Directed networks and self-similar systems

Katsushi Muramoto and Takeshi Sekiguchi

Abstract

The formula $\left.\frac{\partial L_{r}}{\partial r}\right|_{r=\frac{1}{2}}=2 T$ in Hata and Yamaguti [1], where L_{r} is Salem's singular function and T is the Takagi function, was generalized to the formula $\frac{\partial^{k} L_{r}}{\partial r^{k}}=k!T_{r, k}$ in Sekiguchi and Shiota [17] by using the measure theoretic method, where $T_{r, k}$ is the k-th order Takagi function. In this paper we reconsider these functions from the viewpoint of de Rham's functional equation, and by investigating such functional equation on a directed network we expand the above formula without the measure theoretic method.

1. Introduction

Hata and Yamaguti [1] have obtained the formula $\left.\frac{\partial L_{r}}{\partial r}\right|_{r=\frac{1}{2}}=2 T$, which connects the Takagi function T with Salem's singular function L_{r}. The Takagi function takes the form $T(x)=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{2^{n}} f\left(\psi^{n} x\right)$ for $x \in[0,1]$, where $f(x)=||2 x-1|-1|$ and $\psi(x)=2 x(\bmod 1)$, and Salem's singular function L_{r}, which is called a "Lebesgue's singular function", is a unique continuous solution with $L_{r}(1)=1$ of the following functional equation:

$$
\begin{equation*}
L_{r}(x)=r L_{r}(\psi(x)) 1_{J_{1,0}}(x)+\left\{r+(1-r) L_{r}(\psi(x))\right\} 1_{J_{1,1}}(x) \quad(x \in[0,1]), \tag{1}
\end{equation*}
$$

where r is a complex number with $\max \{|r|,|1-r|\}<1$. This formula has been extended up to the k-th derivative of L_{r} in [17]. Namely, they took notice of that L_{r} is the distribution of the binomial probability measure, and by using the measure theoretical technique they proved the formula

[^0]$\frac{\partial^{k} L_{r}}{\partial r^{k}}=k!T_{r, k}$, in which the higher-order Takagi function $T_{r, k}$ was defined by
\[

$$
\begin{equation*}
T_{r, k}(x)=\sum_{n=0}^{\infty} \sum_{j=0}^{2^{n}-1} r^{n-s(j)}(1-r)^{s(j)} B_{r, k} \circ \psi^{n}(x) 1_{J_{n, j}}(x) \tag{2}
\end{equation*}
$$

\]

where

$$
B_{r, k}(x)=\left\{\begin{array}{lc}
L_{r} \circ \psi(x) 1_{J_{1,0}}(x)+\left(1-L_{r} \circ \psi(x)\right) 1_{J_{1,1}}(x) & (k=1) \\
T_{r, k-1} \circ \psi(x)\left(1_{J_{1,0}}(x)-1_{J_{1,1}}(x)\right) & (k \geq 2)
\end{array}\right.
$$

$s(n)$ is the sum of digits in the binary expansion of $n, J_{n, j}=\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}[\right.$ for $0 \leq j<2^{n}-2$ and $J_{n, 2^{n}-1}=\left[\frac{2^{n}-1}{2^{n}}, 1\right]$. The higher-order Takagi function was used for the explicit representation of power sums of digital sums in [12]. Furthermore those results were extended for the digital sum problems on the different types of number system in [11], [3] and [2]. However it seems that the way to define the higher-order Takagi function is too technical, although their measure theoretic method is forceful.

In this paper we reconsider these functions from the viewpoint of some functional equation without the measure theoretic method, and investigate what causes the above definition of the higher-order Takagi function. We take notice of that the above functional equation (1) is a special case of de Rham's functional equation in [18]. By differentiating the equation (1) formally with respect to r, we get the functional equation

$$
\begin{align*}
\frac{\partial L_{r}}{\partial r}(x)=\left\{r \frac{\partial L_{r}}{\partial r}\right. & \left.(\psi(x))+L_{r}(\psi(x))\right\} 1_{J_{1,0}}(x) \\
& +\left\{(1-r) \frac{\partial L_{r}}{\partial r}(\psi(x))+1-L_{r}(\psi(x))\right\} 1_{J_{1,1}}(x) \quad(x \in[0,1]) \tag{3}
\end{align*}
$$

and the Takagi function appears in its solution for the case $r=\frac{1}{2}$. Furthermore, by setting that $\mathbf{r}=\left[\begin{array}{ll}r & 1 \\ 0 & r\end{array}\right]$ and $\mathcal{L}_{\mathbf{r}}(x)=\left[\begin{array}{cc}L_{r}(x) & \frac{\partial L_{r}}{\partial r}(x) \\ 0 & L_{r}(x)\end{array}\right]$, we combine the above two functional equations (1) and (3) and then we get the following

$$
\begin{equation*}
\mathcal{L}_{\mathbf{r}}(x)=\mathbf{r} \mathcal{L}_{\mathbf{r}}(\psi(x)) 1_{J_{1,0}}(x)+\left\{\mathbf{r}+(\mathfrak{e}-\mathbf{r}) \mathcal{L}_{\mathbf{r}}(\psi(x))\right\} 1_{J_{1,1}}(x) \quad(x \in[0,1]), \tag{4}
\end{equation*}
$$

where \mathfrak{e} is a unit matrix. The functional equation (4) is the same as (1) except that those \mathbf{r} and $\mathcal{L}_{\mathbf{r}}(x)$ are matrices, and so (4) is an extension of
(1). Moreover we reconsider (4) on $\prod_{1}^{\infty}\{0,1\}$ instead of $[0,1]$, because $[0,1]$ is considered to be $\prod_{1}^{\infty}\{0,1\}$ by the dyadic expansion, and then each of ψ, $J_{1,0}$ and $J_{1,1}$ in (4) are replaced by $\varphi,\{0\} \times \prod_{1}^{\infty}\{0,1\}$ and $\{1\} \times \prod_{1}^{\infty}\{0,1\}$, where φ is the shift on $\prod_{1}^{\infty}\{0,1\}$. As generalization of this functional equation, we define the system $\operatorname{SRF}(\mathbf{z})$ of functional equations on the directed network (G, m, τ) and show its fundamental properties in Section 2. This seems to be the first attempt to extending another aspect of HataYamaguchi's formula. For more information on the relation between T, L_{r} and (G, m, τ), refer to examples in Section 5. In Section 3, by introducing the two kinds of transformations \mathbf{D}_{n} and \mathbf{U}_{n}, we show the existence and uniqueness of solutions of $\operatorname{SRF}(\mathbf{z})$, and we also give some expansion to its solutions. In Section 4 we investigate $\operatorname{SRF}(\mathbf{z})$ of the type like (4), and by applying the result of Section 2 to it we get a general form of (2) for $\operatorname{SRF}(\mathbf{z})$. In Section 5 we shall define the mappings Ψ_{g} and Ψ_{g}^{-1} to translate the functional equations on Ω_{g} to the ones on [0,1], and rewrite Theorem 4.1 in this case. In Section 6 we give glossary of symbols used in this paper.

We use the following notations. Let $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ and \mathbb{C} be the sets of natural numbers(including 0), integers, real numbers and complex numbers respectively. Set $\mathbb{N}_{+}=\mathbb{N} \backslash\{0\}$. We denote the set of all mappings from a set X to a set Y by $\operatorname{Map}(X, Y)$, the set of all continuous mappings from a set X to a set Y by $\mathcal{C}(X, Y)$ if X and Y are topological spaces, the direct sum of a family of sets $\left\{B_{a}: a \in A\right\}$ with a parameter set A by $\coprod_{a \in A} B_{a}=\bigcup_{a \in A}\{a\} \times B_{a}$, the set of all mappings from A to $\bigcup_{a \in A} B_{a}$ such that the image f_{a} of a is in B_{a} for each a in A by $\Gamma\left(\coprod_{a \in A} B_{a}\right)$, and the number of all elements of a set C by $\sharp C$. Moreover we denote the set of $d \times d$ matrices with coefficients in \mathbb{C} by $\mathrm{M}(d, \mathbb{C})$, and the set of upper triangle matrices in $\mathrm{M}(d, \mathbb{C})$ by $\Delta(d, \mathbb{C})$.

2. Functional equations on directed networks

We start introducing the directed network (G, m, τ).

Definition 2.1. Let G be a non empty finite set, $S_{0}=\emptyset$ and $S_{k}=\{0, \ldots, k-$ $1\}$ for k in \mathbb{N}_{+}. Suppose that $m: G \longrightarrow \mathbb{N}_{+}$and $\tau: G^{\triangleright} \longrightarrow G$ are mappings, where $G^{\triangleright}=\coprod_{g \in G} S_{m(g)}$. Then the triple (G, m, τ) is called the directed
network. We also call an element of G a node, and an element (g, j) of $G^{\triangleright} a$ (communication) path of (G, m, τ) with the start point g and the end point $\tau(g, j)$.

In the following we suppose that (G, m, τ) be a directed network.
Definition 2.2. For each g in G and k in \mathbb{N}, we denote by $S_{g}^{* k}$ the set of words with length k, which is defined by

$$
S_{g}^{* k}= \begin{cases}\{\epsilon\} & (k=0) \\ S_{m(g)} & (k=1) \\ \left\{i \boldsymbol{j}: i \in S_{m(g)}, \boldsymbol{j}=j_{1} \ldots j_{k-1} \in S_{\tau(g, i)}^{*(k-1)}\right\} & (k \geq 2),\end{cases}
$$

where ϵ is the empty word and $i \boldsymbol{j}$ means $i j_{1} \ldots j_{k-1}$. We denote $\coprod_{g \in G} S_{g}^{* k}$ by $G^{\triangleright^{k}}$ and also use the notation $\left(\boldsymbol{h}, j_{k}\right)$ that means (g, \boldsymbol{j}) in $G^{\triangleright^{k}}$ such that $\boldsymbol{j}=j_{1} \ldots j_{k}$ in $S_{g}^{* k}$ and $\boldsymbol{h}=\left(g, j_{1} \ldots j_{k-1}\right)$ in $G^{\triangleright^{k-1}}$. Next we define the mapping $\tilde{\tau}: \bigcup_{n \in \mathbb{N}} G^{\triangleright^{n}} \longrightarrow G$ by

$$
\tilde{\tau}(\boldsymbol{g})= \begin{cases}g & \text { if } \boldsymbol{g}=(g, \epsilon) \in G^{\triangleright^{0}}, \\ \tau(g, j) & \text { if } \boldsymbol{g}=(g, j) \in G^{\triangleright^{1}}, \\ \tau(\tilde{\tau}(\boldsymbol{h}), j) & \text { if } \boldsymbol{g}=(\boldsymbol{h}, j) \in G^{\triangleright^{k}}, \boldsymbol{h} \in G^{\triangleright^{k-1}}, j \in S_{\tilde{\tau}(\boldsymbol{h})}^{* 1} \quad(k \geq 2) .\end{cases}
$$

The mapping $\tilde{\tau}$ is the extension of τ, and so we use the same notation τ instead of $\tilde{\tau}$, and we call an element in $G^{\triangleright^{k}}$ a path with length k, because $\left(g, j_{1} \ldots j_{k}\right)$ is a connection of paths $\left(g, j_{1}\right),\left(\tau\left(g, j_{1}\right), j_{2}\right), \ldots$ and $\left(\tau\left(g, j_{1} \ldots j_{k-1}\right), j_{k}\right)$ sequentially. We note that $G^{\triangleright}{ }^{\circ}$ is identified with G and $G^{\triangleright 1}$ is G^{\triangleright}.

Definition 2.3. Let $\Omega=\prod_{1}^{\infty} G^{\triangleright}$. We define the mapping $\varphi: \Omega \longrightarrow \Omega$ as

$$
\varphi(\omega)=\left(\omega_{2}, \ldots, \omega_{n}, \ldots\right) \quad \text { for } \omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \ldots\right) \text { in } \Omega,
$$

and, for each \boldsymbol{g} in $\bigcup_{n \in \mathbb{N}} G^{\triangleright^{n}}$, we define the mapping $\sigma_{\boldsymbol{g}}: \Omega \longrightarrow \Omega$ by

$$
\sigma_{\boldsymbol{g}}(\omega)= \begin{cases}\omega & \text { if } \boldsymbol{g}=(g, \epsilon) \in G^{\triangleright^{0}}, \\ \left(\boldsymbol{g}, \omega_{1}, \ldots, \omega_{n}, \ldots\right) & \text { if } \boldsymbol{g}=(g, j) \in G^{\triangleright^{1}}, \\ \sigma_{\boldsymbol{h}}\left(\sigma_{(\tau(\boldsymbol{h}), j)}(\omega)\right) & \text { if } \boldsymbol{g}=(\boldsymbol{h}, j) \in G^{\triangleright^{k}}, \\ & \boldsymbol{h} \in G^{\triangleright^{k-1}}, j \in S_{\tau(\boldsymbol{h})}^{* 1}(k \geq 2),\end{cases}
$$

where $\omega=\left(\omega_{1}, \ldots, \omega_{n}, \ldots\right)$ in Ω.

Definition 2.4. Let G^{\triangleright} have the discrete topology and Ω have the product topology. We define Ω_{g} for each g in G by

$$
\Omega_{g}=\left\{\left(\left(g_{1}, j_{1}\right), \ldots,\left(g_{n}, j_{n}\right), \ldots\right): \begin{array}{l}
g_{1}=g, j_{1} \in S_{g}^{* 1} \text { and } g_{n+1}=\tau\left(g_{n}, j_{n}\right), \\
j_{n+1} \in S_{g_{n+1}}^{* 1} \text { for } n \in \mathbb{N}_{+}
\end{array}\right\}
$$

and we denote $\sigma_{\boldsymbol{g}}\left(\Omega_{\tau(\boldsymbol{g})}\right)$ by $I_{\boldsymbol{g}}$ for each \boldsymbol{g} in $\bigcup_{n \in \mathbb{N}} G^{\triangleright^{n}}$. Then it is clear that each I_{g} is open, closed and compact, and that $I_{g}=\Omega_{g}=\bigcup_{j \in S_{g}^{* n}} I_{(g, \boldsymbol{j})}$ for each g in G and n in \mathbb{N}.

Definition 2.5. For each g in G and n in \mathbb{N}_{+}, the mappings $\boldsymbol{\pi}_{g, n}: \Omega_{g} \longrightarrow$ $S_{g}^{* n}$ and $\pi_{g, n}: \Omega_{g} \longrightarrow \bigcup_{i \in S_{g}^{*(n-1)}} S_{\tau(g, i)}^{* 1}$ are defined by $\pi_{g, n}(\omega)=j_{1} \ldots j_{n}$ and $\pi_{g, n}(\omega)=j_{n}$, where $\omega=\left(\left(g_{1}, j_{1}\right), \ldots,\left(g_{n}, j_{n}\right), \ldots\right)$ in Ω_{g}. We use $\pi_{g, 0}$ and $\pi_{g, 0}$ as the mappings form Ω_{g} to $S_{g}^{* 0}$ defined by $\pi_{g, 0}(\omega)=\pi_{g, 0}(\omega)=\epsilon$.

We remark that $\boldsymbol{\pi}_{g, n}(\omega)=\pi_{g, 0}(\omega) \ldots \pi_{g, n}(\omega)$ and $\omega=\sigma_{\left(g, \pi_{g, n}(\omega)\right)} \circ \varphi^{n}(\omega)$ for ω in Ω_{g} and n in \mathbb{N}.

Definition 2.6. The mappings $\mathfrak{t}, \mathfrak{t}^{+}, \mathfrak{t}^{-}: \Omega \longrightarrow \mathbb{N} \cup\{\infty\}$ are defined by

$$
\begin{aligned}
\mathfrak{t}(\omega) & =\min \left\{k \in \mathbb{N}: \sup _{n>k} m\left(g_{n}\right)=1\right\}, \\
\mathfrak{t}^{+}(\omega) & =\min \left\{k \in \mathbb{N}: \sup _{n>k} j_{n}=0\right\}, \\
\mathfrak{t}^{-}(\omega) & =\min \left\{k \in \mathbb{N}: \sup _{n>k}\left(m\left(g_{n}\right)-j_{n}\right)=1\right\},
\end{aligned}
$$

and the mapping $\mathfrak{s}: \mathbb{N} \times \Omega \longrightarrow \mathbb{N}$ is defined by

$$
\mathfrak{s}(n, \omega)=\sharp\left\{k \in \mathbb{N}_{+}: m\left(g_{k}\right)>1, k \leq n\right\},
$$

where $\min \emptyset=\infty$ and $\omega=\left(\left(g_{1}, j_{1}\right), \ldots,\left(g_{n}, j_{n}\right), \ldots\right)$ in Ω. Moreover we denote by $\overline{0}_{g}$ and $\bar{m}_{g}-$ the elements in Ω_{g} satisfying $\mathfrak{t}^{+}(\omega)=0$ and $\mathfrak{t}^{-}(\omega)=$ 0 respectively, and we use the following notations $\omega-$ and $\omega+$ for ω as follows:

$$
\begin{array}{ll}
\omega-=\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)}\right) & \text { if } 0<\mathfrak{t}^{+}(\omega)<\infty, \\
\omega+=\sigma_{(g, j)}\left(\overline{0}_{\tau(g, j)}\right) & \text { if } 0<\mathfrak{t}^{-}(\omega)<\infty,
\end{array}
$$

where $\boldsymbol{i}=\boldsymbol{\pi}_{g, \mathrm{t}^{+}(\omega)-1}(\omega)\left(\pi_{g, \mathrm{t}^{+}(\omega)}(\omega)-1\right)$ and $\boldsymbol{j}=\boldsymbol{\pi}_{g, \mathrm{t}^{-}(\omega)-1}(\omega)\left(\pi_{g, \mathrm{t}^{-}(\omega)}(\omega)+1\right)$. We also use $\overline{0}_{g}-$ as an imaginary point, which is not in Ω_{g}.

