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Summary

� Understanding constraints to phenotypic plasticity is key given its role on the response of

organisms to environmental change. It has been suggested that phenotypic integration, the

structure of trait covariation, could limit trait plasticity. However, the relationship between

plasticity and integration is far from resolved.
� Using a database of functional plasticity to drought of a Mediterranean shrub that included

20 ecophysiological traits, we assessed environmentally-induced changes in phenotypic inte-

gration and whether integration constrained the expression of plasticity, accounting for the

within-environment phenotypic variation of traits. Furthermore, we provide the first test of

the association between differential trait plasticity and trait integration across an optimum

and a stressful environment.
� Phenotypic plasticity was positively associated with phenotypic integration in both environ-

ments, but this relationship was lost when phenotypic variation was considered. The similarity

in the plastic response of two traits predicted their integration across environments, with inte-

grated traits having more similar plasticity. Such variation in the plasticity of traits partly

explained the lower phenotypic integration found in the stressful environment.
� We found no evidence that integration may constitute an internal constraint to plasticity.

Rather, we present the first empirical demonstration that differences in plastic responses may

involve a major reorganization of the relationships among traits, and challenge the notion that

stress generally induces a tighter phenotype.

Introduction

Phenotypic plasticity, the ability of a genotype to express different
phenotypes across environments, is a key mechanism to accom-
modate environmental heterogeneity. Due to its well-documented
role on phenotypic evolution and the adaptation of organisms to
rapid environmental change (Nicotra et al., 2010; Matesanz &
Valladares, 2014; Meril€a &Hendry, 2014; Valladares et al., 2014;
Matesanz & Ram�ırez-Valiente, 2019), a strong research effort has
been devoted to identifying potential constraints to the expression
of plasticity and its evolution (Van Kleunen & Fischer, 2005; Val-
ladares et al., 2007; Auld et al., 2010; Matesanz et al., 2010; Mur-
ren et al., 2015). A particularly elusive issue in this context is
whether phenotypic integration – the pattern of functional, devel-
opmental and/or genetic correlation among different traits in a
given organism (Pigliucci, 2003) – also constitutes an internal
constraint to plasticity.

Phenotypic integration and plasticity may be related in two
major ways. First, several authors have suggested that the

expression of plasticity for a given trait may be limited by its overall
integration, e.g. by the number of significant correlation with other
traits, following the assumption that linkage with other traits limits a
trait’s range of variation (Schlichting, 1989a; Gianoli, 2001; Val-
ladares et al., 2007; Matesanz et al., 2010). Under this hypothesis,
more integrated traits would be expected to be less plastic (Fig. 1).
Over a decade ago, Gianoli & Palacio-L�opez (2009) showed, for the
first time, a negative relationship between the number of significant
phenotypic correlations (see Glossary in Supporting Information
Table S1) of each trait and two measures of trait plasticity in response
to water and light variations in two perennial plants. The authors
concluded that, in certain circumstances, plasticity and integration
could be alternative mechanisms to cope with stress. However,
although often assumed to be a general pattern (see e.g. Zimmer-
mann et al., 2016; V�azquez et al., 2017), few studies have experimen-
tally tested the occurrence of a functional trade-off between trait
plasticity and trait integration.

Second, differential plasticity (Table S1) between traits could
affect the degree of across-environment integration of the
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phenotype. In a seminal paper on the evolution of plasticity in
plants, Schlichting (1986) proposed that when two traits respond
differently to environmental change, i.e. they show differential
plasticity, their phenotypic correlation is also likely to change
across environments (Fig. 1). In this scenario, traits that are corre-
lated in multiple environments are likely to have similar, corre-
lated plasticity (Table S1). Conversely, the differential plasticity
of traits may alter the genetic and/or environmental covariances
between them, resulting in a change in their correlation (Schlicht-
ing, 1986; Parsons et al., 2020). If differential plasticity of traits
is indeed associated to a modification of the correlation structure
in different environments, such changes on the relationship
between traits could in turn alter the outcome of selection for
those traits (Schlichting, 1986; Agrawal & Stinchcombe, 2009;
Manenti et al., 2016). Although the idea that patterns of trait cor-
relations can be altered as a result of differential trait plasticity
has been often suggested (Parsons et al., 2020, and references

cited therein), experimental support to this hypothesis is to date
lacking.

A better understanding of the relationship between phenotypic
plasticity and integration could shed light on patterns of environ-
mental variation of phenotypic integration, i.e. on the plasticity
of phenotypic integration (Table S1). It is clearly established that
the environment may not only affect the expression of individual
traits, but also the magnitude and nature of trait covariation
(Wood & Brodie, 2015). However, the direction, and impor-
tantly, the ecological and evolutionary implications of such plas-
ticity of integration (Fig. 1) is not yet understood. Several
authors have suggested that stress should lead to higher pheno-
typic integration, if a tighter and more coordinated phenotype is
favoured when resources are limiting (Schlichting, 1986; Gianoli,
2004; Gianoli & Palacio-L�opez, 2009). However, the adaptive
value of increased integration in stress is yet to be determined
(Pigliucci, 2003; Meril€a & Bj€orklund, 2004; but see Benavides

Fig. 1 The interplay between phenotypic plasticity and integration. Varying environmental conditions can influence trait expression through phenotypic
plasticity. Environmental change may also alter the patterns of trait covariation, i.e. phenotypic integration, in different environments, either decreasing or
increasing integration under stress (plasticity of phenotypic integration). The green box shows trait correlation matrices in two different environments,
where coloured cells indicate significant correlations (of different sign) between traits. Such integration among traits, assessed here as the overall number
of significant correlations of one trait to all others in a given environment, may limit trait plasticity if linkage with other traits constrains each trait’s range of
variation, resulting in lower plasticity of highly integrated (i.e. correlated) traits (central plot). Differences in the level of plasticity of correlated traits (blue
box) may influence phenotypic integration if similar plasticity between traits contributes to maintain their integration across environments. Under this
hypothesis, traits that are correlated in one environment and that express similar plasticity (Tr. 1 and Tr. 4) are more likely to also be correlated in a
different environment (solid outline in correlation matrices) compared to traits that express different levels of plasticity (Tr. 3 and Tr. 4, dashed outline).
This hypothesis has yet to be experimentally validated.
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et al., 2021). Indeed, studies showing the adaptive value of phe-
notypic integration, regardless of stress level, are very scarce
(Dami�an et al., 2020). Conversely, lower integration in stressful
environments could arise if an adaptive response to such stress
involves differential plasticity of individual traits. However, to
our knowledge, whether integration increases or decreases with
stress has not yet been assessed in the light of the variation in
plasticity between traits.

Here, we delved into the relationship between phenotypic plas-
ticity and phenotypic integration in plants (Fig. 1), and its evolu-
tionary consequences. We used a database of functional plasticity
of a Mediterranean shrub that gathers data from 20 morphologi-
cal, phenological, allocation and reproductive traits in individuals
experimentally grown in a favourable and a stressful environ-
ment. Initially, we compared the phenotypic correlation matrices
between environments to evaluate the flexibility of phenotypic
integration. Then, we explored whether the expression of pheno-
typic plasticity of each trait is constrained by its overall level of
integration with other traits. Finally, we measured the difference
in plasticity for pairs of correlated traits and assessed its effect on
their phenotypic integration across environments. Because the
range of values that individual traits exhibit within environments
(i.e. within-environment phenotypic variation, Table S1) may
affect both their integration and degree of plastic response, we
also considered the role of trait variation in the relationship
between plasticity and integration. We asked the following ques-
tions: (i) are plasticity and integration negatively related at the
trait level? (ii) is differential plasticity of correlated traits associ-
ated to their integration across environments? (iii) do environ-
mental conditions alter patterns of variation of phenotypic
integration, i.e. is there plasticity of integration, and if so, does
phenotypic integration increase in a stressful environment? and
(iv) does within-environment trait variation modulate the rela-
tionship between plasticity and integration? We discussed the
consequences of our findings for the expression and evolution of
phenotypic plasticity.

