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Abstract

This Dissertation consists of three independent papers on econometrics, having
in common the fact that each of them proposes a new methodology to deal with
issues caused by the departure from linearity and gaussianity assumptions.

We start by introducing a simple and easy to implement procedure to test
for multiple structural changes in persistence. An in-depth Monte Carlo anal-
ysis shows that the new procedure performs well under various DGPs with
persistence changes. The application of the proposed test to OECD countries
inflation reveals relevant statistical evidence of breaks in persistence for all
countries. Overall, the persistence was high and non-mean-reverting until the
early 80’s and subsequently decreased, which coincides with the beginning of
the Great Moderation.

Then, the second paper introduce a flexible framework able to capture some
aspects of the potential nonlinear causal relationships between economic vari-
ables. More precisely, the proposed procedure estimates the expected time (ET)
an outcome variable takes to cross a fixed threshold given a starting value and
conditional on covariates. An application to the economic activity-yield spread
relationship for the U.S. suggests that the yield spread may have an important
role in stimulating a faster return to desirable growth rates when the economy
is in contraction or faces weak growth. Moreover, negative yield spread values
in the presence of positive and high industrial production growth rates leads to
a quick return to negative growth rates and may trigger a recession.

Finally, the third paper proposes a simple framework that allows us to take
into account the magnitude of potential losses incurred throughout the invest-
ment horizon, denoted intra-horizon risk, in portfolio optimization. To this end,
we introduce a novel nonparametric method to estimate the first passage proba-
bility function that only make use of the Markovian property of the returns. An
empirical application is provided considering equity, bond and commodity Ex-
change Traded funds (ETFs). Our results suggest that the proposed framework
indicates portfolios with lower expected time to reach the target return than
those indicated by the Markowitz’ mean-variance approach with similar levels
of intra-horizon risk, which may result in higher expected annualized return if
the lower threshold that triggers a stop-loss decision is not crossed.
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Chapter 1

Introduction

This Dissertation introduces new methodologies to deal with some aspects of
the departure from linearity and gaussianity assumptions, which nowadays are
accepted as common features of economic and financial variables.

For instance, the occurrence of exogenous shocks, such as crises, policy deci-
sions, preference changes or technological advances can lead to abrupt shifts in
economic and financial time series, invalidating the use of linear models that as-
sume parameters constancy. Since the presence of structural breaks may affect
many or all of the model parameters, leading to inconsistent estimates and poor
forecasts if not properly modeled, several statistical procedures were proposed
to detect them. Perron (2005) provides an interesting survey. A specific and
widely investigated consequence of ignoring structural changes is the misspeci-
fication of the economic time series’ order of integration. Properly determining
whether the stochastic process is difference-stationary or trend-stationary1 has
important implications for economic theory and policy, since accepting the unit
root model implies that random shocks have a permanent effect on the economy.
In fact, the findings of Nelson and Plosser (1982) that economic time series are
I(1) provided support to real business cycle theories and gave rise to interest in
cointegrated relationships ( see Engle and Granger; 1987 ).

However, beginning with Perron (1989) and Rappoport and Reichlin (1989),
many works allowing for breaks in the deterministic kernel of the data gener-
ation process have presented evidences that the majority of shocks to the key
economic variables may be transitory and that only few events would have per-
manent effects (see, for instance, Perron; 1997, Lumsdaine and Papell; 1997
and Papell et al.; 2000 ). More recently, Prodan (2008) demonstrate that it
can be difficult to estimate the number and the magnitude of multiple breaks,
especially when the breaks are of opposite sign. In order to circumvent this
problem, Enders and Lee (2012) and Rodrigues and Taylor (2012) propose to
approximate structural changes of unknown functional form in the determin-
istic component using Fourier expansions (see Gallant; 1981). This approach
reduces the specification problem to the selection of the appropriate frequency
components of the Fourier form approximation. Moreover, this type of mod-
elling is also useful in the presence of smooth changes, since it is more consistent
with the fact that shifts in economic aggregates are influenced by changes in the
behavior of a very large number of agents that may not react simultaneously to
a given shock.

1See Stock (1994) for a more complete description of the usefulness of this analysis.
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Another important form of structural changes is characterized by shifts in
persistence of a time series, from I(1) to I(0) or vice versa. For example,
DeLong and Summers (1988) found that shocks to real output series of the
US and European countries were less persistent in the post-World War II years;
and Alogoskoufis and Smith (1991) report that inflation persistence has changed
over time in the US and that it seems to be a positive function of the degree of
monetary and exchange-rate accommodation. Tests for changes in persistence
have been developed by, among others, Kim (2000), Leybourne et al. (2003) and
Leybourne et al. (2007). However, most of these proposes statistics consider a
single shift in persistence and work on testing for multiple changes in persistence
is still scant.

The first essay, A re-examination of inflation persistence dynamics in OECD
countries: A new approach, looks to contribute to this literature by proposing a
simple and easy to implement procedure which allows testing for (multiple) per-
sistence changes. Instead of considering two fundamentally different processes
(one stationary and the other nonstationary) connected at a point in time, this
work proposes a new unit root test that approximates the time-varying autore-
gressive parameter using a parsimonious cosine function related to the Fourier
series. Changes in the autoregressive parameter impact the deterministic terms
of the process as well as its unconditional variance. The proposed procedure
takes this effect into account by local GLS de-trending the data with a time-
varying autoregressive parameter. Unlike Leybourne et al. (2007), estimates for
the break dates are not provided. However, as the complete sample is used for
estimation and not fractions of the sample as with recursive tests, our approach
is expected to have better power performance when shifts in the autoregressive
coefficient are the only cause for changes in the trend function. An in-depth
Monte Carlo analysis shows that the new procedure has good power and size
properties in small samples under various data generating processes with per-
sistence changes. An empirical application to G7 countries’ inflation data is
also provided. A clear understanding of the inflation-generating process is of
great importance for central banks since its evolution influences the monetary
policy decisions. For instance, a price stability-oriented monetary policy be-
comes impossible to implement if the inflation series follows the path of a pure
I(1) process. Our results reject the I(1) hypothesis for all countries and suggest
that the apparent highly persistent behavior of inflation is probably caused by
exogenous events (e.g., crises) and shifts in monetary policy, which have altered
its speed of reversion to equilibrium after a shock.

Beyond the limitations reported for the univariate context, linear functions
with constant parameters may also have difficulties in properly capturing the
relationships between major economic variables, since they typically display
nonlinear dynamics (see, for instance, Terasvirta et al.; 2010). Several non-
linear conditional mean models are nowadays available in the literature (see
Terasvirta; 2006 for a survey). However, these models usually require a rigid
parametric functional form and the estimation of a considerable number of pa-
rameters. Thus, it may be useful to consider alternative ways of capturing some
aspects of the possible nonlinear relationships between a dependent variable and
a set of covariates. A possible approach is to employ binary random variables
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constructed from underlying continuous stochastic processes in order to focus
on particular characteristics such as the frequency and length of some events.
For instance, some macroeconometric research considers binary response models
to predict a recession dummy indicator using economic and financial variables
(see, for instance, Estrella and Mishkin; 1998 and Birchenhall et al.; 1999). Most
standard models for binary responses do not incorporate information provided
by the past values of the dependent variable, which is crucial in application
to typically autocorrelated time series data. The presence of serial dependence
can easily be taken into account if the binary variable is treated as a Markov
process.

In the second essay (Chapter 2), The expected time to cross a threshold
and its determinants: A simple and flexible framework, we introduce a flexi-
ble framework that relies on the Markov assumption and allows us to obtain
covariate-dependent first passage time probabilities without requiring a rigid
parametric functional form. The major advantage of the proposed approach is
that it provides a simple method to estimate the covariate-dependent expected
time (ET) to cross a threshold. Understanding how a set of variables influences
the ET a dependent variable takes to cross a fixed threshold (for instance, its
mean) given a starting value may provide relevant insights on the nature of the
casual relationships between economic variables. For instance, the proposed
methodology allows us to infer whether the effects of the explanatory variables
on the ET are more (or less) pronounced for a subset of starting values of the
outcome variable. It may also be a useful tool to support macroeconomic policy
decisions since it estimates how long it will take for an outcome variable to reach
a target value given a starting point and specific values of relevant covariates
representing economic policy instruments, which is a useful statistic to investi-
gate relevant topics such as dynamic controllability. According to Buiter and
Gersovitz (1981), a system is dynamically controllable if a path for the economic
instruments exists which is capable of moving the vector with the economic ob-
jectives from any initial value to any other target value in pre-assigned finite
time. In order to illustrate the potential of the proposed approach, we inves-
tigated the effect of the yield spread (YS) on industrial production (IP) for
the U.S. economy. The relationship between YS and economic activity has
been investigated by an extensive literature. For instance, among others, Har-
vey (1989), Stock and Watson (1989) and Estrella and Mishkin (1998) found
statistical evidence that YS predicts future output growth considering a lin-
ear framework of analysis. More recently, Galbraith and Tkacz (2000) found
evidence in support of the asymmetric impact of YS on the conditional expecta-
tion of output growth using nonlinear threshold autoregressive (TAR) models.
Moreover, Estrella and Mishkin (1998) and Kauppi and Saikkonen (2008) show,
using probit or logit models, that YS has also been successfully used in predict-
ing recessions. The proposed approach provides additional information about
the economic activity-yield spread relationship. Our results suggest that the YS
may have an important role in stimulating a faster return to desirable growth
rates when the economy is in contraction or faces weak growth. Moreover, the
YS value seems also critical when the IP growth rate is larger than average. If
YS is negative, the IP growth rate will return quickly to below average values.
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This finding may be related to the already mentioned ability of the yield curve
inversion (negative YS) to predict recessions.

In the beginnings, most modern financial models were operationalized as-
suming linear relationships between variables and joint normality on their distri-
butions. Popular examples comprise the Capital Asset Pricing Model (CAPM)
and parametric Value at Risk (VaR) models. Furthermore, normal distribution
also represents a key assumption of the Markowitz’ mean-variance approach
(Markowitz; 1952, 1959) for portfolio optimization. But, starting with Mandel-
brot (1963), departures from the normal distribution were widely documented
and it is nowadays accepted that the distribution of financial variables such as
security returns is in general skewed and leptokurtotic (see, for instance Cont;
2001 and Nicolau; 2012). Thus, extreme negative events tend to occur more
often than under normality and ignoring this feature may result in a misleading
evaluation of the risk. A widely used approach to quantify the market risk is
the well-known Value at Risk (VaR), a quantile measure of the profit and loss
distribution at the end of a specified trading horizon. However, in a mark-
to-market environment where sharp decline in asset values can affect trading
strategies, it is critical to also take into the magnitude of the potential losses
incurred prior to the final horizon, denoted intra-horizon (IH) by Bakshi and
Panayotov (2010). The methodologies proposed to estimate the IH risk are
mainly based on first passage probabilities, the probability that an event occurs
for the first time within a finite horizon. Bakshi and Panayotov (2010) warns to
the limitations of the Geometric Brownian motion framework, which assumes
that returns are normally distributed, in quantifying the IH risk. They con-
sider Lévy jump models and show that the presence of extreme events (jumps)
tends to amplify this risk. However, analytical expressions for the first pas-
sage probability of processes with jumps are generally not available (see, for
instance, Kyprianou; 2006). Moreover, choosing the most appropriate one from
great number of Lévy-type already proposed in the literature (see, for instance,
Madan and Seneta; 1990 and Carr et al.; 2002) may be a very challenging task.

In Chapter 4, The importance of intra-horizon risk in portfolio optimization,
we introduce a novel nonparametric method to estimate the first hitting time
probability function for nonstationary processes. Since the proposed method-
ology only requires the Markovian property of returns, it is flexible enough to
accommodate jumps and other nonlinearities in asset prices. This nonparamet-
ric approach is used in a new portfolio optimization problem that allow us to
incorporate the intra-horizon risk (IH) in asset allocation decisions. In short, the
optimization problem aims to minimize the expected time to achieve a target
cumulative return rate given that the probability of breaching a lower threshold
is maintained at a level considered acceptable. This probability measures the
intra-horizon risk the investor is willing to accept. In order to illustrate the pro-
posed methodology for portfolio selection, an empirical application considering
equity, bond and commodity Exchange Traded funds (ETFs). Our results sug-
gest that the proposed framework indicates portfolios with lower expected time
to reach the target cumulative return than those indicated by the Markowitz’
mean-variance approach with similar levels of intra-horizon risk, which implies
a higher annualized return if the lower threshold is not crossed.
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Chapter 2

A Re-Examination of Inflation
Persistence Dynamics in OECD
Countries: A New Approach∗

2.1 Introduction

Structural breaks in time series result from the occurrence of exogenous shocks,
such as crises or policy decisions, which may have permanent effects on the
variables’ dynamics. For instance, Perron (1989) showed that the Great Crash
of 1929 caused a dramatic decrease in the mean of most aggregate variables of
the US economy and that the 1973 oil price shock possibly caused a change in
the slope of the output’s trend function which was responsible for the subsequent
slowdown of its growth rate.

The persistence of time series is frequently assessed through its order of
integration, which is determined from the results of a unit root test. How-
ever, since the finite sample power performance of traditional unit root tests
is not satisfactory when structural breaks are present in the data, this has
led to the development of statistics that allow for changes in the determinis-
tic kernel of the data generation process (Perron, 2005, provides an interesting
survey). However, most procedures available consider that structural breaks
occur instantaneously, which may not be consistent with the fact that shifts in
economic aggregates are influenced by changes in the behavior of a very large
number of agents that may not react simultaneously to a given shock.

Enders and Lee (2012) and Rodrigues and Taylor (2012) proposed tests that
do not require assumptions about the number of breaks and their exact form.
To this end Fourier terms have been used to approximate structural changes of
unknown functional form in the deterministic component, reducing the specifi-
cation problem to the selection of the appropriate frequency components of the
Fourier approximation. Since from a spectral frequency perspective structural
breaks are usually associated to the zero frequency, low-frequency Fourier terms
are commonly employed. Interestingly, a small number of low-frequency terms

∗Chapter 2, A Re-Examination of Inflation Persistence Dynamics in OECD Countries:
A New Approach, has been published in co-authorship with João Nicolau and Paulo M.
M. Rodrigues in the Oxford Bulletin of Economics and Statistics and is reprinted in this
Dissertation with permission from John Wiley & Sons Ltd and the Department of Economics,
University of Oxford.
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capture a great variety of breaks and sometimes even just a single frequency is
sufficient.

In recent literature, the simple stationary/nonstationary (I(0)/I(1)) di-
chotomy which is typically considered when analyzing the properties of time
series has been questioned and it has been suggested that certain macroeco-
nomic and financial time series may display changes in persistence over time,
i.e., changes from low to high persistence or vice versa. For example, Alogosk-
oufis and Smith (1991) report that inflation persistence has changed over time
in the US and that it seems to be a positive function of the degree of monetary
and exchange-rate accommodation. Another example is in DeLong and Sum-
mers (1988) who found that shocks to real output series of the US and European
countries were less persistent in the post-World War II years.

Several approaches to test for changes in persistence have recently been
developed. Most procedures are related either to the residual-based test for
stationarity introduced by Kim (2000) or to the sub-sample augmented Dickey-
Fuller type tests of Banerjee et al. (1992). The first are based on the ratio of
two partial sum processes of the residuals from regressions of the time series
of interest on deterministic components before and after a given break date
(Busetti and Taylor; 2004 and Harvey et al.; 2006). Since the break date is
typically unknown, statistics based on the ratios for all possible break dates,
such as the maximum Chow-type test, are considered. Regarding the second
class of tests, these are based on the minimum of a sequence of ADF type
statistics computed by recursive least squares across changing sub-samples of the
data. For instance, Leybourne et al. (2003) extended the work of Banerjee et al.
(1992) to allow for local GLS de-trended ADF tests of the null hypothesis of a
stable unit root process versus a switch from I(0) to I(1) or vice versa. However,
Leybourne et al. (2007) point out that tests for a single change in persistence
may not be consistent against processes with multiple changes in persistence.
To overcome this drawback, they introduced tests based on doubly-recursive
sequences of ADF-type unit root statistics which are valid in the presence of
multiple shifts in persistence regardless of the direction of change.1

Moreover, a change in persistence, as is typically considered, also originates
shifts in the deterministic component of the process (see Section 2.2). The
tests proposed in this paper take this effect into account by performing local
GLS de-trending of the data with a time-varying autoregressive parameter.
Specifically, the tests introduced approximate parameter changes using a single
cosine function, but unlike Leybourne et al. (2007) do not provide estimates
for the break dates. However, as the complete sample is used for estimation
and not fractions of the sample as with recursive tests, it is expected that these
approaches have better power performance than the latter when shifts in the
autoregressive parameter are the only cause for changes in the trend function.2

1Phillips et al. (2011) introduced a closely related methodology based on recursive right
tailed ADF tests for the detection of speculative bubbles; see also Phillips et al. (2015) and
references therein.

2Monte Carlo results to support this statement are presented in Tables A.1 and A.2 of
Appendix A.
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Work on testing for multiple changes in persistence is still scant. This pa-
per looks to contribute to this literature by proposing a simple and easy to
implement procedure which allows testing for (multiple) persistence changes.

The remainder of the paper is organized as follows. Section 2.2 introduces
the test procedures and derives their asymptotic distributions under the null
and local alternative hypotheses. Section 2.3 investigates the finite sample
properties of the statistics through Monte Carlo simulations. Specifically, the
impact of conditional heteroskedasticity, breaks in the innovation variance and
serially correlated errors are examined. Section 2.4 presents an in-depth analysis
of inflation data of seven OECD countries: Canada, France, Germany, Italy,
Japan, the UK and the US. Section 2.5 concludes, and finally, the Appendix A
provides detailed proofs of all results presented throughout the paper.

2.2 Motivation and Proposed Statistic

Consider a model for persistence changes in line with Harvey et al. (2006), i.e.,

yt = x
′

tβ + ut (2.1)
ut = ρtut−1 + εt, (2.2)

where xt is a deterministic kernel which is either a constant or a constant and
time trend (i.e. xt := 1 or xt := [1, t]

′
), β is the vector of parameters that

captures the deterministic structure and (2.2) describes the stochastic behavior
of yt. The innovations εt follow a mean zero process satisfying the α-mixing
conditions of Phillips and Perron (1988, page 336) with strictly positive and
bounded long-run variance ω2 ≡ lim

T→∞
1
T
E(
∑T

t=1 εt)
2.

2.2.1 The Test Procedure

To implement the persistence change test a two-step approach as in Elliott
et al. (1996) is employed. First, the time series of interest, yt, is locally GLS
de-trended using ρ̃t := 1+ c̃

T
cos(k ,t) where c̃ is fixed and non-positive, k is fixed3

and
cos(k ,t) :=

1 + cos(2πk t/T )

2
= cos2(πkt/T ). (2.3)

A simple cosine function with a single frequency is used in order to mimic
the pattern of the unknown shifts in the autoregressive parameter ρt. The de-
trended variable is computed as, ûc̃,t = yt−x

′
tβ̂c̃, where xt = 1 (demeaned case)

or xt = [1, t]
′
(linear trend case), and β̂c̃ =

(∑T
t=1 xc̃,txc̃,t

′
)−1∑T

t=1 xc̃,tyc̃,t, with
yc̃,1 = y1, xc̃,1 = x1, yc̃,t := yt − ρ̃tyt−1 and xc̃,t := xt − ρ̃txt−1, for t > 1. As the
cos(k , t) function takes values between 0 and 1, this approach can be seen as
local GLS de-trending with time-varying weights.

In the second step, the presence of a unit root in ûc̃,t is investigated con-
sidering, for k known and fixed, the t-statistic on φ computed from the test

3Note that when k = 0, ρ̃t corresponds to the representation used by Elliott et al. (1996).
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regression

∆ûc̃,t = φcos(k ,t)ûc̃,t−1 +

p∑
j=1

δj∆ûc̃,t−j + ηt, (2.4)

where under the null hypothesis of a unit root, H0 : φ = 0, and under the
alternative HA : φ < 0. The non-centrality parameter c̃ will assume different
values depending on the deterministic component and also on the frequency
parameter k considered (see Table 2.1 in Section 2.3)4. In (2.4), p denotes
the lag truncation order chosen to account for any weak dependence in {εt}.
More generally, when εt is a linear process satisfying standard summability and
moment conditions, p needs to be such that 1/p+ p3/T →∞ as T →∞; Said
and Dickey (1984) and Chang and Park (2002). Since the difference between
the proposed test and DFGLS is only due to the presence of some deterministic
terms when k is known, the results of Chang and Park (2002) remain valid in
this context.

Changes in persistence impact the conditional and unconditional means as
well as the unconditional variance. Hence, both de-trending and testing steps
are influenced by the autoregressive parameter ρt in (2.2). Moreover, the as-
sumption of parameter constancy (ρt = ρ), when invalid, seems to favor the null
hypothesis of a unit root. Thus, it is important to propose tests that allow for
changes in persistence under the alternative hypothesis. Since the number of
breaks and its functional form are typically unknown in practice, trigonometric
functions have been used to accommodate these features. For instance, Fourier
series which are linear combinations of sine and cosine functions are widely ap-
plied in this context; Gallant (1981), Enders and Lee (2012) and Rodrigues and
Taylor (2012).

In our framework, we use a single factor since the increase in flexibility of the
functions employed (i.e. more frequency terms) to describe parameter changes
has been associated with a deterioration in the power performance of the tests
as a consequence of over-fitting the data; Enders and Lee (2012).

The cos(k , t) function in (2.3) is crucial to properly approximate, but not
to identify persistence change dates. Its shape is entirely determined by the
frequency parameter k. Most empirical work using Fourier terms has only
considered integer values for k (Enders and Lee; 2012 and Rodrigues and Taylor;
2012), which imply that the starting and ending values of cos(k, t) are the same.
For instance, considering k = 1, the resulting function may be useful in cases
with two breaks, where an increase in ρt somewhere in the middle of the sample
is followed by a decrease of similar magnitude later. However, when there is
an increase in persistence at an unknown point in time and the parameter does
not return to its initial value, a fractional frequency needs to be considered (see
Figure 2.1 for illustration).

In economics, it is generally not expected that many breaks in persistence
occur given the relatively small sample sizes usually available. Thus, under the
alternative hypothesis we allow for a maximum of three periods of persistence
change (however this assumption can be easily relaxed if necessary).

4Elliott et al. (1996) showed that there is no uniformly most powerful unit root test and
proposed choosing c̃ as the value at which the test is tangent to the power envelope at 50%.
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To test the null hypothesis, H0 : φ = 0, in equation (2.4), when k is unknown
(which is the empirically relevant case) the following test statistic is considered,

T GLS
k̂

:= min
k∈K

t̂GLSk = min
k∈K

∑T
t=2 ∆ûc̃,tcos(k ,t)ûc̃,t−1[

σ̂2
k

∑T
t=2 cos2(k , t)û2

c̃,t−1

]1/2
, (2.5)

where K = {0.5, 1, 1.5, 2, 2.5, 3} and σ̂2
k is the least-squares estimate of E(η2

t )
obtained from (2.4) under a fixed k. Note that although a time series is not
weakly stationary when k 6= 0, it does follow an intrinsically mean-reverting
process with some exceptional periods during which ρt is close to unity.

Figure 2.1: The cosine function for non-integer and integer
values of k

2.2.2 Unconditional and Conditional Heteroskedasticity

It is important to examine how the proposed tests perform under breaks in the
unconditional or the conditional variance of the error process {εt}.5

Simultaneous increases in persistence and in the innovation variance (two
reinforcing effects that cause an increase in σ2

y) may impact the finite sam-
ple performance of the proposed test given that it may be hard to distinguish
whether the increase in the unconditional variance of yt is caused by a true
change in persistence or by an exogenous shift in the innovations’ variance.
Moreover, a large increase in the unconditional variance may cause the process
to be confounded more often with a unit root process.

To accommodate conditional/unconditional heteroskedasticity, heteroskedas-
ticity consistent standard errors, as proposed by Eicker-White (EW), are typi-
cally employed; Demetrescu (2008) and Phillips (1987). Thus, the proposed test
statistic with EW robust standard errors, considering fixed k and no short-run

5Hamori and Tokihisa (1997) and Kim et al. (2002) showed that a permanent variance
shift causes size distortions in the ADF tests; and although conditional heteroskedasticity
does not affect the asymptotic distribution of ADF type test statistics (Phillips; 1987), the
presence of ARCH effects does cause size distortions in finite samples; Kim and Schmidt
(1993).
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dependence in εt is,

t̂GLSk,EW :=

∑T
t=2 ∆ûc̃,tcos(k ,t)ûc̃,t−1(∑T
t=2 cos2(k , t)û2

c̃,t−1η̂
2
t

)1/2
. (2.6)

Proposition 1 Considering data generated from (2.1) and (2.2), and given a
fixed k, it follows as T →∞ that,

i) under the null hypothesis, H0 : φ = 0, and considering Assumptions 1 and
2 in Demetrescu (2008), t̂GLSk,EW − t̂GLSk

p→ 0;

ii) under the alternative hypothesis, H1 : φ = c
T
, for any fixed non-positive c

and c̃, t̂GLSk,EW − t̂GLSk

p→ 0;

where ”
p→ ” represents convergence in probability.

An alternative to the EW approach used in (2.6) also widely applied in the
literature to deal with, among other things, (unconditional and conditional)
heteroskedasticity of unknown form is the Wild bootstrap; Gonçalves and Kilian
(2004) and Cavaliere and Taylor (2008). The approach consists of using the
residuals ε̂t computed from (2.4) and generating a new unit root process as
ûbt = ûbt−1 + vbt , where vbt := etε̂t and et is such that any heteroskedasticity in
ε̂t is preserved in the newly created residuals vbt . We consider et∼i.i.d. N(0, 1),
but the Rademacher distribution is also frequently used. Next, B bootstrap
series of ûbt are generated and in each iteration the bootstrap statistic T GLS∗

k is
computed based on the auxiliary regression

∆ûbt = φbcos(k ,t)ûbt−1 +

p∑
j=1

δj∆û
b
t−j + ηt (2.7)

where ηt is an error term. The bootstrap p-value is computed as

Pb
(
T GLS
k

)
:=

1

B

B∑
n=1

I
(
T GLS∗

k > T GLS
k

)
,

where B is the number of bootstrap iterations and I(.) is the indicator function
(for more details see e.g. Davidson and Flachaire; 2008).