The next proposition is easily checked.
Proposition 2.1. The mappings $\mathfrak{s}, \mathfrak{t}, \mathfrak{t}^{+}, \mathfrak{t}^{-}$have the following properties:

1) $\mathfrak{t}^{+} \leq \mathfrak{t}, \mathfrak{t}^{-} \leq \mathfrak{t}$ and $\mathfrak{t}^{-} \vee \mathfrak{t}^{+}=\mathfrak{t}$.
2) if $n \leq \mathfrak{t}(\omega), \omega \in \Omega_{g}$, then $\mathfrak{s}(n, \omega) \geq\left\lfloor\frac{n}{\sharp G}\right\rfloor$.

Definition 2.7. Let the mapping $\mathbf{z}: G^{\triangleright} \longrightarrow \mathrm{M}(d, \mathbb{C})$ satisfy $\sum_{k \in S_{g}^{* 1}} \mathbf{z}_{g}(k)=\mathfrak{e}$ for g in G, where \mathfrak{e} is the unit matrix and $\mathbf{z}_{g}(k)$ is the image of (g, k) in G^{\triangleright}. We define the system of de Rham functional equations with the weighted parameter \mathbf{z} associated with (G, m, τ), that is abbreviated to be $" \operatorname{SRF}(\mathbf{z})$ on (G, m, τ) ", by the following equations:

$$
\left\{\begin{array}{l}
\mathcal{L}_{g}\left(\bar{m}_{g}-\right)=\mathfrak{e}, \tag{5}\\
\mathcal{L}_{g}(\omega)=\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{L}_{\tau(g, j)}(\varphi(\omega)) \quad\left(\omega \in I_{(g, j)}, j \in S_{g}^{* 1}\right)
\end{array}\right.
$$

for g in G. We only deal with continuous solutions $\mathcal{L}_{\mathbf{z}}$ of (5). Strictly speaking, we denote a continuous solution by $\mathcal{L}_{\mathbf{z}, g}$, which belongs to $\mathcal{C}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)$ and which index \mathbf{z} means its weighted parameter for each g in G.

In the subsequent, we assume that the mapping $\mathbf{z}: G^{\triangleright} \longrightarrow \mathrm{M}(d, \mathbb{C})$ satisfies $\sum_{k \in S_{g}^{* 1}} \mathbf{z}_{g}(k)=\mathfrak{e}$ for each g in G, unless otherwise stated.

Lemma 2.1. Let $\mathcal{L}_{\mathbf{z}}$ be a solution of $\operatorname{SRF}(\mathbf{z})$. Then we have

$$
\begin{align*}
\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}\right)\right)= & \mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)-\right) \sum_{j<k<m(\tau(g, i))} \mathbf{z}_{\tau(g, i)}(k) \\
& +\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)^{-}}\right)\right) \sum_{0 \leq k \leq j} \mathbf{z}_{\tau(g, i)}(k) \tag{6}
\end{align*}
$$

for \boldsymbol{i} in $S_{g}^{* n}, j$ in $S_{\tau(g, i)}^{* 1}, n$ in \mathbb{N} and g in G, where we set $\mathcal{L}_{\mathbf{z}, g}\left(\overline{0}_{g^{-}}\right)=\mathbf{0}$.
Proof. We prove this lemma by the induction. Let g in G and j in $S_{g}^{* 1}$. By substituting $\sigma_{(g, j)}\left(\bar{m}_{\tau(g, j)^{-}}\right)$for ω in (5), we have

$$
\begin{aligned}
\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, j)}\left(\bar{m}_{\tau(g, j)}-\right)\right) & =\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}\left(\varphi\left(\sigma_{(g, j)}\left(\bar{m}_{\tau(g, j)}-\right)\right)\right) \\
& =\sum_{0 \leq k \leq j} \mathbf{z}_{g}(k) \\
& =\mathcal{L}_{\mathbf{z}, g}\left(\overline{0}_{g}-\right) \sum_{j<k<m(g)} \mathbf{z}_{g}(k)+\mathcal{L}_{\mathbf{z}, 9}\left(\bar{m}_{g^{-}}\right) \sum_{0 \leq k \leq j} \mathbf{z}_{g}(k),
\end{aligned}
$$

which is (6) in the case $n=0$. Next let h in $S_{g}^{* 1}, \boldsymbol{i}$ in $S_{\tau(g, h)}^{* n}$ and j in $S_{\tau(g, h i)}^{* *}$. By using (5) again, we have the following three equations:

$$
\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i j)}\left(\bar{m}_{\tau(g, h i j)}-\right)\right)
$$

$$
\begin{align*}
&=\sum_{0 \leq k<h} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(h) \mathcal{L}_{\mathbf{z}, \tau(g, h)}\left(\sigma_{(\tau(g, h), i j)}\left(\bar{m}_{\tau(g, h i j)}-\right)\right) \tag{7}\\
& \mathbf{z}_{g}(h) \mathcal{L}_{\mathbf{z}, \tau(g, h)}\left(\sigma_{(\tau(g, h), i)}\left(\bar{m}_{\left.\tau(g, h i)^{-}\right)}\right)\right. \\
&=\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i)}\left(\bar{m}_{\tau(g, h i)}\right)\right)-\sum_{0 \leq k<h} \mathbf{z}_{g}(k) \tag{8}\\
& \mathbf{z}_{g}(h) \mathcal{L}_{\mathbf{z}, \tau(g, h)}(\left(\sigma_{(\tau(g, h), i)}\left(\overline{0}_{\tau(g, h i)}\right)-\right) \\
& \quad=\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i)}\left(\overline{0}_{\tau(g, h i)}\right)-\right)-\sum_{0 \leq k<h h} \mathbf{z}_{g}(k), \tag{9}
\end{align*}
$$

and, by the induction assumption, we have

$$
\begin{align*}
\mathcal{L}_{\mathbf{z}, \tau(g, h)} & \left(\sigma_{(\tau(g, h), i j)}\left(\bar{m}_{\tau(g, h i j)}\right)\right) \\
= & \mathcal{L}_{\mathbf{z}, \tau(g, h)}\left(\sigma_{(\tau(g, h), i)}\left(\overline{0}_{\tau(g, h i)}\right)-\right) \sum_{j<k<m(\tau(g, h i))} \mathbf{z}_{\tau(g, h i)}(k) \\
& \quad+\mathcal{L}_{\mathbf{z}, \tau(g, h)}\left(\sigma_{(\tau(g, h), i)}\left(\bar{m}_{\tau(g, h i)}\right)\right) \sum_{0 \leq k \leq j} \mathbf{z}_{\tau(g, h i)}(k) . \tag{10}
\end{align*}
$$

Then we substitute (10), (9) and (8) in (7) sequentially, and we have

$$
\begin{aligned}
& \mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i j)}\left(\bar{m}_{\tau(g, h i j)}\right)\right) \\
&= \sum_{0 \leq k<h} \mathbf{z}_{g}(k) \\
& \quad+\mathbf{z}_{g}(h)\left\{\mathcal{L}_{\mathbf{z}, \tau(g, h)}\left(\sigma_{(\tau(g, h), i)}\left(\overline{0}_{\tau(g, h i)}\right)-\right) \sum_{j<k<m(\tau(g, h i))} \mathbf{z}_{\tau(g, h i)}(k)\right. \\
& \quad+\mathcal{L}_{\mathbf{z}, \tau(g, h)}\left(\sigma_{(\tau(g, h), i)}\left(\bar{m}_{\left.\tau(g, h i)^{-}\right)}\right) \sum_{0 \leq k \leq j} \mathbf{z}_{\tau(g, h i)}(k)\right\} \\
&= \sum_{0 \leq k<h} \mathbf{z}_{g}(k) \\
&+\left\{\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i)}\left(\overline{0}_{\tau(g, h i)}\right)-\right)-\sum_{0 \leq k<h} \mathbf{z}_{g}(k)\right\} \sum_{j<k<m(\tau(g, h i))} \mathbf{z}_{\tau(g, h i)}(k) \\
&+\left\{\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i)}\left(\bar{m}_{\tau(g, h i)}-\right)\right)-\sum_{0 \leq k<h} \mathbf{z}_{g}(k)\right\} \sum_{0 \leq k \leq j} \mathbf{z}_{\tau(g, h i)}(k) \\
&= \mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i)}\left(\overline{0}_{\tau(g, h i)}\right)-\right) \sum_{j<k<m(\tau(g, h i))} \mathbf{z}_{\tau(g, h i)}(k) \\
&+\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, h i)}\left(\bar{m}_{\tau(g, h i)^{-}}\right)\right) \sum_{0 \leq k \leq j} \mathbf{z}_{\tau(g, h i)}(k) .
\end{aligned}
$$

Namely we get (6) for the next n.
The above Lemma 2.1 means that any solution of $\operatorname{SRF}(\mathbf{z})$ is determined only by the parameter \mathbf{z} on the set $\left\{\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)^{-}}\right): \boldsymbol{i} \in S_{g}^{* n}, n \in \mathbb{N}\right\}$, which is dense in Ω_{g}, for each g in G. That implies the following proposition.

Proposition 2.2. The continuous solution $\mathcal{L}_{\mathbf{z}}$ of $\operatorname{SRF}(\mathbf{z})$ is unique, and each $\mathcal{L}_{\mathbf{z}, g}$ belongs to $\mathcal{C}\left(\Omega_{g}, \Delta(d, \mathbb{C})\right)$ for g in G if $\mathbf{z}: G^{\triangleright} \longrightarrow \Delta(d, \mathbb{C})$.

Definition 2.8. For the mapping $\mathbf{z}: G^{\triangleright} \longrightarrow \mathrm{M}(d, \mathbb{C})$ we define the mapping $\tilde{\mathbf{z}}: \bigcup_{n \in \mathbb{N}} G^{\triangleright^{n}} \longrightarrow \mathrm{M}(d, \mathbb{C})$ by

$$
\tilde{\mathbf{z}}(\boldsymbol{g})= \begin{cases}\mathfrak{e} & \text { if } \boldsymbol{g}=(g, \epsilon) \in G^{\triangleright^{0}}, \\ \mathbf{z}_{g}(j) & \text { if } \boldsymbol{g}=(g, j) \in G^{\triangleright^{1}}, \\ \tilde{\mathbf{z}}(\boldsymbol{h}) \mathbf{z}_{\tau(\boldsymbol{h})}(j) & \text { if } \boldsymbol{g}=(\boldsymbol{h}, j) \in G^{\triangleright k}, \boldsymbol{h} \in G^{\triangleright^{k-1}}, \\ & j \in S_{\tau(\boldsymbol{h})}^{* 1} \quad(k \geq 2) .\end{cases}
$$

The mapping $\tilde{\mathbf{z}}$ is the extension of \mathbf{z}, and so we use the same notation \mathbf{z} instead of $\tilde{\mathbf{z}}$. We also use the notation $\mathbf{z}_{g}(\boldsymbol{j})$ as $\mathbf{z}(\boldsymbol{g})$ if $\boldsymbol{g}=(g, \boldsymbol{j})$ for g in G and \boldsymbol{j} in $S_{g}^{* k}$.

Lemma 2.2. Let $\mathcal{L}_{\mathbf{z}}$ be a solution of $\operatorname{SRF}(\mathbf{z})$. If ω in Ω_{g} and $\mathfrak{t}^{+}(\omega)<\infty$, then we have

$$
\begin{equation*}
\mathcal{L}_{\mathbf{z}, g}(\omega)-\mathcal{L}_{\mathbf{z}, g}(\omega-)=\mathbf{z}_{g}(\boldsymbol{i}) \mathcal{L}_{\mathbf{z}, \tau(g, i)}\left(\overline{0}_{\tau(g, i)}\right) \tag{11}
\end{equation*}
$$

for g in G, where \boldsymbol{i} in $S_{g}^{*+^{+}(\omega)}$ and $\omega=\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)$.
Proof. If $\mathfrak{t}^{+}(\omega)=0$ then the left-hand side of (11) equals $\mathbf{z}_{g}(\epsilon) \mathcal{L}_{\mathbf{z}, \tau(g, \epsilon)}\left(\overline{0}_{\tau(g, \epsilon)}\right)$ because of $\omega=\overline{0}_{g}$ and $\boldsymbol{i}=\epsilon$. If $\mathfrak{t}^{+}(\omega)=1$ then there exists j in $S_{g}^{* 1}$ such that $j \geq 1$ and $\omega=\sigma_{(g, j)}\left(\overline{0}_{\tau(g, j)}\right)$, and so $\omega-=\sigma_{(g, j-1)}\left(\bar{m}_{\tau(g, j-1)^{-}}\right)$. Hence

$$
\mathcal{L}_{\mathbf{z}, g}(\omega)=\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}\left(\overline{0}_{\tau(g, j)}\right)
$$

and

$$
\mathcal{L}_{\mathbf{z}, g}(\omega-)=\sum_{0 \leq k<j-1} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j-1) \mathcal{L}_{\mathbf{z}, \tau(g, j-1)}\left(\bar{m}_{\tau(g, j-1)^{-}}\right)
$$

by (5), and then the left-hand side of (11) equals $\mathbf{z}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}\left(\overline{0}_{\tau(g, j)}\right)$.
Next suppose that $\mathfrak{t}^{+}(\omega)=n+2$ and $n \in \mathbb{N}$, that is, $\omega=\sigma_{(g, h i j)}\left(\overline{0}_{\tau(g, h i j)}\right)$ where $h \in S_{g}^{* 1}, i \in S_{\tau(g, h)}^{* n}$ and $0<j \in S_{\tau(g, h i)}^{* 1}$. Then we have $\omega-=$ $\sigma_{(g, h i(j-1))}\left(\bar{m}_{\tau(g, h i(j-1))}\right)$) and $\varphi(\omega)=\sigma_{(\tau(g, h), i j)}\left(\overline{0}_{\tau(g, h i j)}\right)$. Moreover we have $\varphi(\omega-)=\sigma_{(\tau(g, h), i(j-1))}\left(\bar{m}_{\tau(g, h i(j-1))^{-}}\right)=\varphi(\omega)-$ and $\mathfrak{t}^{+}(\varphi(\omega))=n+1$. Hence

$$
\mathcal{L}_{\mathbf{z}, g}(\omega)-\mathcal{L}_{\mathbf{z}, g}(\omega-)=\mathbf{z}_{g}(h)\left\{\mathcal{L}_{\mathbf{z}, \tau(g, h)}(\varphi(\omega))-\mathcal{L}_{\mathbf{z}, \tau(g, h)}(\varphi(\omega)-)\right\}
$$

by (5). Therefore (11) is obtained.

3. The existence and some expansion formulas of solutions of functional equations systems

We start by defining transformations \mathbf{D}_{n} and \mathbf{U}_{n}.
Definition 3.1. For each n in \mathbb{N}, we define the transformations \mathbf{D}_{n} and \mathbf{U}_{n} on $\Gamma\left(\coprod_{g \in G} \operatorname{Map}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right)$, as follows:
$\left(\mathbf{D}_{n} \mathcal{F}\right)_{g}(\omega)=\sum_{\boldsymbol{j} \in S_{g}^{* n}}\left\{\mathcal{F}_{g}\left(\sigma_{(g, \boldsymbol{j})}\left(\bar{m}_{\tau(g, \boldsymbol{j})}-\right)\right)-\mathcal{F}_{g}\left(\sigma_{(g, \boldsymbol{j})}\left(\overline{0}_{\tau(g, \boldsymbol{j})}\right)-\right)\right\} 1_{I_{(g, j)}}(\omega)$, $\left(\mathbf{U}_{n} \mathcal{F}\right)_{g}(\omega)=\sum_{\boldsymbol{j} \in S_{g}^{* n}} \mathcal{F}_{\tau(g, j)}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, j)}}(\omega)$,
where \mathcal{F} in $\Gamma\left(\coprod_{g \in G} \operatorname{Map}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right)$, ω in Ω_{g}, and $\mathcal{F}_{g}\left(\overline{0}_{g^{-}}\right)=\mathbf{0}$ by using the imaginary point $\overline{0}_{g}-$.

Definition 3.2. We define the mapping $s: G^{\triangleright} \times \bigcup_{n \in \mathbb{N}} G^{\triangleright^{n}} \longrightarrow \mathbb{N}$ by

$$
s((g, j) ;(h, \boldsymbol{i}))=\sharp\left\{k:\left(\tau\left(h, i_{1} \ldots i_{k-1}\right), i_{k}\right)=(g, j), 1 \leq k \leq n\right\},
$$

where $(g, j) \in G^{\triangleright}, \boldsymbol{i}=i_{1} \ldots i_{n} \in S_{h}^{* n}$ and $h \in G$. (Do not confuse with $\mathfrak{s}(n, \omega)$ in Definition 2.6.)