Materials and Methods

Functional plasticity database

As part of a multitaxon project examining plastic responses to
abiotic stress and quantitative genetic variation in Mediterranean
gypsum endemics, we investigated responses to drought in a wide
selection of functional traits in populations of the perennial shrub
Lepidium subulatum (details of the complete experiment may be
found in Matesanz et al., 2020). Here, we use this database to
explore the relationship between phenotypic plasticity and phe-
notypic integration.

Lepidium subulatum L. (Brassicaceae) is a small Mediterranean
shrub specialized on gypsum soils occurring in eastern Spain and
North Africa, where it experiences substantial climatic variation.
For this experiment, seeds from 14 to 16 maternal plants per
population were collected from four populations distributed
along a precipitation and temperature gradient in the centre of its
distribution range (Matesanz et al., 2020). The experiment was

performed in the outdoors CULTIVE facilities at Universidad
Rey Juan Carlos (URJC, Madrid, Spain). Seeds from each mater-
nal family were sown in 6 L pots filled with gypsum soil. After
two years of growth, in the spring of 2017, three half-siblings per
family were assigned to each of two experimental treatments of
contrasting water availability (n = 360 plants). The experimental
treatments were implemented in purpose-built rain exclusion
structures that eliminated all natural precipitation. We simulated
two contrasting and realistic watering treatments that reflect the
soil moisture variation occurring in natural conditions: well-
watered (hereafter favourable environment) and drought (here-
after stressful environment). In the favourable environment,
plants were kept at field capacity (�25% soil water content
(SWC) for our soil). In the stressful environment, plants were
kept at 50% of field capacity (�14% SWC). The watering treat-
ments were implemented by modifying the number and duration
of watering events. In each of them, drip irrigation was applied
on a pot-level basis by pressure-compensating emitters. The
watering treatments lasted three months, and ended when plants
in the favourable environment began to senesce.

Data collection

We measured 20 functional traits. Plant height was measured at
the onset and end of the watering treatments in all plants
(n = 360). From these, we calculated relative growth rate (RGR)
= (logeS2 – logeS1)/T2-1, where S1 and S2 are plant height at time
1 and time 2, respectively, and T2-1 is the time elapsed between
the two measurements. After three months since the onset of the
watering treatments, midday photochemical efficiency was mea-
sured in all plants with a portable pulse-modulated fluorometer
(FMS2, Hansatech, King’s Lynn, UK). Measurements were taken
from 13:00 to 15:00 in one leaf previously adapted to dark for
300 with leaf clips during three consecutive sunny days. Minimal
fluorescence (Fo) and maximal fluorescence (Fm) were used to cal-
culate photochemical efficiency as Fv/Fm = (Fm � Fo)/Fm, where
Fv is the difference between Fm and Fo.

After three months in treatment, eight nonsenescent leaves per
plant were randomly selected and scanned. Then, leaf length and
leaf area were calculated in Adobe PHOTOSHOP (Adobe Systems
Inc., San Jose, CA, USA). Leaves were oven-dried for 48 h at
60°C and weighed. Specific leaf area (SLA) was estimated as the
ratio of the one-side area of a fresh leaf divided by its oven-dry
mass. Aboveground tissues of each plant were harvested and
oven-dried, separated and weighed (leaf and stem biomass).
Leaves were separated from the stems, oven-dried and weighed in
a Kern ABJ 120-4M analytical balance (Kern & Sohn GmbH,
Albstadt, Germany). Aboveground biomass was calculated as the
sum of leaf and stem biomass. Total plant estimated leaf area
(TELA) was calculated as SLA 9 leaf biomass, and leaf : stem
ratio was calculated as leaf biomass divided by stem biomass.
Finally, for one randomly-selected plant per family and treatment
(n = 120), roots were thoroughly washed, oven-dried and
weighed. For this subset of plants, we calculated root : leaf ratio
as root biomass/leaf biomass, and total biomass as the sum of leaf,
stem and root biomass.
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Reproductive phenology was monitored in all plants with 2–3
censuses per week throughout the experiment. We considered
three different phenological events: onset of flower bud formation
(flower buds visible to the naked eye), onset of flowering (appear-
ance of open flowers), and onset of fruiting (green fruits visible to
the naked eye). Before harvesting, the percentage of senescent
leaves was visually estimated simultaneously by two observers in
all plants. At the end of the experiment, we counted the number
of inflorescences of all plants that had reproduced during the
experiment (n = 287 reproductive plants). We randomly selected
two inflorescences per plant and measured its size and the number
of flowers. We then collected and weighed all reproductive
biomass of each plant, and thoroughly cleaned the inflorescences
to separate mature seeds. For these plants (n = 155), we individu-
ally weighed 3–5 seeds per plant in a microbalance.

Metrics of within-environment phenotypic variation,
phenotypic integration and phenotypic plasticity

We first computed the matrices of pairwise trait correlations in
each environment (Cij,f and Cij,s in the favourable and stressful
environments, respectively). Pairwise Pearson correlation coeffi-
cients were computed using function cor (package CORRPLOT; Wei
& Simko, 2017). Trait values were scaled and transformed
(squared root and log) as needed to improve normality. To evalu-
ate the significance of the correlations, we implemented permuta-
tion tests using function perm.cor.test (package JMUOUTLIER;
Garren, 2019). Trait values were shuffled 20 000 times, and pair-
wise correlations were calculated from each randomization. This
generated a permutation distribution of correlation coefficients
from which P-values were calculated. Correlation matrices were
calculated: (1) on a plant-level basis (phenotypic correlations) and
(2) using family means. Both metrics resulted in very similar
matrices, and indeed, previous studies showed that phenotypic
correlations are reasonable estimates of their genetic counterparts
(Cheverud, 1988; Waitt & Levin, 1998). Therefore, we used phe-
notypic correlations that allowed the inclusion of all measured
traits. A second set of phenotypic correlation matrices was com-
puted where significance values were corrected for multiple com-
parisons using false discovery rate (Benjamini & Hochberg,
1995).

The overall phenotypic integration for each trait (PIi) was
computed as the number of significant correlations with all other
traits (see e.g. Pigliucci & Marlow, 2001; Murren et al., 2002;
Gianoli, 2004; Gianoli & Palacio-L�opez, 2009 for other studies
using this metric of phenotypic integration). We computed PIi
both for the favourable (PIi,f) as well as for the stressful environ-
ments (PIi,s). It has been proposed that the statistical significance
(P-values) of a correlation may be biased by sample size, and sig-
nificant correlations can be found if the amount of data is suffi-
ciently large, even if the association between two traits is low
(Garc�ıa-Verdugo et al., 2009, and references cited therein). To
avoid this bias, we also computed PIi,f and PIi,s as the average
Pearson correlation coefficients of one trait to all others, which
avoids sample size bias, and as the geometric mean of the squared
coefficients of correlation, as suggested by Pigliucci et al. (1991).