2.2.3 Asymptotic Distributions

In this section the asymptotic distributions of the proposed tests are derived
under the null hypothesis of a unit root and the alternative of local breaks in
persistence. Moreover, the test statistics employed in the construction of the
asymptotic local power envelope and their asymptotic distributions are also
presented.
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Theorem 2.2.1 Under the null hypothesis of a unit root, H0 : φ = 0 (c = 0),
as T →∞ the limit distribution of the proposed test statistic in (2.5) is,

T GLSv

k̂
⇒ min

k∈K

cos(k, 1)W 2
v (1) + 1

2
(2πk)2

∫ 1

0
cos(2πkr)W 2

v (r)dr − 1

2
(∫ 1

0
cos2(k, r)W 2

v (r)dr
)1/2

 , v = µ, τ

(2.8)
where T GLSµ

k̂
and T GLSτ

k̂
are computed from local GLS demeaned and local GLS

de-trended data, respectively, k is fixed, Wµ(r) = W (r) is a standard Brownian
motion, cos(k , r) := cos2(πkr) with r ∈ [0,1] and

Wτ (r) := σW (r)− σr
(1− c̃cos(k , r))W (1) + c̃2

∫ 1

0
rcos2(k , r)W (r)dr∫ 1

0
[1− 2c̃rcos2(k , r) + r2c̃2cos(k, r)] dr

+

+σr
c̃kπ

∫ 1

0
rsin(2πkr)W (r)dr∫ 1

0
[1− 2c̃rcos2(k , r) + r2c̃2cos(k, r)] dr

. (2.9)

As in the traditional unit root testing context, local GLS demeaning has no
effect on the proposed test’s asymptotic distribution (see Appendix for details)
and therefore, the asymptotic distribution of T GLSµ

k̂
is equivalent to that of a

test statistic computed from a test regression with no deterministics.

Theorem 2.2.2 Under the local alternative hypothesis, HA : φ = c
T
< 0, the

limit distribution of the proposed statistic is

T GLSv

k̂
⇒ min

k∈K

cos(k, 1)J2
v,c(1) + 1

2
(2πk)2

∫ 1

0
cos(2πkr)J2

v,c(r)dr − 1

2
(∫ 1

0
cos2(k, r)J2

v,c(r)dr
)1/2

 , v = µ, τ

(2.10)
where k ∈ K , r ∈ (0, 1), Jµ,c(r) = Jc(r) is a standard OU process and Jτ,c(r) is
a local GLS de-trended Ornstein-Uhlenbeck (OU) process.

In order to construct the asymptotic power envelope, an asymptotically
equivalent test to the infeasible most powerful invariant likelihood ratio statistic
proposed by Elliott et al. (1996) will be used. Specifically, for a given c̃ and k
it has the form:

Pc̃ :=

∑T
t=1 ε̂

2
c̃,t − ρ̃t

∑T
t=1 ε̂

2
0,t

σ̂2
(2.11)

where σ̂2 := T−1
∑T

t=1 ε̂
2
c̄,t, ε̂0,t and ε̂c̃,t are the residuals of the model defined by

(2.1) and (2.2) considering c̃ = 0 and c̃ < 0, respectively, and ρ̃t := 1+ c̃
T

cos(k, t).

Theorem 2.2.3 Under H0 : φ = 0 (c = 0) and i.i.d. innovations the asymp-
totic distribution of the test statistic presented in (2.11) is

P µ
c̃ ⇒ c̃2

∫ 1

0

cos2(r , k)J2
c (r)− c̃ cos(T, k)J2

c (1)
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and

P τ
c̃ ⇒ c̃2

∫ 1

0

cos2(r , k)J2
τ,c(r) + (1− c̃ cos(T, k))J2

τ,c(1),

where P µ
c̃ and P τ

c̃ are demeaned and de-trended test statistics, respectively, Jc(r)
is a standard Ornstein-Uhlenbeck (OU) process and Jτ,c(r) is a local GLS de-
trended OU process.

2.3 Monte Carlo Analysis

This section investigates the finite sample properties of the tests previously
introduced under the null and alternative hypotheses. All simulations are per-
formed in Gauss 10.

Table 2.1 presents values for c̃, given a specific k, for which the power of the
test is tangent to the power envelope at 50%, and Table 2.2 provides the neces-
sary critical values for T GLSµ

k̂
and T GLSτ

k̂
considering T ∈ {150, 250, 500, 1000}

and k ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

Table 2.1: Values for the non-centrality parameter c̃ for differ-
ent values of k

k 0 0.5 1 1.5 2 2.5 3

xt = 1 -7.0 -15.6 -11.8 -12.7 -10.7 -11.2 -10.2
xt = [1, t]′ -13.5 -25.4 -25.8 -26.1 -22.2 -23.3 -20.2

Notes: Values computed based on 100,000 replications and T=1000.

Table 2.2: Critical values

T GLSµ

k̂
T GLSτ
k̂

T 1% 5% 10% 1% 5% 10%

150 -3.266 -2.695 -2.403 -4.092 -3.589 -3.336
250 -3.192 -2.629 -2.346 -4.008 -3.517 -3.268
500 -3.152 -2.592 -2.303 -3.958 -3.467 -3.215
1000 -3.133 -2.574 -2.285 -3.935 -3.438 -3.189

Notes: The reported critical values are based on 100,000 simulations.

In what follows, the finite sample performance of the proposed tests will
be compared to that of DFGLSς , with ς = µ, τ . We investigate how the tests
perform under iid innovations, in the presence of autocorrelation and under
conditional and unconditional heteroskedasticity. For the Wild bootstrap ap-
proach 1000 Monte Carlo and bootstrap replications were used, whereas for all
the other simulations 10,000 Monte Carlo replications were considered.
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2.3.1 IID Innovations

Two data generation processes (DGPs) are considered: the first (henceforth
DGP1) is,

yt = ρtyt−1 + εt (2.12)

with ρt = 1+φcos(k , t), cos(k, t) := (1+cos(2πk t/T ))/2 and φ ∈ {−0.1,−0.2, 0};
and the second (DGP2) is,

yt =


ρ1yt−1 + εt for t = 1, ..., bτ1T c
ρ2yt−1 + εt for t = bτ1T c+ 1, ..., bτ2T c
ρ3yt−1 + εt for t = bτ2T c+ 1, ..., T,

(2.13)

where τ1 ≤ τ2, τ1 ∈ {0.3, 0.4, 0.6, 0.8}, τ2 ∈ {0.3, 0.6, 0.7, 0.8}, ρ1 ∈ {0.8, 0.9},
ρ2 ∈ {0.99, 1} and ρ3 ∈ {0.8, 0.9, 0.99, 1} are used to investigate the finite
sample power properties, and ρ1 = ρ2 = ρ3 = 1 (φ = 0) for the finite sample
size of the tests. In both cases, εt ∼ N(0, 1) and y1 = ε1 ∼ N(0, 1) is used.

DGP1 implies that the transition from regimes with φ < 0 (ρt < 1) to
regimes with φ = 0 (ρt = 1) is smooth, since ρt is a function of φ and the
time-varying weights defined by cos(k, t) in (2.3). This cosine function is ap-
proximately 1 for the first values of t, so that ρt is smaller at the beginning of
the sample. Table 2.3 presents the rejection rates of T GLSµ

k̂
. The results show

that the empirical size is close to the nominal 5% significance level for all cases
considered. In contrast to DFGLSµ and when there are breaks in persistence,
T GLSµ

k̂
provides power gains for almost all of the simulation parameters used

(the only exception is when k = 0.5). As expected, the proposed test displays
more difficulties in rejecting the null hypothesis when φ = −0.1, since ρt is
already large before persistence increases. However, also in this case, there are
significant power gains which further increase with the sample size (the empir-
ical power of T GLSµ

k̂
is close to 100% for T = 500).

For φ = −0.1, the de-trended version of the proposed test, T GLSτ
k̂

, only
presents power gains for all values of k when T = 500. Nonetheless, there are
some relevant positive differences relatively to the DFGLSτ for k > 0.5 even
when T = 250. For φ = −0.2, relevant power gains are observed even when
T = 150 and k > 0.5 (see Table 2.4).

In DGP2, to save space, we only allow for a maximum of two abrupt changes
which result in a single period of higher persistence. When ρ2 = ρ3, the break
divides the process into two regimes, with a larger ρt in the last sub-period. If
ρ1 = ρ3 the sub-period of higher persistence occurs in the middle of the sample
and ρt returns to the value assumed at the beginning of the process. The results
in Table 2.5 show, as expected, that the power of T GLSµ

k̂
and DFGLSµ is lower

when ρ2 = 1 in a larger percentage of the sample. For instance, if a persistence
change occurs at τ1 = τ2 = 0.6 the time series behaves as a random walk over
the last 40% of the sample. When the sample size is moderate (T = 250) and
a change occurs, T GLSµ

k̂
displays significant power gains even when ρ1 = 0.9

and ρ2 = ρ3 = 1. When ρ2 = ρ3, T GLSµ

k̂
only provides power gains relative

to DFGLSµ when T ≥ 250 . The differences between the rejection rates of
these two tests are maximized when the process exhibits higher persistence for
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a relevant portion of the sample (τ1 = τ2 = 0.6 ). The same holds when ρ1 = ρ3,
where power gains are observed when T = 150 and τ1 = 0.3 and τ2 = 0.7.

When the statistics are de-trended, and the changes in persistence are abrupt
and ρ2 = ρ3, the advantages of using T GLSτ

k̂
only become clear when the sample

size is large. On the other hand, when ρ1 = ρ3, there are positive differences
relative to the DFGLSτ for all cases (see Table 2.6).

Note that the trigonometric function used considers that persistence is al-
ways lower at the beginning of the sample. The symmetric cases can be investi-
gated using the time series in reverse chronological order. This transformation
alters the asymptotic distributions of the statistics (see (2.17) ). Since the criti-
cal values are very close to those obtained using the normal chronological order,
reversing the time series when the process starts with a period of higher persis-
tence leads to results similar to those discussed in this section and are therefore
omitted.
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Table 2.3: Empirical size and power with iid errors

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt, with εt∼N(0, 1)

DFGLSµ T GLSµ

k̂
DFGLS∗µ T GLS∗µ

k̂

T = 150
k/φ 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2

0 0.052 0.925 0.999 0.051 0.707 0.962 0.053 0.918 0.996 0.048 0.679 0.952
0.5 0.052 0.317 0.523 0.051 0.286 0.654 0.053 0.330 0.547 0.048 0.268 0.640
1.0 0.052 0.356 0.601 0.051 0.375 0.769 0.053 0.349 0.619 0.048 0.366 0.748
1.5 0.052 0.336 0.574 0.051 0.354 0.734 0.053 0.336 0.574 0.048 0.337 0.725
2.0 0.052 0.377 0.658 0.051 0.428 0.811 0.053 0.377 0.659 0.048 0.419 0.803
2.5 0.052 0.361 0.635 0.051 0.420 0.796 0.053 0.365 0.624 0.048 0.400 0.762
3.0 0.052 0.405 0.725 0.051 0.461 0.843 0.053 0.423 0.726 0.048 0.465 0.820

T = 250

0 0.052 0.996 1.000 0.052 0.942 0.996 0.040 0.935 0.998 0.040 0.935 0.998
0.5 0.052 0.484 0.674 0.052 0.557 0.942 0.040 0.477 0.663 0.040 0.532 0.930
1.0 0.052 0.555 0.765 0.052 0.689 0.967 0.040 0.549 0.762 0.040 0.685 0.961
1.5 0.052 0.524 0.753 0.052 0.657 0.958 0.040 0.526 0.754 0.040 0.628 0.958
2.0 0.052 0.601 0.854 0.052 0.740 0.974 0.040 0.578 0.851 0.040 0.720 0.971
2.5 0.052 0.588 0.839 0.052 0.717 0.967 0.040 0.577 0.832 0.040 0.703 0.955
3.0 0.052 0.666 0.918 0.052 0.774 0.976 0.040 0.661 0.919 0.040 0.752 0.970

T = 500

0 0.050 1.000 1.000 0.052 0.999 1.000 0.041 1.000 1.000 0.041 1.000 1.000
0.5 0.050 0.683 0.818 0.052 0.961 0.999 0.041 0.684 0.818 0.041 0.950 0.998
1.0 0.050 0.774 0.911 0.052 0.982 1.000 0.041 0.758 0.909 0.041 0.978 1.000
1.5 0.050 0.761 0.913 0.052 0.977 1.000 0.041 0.778 0.923 0.041 0.966 1.000
2.0 0.050 0.859 0.976 0.052 0.988 1.000 0.041 0.852 0.968 0.041 0.984 0.999
2.5 0.050 0.848 0.968 0.052 0.983 1.000 0.041 0.844 0.972 0.041 0.972 1.000
3.0 0.050 0.922 0.995 0.052 0.989 1.000 0.041 0.915 0.992 0.041 0.985 0.999

Notes: DFGLS
∗
µ and T GLS

∗
µ

k̂
are Wild bootstrap based test statistics.
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Table 2.4: Empirical size and power with iid errors - linear
trend case

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt, with εt∼N(0, 1)

DFGLSτ T GLSτ
k̂

DFGLS∗τ T GLS∗τ
k̂

T = 150
k/φ 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2 0 −0.1 −0.2

0 0.050 0.594 0.991 0.048 0.364 0.859 0.053 0.584 0.988 0.046 0.340 0.839
0.5 0.050 0.184 0.400 0.048 0.153 0.373 0.053 0.195 0.415 0.046 0.146 0.351
1.0 0.050 0.119 0.280 0.048 0.134 0.396 0.053 0.120 0.274 0.046 0.110 0.348
1.5 0.050 0.126 0.298 0.048 0.130 0.376 0.053 0.132 0.297 0.046 0.125 0.338
2.0 0.050 0.134 0.314 0.048 0.147 0.439 0.053 0.133 0.307 0.046 0.142 0.406
2.5 0.050 0.130 0.307 0.048 0.147 0.434 0.053 0.129 0.324 0.046 0.130 0.415
3.0 0.050 0.146 0.348 0.048 0.171 0.481 0.053 0.149 0.343 0.046 0.155 0.446

T = 250

0 0.048 0.960 1.000 0.051 0.725 0.994 0.048 0.969 1.000 0.056 0.706 0.994
0.5 0.048 0.333 0.604 0.051 0.290 0.759 0.048 0.356 0.629 0.056 0.309 0.737
1.0 0.048 0.230 0.478 0.051 0.298 0.819 0.048 0.223 0.456 0.056 0.300 0.787
1.5 0.048 0.246 0.504 0.051 0.280 0.797 0.048 0.259 0.517 0.056 0.264 0.789
2.0 0.048 0.253 0.537 0.051 0.336 0.850 0.048 0.264 0.544 0.056 0.325 0.824
2.5 0.048 0.244 0.542 0.051 0.325 0.833 0.048 0.243 0.527 0.056 0.309 0.818
3.0 0.048 0.282 0.598 0.051 0.369 0.872 0.048 0.275 0.602 0.056 0.361 0.844

T = 500

0 0.050 1.000 1.000 0.048 0.995 1.000 0.049 1.000 1.000 0.046 0.987 1.000
0.5 0.050 0.607 0.806 0.048 0.764 0.999 0.049 0.612 0.808 0.046 0.749 0.997
1.0 0.050 0.486 0.728 0.048 0.827 0.999 0.049 0.490 0.727 0.046 0.807 1.000
1.5 0.050 0.509 0.758 0.048 0.806 0.999 0.049 0.517 0.767 0.046 0.782 0.998
2.0 0.050 0.535 0.811 0.048 0.859 1.000 0.049 0.540 0.793 0.046 0.851 1.000
2.5 0.050 0.540 0.828 0.048 0.847 1.000 0.049 0.550 0.817 0.046 0.837 1.000
3.0 0.050 0.595 0.884 0.048 0.879 1.000 0.049 0.597 0.882 0.046 0.871 0.999

Notes: DFGLS
∗
τ and T GLS

∗
τ

k̂
are Wild bootstrap based test statistics.
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Table 2.5: Empirical power when the breaks in persistence are
abrupt

DGP: yt =


ρ1yt−1 + εt for t = 1, ..., bτ1T c
ρ2yt−1 + εt for t = bτ1T c+ 1, ..., bτ2T c
ρ3yt−1 + εt for t = bτ2T c+ 1, ..., T,

εt∼N(0, 1)

DFGLSµ T GLSµ

k̂
DFGLSµ T GLSµ

k̂
DFGLSµ T GLSµ

k̂

CV WB CV WB CV WB CV WB CV WB CV WB

T = 150
(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.3) (τ̄1, τ̄2) = (0.6, 0.6) (τ̄1, τ̄2) = (0.8, 0.8)

(0.8, 0.99, 0.99) 0.233 0.252 0.287 0.287 0.515 0.541 0.724 0.714 0.783 0.792 0.908 0.889
(0.8, 1, 1) 0.148 0.165 0.205 0.211 0.408 0.418 0.661 0.655 0.718 0.723 0.897 0.876

(0.9, 0.99, 0.99) 0.194 0.207 0.188 0.191 0.398 0.419 0.373 0.384 0.629 0.650 0.553 0.526
(0.9, 1, 1) 0.124 0.135 0.133 0.133 0.314 0.308 0.315 0.317 0.561 0.576 0.525 0.502

(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.6) (τ̄1, τ̄2) = (0.4, 0.7) (τ̄1, τ̄2) = (0.3, 0.7)

(0.8, 0.99, 0.8) 0.752 0.768 0.880 0.866 0.743 0.746 0.920 0.896 0.607 0.623 0.865 0.838
(0.8, 1, 0.8) 0.667 0.676 0.876 0.863 0.658 0.675 0.924 0.905 0.501 0.509 0.873 0.850

(0.9, 0.99, 0.9) 0.569 0.578 0.538 0.520 0.568 0.573 0.574 0.544 0.454 0.457 0.500 0.473
(0.9, 1, 0.9) 0.485 0.487 0.534 0.517 0.491 0.498 0.581 0.561 0.362 0.360 0.513 0.490

T = 250
(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.3) (τ̄1, τ̄2) = (0.6, 0.6) (τ̄1, τ̄2) = (0.8, 0.8)

(0.8, 0.99, 0.99) 0.342 0.345 0.475 0.452 0.640 0.628 0.940 0.933 0.863 0.873 0.992 0.992
(0.8, 1, 1) 0.170 0.157 0.286 0.286 0.449 0.448 0.878 0.856 0.763 0.777 0.989 0.989

(0.9, 0.99, 0.99) 0.305 0.316 0.332 0.327 0.569 0.557 0.686 0.644 0.798 0.809 0.857 0.842
(0.9, 1, 1) 0.149 0.125 0.189 0.180 0.392 0.402 0.573 0.531 0.687 0.698 0.834 0.815

(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.6) (τ̄1, τ̄2) = (0.4, 0.7) (τ̄1, τ̄2) = (0.3, 0.7)

(0.8, 0.99, 0.8) 0.856 0.853 0.982 0.981 0.857 0.855 0.990 0.990 0.745 0.732 0.981 0.977
(0.8, 1, 0.8) 0.733 0.729 0.981 0.980 0.737 0.730 0.991 0.987 0.570 0.577 0.983 0.979

(0.9, 0.99, 0.9) 0.773 0.769 0.831 0.813 0.775 0.777 0.868 0.852 0.659 0.655 0.804 0.793
(0.9, 1, 0.9) 0.635 0.638 0.822 0.810 0.633 0.631 0.879 0.864 0.481 0.475 0.820 0.804

T = 500
(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.3) (τ̄1, τ̄2) = (0.6, 0.6) (τ̄1, τ̄2) = (0.8, 0.8)

(0.8, 0.99, 0.99) 0.578 0.569 0.752 0.753 0.824 0.816 0.998 0.998 0.948 0.934 1.000 1.000
(0.8, 1, 1) 0.177 0.161 0.369 0.355 0.476 0.472 0.959 0.957 0.801 0.800 1.000 1.000

(0.9, 0.99, 0.99) 0.550 0.549 0.644 0.657 0.793 0.789 0.978 0.973 0.928 0.921 0.997 0.997
(0.9, 1, 1) 0.165 0.147 0.291 0.269 0.440 0.440 0.881 0.877 0.761 0.756 0.995 0.993

(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.6) (τ̄1, τ̄2) = (0.4, 0.7) (τ̄1, τ̄2) = (0.3, 0.7)

(0.8, 0.99, 0.8) 0.961 0.965 1.000 1.000 0.962 0.955 1.000 1.000 0.910 0.909 1.000 1.000
(0.8, 1, 0.8) 0.784 0.770 1.000 1.000 0.792 0.785 1.000 1.000 0.615 0.615 1.000 1.000

(0.9, 0.99, 0.9) 0.941 0.945 0.995 0.994 0.943 0.935 0.997 0.996 0.878 0.866 0.992 0.990
(0.9, 1, 0.9) 0.727 0.723 0.992 0.988 0.733 0.730 0.998 0.997 0.560 0.554 0.993 0.993
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Table 2.6: Empirical power when the breaks in persistence are
abrupt - linear trend case

DGP: yt =


ρ1yt−1 + εt for t = 1, ..., bτ1T c
ρ2yt−1 + εt for t = bτ1T c+ 1, ..., bτ2T c
ρ3yt−1 + εt for t = bτ2T c+ 1, ..., T,

εt∼N(0, 1)

DFGLSτ T GLSτ
k̂

DFGLSτ T GLSτ
k̂

DFGLSτ T GLSτ
k̂

CV WB CV WB CV WB CV WB CV WB CV WB

T = 150
(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.3) (τ̄1, τ̄2) = (0.6, 0.6) (τ̄1, τ̄2) = (0.8, 0.8)

(0.8, 0.99, 0.99) 0.185 0.206 0.211 0.199 0.442 0.460 0.440 0.429 0.712 0.728 0.661 0.658
(0.8, 1, 1) 0.143 0.156 0.168 0.154 0.360 0.369 0.386 0.372 0.646 0.660 0.637 0.620

(0.9, 0.99, 0.99) 0.129 0.147 0.124 0.100 0.244 0.253 0.186 0.176 0.375 0.381 0.259 0.234
(0.9, 1, 1) 0.105 0.119 0.103 0.091 0.198 0.203 0.157 0.155 0.337 0.346 0.241 0.215

(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.6) (τ̄1, τ̄2) = (0.4, 0.7) (τ̄1, τ̄2) = (0.3, 0.7)

(0.8, 0.99, 0.8) 0.449 0.450 0.615 0.584 0.461 0.475 0.657 0.604 0.304 0.320 0.531 0.494
(0.8, 1, 0.8) 0.376 0.380 0.610 0.575 0.393 0.390 0.651 0.598 0.241 0.248 0.530 0.468

(0.9, 0.99, 0.9) 0.228 0.222 0.232 0.208 0.240 0.230 0.230 0.196 0.166 0.175 0.181 0.153
(0.9, 1, 0.9) 0.187 0.184 0.231 0.208 0.198 0.185 0.214 0.181 0.125 0.131 0.172 0.135

T = 250
(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.3) (τ̄1, τ̄2) = (0.6, 0.6) (τ̄1, τ̄2) = (0.8, 0.8)

(0.8, 0.99, 0.99) 0.256 0.236 0.383 0.372 0.596 0.614 0.810 0.791 0.846 0.851 0.956 0.952
(0.8, 1, 1) 0.174 0.164 0.274 0.257 0.445 0.457 0.713 0.696 0.749 0.760 0.946 0.942

(0.9, 0.99, 0.99) 0.195 0.171 0.208 0.215 0.436 0.449 0.381 0.391 0.673 0.694 0.545 0.535
(0.9, 1, 1) 0.134 0.132 0.151 0.148 0.313 0.340 0.300 0.321 0.576 0.597 0.506 0.500

(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.6) (τ̄1, τ̄2) = (0.4, 0.7) (τ̄1, τ̄2) = (0.3, 0.7)

(0.8, 0.99, 0.8) 0.617 0.611 0.929 0.906 0.632 0.621 0.964 0.951 0.456 0.437 0.902 0.868
(0.8, 1, 0.8) 0.483 0.463 0.920 0.900 0.499 0.496 0.964 0.943 0.317 0.297 0.897 0.857

(0.9, 0.99, 0.9) 0.433 0.416 0.487 0.480 0.452 0.451 0.516 0.495 0.315 0.287 0.414 0.410
(0.9, 1, 0.9) 0.326 0.311 0.480 0.463 0.345 0.326 0.506 0.492 0.211 0.203 0.410 0.393

T = 500
(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.3) (τ̄1, τ̄2) = (0.6, 0.6) (τ̄1, τ̄2) = (0.8, 0.8)

(0.8, 0.99, 0.99) 0.412 0.396 0.680 0.678 0.799 0.791 0.991 0.989 0.951 0.938 1.000 1.000
(0.8, 1, 1) 0.200 0.192 0.413 0.404 0.509 0.517 0.920 0.912 0.812 0.815 1.000 1.000

(0.9, 0.99, 0.99) 0.360 0.339 0.474 0.466 0.723 0.720 0.863 0.855 0.910 0.904 0.968 0.958
(0.9, 1, 1) 0.169 0.164 0.267 0.256 0.434 0.440 0.697 0.675 0.749 0.750 0.951 0.940

(ρ1, ρ2, ρ3) (τ̄1, τ̄2) = (0.3, 0.6) (τ̄1, τ̄2) = (0.4, 0.7) (τ̄1, τ̄2) = (0.3, 0.7)

(0.8, 0.99, 0.8) 0.819 0.813 0.999 0.999 0.841 0.833 1.000 1.000 0.699 0.685 0.999 0.999
(0.8, 1, 0.8) 0.563 0.580 0.998 0.997 0.582 0.572 1.000 1.000 0.386 0.381 0.997 0.992

(0.9, 0.99, 0.9) 0.740 0.732 0.941 0.937 0.757 0.745 0.963 0.950 0.607 0.608 0.913 0.904
(0.9, 1, 0.9) 0.479 0.489 0.924 0.917 0.497 0.494 0.966 0.945 0.313 0.309 0.901 0.878
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2.3.2 Serially Correlated Errors

To investigate the finite sample properties of the tests in the presence of au-
tocorrelation it is assumed that the error process of (2.12) is an ARMA, such
as,

εt = δεt−1 + θet−1 + et, et ∼ N(0, 1), (2.14)

with y1 = ε1 ∼ N(0, 1), δ ∈ {0, 0.3, 0.6} and θ ∈ {−0.8,−0.4, 0, 0.4, 0.8}. The
lags of the augmented test regression are chosen using the MAIC information
criteria proposed by Ng and Perron (2001).