Definition 3.3. We define $\rho(\mathbf{z})$ and $\eta(\mathbf{z})$ by

$$
\begin{aligned}
& \rho(\mathbf{z})=\max _{g \in G, m(g)>1} \max _{j \in S_{g}^{* 1}} \max _{1 \leq i \leq d}\left|\left(\mathbf{z}_{g}(j)\right)_{i, i}\right|, \\
& \eta(\mathbf{z})=\max _{h \in G} \max _{k \in S_{h}^{* 1}} \max _{1 \leq i<j \leq d}\left|\left(\mathbf{z}_{h}(k)\right)_{i, j}\right|
\end{aligned}
$$

for $\mathbf{z}: G^{\triangleright} \longrightarrow \Delta(d, \mathbb{C})$, and use the notation $\|\mathcal{F}\|$ by

$$
\|\mathcal{F}\|=\max _{g \in G} \sup _{\omega \in \Omega}\|\mathcal{F}(\omega)\| \quad \text { for } \mathcal{F} \in \Gamma\left(\coprod_{g \in G} \operatorname{Map}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right) .
$$

We next show fundamental properties of \mathbf{D}_{n} and \mathbf{U}_{n}.
Proposition 3.1. 1) For n in $\mathbb{N}, \mathbf{D}_{n}$ and \mathbf{U}_{n} are $\mathrm{M}(d, \mathbb{C})$-linear transformations on $\Gamma\left(\amalg_{g \in G} \operatorname{Map}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right)$, that is, these transformations satisfy

$$
\begin{array}{ll}
\mathbf{D}_{n}(\mathbf{a} \mathcal{F}+\mathbf{b} \mathcal{G})=\mathbf{a} \mathbf{D}_{n}(\mathcal{F})+\mathbf{b} \mathbf{D}_{n}(\mathcal{G}), & \mathbf{D}_{n}(\mathcal{F} \mathbf{a}+\mathcal{G} \mathbf{b})=\mathbf{D}_{n}(\mathcal{F}) \mathbf{a}+\mathbf{D}_{n}(\mathcal{G}) \mathbf{b} \\
\mathbf{U}_{n}(\mathbf{a} \mathcal{F}+\mathbf{b} \mathcal{G})=\mathbf{a} \mathbf{U}_{n}(\mathcal{F})+\mathbf{b} \mathbf{U}_{n}(\mathcal{G}), & \mathbf{U}_{n}(\mathcal{F} \mathbf{a}+\mathcal{G} \mathbf{b})=\mathbf{U}_{n}(\mathcal{F}) \mathbf{a}+\mathbf{U}_{n}(\mathcal{G}) \mathbf{b}
\end{array}
$$

for \mathcal{F} and \mathcal{G} in $\Gamma\left(\coprod_{g \in G} \operatorname{Map}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right.$ and \mathbf{a} and \mathbf{b} in $\mathrm{M}(d, \mathbb{C})$, where $(\mathbf{a} \mathcal{F})_{g}(\omega)=\mathbf{a}\left(\mathcal{F}_{g}(\omega)\right)$ and $(\mathcal{F} \mathbf{a})_{g}(\omega)=\left(\mathcal{F}_{g}(\omega)\right) \mathbf{a}$ for ω in Ω_{g} and g in G.
2) If \mathcal{F} is in $\Gamma\left(\coprod_{g \in G} \mathcal{C}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right)$ then both $\mathbf{U}_{n} \mathcal{F}$ and $\mathbf{D}_{n} \mathcal{F}$ are so.
3) For n, n_{1} and n_{2} in \mathbb{N}, \mathbf{U}_{n} satisfies that $\mathbf{U}_{n}(\mathcal{F G})=\left(\mathbf{U}_{n} \mathcal{F}\right)\left(\mathbf{U}_{n} \mathcal{G}\right)$ and $\mathbf{U}_{n_{1}} \mathbf{U}_{n_{2}} \mathcal{F}=\mathbf{U}_{n_{1}+n_{2}} \mathcal{F}$ for \mathcal{F} and \mathcal{G} in $\Gamma\left(\coprod_{g \in G} \operatorname{Map}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right)$, where $\mathcal{F G}$ is defined by $(\mathcal{F} \mathcal{G})_{g}(\omega)=\mathcal{F}_{g}(\omega) \mathcal{G}_{g}(\omega)$ for g in G and ω in Ω_{g}.
4) Let $\mathcal{L}_{\mathbf{z}}$ be a solution of $\operatorname{SRF}(\mathbf{z})$. Then we have the followings:

$$
\begin{array}{rr}
\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega)=\sum_{j \in S_{g}^{* n}} \mathbf{z}_{g}(\boldsymbol{j}) 1_{I_{(g, j)}}(\omega) & \left(\omega \in \Omega_{g}, g \in G, n \in \mathbb{N}\right), \\
\mathbf{D}_{n_{1}+n_{2}} \mathcal{L}_{\mathbf{z}}=\left(\mathbf{D}_{n_{1}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}} \mathbf{D}_{n_{2}} \mathcal{L}_{\mathbf{z}}\right) & \left(n_{1}, n_{2} \in \mathbb{N}\right) \tag{13}
\end{array}
$$

Proof. We directly get 1), 2) and 3) from Definition 3.1. Since $\mathcal{L}_{\mathbf{z}}$ is a solution of (5), (12) with $n=0,1$ and (13) with $n_{1}=n_{2}=0$ are clear. By Definition 3.1, we have

$$
\begin{aligned}
\left(\mathbf{D}_{n+1} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega)=\sum_{i \in S_{g}^{* n}} \sum_{j \in S_{\tau(g, i)}^{* *}} & \left\{\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}-\right)\right)\right. \\
& \left.-\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i j)}\left(\overline{0}_{\tau(g, i j)}\right)-\right)\right\} 1_{I_{(g, i j)}}(\omega)
\end{aligned}
$$

and by Lemma 2.1 we get

$$
\begin{align*}
\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}-\right)\right)= & \mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}-\right) \sum_{j<k<m(\tau(g, i))} \mathbf{z}_{\tau(g, i)}(k)\right. \\
& +\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)^{-}}\right)\right) \sum_{0 \leq k \leq j} \mathbf{z}_{\tau(g, i)}(k) \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i j)}\left(\overline{0}_{\tau(g, i j)}\right)-\right)= & \mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)-\right) \sum_{j \leq k<m(\tau(g, i))} \mathbf{z}_{\tau(g, i)}(k) \\
& +\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)}-\right)\right) \sum_{0 \leq k<j} \mathbf{z}_{\tau(g, i)}(k) \tag{15}
\end{align*}
$$

for \boldsymbol{i} in $S_{g}^{* n}, j$ in $S_{\tau(g, i)}^{* 1}, n$ in \mathbb{N} and g in G. Therefore we have

$$
\begin{aligned}
& \left(\mathbf{D}_{n+1} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega) \\
& \begin{aligned}
&=\sum_{i \in S_{g}^{* n}}^{* n} \sum_{j \in S_{\tau(g, i)}^{* 1}}\left\{\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)}-\right)\right)-\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)-\right)\right\} \\
& \times \mathbf{z}_{\tau(g, i)}(j) 1_{I_{(g, i j)}}(\omega)
\end{aligned} \\
& =\sum_{i \in S_{g}^{* n}}\left\{\mathcal { L } _ { \mathbf { z } , g } \left(\sigma_{(g, i)}\left(\bar{m}_{\left.\tau(g, i)^{-}\right)}\right)-\right.\right. \\
& \quad \mathcal{L}_{\mathbf{z}, g}\left(\sigma _ { (g , i) } \left(\overline{\left.\left.\left.0_{\tau(g, i)}\right)-\right)\right\}}\right.\right. \\
& \quad \times\left\{\sum_{j \in S_{\tau(g, i)}^{* 1}} \mathbf{z}_{\tau(g, i)}(j) 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right)\right\} 1_{I_{(g, i)}}(\omega)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in S_{g}^{* n}}\left\{\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)}-\right)\right)-\mathcal{L}_{\mathbf{z}, g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)-\right)\right\} \\
& \quad \times\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)_{\tau(g, i)}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega) \\
& =\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega)\left(\mathbf{U}_{n} \mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega),
\end{aligned}
$$

that is, we get (13) with $n_{1}=n$ and $n_{2}=1$. Next we shall prove (12) and (13) with the remaining n, n_{1} and n_{2}, by the induction as follows:

$$
\begin{aligned}
&\left(\mathbf{D}_{n+1} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega)=\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega)\left(\mathbf{U}_{n} \mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega) \\
&= \sum_{i \in S_{g}^{* n}} \mathbf{z}_{g}(\boldsymbol{i}) 1_{I_{(g, i)}}(\omega) \sum_{\boldsymbol{k} \in S_{g}^{* n}}\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)_{\tau(g, k}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, \boldsymbol{k})}}(\omega) \\
&= \sum_{i \in S_{g}^{* n}} \mathbf{z}_{g}(\boldsymbol{i})\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)_{\tau(g, i)}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega) \\
&= \sum_{i \in S_{g}^{* n}} \mathbf{z}_{g}(\boldsymbol{i}) \sum_{j \in S_{\tau(g, i)}^{* 1}} \mathbf{z}_{\tau(g, i)}(j) 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega) \\
&=\sum_{\boldsymbol{j} \in S_{g}^{*(n+1)}} \mathbf{z}_{g}(\boldsymbol{j}) 1_{I_{(g, j)}}(\omega), \\
& \mathbf{D}_{n_{1}+n_{2}+1} \mathcal{L}_{\mathbf{z}}=\left(\mathbf{D}_{n_{1}+n_{2}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}+n_{2}} \mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right) \\
&=\left(\mathbf{D}_{n_{1}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}} \mathbf{D}_{n_{2}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}} \mathbf{U}_{n_{2}} \mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right) \\
&=\left(\mathbf{D}_{n_{1}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}}\left(\left(\mathbf{D}_{n_{2}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{2}} \mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)\right)\right) \\
&=\left(\mathbf{D}_{n_{1}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}} \mathbf{D}_{n_{2}+1} \mathcal{L}_{\mathbf{z}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\mathbf{D}_{n_{1}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}} \mathbf{D}_{n_{2}+1} \mathcal{L}_{\mathbf{z}}\right) & =\left(\mathbf{D}_{n_{1}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}}\left(\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{1} \mathbf{D}_{n_{2}} \mathcal{L}_{\mathbf{z}}\right)\right)\right) \\
& =\left(\mathbf{D}_{n_{1}} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}} \mathbf{D}_{1} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}+1} \mathbf{D}_{n_{2}} \mathcal{L}_{\mathbf{z}}\right) \\
& =\left(\mathbf{D}_{n_{1}+1} \mathcal{L}_{\mathbf{z}}\right)\left(\mathbf{U}_{n_{1}+1} \mathbf{D}_{n_{2}} \mathcal{L}_{\mathbf{z}}\right)
\end{aligned}
$$

We must estimate the product of upper triangle matrices before describing the main result in this section.

Lemma 3.1. Let $\mathbf{w}_{k} \in \Delta(d, \mathbb{C})(k=1, \ldots, n)$ and set

$$
\alpha=\max _{1 \leq k \leq n, 1 \leq i \leq d}\left|\left(\mathbf{w}_{k}\right)_{i, i}\right| \text { and } \beta=\max _{1 \leq k \leq n, 1 \leq i<j \leq d}\left|\left(\mathbf{w}_{k}\right)_{i, j}\right|,
$$

where $\left(\mathbf{w}_{k}\right)_{i, j}(1 \leq i, j \leq d)$ are components of the matrix \mathbf{w}_{k}. Then we have

$$
\left\|\mathbf{w}_{1} \mathbf{w}_{2} \cdots \mathbf{w}_{n}\right\| \leq C(n, \alpha, \beta, d)
$$

where

$$
C(n, \alpha, \beta, d)=\alpha^{n} \prod_{0 \leq j<d \wedge n}(n-j) \exp \left(\sqrt{\frac{d(d-1)}{2}} \frac{\beta}{\alpha}\right)+\alpha^{n}(\sqrt{d}-1) .
$$

We remark that $\sum_{n \in \mathbb{N}} C(n, \alpha, \beta, d)<\infty$ if $\alpha<1$.
Proof. Let $\mathbf{a}=\left(a_{i, j}\right) \in \Delta(d, \mathbb{C})$ such that $a_{i, i}=\alpha(i=1, \ldots, d)$ and $a_{i, j}=\beta(1 \leq i<j \leq d)$. We also set $\mathbf{w}_{1} \mathbf{w}_{2} \cdots \mathbf{w}_{n}=\left(b_{i, j}\right)$ and $\mathbf{a}^{n}=\left(a_{i, j}^{(n)}\right)$, then $\left|b_{i, j}\right| \leq a_{i, j}^{(n)}(1 \leq i, j \leq d)$ and so $\left\|\mathbf{w}_{1} \mathbf{w}_{2} \cdots \mathbf{w}_{n}\right\| \leq\left\|\mathbf{a}^{n}\right\|$. On the other hand, by letting $\mathbf{c}=\mathbf{a}-\alpha \mathfrak{e}$, we have $\mathbf{a}^{n}=\sum_{0 \leq j<d \wedge n}\binom{n}{j} \alpha^{n-j} \mathbf{c}^{j}$ since $\mathbf{c}^{k}=\mathbf{0}(k \geq d)$. Therefore we have

$$
\begin{aligned}
\left\|\mathbf{a}^{n}\right\| & \leq \sum_{0 \leq j<d}\binom{n}{j} \alpha^{n-j}\|\mathbf{c}\|^{j}+\alpha^{n}(\sqrt{d}-1) \\
& \leq \alpha^{n} \prod_{0 \leq k<d \wedge n}(n-k) \sum_{0 \leq j<d} \frac{1}{j!}\left(\frac{\|\mathbf{c}\|}{\alpha}\right)^{j}+\alpha^{n}(\sqrt{d}-1) \\
& \leq \alpha^{n} \prod_{0 \leq k<d \wedge n}(n-k) \exp \left(\frac{\|\mathbf{c}\|}{\alpha}\right)+\alpha^{n}(\sqrt{d}-1) \\
& \leq C(n, \alpha, \beta, d) .
\end{aligned}
$$

Theorem 3.1. Let $\mathbf{z}: G^{\triangleright} \longrightarrow \Delta(d, \mathbb{C})$ with $\sum_{k \in S_{g}^{ \pm 1}} \mathbf{z}_{g}(k)=\mathfrak{e}$ for g in G and $\rho(\mathbf{z})<1$. Then we have the followings:

1) There exists a unique continuous solution $\mathcal{L}_{\mathbf{z}}$ of $\operatorname{SRF}(\mathbf{z})$.
2) The mapping $\mathbf{z} \longmapsto \mathcal{L}_{\mathbf{z}, g}$ is $\mathcal{C}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)$-valued analytic.
3) By using the notations $\mathbf{v}, \mathbf{w}, \mathcal{V}$ and \mathcal{W} defined by

$$
\begin{aligned}
\left(\mathbf{v}_{g}(j)\right)_{k, l} & =\left\{\begin{array}{ll}
\left(\mathbf{z}_{g}(j)\right)_{k, l} & (k=l) \\
0 & (k \neq l)
\end{array} \quad\left(1 \leq k, l \leq d, j \in S_{g}^{* 1}\right),\right. \\
\mathbf{z} & =\mathbf{v}+\mathbf{w}, \\
\mathcal{V}_{g}(\omega) & =\sum_{j \in S_{g}^{* 1}}\left\{\sum_{0 \leq k<j} \mathbf{v}_{g}(k)\right\} 1_{I_{(g, j)}}(\omega), \\
\mathcal{W}_{g}(\omega) & =\sum_{j \in S_{g}^{* 1}}\left\{\sum_{0 \leq k<j} \mathbf{w}_{g}(k)+\mathbf{w}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}(\varphi(\omega))\right\} I_{(g, j)}(\omega)
\end{aligned}
$$

for each ω in Ω_{g} and g in G, the solution $\mathcal{L}_{\mathbf{z}}$ is represented as

$$
\begin{equation*}
\mathcal{L}_{\mathbf{z}, g}=\sum_{n \in \mathbb{N}}\left\{\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}\left(\mathbf{U}_{n} \mathcal{V}\right)_{g}+\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}\left(\mathbf{U}_{n} \mathcal{W}\right)_{g}\right\} \tag{16}
\end{equation*}
$$

uniformly on $\left\{\omega \in \Omega_{g}: \mathfrak{t}(\omega)=\infty\right\}$ and

$$
\mathcal{L}_{\mathbf{z}, g}(\omega)=\sum_{0 \leq n \leq \mathfrak{t}(\omega)}\left\{\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega)\left(\mathbf{U}_{n} \mathcal{V}\right)_{g}(\omega)\right.
$$

$$
\begin{equation*}
\left.+\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega)\left(\mathbf{U}_{n} \mathcal{W}\right)_{g}(\omega)\right\}+\left(\mathbf{D}_{\mathfrak{t}(\omega)} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega) \tag{17}
\end{equation*}
$$

for ω in Ω_{g} with $\mathfrak{t}(\omega)<\infty$, where $\mathcal{L}_{\mathbf{v}}$ appearing in the above expansions is the continuous solution of $\operatorname{SRF}(\mathbf{v})$.