Importantly, all metrics of phenotypic integation in each envi-
ronment were highly correlated (P < 0.001), indicating that our
chosen measure of trait-level integration is unbiased. Phenotypic
plasticity (PPi) was estimated as the percentage of change in trait
expression in the stressful environment compared to the
favourable environment. For this, we calculated the phenotypic
plasticity index (Valladares et al., 2006) as 100 9 (absolute mean
differences between environments/mean in favourable environ-
ment), which is appropriate when the goal is to compare plastic-
ity among traits (Valladares et al., 2006). Note that the
calculations of the index of plasticity using trait means in the
stressful environment as the denominator did not alter the results
(data not shown). Finally, within-environment phenotypic varia-
tion for each trait and environment (PVi,f and PVi,s) was calcu-
lated as the coefficient of variation of each trait, as 100 9

(standard deviation/trait mean).

Relationship between phenotypic plasticity and phenotypic
integration

We explored the relationship between phenotypic plasticity and
phenotypic integration in the two main ways depicted in the
Introduction. Initially, we evaluated whether the plastic response
of each trait (PPi) was related to its overall phenotypic integration
(PIi). For this, we used standardized major axis regression using
function sma from package SMATR (Warton et al., 2006; Warton
et al., 2012). This tool finds the line of best fit between two vari-
ables, i.e. the purpose is to characterize the relationship between
two variables rather than predicting one from the other. The first
study assessing this relationship (Gianoli & Palacio-L�opez, 2009)
used the phenotypic integration data from the stressful environ-
ment, arguing that it is in such environments where the target
functional phenotype, the phenotypic expression that allows to
maintain function in that environment, is attained. To avoid this
arbitrariness, we fitted a standardized major axis separately for
each environment, using the plasticity indices calculated for each
trait (PPi) and the phenotypic integration values computed for
each environment (PIi,f and PIi,s). Then, to check whether the
relationship between plasticity and integration differed between
environments, we tested for common slopes and elevations of the
environment-specific fitted lines (Warton et al., 2012). We com-
puted 95% BCa (bias-corrected and accelerated) bootstrap inter-
vals (Davison & Hinkley, 1997) based on 2000 replications,
using functions boot and boot.ci from package BOOT (Canty &
Ripley, 2021).

Furthermore, we assessed whether the relationship between
phenotypic plasticity (PPi) and integration (PIi) was indirectly
mediated by the within-environment phenotypic variation (PVi)
of traits. Specifically, we used commonality analysis to calculate
the unique and shared effect of phenotypic integration and phe-
notypic variation on plasticity indices and their significance. This
analysis decomposes the variance of R2 into unique and common
(shared) effects of predictors, improving the partition of the vari-
ance of the study variable when predictors are correlated (Ray-
Mukherjee et al., 2014). We performed a commonality analysis
in each environment, using function regr from package YHAT
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(Nimon et al., 2013). PPi and PVi values were log-transformed
before analyses.

Next, we tested whether differences (or similarities) in plasticity
between two traits are related to their integration, i.e. correlation,
across environments, with the hypothesis that correlated traits in
the two environments also show correlated plasticity. To do so, we
initially computed the matrix of differences in phenotypic plastic-
ity among traits (DPPij, plasticity difference matrix). This differ-
ence was estimated by the fitted coefficient of the trait-by-
environment interaction (Trait9 Environment) in a linear model
fitted with function lm testing the effect of the environment on
trait values. A significant Trait 9 Environment interaction indi-
cates that two given traits show differential plasticity, with nonpar-
allel norms of reaction (Fig. 1). The larger the estimate, the larger
the difference in plasticity among the two traits. Because we were
interested in the absolute value of the differences in plasticity
rather than the direction of the plastic response (i.e. whether both
traits show high or low plasticity rather than whether they increase
or decrease their values), trait values were transformed by chang-
ing their sign as needed to maintain the same direction of the
response. We used the estimate of the coefficient for the interac-
tion term as a measure of the differences in plasticity, since it pro-
vides a continuous measure of the strength of the interaction, i.e. a
quantitative measure of plasticity differences between any two
traits. We repeated our analyses with matrices built using different
metrics of the size effect of the interaction, namely the P-value of
the interaction term, the F statistic and the sum of squares, obtain-
ing very similar results. Traits were scaled and transformed as
needed to meet normality assumptions.

Then, we calculated the change in phenotypic integration for
each pair of traits by comparing their correlation in the two envi-
ronments. Specifically, we computed the matrix of similarities of
pairwise trait integration between environments (DCij, integra-
tion similarity matrix) by comparing the matrices of trait correla-
tions in the favourable and stressful environments (Cij,f, Cij,s).
Then, the cells of DCij were set to 1 if the traits i and j were sig-
nificantly correlated in both environments; to 0 if the traits were
significantly correlated only in one environment and to �1 if the
traits were not correlated in either environment.

Finally, the plasticity difference matrix (DPPij) and the integra-
tion similarity matrix (DCij) were transformed into vectors, and a
generalized linear model was fitted (function glm, family = bino-
mial) to test the association between differences in trait plasticity
on the maintenance of trait correlation. Because we were only
interested in correlated traits, we did not consider trait pairs that
were not correlated in either environment (cells coded as �1 in
DCij). A significant and negative effect of the differences in plas-
ticity would indicate that the more different the plasticity of two
traits, the more likely it is that they will change their correlation
across environments. Again, we computed 95% BCa bootstrap
intervals based on 2000 replications.

Plasticity of phenotypic integration

To assess the effect of the environment on phenotypic integra-
tion, i.e. the plasticity of phenotypic integration, we compared

the correlation matrices of each environment (Cij,f and Cij,s) using
four different approaches. Initially, we calculated the edge density
in each environment, assessed as the ratio between the number of
significant correlations (edges) and all possible pairwise trait com-
binations. Next, we tested differences between the matrices using
function cortest.normal (package PSYCH; Revelle & Revelle, 2015),
which computes a chi-square statistic based on the difference
between matrices under the hypothesis that they are equal.
Because matrices may not be equal but still have similarities (Roff
et al., 2012), we then used common principal components
(CPCs) based on Flury’s hierarchy of hypotheses testing (Phillips
& Arnold, 1999), which allows a much more complex compar-
ison of the correlation structure in different environments (Pigli-
ucci, 2003; Roff et al., 2012). Specifically, this method can test
the following hypotheses of decreasing matrix relatedness: (1)
matrices are identical, sharing both principal components (eigen-
vectors) and eigenvalues, (2) matrices are proportional, when the
matrices share their components but the eigenvalues differ by a
constant, (3) matrices share all eigenvectors but not eigenvalues
(CPCs), (4) matrices share some eigenvectors (partial CPC) and
(5) matrices are unrelated, sharing no principal component in
common. We used both the jump-up and the model-building
approaches to matrix comparisons (Phillips & Arnold, 1999). In
the jump-up approach, different levels of the Flury’s hierarchy
are compared to ‘unrelated’ structure. In the model building
approach, the Akaike information criterion (AIC) is used to
determine which level of shared structure in the hierarchy best fits
the data. CPC analyses were performed using package CPC

(Pepler, 2019). Finally, the magnitude and statistical significance
of phenotypic integration in each environment was further
assessed using the phenotypic integration index INT (Wagner,
1984; Cheverud et al., 1989) which calculates the variance of the
eigenvalues (ki, INT = Var [ki], i = 1, 20) of the matrices of pair-
wise trait correlations in each environment (INTf and INTs).
High variance among eigenvalues indicates high phenotypic inte-
gration (Dami�an et al., 2020). Confidence intervals of INTf and
INTs at 95% and 99% were obtained by bootstrapping (20 000
replications) the matrices of trait correlations and calculating the
variance of the eigenvalues for each bootstrap (see Herrera et al.,
2002). We considered nonoverlapping confidence intervals
between environments as evidence of significant plasticity of phe-
notypic integration.