Table 2.7 summarizes the finite sample results for the demeaned tests. Al-
though we also performed simulations for T = 150 and T = 500, for the sake of
space only the results for T = 250 are reported as the conclusions are qualita-
tively the same. The T GLSµ

k̂
test displays good finite sample size performance.

Its empirical size only exceeds the nominal 5% significance level when θ < 0,
but even in these cases the results are close to or slightly lower than those of
the DFGLSµ .

To evaluate the power performance we considered φ = −0.1 and that the
persistence change is smooth and approximated by cosine functions. The sign
of θ also affects the power properties of the proposed test. When θ ≥ 0 and
k > 0.5 there are relevant power gains even when T = 150. For larger samples,
the power differences relative to DFGLSµ are more pronounced and occur for
all values of k. All tests have more difficulties in rejecting the null hypothesis
when θ = −0.8 and δ = 0.

Simulation results for the de-trended statistics are presented in Table 2.8.
Similarly to the demeaned case, also the empirical size of T GLSτ

k̂
exceeds the

nominal 5% level less than the DFGLSτ when θ < 0, and the two tests are more
undersized when θ > 0. This problem is attenuated as the sample size increases.
The results show that the power of the tests considered is low when a linear
trend is used and ρt is large before the increase in persistence. For T = 500
the results improve and the superiority of the proposed test becomes evident
especially when θ ≥ 0.
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Table 2.7: Finite sample size and power with εt autocorrelated

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt
εt = δεt−1 + θet−1 + et, et ∼ N(0, 1)

T = 250 DFGLSµ T GLSµ
k̂

(φ, k) θ / δ 0 0.3 0.6 0 0.3 0.6

(0, 0)

−0.8 0.078 0.091 0.104 0.063 0.074 0.091
−0.4 0.052 0.053 0.029 0.055 0.056 0.034

0 0.044 0.044 0.043 0.045 0.046 0.044
0.4 0.043 0.040 0.039 0.046 0.043 0.044
0.8 0.039 0.039 0.040 0.045 0.044 0.046

(−0.1, 0.5)

−0.8 0.235 0.317 0.426 0.164 0.266 0.433
−0.4 0.361 0.395 0.289 0.378 0.452 0.282

0 0.392 0.375 0.351 0.439 0.426 0.411
0.4 0.356 0.335 0.312 0.403 0.379 0.343
0.8 0.289 0.283 0.262 0.331 0.322 0.301

(−0.1, 1.0)

−0.8 0.290 0.389 0.512 0.226 0.350 0.550
−0.4 0.434 0.480 0.366 0.518 0.604 0.496

0 0.473 0.463 0.445 0.605 0.603 0.606
0.4 0.437 0.420 0.400 0.588 0.576 0.553
0.8 0.362 0.359 0.342 0.529 0.524 0.509

(−0.1, 1.5)

−0.8 0.275 0.364 0.492 0.204 0.330 0.523
−0.4 0.401 0.441 0.316 0.483 0.570 0.436

0 0.436 0.418 0.393 0.562 0.561 0.545
0.4 0.392 0.373 0.344 0.533 0.517 0.486
0.8 0.321 0.313 0.293 0.481 0.469 0.449

(−0.1, 2.0)

−0.8 0.323 0.432 0.576 0.249 0.380 0.592
−0.4 0.487 0.536 0.405 0.582 0.672 0.584

0 0.518 0.509 0.498 0.668 0.677 0.676
0.4 0.489 0.474 0.452 0.658 0.648 0.634
0.8 0.423 0.419 0.410 0.608 0.605 0.591

(−0.1, 2.5)

−0.8 0.308 0.411 0.553 0.243 0.378 0.584
−0.4 0.466 0.512 0.364 0.557 0.645 0.540

0 0.493 0.478 0.462 0.641 0.641 0.637
0.4 0.455 0.439 0.415 0.623 0.610 0.587
0.8 0.388 0.384 0.369 0.570 0.567 0.549

(−0.1, 3)

−0.8 0.355 0.476 0.642 0.269 0.415 0.624
−0.4 0.547 0.608 0.464 0.618 0.704 0.635

0 0.585 0.585 0.589 0.706 0.717 0.714
0.4 0.560 0.553 0.550 0.696 0.689 0.675
0.8 0.508 0.512 0.515 0.651 0.648 0.633
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Table 2.8: Finite sample sizes and power with εt autocorrelated
- linear trend case

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt
εt = δεt−1 + θet−1 + et, et ∼ N(0, 1)

T = 250 DFGLSτ T GLSτ
k̂

(φ, k) θ / δ 0 0.3 0.6 0 0.3 0.6

(0, 0)

−0.8 0.066 0.085 0.107 0.029 0.047 0.093
−0.4 0.046 0.046 0.013 0.050 0.054 0.022

0 0.033 0.032 0.034 0.039 0.040 0.043
0.4 0.030 0.027 0.026 0.037 0.033 0.033
0.8 0.022 0.022 0.023 0.035 0.033 0.034

(−0.1, 0.5)

−0.8 0.169 0.229 0.315 0.050 0.093 0.227
−0.4 0.218 0.254 0.104 0.170 0.228 0.076

0 0.231 0.204 0.186 0.196 0.185 0.176
0.4 0.188 0.161 0.138 0.162 0.136 0.116
0.8 0.118 0.109 0.099 0.112 0.107 0.102

(−0.1, 1.0)

−0.8 0.117 0.162 0.235 0.054 0.106 0.247
−0.4 0.151 0.172 0.067 0.201 0.254 0.123

0 0.155 0.138 0.132 0.227 0.218 0.211
0.4 0.128 0.112 0.097 0.201 0.179 0.160
0.8 0.078 0.075 0.069 0.159 0.154 0.145

(−0.1, 1.5)

−0.8 0.133 0.181 0.245 0.055 0.106 0.240
−0.4 0.160 0.182 0.071 0.190 0.234 0.101

0 0.167 0.146 0.133 0.206 0.195 0.184
0.4 0.130 0.111 0.092 0.174 0.152 0.138
0.8 0.079 0.073 0.065 0.137 0.134 0.126

(−0.1, 2.0)

−0.8 0.148 0.201 0.278 0.068 0.128 0.278
−0.4 0.175 0.201 0.078 0.242 0.295 0.168

0 0.181 0.161 0.151 0.268 0.258 0.248
0.4 0.144 0.127 0.109 0.241 0.219 0.196
0.8 0.094 0.088 0.082 0.201 0.192 0.178

(−0.1, 2.5)

−0.8 0.151 0.203 0.275 0.072 0.137 0.278
−0.4 0.172 0.194 0.068 0.228 0.287 0.157

0 0.17 0.151 0.141 0.252 0.246 0.236
0.4 0.135 0.117 0.099 0.230 0.211 0.190
0.8 0.089 0.081 0.070 0.187 0.183 0.171

(−0.1, 3)

−0.8 0.177 0.238 0.327 0.080 0.151 0.313
−0.4 0.209 0.232 0.088 0.277 0.334 0.207

0 0.202 0.186 0.179 0.305 0.293 0.289
0.4 0.168 0.146 0.134 0.276 0.257 0.237
0.8 0.113 0.108 0.105 0.234 0.226 0.213
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2.3.3 Heteroskedasticity

Unconditional Heteroskedasticity

To evaluate the impact of unconditional heteroscedasticity on the performance
of the tests we consider DGP1 with the following specification for the innovation
process,

εt ∼


N(0, σ2

1) for t = 1, ..., bτ̄1T c
N(0, σ2

2) for t = bτ̄1T c+ 1, ..., bτ̄2T c
N(0, σ2

3) for t = bτ̄2T c+ 1, ..., T,
(2.15)

and y1 ∼ N(0, σ2
1).

It is important to infer how changes in the innovation variance affect the
finite sample properties of the proposed test. To save space, only results based
on DGP1 with φ = −0.1 are reported. Two cases were considered: in the
first, a single break is allowed that either increases or decreases the innovation
variance; and in the second, two breaks in variance are allowed, the first causing
an increase in the innovation variance and the second a reduction to the value
it assumed before the occurrence of any break. The values considered in the
simulations allow for large changes in the unconditional variance.

Size results for demeaned data are reported in Table 2.9. The results show
that the proposed test reveals in some cases finite sample size distortions. How-
ever, the rejection rates are, overall, not too far from those of the DFGLSµ test.
Over-rejections are more severe when the innovation variance faces a large in-
crease (e.g. σ2

2 = 4), even if a negative variation of the same magnitude occurs
later. The largest empirical size distortions are observed when breaks occur
closer to the end of the sample. For decreases in volatility, there are also small
over-rejections of the null, especially when these occur at the beginning of the
sample (τ̄1 = 0.3). Table 2.10 presents the rejection rates for the linear trend
case. Although the empirical size of the proposed test shows the same patterns
reported for the demeaned case the rejection rates under the null are larger.

Table 2.11 presents the results for the tests when the Wild bootstrap is used
and T = 250. The empirical size of T GLSµ

k̂
is close to the nominal 5% significance

level for all cases investigated. Regarding the power properties, comparing the
results in Table 2.11 with those in Table 2.3, where the innovation variance is
constant, we observe that the power loss is greater for an increase in volatility,
e.g. when (σ1, σ2, σ3) = (1, 2, 2), with k = 0.5 or τ̄1 = 0.7. When a decrease in
the unconditional variance is observed, the power loss is greater for k > 0.5 and
τ̄1 = 0.3. Finally, the occurrence of two breaks in the unconditional variance
causes more severe power losses when k = 1 and the magnitude of the changes
is larger (σ2 = 2).

The superior power performance of T GLSµ

k̂
relatively toDFGLSµ also depends

on k, τ̄1 and σ. For instance, when the innovation variance increases, the
rejection rates of T GLSµ

k̂
are greater for k > 0.5 and the difference relative

to DFGLSµ reaches its maximum for τ̄1 = 0.3. When the variance decreases,
T GLSµ

k̂
shows better power properties for all k and the superiority relative to

DFGLSµ is more prominent for τ̄1 = 0.7. On the other hand, if two breaks in
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the unconditional variance occur, the positive difference in the percentage of
rejection relative to the DFGLSµ test is greater when k = 1 and the change in
the innovation variance is smaller (σ2 = 1.5).

Table 2.12 presents the results for the linear trend case with T = 250. Power
losses (when compared to Table 2.4) caused by the occurrence of breaks in the
variance are similar to those reported for the demeaned case. Regarding the
comparison with the DFGLSτ test, we see that power gains are small when
φ = −0.1. In this case, the superior performance of T GLSτ

k̂
only becomes clear

for larger samples (T = 500).

Table 2.9: Empirical size under unconditional variance breaks

DGP: yt = yt−1 + εt,

εt∼


N(0, σ2

1) for t = 1, ..., bτ1T c
N(0, σ2

2) for t = bτ1T c+ 1, ..., bτ2T c
N(0, σ2

3) for t = bτ2T c+ 1, ..., T,

T = 150

DFGLSµ T GLSµ

k̂
DFGLSµ T GLSµ

k̂
DFGLSµ T GLSµ

k̂

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.3) (τ1 = 0.5, τ2 = 0.5) (τ1 = 0.7, τ2 = 0.7)

(1, 2, 2) 0.068 0.077 0.070 0.082 0.069 0.083
(2, 1, 1) 0.059 0.071 0.062 0.073 0.057 0.052

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.6) (τ1 = 0.4, τ2 = 0.7) (τ1 = 0.3, τ2 = 0.7)

(1, 1.5, 1) 0.058 0.059 0.058 0.062 0.060 0.066
(1, 2, 1) 0.068 0.078 0.065 0.079 0.071 0.084

T = 250

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.3) (τ1 = 0.5, τ2 = 0.5) (τ1 = 0.7, τ2 = 0.7)

(1, 2, 2) 0.069 0.077 0.069 0.080 0.072 0.088
(2, 1, 1) 0.063 0.070 0.061 0.069 0.056 0.058

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.6) (τ1 = 0.4, τ2 = 0.7) (τ1 = 0.3, τ2 = 0.7)

(1, 1.5, 1) 0.056 0.059 0.059 0.058 0.060 0.063
(1, 2, 1) 0.069 0.072 0.069 0.078 0.069 0.080

T = 500

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.3) (τ1 = 0.5, τ2 = 0.5) (τ1 = 0.7, τ2 = 0.7)

(1, 2, 2) 0.065 0.075 0.071 0.083 0.068 0.089
(2, 1, 1) 0.058 0.066 0.057 0.068 0.057 0.060

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.6) (τ1 = 0.4, τ2 = 0.7) (τ1 = 0.3, τ2 = 0.7)

(1, 1.5, 1) 0.051 0.058 0.058 0.061 0.054 0.059
(1, 2, 1) 0.061 0.072 0.070 0.078 0.063 0.073
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Table 2.10: Empirical size under unconditional variance breaks
- linear trend case

DGP: yt = yt−1 + εt,

εt∼


N(0, σ2

1) for t = 1, ..., bτ1T c
N(0, σ2

2) for t = bτ1T c+ 1, ..., bτ2T c
N(0, σ2

3) for t = bτ2T c+ 1, ..., T,

T = 150

DFGLSτ T GLSτ
k̂

DFGLSτ T GLSτ
k̂

DFGLSτ T GLSτ
k̂

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.3) (τ1 = 0.5, τ2 = 0.5) (τ1 = 0.7, τ2 = 0.7)

(1, 2, 2) 0.074 0.074 0.077 0.088 0.081 0.107
(2, 1, 1) 0.074 0.083 0.076 0.079 0.070 0.066

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.6) (τ1 = 0.4, τ2 = 0.7) (τ1 = 0.3, τ2 = 0.7)

(1, 1.5, 1) 0.061 0.063 0.059 0.065 0.058 0.065
(1, 2, 1) 0.074 0.096 0.070 0.102 0.069 0.095

T = 250

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.3) (τ1 = 0.5, τ2 = 0.5) (τ1 = 0.7, τ2 = 0.7)

(1, 2, 2) 0.063 0.073 0.065 0.089 0.068 0.108
(2, 1, 1) 0.059 0.077 0.058 0.075 0.052 0.063

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.6) (τ1 = 0.4, τ2 = 0.7) (τ1 = 0.3, τ2 = 0.7)

(1, 1.5, 1) 0.058 0.063 0.054 0.062 0.058 0.062
(1, 2, 1) 0.069 0.091 0.065 0.101 0.071 0.093

T = 500

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.3) (τ1 = 0.5, τ2 = 0.5) (τ1 = 0.7, τ2 = 0.7)

(1, 2, 2) 0.065 0.078 0.066 0.088 0.067 0.105
(2, 1, 1) 0.059 0.075 0.056 0.070 0.054 0.062

(σ1, σ2, σ3) (τ1 = 0.3, τ2 = 0.6) (τ1 = 0.4, τ2 = 0.7) (τ1 = 0.3, τ2 = 0.7)

(1, 1.5, 1) 0.058 0.062 0.062 0.069 0.059 0.064
(1, 2, 1) 0.071 0.089 0.077 0.103 0.074 0.093
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Table 2.11: Empirical size and power of Wild bootstrap based
statistics under unconditional variance breaks.

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt,

εt∼


N(0, σ2

1) for t = 1, ..., bτ1T c
N(0, σ2

2) for t = bτ1T c+ 1, ..., bτ2T c
N(0, σ2

3) for t = bτ2T c+ 1, ..., T,

DFGLSµ∗ T GLS∗µ

k̂

T = 250 σ1 = 1, σ2 = 2 and σ3 = 2

(φ, k)/(τ̄1, τ̄2) (0.3, 0.3) (0.5, 0.5) (0.7, 0.7) (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)

(0, 0) 0.051 0.054 0.055 0.058 0.046 0.044
(−0.1, 0.5) 0.372 0.312 0.313 0.323 0.276 0.276
(−0.1, 1.0) 0.428 0.575 0.650 0.590 0.654 0.676
(−0.1, 1.5) 0.519 0.552 0.463 0.581 0.571 0.423
(−0.1, 2.0) 0.604 0.538 0.534 0.689 0.649 0.640
(−0.1, 2.5) 0.569 0.510 0.570 0.652 0.597 0.577
(−0.1, 3.0) 0.607 0.641 0.589 0.736 0.716 0.654

σ1 = 2, σ2 = 2 and σ3 = 1

(0, 0) 0.057 0.053 0.041 0.052 0.037 0.049
(−0.1, 0.5) 0.624 0.683 0.651 0.683 0.699 0.671
(−0.1, 1.0) 0.582 0.452 0.463 0.606 0.552 0.576
(−0.1, 1.5) 0.490 0.491 0.583 0.564 0.549 0.685
(−0.1, 2.0) 0.486 0.573 0.562 0.591 0.685 0.688
(−0.1, 2.5) 0.532 0.613 0.599 0.601 0.670 0.712
(−0.1, 3.0) 0.597 0.606 0.670 0.638 0.658 0.733

σ1 = 1, σ2 = 1.5 and σ3 = 1
(φ, k)/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0, 0) 0.046 0.052 0.056 0.042 0.052 0.050
(−0.1, 0.5) 0.505 0.460 0.486 0.520 0.455 0.482
(−0.1, 1.0) 0.422 0.458 0.424 0.569 0.588 0.548
(−0.1, 1.5) 0.528 0.610 0.566 0.663 0.685 0.671
(−0.1, 2.0) 0.667 0.616 0.629 0.754 0.692 0.696
(−0.1, 2.5) 0.574 0.550 0.580 0.695 0.679 0.700
(−0.1, 3.0) 0.640 0.653 0.667 0.729 0.747 0.749

σ1 = 1, σ2 = 2 and σ3 = 1

(0, 0) 0.052 0.056 0.052 0.059 0.058 0.057
(−0.1, 0.5) 0.505 0.434 0.461 0.509 0.387 0.436
(−0.1, 1.0) 0.352 0.401 0.339 0.442 0.482 0.444
(−0.1, 1.5) 0.520 0.647 0.581 0.625 0.684 0.667
(−0.1, 2.0) 0.707 0.592 0.604 0.727 0.643 0.648
(−0.1, 2.5) 0.558 0.514 0.573 0.653 0.618 0.650
(−0.1, 3.0) 0.602 0.617 0.649 0.677 0.710 0.740
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Table 2.12: Empirical size and power of Wild bootstrap based
statistics under unconditional variance breaks - linear trend case

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt,

εt∼


N(0, σ2

1) for t = 1, ..., bτ1T c
N(0, σ2

2) for t = bτ1T c+ 1, ..., bτ2T c
N(0, σ2

3) for t = bτ2T c+ 1, ..., T,

DFGLS∗τ T GLS∗τ
k̂

T = 250 σ1 = 1, σ2 = 2 and σ3 = 2
(φ, k)/(τ̄1, τ̄2) (0.3, 0.3) (0.5, 0.5) (0.7, 0.7) (0.3, 0.3) (0.5, 0.5) (0.7, 0.7)

(0, 0) 0.045 0.054 0.051 0.050 0.050 0.060
(−0.1, 0.5) 0.259 0.230 0.200 0.188 0.178 0.176
(−0.1, 1.0) 0.175 0.262 0.332 0.234 0.285 0.341
(−0.1, 1.5) 0.260 0.317 0.244 0.254 0.287 0.222
(−0.1, 2.0) 0.294 0.258 0.236 0.279 0.263 0.256
(−0.1, 2.5) 0.276 0.241 0.322 0.274 0.242 0.265
(−0.1, 3.0) 0.266 0.315 0.273 0.311 0.319 0.269

σ1 = 2, σ2 = 2 and σ3 = 1

(0, 0) 0.044 0.044 0.051 0.057 0.049 0.046
(−0.1, 0.5) 0.470 0.520 0.493 0.391 0.386 0.352
(−0.1, 1.0) 0.264 0.202 0.171 0.302 0.228 0.203
(−0.1, 1.5) 0.245 0.199 0.259 0.234 0.192 0.290
(−0.1, 2.0) 0.213 0.250 0.255 0.218 0.262 0.264
(−0.1, 2.5) 0.223 0.269 0.226 0.235 0.279 0.244
(−0.1, 3.0) 0.245 0.230 0.288 0.279 0.262 0.304

σ1 = 1, σ2 = 1.5 and σ3 = 1
(φ, k)/τ̄ (0.3, 0.6) (0.4, 0.7) (0.3, 0.7) (0.3, 0.6) (0.4, 0.7) (0.3, 0.7)

(0, 0) 0.051 0.049 0.049 0.053 0.051 0.050
(−0.1, 0.5) 0.365 0.317 0.326 0.290 0.254 0.262
(−0.1, 1.0) 0.163 0.180 0.156 0.184 0.208 0.181
(−0.1, 1.5) 0.231 0.270 0.249 0.249 0.284 0.278
(−0.1, 2.0) 0.312 0.268 0.266 0.320 0.289 0.282
(−0.1, 2.5) 0.238 0.218 0.235 0.300 0.247 0.262
(−0.1, 3.0) 0.261 0.263 0.283 0.327 0.313 0.353

σ1 = 1, σ2 = 2 and σ3 = 1

(0, 0) 0.053 0.053 0.054 0.043 0.050 0.049
(−0.1, 0.5) 0.361 0.302 0.317 0.267 0.208 0.245
(−0.1, 1.0) 0.126 0.146 0.124 0.126 0.128 0.124
(−0.1, 1.5) 0.220 0.278 0.254 0.226 0.278 0.252
(−0.1, 2.0) 0.321 0.267 0.253 0.302 0.279 0.255
(−0.1, 2.5) 0.228 0.210 0.226 0.276 0.194 0.237
(−0.1, 3.0) 0.240 0.253 0.278 0.276 0.270 0.316
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Conditional Heteroskedasticity

Finally, to investigate the finite sample distortions caused by the existence of
conditional heteroskedasticity we consider that the innovations, εt, in (2.12)
follow a GARCH(1,1) process, such that εt = et

√
ht with ht = ω+ζε2

t−1 +ξht−1,
y1 = ε1 ∼ N(0, 1), h1 = 1, et ∼ N(0, 1), ζ ∈ {0.7, 0.8, 0.9}, ξ ∈ {0, 0.05, 0.1, 0.2}
and ω = 1− ζ − ξ, implying an unconditional variance of unity.

Table 2.13 reports the empirical size for T GLSµ

k̂
(results for T GLSτ

k̂
are pro-

vided in Table 2.14). Results show that this test suffers relevant size distortions
in the presence of conditional heteroskedasticity, especially when ζ is large. Its
empirical size is slightly larger than that of DFGLSµ and considerably exceeds
the nominal 5% level for all parameter values considered. However, the results
using the EW version of the test in (2.6) and the Wild bootstrap approach
presented in Table 2.15 for T = 250 (see Table 2.16 for results for T GLSτ

k̂
), show

that the empirical sizes are close to the nominal 5% significance level for both
demeaned and de-trended cases.