Proof. 1) The uniqueness comes from Proposition 2.2 and so we show the existence by the mathematical inductive as the parameter d.
(i) We first show it in the case $d=1$, that is, \mathbf{z} is a mapping from G^{\triangleright} to \mathbb{C}. For n in \mathbb{N}, g in G, \boldsymbol{i} in $S_{g}^{* n}$ and ω in Ω_{g}, we set

$$
\mathcal{J}_{n, g, i}(\omega)=\mathbf{z}_{g}(i) \sum_{j \in S_{\tau(g, i)}^{* 1}} \sum_{0 \leq k<j} \mathbf{z}_{\tau(g, i)}(k) 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) .
$$

Then we have that $\mathcal{J}_{n, g, i}(\omega)=0$ if $n>\mathfrak{t}(\omega)$ and

$$
\left\|\mathcal{J}_{n, g, i}(\omega)\right\| \leq C(\mathfrak{s}(n, \omega), \rho(\mathbf{z}), 0,1) \cdot \max _{h \in G} m(h)
$$

by Lemma 3.1, and so we can define the continuous mapping $\mathcal{K}_{g}: \Omega_{g} \longrightarrow$ \mathbb{C} by $\sum_{n \in \mathbb{N}} \sum_{i \in S_{g}^{* n}} \mathcal{J}_{n, g, i}(\omega) 1_{I_{(g, i)}}(\omega)$ for g in G, because the summation converges uniformly by Proposition 2.1. By noticing that $\mathcal{J}_{n+1, g, h i}(\omega)=$ $\mathbf{z}_{g}(h) \mathcal{J}_{n, \tau(g, h), i}(\varphi(\omega))$ and $\mathcal{J}_{n, g, \boldsymbol{i}_{n}}\left(\bar{m}_{g^{-}}\right)=\mathbf{z}_{g}\left(\boldsymbol{i}_{n}\right)-\mathbf{z}_{g}\left(\boldsymbol{i}_{n+1}\right)$, where h in $S_{g}^{* 1}$, \boldsymbol{i} in $S_{\tau(g, h)}^{* n}$ and $\boldsymbol{i}_{k}=\boldsymbol{\pi}_{g, k}\left(\bar{m}_{g^{-}}\right)$, we have

$$
\begin{aligned}
& \mathcal{K}_{g}(\omega)= \mathcal{J}_{0, g, \epsilon}(\omega)+ \\
& \quad \sum_{n \in \mathbb{N}} \sum_{h \in S_{g}^{* 1}} \\
& \sum_{i \in S_{\tau(g, h)}^{* n}} \mathcal{J}_{n+1, g, h i}(\omega) 1_{I_{(\tau(g, h), i)}}(\varphi(\omega)) 1_{I_{(g, h)}}(\omega) \\
&= \sum_{j \in S_{g}^{* *}}\left\{\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{K}_{\tau(g, j)}(\varphi(\omega))\right\} 1_{\left.I_{(g, j)}\right)}(\omega)
\end{aligned}
$$

and $\mathcal{K}_{g}\left(\bar{m}_{g^{-}}\right)=\sum_{n \in \mathbb{N}}\left(\mathbf{z}_{g}\left(\boldsymbol{i}_{n}\right)-\mathbf{z}_{g}\left(\boldsymbol{i}_{n+1}\right)\right)=1$. Namely \mathcal{K} is a continuous solution of $\operatorname{SRF}(\mathbf{z})$.
(ii) Let $\mathbf{z}: G^{\triangleright} \longrightarrow \Delta(d+1, \mathbb{C})$ with $\sum_{k \in S_{g}^{* 1}} \mathbf{z}_{g}(k)=\mathfrak{e}$ for g in G and $\rho(\mathbf{z})<1$, and let the mappings $\mathbf{x}: G^{\triangleright} \longrightarrow \mathbb{C}, \mathbf{y}: G^{\triangleright} \longrightarrow \Delta(d, \mathbb{C})$ and $\mathbf{r}: G^{\triangleright} \longrightarrow \mathbb{C}^{d}$ defined by $\mathbf{z}=\left[\begin{array}{ll}\mathbf{x} & \mathbf{r} \\ \mathbf{0} & \mathbf{y}\end{array}\right]$. We assume that both \mathcal{X} and \mathcal{Y} are continuous solutions of $\operatorname{SRF}(\mathbf{x})$ and $\operatorname{SRF}(\mathbf{y})$ respectively. We denote the continuous mapping $\mathcal{Q}_{n, g, i}: \Omega_{g} \longrightarrow \mathbb{C}^{d}$ by

$$
\mathbf{x}_{g}(\boldsymbol{i}) \sum_{j \in S_{\tau(g, i)}^{* 1}}\left\{\sum_{0 \leq k<j} \mathbf{r}_{\tau(g, i)}(k)\right.
$$

$$
\left.+\mathbf{r}_{\tau(g, i)}(j) \mathcal{Y}_{\tau(g, i j)}\left(\varphi^{n+1}(\omega)\right)\right\} 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right)
$$

for n in \mathbb{N}, g in G and \boldsymbol{i} in $S_{g}^{* n}$. Then we have $\mathcal{Q}_{n, g, \boldsymbol{i}}(\omega)=0$ if $n>\mathfrak{t}(\omega)$ and

$$
\left\|\mathcal{Q}_{n, g, i}(\omega)\right\| \leq\left|\mathbf{x}_{g}(\boldsymbol{i})\right| \eta(\mathbf{z})\left\{\max _{h \in G} m(h)+\|\mathcal{Y}\|\right\}
$$

by the same estimation of $\mathcal{J}_{n, g, i}(\omega)$, and so we can define the continuous mapping $\mathcal{R}_{g}: \Omega_{g} \longrightarrow \mathbb{C}^{d}$ by $\mathcal{R}_{g}(\omega)=\sum_{n \in \mathbb{N}} \sum_{i \in S_{g}^{* n}} \mathcal{Q}_{n, g, i}(\omega) 1_{I_{(g, i)}}(\omega)$ for g in G. By noticing that

$$
\begin{aligned}
\mathcal{Q}_{0, g, \epsilon}(\omega) & =\sum_{0 \leq k<j} \mathbf{r}_{g}(k)+\mathbf{r}_{g}(j) \mathcal{Y}_{\tau(g, j)}(\varphi(\omega)), \\
\mathcal{Q}_{n+1, g, h i}(\omega) & =\mathbf{x}_{g}(h) \mathcal{Q}_{n, \tau(g, h), i}(\varphi(\omega)) \text { and } \mathcal{Q}_{n, g, i}\left(\bar{m}_{g^{-}}\right)=\mathbf{0},
\end{aligned}
$$

we have

$$
\mathcal{R}_{g}(\omega)=\sum_{0 \leq k<j} \mathbf{r}_{g}(k)+\mathbf{r}_{g}(j) \mathcal{Y}_{\tau(g, j)}(\varphi(\omega))+\mathbf{x}_{g}(j) \mathcal{R}_{\tau(g, j)}(\varphi(\omega))
$$

for ω in $I_{(g, j)}$ and $\mathcal{R}_{g}\left(\bar{m}_{g}-\right)=\mathbf{0}$. Hence \mathcal{L}, which is defined by $\mathcal{L}=\left[\begin{array}{cc}\mathcal{X} & \mathcal{R} \\ \mathbf{0} & \mathcal{Y}\end{array}\right]$, is a continuous solution of $\operatorname{SRF}(\mathbf{z})$.
2) The above \mathcal{K}_{g} is analytic, because it is a limit of polynomials of \mathbf{z}. Hence, by using the same inductive method in 1), the above \mathcal{L} is also analytic.

Next before proving 3) we describe the terms in the right-hand sides of (16) and (17) in detail as the next lemma, which is easy to prove by Proposition 3.1 and Lemma 3.1.

Lemma 3.2. For ω in Ω_{g}, g in G and n in \mathbb{N} we have

$$
\begin{aligned}
\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega)= & \sum_{i \in S_{g}^{* n}} \mathbf{v}_{g}(i) 1_{I_{(g, i)}}(\omega) \\
= & \sum_{i \in S_{g}^{* n}} \prod_{(h, j) \in G^{\triangleright}} \mathbf{v}_{h}(j)^{s((h, j) ;(g, i))} 1_{I_{(g, i)}}(\omega), \\
\left(\mathbf{U}_{n} \mathcal{V}\right)_{g}(\omega)= & \sum_{i \in S_{g}^{* n}} \sum_{j \in S_{\tau(g, i)}^{* 1}} \sum_{0 \leq k<j} \mathbf{v}_{\tau(g, i)}(k) 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega), \\
\left(\mathbf{U}_{n} \mathcal{W}\right)_{g}(\omega)= & \sum_{i \in S_{g}^{* *}} \sum_{j \in S_{\tau(g, i)}^{* 1}}\left\{\sum_{0 \leq k<j} \mathbf{w}_{\tau(g, i)}(k)\right. \\
& \left.\quad+\mathbf{w}_{\tau(g, i)}(j) \mathcal{L}_{\mathbf{z}, \tau(g, i j)}\left(\varphi^{n+1}(\omega)\right)\right\} 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega),
\end{aligned}
$$

and also if $n>\mathfrak{t}(\omega)$ then we have

$$
\begin{aligned}
\left(\mathbf{U}_{n} \mathcal{V}\right)_{g}(\omega) & =\left(\mathbf{U}_{n} \mathcal{W}\right)_{g}(\omega)=\mathbf{0} \\
\left(\mathbf{U}_{n} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega) & =\mathfrak{e} \\
\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega) & =\left(\mathbf{D}_{\mathfrak{t}(\omega)} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega)
\end{aligned}
$$

Moreover, we get the inequalities:

$$
\begin{aligned}
\left\|\left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega)\right\| & \leq C(\mathfrak{s}(n, \omega), \rho(\mathbf{z}), 0, d) \\
\left\|\left(\mathbf{U}_{n} \mathcal{V}\right)_{g}(\omega)\right\| & \leq C(\mathfrak{s}(n, \omega), \rho(\mathbf{z}), 0, d) \cdot \max _{h \in G} m(h) \\
\left\|\left(\mathbf{U}_{n} \mathcal{W}\right)_{g}(\omega)\right\| & \leq d \cdot \eta(\mathbf{z}) \cdot\left(\max _{h \in G} m(h)+\left\|\mathcal{L}_{\mathbf{z}}\right\|\right)
\end{aligned}
$$

3) Since $\mathcal{L}_{\mathbf{z}}$ is a continuous solution of $\operatorname{SRF}(\mathbf{z})$, we get

$$
\begin{aligned}
\mathcal{L}_{\mathbf{z}, g}(\omega) & =\sum_{j \in S_{g}^{* 1}}\left\{\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}(\varphi(\omega))\right\} 1_{I_{(g, j)}}(\omega) \\
& =\mathcal{V}_{g}(\omega)+\mathcal{W}_{g}(\omega)+\sum_{j \in S_{g}^{* 1}} \mathbf{v}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}(\varphi(\omega)) 1_{I_{(g, j)}}(\omega) \\
& =\mathcal{V}_{g}(\omega)+\mathcal{W}_{g}(\omega)+\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega)\left(\mathbf{U}_{1} \mathcal{L}_{\mathbf{z}}\right)_{g}(\omega)
\end{aligned}
$$

for ω in Ω_{g} and g in G, that means

$$
\begin{aligned}
\mathcal{L}_{\mathbf{z}} & =\mathcal{V}+\mathcal{W}+\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{1} \mathcal{L}_{\mathbf{z}}\right) \\
& =\left(\mathbf{D}_{0} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{0} \mathcal{V}\right)+\left(\mathbf{D}_{0} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{0} \mathcal{W}\right)+\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{1} \mathcal{L}_{\mathbf{z}}\right)
\end{aligned}
$$

By using Proposition 3.1 we get

$$
\mathbf{U}_{1} \mathcal{L}_{\mathbf{z}}=\left(\mathbf{U}_{1} \mathbf{D}_{0} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{1} \mathcal{V}\right)+\left(\mathbf{U}_{1} \mathbf{D}_{0} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{1} \mathcal{W}\right)+\left(\mathbf{U}_{1} \mathbf{D}_{1} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{2} \mathcal{L}_{\mathbf{z}}\right)
$$

and so we get

$$
\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{V}}\right)\left(\mathbf{U}_{1} \mathcal{L}_{\mathbf{z}}\right)=\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{V}}\right)\left(\mathbf{U}_{1} \mathcal{V}\right)+\left(\mathbf{D}_{1} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{1} \mathcal{W}\right)+\left(\mathbf{D}_{2} \mathcal{L}_{\mathbf{V}}\right)\left(\mathbf{U}_{2} \mathcal{L}_{\mathbf{z}}\right)
$$

By repeating the above we get

$$
\mathcal{L}_{\mathbf{z}}=\sum_{0 \leq k \leq n}\left\{\left(\mathbf{D}_{k} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{k} \mathcal{V}\right)+\left(\mathbf{D}_{k} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{k} \mathcal{W}\right)\right\}+\left(\mathbf{D}_{n+1} \mathcal{L}_{\mathbf{v}}\right)\left(\mathbf{U}_{n+1} \mathcal{L}_{\mathbf{z}}\right)
$$

Hence (16) and (17) are obtained by Lemma 3.2.
Finally we shall add a few properties on $\operatorname{SRF}(\mathbf{z})$.

Theorem 3.2. Let $\mathbf{z}: G^{\triangleright} \longrightarrow \mathrm{M}(d, \mathbb{C})$ with $\sum_{k \in S_{g}^{* 1}} \mathbf{z}_{g}(k)=\mathfrak{e}$ for g in G, and \mathcal{L} be in $\Gamma\left(\coprod_{g \in G} \mathcal{C}\left(\Omega_{g}, \mathrm{M}(d, \mathbb{C})\right)\right)$. Then the followings 1$)$, 2) and 3) are equivalent.

1) \mathcal{L} is a solution of $\operatorname{SRF}(\mathbf{z})$.
2) \mathcal{L} satisfies the following system of difference equations:

$$
\left\{\begin{align*}
& \mathcal{L}_{g}\left(\bar{m}_{g}-\right)=\mathfrak{e}, \tag{18}\\
& \mathcal{L}_{g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}\right)\right)=\mathcal{L}_{g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)-\right) \sum_{j<k<m(\tau(g, i))} \mathbf{z}_{\tau(g, i)}(k) \\
&+\mathcal{L}_{g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)}\right)\right) \sum_{0 \leq k \leq j} \mathbf{z}_{\tau(g, i)}(k) \\
&\left(\boldsymbol{i} \in S_{g}^{* n}, j \in S_{\tau(g, i)}^{* 1}, n \in \mathbb{N}\right)
\end{align*}\right.
$$

for g in G.
3) \mathcal{L} satisfies the following equations:

$$
\left\{\begin{array}{rr}
\left(\mathbf{D}_{0} \mathcal{L}\right)_{g}(\omega)=\mathfrak{e} & \left(\omega \in \Omega_{g}, g \in G\right), \tag{19}\\
\left(\mathbf{D}_{1} \mathcal{L}\right)_{g}(\omega)=\sum_{j \in S_{g}^{* 1}} \mathbf{z}_{g}(j) 1_{I_{(g, j)}}(\omega) & \left(\omega \in \Omega_{g}, g \in G\right), \\
\mathbf{D}_{n+1} \mathcal{L}=\left(\mathbf{D}_{n} \mathcal{L}\right)\left(\mathbf{U}_{n} \mathbf{D}_{1} \mathcal{L}\right) & (n \in \mathbb{N})
\end{array}\right.
$$

Proof. In Proposition 3.1,4) we already proved that 1) implies 3).
By calculating according to the definitions of \mathbf{D}_{n} and \mathbf{U}_{n} we get

$$
\begin{aligned}
\left(\mathbf{D}_{0} \mathcal{L}\right)_{g}(\omega) & =\mathcal{L}_{g}\left(\bar{m}_{g}-\right) \\
\left(\mathbf{D}_{n+1} \mathcal{L}\right)_{g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}-\right)\right) & =\mathcal{L}_{g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}-\right)\right)-\mathcal{L}_{g}\left(\sigma_{(g, i j)}\left(\overline{0}_{\tau(g, i j)}\right)-\right), \\
\left.\left(\mathbf{D}_{n} \mathcal{L}\right)_{g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}\right)\right)\right) & =\mathcal{L}_{g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)^{-}}\right)\right)-\mathcal{L}_{g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)-\right)
\end{aligned}
$$

and

$$
\left(\mathbf{U}_{n} \mathbf{D}_{1} \mathcal{L}\right)_{g}\left(\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i j)}\right)\right)=\left(\mathbf{D}_{1} \mathcal{L}\right)_{\tau(g, i)}\left(\sigma_{(\tau(g, i), j)}\left(\bar{m}_{\tau(g, i j)^{-}}\right)\right)
$$

for g in G, \boldsymbol{i} in $S_{g}^{* n}, j$ in $S_{\tau(g, i)}^{* 1}$ and n in \mathbb{N}. Then we assume 3) and we get $\mathcal{L}_{g}\left(\bar{m}_{g}-\right)=\mathfrak{e}$ and

$$
\begin{aligned}
\mathcal{L}_{g}\left(\sigma_{(g, i j)}\right. & \left.\left(\bar{m}_{\tau(g, i j)}-\right)\right)-\mathcal{L}_{g}\left(\sigma_{(g, i j)}\left(\overline{0}_{\tau(g, i j)}\right)-\right) \\
& =\left\{\mathcal{L}_{g}\left(\sigma_{(g, i)}\left(\bar{m}_{\tau(g, i)^{-}}\right)\right)-\mathcal{L}_{g}\left(\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)-\right)\right\} \mathbf{z}_{\tau(g, i)}(j)
\end{aligned}
$$

because of $\left(\mathbf{D}_{1} \mathcal{L}\right)_{\tau(g, i)}\left(\sigma_{(\tau(g, i), j)}\left(\bar{m}_{\tau(g, i j)^{-}}\right)\right)=\mathbf{z}_{\tau(g, i)}(j)$. We then notice that $\sigma_{(g, i j)}\left(\overline{0}_{\tau(g, i j)}\right)-=\sigma_{(g, i j)}\left(\bar{m}_{\tau(g, i(j-1))}-\right)$ for $j>0$ and $\sigma_{(g, i 0)}\left(\overline{0}_{\tau(g, i 0)}\right)=$ $\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)$, and so we get 2$)$.