Results

Relationship between phenotypic plasticity and phenotypic
integration

We found a positive relationship between phenotypic plasticity
and phenotypic integration in both environments (Fig. 2). The
traits that showed higher plasticity, assessed by the phenotypic
plasticity index, had more significant phenotypic correlations
with other traits in both environments. Although this relation-
ship was stronger in the favourable environment (R2 = 0.35,
P = 0.009) than in the stressful environment (R2 = 0.212,
P = 0.041), neither the slope of both major axes (Likelihood ratio

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

New Phytologist (2021)
www.newphytologist.com

New
Phytologist Research 5



statistic: 0.0822, df = 1, P < 0.774) nor their elevation (Wald
statistic: 1.717, df = 1, P < 0.190) were significantly different
between environments. This relationship was still significant in
the favourable environment when integration data were corrected
for multiple comparisons (Table S2).

Variance partition analysis (commonality analysis) showed that
phenotypic integration and within-environment phenotypic vari-
ation jointly explained more than 60% of the variance in pheno-
typic plasticity in the favourable environment (Fig. 3). However,
the unique, i.e. not shared, variance in plasticity explained by
phenotypic integration was only 4.8%, while the unique contri-
bution of phenotypic variation was much higher (32.1%).
Accordingly, the model including both the effect of phenotypic
variation and integration on plasticity showed a significant effect
of phenotypic variation (F = 15.77, P = 0.001; Supporting Infor-
mation Fig. S1) on plasticity but not of integration (F = 3.21,
P = 0.091). A similar pattern was found in the stressful environ-
ment (Fig. 3). The fraction of variance in plasticity uniquely
explained by phenotypic integration was low (4%) and not signif-
icant (F = 2.22, P = 0.15) compared to the unique higher effect
of phenotypic variation on plasticity (23.2% explained variance,
F = 7.98, P = 0.011; Fig. S1). Phenotypic integration was not sig-
nificantly related to phenotypic variation in the stressful environ-
ment (P = 0.146), and only marginally so in the favourable
environment (P = 0.050).

The model testing the association between the differences in
trait plasticity on the maintenance of trait integration across envi-
ronments for all pairs of traits showed a significant and negative
relationship between them (v2 = 6.7176, P = 0.009; Fig. 4).
Traits with differential plasticity in response to the stressful envi-
ronment (i.e. nonparallel norms of reaction, significant Trait 9
Environment interaction) were more likely to change their inte-
gration (whether they were correlated or not) between environ-
ments compared to traits with similar plasticity, and, conversely,
traits that were correlated in both environments tended to express
similar, correlated plasticity. This relationship was also significant
when other metrics (P-value of the interaction term, the F statis-
tic and the sum of squares) of the differences in plasticity were
used (Table S2).

Plasticity of phenotypic integration

The environment significantly affected the structure of the matri-
ces of trait correlations. Initially, the test of equality of the corre-
lation matrices showed that they were significantly different (v2 =
1567.39, df = 380, P < 0.0001). Flury’s CPC analysis provided
further evidence for differences in the correlation matrices
between environments. This analysis showed that the matrices
were different at several levels of structure (equality, proportion-
ality and all principal components shared), according to the

Fig. 2 Relationship between phenotypic plasticity of a given trait and number of significant correlations with other traits, phenotypic integration, assessed
by major axis regression. For each trait, phenotypic plasticity was calculated as the percentage of change in mean trait expression in plants growing under
two treatments of water availability (well-watered, favourable environment, and drought, stressful environment). Values of log (% change) are shown.
Each point in the regression analysis corresponds to a single trait (n = 20). The coefficient of determination of the regression (R2) and P-value are shown.
The shade in each panel indicates 95% BCa (bias-corrected and accelerated) bootstrap intervals based on 2000 replications.
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jump-up approach, and that the most likely model was that they
were unrelated, according to lowest AIC in the model-building
approach (Table S3).

These results reflected both differences in the total number of
correlations in each environment and the identity of correlated
traits. Edge density, the proportion of significant correlations,
was higher in the favourable environment compared to the stress-
ful environment. Similarly, the magnitude of phenotypic integra-
tion estimated by INT was significantly higher in the favourable
environment compared to the stressful environment, as shown by
nonoverlapping confidence intervals (CIs) (INTf = 2.221, 95%
CI 1.948–2.526, 99% CI 1.871–2.645; INTs = 1.478, 95% CI
1.302–1.680, 99% CI 1.258–1.748). Of the 190 pairwise corre-
lations (209 20 traits), 103 (54.2%) were significant in the
favourable environment (P < 0.05), and 87 (45.7%) in the stress-
ful treatment (Fig. 5). Of these correlations, 31 were unique (i.e.
only present) in the favourable environment and 15 in the stress-
ful environment. Similar proportions of positive and negative
trait correlations were found in both environments (62.2–67.8%

positive correlations vs 37.8–32.2% negative correlations, respec-
tively). Correction for multiple comparisons using false discovery
rate had a low impact on the correlation matrices, affecting 7.8%
and 10.3% of the total correlations in the favourable and stressful
environment, respectively (Fig. S2).

Discussion

Phenotypic plasticity was positively associated with phenotypic
integration in both environments. Traits that were more inte-
grated, i.e. linked to more traits, expressed higher plasticity in
response to the stressful environment (Fig. 2). However, the rela-
tionship between phenotypic integration and plasticity was no
longer significant when accounting for the within-environment
phenotypic variation of each trait (Fig. 3). The latter did not
indicate, however, that plasticity and integration were completely
independent mechanisms. We empirically show for the first time
that the similarity in the plastic response of two traits is associated
to their integration across environments, with traits with more

Fig. 3 Venn diagrams showing results of the
commonality analyses to partition the
variance of phenotypic plasticity. Ovals show
the unique contribution and the intersection
the shared contribution of phenotypic
integration (number of trait correlations) and
phenotypic variation (coefficient of variation)
on the variance of phenotypic plasticity in
both a favourable environment and a
stressful environment.

Fig. 4 Model testing the relationship
between the differences in phenotypic
plasticity and the change in phenotypic
integration. Change in phenotypic
integration was coded as 1 (no change in
integration) and 0 (traits correlated in one
environment but not in the other).
Differences in plasticity between traits were
estimated as the fitted coefficient for the
Trait9 Environment interaction in a linear
model relating trait values to environmental
conditions for each pair of traits. The shade
indicates 95% BCa (bias-corrected and
accelerated) bootstrap intervals based on
2000 replications. See text for details.
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similar plasticity having a higher probability of being correlated
in both environments (Fig. 4). Altogether, our results indicate
that plasticity is not constrained by integration, but rather, differ-
ential plasticity between traits may result in lower integration in
response to stress. Furthermore, this study provides novel evi-
dence on the relationship between the phenotypic variation of
traits within environments and their degree of response to stress,
which, surprisingly, was a much better predictor of plasticity than
integration.

The complex relationship between phenotypic plasticity
and integration

A few authors have suggested that different environmental sensi-
tivity, i.e. plasticity, of traits may lead to changes in their integra-
tion across environments (Parsons et al., 2020, and references
cited therein). In particular, more than three decades ago, Sch-
lichting (1986, 1989a) proposed that when two traits respond
differently to environmental change, one being more plastic than
the other, the phenotypic correlation between them in different
environments is likely to change. However, experimental evi-
dence on the consequences of differential plasticity on patterns of
phenotypic integration between environments was to date lack-
ing. Here, we demonstrated that when two traits were correlated
in one environment and they showed similar plasticity in
response to stress, i.e. they showed correlated plasticity, they were

more likely to also be correlated in the second environment. Con-
versely, significant differences between traits in their degree of
response to environmental variation (evidenced by a trait-by-
environment interaction) were associated to a change of integra-
tion between environments, often involving a loss of correlation
between traits in the stressful environment. For instance, in the
favourable environment, individual leaf area showed a positive
association with relative growth rate (see also Padilla et al., 2009),
indicating that plants with larger leaves also grew faster. How-
ever, in response to water stress, plants reduced the area of indi-
vidual leaves to a larger extent (i.e. greater leaf area plasticity)
than the observed reduction in growth. Such difference in the
plasticity of the two traits was coupled to a lack of significant cor-
relation between them in stressful conditions. Importantly, the
link between differences in plasticity and changes in integration
was observed not only for morphological and growth traits but
also for pairs of all functional categories (Fig. S3). To our knowl-
edge, this is the first study showing a significant relationship
between the differential plasticity of traits and the integration of
the phenotype across environments (Fig. 1).