Under the alternative hypothesis relevant power gains are observed relatively
to DFGLS when EW is considered. When the Wild bootstrap technique is em-
ployed, the superiority relatively to DFGLS is less pronounced for all parameter
configurations considered.
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Table 2.13: Empirical size assuming iid errors in the presence
of GARCH effects

DGP: yt = yt−1 + εt
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

DFGLSτ T GLSτ
k̂

T = 150

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9

0 0.063 0.065 0.071 0.083 0.093 0.106
0.05 0.065 0.071 0.079 0.086 0.099 0.114
0.1 0.068 0.075 - 0.089 0.102 -
0.2 0.077 - - 0.102 - -

T = 250

0 0.066 0.073 0.079 0.085 0.094 0.109
0.05 0.068 0.074 0.079 0.088 0.099 0.114
0.1 0.069 0.076 - 0.092 0.104 -
0.2 0.076 - - 0.102 - -

T = 500

0 0.061 0.067 0.071 0.071 0.085 0.096
0.05 0.064 0.068 0.074 0.078 0.091 0.104
0.1 0.066 0.071 - 0.086 0.098 -
0.2 0.069 - - 0.096 - -

Table 2.14: Empirical size assuming iid errors in the presence
of GARCH effects - linear trend case

DGP: yt = yt−1 + εt
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

DFGLSτ T GLSτ
k̂

T = 150

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9

0 0.079 0.091 0.102 0.127 0.146 0.168
0.05 0.084 0.097 0.108 0.130 0.153 0.183
0.1 0.087 0.102 - 0.138 0.164 -
0.2 0.098 - - 0.157 - -

T = 250

0 0.075 0.084 0.099 0.120 0.142 0.168
0.05 0.076 0.089 0.106 0.126 0.149 0.178
0.1 0.081 0.097 - 0.133 0.161 -
0.2 0.093 - - 0.157 - -

T = 500

0 0.070 0.078 0.090 0.103 0.126 0.158
0.05 0.072 0.084 0.100 0.110 0.138 0.173
0.1 0.076 0.091 - 0.120 0.153 -
0.2 0.089 - - 0.147 - -
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Table 2.15: Empirical size and power in the presence of
GARCH effects using EW standard errors and Wild bootstrap

based test statistics

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt,
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

T = 250 DFGLSEWµ T GLSEWµ

k̂
DFGLS∗µ T GLS∗µ

k̂

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

φ = 0

0 0.051 0.049 0.049 0.058 0.054 0.052 0.046 0.055 0.056 0.06 0.064 0.067
0.05 0.05 0.05 0.048 0.056 0.055 0.05 0.051 0.055 0.055 0.057 0.063 0.064

0.1 0.05 0.048 - 0.057 0.052 - 0.052 0.051 - 0.058 0.068 -
0.2 0.052 - - 0.053 - - 0.053 - - 0.058 - -

φ = −0.1

k = 0.5

0 0.396 0.37 0.336 0.434 0.399 0.348 0.442 0.436 0.413 0.468 0.459 0.428
0.05 0.386 0.352 0.299 0.422 0.379 0.306 0.442 0.427 0.405 0.473 0.453 0.4
0.1 0.375 0.335 - 0.407 0.352 - 0.446 0.426 - 0.465 0.44
0.2 0.34 - - 0.36 - - 0.445 - - 0.458

k = 1

0 0.454 0.422 0.382 0.571 0.531 0.483 0.531 0.518 0.491 0.556 0.528 0.487
0.05 0.438 0.406 0.351 0.557 0.513 0.432 0.525 0.506 0.469 0.541 0.515 0.448
0.1 0.426 0.385 - 0.543 0.486 - 0.516 0.499 - 0.533 0.492 -
0.2 0.39 - - 0.496 - - 0.497 - - 0.513 - -

k = 1.5

0 0.429 0.396 0.359 0.52 0.482 0.432 0.523 0.518 0.488 0.551 0.526 0.494
0.05 0.415 0.38 0.325 0.505 0.46 0.391 0.523 0.514 0.469 0.544 0.515 0.447
0.1 0.4 0.36 - 0.488 0.437 - 0.526 0.514 - 0.525 0.493 -
0.2 0.366 - - 0.449 - - 0.524 - - 0.485 - -

k = 2

0 0.494 0.459 0.4138 0.613 0.581 0.532 0.556 0.55 0.534 0.637 0.612 0.554
0.05 0.482 0.44 0.3748 0.603 0.56 0.484 0.553 0.543 0.511 0.627 0.592 0.496
0.1 0.467 0.418 - 0.589 0.536 - 0.544 0.532 - 0.619 0.551 -
0.2 0.428 - - 0.545 - - 0.538 - - 0.573 - -

k = 2.5

0 0.475 0.435 0.3921 0.603 0.566 0.514 0.544 0.542 0.52 0.621 0.599 0.555
0.05 0.459 0.417 0.3579 0.589 0.546 0.462 0.546 0.535 0.495 0.618 0.587 0.516
0.1 0.444 0.395 - 0.576 0.518 - 0.546 0.524 - 0.597 0.569 -
0.2 0.404 - - 0.531 - - 0.519 - - 0.574 - -

k = 3

0 0.533 0.491 0.441 0.66 0.625 0.569 0.613 0.585 0.56 0.684 0.643 0.575
0.05 0.518 0.469 0.398 0.647 0.603 0.517 0.595 0.582 0.527 0.663 0.621 0.519
0.1 0.498 0.443 - 0.631 0.577 - 0.596 0.562 - 0.65 0.598 -
0.2 0.45 - - 0.587 - - 0.571 - - 0.613 - -

Notes: DFGLS
EW
µ and T GLS

EW
µ

k̂
are EW based test statistics and, DFGLS

∗
µ and T GLS

∗
µ

k̂
are

Wild bootstrap based test statistics.
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Table 2.16: Empirical size and power in the presence of
GARCH effects using EW standard errors and Wild bootstrap

based test statistics - linear trend case

DGP: yt = yt−1 + φ((1 + cos(2πkt/T ))/2)yt−1 + εt,
εt = et

√
ht, ht = ω + ζε2

t−1 + ξht−1

ω = 1− ζ − ξ, et ∼ N(0, 1)

T = 250 DFGLSEWτ T GLSEWτ
k̂

DFGLS∗τ T GLS∗τ
k̂

ξ/ζ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

φ = 0

0 0.041 0.037 0.035 0.049 0.044 0.040 0.049 0.051 0.057 0.064 0.069 0.074
0.05 0.039 0.035 0.033 0.049 0.043 0.040 0.049 0.055 0.061 0.068 0.068 0.076

0.1 0.038 0.033 - 0.047 0.042 - 0.058 0.056 - 0.068 0.075 -
0.2 0.027 - - 0.044 - - 0.058 - - 0.070 - -

φ = −0.1

k = 0.5

0 0.229 0.200 0.170 0.225 0.201 0.175 0.321 0.323 0.311 0.297 0.290 0.275
0.05 0.219 0.186 0.150 0.216 0.191 0.156 0.323 0.318 0.306 0.296 0.283 0.26
0.1 0.207 0.174 - 0.207 0.180 - 0.322 0.307 - 0.295 0.282 -
0.2 0.169 - - 0.184 - - 0.308 - - 0.281 - -

k = 1

0 0.168 0.147 0.126 0.227 0.210 0.188 0.217 0.214 0.219 0.251 0.234 0.224
0.05 0.159 0.139 0.114 0.219 0.201 0.174 0.218 0.22 0.216 0.245 0.227 0.208
0.1 0.153 0.127 - 0.213 0.193 - 0.219 0.218 - 0.237 0.22 -
0.2 0.125 - - 0.196 - - 0.226 - - 0.219 - -

k = 1.5

0 0.169 0.148 0.126 0.215 0.196 0.176 0.238 0.240 0.241 0.246 0.24 0.232
0.05 0.161 0.138 0.114 0.208 0.187 0.162 0.249 0.243 0.238 0.252 0.242 0.218
0.1 0.151 0.131 - 0.200 0.181 - 0.246 0.242 - 0.247 0.237 -
0.2 0.124 - - 0.185 - - 0.243 - - 0.239 - -

k = 2

0 0.189 0.165 0.139 0.283 0.262 0.244 0.250 0.249 0.251 0.265 0.259 0.246
0.05 0.180 0.155 0.128 0.276 0.252 0.227 0.249 0.249 0.249 0.274 0.258 0.254
0.1 0.168 0.145 - 0.265 0.242 - 0.257 0.257 - 0.277 0.259 -
0.2 0.138 - - 0.247 - - 0.262 - - 0.260 - -

k = 2.5

0 0.186 0.164 0.142 0.282 0.261 0.242 0.250 0.247 0.251 0.286 0.267 0.246
0.05 0.177 0.153 0.127 0.274 0.252 0.226 0.246 0.249 0.245 0.279 0.257 0.228
0.1 0.167 0.142 - 0.264 0.242 - 0.250 0.257 - 0.267 0.243 -
0.2 0.137 - - 0.245 - - 0.255 - - 0.259 - -

k = 3

0 0.203 0.182 0.156 0.332 0.310 0.289 0.281 0.284 0.279 0.319 0.297 0.285
0.05 0.193 0.169 0.139 0.324 0.299 0.268 0.285 0.289 0.285 0.313 0.295 0.260
0.1 0.184 0.157 - 0.315 0.287 - 0.287 0.291 - 0.306 0.283 -
0.2 0.148 - - 0.288 - - 0.287 - - 0.293 - -

Notes: DFGLS
EW
µ and T GLS

EW
µ

k̂
are EW based test statistics and, DFGLS

∗
µ and T GLS

∗
µ

k̂
are

Wild bootstrap based test statistics.
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2.4 Empirical Application

The very strong persistence of inflation has been seen as a "stylized fact" of de-
veloped economies. However, in recent years, substantial evidence has emerged
suggesting that this conclusion may result from changes in the time series prop-
erties of inflation that have not been taken into account. For instance, the
inflation target and the willingness to stabilize inflation may vary over time
causing inflation series not to return to a constant mean in a linear AR frame-
work.

An important branch of literature uses AR model-based measures, such as,
the largest autoregressive root (LAAR) and the sum of the autoregressive co-
efficients (SARC) to investigate inflation persistence; Levin and Piger (2003)
and Taylor (2000). In general, these works conclude that, when the determin-
istic terms or the autoregressive parameters are allowed to change, inflation
persistence is lower and far from that of a random walk process. There is some
consensus that inflation persistence decreased since the 1980s (possibly due to
preferences for price stability). For time-variation in the autoregressive param-
eters researchers have tended to rely on split samples or rolling regressions. An
alternative approach also used is to estimate the path of the time-varying au-
toregressive parameter using a state-space model and the Kalman filter; Beechey
and Österholm (2012).

Several works have analyzed the order of integration as a measure of inflation
persistence and employed stationarity or unit root tests in the analysis. Testing
procedures that allow the order of integration to endogenously change over time
have also been considered in this context. For instance, Harvey et al. (2006)
found evidence, using persistence change tests, that CPI inflation in the US
suffered a shift in persistence from I(1) to I(0). Halunga et al. (2009) applied
the same tests to UK and US inflation data and reported similar results. To
circumvent the single change in persistence, which is a limitation of these tests,
the sample is partitioned when a break is found and the test re-applied on each
sub-sample. The findings achieved using this approach indicate a first change
from I(0) to I(1) in the early 1970s and a subsequent reversion to I(0) in the
early 1980s, suggesting that the nonstationary dynamics of inflation lasted only
about ten years.

Most of the recently proposed methodologies provide strong evidence against
the statement that inflation dynamics is described by a pure I(1) process. In
this section, we apply the proposed tests, allowing for multiple changes in per-
sistence, to inflation data for several developed economies. In the empirical
analysis we allow for a maximum of three breaks, which seems adequate given
the available sample sizes.

In our analysis, we consider inflation persistence as the speed at which infla-
tion converges to equilibrium after a shock. Thus, the parameter φt := φcos(k ,t)
in the test regression ∆π̂t = φtπ̂t−1 +

∑p
j=1 δj∆π̂t−j + εt, where π̂t is the locally

GLS demeaned inflation time series, is a reasonable indicator of the persistence
dynamics and its statistical significance is tested using the procedure introduced
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in Section 2.2, i.e.,

T GLSµ

k̂
= min

k∈K
t̂
GLSµ
k , K = {0.5, 1, 1.5, 2, 2.5, 3} . (2.16)

However, as the timing of the breaks influences the power performance of
the tests, we also considered the time series in reverse chronological order. The
reversed test,

T GLSµ

k̂,r
:= min

k∈K
t̂GLSk,r = min

k∈K

∑T
t=2 ∆π̂t,r cos(k ,t)π̂t−1,r[

σ̂2
k

∑T
t=2 cos2(k , t)π̂2

t−1,r

]1/2
,

where π̂1,r = π̂T , π̂2,r = π̂T−1, ..., π̂T,r = π̂1, has the following asymptotic distri-
bution,

T GLSµ

k̂,r
⇒ min

k∈K

−cos(k, 0)W (1)2 + 1
2
(2πk)2

∫ 1

0
cos(2πkr)W (r)2dr − 1

2
(∫ 1

0
cos2(k, r)W (r)2dr

)1/2
. (2.17)

The values of c̃ for a given k ∈ K = {0.5, 1, 1.5, 2, 2.5, 3} and the critical
values of the T GLSµ

k̂,r
test are very close to those obtained using the normal

chronological order (see Tables 2.1 and 2.2) and are omitted for the sake of
space, but can be obtained from the authors.

Our sample consists of quarterly CPI data for the G7 countries obtained
from OECD Statistics for the period from 1955Q1 to 2018Q2. The quarterly
CPI is then used to compute the year-on-year and the quarterly growth rates
of the CPI data.6 Note that when the quarterly growth rate is stationary,
the year-on-year growth of the CPI introduces a non-invertible moving average
component in the resulting time series, which is responsible for a loss of power
of the ADF tests. However, since the year-on-year growth of CPI is relevant
for monetary policy decisions (inflation targeting regimes typically observe its
evolution) we will also consider this definition.

Figures 2.2 and 2.3 display, respectively, the year-on-year and the quarterly
growth rates of the CPI time series for the G7 countries. Simple visual inspec-
tion suggests that the 1970s was the period with the highest inflation rates for
almost all countries. Over these years, which have as a milestone the collapse
of Bretton Woods, the world economy faced a period of turbulence in which
the option for a highly accommodative monetary policy seems to have triggered
an unusual increase in inflation persistence only attenuated in the early 80’s
with the shift to a more restrictive monetary policy. This option, characterized
by the introduction of inflation targeting as a framework for monetary policy,
contributed to a long period of low and stable inflation in developed countries.
Since the 2008 global financial crisis, price stability is once more a concern but
this time because of the risk that inflation could remain too low for too long. In
order to avoid deflation and to bring inflation back to a desirable level, central

6According to Hassler and Demetrescu (2005), the power performance of the ADF test
crucially depends on whether inflation is assumed to be equal to the year-on-year growth or
to the quarterly growth of CPI.
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banks implemented an expansionary monetary policy, which may have had an
impact on inflation persistence. Thus, for the sample period considered in this
work, two breaks in persistence may have occurred associated with periods of
turbulence and relevant changes in monetary policy.

In the analysis we also consider the unit root test proposed by Rodrigues
and Taylor (2012) to infer if allowing for structural breaks in the intercept
is sufficient to gather evidence against the null hypothesis. Moreover, Wild
bootstrap p-values of the proposed test are also computed in order to prevent
that the results are influenced by breaks in the unconditional variance (or even
by the presence of GARCH effects).

Table 2.17 reports the results for the year-on-year growth rate of CPI. Con-
sidering the minimum between the proposed test computed in normal and re-
verse chronological order (the critical values used are in the note to Table 2.17),
the null hypothesis of a unit root is rejected at the 5% significance level for
all countries except Japan. For five of the seven countries, the stronger rejec-
tions occur when the reverse chronological order is considered. The estimated
k̂ parameter equals one for all cases, suggesting that the period of stronger per-
sistence occurred somewhere around the middle of the sample. France and
Germany are the two exceptions for which using the time series in normal
chronological order leads to stronger rejections of the null hypothesis. Here,
two breaks in persistence seem to have occurred. One before the middle of the
sample and the other at the end of the sample, suggesting that the 2008/2009
financial crisis originated a statistically significant change in inflation persis-
tence.

Table 2.17 also reports results for the quarterly growth rate of CPI. When the
minimum between T GLSµ

k̂
and T GLSµ

k̂,r
is considered, there is statistical evidence

against the unit root hypothesis for all countries at the 5% significance level. In
terms of the frequency parameter, k̂, associated with the smallest test statistic,
there are some differences relative to the conclusions drawn above for the year-
on-year growth rate. The selected k̂ is the same for France, Italy and the US
but differs for the other four countries. For instance, for Japan, the quarterly
growth rate of CPI had three periods of stronger persistence, one of them at
the beginning of the sample.

The proposed cosine term can only provide an approximation of the breaks
in persistence and, for the chosen values of k, it suggests that the persistence
parameter only assumes two values: one close to unity when the function reaches
its minimum value and a lower persistence value when the function reaches its
maximum. Furthermore, considering k̂ = 3 implies that there were a maximum
of three periods of shorter duration with higher persistence in inflation. Given
the sample length available this number may be large in some cases. Lastly,
simulations show that the power gains achieved by the new test are maximized
when k is smaller. Even with these limitations, we found relevant evidence
against the unit root hypothesis in the inflation rate series for several industrial
countries.

The proposed test provides statistical evidence of breaks in persistence for
several countries considering both the year-on-year and the quarterly growth
rate of CPI. When the year-on-year growth CPI is considered, k̂ = 1 is selected
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for most countries employing the minimum between the proposed test computed
in normal and reverse chronological order, which seems to suggest that the diffi-
culty in rejecting the I(1) hypothesis is largely due to the Great Inflation of the
1970s (beyond the limitations of available unit root tests such as, for instance,
low power in small samples). Regarding the last ten years, the plausible change
in persistence after the crisis seems not to have such a large influence, since the
proposed unit root test continues to provide strong rejections of the unit root
hypothesis.
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Figure 2.2: Year-on-year growth of the CPI for the G7 coun-
tries

Notes: Year-on-year growth of the CPI means percentage change relative to the same
quarter of the previous year.
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Figure 2.3: Quarterly growth of the CPI for the G7 countries

Notes: Quarterly growth of the CPI means percentage change relative to the previous
quarter.
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Table 2.17: Results using year-on-year and quarterly growth
of the CPI for the G7 countries

Year-on-year growth

Country DFGLSµ k̂ T GLSµ

k̂
WB p-value k t

ERSµf
α

Canada −1.040 1.5 −2.900 b 0.028 1 −2.276
France −1.348 1.5 −3.494 a 0.016 1 −2.724
Germany −2.481 b 1.5 −3.692 a 0.002 1 −3.040 c

Italy −1.719 c 1.5 −2.280 0.161 1 −3.109 c

Japan −1.320 2 −2.002 0.230 1 −2.378 c

United Kingdom −1.392 2 −2.446 c 0.111 1 −1.951
United States −1.065 1.5 −2.031 0.235 1 −2.343

reverse chronological order

Canada −1.348 1 −3.748 a 0.000 1 −2.432
France −1.109 1 −3.108 b 0.045 1 −2.381
Germany −2.051 b 1 −3.583 a 0.007 1 −3.104 c

Italy −1.432 1 −3.174 b 0.033 1 −3.114 c

Japan −1.647 1 −2.586 c 0.091 1 −2.805
United Kingdom −1.278 1 −2.894 b 0.054 1 −2.068
United States −1.471 1 −4.096 a 0.002 1 −2.533

Quarterly growth

Country DFGLSµ k̂ T GLSµ

k̂
WB p-value k t

ERSµf
α

Canada −1.499 1.5 −3.021 b 0.016 1 −2.790
France −1.303 1.5 −3.313 a 0.034 1 −2.713
Germany −0.901 1.5 −1.706 0.325 1 −1.905
Italy −1.375 2 −2.243 0.170 1 −2.487
Japan −1.355 2 −1.967 0.219 1 −2.561
United Kingdom −1.383 2 −3.178 b 0.029 1 −2.108
United States −1.417 1.5 −2.528 c 0.235 1 −2.460

reverse chronological order

Canada −1.745 b 1 −2.697 b 0.044 1 −1.887
France −1.005 1 −3.013 b 0.046 1 −2.046
Germany −1.635 1 −3.125 b 0.017 1 −3.156 b

Italy −1.591 1 −3.205 a 0.037 1 −2.447
Japan −1.654 2.5 −3.016 b 0.036 1 −3.055 c

United Kingdom −0.988 2.5 −2.516 c 0.124 1 −2.079
United States −1.798 b 1 −3.411 a 0.007 1 −2.329

Notes: (1) a, b and c denote significance at the 1%, 5% and 10% significance levels, respec-

tively; (2) t
ERSµf
α corresponds to the test proposed by Rodrigues and Taylor (2012); (3) the

lags of the unit root tests were chosen using the MAIC information criterion; (4) the values
of the critical values of T GLSµ

k̂
with reverse chronological order and T=250 are -3.198, -2.634

and -2.352 for 1%, 5% and 10% significance levels, respectively; (5) the critical values for the
minimum between T GLSµ

k̂
with normal and reverse chronological order and T=250 are -3.382,

-2.839 and -2.568 for 1%, 5% and 10% significance levels, respectively.
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2.5 Conclusions

In this paper we propose a simple approach to detect potential persistence
changes and allow for the possibility of the occurrence of up to three breaks
in persistence (note that more breaks can be allowed for if deemed necessary).
The unknown shape and timing of the breaks are approximated using a cosine
term. The test procedure is based on a one-sided t-statistic where this statistic
is minimized over a set of values chosen a priori for the frequency parameter k.

We find via Monte Carlo simulations that our proposed test has interesting
power performance when compared to e.g. the local GLS de-trended unit root
tests when breaks in persistence are present, as well as others.

In addition to the DGPs suggested by the specification of the alternative
hypothesis, which implies smooth breaks in persistence, we also investigated
the power properties of the proposed test when abrupt breaks in ρt in (2.2)
occur and results remain favourable. The power gains relative to the DFGLS

test are even greater if increases in persistence induce temporary nonstationary
behaviour. Moreover, we also performed simulations to investigate the effects
of unconditional and conditional heteroskedasticity. Although our proposed
test shows some size distortions when the homoskedasticity assumption does
not hold, this problem is attenuated using the Wild bootstrap which produces
empirical sizes close to the nominal 5% level.

Applications of the proposed test to G7 countries’ inflation data provided
relevant statistical evidence of breaks in persistence. When the year-on-year
growth of CPI in reverse chronological order is used, the null hypothesis of a unit
root is rejected for all countries. Comparing these results with those obtained
in normal chronological order suggests that the evidence of nonstationarity of
the inflation series previously reported in the literature is possibly due to the
occurrence of a period of stronger persistence in the first half of the sample.

This paper alerts to the consequences of ignoring the occurrence of breaks
in persistence. Most of the work on unit root testing that employed Fourier
series to approximate smooth structural breaks has focused on changes in the
deterministic parameters only. However, changes in the behaviour of economic
and financial variables caused by, for instance, exogenous events, shifts in mon-
etary policy or improvements in the available technology may have altered not
only the equilibrium value but also the speed of reversion to equilibrium after
a shock. As previously mentioned, changes in persistence affect the conditional
mean, the unconditional mean and the unconditional variance of the process.
Thus, it is possible that some of the evidence in the literature regarding the
occurrence of structural breaks in volatility may have been influenced by per-
sistence changes; Sensier and van Dijk (2003) and McConnell and Perez-Quiros
(2000).
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Chapter 3

The Expected Time to Cross a
Threshold and its Determinants:
A Simple and Flexible Framework†

3.1 Introduction

The first hitting time or first passage time, i.e., the time a variable takes to reach
a certain value, is a fundamental concept in stochastic analysis and represents
an important modeling tool in fields, such as finance, biology and life sciences.

Although there is a large literature in economics and finance addressing this
topic (see, for instance, Durbin; 1971, Lo et al.; 2002 or Giesecke; 2006), first-
hitting time densities are mostly obtained for Wiener diffusion processes under
the assumption of continuous-time, due to the tractability offered by the Itô
calculus. However, this approach often requires strong computational efforts
and closed form solutions are known only for some standard continuous-time
models.

Since most economic and financial data is only available in discrete time,
researchers usually opt for modeling duration time as a stochastic process in-
stead of defining duration as the first time a stochastic process crosses a given
threshold. Thus, continuous-time based first passage time densities and dura-
tion models (typically built in discrete time) have the same objective, namely,
to characterize the length of time that separates different stochastic events. In
fact, as illustrated by Whitmore (1986), duration models can be seen as reduced
form representations of first passage time densities.

Most of the existing duration analysis literature is based on the specifica-
tion of the hazard function, that is, on the conditional probability of exiting
the initial state within a short interval having survived up to the starting time
of that interval. Thus, the hazard function specification emphasizes the condi-
tional probabilities1. Since a duration process can intuitively be associated with
a dynamic sequence of conditional probabilities, the hazard-based approach is

†Chapter 3, The Expected Time to Cross a Threshold and its Determinants: A Sim-
ple and Flexible Framework, has been published (with a different empirical application) in
co-authorship with João Nicolau and Paulo M. M. Rodrigues in the Journal of Economic Dy-
namics and Control 122, 104047, 2021 and is reprinted in this Dissertation with permission
from Elsevier.

1Note that, for any hazard function specification there is a mathematically equivalent
representation in terms of a probability distribution; see Kiefer (1988).
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a convenient way to interpret duration data and can be sufficiently flexible to
handle relevant issues such as the presence of censored observations and time-
varying covariates. For instance, parametric hazard models have been used
in labor economics to examine duration dependence and the determinants of
unemployment exit probabilities (see, for instance, Meyer; 1990, McCall; 1994
and Sueyoshi; 1995); another example is its application to firm survival (see,
for instance, Audretsch and Mahmood; 1995 and Mata and Portugal; 2002).
In addition, this methodology has also been employed (without covariates) to
investigate the presence of duration dependence in economic cycles (see, for
instance, Sichel; 1991 and Ohn et al.; 2004).

A closely related approach to model duration dependence is to treat the
occurrence of a given event as a random variable which follows a point process2.
Let {ti}i∈{1,2,...}, with 0 ≤ ti ≤ ti+1, be a sequence of non-negative random
variables representing the times at which the events occur. The sequence {ti} is
called a point process. A complete description of such processes is formulated
in terms of the conditional intensity function which can be associated, roughly
speaking, with the probability per unit of time, to observe an event in the next
instant3. Thus, different parameterizations of this function result in different
point process models. Existing models can be grouped into two classes. The
first, formulated in calendar time, considers that the marginal effects of an
event that has occurred in the past is independent of the intervening history;
and the second class, focuses on the intervals between events and assumes that
the duration between successive events depends on the number of intervening
events. The autoregressive conditional dynamic (ACD) model proposed by
Engle and Russell (1998) is an important model of this class4.

In this paper, we focus on first hitting time processes. Thus, unlike point
process models, we are not interested in the actual sequence {ti}, but only in
the random variable associated with the time at which the event occurs for
the first time (t1). As already mentioned, the first hitting time problems were
mostly addressed in continuous time invoking Wiener processes, which involve
complex mathematical concepts and can result in models which are difficult to
estimate.

Nicolau (2017) introduces an intuitive and easy to implement framework
for estimating the first passage time probability function in a discrete time
context. The main contribution of the present work is the introduction of a
novel approach to estimate transition probabilities allowing for covariates and
which generalizes the framework of Nicolau (2017). To this end, we adapt
the approach proposed by Islam and Chowdhury (2006) to estimate covariate-
dependent Markov models of any order to the present context.