Finally we shall show that 2) implies 1). It is sufficient to prove the equation (5) for ω in Ω_{g} such that $\mathfrak{t}^{-}(\omega)<\infty$ and g in G. It is clear for ω with $\mathfrak{t}^{-}(\omega) \leq 1$ and so we assume the induction assumption, that is, we assume (5) for ω with $\mathfrak{t}^{-}(\omega) \leq n$ and g in G. Let ω in Ω_{g}, g in G and $\mathfrak{t}^{-}(\omega)=n+1$, and set $j=\pi_{g, 1}(\omega), \boldsymbol{i}=\boldsymbol{\pi}_{\tau(g, j), n-1}(\varphi(\omega))$ and $\ell=\pi_{g, n+1}(\omega)$. Since $\omega=\sigma_{(g, j i \ell)}\left(\bar{m}_{\tau(g, j i \ell)^{-}}\right)$and $\varphi(\omega)=\sigma_{(\tau(g, j), i \ell)}\left(\bar{m}_{\tau(g, j i \ell)^{-}}\right)$, the equation (18) implies

$$
\begin{align*}
\mathcal{L}_{g}(\omega)=\mathcal{L}_{g}\left(\sigma_{(g, j i)}\right. & \left.\left(\overline{0}_{\tau(g, j i)}\right)-\right) \sum_{\ell<k<m(\tau(g, j i))^{2}} \mathbf{z}_{\tau(g, j i)}(k) \\
& +\mathcal{L}_{g}\left(\sigma_{(g, j i)}\left(\bar{m}_{\tau(g, j i)^{-}}\right)\right) \sum_{0 \leq k \leq \ell^{\prime}} \mathbf{z}_{\tau(g, j i)}(k) \tag{20}
\end{align*}
$$

and

$$
\begin{array}{r}
\mathcal{L}_{\tau(g, j)}(\varphi(\omega))=\mathcal{L}_{\tau(g, j)}\left(\sigma_{(\tau(g, j), i)}\left(\overline{0}_{\tau(g, j i)}\right)-\right) \sum_{\ell<k<m(\tau(g, j i))} \mathbf{z}_{\tau(g, j i)}(k) \\
+ \tag{21}\\
+\mathcal{L}_{\tau(g, j)}\left(\sigma_{(\tau(g, j), i)}\left(\bar{m}_{\tau(g, j i}-\right)\right) \sum_{0 \leq k \leq \ell^{\prime}} \mathbf{z}_{\tau(g, j i)}(k)
\end{array}
$$

The induction assumption also implies

$$
\begin{align*}
\mathcal{L}_{g}\left(\sigma_{(g, j i)}\right. & \left.\left(\bar{m}_{\tau(g, j i)^{-}}\right)\right) \\
& =\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{L}_{\tau(g, j)}\left(\varphi\left(\sigma_{(g, j i)}\left(\bar{m}_{\left.\tau(g, j i)^{-}\right)}\right)\right),\right. \tag{22}
\end{align*}
$$

because of $\sigma_{(g, j i)}\left(\bar{m}_{\tau(g, j i)^{-}}\right)$in $I_{(g, j)}$. Now we substitute (22) for (20) and, by combining with (21), we have

$$
\begin{align*}
& \mathcal{L}_{g}(\omega)-\sum_{0 \leq k<j} \mathbf{z}_{g}(k)-\mathbf{z}_{g}(j) \mathcal{L}_{\tau(g, j)}(\varphi(\omega)) \\
& =\left\{\mathcal{L}_{g}\left(\sigma_{(g, j i \boldsymbol{i}}\left(\overline{0}_{\tau(g, j i)}\right)-\right)-\sum_{0 \leq k<j} \mathbf{z}_{g}(k)\right. \\
& \left.\quad \quad \quad-\mathbf{z}_{g}(j) \mathcal{L}_{\tau(g, j)}\left(\sigma_{(\tau(g, j), i)}\left(\overline{0}_{\tau(g, j i)}\right)-\right)\right\} \sum_{\ell<k<m(\tau(g, j i))} \mathbf{z}_{\tau(g, j i)}(k) . \tag{23}
\end{align*}
$$

Since $\varphi\left(\sigma_{(g, j i)}\left(\overline{0}_{\tau(g, j i)}\right)-\right)=\sigma_{(\tau(g, j), i)}\left(\overline{0}_{\tau(g, j i)}\right)-$ and $\mathfrak{t}^{-}\left(\sigma_{(g, j i)}\left(\overline{0}_{\tau(g, j i)}\right)-\right) \leq n$ if $\mathfrak{t}^{+}\left(\sigma_{(g, j i)}\left(\overline{0}_{\tau(g, j i)}\right)-\right) \geq 2$, the first factor of the right-hand side of (23) is $\mathbf{0}$ and so we complete the proof.

Proposition 3.2. Suppose the same assumption in Theorem 3.1. Then we have the following.

1) If g in G and $\mathfrak{t}^{-}\left(\overline{0}_{g}\right)=\infty$, then $\mathcal{L}_{\mathbf{z}, g}\left(\overline{0}_{g}\right)=\mathbf{0}$.
2) If ω in $\Omega_{g}, \mathfrak{t}^{+}(\omega)<\infty$ and $\mathfrak{t}^{-}(\omega)=\infty$, then $\mathcal{L}_{\mathbf{z}, g}(\omega)=\mathcal{L}_{\mathbf{z}, g}(\omega-)$.

Proof. By using n times (5), we get

$$
\mathcal{L}_{\mathbf{z}, g}\left(\overline{0}_{g}\right)=\mathbf{z}_{g}(0 \ldots 0) \mathcal{L}_{\mathbf{z}, \tau(g, 0 \ldots 0)}\left(\overline{0}_{\tau(g, 0 \ldots 0)}\right),
$$

where $0 \ldots 0 \in S_{g}^{* n}$. By Lemma 3.1

$$
\begin{aligned}
\left\|\mathcal{L}_{\mathbf{z}, g}\left(\overline{0}_{g}\right)\right\| & \leq\left\|\mathbf{z}_{g}(0 \ldots 0)\right\|\left\|\mathcal{L}_{\mathbf{z}, \tau(g, 0 \ldots 0)}\left(\overline{0}_{\tau(g, 0 \ldots 0)}\right)\right\| \\
& \leq C\left(\mathfrak{s}\left(n, \overline{0}_{g}\right), \rho(\mathbf{z}), \eta(\mathbf{z}), d\right)\left\|\mathcal{L}_{\mathbf{z}}\right\|,
\end{aligned}
$$

and so if $\mathfrak{t}^{-}\left(\overline{0}_{g}\right)=\infty$ then $\left\|\mathcal{L}_{\mathbf{z}, g}\left(\overline{0}_{g}\right)\right\|=0$ by Proposition 2.1, that is , 1$)$ is obtained.

Suppose that ω in $\Omega_{g}, \mathfrak{t}^{+}(\omega)<\infty$ and $\mathfrak{t}^{-}(\omega)=\infty$. By Lemma 2.2 $\mathcal{L}_{\mathbf{z}, g}(\omega)-\mathcal{L}_{\mathbf{z}, g}(\omega-)=\mathbf{z}_{g}(\boldsymbol{i}) \mathcal{L}_{\mathbf{z}, \tau(g, i)}\left(\overline{0}_{\tau(g, i)}\right)$ when \boldsymbol{i} in $S_{g}^{*{ }^{++}(\omega)}$, and by 1) $\mathcal{L}_{\mathbf{z}, \tau(g, i)}\left(\overline{0}_{\tau(g, i)}\right)=\mathbf{0}$ because of $\mathfrak{t}^{-}\left(\overline{0}_{\tau(g, i)}\right)=\infty$. Hence 2) is obtained.
Proposition 3.3. Let $\mathcal{L}_{\mathbf{z}}$ be a solution of $\operatorname{SRF}(\mathbf{z})$ and $X_{g}=\mathcal{L}_{\mathbf{z}, g}\left(\Omega_{g}\right)$, and define the mappings $\Phi_{(g, j)}: \mathrm{M}(d, \mathbb{C}) \longrightarrow \mathrm{M}(d, \mathbb{C})$ by

$$
\Phi_{(g, j)}(\mathbf{w})=\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathbf{w} \quad(\mathbf{w} \in \mathbf{M}(d, \mathbb{C}))
$$

for (g, j) in G^{\triangleright}. Then each X_{g} is compact and satisfies

$$
\begin{equation*}
X_{g}=\bigcup_{j \in S_{g}^{* 1}} \Phi_{(g, j)}\left(X_{\tau(g, j)}\right) \tag{24}
\end{equation*}
$$

for g in G.
Proof. Since $\mathcal{L}_{\mathbf{z}}$ is a solution of $\operatorname{SRF}(\mathbf{z})$, we have

$$
\begin{aligned}
\mathcal{L}_{\mathbf{z}, g}\left(I_{(g, j)}\right) & =\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}\left(\varphi\left(I_{(g, j)}\right)\right) \\
& =\Phi_{(g, j)}\left(X_{\tau(g, j)}\right)
\end{aligned}
$$

for j in $S_{g}^{* 1}$ and g in G, and so we obtain (24) because of $\mathcal{L}_{\mathbf{z}, g}\left(\Omega_{g}\right)=$ $\bigcup_{j \in S_{g}^{* 1}} \mathcal{L}_{\mathbf{z}, g}\left(I_{(g, j)}\right)$.

4. Representations of differentials of L_{z} with respect to the parameter z

In this section, we suppose that $\mathbf{z}: G^{\triangleright} \longrightarrow \mathbb{C}$ satisfy $\sum_{j \in S_{g}^{* 1}} Z_{g}(j)=1$ and $\rho(z)<1$. Then there exists a unique continuous solution of $\operatorname{SRF}(z)$, that is denoted by L_{z}, because of Theorem 3.1,1). We use the notations:

$$
\partial_{g}(j)=\frac{\partial}{\partial z_{g}(j)}
$$

$$
\left((g, j) \in G^{\triangleright}\right)
$$

$$
\begin{array}{rlr}
\partial^{\mathrm{p}} & =\prod_{(g, j) \in G^{\triangleright}, j<m(g)-1} \partial_{g}(j)^{\mathrm{p}_{g}(j)} & \left(\mathrm{p} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right)\right), \\
\mathrm{a} \cdot \partial & =\sum_{(g, j) \in G^{\triangleright}, j<m(g)-1} \mathrm{a}_{g}(j) \partial_{g}(j) & \left(\mathrm{a} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{C}\right)\right), \\
\mathrm{L}_{\mathrm{z}, g}^{(\mathrm{p})}(\omega) & =\partial^{\mathrm{p}} \mathrm{~L}_{\mathrm{z}, g}(\omega) & \left(\mathrm{p} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right), \omega \in \Omega_{g}, g \in G\right), \\
\mathrm{p}! & =\prod_{(g, j) \in G^{\triangleright}, j<m(g)-1} \mathrm{p}_{g}(j)! & \left(\mathrm{p} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right)\right), \\
|\mathrm{p}| & =\sum_{(g, j) \in G^{\triangleright}, j<m(g)-1} \mathrm{p}_{g}(j), &
\end{array}
$$

where we do not need the notations $\partial_{g}(m(g)-1)$, because $\mathbf{z}_{g}(m(g)-1)=$ $1-\sum_{0 \leq j<m(g)-1} z_{g}(j)$. By using the special upper triangle matrices as the weighted parameter, we shall show that Theorem 3.1 implies the representations of differentiation of L_{z} with respect to the parameter z.

Theorem 4.1. Let $\mathrm{a}: G^{\triangleright} \longrightarrow \mathbb{C}$ satisfy $\sum_{j \in S_{g}^{* 1}} \mathrm{a}_{g}(j)=0$, and let $\mathbf{z}: G^{\triangleright} \longrightarrow$ $\mathrm{M}(d, \mathbb{C})$ be defined by $\mathbf{z}_{g}(j)=\mathbf{z}_{g}(j) \mathfrak{e}+\mathrm{a}_{g}(j) \mathfrak{n}$ for (g, j) in G^{\triangleright}, where \mathfrak{n} is the $d \times d$-matrix $\left(n_{k, l}\right)$ such that $n_{k, l}=0$ except $n_{i, i+1}=1(i=1, \ldots, d-1)$. Then we have

1) The continuous solution $\mathcal{L}_{\mathbf{z}}$ of $\operatorname{SRF}(\mathbf{z})$ is given by

$$
\begin{equation*}
\mathcal{L}_{\mathbf{z}, g}=\sum_{0 \leq q<d} \frac{(\mathrm{a} \cdot \partial)^{q}}{q!} \mathrm{L}_{\mathrm{z}, g} \mathfrak{n}^{q} \quad(g \in G) \tag{25}
\end{equation*}
$$

2) The differentials of L_{z} are expanded as follows:

$$
\begin{align*}
&(\mathrm{a} \cdot \partial)^{q} \mathrm{~L}_{\mathrm{z}, g}(\omega)=q!\left.\sum_{n \in \mathbb{N}} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)\right)^{s((h, l) ;(g, i))} \\
& \quad \times \mathrm{A}_{\mathrm{z}, \tau(g, i), q}(\mathrm{a}) \circ \varphi^{n}(\omega) 1_{I_{(g, i)}}(\omega) \quad(q \in \mathbb{N}), \tag{26}\\
& \frac{1}{\mathrm{p}!} \mathrm{L}_{\mathrm{z}, g}^{(\mathrm{p})}(\omega)=\sum_{n \in \mathbb{N}} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times \mathrm{B}_{\mathrm{z}, \tau(g, i), \mathrm{p}} \circ \varphi^{n}(\omega) 1_{I_{(g, i)}}(\omega) \quad\left(\mathrm{p} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right)\right) \tag{27}
\end{align*}
$$

uniformly on $\left\{\omega \in \Omega_{g}: \mathfrak{t}(\omega)=\infty\right\}$ for g in G, and

$$
\begin{align*}
& \mathrm{L}_{\mathbf{z}, g}(\omega)=\sum_{0 \leq n \leq \mathrm{t}(\omega)} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times \mathrm{A}_{\mathbf{z}, \tau(g, i), 0}(\mathrm{a}) \circ \varphi^{n}(\omega) 1_{I_{(g, i)}}(\omega) \\
&+ \sum_{i \in S_{g}^{* t(\omega)}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))}, \tag{28}\\
&(\mathrm{a} \cdot \partial)^{q} \mathrm{~L}_{\mathrm{z}, g}(\omega)=q!\sum_{0 \leq n \leq \mathrm{t}(\omega)} \sum_{i \in S_{g}^{* *}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times \mathrm{A}_{\mathbf{z}, \tau(g, i), q}(\mathrm{a}) \circ \varphi^{n}(\omega) 1_{I_{(g, i)}}(\omega) \quad\left(q \in \mathbb{N}^{+}\right), \tag{29}
\end{align*}
$$

$$
\begin{align*}
\frac{1}{\mathrm{p}!} \mathrm{L}_{\mathrm{z}, g}^{(\mathrm{p})}(\omega)= & \sum_{0 \leq n \leq \mathrm{t}(\omega)} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times \mathrm{B}_{\mathrm{z}, \tau(g, i), \mathrm{p}} \circ \varphi^{n}(\omega) 1_{I_{(g, i)}}(\omega) \quad\left(\mathrm{p} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right),|\mathrm{p}|>0\right) \tag{30}
\end{align*}
$$

for ω in Ω_{g} with $\mathfrak{t}(\omega)<\infty$ and g in G, where

$$
\mathrm{A}_{\mathrm{z}, g, q}(\mathrm{a})(\omega)= \begin{cases}\sum_{j \in S_{g}^{* 1}} \sum_{0 \leq k<j} \mathrm{z}_{g}(k) 1_{I_{(g, j)}}(\omega) & (q=0) \\ \sum_{j \in S_{g}^{* 1}}\left(\sum_{0 \leq k<j} \mathrm{a}_{g}(k)\right. & \\ \left.\quad+\mathrm{a}_{g}(j) \mathrm{L}_{\mathrm{z}, \tau(g, j)} \circ \varphi(\omega)\right) 1_{I_{(g, j)}}(\omega) & (q=1) \\ \sum_{j \in S_{g}^{* 1}} \mathrm{a}_{g}(j) \frac{(\mathrm{a} \cdot \partial)^{q-1}}{(q-1)!} \mathrm{L}_{\mathrm{z}, \tau(g, j)} \circ \varphi(\omega) 1_{I_{(g, j)}}(\omega) & (q \geq 2)\end{cases}
$$

and

$$
\begin{aligned}
& \mathrm{B}_{z, g, \mathrm{p}}(\omega) \\
& =\left\{\begin{array}{cc}
\sum_{j \in S_{g}^{* 1}} \sum_{0 \leq k<j} \mathrm{z}_{g}(k) 1_{I_{(g, j)}}(\omega) & (|\mathrm{p}|=0) \\
\sum_{0 \leq j<m(g)-1} \mathrm{p}_{g}(j)\left\{\mathrm{L}_{\mathbf{z}, \tau(g, j)} \circ \varphi(\omega) 1_{I_{(g, j)}}(\omega)\right. & \\
\quad+\sum_{j<k<m(g)-1} 1_{I_{(g, k)}}(\omega) & \\
\left.+\left(1-\mathrm{L}_{\mathbf{z}, \tau(g, m(g)-1)} \circ \varphi(\omega)\right) 1_{I_{(g, m(g)-1)}}(\omega)\right\} & (|\mathrm{p}|=1) \\
\sum_{0 \leq j<m(g)-1} \mathrm{p}_{g}(j) \frac{\partial^{\mathrm{p}}-\delta(g, j)}{(\mathrm{p}-\delta(g, j))!}\left\{\mathrm{L}_{\mathbf{z}, \tau(g, j)} \circ \varphi(\omega) 1_{I_{(g, j)}}(\omega)\right. & \\
\left.-\mathrm{L}_{\mathbf{z}, \tau(g, m(g)-1)} \circ \varphi(\omega) 1_{I_{(g, m(g)-1)}}(\omega)\right\} & (|\mathrm{p}| \geq 2)
\end{array}\right.
\end{aligned}
$$

for ω in Ω_{g}, where $\delta(g, j)$ is in $\operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right)$ such that $\delta(g, j)_{h}(l)=0$ for $(h, l) \in G^{\triangleright}$ and $0 \leq l<m(h)-1$ without $\delta(g, j)_{g}(j)=1$.