Our findings have significant evolutionary implications. Previ-
ous studies reported that integrated traits often show correlated,
i.e. integrated, plasticity (Schlichting, 1986; Schlichting & Pigli-
ucci, 1998; Plaistow & Collin, 2014; Ellers & Liefting, 2015;
Parsons et al., 2020, and references cited therein). It has been
argued that such plasticity integration (Schlichting & Pigliucci,

Fig. 5 Correlation matrix showing Pearson’s pairwise correlation coefficients for traits measured in a favourable environment (left) and a stressful
environment (right). Only significant (P < 0.05) phenotypic correlations are coloured. Significance of the correlation coefficients was based on 20 000
permutations. Traits were transformed to approximate normal distributions. SLA, specific leaf area; LA, leaf area; LL, leaf length; TELA, plant-level leaf
area; FvFm, photochemical efficiency; FBF, onset of flower bud formation; FL, onset of flowering; FR, onset of fruiting; Sen, percentage of senescent
leaves; PH, plant height; RGR, relative growth rate; AB, aboveground biomass; TB, total biomass; R.L, root : leaf ratio; L.S, leaf : stem ratio; IN,
inflorescence number; IS, inflorescence size; FN, flower number; RO, reproductive output; SS, seed mass.
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1998; Pigliucci, 2003) could constrain the expression of plasticity
and its evolution (Schlichting, 1989a; Montague et al., 2013) if
the same correlated response is consistently expressed. However,
we found that correlated traits can also show differential plastic-
ity, often resulting in a loss of correlation in the stressful environ-
ment. Such a change in the phenotypic correlation between two
traits indicates a modification of the genetic and/or environmen-
tal covariances between them (Schlichting, 1986; Sgr�o & Hoff-
mann, 2004). We thus propose that differences in plasticity
between two traits may alter trait covariances, allowing flexibility
in the phenotypic correlation structure across environments.
Importantly, the maintenance or loss of correlations between
traits may affect the outcome of selection for those traits in differ-
ent environments (Schlichting, 1986, 1989a; Agrawal & Stinch-
combe, 2009; Plaistow & Collin, 2014; Manenti et al., 2016).
Therefore, if such changes are indeed mediated by plasticity, our
results would indicate the potential for plasticity to impact selec-
tion on correlated traits.

We are far from understanding the precise mechanism under-
lying the association observed between differences in the plastic-
ity of traits and changes in their phenotypic correlation. A
potential explanation could be that differential plasticity between
traits is coupled to among-individual differences in plasticity. For
instance, two traits could differ in their plasticity without affect-
ing integration, if all individuals respond plastically in a similar
way. However, if individuals do vary in their plasticity, and the
degree of plasticity that each individual expresses also differs
across traits, the covariation between those traits may be altered,
resulting in a change in their correlation (see also Killen et al.,
2013; Peiman & Robinson, 2017). Further experiments with
genotypes or families differing in the expression of plasticity
across traits in response to diverse environmental conditions will
undoubtedly shed light on this unresolved question.

Together with the association between the maintenance of
integration and differential trait plasticity, we also explored
whether the overall integration of a trait (its correlations to all
other traits) was related to its ability to express a plastic response.
Gianoli & Palacio-L�opez (2009) were first to report a negative
relationship between the number of significant phenotypic corre-
lations of a trait and its plasticity. Conversely, we observed a posi-
tive association between plasticity and integration, with more
integrated traits, both in the stressful and favourable environ-
ment, also being more plastic. However, the unique contribution
of phenotypic integration to explain variation in plasticity among
traits was not significant when we accounted for the phenotypic
variation of traits within environments, indicating that plasticity
and integration were, in fact, unrelated at the trait level. These
contrasting results indicate that plasticity is not generally con-
strained by integration. Indeed, the very few studies that have
tested the relationship between overall trait integration and plas-
ticity have shown remarkably varying results, with very weak sup-
port to the existence of a functional trade-off between them. For
instance, a recent study found a positive relationship between
plasticity and integration in three tree species occurring in
Restinga-like and seasonal semideciduous tropical forests (Pireda
et al., 2019). Similarly, Zimmermann et al. (2016) found that

more correlated traits showed more plasticity in response to light
availability in seedlings of an invasive tree, although this positive
association was only found when integration was assessed in
stressful shade conditions. Conversely, a study on thermal physi-
ology of intertidal crabs (Osores et al., 2018) showed an inverse
relationship between plasticity and integration, while Godoy
et al. (2012) found that the sign of the relationship changed
depending on whether morphological or physiological plasticity
was considered. Notably, none of these studies considered the
potential effect of the within-environment phenotypic variation
of traits on the relationship between plasticity and integration,
which in our case mediated the positive association observed, and
they used contrasting metrics of both integration and plasticity.
This indicates that the role of phenotypic integration as an inter-
nal constraint to plasticity cannot be assumed as a general pat-
tern, as it is often invoked in the literature (see e.g. Zimmermann
et al., 2016; V�azquez et al., 2017). Clearly, more experimental
data using standardized approaches is needed to assess both the
prevalence and sign of this relationship, and the environmental
conditions that may drive its occurrence (Gianoli & Palacio-
L�opez, 2009).

The plasticity of phenotypic integration

Although the mechanisms are not clearly understood, experimen-
tal evidence has repeatedly shown, for both animal and plant
taxa, that environmental conditions affect not only the expression
of individual traits but also the covariance between them (Sch-
lichting, 1989b; Pigliucci et al., 1995; van Tienderen & van
Hinsberg, 1996; Pigliucci, 2003; Sgr�o & Hoffmann, 2004; Han-
delsman et al., 2014; Plaistow & Collin, 2014; Manenti et al.,
2016; Cousins & Murren, 2017; Peiman & Robinson, 2017;
Jonas & Navarro, 2019; Carvalho et al., 2020). Our hierarchical
matrix comparison showed that, when compared to the
favourable environment, elements of the correlation matrix in the
stressful environment were not equal, not proportional, and did
not share any CPCs. The lower integration observed in stress – as
evidenced by the lower edge density and lower phenotypic inte-
gration index INT – reflected both a reduction of the overall
number of trait correlations and, to a lower extent, changes in the
nature of trait covariation.