2For an introduction to point processes see, for instance, Cox and Isham (1980).
3The conditional intensity function can be seen as a counterpart to the hazard function.
4The ACD model and its extensions have become a leading tool in modeling irregularly

spaced high-frequency financial data, which are characterized by the occurrence of strong
clustering structures in the waiting times between consecutive events.
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Understanding how a set of covariates influences the time a dependent vari-
able takes to cross a fixed threshold may provide relevant insights on the poten-
tial causal relationships between economic variables. The proposed covariate-
dependent expected time (ET) to cross a threshold estimator may also be a
useful tool to support macroeconomic policy decisions, where there are desir-
able values or even formal targets for some key variables, such as, output growth,
inflation, or unemployment. Thus, it is important to assess the effectiveness of
the instruments (or covariates) in driving the outcome variable towards some
preassigned values. In practice, the impact of the covariates may not be sym-
metric and may also depend on the distance between the starting point and the
target value. Consider, for instance, the connection between monetary policy
and real economic growth. Since both negative and above-trend growth rates
are undesirable, monetary policy plays a key role in fostering a healthy level
of economic growth. To this end, a tight monetary policy is adopted when the
rapid economic growth causes inflationary pressures and an easy one is imple-
mented in a recession in order to boost a rapid economic recovery. However, it
has been noticed in the literature that the responsiveness of the real economy to
monetary shocks is different during recessions and expansions (see, for instance,
Florio; 2004 and references therein). The framework introduced in this paper
allows us to investigate these possible nonlinear dynamics by estimating the ET
conditional on different starting values. If, for a given starting value, changes
in covariates are reflected in changes in the ET estimation, it suggests that
the chosen covariates affect the movement towards a specified threshold in that
specific situation. When other starting points are considered the conclusions
may, however, differ.

To further illustrate the usefulness of the approach introduced in this paper
an application to the industrial production (IP) - yield spread (YS) relationship
is provided. Until the 2008-2010 financial crisis, short-term nominal interest
rates were the primary monetary policy instrument used to achieve price stabil-
ity, which is a key objective of central banks. For instance, in response to the
financial crisis, central banks cut nominal interest rates in order to stimulate
economic growth. However, as short-term interest rates in recent years have
been close to their zero lower bound and economic growth remained low, un-
conventional monetary policies such as quantitative easing have been employed
to reduce long-term interest rates and spur aggregate demand. In our anal-
ysis we will use the sovereign yield curve slope as a proxy for the monetary
policy stance since it captures both conventional monetary policy and uncon-
ventional measures such as asset purchases and forward-guidance; see Saldías
(2017). Thus, the focus of the empirical application is to investigate whether
YS5 influences the ET the IP growth rate takes to return to its stationary mean
starting from a specific value.

The remainder of the paper is organized as follows. Section 3.2 introduces
the proposed methodology to estimate the conditional ET to cross a threshold
(given a specific starting point). Section 3.3 investigates the finite sample prop-
erties of the parameter estimates that describe the relationship between the ET

5YS is computed as the difference between the 10-years government bond yields and the
3-month T-bill rate.
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and the covariates. Section 3.4 presents an empirical application to the U.S.
economy, where we infer how YS influences the ET that the IP growth rate
takes to return to its mean. Section 3.5 concludes and a Technical Appendix B
collects the detailed proofs of the results presented in the paper.

3.2 The Proposed Methodology

3.2.1 The Process and Probabilities of Interest

Let xt be a k × 1 vector of covariates {(yt,xt)} be a vector of discrete-time
processes with state space <k+1 characterized by the following Assumption.

Assumption 1

(A) yt|xt is a Markov process of order r;

(B) {(yt, xt)} is a jointly stationary vector stochastic process.

Let A be a measurable set of range D of the process of interest, and define
the first hitting time of A as TA := inf{t > 0 : yt ∈ A}. There is a σ-finite
measure m(y) such that m(A) > 0 implies E(TA|X0 = a) < ∞ for every
a ∈ D\A, where A is the closure of set A. Assumption 1.A ensures that the
process {yt} is positive Harris recurrent, that is, if the process starts from a
level a not belonging to the generic set A, it will visit A as T → ∞ almost
surely an infinite number of times (see Meyn et al.; 2009, chapter 9).

Consider the first hitting time Tz1 = inf{t > 0 : yt ≥ z1} and that the
process starts at z0, with z0 < z1. The case z0 > z1 with Tz1 = inf{t > 0 :
yt ≤ z1} is almost analogous6. The distribution of Tz1 is usually difficult to
derive, especially for non-linear processes. Thus, we consider a simple semi-
parametric method to estimate these quantities. First, we define the following
binary variable:

St := St(z0, z1) =

{
0 if yt < z1, yt−1 < z1, ..., yt−k+1 < z1, yt−k ≤ z0,
1 otherwise, (3.1)

where k ≥0 and S0 = 0 if y0 = z0 (note that z0 is the starting value of the
process). Then, the probability that yt crosses the threshold z1 for the first
time starting fom z0 is,

P (Tz1 = t) = P (St = 1, St−1 = 0, St−2 = 0, ..., S1 = 0|S0 = 0),

which is equivalent to

P (Tz1 = t) =
(
1− pt

) t−1∏
i=1

pi (3.2)

where pi := P (Si = 0|Si−1 = 0, Si−2 = 0, ..., S0 = 0) (see Appendix for details) .

6In practice, we can easily transform a z0 > z1 case into z0 < z1 by replacing z0, z1 and
yt by −z0, −z1 and −yt, respectively.
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Proposition 2 Considering that Assumption 1.A holds and that yt|xt is a
Markov process of order r, then St|xt is also an rth order two-state Markov
chain.

Since in view of the Markovian property if t > r then pt(x) = pr(x), from
Proposition 1 and expression (3.2) it follows that,

P (Tz1 = t|x) =



[
1− pt(x)

] t−1∏
i=1

pi(x) for t ≤ r,

{[
1− pr(x)

] r−1∏
i=1

pi(x)

}
pr(x)t−r for t > r,

(3.3)

where pi(x) = P (St = 0|St−1 = 0, ..., St−i = 0|x) for 1 ≤ i ≤ r.

3.2.2 Covariate-Dependent Transition Probabilities

When Assumption 1.A and Proposition 2 hold, we can treat St|xt as a Markov
chain with state space {0, 1} and use standard Markov chain inference to esti-
mate the covariate-dependent transition probabilities.

For instance, if r=1, the transition probability matrix is

P (x) =

[
π00(x) π01(x)
π10(x) π11(x)

]
with

p1(x) := π00(x) = P (St = 0|St−1 = 0;x) =
expx′β1

1 + expx′β1
=: Λ(x′β1)

where β1 is a vector of parameters and Λ(x′β1) is the cumulative distribution
function of the logistic distribution.

The generalization to higher order Markov chains is achieved in a straight-
forward way by extending the first order Markov chain model. Note that the
transition probabilities of the rth order model can be arranged in a 2r×2 matrix
of which we only need a line; see Islam and Chowdhury (2006). As an illus-
tration, consider a matrix with the outcomes of an rth order Markov chain St,
i.e.,

m {St−r St−(r−1) ... St−1}
1 0 0 ... 0
2 0 0 ... 1
...

...
...

...
...

2r − 1 1 1 ... 0
2r 1 1 ... 1



St
0 1
0 1
...

...
0 1
0 1


,

wherem is an index that identifies each of the possible outcomes of {St−1, St−2, ...,
St−r}. For instance, m = 1 corresponds to the outcomes St−1 = 0, St−2 =
0, ..., St−r = 0.
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As shown in (3.3), the covariate-dependent transition probabilities p1(x), ...,
pr(x) are needed to obtain the probability function for Tz1|x. Hence, if St|x is
an rth order Markov chain, we can define,

pr(x) = P (St = 0|St−1 = 0, ..., St−r = 0;x) = Λ(x′βr). (3.4)

Moreover, for j = 1, ..., r − 1,

pj(x) = P (St = 0|St−1 = 0, ..., St−j = 0 ;x) = Λ(x′βj). (3.5)

Then, for an rth order Markov chain, the log-likelihood function of a Markov
chain of order j < r will be used to estimate the parameter vector βj and,
consequently, obtain the probabilities p1(x), ..., pr−1(x).

Despite similarities between (3.4) and (3.5) and the standard logit model for
binary responses, the proposed approach is less restrictive. Firstly, the focus
here is on the transition probabilities between states and not on the conditional
probability of success. Moreover, no specific functional form for the underlying
latent variable model is assumed. In fact, the only assumption we make on the
data generating process of yt is Assumption 1.A.

3.2.3 Parameter Estimation

For an ith order Markov chain the log-likelihood function can be expressed
as the sum of 2i components, where each represents a particular outcome
of {St−1, St−2, ..., St−i}; see the Appendix for details. Thus, we can maxi-
mize individually the part of the log-likelihood function which corresponds to
St−1=St−2=,...,=St−i = 0, considering for observation t that,

lnLi = ln f(St|St−1 = 0, ..., St−i = 0;xt;βi)

= δi St ln
(

1− Λ(x′tβi)
)

+ δi(1− St)ln
(

Λ(x′tβi)
)
, (3.6)

where f(.) is a conditional density function, and δi is an indicator function which
is equal to one when St−1 = St−1 =, ...,= St−i = 0 and zero otherwise. Note
that when δi = 1 (3.6) corresponds to the conditional log-likelihood function of
the well-known logit model (see, for instance, Hayashi; 2000).

Consistency and Asymptotic Normality of the Parameter Estimators

Since estimation of the transition probabilities and consequently of the ET to
cross a threshold only depends on βi, 1 ≤ i ≤ r, it is crucial that consistent
estimates of these coefficient vectors are obtained.

Theorem 3.2.1 Consistency of conditional QMLE without compactness
Let {St,xt} be jointly stationary with conditional density f(St|St−1 = 0, ..., St−i =
0;xt;βi) and

β̂i = argmax
βi∈Bi

1

T

T∑
t=1

ln f(St|St−1 = 0, ..., St−i = 0;xt;βi) (3.7)

the quasi-ML estimator. Moreover, consider that,
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(1) the true parameter vector βi is an element of the interior of a convex
parameter space Bi ⊂ Rp, where p is the dimension of βi;

(2) ln f(St|St−1 = 0, ..., St−i = 0;xt;βi) is concave in βi for all {St,xt} and
measurable for all βi in Bi;

(3) P[f(St|St−1 = 0, ..., St−i = 0;xt;βi) 6= f(St|St−1 = 0... = St−i = 0;xt;βi,0)] >
0 for all βi 6= βi,0;

(4) E[ |ln f(St|St−1 = 0, ..., St−i = 0;xt;βi)| ] exists and is finite for all βi in
Bi.

Then, as T →∞, β̂i exists with probability 1 and β̂i
p→ βi .

The first and second order derivatives of the logistic cumulative density
function are, Λ(v)′ = Λ(v)− (1−Λ(v)) and Λ(v)′′ = [1− 2Λ(v)]Λ(v)[1−Λ(v)],
respectively. Thus, the score and Hessian for observation t are, respectively,

s(wt;βi) =
∂lnL

∂βi
= [St − Λ(x′tβi)]xt; (3.8)

H(wt;βi) =
∂s(wt;βi)

∂β′i
= −Λ(x′tβi)[1− Λ(x′tβi)]xtx

′
t, (3.9)

where wt := (St,x′t)′. Since xtx′t is positive definite, H(wt;βi) is negative semi-
definite and the log-likelihood function is concave, therefore condition (2) of
Theorem 1 holds. The last two conditions of Theorem 3.2.1 are satisfied under
the non-singularity of E(xtx′t) (see Appendix for details).

Theorem 3.2.2 Asymptotic normality of conditional MLE
Let wt = (St,x′t)′ be jointly stationary and β̂i

p→ βi. In addition, consider that

(1) βi is in the interior of Bi (identification);

(2) f(St|St−1 = 0... = St−i = 0;xt;βi) is twice continuously differentiable in
βi for all wt;

(3) E[s(wt;β0,r)] = 0 and -E[H(wt;βr)] =E[s(wt;β0,r)s(wt;β0,r)
′] where

s(wt;βi) and H(wt;βi) are as defined in (3.8) and (3.9) (local dominance
condition on the Hessian);

(4) for some neighborhood N of βi,

E[ sup ||H(wt;βi)|| ]
βi∈B

<∞,

so that for any consistent estimator β̃i,
1
T

∑T
t=1 H(wt; β̃i)

p→E[H(wt;βi)];

(5) E[H(wt;βi)] is nonsingular.
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Thus, if conditions (1) - (5) hold, β̂i is asymptotically normal with

Avar (β̂i) =
(
E[H(wt;βi)]

)−1
Σi

(
E[H(wt;βi)]

)−1

where Σi is the long-run variance of {s(wt;βi)}.

Assuming that Σ̂i is a consistent estimator of Σi, then a consistent estimator
of the asymptotic variance of β̂i is

̂Avar (β̂i) =

{
1

T

T∑
t=1

H(wt; β̂i)

}−1

Σ̂i

{
1

T

T∑
t=1

H(wt; β̂i)

}−1

. (3.10)

Theorem 3.2.3 Considering the results of Theorems 3.2.1 and 3.2.2 it follows,
as T →∞, that √

T (β̂i − βi)
d→ N(0,Avar (β̂i)).

Theorem 3.2.4 Let Assumption 1(B) hold. From application of the Delta
method it follows that, as T →∞

√
T
(
pi(x)− Λ(x′βi)

)
d→ N

(
0, [Λ(x′βi)]

2 x′Avar (β̂i)x
)

The positive Harris recurrence of St|xt is crucial to ensure that the process
moves from one state to another an infinite number of times as T → ∞. This
prevents, for example, from having too many zeros in the sequence of St (i.e.,
that yt crosses z1 too few times), which results in inaccurate estimates of βi
and pi(x)→ 1.

3.2.4 Covariate-Dependent ET

The covariate-dependent ET to cross z1 when the process yt starts at z0 is,

E(Tz1|x) =
∞∑
t=1

t P (Tz1 = t|x). (3.11)

If St is a first order Markov Chain, i.e. r = 1, then P (St = 0|St−1 = 0;x) =
p1(x) and

E(Tz1|x) =
[
1− p1(x)

] ∞∑
t=1

t p1(x)t−1 =
[
1− p1(x)

]−1

.

Theorem 3.2.5 Let Ê(Tz1|x) =
[
1− p̂1(x)

]−1

. For r = 1,

̂E(Tz1|x)
p→ E(Tz1|x) and

√
T
(

̂E(Tz1 |x)− E(Tz1|x)
)

d→ N
(

0,
[
x exp(x′β1)

]′Avar (p̂1(x)
)[
x exp(x′β1)

])
,

where Avar
(
p̂1(x)

)
:= [Λ(x′β1)]2 x′Avar (β̂1)x, and 0 < p1 < 1.
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Using (3.3) and (3.11) we have that

E(Tz1|x) =
r∑
t=1

t
[
1− pt(x)

] t−1∏
j=1

pj(x) +

{[
1− pr(x)

] r−1∏
j=1

pj(x)

}
∞∑

t=r+1

t pr(x)t−r

=
r∑
t=1

t
[
1− pt(x)

] t−1∏
j=1

pj(x) +

{[
1− pr(x)

] r−1∏
j=1

pj(x)

}
pr(x)[1 + r − r pr(x)]

[1− pr(x)]2
.

(3.12)

where, by convention,
∏b

j=1 pj(x) = 1 if b < 1.

By the continuous mapping theorem, if β̂i is consistent then ̂E(Tz1|x) will also
be a consistent estimator of E(Tz1|x) since it is a continuous function of β̂i.

From (3.12) it follows that for r ≥ 1 we have,

r = 1⇒ E(Tz1|x) =
1

1− p1(x)
,

r = 2⇒ E(Tz1|x) =
1 + p1(x)− p2(x)

1− p2(x)
,

r = 3⇒ E(Tz1|x) =
p1(x)

(
p2(x) + 1

)
− p3(x)

(
p1(x) + 1

)
+ 1

1− p3(x)
, etc.

Therefore, as already stated, it is critical to have consistent estimates of
βi, 1 ≤ i ≤ r. In small samples, St may not move from one state to another
a sufficient number of times when r is relatively large and estimating these
parameters may be problematic. In practice, the choice of r depends on the
sample size, the level of persistence, the starting point z0 and the threshold
z1. We suggest that r is chosen based on two indicators: the residuals of the
regression of yt on its own r lags and xt, and the statistical significance of
βr. It is also possible to estimate r using some information criteria such as
BIC (Bayesian information criteria); see, for instance, Katz (1981) and Raftery
(1985). However, this approach is cumbersome, since it requires estimating the
entire transition probability matrix for several Markov chains of different orders,
while we are only interested in the probability in (3.4).

As is evident from (3.12), an exact asymptotic expression for the distribution
of ̂E(Tz1|x) is difficult to obtain since it is a complex non-linear function of β̂i.
However, advances in computing have made resampling techniques, in particular
bootstrapping approaches, a valuable tool for the estimation of standard errors
and for the construction of confidence intervals.

In this work, suitable bootstrap methods, which allow for serial dependence,
are applied. Many different bootstrap techniques for dependent data have been
proposed (see, for instance, MacKinnon; 2007, Section 6 for a brief overview).
A widely used approach in this context is the block bootstrap algorithm (Härdle
et al.; 2003). The block bootstrap consists in dividing the time series into several
blocks of b consecutive observations in order to preserve the original structure
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within a block, and to re-sample the blocks, which may be overlapping or non-
overlapping and of fixed or of variable length, as in e.g. the stationary block
bootstrap proposed by Politis and Romano (1994).

Lahiri (2003, Chapter 5) compares the performance of four block bootstrap
approaches7 and shows that, in terms of their MSEs, the overlapping block
bootstrap outperforms the non-overlapping and the stationary block bootstrap
procedures. This conclusion is valid if the block length increases as the sample
size T increases at a rate not slower than the optimal rate κT 1/3, where κ is
constant.

Thus, in what follows we will employ the overlapping block bootstrap,
also known as "blocks of blocks" bootstrap, proposed by Politis and Romano
(1992a).

Defining Zt ≡ (yt,xt), we construct T − b+ 1 overlapping blocks as

Z1, ...,Zb, Z2, ...,Zb+1, ...,ZT−b+1, ...,ZT , (3.13)

which are re-sampled in the usual way, using an iid random variable on {1, 2, ...,
T − b+ 1}. The block bootstrap algorithm consists of the following steps:

Step 1 : Choose the block length b. In the empirical application, we opt
for b = T 1/3;

Step 2 : Resample the blocks as illustrated in (3.13) and generate the
bootstrap sample (y∗t ,x∗t );

Step 3 : Build the process S∗t in (3.1) using y∗t and estimate the covariate-
dependent probabilities in (3.4) and (3.5) ;

Step 4 : Compute ̂E(Tz1 |x)
∗
.

Step 5 : Repeat Steps 1 to 4 a B number of times, where B is the number
of bootstrap simulations, and compute the empirical distribu-
tion of ̂E(Tz1|x)

∗
and respective confidence intervals.

3.3 Monte Carlo Analysis

This section investigates the finite sample properties of the parameter estimates
β̂r. We generate the St|xt process by simulating two-state Markov chains of
orders r = 1, 2, ..., 5.

In order to simplify the simulation exercise but without loss of generality we
make some simplifying assumptions about the data generation process (DGP) of
St|xt. In specific, we assume that pr(x) is covariate-dependent and the remain-
ing probabilities are constant and equal to 0.5. In practice, one would expect
that all transition probabilities depend on covariates. As stated in Subsection
3.2.3, these assumptions have no effect on the consistency of β̂r since the part
of the log-likelihood which corresponds to St−1 = 0, ..., St−r = 0 is maximized
individually.

7In addition to the overlapping, non-overlapping and stationary block bootstraps, Lahiri
(2003) also considers the circular block bootstrap proposed by Politis and Romano (1992b).
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As an illustration, consider a second order (r = 2) Markov chain. In this
case, the transition probabilities matrix is completely defined by the probabili-
ties

• p2(x) = P (St = 0|St−1 = 0, St−2 = 0;x) = Λ(x′β2),

• P (St = 0|St−1 = 0, St−2 = 1;x) = 0.5,

• P (St = 0|St−1 = 1, St−2 = 0;x) = 0.5,

• P (St = 0|St−1 = 1, St−2 = 1;x) = 0.5,

and our interest centers exclusively on p2(x), which can be estimated by maxi-
mizing the log-likelihood function in (3.6) for i = r = 2. However, it is notewor-
thy that, since the DGP is a second order Markov chain, p1(x) = P (St|St−1;x),
also needed to compute the ET, will depend on the first two probabilities pre-
sented above, that is, on p2(x) and P (St = 0|St−1 = 0, St−2 = 1;x).

The DGP also considers that xt :=
(
1, x2t

)′ and β2 =
(
β2,1, β2,2

)′ in (3.4),
where x2t ∼ N(0, 1). Therefore, as T →∞,∑T

t=1 p2(xt)
T

p→ E
(
p2(xt)

)
=

∫ +∞

−∞
P (St = 0|St−1, ..., St−r = 0;xt)f(x2t)dx2t

=

∫ +∞

−∞

expx′tβ2

1 + expx′tβ2

1√
2π

exp−
x22t
2 dx2t.

We will investigate two cases, β2 = (0.0, 3)′ and β2 = (2.3, 3)′ which imply
that

∑T
t=1 pr(xt)

T
→ 0.5 and

∑T
t=1 pr(xt)

T
→ 0.75, respectively. The second case is

particularly relevant since we are interested in z1 = ȳ and the macroeconomic
variables tend to exhibit some persistence (or slow mean reversion after a shock),
which results in higher values of E(Tz1|x).

As the order of the Markov chain is unknown in practice, for each Markov
chain of order r generated in the simulations, we estimate first up to fifth order
Markov chains.

Table 3.1 summarizes the Monte Carlo results for T ∈ {500, 1000, 2000}.
When i ≥ r, the β2 parameters seem to be consistently estimated even for
T = 500. As expected, the mean of the parameter estimates is closer to the
"true" parameter values and the standard deviation of the estimates reduces
in all cases when the sample size increases. Although MLE seems to produce
consistent estimates of β2 even when Markov chains of higher order than the
one considered in the DGP is estimated (i > r), these estimates are less accurate
since

pr−1(x)pr−2(x)...p1(x) = P (St−1 = 0, ..., St−r = 0|x)

lowers as r increases and there are less cases with {St−1 = 0, ..., St−r = 0}.
Thus, βr will be estimated using a smaller number of observations, since δi = 1
in expression (3.6) occurs less often.
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Table 3.1: Means and SD of Markov chain parameter estimates

T = 500 T = 1000 T = 2000
βi,1 = 0.0 βi,2 = 3.0 βi,1 = 0.0 βi,2 = 3.0 βi,1 = 0.0 βi,1 = 3.0

r i mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
1 -0.005 0.196 3.076 0.407 -0.002 0.137 3.035 0.278 0.001 0.099 3.019 0.193
2 -0.014 0.284 3.157 0.621 -0.008 0.196 3.077 0.413 -0.001 0.138 3.037 0.281

1 3 -0.032 0.448 3.362 1.043 -0.017 0.283 3.160 0.629 -0.007 0.197 3.076 0.411
4 -0.054 0.673 3.541 1.391 -0.031 0.434 3.332 0.998 -0.018 0.289 3.158 0.630
5 0.008 0.799 3.202 1.382 -0.033 0.624 3.353 1.178 -0.036 0.453 3.365 1.114

1 0.008 0.137 0.800 0.169 0.004 0.098 0.791 0.118 0.003 0.069 0.786 0.083
2 -0.010 0.287 3.169 0.627 -0.006 0.197 3.079 0.410 -0.003 0.137 3.036 0.279

2 3 -0.023 0.441 3.353 1.030 -0.015 0.288 3.169 0.636 -0.007 0.197 3.075 0.406
4 -0.039 0.667 3.507 1.371 -0.031 0.448 3.354 1.013 -0.014 0.289 3.164 0.623
5 0.007 0.812 3.225 1.397 -0.029 0.622 3.358 1.165 -0.035 0.452 3.390 1.138

1 0.015 0.127 0.366 0.142 0.007 0.091 0.359 0.100 0.005 0.066 0.358 0.071
2 0.008 0.194 0.815 0.246 0.003 0.136 0.797 0.168 0.003 0.097 0.791 0.118

3 3 -0.026 0.439 3.354 1.037 -0.014 0.287 3.158 0.624 -0.008 0.193 3.071 0.403
4 -0.039 0.647 3.520 1.380 -0.030 0.440 3.331 0.990 -0.015 0.282 3.158 0.621
5 0.008 0.802 3.220 1.384 -0.033 0.617 3.342 1.179 -0.039 0.446 3.371 1.095

1 0.020 0.128 0.186 0.137 0.010 0.089 0.179 0.094 0.006 0.065 0.175 0.066
2 0.022 0.184 0.381 0.207 0.011 0.127 0.364 0.141 0.005 0.092 0.360 0.099

4 3 0.016 0.281 0.851 0.360 0.010 0.192 0.812 0.243 0.003 0.135 0.799 0.167
4 -0.042 0.659 3.504 1.369 -0.028 0.441 3.336 0.984 -0.018 0.281 3.165 0.622
5 -0.007 0.798 3.250 1.402 -0.031 0.620 3.374 1.167 -0.045 0.455 3.377 1.119

1 0.029 0.127 0.097 0.133 0.016 0.090 0.093 0.092 0.009 0.065 0.091 0.064
2 0.036 0.179 0.195 0.197 0.021 0.127 0.184 0.135 0.009 0.091 0.179 0.093

5 3 0.042 0.260 0.398 0.305 0.023 0.185 0.374 0.204 0.008 0.129 0.364 0.140
4 0.026 0.424 0.921 0.609 0.017 0.277 0.844 0.358 0.004 0.192 0.817 0.247
5 0.004 0.791 3.295 1.404 -0.030 0.601 3.353 1.169 -0.041 0.445 3.363 1.093