Proof. 1) We apply the Leibniz formula to the equation

$$
\mathrm{L}_{\mathbf{z}, g}(\omega)=\sum_{0 \leq k<j} \mathrm{z}_{g}(k)+\mathrm{z}_{g}(j) \mathrm{L}_{\mathbf{z}, \tau(g, j)}(\varphi(\omega))
$$

by using $\sum_{i \in S_{g}^{1}} \mathbf{z}_{g}(i)=1$ and $\sum_{i \in S_{g}^{1}} \mathrm{a}_{g}(i)=0$ for g in G, and get

$$
(\mathrm{a} \cdot \partial) \mathrm{L}_{\mathrm{z}, g}(\omega)=\sum_{0 \leq k<j} \mathrm{a}_{g}(k)+\mathrm{z}_{g}(j)(\mathrm{a} \cdot \partial) \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega))+\mathrm{a}_{g}(j) \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega)),
$$

and

$$
\frac{(\mathrm{a} \cdot \partial)^{n}}{n!} \mathrm{L}_{\mathrm{z}, g}(\omega)=\mathbf{z}_{g}(j) \frac{(\mathrm{a} \cdot \partial)^{n}}{n!} \mathrm{L}_{\mathbf{z}, \tau(g, j)}(\varphi(\omega))+\mathrm{a}_{g}(j) \frac{(\mathrm{a} \cdot \partial)^{n-1}}{(n-1)!} \mathrm{L}_{\mathbf{z}, \tau(g, j)}(\varphi(\omega)),
$$

where $n \geq 2$ and $\omega \in I_{(g, j)}$. Hence we can verify that $\mathcal{L}_{\mathbf{z}}$ defined by (25) is a solution of $\operatorname{SRF}(\mathbf{z})$ as follows:

$$
\begin{aligned}
& \sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathcal{L}_{\mathbf{z}, \tau(g, j)}(\varphi(\omega)) \\
& =\sum_{0 \leq k<j}\left(\mathbf{z}_{g}(k) \mathfrak{e}+\mathrm{a}_{g}(k) \mathfrak{n}\right)+\left(\mathbf{z}_{g}(j) \mathfrak{e}+\mathrm{a}_{g}(j) \mathfrak{n}\right) \sum_{0 \leq q<d} \frac{(\mathrm{a} \cdot \partial)^{q}}{q!} \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega)) \mathfrak{n}^{q} \\
& =\left\{\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega))\right\} \mathfrak{e} \\
& +\left\{\sum_{0 \leq k<j} \mathrm{a}_{g}(k)+\mathbf{z}_{g}(j)(\mathrm{a} \cdot \partial) \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega))+\mathrm{a}_{g}(j) \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega))\right\} \mathfrak{n} \\
& +\sum_{2 \leq q<d}\left\{\mathrm{z}_{g}(j) \frac{(\mathrm{a} \cdot \partial)^{q}}{q!} \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega))+\mathrm{a}_{g}(j) \frac{(\mathrm{a} \cdot \partial)^{q-1}}{(q-1)!} \mathrm{L}_{\mathrm{z}, \tau(g, j)}(\varphi(\omega))\right\} \mathfrak{n}^{q} \\
& =\sum_{0 \leq q<d} \frac{(\mathrm{a} \cdot \partial)^{q}}{q!} \mathrm{L}_{\mathrm{z}, g}(\omega) \mathfrak{n}^{q} \\
& =\mathcal{L}_{\mathbf{z}, g}(\omega)
\end{aligned}
$$

for g in G and ω in Ω_{g}.
2) The notations \mathbf{v} and \mathbf{w} in Theorem 3.1 are given by

$$
\mathbf{v}_{g}(j)=\mathrm{z}_{g}(j) \mathfrak{e}, \quad \mathbf{w}_{g}(j)=\mathrm{a}_{g}(j) \mathfrak{n} \quad\left((g, j) \in G^{\triangleright}\right)
$$

for \mathbf{z} in this case, and by Lemma 3.2 we get

$$
\begin{aligned}
& \left(\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}\right)_{g}(\omega)=\sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathbf{z}_{h}(l)^{s((h, l) ;(g, i))} \mathfrak{e} 1_{I_{(g, i)}}(\omega), \\
& \left(\mathbf{U}_{n} \mathcal{V}\right)_{g}(\omega) \\
& =\sum_{i \in S_{g}^{* n}} \sum_{j \in S_{\tau(g, i)}^{* 1}} \sum_{0 \leq k<j} \mathbf{z}_{\tau(g, i)}(k) \mathfrak{e} 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega) \\
& =\sum_{i \in S_{g}^{* n}} \mathrm{~A}_{\mathbf{z}, \tau(g, i), 0}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{e} 1_{I_{(g, i)}}(\omega), \\
& \left(\mathbf{U}_{n} \mathcal{W}\right)_{g}(\omega) \\
& =\sum_{i \in S_{g}^{* n}} \sum_{j \in S_{\tau(g, i)}^{* 1}}\left\{\sum_{0 \leq k<j} \mathrm{a}_{\tau(g, i)}(k) \mathfrak{n}\right. \\
& \left.+\mathrm{a}_{\tau(g, i)}(j) \mathfrak{n} \mathcal{L}_{\mathbf{z}, \tau(g, i j)}\left(\varphi^{n+1}(\omega)\right)\right\} 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega) \\
& =\sum_{i \in S_{g}^{* n}} \sum_{j \in S_{\tau(g, i)}^{* 1}}\left\{\sum_{0 \leq k<j} \mathrm{a}_{\tau(g, i)}(k) \mathfrak{n}\right. \\
& \left.+\mathrm{a}_{\tau(g, i)}(j) \mathfrak{n} \sum_{0 \leq q<d} \frac{(\mathrm{a} \cdot \partial)^{q}}{q!} \mathrm{L}_{\mathrm{z}, \tau(g, i j)}\left(\varphi^{n+1}(\omega)\right) \mathfrak{n}^{q}\right\} 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega) \\
& =\sum_{i \in S_{g}^{* n}} \sum_{j \in S_{\tau(g, i)}^{* 1}}\left\{\sum_{0 \leq k<j} \mathrm{a}_{\tau(g, i)}(k) \mathfrak{n}\right. \\
& \left.+\mathrm{a}_{\tau(g, i)}(j) \sum_{1 \leq q<d} \frac{(\mathrm{a} \cdot \partial)^{q-1}}{(q-1)!} \mathrm{L}_{\mathrm{z}, \tau(g, i j)}\left(\varphi^{n+1}(\omega)\right) \mathfrak{n}^{q}\right\} 1_{I_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega) \\
& =\sum_{i \in S_{g}^{* n}} \sum_{j \in S_{\tau(g, i)}^{* 1}}\left\{\left(\sum_{0 \leq k<j} \mathrm{a}_{\tau(g, i)}(k)+\mathrm{a}_{\tau(g, i)}(j) \mathrm{L}_{\mathrm{z}, \tau(g, i j)}\left(\varphi^{n+1}(\omega)\right)\right) \mathfrak{n}\right. \\
& \left.+\mathrm{a}_{\tau(g, i)}(j) \sum_{2 \leq q<d} \frac{(\mathrm{a} \cdot \partial)^{q-1}}{(q-1)!} \mathrm{L}_{\mathrm{z}, \tau(g, i j)}\left(\varphi^{n+1}(\omega)\right) \mathfrak{n}^{q}\right\} 1_{1_{(\tau(g, i), j)}}\left(\varphi^{n}(\omega)\right) 1_{I_{(g, i)}}(\omega)
\end{aligned}
$$

$$
=\sum_{i \in S_{g}^{* n}}\left\{\mathrm{~A}_{\mathbf{z}, \tau(g, i), 1}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{n}+\sum_{2 \leq q<d} \mathrm{~A}_{\mathbf{z}, \tau(g, i), q}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{n}^{q}\right\} 1_{I_{(g, i)}}(\omega) .
$$

Moreover, by substituting the above $\mathbf{D}_{n} \mathcal{L}_{\mathbf{v}}, \mathbf{U}_{n} \mathcal{V}$ and $\mathbf{U}_{n} \mathcal{W}$ for the ones in the equations (16) and (17), we get

$$
\begin{aligned}
\mathcal{L}_{\mathbf{z}, g}(\omega)= & \sum_{n \in \mathbb{N}} \sum_{\boldsymbol{i} \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))}\left\{\mathrm{A}_{\mathbf{z}, \tau(g, i), 0}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{e}\right. \\
& \left.+\mathrm{A}_{\mathbf{z}, \tau(g, i), 1}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{n}+\sum_{2 \leq q<d} \mathrm{~A}_{\mathbf{z}, \tau(g, \boldsymbol{i}), q}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{n}^{q}\right\} 1_{I_{(g, i)}}(\omega)
\end{aligned}
$$

uniformly on $\left\{\omega \in \Omega_{g}: \mathfrak{t}(\omega)=\infty\right\}$, and

$$
\begin{aligned}
\mathcal{L}_{\mathbf{z}, g}(\omega)= & \sum_{0 \leq n \leq \mathfrak{t}(\omega)} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))}\left\{\mathrm{A}_{\mathbf{z}, \tau(g, i), 0}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{e}\right. \\
& \left.+\mathrm{A}_{\mathbf{z}, \tau(g, i), 1}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{n}+\sum_{2 \leq q<d} \mathrm{~A}_{\mathbf{z}, \tau(g, i), q}(\mathrm{a})\left(\varphi^{n}(\omega)\right) \mathfrak{n}^{q}\right\} 1_{I_{(g, i)}}(\omega) \\
& +\sum_{i \in S_{g}^{*(\omega)}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \mathfrak{e} 1_{I_{(g, i)}}(\omega)
\end{aligned}
$$

for ω in Ω_{g} with $\mathfrak{t}(\omega)<\infty$. Hence we write out the components of $\mathcal{L}_{\mathbf{z}}$ and get (26), (28) and (29). Finally, by removing the parameter a from (26) and (29) we obtain (27) and (30).

5. Fractal functions with the parameter space $[0,1]$ on directed networks

We start this section to define the mappings Ψ_{g} and Ψ_{g}^{-1+} for translating the functional equations on Ω_{g} to the ones on $[0,1]$.

Definition 5.1. Let us set $\mathbf{z}_{g}(j)=\frac{1}{m(g)}$ for j in $S_{g}^{* 1}$ and g in G. Since the mapping $\mathbf{z}: G^{\triangleright} \longrightarrow \mathbb{R}$ satisfies the assumption of Theorem 3.1, the unique continuous solution of $\operatorname{SRF}(\mathbf{z})$ exist, and we denote it by Ψ. It is clear that $\Psi_{g}\left(\overline{0}_{g^{-}}\right)=0, \Psi_{g}\left(\bar{m}_{g^{-}}\right)=1,0 \leq \Psi_{g}(\omega) \leq 1$ and

$$
\begin{equation*}
\Psi_{g}(\omega)=\sum_{n \in \mathbb{N}_{+}} \frac{\prod_{k=1}^{n} m\left(g_{k}\right)}{n}+\lim _{n \rightarrow \infty} \frac{1}{\prod_{k=1}^{n} m\left(g_{k}\right)} \tag{31}
\end{equation*}
$$

for g in G and ω in Ω_{g}, where $g_{1}=g, j_{n}=\pi_{g, n}(\omega)$ and $g_{n+1}=\tau\left(g_{n}, j_{n}\right)$ for n in \mathbb{N}_{+}.

Then it is easy to check the following properties of Ψ_{g}, and so we can define Ψ_{g}^{-1+}.

Lemma 5.1. Let x in $[0,1]$ and g in G. Then the set $\Psi_{g}^{-1}(\{x\})$ has at most two elements, and $\Psi_{g}^{-1}(\{x\})$ is empty if and only if there exists ω in Ω_{g} such that $\mathfrak{t}(\omega)<\infty$ and $\Psi_{g}(\omega-)<x<\Psi_{g}(\omega)$. In more detail, let ω in Ω_{g} and $\Psi_{g}(\omega)=x$, we have

1) $\Psi_{g}^{-1}(\{x\})=\{\omega\}$ if $\mathfrak{t}^{-}(\omega)=\mathfrak{t}^{+}(\omega)=\infty$,
2) $\Psi_{g}^{-1}(\{x\})=\{\omega-, \omega\}$ if $\mathfrak{t}^{-}(\omega)=\infty$ and $\mathfrak{t}^{+}(\omega)<\infty$,
3) $\Psi_{g}^{-1}(\{x\})=\{\omega, \omega+\}$ if $0<\mathfrak{t}^{-}(\omega)<\infty$ and $\mathfrak{t}^{-}(\omega+)=\infty$,
4) $\Psi_{g}(\omega)=x<\Psi_{g}(\omega+)$ if $0<\mathfrak{t}^{-}(\omega)<\infty$ and $\mathfrak{t}^{-}(\omega+)<\infty$.
5) $\omega=\bar{m}_{g}-$ and $\Psi_{g}(\omega)=1$ if $\mathfrak{t}^{-}(\omega)=0$.

Definition 5.2. Define the mapping $\Psi_{g}^{-1+}:[0,1] \longrightarrow \Omega_{g}$ for g in G as follows:

$$
\Psi_{g}^{-1+}(x)= \begin{cases}\omega & \text { if } \mathfrak{t}(\omega)<\infty \text { and } \Psi_{g}(\omega-) \leq x<\Psi_{g}(\omega) \\ \omega & \text { if } \mathfrak{t}^{-}(\omega)=\infty \text { and } \Psi_{g}(\omega)=x \\ \bar{m}_{g^{-}} & \text {if } x=1\end{cases}
$$

where x in $[0,1]$ and ω in Ω_{g}.
Definition 5.3. Let g in G, \boldsymbol{j} in $S_{g}^{* n}$ and n in \mathbb{N}. We denote by the set $I_{g, j}^{+}$ $\left\{x \in[0,1] ; \Psi_{g}^{-1+}(x) \in I_{(g, j)}\right\} \backslash\left\{\Psi_{g}\left(\sigma_{(g, j)}\left(\bar{m}_{\tau(g, j)^{-}}\right)\right)\right\}$for $\sigma_{(g, j)}\left(\bar{m}_{\tau(g, j)^{-}}\right) \neq$ $\bar{m}_{g^{-}}$, and $\left\{x \in[0,1] ; \Psi_{g}^{-1+}(x) \in I_{(g, j)}\right\}$ for $\sigma_{(g, j)}\left(\bar{m}_{\tau(g, j)^{-}}\right)=\bar{m}_{g^{-}}$. Define $\phi_{g, n}:[0,1] \longrightarrow[0,1]$ as follows:

$$
\phi_{g, n}(x)= \begin{cases}\prod_{k=1}^{n} m\left(g_{k}\right)\left(x-\sum_{1 \leq k \leq n} \frac{j_{k}}{\prod_{l=1}^{k} m\left(g_{l}\right)}\right) & \text { for } x \in I_{g, j}^{+} \text {if } n \geq 1 \\ x & \text { for } x \in I_{g, \epsilon}^{+} \text {if } n=0\end{cases}
$$

where $\boldsymbol{j}=j_{1} \ldots j_{n}$ and $g_{k}=\tau\left(g, j_{1} \ldots j_{k-1}\right)$ for $k=1, \ldots, n$. For simplicity we denote $\phi_{g, 1}$ by ϕ_{g}.
Lemma 5.2. Let g in G and j in $S_{g}^{* 1}$. We have

$$
\begin{align*}
I_{g, \epsilon}^{+} & =[0,1], \tag{32}\\
I_{g, j}^{+} & = \begin{cases}{\left[\frac{j}{m(g)}, \frac{j+1}{m(g)}[\right.} & \text { if } 0 \leq j<m(g)-1, \\
{\left[\frac{j}{m(g)}, \frac{j+1}{m(g)}\right]} & \text { if } j=m(g)-1,\end{cases} \tag{33}\\
\Psi_{\tau(g, j)}(\varphi(\omega)) & =m(g)\left(\Psi_{g}(\omega)-\frac{j}{m(g)}\right) \quad \text { for } \omega \in I_{(g, j)}, \tag{34}\\
\varphi \circ \Psi_{g}^{-1+}(x) & =\Psi_{\tau(g, j)}^{-1+} \circ \phi_{g}(x) \quad \text { for } x \in I_{g, j}^{+} . \tag{35}
\end{align*}
$$

Proof. (32), (33) and (34) are clear from Definition 5.2 and 5.3. Next we show (35). In the case $x=1, j=m(g)-1$ and so

$$
\begin{aligned}
\varphi \circ \Psi_{g}^{-1+}(1) & =\varphi\left(\bar{m}_{g}-\right)=\bar{m}_{\tau(g, m(g)-1)-} \\
& =\Psi_{\tau(g, m(g)-1)}^{-1+}(1)=\Psi_{\tau(g, m(g)-1)}^{-1+} \circ \phi_{g}(1) .
\end{aligned}
$$

If $\omega \in \Omega_{g}, \mathfrak{t}(\omega)<\infty$ and $\Psi_{g}(\omega-) \leq x<\Psi_{g}(\omega)$, then $\varphi(\omega) \in \Omega_{\tau(g, j)}$, $\mathfrak{t}(\varphi(\omega))<\infty$ and $\Psi_{\tau(g, j)}(\varphi(\omega)-) \leq \phi_{g}(x)<\Psi_{\tau(g, j)}(\varphi(\omega))$ by (34). Hence

$$
\varphi \circ \Psi_{g}^{-1+}(x)=\varphi(\omega)=\Psi_{\tau(g, j)}^{-1+} \circ \phi_{g}(x)
$$