The differential plasticity of traits can partly explain the lower
overall phenotypic integration found in the stressful environ-
ment. Specifically, two out of three cases where we found a
change of integration between environments involved loss of cor-
relation in the stressful environment, and of them, more than
80% of pairs had differential plasticity between traits (Fig. S3).
This challenges the idea that phenotypic integration should
increase in stress. Indeed, although this has been often suggested
in the literature (Schlichting, 1986; Gianoli & Palacio-L�opez,
2009), experimental tests have failed to offer a clear pattern, with
a few studies confirming higher integration in stressful conditions
(Schlichting, 1989b; Gianoli, 2004; Segu�ı et al., 2018; Benavides
et al., 2021), while others showing no change of integration
between environments (Pigliucci & Kolodynska, 2002a,b, 2006;
Mallitt et al., 2010) or even reporting lower integration in
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stressful conditions, as also found here (Boucher et al., 2013;
Garc�ıa-Cervigon et al., 2021; see also Cousins & Murren, 2017).
We propose that, in some instances, the functional response to
stress may involve differential plastic responses of multiple traits,
which may in turn result in lower integration in a stressful envi-
ronment. In the light of our results, we encourage researchers to
expand the focus to account for the differences in plasticity
between traits and how they affect trait integration, and most
importantly, to assess the adaptive value of a tighter phenotype in
stress (Schlichting, 1989; Gianoli & Palacio-L�opez, 2009;
Dami�an et al., 2020), which may prove useful to further our
understanding on the plasticity of phenotypic integration.

The positive association between plasticity and phenotypic
variation within environments

An unexpected result of our study was the strong and positive
relationship between the within-environment phenotypic varia-
tion of individual traits and their plasticity in response to the
stressful environment (Fig. S1). Both phenotypic variation and
plasticity are well-known to vary among traits. For a specific
group of organisms reared in a set of controlled experimental
environments, a common outcome is to find that some traits
are more plastic than others and that some traits are more
variable than others in those environments. However, the
association between both aspects of trait variation – within
and between environments – has rarely been established.
Phenotypic variation within environments may arise from
genetic differences among individuals, microenvironmental
effects and developmental instability, i.e. variation among
replicates of a genotype in the phenotype produced in a speci-
fic environment, also termed developmental ‘noise’ (Møller,
1997). In a recent study using recombinant inbred lines
(RILs) of Arabidopsis thaliana, Tonsor et al. (2013) found a
significant link between trait plasticity and both the coeffi-
cients of genetic and environmental variation of those traits
within environments, and a genetic correlation between devel-
opmental instability and RIL plasticity at the trait level (see
also van Kleunen et al., 2000; Valladares et al., 2002; Ørsted
et al., 2018). In our study, we cannot separate which compo-
nent of within-environment variation is most correlated with
trait plasticity. However, as we observed this positive pattern
in both the favourable and stressful environments, our results
suggest the intriguing possibility that the plastic response of
specific traits could be predicted from its range of variation
expressed in a single environment.

Conclusions

Our study provides new insight on the multifaceted relationship
between the flexibility – plasticity – and the coherence – integra-
tion – of the phenotype. Overall, we found no evidence that inte-
gration may constitute an internal constraint to plasticity.
Rather, by assessing how differences in plasticity between traits
affect their integration across environments, we present the first
empirical demonstration that the differential expression of

plasticity may involve a major reorganization of the relationships
among traits (Schlichting, 1986, 1989a). Differences in the
degree of response among traits were coupled to a significant loss
of integration in the stressful environment, challenging the
notion that stress generally induces a tighter phenotype. Future
studies should focus on identifying the mechanisms governing
the link between plasticity and integration, and most impor-
tantly, on how such interplay may affect the adaptive value of
these key aspects of organisms’ function.

Acknowledgements

The authors are indebted to A. Lim�on-Yelmo, A. G�omez-
Fern�andez, C. D�ıaz, I. L�opez de la Asunci�on, J. L�opez Gim�enez,
J. L�opez-Angulo, P. Hurtado, D.S. Pescador and J. Margalet for
their help during experimental set-up, data collection and inter-
pretation of results. Gypsum soil was provided by Baldomero
Fern�andez from Yesos Ib�ericos-Algiss S.A. The authors also thank
the comments of the associate editor and four anonymous review-
ers. This work was funded by grants GYPSEVOL (CGL2016-
75566-P), Remedinal (TE-CM: S2018/EMT-4338), Phenotypes
(PGC2018-099115-B-I00) and the Ram�on y Cajal Programme
of the Spanish Ministry of Economy and Competitiveness.

Author contributions

SM and AE conceived the idea. MB-S, MR-M and SM collected
the data. MC, RB, MB-S, MR-M and SM analysed the data. SM
wrote the manuscript with input from all other authors.

ORCID

Raquel Benavides https://orcid.org/0000-0003-2328-5371
Mario Blanco-S�anchez https://orcid.org/0000-0001-9379-
4927
Marcelino Cruz de la https://orcid.org/0000-0002-9080-4525
Adri�an Escudero https://orcid.org/0000-0002-1427-5465
Silvia Matesanz https://orcid.org/0000-0003-0060-6136
Marina Ramos-Mu~noz https://orcid.org/0000-0001-5491-
6004

Data availability

The data that support the findings of this study are available from
the corresponding author upon reasonable request at http://re
positories.biodiversos.org/Matesanz_S/.

References

Agrawal AF, Stinchcombe JR. 2009.How much do genetic covariances alter the

rate of adaptation? Proceedings of the Royal Society B: Biological Sciences 276:
1183–1191.

Auld JR, Agrawal AA, Relyea RA. 2010. Re-evaluating the costs and limits of

adaptive phenotypic plasticity. Proceedings of the Royal Society B:Biological
Sciences 277: 503–511.

Benavides R, Carvalho B, Matesanz S, Bastias CC, Cavers S, Escudero A, Fonti

P, Mart�ınez-Sancho E, Valladares F. 2021. Phenotypes of Pinus sylvestris are

New Phytologist (2021)
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

Research

New
Phytologist10

https://orcid.org/0000-0003-2328-5371
https://orcid.org/0000-0003-2328-5371
https://orcid.org/0000-0003-2328-5371
https://orcid.org/0000-0001-9379-4927
https://orcid.org/0000-0001-9379-4927
https://orcid.org/0000-0001-9379-4927
https://orcid.org/0000-0002-9080-4525
https://orcid.org/0000-0002-9080-4525
https://orcid.org/0000-0002-9080-4525
https://orcid.org/0000-0002-1427-5465
https://orcid.org/0000-0002-1427-5465
https://orcid.org/0000-0002-1427-5465
https://orcid.org/0000-0003-0060-6136
https://orcid.org/0000-0003-0060-6136
https://orcid.org/0000-0003-0060-6136
https://orcid.org/0000-0001-5491-6004
https://orcid.org/0000-0001-5491-6004
https://orcid.org/0000-0001-5491-6004
http://repositories.biodiversos.org/Matesanz_S/
http://repositories.biodiversos.org/Matesanz_S/


more coordinated under harsher conditions across Europe. Journal of Ecology.
doi:10.1111/1365-2745.13668.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical
Society: Series B:Methodological 57: 289–300.

Boucher FC, Thuiller W, Arnoldi C, Albert CH, Lavergne S. 2013. Unravelling

the architecture of functional variability in wild populations of Polygonum
viviparum L. Functional Ecology 27: 382–391.

Canty A, Ripley BD. 2021. boot: bootstrap R (S-Plus) functions. R package v.1.3-

28. [WWW document] URL https://cran.r-project.org/web/packages/boot/

index.html.

Carvalho B, Bastias CC, Escudero A, Valladares F, Benavides R. 2020.

Intraspecific perspective of phenotypic coordination of functional traits in Scots

pine. PLoS ONE 15: e0228539.

Cheverud JM. 1988. A comparison of genetic and phenotypic correlations.

Evolution 42: 958–968.
Cheverud JM, Wagner GP, Dow MM. 1989.Methods for the comparative

analysis of variation patterns. Systematic Zoology 38: 201–213.
Cousins EA, Murren CJ. 2017. Edaphic history over seedling characters predicts

integration and plasticity of integration across geologically variable populations

of Arabidopsis thaliana. American Journal of Botany 104: 1802–1815.
Dami�an X, Ochoa-L�opez S, Gaxiola A, Fornoni J, Dom�ınguez CA, Boege K.