βi,1 = 2.3 βi,2 = 3.0 βi,1 = 2.3 βi,2 = 3.0 βi,1 = 2.3 βi,1 = 3.0

1 2.340 0.289 3.067 0.384 2.322 0.201 3.035 0.263 2.312 0.139 3.017 0.185
2 2.351 0.342 3.090 0.458 2.327 0.236 3.047 0.310 2.314 0.162 3.023 0.216

1 3 2.370 0.409 3.129 0.553 2.335 0.277 3.064 0.365 2.319 0.189 3.031 0.254
4 2.397 0.499 3.179 0.686 2.345 0.325 3.084 0.429 2.325 0.222 3.041 0.295
5 2.430 0.609 3.247 0.846 2.363 0.387 3.119 0.515 2.334 0.259 3.057 0.346

1 0.824 0.195 0.993 0.185 0.816 0.136 0.980 0.129 0.812 0.096 0.976 0.091
2 2.358 0.389 3.109 0.525 2.330 0.264 3.055 0.350 2.317 0.183 3.029 0.243

2 3 2.385 0.470 3.162 0.646 2.341 0.310 3.075 0.412 2.323 0.215 3.039 0.284
4 2.420 0.580 3.233 0.812 2.358 0.369 3.105 0.487 2.330 0.252 3.052 0.332
5 2.470 0.720 3.331 1.000 2.379 0.446 3.147 0.595 2.338 0.296 3.071 0.391

1 0.433 0.178 0.492 0.149 0.423 0.126 0.483 0.103 0.422 0.088 0.483 0.073
2 0.828 0.263 1.005 0.250 0.818 0.186 0.987 0.176 0.816 0.13 0.981 0.123

3 3 2.416 0.566 3.215 0.778 2.357 0.369 3.105 0.488 2.328 0.252 3.049 0.332
4 2.460 0.689 3.301 0.963 2.383 0.444 3.152 0.591 2.338 0.295 3.068 0.391
5 2.501 0.814 3.389 1.117 2.410 0.541 3.208 0.727 2.348 0.345 3.093 0.462

1 0.247 0.168 0.263 0.136 0.236 0.119 0.256 0.098 0.228 0.084 0.253 0.068
2 0.444 0.250 0.507 0.207 0.434 0.175 0.495 0.147 0.423 0.124 0.486 0.101

4 3 0.849 0.378 1.052 0.367 0.833 0.261 1.012 0.247 0.817 0.182 0.989 0.168
4 2.506 0.838 3.409 1.159 2.414 0.548 3.211 0.740 2.351 0.361 3.101 0.482
5 2.515 0.934 3.452 1.265 2.444 0.650 3.277 0.881 2.369 0.433 3.140 0.583

1 0.151 0.156 0.144 0.133 0.136 0.111 0.138 0.094 0.126 0.078 0.133 0.066
2 0.267 0.231 0.277 0.195 0.247 0.166 0.263 0.135 0.232 0.118 0.256 0.095

5 3 0.471 0.345 0.539 0.301 0.445 0.244 0.507 0.203 0.426 0.174 0.491 0.141
4 0.894 0.553 1.142 0.567 0.850 0.371 1.048 0.353 0.821 0.253 1.004 0.234
5 2.469 1.004 3.379 1.281 2.477 0.764 3.341 1.007 2.392 0.530 3.200 0.722

Notes: r refers to the Markov chain order considered in the data generating process and i =
1, .., 5 is the order of the Markov chain used to estimate βi. All results presented are based
on 10000 Monte Carlo simulations.
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3.4 Empirical Application

It is nowadays widely accepted that the relation between major economic vari-
ables is nonlinear (see, for instance, Terasvirta et al.; 2010). However, since
most existing nonlinear models assume a parametric functional form and re-
quire the estimation of a considerable numbers of parameters, alternative ways
to capture some aspects of the nonlinear relationships have been developed. For
instance, in order to cater for the possibility that the yield curve predicts more
accurately when drastic changes in output occur, some authors considered a
binary dependent variable which equals one when the National Bureau of Eco-
nomic Research (NBER) dates a recessions and zero otherwise (see, for instance,
Estrella and Hardouvelis; 1991 and Estrella and Mishkin; 1998). Then, discrete
choice models, such as logit or probit, are employed to estimate the effect of YS
on the probability of a recession.

Most standard models for binary responses do not take the dynamic struc-
ture of the data into account, which is crucial for applications to time series
data. A relevant exception is the parametric (linear) dynamic probit model
which includes lags of the binary response variable in the probit function; see
e.g. Kauppi and Saikkonen (2008) and Antunes et al. (2018).

An alternative approach to incorporate information provided by the past
values of the dependent variable is to assume the Markovian property. In this
context, the interpretation is in terms of transitional rather than marginal prob-
abilities (see, for instance, Azzalini; 1994) and the focus is on the estimation
of the probabilities of transitions between states. The framework that we in-
troduce in this paper, which also relies on the Markov assumption, allows us
to obtain covariate-dependent transition probabilities without requiring a rigid
parametric functional form8 or the estimation of a large number of parame-
ters. Moreover, instead of simply indicating the presence or not of a recession,
the binary variable is given by (3.1). Since the proposed approach allow us
to consider different threshold z1 and starting z0 values, it may be useful to
capture additional information about possible nonlinear relationships between
a dependent variable and a set of covariates.

However, the major advantage of our approach is that it provides a sim-
ple method to estimate the covariate-dependent expected time (ET) to cross
a threshold, which may be a useful reduced-form tool to investigate relevant
topics such as dynamic controllability. Roughly speaking, Buiter and Gerso-
vitz (1981) define that a system is dynamically controllable if a path for the
economic instruments exists which is capable of moving the vector with the eco-
nomic objectives from any initial value to any other target value in pre-assigned
finite time. They argue that this ability to achieve a vector of target values is
relevant for economic policy even if these target values cannot be maintained.
Thus, by choosing a target value z1 and calculating covariate-dependent ET for
different starting points z0 we may gather evidence about the effectiveness of
the covariates in driving a dependent variable towards z1.

8The only parametric assumption is that the covariates influence the transition probabil-
ities via a logistic function, as defined in (3.4) and (3.5).
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This section provides an empirical application to the economic activity-yield
spread relationship. The link between YS and economic growth is related to
monetary policy, which influences the shape of the yield curve - the representa-
tion of several yields or interest rates across different contract lengths - over the
business cycles. For instance, monetary policy influences directly, through the
use of open market operations, the level of short-term maturity yields. Central
banks have a reference interest rate as an important pro-cyclical instrument to
pursue their objectives (e.g., price stability). They will lower short run yields
in recessions in an attempt to stimulate the economy and will do the opposite
when there are inflationary pressures. However, as short-term interest rates
have been close to their zero lower bound in recent years, central banks also be-
gan to influence long-term interest rates using unconventional monetary policy
operations such as, quantitative easing, in order to stimulate aggregate demand
and avoid a scenario of low growth and deflation.

Therefore, central banks’ monetary policies exert a strong influence on YS.
When the economy is in recession, monetary policy actions that have led YS to
positive values will promote a faster economic recovery. On the other hand, if
the economy is in expansion and the inflation rate suggests that we are facing an
over heated economy, monetary policy actions can be taken in order to reduce
the YS and slow down economic growth; for instance, by increasing the reference
interest rates.

We consider YS as a proxy for the monetary policy stance and investigate
how this variable affects the ET that IP growth rate takes to return to its mean
after an exogenous shock. In practice, this will be done considering several
starting values z0, each of which correspond to a different St process, and by
estimating the vector of parameters βi that indicates how YS influences the ET
for IP growth rate to return to its mean.

3.4.1 Data

The proposed methodology is applied to U.S. data. The IP index was selected
as an indicator of economic activity due to its higher (monthly) frequency and
faster availability relatively to GDP, the most commonly used measure of eco-
nomic activity. IP seems an adequate choice since, at least for the more industri-
alized countries, the value added by industrial production represents a substan-
tial share of GDP. Moreover, the IP index exhibits more cyclical fluctuations
than the financial index. It is expected that the larger number of observations
available and the greater cyclical variability of the IP index will have a positive
impact on parameter estimation. We consider the monthly seasonally adjusted
U.S. IP index obtained from OECD’s Main Economic Indicators Publication,
for the period from December 1964 to February 2019 (651 observations).

YS, which is the difference between the long-term9 and the short-term in-
terest rates10, used as a proxy for the monetary policy stance, is obtained from

9Long-term interest rates are computed using government securities with outstanding
maturities of 10 years.

10Short-term interest rates are either the three month interbank offer rate associated to
loans provided and taken among banks for any excess or shortage of liquidity over several
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OECD’s Monthly Monetary and Financial Statistics. Figure 3.1 graphically
presents both time series.
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Figure 3.1: U.S. Industrial Production (monthly) growth rate
and yield spread

3.4.2 Empirical Results

Let yt be the monthly IP growth rate and xt YS. We consider the empirical mean
of the IP growth rate as the threshold, z1 = y, and estimate βi (1 ≤ i ≤ r)
for the covariate-dependent probabilities defined in (3.4) and (3.5) considering
several starting values z0, each corresponding to a different St process as defined
in (3.1). The βi parameters are crucial to properly estimate the impact of the
covariates on the ET for yt to cross z1 when it starts from z0; see (3.12).

YS has been identified as an important leading indicator in the literature.
For instance, Estrella and Mishkin (1998) conclude that the steepness of the
yield curve is an accurate predictor of real activity, especially between two and
six quarters ahead. Thus, we estimated the probabilities in (3.4) and (3.5) using
k-periods lagged YS as covariates, with k = 1, ..., 6, considering Markov chains
of different orders and starting values z0. Since, overall the 3-month lagged YS
provides stronger statistical evidence, we will use this variable as a covariate.
In other words, we will consider that xt = (1, xt−3)′ and βi = (βi,1, βi,2), with
i = 1, ..., r.

The Markov chain order r was chosen based on the analysis of the residuals
of a regression of yt on its own lags and YS. Additionally, we also take into
account the statistical significance of βi,1 and βi,2 for several starting values z0.
Thus, a third order Markov process (i.e. r = 3) has been considered. For r > 3,
β̂r,2 is not statistically significant and the standard error of β̂r,1 also becomes
substantially higher for almost all starting values z0 considered.

months or the rate associated with Treasury bills, certificates of deposit or comparable in-
struments, each of three month maturity.
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Table 3.2: Estimated parameters for
pi(x), i = 1, ..., r

i = 1 i = 2 i = 3

β̂1,1 β̂1,2 β̂2,1 β̂2,2 β̂3,1 β̂3,2

α z0 coef. prob. coef. prob. coef. prob. coef. prob. coef. prob. coef. prob.

-1.50 -0.886 0.761 0.011 -0.171 0.049 0.957 0.008 -0.176 0.072 0.998 0.013 -0.131 0.162
-1.25 -0.705 0.960 0.000 -0.183 0.018 1.193 0.000 -0.199 0.033 1.019 0.003 -0.225 0.033
-1.00 -0.524 0.755 0.000 -0.167 0.006 0.944 0.000 -0.118 0.068 0.903 0.001 -0.201 0.027
-0.75 -0.343 0.485 0.003 -0.170 0.001 0.811 0.000 -0.137 0.031 0.964 0.000 -0.190 0.033
-0.50 -0.162 0.509 0.000 -0.148 0.001 0.833 0.000 -0.133 0.018 1.026 0.000 -0.191 0.014
-0.25 0.020 0.319 0.007 -0.101 0.000 0.864 0.000 -0.140 0.009 0.996 0.000 -0.211 0.005
0.25 0.382 0.177 0.102 0.102 0.015 0.282 0.071 0.132 0.020 0.231 0.192 0.254 0.009
0.50 0.563 0.448 0.002 0.061 0.125 0.489 0.006 0.152 0.015 0.438 0.045 0.270 0.003
0.75 0.744 0.595 0.000 0.048 0.227 0.633 0.002 0.138 0.050 0.490 0.032 0.209 0.020
1.00 0.925 0.809 0.000 0.073 0.191 0.742 0.001 0.178 0.042 0.812 0.003 0.184 0.063
1.25 1.106 1.051 0.000 0.110 0.154 0.972 0.000 0.167 0.089 1.092 0.001 0.134 0.167
1.50 1.287 0.958 0.000 0.042 0.363 0.955 0.002 0.147 0.157 0.991 0.005 0.125 0.219

Notes: pi(x) := P (St = 0|St−1 = 0, ..., St−i = 0; x) as defined in (3.5) and z0 = y + ασ̂y ( y
and σ̂y are, respectively, the sample mean and standard deviation of yt).

Table 3.2 shows that the coefficients of YS (β̂i2, i = 1, 2, 3) are negative
when z0 < y and positive when z0 > y. For the first case the YS coefficients
are statistically significant at the 10% significance level for almost all starting
values considered. When z0 > z1, significance is only observed for i = 2, 3 and
if the starting values are not particularly large.

We computed the unconditional (proposed by Nicolau; 2017) and covariate
dependent ET time curves11 (ETC) and their 95% confidence intervals using the
overlapping block bootstrap described in Subsection 3.2.4 with 999 bootstrap
replications and block length equal to T 1/3.

Figure 3.2 shows the estimated (unconditional and covariate dependent)
ETCs and their 95% confidence bounds considering 24 different starting points
z0, equally spaced in the interval

(
y−1.5σ̂y, y+1.5σ̂y

)
, with y and σ̂y the sample

mean and standard deviation of yt, respectively, and six different values for the
explanatory variable zt−3.

The bootstrap-based ETC estimates presented in Figure 3.2 seem to confirm
the results in Table 3.2. That is, when the IP growth rate is below its mean,
z0 < ȳ, the βi2 estimates are negative. As a consequence, the ET to reach z1 ≥ ȳ
is relatively low if YS is positive. Therefore, the IP growth rate easily recovers
from low values when YS is positive; however, recovery is slower when YS is
negative. For example, consider the case where YS is equal to 3.9% (see Figure
3.2 panel F ). If the initial value of the IP growth rate is negative, recovery is
fast and takes around 2 months on average to reach ȳ. On the other hand, if YS
is negative and equal to -1.9%, recovery is much slower and can take on average
four months (see Figure 3.2 panel A).

11As in Nicolau (2017), we call ET curve to the graphical representation of the ET estimates
for different starting values z0, but same threshold z1 = ȳ.
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When the IP growth rate is above its mean, z0 > ȳ, the estimates of βi2
become positive and the opposite interpretation applies. Thus, in this case, the
ET to decrease to z1 ≤ ȳ is delayed if YS is positive (prosperity tends to last)
and accelerated if YS is negative. For example, if the YS is equal to 3.9% (see
Figure 3.2 panel F), the IP growth rate will remain above its mean value for
about 4 months while the same only happens for two months on average if YS
is negative and equal to -1.9% (see Figure 3.2 panel A).

Hence, we can conclude that there is statistical evidence that YS influences
the ET the IP growth rate takes to return to its mean, which is graphically
reflected in the asymmetric shapes of the conditional ET curves for high and
low YS values. For instance, panels A, E and F of Figure 3.2 illustrate this
feature particularly well.

The relationship between YS and economic activity has been investigated
by an extensive literature. Harvey (1989), Stock and Watson (1989), Estrella
and Hardouvelis (1991) and Estrella and Mishkin (1998), among others, found
statistical evidence that YS predicts future output growth. Most of this re-
search is based on a linear framework of analysis (OLS regressions), considering
an appropriate lead-lag relationship. However, there are some exceptions to
this practice. For instance, Galbraith and Tkacz (2000) used the linearity tests
against TAR models suggested by Hansen (1996) and found evidence in sup-
port of the asymmetric impact of YS on the conditional expectation of output
growth. When YS is above a specific threshold value, the additional effect of a
large positive spread becomes small and statistically insignificant.

Moreover, YS has also been successfully used in predicting recessions (see,
for instance, Estrella and Hardouvelis; 1991, Estrella and Mishkin; 1998 and
Kauppi and Saikkonen; 2008). Most of this evidence was obtained using probit
or logit models where the dependent variable used was a recession indicator,
which equals 1 when the NBER dates a recession and zero otherwise.

The proposed methodology is somehow related with this strand of the lit-
erature since it considers a logit specification for the transition probabilities in
(3.4) and (3.5). However, it is much more flexible and can provide additional
information about the economic activity-yield spread relationship. We consid-
ered z1 = ȳ in order to illustrate the proposed approach, but other threshold
values such as z1 = 0 could also have been considered. With z1 = ȳ, the
covariate-dependent ET curve may provide important insights about the pre-
dictive content of YS. For instance, let us consider that yt−1 > ȳ. If YS is
positively related to future economic activity, a negative YS increases the prob-
ability that the dependent variable will cross ȳ in period t and consequently ET
will be lower.

A visual informal analysis of the ET curves presented in Figure 3.2 suggests
some interesting facts. First, for z0 > ȳ, the ET estimates change very little
when YS increases from -1.9 to -0.6 (see panels A and B) and from 0 to 1 (see
panels C and D). It seems that a large YS value is necessary to increase the ET
substantially (see panels E and F). On the other hand, if z0 < ȳ, the decrease
in the ET estimates when YS increases seems clearer.
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PANEL A - Yield Spread = -1.9
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PANEL B - Yield Spread = -0.6
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PANEL C - Yield Spread = 0.0
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PANEL D - Yield Spread = 1.0
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PANEL E - Yield Spread = 3.1

-0.5 0 0.5 1
z

0

0

1

2

3

4

5

6

T
im

e 
in

 m
on

th
s

PANEL F - Yield Spread = 3.9
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PANEL G - Unconditional ETC

Figure 3.2: Unconditional and conditional estimated expected
time curves (ETC) with overlapping block bootstrap 95% CI

Notes: For the conditional case the following six values for the covariate were considered:
(x̄− σ̂x) = −1.9 , Q1 = −0.6 , 0 , x̄=1 , Q3 = 3.1 , (x̄− σ̂x) = 3.9; where Q1 and Q3 are
the first and third quartiles of xt, respectively.
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3.5 Conclusions

In this paper we propose a simple and easy to implement approach to investigate
the effect of covariates on the expected time (ET) to cross a threshold given
a specific starting point. In order to estimate the parameters that describe
the relationship between the ET and the covariates, we adapt the procedure to
estimate Markov models of any order proposed by Islam and Chowdhury (2006).
We confirm via Monte Carlo simulations that the relevant parameters, βr, are
consistently estimated even when the sample size is relatively small (T = 500).

However, since the expression for ET in (3.12) is a highly nonlinear function
of βi, with i = 1, .., r, we consider an overlapping block-bootstrap procedure
to obtain the standard errors of the ET estimates and to construct relevant
confidence intervals. Existing literature on the topic suggests that this block-
bootstrap variant is a good choice to resample dependent data. We used it to
obtain confidence intervals for the ET that the U.S. IP growth rate takes to
revert to its mean given a starting point and a particular YS value. Figure 3.2
shows that the width of the confidence intervals is relatively narrow even when
the starting value z0 is far (in absolute value) from the threshold value z1 (which
results in less accurate estimates of βi).

The empirical application to the U.S. economy shows that there is statistical
evidence supporting the influence of YS on the ET for the IP growth rate to
return to its mean. Namely, a high YS reduces this ET if the IP growth rate
starts by assuming below average values. Thus, monetary policies that result
in higher YS could play an important role in stimulating a faster return to
desirable growth rates in periods of weak growth or contraction. Moreover, the
YS value seems also critical when the IP growth rate is larger than average. If
YS is negative, the IP growth rate will return quickly to below average values.
This finding may be related to the widely documented ability of the yield curve
inversion (negative YS) to predict recessions (see, for instance, Estrella and
Mishkin; 1998).

The application of the proposed methodology to the economic activity-yield
spread relationship illustrates that it provides insights that may be relevant to
policymakers. Thus, the proposed approach can be adapted to support a wide
range of economic decisions since it provides a flexible and easy to implement
framework that allows us to infer about the nonlinear relationship between a
dependent variable associated with an economic objective and a set of relevant
covariates associated with economic policy instruments.
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Chapter 4

The Importance of Intra-Horizon
Risk in Portfolio Optimization

4.1 Introduction

Investors always face a trade-off between risk and return when commit capital
to the financial market. Thus, the portfolio optimization theory is crucial to
support efficient asset allocation decisions.

One of the most influential methodologies dealing with this problem was
proposed by Markowitz (1952, 1959). Markowitz’s approach associates profits
and risk to the expectation and variance of returns, giving rise to the mean-
variance (MV) portfolio optimization models1 and to the concept of efficient
frontier, the curve that represents the efficient portfolio for a given risk level.

Despite of being a common workhorse model for portfolio selection, the tra-
ditional MV approach has not been free of criticism. One of its disadvantages
is the fact that it is a one-period model which does not accommodate uncer-
tainty, since the estimated expected returns and respective covariance matrix
are constant over the investment horizon considered and, therefore, no port-
folio re-allocation is possible when relevant information arises. Extensions of
Markowitz’ MV approach to a multi-period framework were proposed by, for
instance, Merton (1971) and Li and Ng (2000).

Another important drawback of the mean-variance approach is that it only
focuses on the first two statistical moments. Since non-normality is a stylized
feature of asset returns2, describing the portfolio using only its first two moments
may be inappropriate, causing the MV criterion to fail in selecting the optimum
portfolio.

In response to this limitation, alternative asymmetric risk measures which
penalize downside deviations more than upside deviations have been proposed
to replace the variance. Markowitz (1959) also proposed the semi-variance as
a risk measure however the computational resources required to approximate
the resulting solution were eventually a practical restriction at the time. Roy

1In fact, two optimization problems can be considered: either to minimize the variance for
a given expected return or to maximize the expected returns for a given variance acceptable
to the investors.

2Empirical evidence suggests (see, for instance, Cont; 2001) that skewness and kurtosis
of returns exhibit pervasive behaviors. More recently, Nicolau and Rodrigues (2019) provide
evidence on the heavy-tailedness of the exchange rate returns series distribution.
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(1952) introduces the safety-first criterion, which is an alternative risk measure
that seeks to minimize the probability of the portfolio’s return falling below a
predefined threshold. More recently, this topic is addressed by Ogryczak and
Ruszczynski (1999) and Ogryczak and Ruszczynski (2001). Another important
extension was the introduction of the Value-at-Risk (VaR) and related risk
measures, concerned with extremely unfavorable results, as criteria for optimal
portfolio selection (see, for instance, Basak and Shapiro; 2001 and Campbell
et al.; 2001). These developments were motivated by the importance of the
VaR as financial risk measure, and for regulatory purposes. For instance, the
Basel Committee on Banking Supervision stipulated the VaR as the preferred
approach to measure market risk.

All works reported so far focus on the value of risk measures at the end
of a specified trading horizon and ignore the dynamic path of possible losses.
Alternative approaches that take into account the magnitude of potential losses
incurred over the trading horizon, denoted intra-horizon (IH) risk, were intro-
duced by Kritzman and Rich (2002), Boudoukh et al. (2004) and Bakshi and
Panayotov (2010). The IH risk is critical in a mark-to-market environment since
sharp declines in asset values can affect trading strategies.

The methodologies proposed to capture the IH risk are mainly based on
first passage probabilities, the probability that an event occurs for the first time
within a finite horizon. In order to compute this statistic, asset price dynamics
was typically modeled using the Geometric Brownian motion framework. A
relevant exception is Bakshi and Panayotov (2010). This work warns of the
importance of considering models that allow for sudden large changes in asset
prices. Thus, they consider processes with jumps (Lévy jump models) for the
underlying asset returns in order to compute the first-passage probability and
show that the existence of such jumps tends to amplify the IH risk. However,
results also reveal large variations in risk measures across different jump models,
indicating model risk.

To the best of our knowledge Gupta et al. (2016) are the first that incorpo-
rate IH risk into asset allocation optimization. This component of the market
risk is crucial in practice, since portfolio managers typically have thresholds that
impose a stop-loss decision when broken. Moreover, the IH risk increases as the
investment horizon increases (see, for instance, Kritzman and Rich; 2002 and
Gupta et al.; 2016). Thus, in this context, the optimization problem has to in-
corporate a constraint regarding the probability of breaching some pre-specified
drawdown threshold somewhere during the investment horizon.

In this work, we present a framework to formalize portfolio selection prob-
lems that allows us to incorporate the portfolio management issues referred to
above. To this end, we introduce a novel nonparametric approach to estimate
the first hitting time probabilities, which relies on the Markovian property of
returns. Thus, stationary Markov chains are used to estimate all the relevant
probabilities and expected moments. This method remains valid even when
the underlying price process exhibits an upward stochastic trend, as generally
happens with security prices. Since the approach is nonparametric, the widely
documented model uncertainty problem in portfolio analysis (see, for instance
Avramov and Zhou; 2010, for a literature review) is avoided.
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In short, the proposed optimization problem aims to minimize the expected
time to achieve a target return rate given that the probability of crossing a lower
threshold, which triggers a stop-loss decision, is maintained at a level considered
acceptable. This probability is used to manage the IH risk an investor is willing
to accept.

The remainder of the paper is organized as follows. Section 4.2 introduces
the proposed nonparametric approach and formalizes the optimization problem.
Section 4.3 presents an empirical application of the proposed methodology to
portfolio selection. In order to illustrate its potential, we considered the alloca-
tion of wealth across four Exchange Traded Funds (ETFs) from three different
asset classes: equities, bonds and commodities. Section 4.4 concludes the paper.

4.2 The Proposed Approach for Portfolio Selec-
tion

Assume that an asset manager is responsible for an initial wealth and seeks
to invest it in a number of different securities (stock, bonds, etc.) in order to
obtain a target wealth in the shortest period of time. However, his mandate
has an important restriction regarding the risk that can be taken: the portfolio
value cannot fall below a defined threshold in a given time horizon.