We can check other cases by similar method mentioned above.
Proposition 5.1. Let g in G, \boldsymbol{j} in $S_{g}^{* n}$ and n in \mathbb{N}_{+}. In addition, let $g_{1}=g, \boldsymbol{j}=j_{1} \ldots j_{n}$ and $g_{k+1}=\tau\left(g, j_{1} \ldots j_{k}\right)$ for $k=1, \ldots, n-1$. Suppose x in $I_{g, j}^{+}$. Then x in $I_{g_{1}, j_{1}}^{+}$and $\phi_{g_{k}} \circ \cdots \circ \phi_{g_{1}}(x)$ in $I_{g_{k+1}, j_{k+1}}^{+}(k=1, \ldots, n-1)$. Moreover

$$
\begin{align*}
\phi_{g, n} & =\phi_{g_{n}} \circ \cdots \circ \phi_{g_{1}} & & \text { on } I_{g, j}^{+} \tag{36}\\
\varphi^{n} \circ \Psi_{g}^{-1+} & =\Psi_{\tau(g, j)}^{-1+} \circ \phi_{g, n} & & \text { on } I_{g, j}^{+} . \tag{37}
\end{align*}
$$

Proof. Let x in $I_{g, j}^{+}$. By using (35), we get $x \in I_{g, j}^{+} \subset I_{g_{1}, j_{1} \ldots j_{n-1}}^{+} \subset$ $\cdots \subset I_{g_{1}, j_{1} j_{2}}^{+} \subset I_{g_{1}, j_{1}}^{+}$, and $\phi_{g_{1}}(x) \in I_{g_{2}, j_{2} \ldots j_{n}}^{+} \subset \cdots \subset I_{g_{2}, j_{2} j_{3}}^{+} \subset I_{g_{2}, j_{2}}^{+}$. By repeating the process, $\phi_{g_{k}} \circ \cdots \circ \phi_{g_{1}}(x) \in I_{g_{k+1}, j_{k+1} \cdots j_{n}}^{+} \subset \cdots \subset I_{g_{k+1}, j_{k+1}}^{+}$for $k=1, \ldots, n-1$. Since $\phi_{g_{k}}(y)=m\left(g_{k}\right)\left(y-\frac{j_{k}}{m\left(g_{k}\right)}\right)$ on $I_{g_{k}, j_{k}}^{+}$for $k=1, \ldots, n$, $\phi_{g_{n}} \circ \cdots \circ \phi_{g_{1}}(x)=\prod_{k=1}^{n} m\left(g_{k}\right)\left(x-\sum_{1 \leq k \leq n} \frac{j_{k}}{\prod_{l=1}^{k} m\left(g_{l}\right)}\right)$, and so (36) is obtained.
(37) is also obtained by (35) and (36) as follows:

$$
\begin{aligned}
\varphi^{n} \circ \Psi_{g}^{-1+}(x) & =\varphi^{n-1} \circ \varphi \circ \Psi_{g}^{-1+}(x)=\varphi^{n-1} \circ \Psi_{g_{2}}^{-1+} \circ \phi_{g_{1}}(x) \\
& =\Psi_{\tau(g, j)}^{-1+} \circ \phi_{g_{n}} \circ \cdots \circ \phi_{g_{1}} \\
& =\Psi_{\tau(g, j)}^{-1+} \circ \phi_{g, n} .
\end{aligned}
$$

Proposition 5.2. Ψ_{g}^{-1+} has the following properties for each g in G.

1) The mapping $\Psi_{g}^{-1+}:[0,1] \longrightarrow \Omega_{g}$ is right continuous with left-hand limits.
2) Ψ_{g}^{-1+} is discontinuous at x_{0} if and only if there exist $\omega \in \Omega_{g}$ such that (i) $\mathfrak{t}(\omega)<\infty$ or (ii) $\mathfrak{t}^{-}(\omega)=\infty$ and $\mathfrak{t}^{+}(\omega)<\infty$, and $\Psi_{g}(\omega-)=x_{0}$. In this case, $\lim _{x \uparrow x_{0}} \Psi_{g}^{-1+}(x)=\omega-$.

Proof. By noticing that $\left\{I_{\left(g, j_{1} \ldots j_{n}\right)}: n \in \mathbb{N}_{+}\right\}$is a basis of neighbourhoods at $\omega=\left(\left(g_{1}, j_{1}\right), \ldots,\left(g_{n}, j_{n}\right), \ldots\right)$ in Ω_{g}, these properties are immediately obtained from Definition 5.2.

Proposition 5.3. Let $\mathcal{L}_{\mathbf{z}}$ be the continuous solution of $\operatorname{SRF}(\mathbf{z})$. Define $L_{\mathbf{z}}$ by

$$
\begin{equation*}
L_{\mathbf{z}, g}(x)=\mathcal{L}_{\mathbf{z}, g} \circ \Psi_{g}^{-1+}(x) \quad \text { for } x \in[0,1] \text { and } g \in G . \tag{38}
\end{equation*}
$$

Then $L_{\mathbf{z}}$ has the following properties.

1) The mapping $x \longmapsto L_{\mathbf{z}, g}(x)$ is $\mathrm{M}(d, \mathbb{C})$-valued right continuous with left-hand limits on $[0,1]$ for each g in G.
2) If there is ω in Ω_{g} with $\Psi_{g}(\omega-)=x_{0}$ such that (i) $\mathfrak{t}(\omega)<\infty$ or (ii) $\mathfrak{t}^{-}(\omega)=\infty$ and $\mathfrak{t}^{+}(\omega)<\infty$, then $L_{\mathbf{z}, g}\left(x_{0}\right)-L_{\mathbf{z}, g}\left(x_{0^{-}}\right)=\mathcal{L}_{\mathbf{z}, g}(\omega)-\mathcal{L}_{\mathbf{z}, g}(\omega-)$, where $L_{\mathbf{z}, g}\left(x_{0}-\right)=\lim _{y} \not x_{0} L_{\mathbf{z}, g}(y)$ for $x_{0}>0$ and $L_{\mathbf{z}, g}(0-)=0$.
3) $L_{\mathbf{z}}$ satisfies the following system of functional equations with the weighted parameter \mathbf{z} :
$\left\{\begin{array}{l}L_{\mathbf{z}, g}(1)=\mathfrak{e}, \\ L_{\mathbf{z}, g}(x)=\sum_{0 \leq k<j} \mathbf{z}_{g}(k)+\mathbf{z}_{g}(j) L_{\mathbf{z}, \tau(g, j)} \circ \phi_{g}(x) \quad\left(x \in I_{g, j}^{+}, j \in S_{g}^{* 1}\right), \\ L_{\mathbf{z}, g}(x)=\mathfrak{e} \quad(x \in[0,1]) \quad \text { if } \quad \mathfrak{t}\left(\overline{0}_{g}\right)=0\end{array}\right.$
for each g in G.
We call the above system $\operatorname{SRF}(\mathbf{z})$ with the parameter space $[0,1]$ on (G, m, τ), that is abbreviated to be " $\operatorname{SRF}(\mathbf{z})$ with $[0,1]$ on (G, m, τ) " or $" \operatorname{SRF}(\mathbf{z})$ with $[0,1]$ ".

Proof. 1) and 2) follow directly from Proposition 5.2, and also 3) is easily checked by using (5) and (37).

Theorem 5.1. Let $\mathbf{z}: G^{\triangleright} \longrightarrow \Delta(d, \mathbb{C})$ with $\sum_{k \in S_{g}^{* 1}} \mathbf{z}_{g}(k)=\mathfrak{e}$ for g in G and $\rho(\mathbf{z})<1$. Then we have

1) There exists a unique right continuous solution $L_{\mathbf{z}}$ with left-hand limits of $\operatorname{SRF}(\mathbf{z})$ with $[0,1]$.
2) The mapping $\mathbf{z} \longmapsto L_{\mathbf{z}, g}$ is $\mathcal{B}([0,1], \mathbb{C})$-valued analytic for each g in G, where $\mathcal{B}([0,1], \mathbb{C})$ is the set of all bounded mappings from $[0,1]$ to \mathbb{C} with the uniform norm.
3) If the mapping $x \longmapsto L_{\mathbf{z}, g}(x)$ is discontinuous at x_{0}, then there exists ω in Ω_{g} such that $\mathfrak{t}(\omega)<\infty, \Psi_{g}(\omega-)=x_{0}$ and $L_{\mathbf{z}, g}\left(x_{0}\right)-L_{\mathbf{z}, g}\left(x_{0-}\right)=$ $\mathbf{z}_{g}(\boldsymbol{i}) \mathcal{L}_{\mathbf{z}, \tau(g, i)}\left(\overline{0}_{\tau(g, i)}\right)$, where g in G, \boldsymbol{i} in $S_{g}^{*(\omega)}$ and $\omega=\sigma_{(g, i)}\left(\overline{0}_{\tau(g, i)}\right)$.

Proof. It is sufficient to prove the uniqueness of the solution of $\operatorname{SRF}(\mathbf{z})$ with $[0,1]$, because of Theorem 3.1, Proposition 3.2 and Proposition 5.3. Let $L_{\mathbf{z}}$ and $L_{\mathbf{z}}^{\prime}$ be two solutions of $\operatorname{SRF}(\mathbf{z})$ with $[0,1]$. For $x \in I_{g, j_{1} j_{2}}^{+}$, where $j_{1} j_{2} \in S_{g}^{* 2}$,

$$
\begin{aligned}
L_{\mathbf{z}, g}(x)-L_{\mathbf{z}, g}^{\prime}(x) & =\mathbf{z}_{g}\left(j_{1}\right)\left\{L_{\mathbf{z}, \tau\left(g, j_{1}\right)} \circ \phi_{g}(x)-L_{\mathbf{z}, \tau\left(g, j_{1}\right)}^{\prime} \circ \phi_{g}(x)\right\} \\
& =\mathbf{z}_{g}\left(j_{1} j_{2}\right)\left\{L_{\mathbf{z}, \tau\left(g, j_{1} j_{2}\right)} \circ \phi_{g, 2}(x)-L_{\mathbf{z}, \tau\left(g, j_{1} j_{2}\right)}^{\prime} \circ \phi_{g, 2}(x)\right\},
\end{aligned}
$$

because of $\phi_{g}(x) \in I_{\tau\left(g, j_{1}\right), j_{2}}^{+}$and $\phi_{g, 2}(x)=\phi_{\tau\left(g, j_{1}\right)} \circ \phi_{g}(x)$ by Proposition 5.1. By repeating this operation, for x in $I_{g, \boldsymbol{j}}^{+}$, where \boldsymbol{j} in $S_{g}^{* n}$ and n in \mathbb{N},

$$
L_{\mathbf{z}, g}(x)-L_{\mathbf{z}, g}^{\prime}(x)=\mathbf{z}_{g}(\boldsymbol{j})\left\{L_{\mathbf{z}, \tau(g, \boldsymbol{j})} \circ \phi_{g, n}(x)-L_{\mathbf{z}, \tau(g, \boldsymbol{j})}^{\prime} \circ \phi_{g, n}(x)\right\} .
$$

Since $\Psi_{g}^{-1+}(x)$ in $I_{(g, \boldsymbol{j})}$, if $\mathfrak{t}^{-}\left(\Psi_{g}^{-1+}(x)\right)=\infty$ then $\mathbf{z}_{g}(\boldsymbol{j}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$ by Lemma 3.1, and if $\mathfrak{t}\left(\Psi_{g}^{-1+}(x)\right)<\infty$ then there exists n such that $\mathfrak{t}\left(\Psi_{\tau(g, \boldsymbol{j})}^{-1+}(x)\right)=0$ and $\Psi_{g}^{-1+}(x)=\sigma_{(g, j)}\left(\Psi_{\tau(g, j)}^{-1+}(x)\right)$. Hence $L_{\mathbf{z}}=L_{\mathbf{z}}^{\prime}$.

Theorem 5.2. Let $\mathrm{z}: G^{\triangleright} \longrightarrow \mathbb{C}$ and $\mathrm{a}: G^{\triangleright} \longrightarrow \mathbb{C}$ be the mappings such that $\sum_{j \in S_{m(g)}} \mathbf{z}_{g}(j)=1$ and $\sum_{j \in S_{m(g)}} \mathrm{a}_{g}(j)=0$ for g in G. Suppose that $\rho(\mathrm{z})<1$, and let L_{z} be a unique right continuous solution with left-hand limits of $\operatorname{SRF}(\mathrm{z})$ with $[0,1]$. Then the mapping $\mathbf{z} \longmapsto L_{\mathbf{z}, g}$ is $\mathcal{B}([0,1], \mathbb{C})$ valued analytic, and is expanded as follows:

$$
\begin{align*}
&(\mathrm{a} \cdot \partial)^{q} L_{\mathrm{z}, g}(x)=q! \sum_{n \in \mathbb{N}} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times A_{\mathrm{z}, \tau(g, i), q}(\mathrm{a}) \circ \phi_{g, n}(x) 1_{I_{g, i}^{+}}(x) \quad(q \in \mathbb{N}), \tag{40}\\
& \frac{1}{\mathrm{p}!} L_{\mathrm{z}, g}^{(\mathrm{p})}(x)=\sum_{n \in \mathbb{N}} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times B_{\mathrm{z}, \tau(g, i), \mathrm{p}} \circ \phi_{g, n}(x) 1_{I_{g, i}^{+}}(x) \quad\left(\mathrm{p} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right)\right) \tag{41}
\end{align*}
$$

uniformly on $\left\{x \in[0,1] ; t\left(\Psi_{g}^{-1+}(x)\right)=\infty\right\}$, and

$$
\begin{align*}
& L_{\mathrm{z}, g}(x)= \sum_{0 \leq n \leq \mathrm{t}\left(\Psi_{g}^{-1+}(x)\right)} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, \boldsymbol{i}))} \\
& \times A_{\mathbf{z}, \tau(g, i), 0}(\mathrm{a}) \circ \phi_{g, n}(x) 1_{I_{g, i}^{+}}(x) \\
&+\sum_{i \in S_{g}^{*\left(\Psi_{g}^{-1+}(x)\right)}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))}, \tag{42}\\
&(\mathrm{a} \cdot \partial)^{q} L_{\mathrm{z}, g}(x)=q!\sum_{0 \leq n \leq \mathfrak{t}\left(\Psi_{g}^{-1+}(x)\right)} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times A_{\mathbf{z}, \tau(g, i), q}(\mathrm{a}) \circ \phi_{g, n}(x) 1_{I_{g, i}^{+}}(x) \quad\left(q \in \mathbb{N}^{+}\right), \tag{43}\\
& \frac{1}{\mathrm{p}!} L_{\mathrm{L}, g}^{(\mathrm{p})}(x)= \sum_{0 \leq n \leq \mathrm{t}\left(\Psi_{g}^{-1+}(x)\right)} \sum_{i \in S_{g}^{* n}} \prod_{(h, l) \in G^{\triangleright}} \mathrm{z}_{h}(l)^{s((h, l) ;(g, i))} \\
& \times B_{\mathbf{z}, \tau(g, i), \mathrm{p}^{\circ} \circ \phi_{g, n}(x) 1_{I_{g, i}^{+}}(x) \quad\left(\mathrm{p} \in \operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right),|\mathrm{p}|>0\right)} \tag{44}
\end{align*}
$$

for x in $[0,1]$ and g in G with $t\left(\Psi_{g}^{-1+}(x)\right)<\infty$, where

$$
A_{\mathbf{z}, g, q}(\mathrm{a})(x)= \begin{cases}\sum_{j \in S_{g}^{* 1}} \sum_{0 \leq k<j} \mathbf{z}_{g}(k) 1_{I_{g, j}^{+}}(x) & (q=0), \\ \sum_{j \in S_{g}^{* 1}}\left(\sum_{0 \leq k<j} \mathrm{a}_{g}(k)\right. & \\ \multicolumn{1}{c}{\left.\mathrm{a}_{g}(j) L_{\mathrm{z}, \tau(g, j)} \circ \phi_{g}(x)\right) 1_{I_{g, j}^{+}}(x)} & (q=1), \\ \sum_{j \in S_{g}^{* 1}} \mathrm{a}_{g}(j) \frac{(\mathrm{a} \cdot \partial)^{q-1}}{(q-1)!} L_{z, \tau(g, j)} \circ \phi_{g}(x) 1_{I_{g, j}^{+}}(x) & (q \geq 2)\end{cases}
$$

and

$$
\begin{aligned}
& B_{\mathbf{z}, g, \mathrm{p}}(x) \\
& =\left\{\begin{array}{rr}
\sum_{j \in S_{g}^{* 1}} \sum_{0 \leq k<j} \mathbf{z}_{g}(k) 1_{I_{g, j}^{+}}(x) & (|\mathrm{p}|=0), \\
\sum_{0 \leq j<m(g)-1} \mathbf{p}_{g}(j)\left\{L_{\mathbf{z}, \tau(g, j)} \circ \phi_{g}(x) 1_{I_{g, j}^{+}}(x)\right. & \\
\quad+\sum_{j<k<m(g)-1} 1_{I_{g, k}^{+}}(x) & \\
\left.\quad+\left(1-L_{\mathbf{z}, \tau(g, m(g)-1)} \circ \phi_{g}(x)\right) 1_{I_{g, m(g)-1}^{+}}(x)\right\} & (|\mathbf{p}|=1), \\
\sum_{0 \leq j<m(g)-1} \mathrm{p}_{g}(j) \frac{\partial^{\mathbf{p}-\delta(g, j)}}{(\mathrm{p}-\delta(g, j))!}\left\{L_{\mathbf{z}, \tau(g, j)} \circ \phi_{g}(x) 1_{I_{g, j}^{+}}(x)\right. & \\
\left.-L_{\mathbf{z}, \tau(g, m(g)-1)} \circ \phi_{g}(x) 1_{I_{g, m(g)-1}^{+}}(x)\right\} & (|\mathbf{p}| \geq 2)
\end{array}\right.
\end{aligned}
$$

for x in $[0,1]$ and g in G, where $\delta(g, j)$ is in $\operatorname{Map}\left(G^{\triangleright}, \mathbb{N}\right)$ such that $\delta(g, j)_{h}(l)=$ 0 for $(h, l) \in G^{\triangleright}$ and $0 \leq l<m(h)-1$ without $\delta(g, j)_{g}(j)=1$.
Proof. By using $\mathrm{L}_{\mathrm{z}, g}, \mathrm{~A}_{\mathrm{z}, g, q}(\mathrm{a})$ and $\mathrm{B}_{\mathrm{z}, g, q}$ in Theorem 4.1, we define L_{z}, $A_{z, g, q}$ and $B_{z, g, q}$ by

$$
L_{\mathbf{z}, g}(x)=\mathrm{L}_{\mathbf{z}, g} \circ \Psi_{g}^{-1+}(x),
$$

$$
\begin{aligned}
A_{\mathbf{z}, g, q}(\mathrm{a})(x) & =\mathrm{A}_{\mathbf{z}, g, q}(\mathrm{a}) \circ \Psi_{g}^{-1+}(x), \\
B_{\mathrm{z}, g, q}(x) & =\mathrm{B}_{\mathbf{z}, g, q} \circ \Psi_{g}^{-1+}(x),
\end{aligned}
$$

where x in $[0,1], g$ in G and q in \mathbb{N}. Then Theorem 4.1 implies this theorem.