2020. Natural selection acting on integrated phenotypes: covariance among

functional leaf traits increases plant fitness. New Phytologist 225: 546–557.
Davison AC, Hinkley DV. 1997. Bootstrap methods and their application.
Cambridge, UK: Cambridge University Press.

Ellers J, Liefting M. 2015. Extending the integrated phenotype: covariance and

correlation in plasticity of behavioural traits. Current Opinion in Insect Science
9: 31–35.

Garc�ıa-Cervig�on AI, Garc�ıa-L�opez MA, Pist�on N, Pugnaire FI, Olano JM.

2021. Coordination between xylem anatomy, plant architecture and leaf

functional traits in response to abiotic and biotic drivers in a nurse cushion

plant. Annals of Botany 127: 919–929.
Garc�ıa-Verdugo C, Granado-Yela C, Manrique E, Rubio de Casas R, Balaguer

L. 2009. Phenotypic plasticity and integration across the canopy of Olea
europaea subsp. guanchica (Oleaceae) in populations with different wind

exposures. American Journal of Botany 96: 1454–1461.
Garren ST. 2019. jmuOutlier: permutation tests for nonparametric statistics.
R package v.2.2. [WWW document] URL https://CRAN.R-project.org/packa

ge=jmuOutlier.

Gianoli E. 2001. Lack of differential plasticity to shading of internodes and

petioles with growth habit in Convolvulus arvensis (Convolvulaceae).
International Journal of Plant Sciences 162: 1247–1252.

Gianoli E. 2004. Plasticity of traits and correlations in two populations of

Convolvulus arvensis (Convolvulaceae) differing in environmental

heterogeneity. International Journal of Plant Sciences 165: 825–832.
Gianoli E, Palacio-L�opez K. 2009. Phenotypic integration may constrain

phenotypic plasticity in plants. Oikos 118: 1924–1928.
Godoy O, Valladares F, Castro-D�ıez P. 2012. The relative importance for plant

invasiveness of trait means, and their plasticity and integration in a multivariate

framework. New Phytologist 195: 912–922.
Handelsman CA, Ruell EW, Torres-Dowdall J, Ghalambor CK. 2014.

Phenotypic plasticity changes correlations of traits following experimental

introductions of Trinidadian guppies (Poecilia reticulata). Integrative and
Comparative Biology 54: 794–804.

Herrera CM, Cerd�a X, Garcia M, Guiti�an J, Medrano M, Rey PJ, S�anchez-

Lafuente A. 2002. Floral integration, phenotypic covariance structure and

pollinator variation in bumblebee-pollinated Helleborus foetidus. Journal of
Evolutionary Biology 15: 108–121.

Jonas M, Navarro D. 2019. Induced mutations alter patterns of quantitative

variation, phenotypic integration, and plasticity to elevated CO2 in Arabidopsis
thaliana. Journal of Plant Research 132: 33–47.

Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P. 2013.

Environmental stressors alter relationships between physiology and behaviour.

Trends in Ecology & Evolution 28: 651–658.
van Kleunen M, Fischer M. 2005. Constraints on the evolution of adaptive

phenotypic plasticity in plants. New Phytologist 166: 49–60.

Mallitt KL, Bonser SP, Hunt J. 2010. The plasticity of phenotypic integration in

response to light and water availability in the pepper grass, Lepidium bonariense.
Evolutionary Ecology 24: 1321–1337.

Manenti T, Sørensen JG, Moghadam NN, Loeschcke V. 2016. Few genetic and

environmental correlations between life history and stress resistance traits affect

adaptation to fluctuating thermal regimes. Heredity 117: 149–154.
Matesanz S, Gianoli E, Valladares F. 2010. Global change and the evolution of

phenotypic plasticity in plants. Year in evolutionary biology. Annals of the New
York Academy of Sciences 1206: 35–55.

Matesanz S, Ram�ırez-Valiente JA. 2019. A review and meta-analysis of

intraspecific differences in phenotypic plasticity: implications to forecast plant

responses to climate change. Global Ecology and Biogeography 28: 1682–1694.
Matesanz S, Ramos-Mu~noz M, Blanco-S�anchez M, Escudero A. 2020.High

differentiation in functional traits but similar phenotypic plasticity in

populations of a soil specialist along a climatic gradient. Annals of Botany 125:
969–980.

Matesanz S, Valladares F. 2014. Ecological and evolutionary responses of

Mediterranean plants to global change. Environmental and Experimental Botany
103: 53–67.

Meril€a J, Bj€orklund M. 2004. Phenotypic integration as a constraint and

adaptation. In: Pigliucci M, Preston K, eds. Phenotypic integration: studying the
ecology and evolution of complex phenotypes. Oxford, UK: Oxford University

Press, 107–129.
Meril€a J, Hendry AP. 2014. Climate change, adaptation, and phenotypic

plasticity: the problem and the evidence. Evolutionary Applications 7: 1–14.
Møller AP. 1997. Developmental stability and fitness: a review. American
Naturalist 149: 916–932.

Montague MJ, Danek-Gontard M, Kunc HP. 2013. Phenotypic plasticity affects

the response of a sexually selected trait to anthropogenic noise. Behavioral
Ecology 24: 343–348.

Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel

MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H et al. 2015.
Constraints on the evolution of phenotypic plasticity: limits and costs of

phenotype and plasticity. Heredity 115: 293–301.
Murren CJ, Pendleton N, Pigliucci M. 2002. Evolution of phenotypic

integration in Brassica (Brassicaceae). American Journal of Botany 89: 655–663.
Van Kleunen M, Fischer M, Schmid B. 2000. Costs of plasticity in foraging

characteristics of the clonal plant Ranunculus reptans. Evolution 54: 1947–
1955.

Nicotra Ab, Atkin Ok, Bonser Sp, Davidson Am, Finnegan Ej, Mathesius U,

Poot P, Purugganan Md, Richards Cl, Valladares F et al. 2010. Plant
phenotypic plasticity in a changing climate. Trends in Plant Science 15: 684–
692.

Nimon K, Oswald F, Roberts J. 2013. Yhat: interpreting regression effects. R
package v.2. [WWW document] URL https://cran.r-project.org/web/packages/

yhat/index.html.

Ørsted M, Rohde PD, Hoffmann AA, Sørensen P, Kristensen TN. 2018.

Environmental variation partitioned into separate heritable components.

Evolution 72: 136–152.
Osores SJ, Ruz GA, Opitz T, Lardies MA. 2018. Discovering divergence in the

thermal physiology of intertidal crabs along latitudinal gradients using an

integrated approach with machine learning. Journal of Thermal Biology 78:
140–150.

Padilla FM, Miranda JD, Jorquera MJ, Pugnaire FI. 2009. Variability in amount

and frequency of water supply affects roots but not growth of arid shrubs. Plant
Ecology 204: 261–270.

Parsons KJ, McWhinnie K, Pilakouta N, Walker L. 2020. Does phenotypic

plasticity initiate developmental bias? Evolution & Development 22: 56–70.
Peiman KS, Robinson BW. 2017. Comparative analyses of phenotypic trait

covariation within and among populations. American Naturalist 190:
451–468.

Pepler T. 2019. cpc: common principal component (CPC) analysis and applications. R
package v.0.1-6. [WWW document] URL https://rdrr.io/github/tpepler/cpc/.