In this context, the first time a portfolio value, say yt, crosses some prede-
fined threshold value is crucial in practice. When the target value of the portfolio
is first attained, the asset manager’s mandate is successfully completed. On the
other hand, when the portfolio value falls below the lower threshold for the first
time, the investment process may stop in order to avoid greater losses.

Let us define the first time that yt crosses y+ = (1+r+)x0 and y− = (1+r−)x0

as

T+ := T(1+r+)x0 = inf{t > 0 : yt ≥ y+} (4.1)

and
T− := T(1+r−)x0 = inf{t > 0 : yt ≤ y−}, (4.2)

respectively, supposing that the process yt starts at value x0; r− and r+ are
such that y− < x0 < y+.

4.2.1 The Proposed Nonparametric Method to Estimate
the First Hitting Time Probabilities

In principle, the assumption that yt crosses the threshold y+ (y−) an infinite
number of times over time as T → ∞ is required in order to estimate the first
passage time distributions of T+ and T− and all the relevant probabilities and
expected moments in a nonparametric way. As shown by Nicolau (2017), this
aspect follows from a stationary assumption and, in particular, from a positive
Harris recurrence of y. However, since the focus here is the price of a security,
which may exhibit a strong positive trend very much like a random walk with
drift, yt will not cross a fixed threshold enough times to allow for suitable
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estimation of the probabilities of interest. Nevertheless, in this nonstationary
context, the event “y that increases (decreases) r%" may actually occur an
infinite number of times as time goes to infinity. Thus, the rationale behind the
methodology here introduced is that this type of events (y increases or decreases
r%) may be modeled through stationary Markov chains, which still enables us
to estimate the first passage time distributions of T+ and T−.

Assumption A1 (Conditional Homogeneity).
P (T(1+r)x ≤ t|x0 = x) = P (T(1+r)z ≤ t|x0 = z) for any value x and z.

In general, Assumption A1 is plausible if, for instance, y is the price of a
security traded in an efficient market. In fact, if prices fully reflect all known
information, as implied by the Efficient Markets Hypothesis proposed by Fama
(1970), it is not possible for investors to purchase undervalued stocks or sell
stocks for inflated prices. Thus, in this context, the time that y takes to increase
r+ 100% is independent of the value at which the stock is currently traded, that
is, it must be independent of value that x0 assumes. It can be proved that the
well-known Geometric Brownian motion provides an example of a process that
satisfies Assumption A1.

Closed-form solutions to the first-passage probability are only available for
few specifications. One of them is the Geometric Brownian motion, widely
used in modeling market prices due to its mathematical tractability (see, for
instance, Karlin and Taylor; 1975). However, there are nowadays significant
empirical evidences that the distribution of equity returns is in general skewed
and leptokurtotic (see, for instance, Mandelbrot; 1963 and Cont; 2001). For
instance, asset prices often suddenly change by a very large amount (see, for
instance, Eraker et al.; 2003) and this feature is difficult to reproduce within
continuous-path models based on Brownian motions (see, for instance, Huang;
1985 and Johannes; 2004), which motivated the use of Lévy models to capture
the short-run behavior of security prices. Beyond the lack of analytical explic-
itness (see, for instance, Kyprianou; 2006), choosing the most appropriate one
from the great number of Lévy-type models proposed in the literature (see, for
instance, Madan and Seneta; 1990 and Carr et al.; 2002) may also be a very
challenging task3. Therefore, the nonparametric method we introduce to esti-
mate the first hitting time probability function may be a useful approach, since
it is flexible enough to accommodate jumps and other nonnormalities in asset
prices.

The strategy to estimate the first hitting time probabilities of T+ and T− is
based on two steps. Let us focus on the T+ statistic in (4.1). First, the event
increase of r+ 100 % is translated into an auxiliary process. Second, we extract
from this auxiliary process all the relevant information regarding the estimation
of the parameters of interest.

3For instance, Bakshi and Panayotov (2010) reveal large variations in the risk measures
estimates across different Lévy jump models.
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The Auxiliary Processes

The algorithm to build the auxiliary process is the following. Let y+ = x0(1 +
r+), with r+ > 0, were r+ 100% may be understood as growth rate (in percent-
age):

1. Set i = 1;

2. Let x0 = yi (y1 is the first observation of y);

3. Define

a
(i)
t :=

{
1 if yt < y+, yt−1 < y+, ..., yt−k+1 < y+, yt−k ≤ x0,
0 otherwise,

4. Run a(i)
t from t = i to t = n;

5. Set i→ i+ 1 and return to step 2 until i = n− 1;

6. Stack all observations a(i)
t , i = 1, 2, ... in a vector. We designate this

process as S+
t .

The algorithm is easily adapted to the case r− < 0. The resulting auxiliary
process, S−t , can be obtained by running the algorithm above by replacing x0,
y+ and yt by −x0, y− and −yt, respectively. Then, the probability that yt
crosses the threshold yτ for the first time at time t, starting from x0, is

P (T τ = t) = P (Sτt = 0, Sτt−1 = 1, Sτt−2 = 1, ..., Sτ1 = 1, Sτ0 = 1),

which is equivalent to

P (T τ = t) =
(
1− pt

) t−1∏
i=1

pi , τ = +,− (4.3)

where pi := P (Sτi = 1|Sτi−1 = 1, Sτi−2 = 1, ..., Sτ0 = 1), x0 < x1 for S+
t and

x0 > x1 for S−t .

Assumption A2 (Markovian Property). The processes S+
t and S−t are sta-

tionary discrete-time Markov processes of finite order.

Therefore, the strategy is to treat S+
t and S−t as Markov chains with state

space {0, 1} and estimate the transition probabilities between the two states. A
consequence of Assumption A2 is that event “y increases or decreases r100%,
|r| <∞" may occur an infinite number of times as T →∞. If, for instance, we
set r to be negative (positive) and y exhibits a strong positive (negative) trend
over time, St will be formed mostly by ones and no relevant information can
be extracted from this sequence regarding the transition probabilities. That is,
the probability of transition from the state with St = 1 to the state with St = 0
will tend to zero.
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In view of the Markovian property, if t > k then pi = pk, where k is the
Markov chain’ order. Then,

P (T τ = t) =



(
1− pt

) t−1∏
i=1

pi for t ≤ k,

((
1− pk

) k−1∏
i=1

pi

)
pt−kr for t > k.

(4.4)

Consequently, we have

E(T τ ) =
k∑
t=1

t
(
1− pt

) t−1∏
j=1

pj +

{(
1− pk

) k−1∏
j=1

pj

}
∞∑

t=k+1

t pt−kk

=
k∑
t=1

t
(
1− pt

) t−1∏
j=1

pj +
k−1∏
j=1

pj
pk(1 + k − k pk)

1− pk
. (4.5)

Therefore, in order to obtain estimate of (4.4) and (4.5) we only need the
probabilities

pj = P (Sτi = 1|Sτi−1 = 1, Sτi−2 = 1, ..., Sτt−j = 1), (4.6)

with 1 ≤ j ≤ r, which can be easily estimated from standard Markov chain
inference. For instance, if k = 1, the maximum likelihood estimate is p̂1 = η11/η1

where η11 is the number of transitions of type {Sτt−1 = 1, Sτt = 1} and η1

counts the number of cases for which {Sτt−1 = 1}. As another example, when
k = 3, p̂3 = η1111/η111 where η1111 and η111 are the number of transitions of
type {Sτt−3 = 1, Sτt−2 = 1, Sτt−1 = 1, Sτt = 1} and {Sτt−3 = 1, Sτt−2 = 1, Sτt−1 = 1},
respectively.

Estimation of the Markov Order k

There are several approaches to estimate the order of the Markov chain (see
Katz; 1981 and Zhao et al.; 2001). Most of them rely on Akaike’s information
criterion and the Bayesian information criterion. These methods are not only
cumbersome, as they require building several Markov chains of a different order,
but they are probably also inefficient because our object of interest centers
exclusively on the probabilities

pk := P
(
Sτt = 1|Sτt−1 = 1, Sτt−2 = 1, ..., Sτt−k = 1

)
and not on the entire Markov chain. We propose a new efficient and straight-
forward method below to estimate the order k defined in the previous equation.
We consider the auxiliary regression

I{Sτt =1} = αI{
Sτt−1=1,...,Sτ

t−(k−1)
=1

}+βI{Sτt−1=1,...,Sτt−k=1}+εt, t = k+1, k+2, ..., n

(4.7)
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where I{A} is a dummy variable equal to 1 if A is true and the error term εt
is not correlated with I{

Sτt−1=1,...,Sτ
t−(k−1)

=1
} and I{Sτt =1,Sτt−1=1,...,Sτt−k=1}. Both

the independent and dependent variables only take on zero and ones. In the
Appendix C we prove that

β =
pk − pk−1

1− pk−1

(4.8)

where pk = P
(
Sτt = 1|Sτt−1 = 1, ..., Sτt−k = 1

)
.This means that we can assess

whether pk is equal to pk−1 by a standard t-test using the ratio β̂/σ̂β. If the
hypothesis β = 0 is not rejected then pk is equal to pk−1 and the true order k∗ is
lower than k. For example, for k = 2 to simplify, if P

(
Sτt = 1|Sτt−1 = 1, Sτt−2 = 1

)
= P

(
Sτt = 1|Sτt−1 = 1

)
then the event {Sτt = 1} is independent of

{
Sτt−2 = 1

}
given

{
Sτt−1 = 1

}
and the order is lower than k = 2.

To illustrate the methodology on how to estimate the true order k∗ we may
start with say kmax = 3. Then:

1. Run the regression I{Sτt =1} = αI{Sτt−1=1,Sτt−2=1}+βI{Sτt−1=1,Sτt−2=1,Sτt−3=1}
+ εt and test H0 : β = 0 against H1 : β 6= 0.

2. If β = 0 is rejected the order is estimated as k∗ = 3

3. If β = 0 is not rejected run I{Sτt =1} = αI{Sτt−1=1} + βI{Sτt−1=1,Sτt−2=1}
and test H0 : β = 0 against H1 : β 6= 0.

4. If β = 0 is rejected the order is estimated as k∗ = 2

5. If β = 0 is not rejected the order is estimated as k∗ = 1 (we assume the
St is time-dependent, so the Markov chain is at least a first order Markov
process; otherwise we could run I{Sτt =1} = α + βI{Sτt−1=1})

It can be proved that the β in (4.8) can also be obtained from the auxiliary
regression

I{Sτt =1} = θ1I{Sτt−1=1} + θ2{Sτt−1=1,Sτt−2=1} + ...+ θk−1I{Sτt−1=1,...,Sτ
t−(k−1)

=1
}

+ βI{Sτt−1=1,...,Sτt−k=1} + εt, t = k + 1, k + 2, ..., n. (4.9)

That is, the β estimate is numerically identical in both regression (4.7) and
(4.9). Note also that, in the case of the regression with only one “explanatory ”
variable

I{Sτt =1} = θI{Sτt−1=1,...,Sτt−k=1} + εt, t = k + 1, k + 2, ..., n (4.10)

the parameter θ represents pk (the proof is available in the Appendix C) .
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4.2.2 The Optimization Problem

In order to emphasize the allocation problem let us redefine (4.1) and (4.2) as
functions of the vector of portfolio weights ω = (ω1, ..., ωm)′:

T+(ω) = inf{t > 0 : yt(ω) > (1 + r+)x0},

and
T−(ω) = inf{t > 0 : yt(ω) < (1 + r−)x0},

where x0 is the initial wealth available, r+ is the desired portfolio’s cumulative
return, r− is the cumulative loss rate that defines a lower threshold, and

yt(ω) =
t∏
i=1

(
1 +

m∑
j=1

ωjrji

)
x0,

with rji being the simple (one-period) return of asset j at time i.

Suppose that three external parameters are given to a portfolio manager:
the cumulative return target r+, a maximum drawdown threshold that equals
(1 + r−)x0 and triggers a stop-loss decision and a maximum number of days,
say N , to achieve the desired portfolio’s return r+. When r+ is reached or the
maximum drawdown threshold is broken, the portfolio is terminated. Thus, the
asset manager faces two risks. First, the risk that the stop-loss decision is made
before reaching r+, called IH risk. Second, the risk that the return target is
never met within the investment horizon [0, N ] .

As stated by Kritzman and Rich (2002) and Gupta et al. (2016), unlike the
risk of not reaching the target return, which diminishes with time, the IH risk
increases quite dramatically as the investment horizon increases and may lead
to premature termination of the investment. Then it is important to achieve
the target return r+ as fast as possible.

Thus, we propose the following optimization:

min{ω1,...,ωm}E
(
T+(ω)

)
(4.11)

subject to the constraints

P
(
T−(ω) ≤ N

)
< p0, (4.12)

ω′1 = 1,

where 1 is a m-dimensional vector of ones, and N and p0 are parameters that
allow as to manage the intra-horizon risk. More precisely, the probability p0

in (4.12) that a cumulative loss rate of more than r− 100% occurs in a time
horizon of N trading days is a proxy of the portfolio manager’s risk tolerance.

Therefore, the objective is to minimize the expected time to achieve a cu-
mulative return target in (4.11) subject to the constraint in (4.12), which allows
us to manage the downside risk by choosing the parameters p0, r

− and N con-
sidered more appropriate given the asset manager’ degree of risk aversion.
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As an extreme example of risk aversion, when p0 ≈ 0, the weight vector ω
must be selected such that the probability of facing a cumulative loss rate of
r−100% at any time until the end of the investment horizon N is practically
zero.

4.2.3 The Optimization Algorithm

The objective function to be minimized has the form

Ψ(ω) = E
(
T+(ω)

)
+ γ I

(
p0(ω)

)
, (4.13)

where

I
(
p0(ω)

)
:=


0 if P

(
T−(ω) ≤ N

)
=
∑N

t=1 P
(
T−(ω) = t

)
< p0,

1 otherwise,
(4.14)

and γ assumes a high positive value (for instance, 1,000,000) in order to discard
solutions that do not respect the constraint in (4.12).

As is evident from (4.13) and (4.14), classical optimization methods (for
instance, linear and quadratic programming ) based on exploiting the derivatives
of the objective function are not applicable here since, for a particular vector
ω, we have to iteratively:

1. Build the auxiliary processes S+ and S−;

2. Estimate the Markov chain orders for S+ and S−;

3. Obtain the probability functions for the first-passage-time processes
T+ and T−;

4. Compute E(T+) and P (T−(ω) ≤ N).

Thus, in order to minimize the objective function in (4.13), heuristic iterative
stochastic search methods should be considered. We will employ the Threshold
Accepting (TA) algorithm introduced by Dueck and Scheuer (1990). It was
one of first heuristic approaches applied to portfolio selection problems; see
Dueck and Winker (1992). Roughly speaking, this heuristic algorithm consists
in starting with a randomly chosen feasible solution and successively picking
(randomly) new solutions. Each of the new solutions, called neighbor solu-
tions, are evaluated. If the new solution is better or as long as its deviation
from the previous solution does not exceed certain thresholds, even though it
is worse, it is accepted. Then, in order to implement this method we need to
define, in addition to the objective function and constraints handling functions,
a neighborhood function and the thresholds.
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The Neighborhood Function and the Threshold Sequence

Since several specifications can be considered for the neighborhood function and
for the thresholds, many variations of the TA algorithm are possible. We will
use the variant proposed in Gilli and Schumann (2010b) and Gilli et al. (2011),
since they have shown that it performs well in portfolio optimization problems.

The neighborhood algorithm in Gilli et al. (2011), which defines how we
move from a solution to the next has the following steps:

Neighborhood Algorithm

1. randomly select j1 ∈ {assets with weight > wmin};
2. randomly select j2 ∈ {assets with weight < wmax};
3. set ε, determined by a draw of a uniformly distributed over [0, 0.5%]
random variable;
4. ωj1 = ωj1 − ε;
5. ωj2 = ωj2 + ε;

where wmin and wmax are such that wmin < wj < wmax for j = 1, ...,m.
Regarding the threshold sequence, it consists in an ordered vector of positive

numbers that decrease to zero or at least become very small. In order to compute
the threshold sequence, consider the following algorithm, also from Gilli et al.
(2011):

Threshold Sequence Algorithm

1. set the number of thresholds nrounds and the number of random steps
ndeltas;
2. randomly generate feasible current solution, say, xc ;
3. for i = 1 : ndeltas : do
generate xn ∈ N (xc) and compute ∆i = |Ψ(xn) − Ψ(xc)|, where N(xc)
is the neighbor to the current solution defined using the neighborhood
algorithm above; then, set xc = xn;
end for;
4. compute the empirical distribution CDF of ∆i, i = 1, ..., ndeltas;
5. compute the threshold sequence τk = CDF−1

(
nrounds−k
nrounds

)
, with k =

1, ..., nrounds; thus, this algorithm uses nrounds equidistant quantiles .

Finally, the optimization algorithm, which employs the two algorithms pre-
sented above:

Threshold Accepting (TA) Algorithm

1. use the threshold sequence algorithm to construct the threshold se-
quence τ ;
2. randomly generate feasible current solution, say, xc ;
3. set x∗ = xc;
4. for r = 1 : nrounds do
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for i = 1 : nsteps, where nsteps is the number od steps per threshold,
do

generate xn ∈ N (xc) and compute ∆ = Ψ(xn)−Ψ(xc)
if ∆ < τr then xc = xn;
if Ψ(xc) ≤ Ψ(x∗) then xc = xn;

end for;
end for;

5. return x∗.

In the empirical application, we choose nrounds = 10, since Gilli and Schu-
mann (2010b) report that the performance of the algorithm stays roughly the
same for more than 10 thresholds. Moreover, we consider nsteps = 1000 and
ndeltas = 2000. Then, the number of iterations is given by nrounds × nsteps =
10000. The TA algorithm was run in R, using the TAopt:Optimisation with
Threshold Accepting code contained in the NMOF: Numerical Methods and
Optimization in Finance package (see Schumann; 2011–2020). In order to
initiate the algorithm, we provide random values for the vector of weights ω,
since finding a good solution should not depend on “good" starting values (Gilli
and Schumann; 2010a).

4.3 Empirical Application

In order to illustrate the proposed methodology for portfolio selection, we will
consider the following four Exchange Traded Funds (ETFs): an US small-cap
value ETF (ticker: IJS); a commodity ETF (gold, ticker: GLD); an US treasury
bond ETF (ticker: TLT) and an investment Grade Corporate Bond ETF (ticker:
LQD). We consider daily data (adjusted close prices) from January 2, 2009
through December 28, 2018 (2515 observations). The data source is Yahoo!
Finance.

Figure 4.1 graphically displays the prices of the four ETFs considered. As
contemporaneous correlation between asset classes has increased in recent years4,
it is nowadays more challenging to construct diversified portfolios, that is, port-
folios in which positive performance of some investments neutralizes the nega-
tive performance of others. In order to reduce the sensitivity to adverse market
swings, we considered four ETFs from three different asset classes: equities,
bonds and commodities. Since bond and equity markets tend to move in oppo-
site directions, downward movements in one will possibly be compensated by
positive movements in the other. Table 4.1 shows that the correlations between
the selected ETFs are not high in absolute value. Low or negative correlation
between portfolio components, have been pointed out by portfolio managers, as
a way of limiting risk.

4For instance, the correlations between stock returns are high (and positive) even when
very different sectors (or countries) are considered.
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Figure 4.1: Prices of the four ETFs considered

Table 4.1: Returns Correlation Matrix

IJS GLD TLT LQD
IJS 1.00 - - -
GLD 0.02 1 - -
TLT 0.22 -0.01 1 -
LQD 0.17 -0.43 0.68 1

In this section, we compare the portfolios selected using the proposed method-
ology with those that are obtained employing the workhorse model for portfolio
optimization: mean-variance optimization (Markowitz; 1952), whose objective
function to be minimized can be written as

Φ = (1− λ)ω′Σω − λω′µ, (4.15)

where µ is the vector of assets’ expected returns and Σ is the variance-covariance
matrix of the assets’ returns. Since µ and Σ are unknown, their sample esti-
mates are used in practice. The parameter λ ∈ [0, 1] is a measure of risk
aversion. If λ = 0, the portfolio with lower variance is selected; on the other
hand, for λ = 1, we maximize return. The complete mean-variance efficient
frontier5 can be obtained by varying λ between 0 and 1.

As suggested by Gupta et al. (2016), we assume that the investment manager
faces two risks. The risk of breaching the maximum accepted drawdown y− =

5The set of optimal portfolios that offer the highest expected return for a defined level of
risk.
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x0(1 + r−), called IH risk, and the risk of not achieving the desired return in
the investment horizon [0, N ], called end-of-horizon risk. This last definition
differs from that of Gupta et al. (2016) since we assume that the portfolio is
terminated the first time the desired return r+ is reached and not in N . Since
the IH risk increases with time, the portfolio manager has incentives to close
the investment as soon as possible. Moreover, there is a maximum horizon of
N for the investment process.

Unlike the mean-variance (MV) and related optimization methods based
on end-of-horizon measures, the optimization problem in (4.11) and (4.12) can
incorporate both intra-horizon and end-of-horizon risks. Roughly speaking,
its objective is to minimize the expected time to achieve an r+ cumulative
return for the portfolio while the probability of crossing a lower threshold is
maintained below some predefined value. The probability P

(
T−(ω) ≤ N

)
< p0

in (4.12) allows us take into account all the asset prices’ path when the portfolio
composition is decided and, therefore, provides a simple and flexible way to
manage the IH risk.

Table 4.2 presents the chosen portfolios considering the optimization prob-
lem in (4.11) and (2.8) with r+ = 10%, r− = −5%, N = 250 and several
values of p0. The solutions to this optimization problem were obtained using
the Threshold Accepting (TA) algorithm presented in Subsection 4.2.2, where it
is also detailed how the parameters for this heuristic search method are chosen.
We considered wmin = 0 and wmax = 1 in the Neighborhood Algorithm, that
is, short-selling is forbidden. In order to allow short selling assets, we only have
to choose a negative value for wmin and rerun the optimization algorithm.

We also present the portfolios associated with four points of the standard
mean-variance (MV) approach’ efficient frontier and some summary statistics.
For instance, all the four ETFs series exhibit higher kurtosis and lower skewness
than implied by the normal curve, which is line with the empirical findings
reported in the literature (see, for instance, Cont; 2001 and Hong and Stein;
2003).

Regarding the asset allocations presented in Table 4.2, the MV approach
proposes to invest all the wealth in the equity ETF when λ ≥ 0.61 (moderate
and high risk tolerance) in (4.15). In a similar way, if the risk tolerance is high
the investor will accept a higher p0 in (4.12), which results in an increase in the
proportion of wealth invested in the equity ETF and a decrease in the bonds
and commodity ETFs.

On the other hand, in an extreme risk aversion context, the minimum vari-
ance portfolio (λ = 0) suggests investing almost 90% of the initial wealth x0 in
the Investment Grade Corporate Bond ETF (LQD) and the proposed nonpara-
metric method with p0 = 2.5% recommends investing approximately 75% in the
two bond ETFs (TLT and LQD) and the rest in the equity ETF (IJS). The sam-
ple statistics for the daily log-returns of the portfolios show that the volatility is
lower for the MV approach when compared with the proposed optimization ap-
proach. However, our proposed method with p0 = 2.5% results in a log-returns
series with higher mean, lower kurtosis and less negative skewness. As stated
by Maringer (2008), the fact that investors are strictly risk adverse does not
necessarily imply an investment with lower volatility since they may be more
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sensitive towards skewness and kurtosis. In fact, the prospect theory introduced
by Kahneman and Tversky (1979) argue that decisions are merely driven by loss
aversion and the prospect of ending up with a lower than the current wealth.
Consequently, it assumes that investors overweight tail events, meaning that
they either overestimate the likelihood or the magnitude of losses. Therefore,
in this context investors will be particularly concerned with the higher moments
of their portfolios.

Table 4.2 also presents the expected time to cross y+ = (1 + r+)x0 in the
proposed nonparametric framework. As expected, the average number of days
to achieve the cumulative return target of 10% is negatively correlated with
the risk level the investor is willing to accept. For instance, when the risk
tolerance is high, it takes on average 155 and 158 days for λ = 1 and p0 = 15%,
respectively, to attain the desired cumulative return.

Following Gupta et al. (2016), we consider that a more appropriate measure
of the portfolio risk requires taking into account both IH and end-of-horizon
(EH) risks. Thus, P

(
T− ≤ N

)
, which gives us the probability that the lower

threshold y− = x0(1 + r−) is surpassed6 somewhere during the investment hori-
zon [0, N ], is used as a proxy for the IH risk . Moreover, we consider P (T+ > N)
as a proxy for the EH risk.

Figure 4.2 presents, for the portfolios in Table 4.2, the IH and total (IH+EH)
risks considering the proposed nonparametric framework with N = 250. Since
the optimization method presented in (4.11) and (4.12) intends to incorporate
the IH risk in the portfolio allocation decision7, we will first focus on the IH
risk estimates in Panel A of Figure 4.2. As expected, a higher risk aversion
(λ in (4.15) and p0 in (4.12) assuming low values) results in portfolios with
lower probability of breaching the maximum accepted intra-horizon drawdown
y− = 0.95x0 (r− = −5%) and higher expected time to attain the 10% cumulative
return. Moreover, considering the proposed optimization method with p0 =
2.5% or λ = 0 results in almost the same IH risk (2.3% versus 2.5%), but our
method has associated a much lower E(T+). On the other hand, if the investor
wants a higher return, p0 = 15% in (4.12) results in a portfolio with a similar
E(T+) to that obtained choosing λ = 0.75 in (4.15), but with a much lower IH
probability (15% versus 27%).

Panel B of Figure 4.2 suggests that the EH risk is extremely relevant in
the presence of a maximum investment horizon N and its importance more
pronounced for the MV optimization. For instance, λ = 0 in (4.15) chooses a
portfolio with very low IH risk, but with the highest total risk (EH+IH risks)
when compared to the alternatives. Summing up, the portfolios with better
E(T+) - total risk trade-off are those obtained choosing p0 = 7.5%, 12.5% and
15%.

