x) = Az,g,q(a) ◦Ψ−1+
g (x),

Bz,g,q(x) = Bz,g,q ◦Ψ−1+
g (x),

where x in [0, 1], g in G and q in N. Then Theorem 4.1 implies this theorem.

Finally we give two examples of (G,m, τ), which have a continuous so-

lution of SRF(z) with [0, 1] and include the Takagi function and the Gray

Takagi function.

Example 5.1. Let G = {0} and m = constant(≥ 2).

In this case we may use Sm, Ω, S∗n, I+j , ϕn, ϕ, z(j), a(j), p(j), δ(j),

s(j; i), . . . instead of G▷, Ωg, S
∗n
g , I+g,j , ϕg,n, ϕg, zg(j), ag(j), pg(j), δ(g, j),

s((g, j); (h, i)), . . . , because G is one point set. Then τ is identity, ϕ(x)=

mx (mod 1) and the notations In,j and s(j, k) in [11] are expressed by I+i
and s(k; i) as follows:

In,j = I+i and s(j, k) = s(k; i),

where j= i1m
n−1+. . .+in−1m+in, i= i1 . . . in in S∗n and k=1,. . . ,m− 1.

According to (36), (39), (40) and (41), the SRF(z) with [0, 1] isLz(1) = 1,

Lz(x) =
∑

0≤k<j z(k)+z(j)Lz◦ ϕ(x) (x∈I1,j , 0 ≤ j < m)
(45)

and its solution L satisfies that

(a · ∂)qLz(x)

=q!
∑

0≤n<∞
∑

0≤j<mnz(0)
n−

∑
1≤k<m s(j,k)∏

1≤k<mz(k)s(j,k)

×Az,q(a)◦ϕn(x)1In,j(x) (q∈N) (46)

and

1
p!L

(p)
z (x)

=
∑

0≤n<∞
∑

0≤j<mnz(0)
n−

∑
1≤k<m s(j,k)∏

1≤k<mz(k)s(j,k)

×Bz,p◦ϕn(x)1In,j(x) (p∈Map(Sm,N)) (47)
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for x ∈ [0, 1], where

Az,q(a)(x) =


∑

0≤i<m

∑
0≤k<i z(k)1I1,i(x) (q = 0),∑

0≤i<m

(∑
0≤k<i a(k)+a(i)Lz◦ϕ(x)

)
1I1,i(x) (q = 1),∑

0≤i<ma(i) (a·∂)
q−1

(q−1)! Lz◦ϕ(x)1I1,i(x) (q ≥ 2)

and

Bz,p(x)=



∑
0≤i<m

∑
0≤k<i z(k)1I1,i(x) (|p| = 0),∑

0≤i<m−1 p(i)
{
Lz◦ϕ(x)1I1,i(x)+

∑
i<k<m−1 1I1,k(x)

+(1− Lz◦ϕ(x))1I1,m−1(x)
}

(|p| = 1),∑
0≤i<m−1 p(i)

∂p−δ(i)

(p−δ(i))!

{
Lz◦ϕ(x)1I1,i(x)

−Lz◦ϕ(x)1I1,m−1(x)
}

(|p| ≥ 2).

Moreover according to (12) we get

Lz(
K

mN
) =

∑
0≤j<K z(0)N−

∑
1≤k<m s(j,k)∏

1≤k<m z(k)s(j,k) (48)

for integers K and N such that 0≤K<mN , which implies Theorem 2.1 in

[11], which is a key lemma to connect Takagi function and the digital sum

problem.

Especially in the case of m = 2, z(0) = r, z(1) = 1 − r and a(0) = 1,

a(1) = −1 (45) coincides with (1) and (46) implies (2), that is, denoting Lr

by Lz we get Tr,k = 1
k!

∂kLr

∂rk
.

Example 5.2. Let ♯G=d, G={0, 1, . . . , d−1}, m=constant(≥ max{d, 2})
and τ(g, j)=j (mod d) for 0≤g<d and 0≤j<m.

In this case we may use S∗n, ϕn, ϕ and I+j instead of S∗n
g , ϕg,n, ϕg and

I+g,j , because these notations do not depend on g. Moreover ϕ(x) and In,j

are the same ones in Example 5.1. We can give such expression as (45)

– (48) in Example 5.1, but we consider more special case: m = d = 2,

zg(j) = r if g⊕j = 0, zg(j) = 1−r if g⊕j = 1 and ag(j) = (−1)g+j , where

⊕ is the addition modulo 2. Then, by setting L̃r,g(x)=Lz,g(x) and ϕ̃(x)=

ϕ(x)1I1,0(x)+(1−ϕ(x))1I1,1(x) for x in [0, 1] and g∈G, we get the followings:L̃r,g(1) = 1,

L̃r,g(x) = zg(0)L̃r,0◦ϕ(x)1I1,0(x)+{zg(0)+zg(1)L̃r,1◦ϕ(x)}1I1,1(x),



30 Katsushi Muramoto and Takeshi Sekiguchi

∂q

∂rq L̃r,g(x) = q!
∑

0≤n<∞
∑

0≤j<2nr
n−̃s(g,j,n)(1−r)s̃(g,j,n)

×Ãr,j(mod 2),q ◦ ϕn(x)1In,j (x) (q ∈ N),

L̃r,g(
K

2N
) =

∑
0≤j<K rN−̃s(g,j,N)(1−r)s̃(g,j,N) (K,N ∈N, 0≤K<2N ),

where x ∈ [0, 1],

Ãr,g,q(x) =

{1
2+(−1)g 2r−1

2 }1I1,1(x) (q = 0),

(−1)g

(q−1)!
∂q−1

∂rq−1 L̃r,0◦ϕ̃(x) (q ≥ 1),

and s̃(g, j, n) = s((0, 1); (g, i)) + s((1, 0); (g, i)) with i = i1 . . . in for j =

i12
n−1+. . .+in−12+in with ik ∈ {0, 1} (k=1, . . . , n), because of L̃r,g(x)=

1−L̃r,1⊕g(1−x) and ∂
∂r =

∂
∂z0(0)

− ∂
∂z1(0)

. Moreover L̃r,0 and 1
k!

∂kL̃r,0

∂rk
equal to

L̃r and T̃r,k in [3] respectively, by noticing s̃(g, j, n)=g⊕i1+
∑n

k=2 ik−1⊕ik.

6. Glossary of symbols

(G,m, τ) G▷ Sk Definition 2.1

S∗k
g τ̃(g) G▷k

Definition 2.2

Ω φ(ω) σg Definition 2.3

Ωg Ig Definition 2.4

πππg,n πg,n Definition 2.5

t t+ t− s(n, ω) 0g mg− ω− ω+ Definition 2.6

zg SRF(z) Definition 2.7

z̃(g) Definition 2.8

Dn Un Definition 3.1

s((g, j); (h, i)) Definition 3.2

ρ(z) η(z) ‖F‖ Definition 3.3

∂g(j) ∂p a · ∂ L
(p)
z,g p! |p| Section 4

Ψg Definition 5.1

Ψ−1+
g Definition 5.2

I+g,j ϕg,n ϕg Definition 5.3
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