Finally we give two examples of (G, m, τ), which have a continuous solution of $\operatorname{SRF}(z)$ with $[0,1]$ and include the Takagi function and the Gray Takagi function.

Example 5.1. Let $G=\{0\}$ and $m=\operatorname{constant}(\geq 2)$.

In this case we may use $S_{m}, \Omega, S^{* n}, I_{j}^{+}, \phi_{n}, \phi, \mathrm{z}(j), \mathrm{a}(j), \mathrm{p}(j), \delta(j)$, $s(j ; \boldsymbol{i}), \ldots$ instead of $G^{\triangleright}, \Omega_{g}, S_{g}^{* n}, I_{g, j}^{+}, \phi_{g, n}, \phi_{g}, \mathbf{z}_{g}(j), \mathrm{a}_{g}(j), \mathrm{p}_{g}(j), \delta(g, j)$, $s((g, j) ;(h, \boldsymbol{i})), \ldots$, because G is one point set. Then τ is identity, $\phi(x)=$ $m x(\bmod 1)$ and the notations $I_{n, j}$ and $s(j, k)$ in [11] are expressed by I_{i}^{+} and $s(k ; \boldsymbol{i})$ as follows:

$$
I_{n, j}=I_{\boldsymbol{i}}^{+} \text {and } \quad s(j, k)=s(k ; \boldsymbol{i}),
$$

where $j=i_{1} m^{n-1}+\ldots+i_{n-1} m+i_{n}, \boldsymbol{i}=i_{1} \ldots i_{n}$ in $S^{* n}$ and $k=1, \ldots, m-1$. According to (36), (39), (40) and (41), the $\operatorname{SRF}(z)$ with $[0,1]$ is

$$
\left\{\begin{array}{l}
L_{\mathbf{z}}(1)=1, \tag{45}\\
L_{\mathbf{z}}(x)=\sum_{0 \leq k<j} \mathrm{z}(k)+\mathbf{z}(j) L_{\mathbf{z}} \circ \phi(x) \quad\left(x \in I_{1, j}, 0 \leq j<m\right)
\end{array}\right.
$$

and its solution L satisfies that

$$
\begin{align*}
& (\mathrm{a} \cdot \partial)^{q} L_{\mathbf{z}}(x) \\
& =q!\sum_{0 \leq n<\infty} \sum_{0 \leq j<m^{n} \mathrm{z}} \mathrm{z}(0)^{n-\sum_{1 \leq k<m} s(j, k)} \prod_{1 \leq k<m} \mathrm{z}(k)^{s(j, k)} \\
& \quad \times A_{\mathbf{z}, q}(\mathrm{a}) \circ \phi^{n}(x) 1_{I_{n, j}}(x) \quad(q \in \mathbb{N}) \tag{46}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{\mathrm{p}!} L_{\mathrm{z}}^{(\mathrm{p})}(x) \\
& \begin{aligned}
&=\sum_{0 \leq n<\infty} \sum_{0 \leq j<m^{n}} \mathrm{z}(0)^{n-\sum_{1 \leq k<m} s(j, k)} \prod_{1 \leq k<m^{2}} \mathrm{z}(k)^{s(j, k)} \\
& \times B_{\mathrm{z}, \mathrm{p}} \circ \phi^{n}(x) 1_{I_{n, j}}(x) \quad\left(\mathrm{p} \in \operatorname{Map}\left(S_{m}, \mathbb{N}\right)\right)
\end{aligned}
\end{align*}
$$

for $x \in[0,1]$, where

$$
A_{\mathbf{z}, q}(\mathrm{a})(x)= \begin{cases}\sum_{0 \leq i<m} \sum_{0 \leq k<i} \mathrm{z}(k) 1_{I_{1, i}}(x) & (q=0), \\ \sum_{0 \leq i<m}\left(\sum_{0 \leq k<i} \mathrm{a}(k)+\mathrm{a}(i) L_{\mathbf{z}} \circ \phi(x)\right) 1_{I_{1, i}}(x) & (q=1), \\ \sum_{0 \leq i<m} \mathrm{a}(i) \frac{(\mathrm{a} \cdot \partial)^{q-1}}{(q-1)!} L_{\mathbf{z}} \circ \phi(x) 1_{I_{1, i}}(x) & (q \geq 2)\end{cases}
$$

and
$B_{\mathbf{z}, \mathbf{p}}(x)=\left\{\begin{array}{lr}\sum_{0 \leq i<m} \sum_{0 \leq k<i} \mathbf{z}(k) 1_{I_{1, i}}(x) & (|\mathrm{p}|=0), \\ \sum_{0 \leq i<m-1} \mathrm{p}(i)\left\{L_{\mathbf{z}} \circ \phi(x) 1_{I_{1, i}}(x)+\sum_{i<k<m-1} 1_{I_{1, k}}(x)\right. & \\ \left.\quad+\left(1-L_{\mathbf{z}} \circ \phi(x)\right) 1_{I_{1, m-1}}(x)\right\} & (|\mathfrak{p}|=1), \\ \sum_{0 \leq i<m-1} \mathrm{p}(i) \frac{\partial^{\mathbf{p}-\delta(i)}}{(\mathrm{p}-\delta(i))!}\left\{L_{\mathbf{z}} \circ \phi(x) 1_{I_{1, i}}(x)\right. & \\ \left.-L_{\mathbf{z}} \circ \phi(x) 1_{I_{1, m-1}}(x)\right\} & (|\mathbf{p}| \geq 2) .\end{array}\right.$
Moreover according to (12) we get

$$
\begin{equation*}
L_{\mathbf{z}}\left(\frac{K}{m^{N}}\right)=\sum_{0 \leq j<K} \mathbf{z}(0)^{N-\sum_{1 \leq k<m} s(j, k)} \prod_{1 \leq k<m} \mathbf{z}(k)^{s(j, k)} \tag{48}
\end{equation*}
$$

for integers K and N such that $0 \leq K<m^{N}$, which implies Theorem 2.1 in [11], which is a key lemma to connect Takagi function and the digital sum problem.

Especially in the case of $m=2, \mathrm{z}(0)=r, \mathrm{z}(1)=1-r$ and $\mathrm{a}(0)=1$, a(1) $=-1$ (45) coincides with (1) and (46) implies (2), that is, denoting L_{r} by L_{z} we get $T_{r, k}=\frac{1}{k!} \frac{\partial^{k} L_{r}}{\partial r^{k}}$.

Example 5.2. Let $\sharp G=d, G=\{0,1, \ldots, d-1\}, m=\operatorname{constant}(\geq \max \{d, 2\})$ and $\tau(g, j)=j(\bmod d)$ for $0 \leq g<d$ and $0 \leq j<m$.

In this case we may use $S^{* n}, \phi_{n}, \phi$ and I_{j}^{+}instead of $S_{g}^{* n}, \phi_{g, n}, \phi_{g}$ and $I_{g, j}^{+}$, because these notations do not depend on g. Moreover $\phi(x)$ and $I_{n, j}$ are the same ones in Example 5.1. We can give such expression as (45) - (48) in Example 5.1, but we consider more special case: $m=d=2$, $\mathrm{z}_{g}(j)=r$ if $g \oplus j=0, \mathrm{z}_{g}(j)=1-r$ if $g \oplus j=1$ and $\mathrm{a}_{g}(j)=(-1)^{g+j}$, where \oplus is the addition modulo 2 . Then, by setting $\tilde{L}_{\mathrm{r}, g}(x)=L_{\mathrm{z}, g}(x)$ and $\tilde{\phi}(x)=$ $\phi(x) 1_{I_{1,0}}(x)+(1-\phi(x)) 1_{I_{1,1}}(x)$ for x in $[0,1]$ and $g \in G$, we get the followings:

$$
\left\{\begin{array}{l}
\tilde{L}_{r, g}(1)=1 \\
\tilde{L}_{\mathrm{r}, g}(x)=\mathbf{z}_{g}(0) \tilde{L}_{\mathrm{r}, 0} \circ \phi(x) 1_{I_{1,0}}(x)+\left\{\mathbf{z}_{g}(0)+\mathbf{z}_{g}(1) \tilde{L}_{\mathrm{r}, 1} \circ \phi(x)\right\} 1_{I_{1,1}}(x),
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{\partial^{q}}{\partial r^{q}} \tilde{L}_{r, g}(x)=q!\sum_{0 \leq n<\infty} \sum_{0 \leq j<2^{n}} r^{n-\tilde{s}(g, j, n)}(1-r)^{\tilde{s}(g, j, n)} \\
& \times \tilde{A}_{r, j(\bmod 2), q} \circ \phi_{n}(x) 1_{I_{n, j}}(x) \quad(q \in \mathbb{N}), \\
& \tilde{L}_{r, g}\left(\frac{K}{2^{N}}\right)=\sum_{0 \leq j<K} r^{N-\tilde{s}(g, j, N)}(1-r)^{\tilde{s}(g, j, N)} \quad\left(K, N \in \mathbb{N}, 0 \leq K<2^{N}\right),
\end{aligned}
$$

where $x \in[0,1]$,

$$
\tilde{A}_{r, g, q}(x)= \begin{cases}\left\{\frac{1}{2}+(-1)^{g} \frac{2 r-1}{2}\right\} 1_{I_{1,1}}(x) & (q=0) \\ \frac{(-1)^{g}}{(q-1)!} \frac{\partial^{q-1}}{\partial r^{q-1}} \tilde{L}_{r, 0} \circ \tilde{\phi}(x) & (q \geq 1)\end{cases}
$$

and $\tilde{s}(g, j, n)=s((0,1) ;(g, \boldsymbol{i}))+s((1,0) ;(g, \boldsymbol{i}))$ with $\boldsymbol{i}=i_{1} \ldots i_{n}$ for $j=$ $i_{1} 2^{n-1}+\ldots+i_{n-1} 2+i_{n}$ with $i_{k} \in\{0,1\}(k=1, \ldots, n)$, because of $\tilde{L}_{\mathrm{r}, g}(x)=$ $1-\tilde{L}_{r, 1 \oplus g}(1-x)$ and $\frac{\partial}{\partial r}=\frac{\partial}{\partial z_{0}(0)}-\frac{\partial}{\partial z_{1}(0)}$. Moreover $\tilde{L}_{r, 0}$ and $\frac{1}{k!} \frac{\partial^{k} \tilde{L}_{r, 0}}{\partial r^{k}}$ equal to \tilde{L}_{r} and $\tilde{T}_{\mathrm{r}, k}$ in [3] respectively, by noticing $\tilde{s}(g, j, n)=g \oplus i_{1}+\sum_{k=2}^{n} i_{k-1} \oplus i_{k}$.

6. Glossary of symbols

$(G, m, \tau) G^{\triangleright} S_{k}$	Definition 2.1		
$S_{g}^{* k} \quad \tilde{\tau}(\boldsymbol{g}) \quad G^{\triangleright^{k}}$	Definition 2.2		
$\Omega \varphi(\omega) \quad \sigma_{g}$	Definition 2.3		
$\Omega_{g} \quad I_{g}$	Definition 2.4		
$\boldsymbol{\pi}_{g, n} \quad \pi_{g, n}$	Definition 2.5		
$\mathfrak{t} \mathfrak{t}^{+} \mathfrak{t}^{-} \quad \mathfrak{s}(n, \omega) \quad \overline{0}_{g} \quad \bar{m}_{g}^{-} \quad \omega-\quad \omega+$	Definition 2.6		
$\mathbf{z}_{g} \operatorname{SRF}(\mathbf{z})$	Definition 2.7		
$\tilde{\mathbf{z}}(\boldsymbol{g})$	Definition 2.8		
$\mathbf{D}_{n} \quad \mathbf{U}_{n}$	Definition 3.1		
$s((g, j) ;(h, i))$	Definition 3.2		
$\rho(\mathbf{z}) \quad \eta(\mathbf{z}) \quad\\|\mathcal{F}\\|$	Definition 3.3		
$\partial_{g}(j) \quad \partial^{\mathrm{p}} \quad \mathrm{a} \cdot \partial \quad \mathrm{L}_{\mathbf{z}, g}^{(\mathrm{p})} \mathrm{p}!\|\mathrm{p}\|$	Section 4		
Ψ_{g}	Definition 5.1		
Ψ_{g}^{-1+}	Definition 5.2		
$I_{g, j}^{+} \quad \phi_{g, n} \quad \phi_{g}$	Definition 5.3		

References

[1] M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math., 1(1984), 183-199.
[2] Y. Kamiya, T. Okada, T. Sekiguchi and Y. Shiota, Power and exponential sums for generalized code systems by a measure theoretic approach, Theoret. Comput. Sci. 592 (2015) 23-38.
[3] Z. Kobayashi, Digital Sum Problems for the Gray Code Representation of Natural Numbers, Interdisciplinary Information Sciences, 8(2002), 167-175.
[4] Z. Kobayashi, T. Kuzumaki, T. Okada, T. Sekiguchi and Y. Shiota, A probability measure which has Markov property, Acta Mathematica Hungarica, 121(2008), 1-2.
[5] Z. Kobayashi, K. Muramoto, T. Okada, T. Sekiguchi and Y. Shiota, An explicit formula of the Newman-Coquet exponential sum, Interdisciplinary Information Sciences, 13(2007), 1-6.
[6] Z. Kobayashi, T. Okada, T. Sekiguchi and Y. Shiota, On exponential sums of digital sums related to Gelfond's theorem, Diophantine Analysis and Related Fields DARF 2007/2008 (Kyoto 2008),AIP Conference Proceedings, 976(2008), 176-189.
[7] N. Kôno, On self-affine functions, Japan J. Appl. Math., 3(1986), 259-269.
[8] N. Kôno, On self-affine functions II, Japan J. Appl. Math., 8(1988), 441-445.
[9] K. Muramoto, T. Okada, T. Sekiguchi and Y. Shiota, Digital sum problems for the p-adic expansion of natural numbers, Interdisciplinary Information Sciences, 6(2000), 105-109.
[10] K. Muramoto, T. Okada, T. Sekiguchi and Y. Shiota, An explicit formula of subblock occurrences for the p-adic expansion, Interdisciplinary Information Sciences, 8 (2002), 115-121.
[11] K. Muramoto, T. Okada, T. Sekiguchi and Y. Shiota, Power and exponential sums of digital sums with information per digits, Math. Rep. Toyama Univ., 26(2003), 35-44.
[12] T. Okada, T. Sekiguchi and Y. Shiota, Applications of binomial measures to power sums of digital sums, J. Number Theory, 52(1995), pp. 256-266.
[13] T. Okada, T. Sekiguchi and Y. Shiota, An explicit formula of the exponential sums of digital sums, Japan J. Indust. Appl. Math., 12(1995), pp. 425-438.
[14] T. Okada, T. Sekiguchi and Y. Shiota, A generalization of HataYamaguti's results on the Takagi function II: Multinomial case, Japan J. Indust. Appl. Math., 13(1996), pp. 435-463.
[15] T. Okada, T. Sekiguchi and Y. Shiota, Multifractal spectrum of Multinomial measures, Proc. Japan Acad., 7(1997), Ser.A, 123-150.
[16] T. Sekiguchi and Y. Shiota, Hausdorff dimension of graph of some Rademacher series, Japan J. Math., 7(1990), 121-129.
[17] T. Sekiguchi and Y. Shiota, A generalization of Hata-Yamaguti's results on the Takagi function, Japan J. Indust. Appl. Math., 8(1991), 203-219.
[18] G. de Rham, Sur quelques courbes definites par des equations fonctionnelles, Rend. Sem. Mat. Torino,16 (1957), 101-113.

Katsushi Muramoto
Kawaijuku Educational Institution
2-49-7 Minamiikebukuro Toshima-ku, 171-0022, Japan
Takeshi Sekiguchi
Information Science
Tohoku Gakuin University
Sendai 981-3105, Japan

[^0]: Key words and phrases. fractal, Takagi function, network, graph, de Rham's functional equation.