Phillips PC, Arnold SJ. 1999.Hierarchical comparison of genetic variance-

covariance matrices. I. Using the Flury hierarchy. Evolution 53: 1506–1515.
Pigliucci M. 2003. Phenotypic integration: studying the ecology and evolution of

complex phenotypes. Ecology Letters 6: 265–272.

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

New Phytologist (2021)
www.newphytologist.com

New
Phytologist Research 11

https://doi.org/10.1111/1365-2745.13668
https://cran.r-project.org/web/packages/boot/index.html
https://cran.r-project.org/web/packages/boot/index.html
https://CRAN.R-project.org/package=jmuOutlier
https://CRAN.R-project.org/package=jmuOutlier
https://cran.r-project.org/web/packages/yhat/index.html
https://cran.r-project.org/web/packages/yhat/index.html
https://rdrr.io/github/tpepler/cpc/


Pigliucci M, Kolodynska A. 2002a. Phenotypic plasticity and integration in

response to flooded conditions in natural accessions of Arabidopsis thaliana (L.)
Heynh (Brassicaceae). Annals of Botany 90: 199–207.

Pigliucci M, Kolodynska A. 2002b. Phenotypic plasticity to light intensity in

Arabidopsis thaliana: invariance of reaction norms and phenotypic integration.

Evolutionary Ecology 16: 27–47.
Pigliucci M, Kolodynska A. 2006. Phenotypic integration and response to stress

in Arabidopsis thaliana: a path analytical approach. Evolutionary Ecology
Research 8: 415–433.

Pigliucci M, Marlow ET. 2001. Differentiation for flowering time and

phenotypic integration in Arabidopsis thaliana in response to season length and

vernalization. Oecologia 127: 501–508.
Pigliucci M, Paoletti C, Fineschi S, Malvolti ME. 1991. Phenotypic integration

in chestnut (Castanea sativaMill.): leaves versus fruits. Botanical Gazette 152:
514–521.

Pigliucci M, Whitton J, Schlichting C. 1995. Reaction norms of Arabidopsis. I.

Plasticity of characters and correlations across water, nutrient and light

gradients. Journal of Evolutionary Biology 8: 421–438.
Pireda S, da Silva Oliveira D, Borges NL, do Amaral Ferreira G, Barroso LM,

Simioni P, Vit�oria AP, Da Cunha M. 2019. Acclimatization capacity of leaf

traits of species co-occurring in Restinga and seasonal semideciduous forest

ecosystems. Environmental and Experimental Botany 164: 190–202.
Plaistow S, Collin H. 2014. Phenotypic integration plasticity in Daphnia magna:
an integral facet of G 9 E interactions. Journal of Evolutionary Biology 27:
1913–1920.

Ray-Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M.

2014. Using commonality analysis in multiple regressions: a tool to decompose

regression effects in the face of multicollinearity.Methods in Ecology and
Evolution 5: 320–328.

Revelle W, Revelle MW. 2015. Package ‘psych’. The comprehensive R archive
network. [WWW document] URL https://cran.r-project.org/web/packages/

psych/index.html.

Roff D, Prokkola J, Krams I, Rantala M. 2012. There is more than one way to

skin a G matrix. Journal of Evolutionary Biology 25: 1113–1126.
Schlichting CD. 1986. The evolution of phenotypic plasticity in plants. Annual
Review of Ecology and Systematics 17: 667–693.

Schlichting CD. 1989a. Phenotypic integration and environmental change. What

are the consequences of differential phenotypic plasticity – of traits. BioScience
39: 460–464.

Schlichting CD. 1989b. Phenotypic plasticity in Phlox. II. Plasticity of character
correlations. Oecologia 78: 496–501.

Schlichting CD, Pigliucci M. 1998. Phenotypic evolution: a reaction norm
perspective. Sunderland, MA, USA: Sinauer Associates.

Segu�ı J, L�azaro A, Traveset A, Salgado-Luarte C, Gianoli E. 2018. Phenotypic

and reproductive responses of an Andean violet to environmental variation

across an elevational gradient. Alpine Botany 128: 59–69.
Sgr�o CM, Hoffmann AA. 2004. Genetic correlations, tradeoffs and

environmental variation. Heredity 93: 241–248.
van Tienderen PH, van Hinsberg A. 1996. Phenotypic plasticity in growth habit

in Plantago lanceolata: how tight is a suite of correlated characters? Plant Species
Biology 11: 87–96.

Tonsor SJ, Elnaccash TW, Scheiner SM. 2013. Developmental instability is

genetically correlated with phenotypic plasticity, constraining heritability, and

fitness. Evolution 67: 2923–2935.
Valladares F, Balaguer L, Mart�ınez-Ferri E, P�erez-Corona E, Manrique E. 2002.

Plasticity, instability and canalization: is the phenotypic variation in seedlings

of sclerophyll oaks consistent with the environmental unpredictability of

Mediterranean ecosystems? New Phytologist 156: 457–467.
Valladares F, Gianoli E, Gomez JM. 2007. Ecological limits to plant phenotypic

plasticity. New Phytologist 176: 749–763.

Valladares F, Matesanz S, Guilhaumon F, Ara�ujo MB, Balaguer L,

Benito-Garz�on M, Cornwell W, Gianoli E, Kleunen M, Naya DE

et al. 2014. The effects of phenotypic plasticity and local adaptation on

forecasts of species range shifts under climate change. Ecology Letters 17:
1351–1364.

Valladares F, Sanchez-Gomez D, Zavala M. 2006.Quantitative estimation of

phenotypic plasticity: bridging the gap between the evolutionary concept and

its ecological applications. Journal of Ecology 94: 1104–1116.
V�azquez DP, Gianoli E, Morris WF, Bozinovic F. 2017. Ecological and

evolutionary impacts of changing climatic variability. Biological Reviews 92: 22–
42.

Wagner G. 1984.On the eigenvalue distribution of genetic and phenotypic

dispersion matrices: evidence for a nonrandom organization of quantitative

character variation. Journal of Mathematical Biology 21: 77–95.
Waitt DE, Levin DA. 1998. Genetic and phenotypic correlations in plants: a

botanical test of Cheverud’s conjecture. Heredity 80: 310–319.
Warton DI, Duursma RA, Falster DS, Taskinen S. 2012. smatr 3 – an R

package for estimation and inference about allometric lines.Methods in Ecology
and Evolution 3: 257–259.

Warton DI, Wright IJ, Falster DS, Westoby M. 2006. Bivariate line-fitting

methods for allometry. Biological Reviews 81: 259–291.
Wei T, Simko V. 2017. R package “corrplot”: visualization of a correlation Matrix,
v.0.84. [WWW document] URL https://github.com/taiyun/corrplot.

Wood CW, Brodie ED III. 2015. Environmental effects on the structure of the

G-matrix. Evolution 69: 2927–2940.
Zimmermann TG, Andrade A, Richardson DM. 2016. Experimental

assessment of factors mediating the naturalization of a globally invasive

tree on sandy coastal plains: a case study from Brazil. AoB Plants 8:
plw042.

Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Relationship between within-environment phenotypic
variation and trait plasticity.

Fig. S2 False discovery rate-corrected Pearson pairwise correla-
tions assessed in favourable and stressful environments.

Fig. S3Matrix of changes in phenotypic integration.

Table S1 Glossary of the terms used throughout the manuscript.

Table S2 Results of the standardized major axis regressions using
false discovery rate-corrected values.

Table S3 Flury common principal component (CPC) tests for
correlation matrix comparisons.

Please note: Wiley Blackwell are not responsible for the content
or functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.

New Phytologist (2021)
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

Research

New
Phytologist12

https://cran.r-project.org/web/packages/psych/index.html
https://cran.r-project.org/web/packages/psych/index.html
https://github.com/taiyun/corrplot