6Crossing the maximum accepted drawdown threshold y− = x0(1+r−) implies a stop-loss
decision.

7Since γ in (4.13) assumes an extremely high positive value, the optimization method will
propose solutions that respect the constraint in (4.12).
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Table 4.2: Optimal ETFs allocation suggested by the proposed
methodology.

Parameters Portfolio Log-returns

p0 GLD IJS LQD TLT Ann. mean Ann. s.d. Skew. Kurt. E(T+)
2.5% 0.000 0.256 0.428 0.316 5.79% 6.97% -0.226 5.361 314
5.0% 0.000 0.460 0.143 0.397 6.75% 8.60% -0.156 5.204 215
7.5% 0.000 0.589 0.000 0.411 7.44% 10.17% -0.132 5.149 183
10.0% 0.000 0.675 0.000 0.325 8.15% 11.65% -0.121 5.237 170
12.5% 0.000 0.730 0.000 0.270 8.61% 12.83% -0.122 5.405 164
15.0% 0.000 0.773 0.000 0.227 9.02% 13.99% -0.123 5.613 158

MV
λ = 0.00 0.042 0.066 0.892 0.000 5.29% 5.49% -0.370 7.089 457
λ = 0.25 0.000 0.274 0.726 0.000 6.57% 6.61% -0.284 6.959 314
λ = 0.50 0.000 0.699 0.262 0.038 9.09% 13.71% -0.174 6.149 185
λ = 0.75 0.000 1.000 0.000 0.000 11.30% 21.71% -0.114 7.325 155

Individual
GLD 1.000 0.000 0.000 0.000 3.37% 16.40% -0.496 7.890 992
IJS 0.000 1.000 0.000 0.000 11.30% 21.71% -0.114 7.325 155

LQD 0.000 0.000 1.000 0.000 5.01% 5.75% -0.409 6.608 495
TLT 0.000 0.000 0.000 1.000 3.39% 14.40% -0.131 4.427 311

Notes: r+ = 10%, r− = 5% and N = 250 in (4.11) and (4.12).
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Figure 4.2: Nonparametric IH and EH risks probabilities

Notes: Nonparametric IH and EH risks probabilities were obtained using (4.4) and (4.5)
with a maximum intra-horizon drawdown of -5% (r− = −5%) and a target cumulative
return r+ = 10%.
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4.4 Conclusions

In this paper we introduce simple nonparametric framework that intends to
incorporate the intra-horizon risk in portfolio optimization. The proposed ap-
proach is based on first-hitting probabilities, then taking into account the entire
asset price’ path, which allows us to manage the probability of breaching the
maximum accepted drawdown during the investment horizon. Given the re-
ported difficulties of the Geometric Brownian Motion model in describing some
financial data’ observed features (see for instance, Cont; 2001 and Bakshi and
Panayotov; 2010), several alternative processes implying more flexible distri-
butions for the returns have been considered. However, most of them do not
have closed-form analytical expressions for the first passage probability, which
makes it difficult to find a tractable way to estimate this function. In order
to overcome these limitations, we introduce a novel nonparametric method to
estimate the first-hitting time.

The proposed optimization problem aims to minimize the expected time for
a given target return to be reached, subject to a downside constraint: the prob-
ability of crossing a drawdown threshold should be lower than some predefined
value that reflects the investment manager’ degree of risk aversion. Thus, the
proposed nonparametric method is employed to estimate the first passage prob-
ability functions of two stochastic processes: one representing the first time the
target return is crossed and the other representing the first time the drawdown
threshold is breached.

Heuristic methods are needed to solve the proposed optimization problem.
We use the Threshold Accepting (TA) algorithm in the provided empirical appli-
cation. This heuristic method was already applied to portfolio selection prob-
lems by, among others, Gilli and Schumann (2010a) and Gilli et al. (2011).
Considering the proposed framework and assuming low risk tolerance results in
portfolios with intra-horizon risk comparable to that of the Markowitz’ mean-
variance approach which minimizes the variance. However, the expected time
to reach the target return of these portfolios is much lower, which implies a
higher annualized return if the lower threshold is not crossed.

It is noteworthy that, for the parameters values considered in the empirical
application, a cumulative return target of 10%, maximum drawdown of -5% and
a maximum of 250 days to achieve the desired portfolio’s cumulative return, the
end-of-horizon risk is in most cases higher than intra-horizon risk.

Summing up, the proposed nonparametric framework provides a flexible
way to incorporate the intra-horizon risk in the portfolio selection process. The
provided empirical application suggests that using the optimization problem
we introduce results in portfolios with lower expected time to cross the target
return than those indicated by the Markowitz’ mean-variance approach, for
similar levels of intra-horizon risk .
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Chapter 5

Concluding Remarks

This Thesis contributes to the existing time series econometrics literature by
developing new techniques which address some relevant aspects of the economic
and financial variables’ dynamics, such as structural breaks, nonlinear relation-
ships and non-normality.

The first paper, A re-examination of inflation persistence dynamics in OECD
countries: A new approach, proposes a simple approach to detect multiple struc-
tural breaks in persistence that has two main advantages relative to the existing
literature. First, the parameter changes are approximated by a single cosine
function that allows to consider up to three breaks1 in persistence. Then, the
complete sample is used for estimation and not fractions of the sample as with
recursive tests, which may have positive effects on power performance. Second,
this procedure is, to the best of our knowledge, the first that also takes into
account the effect of the shifts in the autoregressive parameters on the deter-
ministic component of the process. An in-depth Monte Carlo analysis shows
that the new procedure good power and size properties in small samples. Fi-
nally, empirical applications of the proposed test to G7 countries’ inflation data
provided relevant statistical evidence of breaks in persistence.

In the second paper, The expected time to cross a threshold and its determi-
nants: A simple and flexible framework, we introduce a flexible framework to
estimate the expected time (ET) an outcome variable takes to cross a threshold
conditional on covariates. The major advantage of this methodology is that it
allows us to capture nonlinear interactions without requiring the specification
of a rigid parametric functional form. More precisely, computing the expected
time (ET) for several starting values can provided important insights about
the nature of the relationships between economic variables. The results of the
empirical application suggest that an expansionary monetary policy may have
an important role in stimulating a faster return of the industrial production to
desirable growth rates. On the other hand, a contractionary monetary policy
may precipitate the return to negative growth rates and trigger a recession.

Finally, the third paper, The importance of intra-horizon risk in portfolio
optimization, presents a new portfolio optimization problem that takes into
account the magnitude of potential losses incurred throughout the entire in-
vestment horizon. In order to operationalize this asset allocation framework, a
novel nonparametric method to estimate the first passage probability function
is introduced. Since, unlike the existing alternatives, this methodology provides

1Note that more breaks can be allowed for if deemed necessary.
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a very tractable way to obtain the probabilities of interest and may accommo-
date jumps and other nonlinearities, we believe that it represents a relevant
contribution to the literature. The results of the empirical application suggest
that the proposed framework indicates portfolios able to achieve higher annu-
alized return by the Markowitz’ mean-variance approach with similar levels of
intra-horizon risk.
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Appendix A

Appendix to “A Re-Examination of
Inflation Persistence Dynamics”

A.1 Proof of Main Results

Proof of Theorem 2.2.1

Consider first limit results for the local GLS demeaned and local GLS de-trended
data.

Case A: Local GLS Demeaning

Under local GLS demeaning we estimate the parameter vector β in (2.1) using
xt = 1. Hence, consider yc̃,1 := y1, yc̃,t := yt − ρ̃tyt−1, xc̃,1 := x1, xc̃,t :=
xt − ρ̃txt−1, and compute the OLS estimates as,

β̂c̃ =

[
T∑
t=1

xc̃,tx
′
c̃,t,

]−1 [ T∑
t=1

xc̃,tyc̃,t

]
. (A.1)

Thus, the local GLS demeaned data is, ûc̃,t = yt − x
′
t β̂c̃ = ut − x

′
t(β̂c̃ − β)

or equivalently,

ûc̃,t = ut − xt

[
T∑
t=1

xc̃,tx
′
c̃,t,

]−1 [ T∑
t=1

xc̃,tuc̃,t

]
.

Since,
T∑
t=1

xc̃,tx
′
c̃,t,= 1 +

(
c̃

T

)2 T∑
t=2

cos2(k, t) = 1 + o(1).

and

T∑
t=1

xc̃,tuc̃,t = u1 −
(
c̃

T

) T∑
t=2

cos(k , t)∆ut +

(
c̃

T

)2 T∑
t=2

cos2(k , t)ut−1
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we establish that,

1√
T

[
T∑
t=1

xc̃,tx
′
c̃,t,

]−1 T∑
t=1

xc̃,tuc̃,t → 0.

Since 1
T

∑T
t=2 cos2(k , t)→

∫ 1

0
cos2(k , r)dr then

(
c̃
T

)2∑T
t=2 cos2(k , t) = o(1).

Case B: Local GLS De-trending

For local GLS de-trending consider again (A.1) but with the denominator
and numerator given as DT

∑T
t=1 xc̃,txc̃,t

′DT and DT

∑T
t=1 xc̃,tuc̃,t, respectively,

where
DT := diag

(
1, T−1/2

)
.

Hence,

DT

T∑
t=1

xc̃,txc̃,t
′DT = DTx1x1

′DT +DT

T∑
t=2

xc̃,txc̃,t
′DT

=

[
1 T−1/2

T−1/2 T−1

]
+DT

[
Ξ1 Ξ2

Ξ2 Ξ3

]
DT

⇒
[

1 0

0
∫ 1

0
[1− 2c̃rcos2(k , r) + r2c̃2cos2(k , r)] dr

]
, (A.2)

where, x1 = (1, 1)′ and xc̃,t = (−c̃cos(k , t)T−1, 1− (t− 1)c̃cos(k , t)T−1)
′ for

t > 1, with Ξ1 :=
(
c̃
T

)2∑T
t=2 cos2(k , t), Ξ2 :=

(
1− (t−1)c̃cos(k ,t)

T

)
c̃
T

cos(k , t), and

Ξ3 :=
(

1− (t−1)c̃cos(k ,t)
T

)2

.

Moreover, note that,

1

T

T∑
t=2

cos(k , t) ⇒
∫ 1

0

cos(k , r)dr;

1

T 2

T∑
t=2

tcos(k , t) ⇒
∫ 1

0

rcos(k , r)dr;

1

T 3

T∑
t=2

t2cos2(k , t) ⇒
∫ 1

0

r2cos2(k , r)dr;

T−5/2

T∑
t=3

tcos(k, t)ut−1 ⇒
∫ 1

0

rcos(k, r)W (r), 0 ≤ r ≤ 1.
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Finally,

DT

T∑
t=1

xc̃,tuc̃,t =

[
Ξ4

Ξ5

]

⇒

 0

σW (1)(1− c̃cos(k ,T ))− σπkc̃
∫ 1

0
rsin(2πkt/T )W (r)dr

+σc̃2
∫ 1

0
rcos(k , r)W (r)dr


where Ξ4 is defined as in (A.2) and since uc̃,t = ∆uc̃,t − c̃cos(k , t)T−1,

Ξ5 =u1 + uT − u1 −
c̃

T

T∑
t=2

cos(k , t)ut−1 −
c̃

T

T∑
t=2

(t− 1)cos(k , t)∆ut+(
c̃

T

)2 T∑
t=2

(t− 1)cos(k , t)2ut−1

=(1− c̃cos(k ,T ))uT + 2c̃cos(k , 2 )u1T
−1 − πk

T

c̃

T

T∑
t=3

tsin(2πkt/T)ut−1+

c̃

T

T∑
t=3

cos(k , t − 1 )ut−1 −
c̃

T

T∑
t=2

cos(k , t)ut−1 +

(
c̃

T

)2 T∑
t=2

tcos(k , t)2ut−1−(
c̃

T

)2 T∑
t=2

cos(k , t)2ut−1 +
c̃

T

T∑
t=2

cos(k , t)∆ut.

It follows from the FCLT and CMT that

T−1/2û[Tr] = T−1/2u[Tr] − T−1/2x
′

[Tr]

[
DT

T∑
t=1

xc̃,txc̃,t
′DT

]−1 [
DT

T∑
t=1

xc̃,tuc̃,t

]

⇒ σW (r)− σr

[
(1− c̃cos(k , r))W (1) + c̃2

∫ 1

0
rcos2(k , r)W (r)dr∫ 1

0
[1− 2c̃rcos2(k , r) + r2c̃2cos(k, r)] dr

]
+

+ σr

[
c̃kπ

∫ 1

0
rsin(2πkr)W (r)dr∫ 1

0
[1− 2c̃rcos2(k , r) + r2c̃2cos(k, r)] dr

]
=: σWτ (r), (A.3)

where [Tr] refers to the integer closest to Tr.

Thus from the results for Case A and for Case B above, we can now state
the limit results for the test statistic. The OLS t-statistics to test H0 : φ = 0,
computed from a test regression as in (2.4) based on locally GLS demeaned (µ)
or de-trended (τ) data, i.e., ûvc̃,t = yt − x

′
t β̂v,c̃, v = µ or τ , is,

t̂GLSv
k :=

∑T
t=2 ∆ûvc̃,tcos(k ,t)ûvc̃,t−1[

σ̂2
k

∑T
t=2 cos2(k , t)ûv2

c̃,t−1

]1/2
,with v = µ, τ. (A.4)
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Considering that ûvc̃,t = ∆ûvc̃,t + ûvc̃,t−1, squaring both sides and multiplying
by cos(k, t) leads to cos(k, t)ûv2

c̃,t = cos(k, t)
[
(∆ûc̃,t)

v2 + 2∆ûvc̃,tû
v
c̃,t−1 + ûv2

c̃,t−1

]
.

Summing over t and rearranging gives,

T∑
t=2

∆ûvc̃,tcos(k, t)ûvc̃,t−1 =

=
1

2

[
T∑
t=2

cos(k , t)ûv2
c̃,t −

T∑
t=2

cos(k , t)ûv2
c̃,t−1 −

T∑
t=2

cos(k , t)(∆ûc̃,t)
v2

]
. (A.5)

Since under the null ∆ûvc̃,t = ε̂t, it follows that,

T∑
t=2

∆ûvc̃,tcos(k, t)ûvc̃,t−1 =

=
1

2

[
cos(k ,T )ûv2

c̃,T − cos(k , 2 )ûv2
c̃,1 −

T∑
t=3

∆cos(k , t)ûv2
c̃,t−1 −

T∑
t=2

cos(k , t)ε̂2
t

]
.

(A.6)

In what follows the following limit results will prove useful. In specific, as
T →∞,

cos(k ,T )
1

T
û2
c̃,T ⇒ σ2cos(k , 1 )Wv(1)2; (A.7)

cos(k , 2 )
1

T
û2
c̃,1 ⇒ σ2cos(k , 0 )Wv(0)2 = 0; (A.8)

1

T

T∑
t=3

∆cos(k , t)û2
c̃,t−1 ⇒

σ2

2
(2πk)2

∫ 1

0

cos(2πkr)Wv(r)
2dr; (A.9)

1

T

T∑
t=2

cos(k , t)(∆ûc̃,t−1)2 → σ2

∫ 1

0

cos(k, r)dr =
σ2

2
. (A.10)

The result in (A.9) is obtained given that ∆cos(k , t) = −1
2
(2πk/T )sin(2πkt/T )

+ o(1) (see Enders and Lee, 2012), and Lemma A.1 in (Bierens; 1997)). Recall
that cos(k, t) := 1

2
(1 + cos(2πkt/T )). Hence, for the numerator of (A.4) we

establish as T →∞ that,

1

T

T∑
t=2

∆ûvc̃,tcos(k, t)ûvc̃,t−1

⇒ σ2

2

{
cos(k, 1)Wv(1)2 +

1

2
(2πk)2

∫ 1

0

cos(2πkr)Wv(r)
2dr − 1

}
(A.11)

and for the denominator it follows from the continuous mapping theorem that,

1

T 2

T∑
t=2

cos2(k , t)ûv2
c̃,t−1 ⇒ σ2

∫ 1

0

cos2(k , r)Wv(r)
2dr. (A.12)
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Thus, from (A.11) and (A.12) it follows, under joint convergence, that,

t̂GLSv
k ⇒

cos(k, 1)Wv(1)2 + 1
2
(2πk)2

∫ 1

0
cos(2πkr)Wv(r)

2dr − 1

2
(∫ 1

0
cos2(k, r)Wv(r)2dr

)1/2
,

where k is a fixed value and v = µ or τ depending on whether local GLS
demeaning or local GLS de-trending is used, respectively. �

Proof of Theorem 2.2.3

An extension of the FCLT to near integrated process, ρt = 1 − c
T
, states that,

1√
T
u[Tr] ⇒ σJc(r), 0 ≤ r ≤ 1, where Jc is a standard OU process(see Phillips;

1987). The Pc̃ test statistic is given by

Pc̃ =

∑T
t=1 ε̂

2
c̃,t −

[
1 + c̃

T
cos(k , t)

]∑T
t=1 ε̂

2
0,t

σ̂2
,

where ε̂0,t is the residual term under H0 : ρ̃t = 0 and ε̂c̃,t is the residual term
under H1 : ρ̃t := 1 + c̃

T
for a given c̃. The null hypothesis is rejected for small

values of this statistic. Note that, in the case of demeaning,

ε̂c̃,t = yt −
(

1 +
c̃

T
cos(k, t)

)
yt−1 − β1

(
1−

(
1 +

c̃

T
cos(k, t)

))

→ ∆ut −
c̃

T
cos(k, t)ut−1,

ε̂2
c̃,t → ∆u2

t −
2c̃

T
∆utcos(k, t)ut−1 +

(
c̃

T

)2

cos2(k, t)u2
t−1,

ε̂2
0,t = (∆ut)

2 ,

Putting these results together we have that,

T∑
t=1

ε̂2
c̃,t −

[
1 +

c̃

T
cos(k, t)

] T∑
t=1

ε̂2
0,t = −2c̃

T

T∑
t=2

∆utcos(k , t)ut−1

− c̃
T

T∑
t=2

cos(k , t)ε̂2
0,t +

(
c̃

T

)2 T∑
t=2

cos2(k, t)u2
t−1,

and given that

−2c̃

T

T∑
t=2

∆utcos(k, t)ut−1 ⇒ c̃

[
σ2

∫ 1

0

cos(k, r)dr − σ2cos(k,T)J2
c (1)

]
,

(
c̃

T

)2 T∑
t=2

cos2(k, t)u2
t−1 ⇒ c̃2σ2

∫ 1

0

cos2(k, r)J2
c (r),
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c̃

T

T∑
t=2

cosj (k, t)ε̂
2
0,t ⇒ c̃σ2

∫ 1

0

cos(k , r)dr,

the asymptotic distribution of Pc̃ is Pc̃ ⇒ c̃2
∫ 1

0
cos2(k, r)J2

c (r)− c̃ cos(k,T)J2
c (1).

Finally, when de-trending is considered ε̂c̃,t = yt − ρtyt−1 − β1(1− ρt)− β2(t−
ρt (t− 1)). Thus, using the FCLT result presented previously it follows that,

Pc̃ ⇒ c̃2

∫ 1

0

cos2(k, r) [Jτc (r)]2 + (1− c̃ cos(k,T) [Jτc (1)]2 ,

where Jτc is the local GLS de-trended OU process. �

Proof of Proposition 1

The proposed test statistic with Eicker-White standard errors is defined as,

t̂GLSk,W :=

∑T
t=2 ∆ûtcos(k ,t)ût−1(∑T

t=2 cos2(k , t)û2
t−1η̂

2
t

)1/2
.

As the numerator is the same as in equation (2.5), we only need to examine the
denominator. Hence, under the null hypothesis, considering

1

T 2

T∑
t=2

cos2(k, t)û2
t−1η̂

2
t =

1

T 2

T∑
t=2

cos2(k, t)û2
t−1σ

2+
1

T 2

T∑
t=2

cos2(k, t)û2
t−1

(
η̂2
t − σ2

)
(A.13)

and noting that, σ2 1
T 2

∑T
t=2 cos2(k, t)u2

t−1 ⇒ σ2
∫ 1

0
cos2(k, r)W (r)2dr, we only

need to prove that the second term in (A.13) is op(1). Thus, from the result in
Demetrescu (2008), 1

T 2

∑T
t=2 û

2
t−1 (η̂2

t − σ2)
p→ 0, it follows that,

1
T 2

∑T
t=2 cos2(k, t)û2

t−1 (η̂2
t − σ2) ≤ 1

T 2

∑T
t=2 û

2
t−1 (η̂2

t − σ2), and therefore
1
T 2

∑T
t=2 cos2(k, t)û2

t−1 (η̂2
t − σ2) is also op(1) since cos2(k , t) ≤ 1 for fixed k > 0.

We also need to show that, 1
T 2

∑T
t=2 û

2
t−1cos2(k, t) (η̂2

t − σ2)
p→ 0 is still true

when the process is near integrated. That is, when ut = (1+ c̃ cos(k ,t)/T )ut−1 +
εt. Since, u0 = 0, we have

ut =
t−1∑
i=0

(
1− c

T
cos(k , i)

)i
εt−i;

(
1− c

T
cos(k ,i)

)i
= 1− c

T
i cos(k ,i) +O(T−1),

and

ut =
t−1∑
i=0

εt−i −
c

T

t−1∑
i=0

i cos(k , i) εt−i +O(T−0.5).

Since i/T = O(1), the result can be derived in the same way as under the null
of a unit root. �
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A.2 Additional Tables

Table A.1: Comparison with the M test of Leybourne et al.
(2007) - empirical size

DGP: yt = yt−1 + ut
ut = φut−1 + et, et ∼ N(0, 1)

T = 200 T = 400

φ M T GLSµ,nr
k̂

M T GLSµ,nr
k̂

0.4 0.105 0.077 0.080 0.044
0.6 0.105 0.077 0.082 0.044

Notes: T GLSµ,nr
k̂

is the minimum between T GLSµ
k̂

with normal and reverse chronological
order.

Table A.2: Comparison with the M test of Leybourne et al.
(2007) - empirical power

DGP:


yt − d ybτ0T c = ρ1(yt−1 − d ybτ0T c) + et for t = 1, ..., bτ1T c
yt − d ybτ1T c = ρ2(yt−1 − d ybτ1T c) + et for t = bτ1T c+ 1, ..., bτ2T c
yt − d ybτ2T c = ρ3(yt−1 − d ybτ2T c) + et for t = bτ2T c+ 1, ..., T.

T = 200

d = 1 d = 0

α = 0.8 α = 0.9 α = 0.8 α = 0.9

(τ1 , τ2) ρ1 ρ2 ρ3 M T GLSµ,nr

k̂
M T GLSµ,nr

k̂
M T GLSµ,nr

k̂
M T GLSµ,nr

k̂

(0.30 , 0.00) 1 α - 0.801 0.773 0.254 0.394 0.687 0.886 0.185 0.586
(0.50 , 0.00) 1 α - 0.499 0.458 0.157 0.221 0.334 0.589 0.096 0.384
(0.30 , 0.00) α 1 - 0.168 0.187 0.076 0.119 0.168 0.187 0.076 0.119
(0.50 , 0.00) α 1 - 0.450 0.504 0.137 0.240 0.450 0.504 0.137 0.240
(0.25 , 0.75) 1 α 1 0.597 0.233 0.190 0.164 0.462 0.462 0.140 0.310
(0.35 , 0.75) 1 α 1 0.438 0.167 0.149 0.122 0.297 0.328 0.097 0.225
(0.25 , 0.50) α 1 α 0.399 0.384 0.142 0.231 0.296 0.919 0.100 0.576
(0.35 , 0.50) α 1 α 0.629 0.589 0.211 0.367 0.636 0.986 0.196 0.741

T = 400

(0.30 , 0.00) 1 α - 1.000 0.937 0.813 0.713 1.000 0.978 0.687 0.877
(0.50 , 0.00) 1 α - 0.991 0.663 0.511 0.415 0.963 0.724 0.334 0.599
(0.30 , 0.00) α 1 - 0.634 0.276 0.179 0.191 0.634 0.276 0.179 0.191
(0.50 , 0.00) α 1 - 0.988 0.715 0.468 0.505 0.988 0.715 0.468 0.505
(0.25 , 0.75) 1 α 1 0.995 0.257 0.601 0.206 0.984 0.715 0.468 0.472
(0.35 , 0.75) 1 α 1 0.957 0.518 0.451 0.148 0.886 0.423 0.294 0.340
(0.25 , 0.50) α 1 α 0.998 0.746 0.404 0.377 0.896 0.997 0.302 0.933
(0.35 , 0.50) α 1 α 0.813 0.713 0.637 0.570 0.995 1.000 0.642 0.992

Notes: bτiT c denotes the integer part of τiT and τ0 = 0; d is a dummy variable that equals
1 for the data generating processes considered in Leybourne et al. (2007), and 0 otherwise.
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Appendix to “The Expected Time
to Cross a Threshold and its
Determinants”

Proof of main results

The Markov chain’s log likelihood function in (3.6)

For an ith order Markov chain, the log-likelihood function can be expressed as
the sum of i2 components. As an illustration, consider a second order Markov
chain (i = 2) and define:

δ000 = 1 if {St = 0, St−1 = 0, St−2 = 0};
δ100 = 1 if {St = 0, St−1 = 0, St−2 = 1};
δ010 = 1 if {St = 0, St−1 = 1, St−2 = 0};
δ110 = 1 if {St = 0, St−1 = 1, St−2 = 1};
p000(x) := p2(x) = P (St = 0|St−1 = 0, St−1 = 0);

p100(x) = P (St = 0|St−1 = 0, St−1 = 1);

p010(x) = P (St = 0|St−1 = 1, St−1 = 0);

p110(x) = P (St = 0|St−1 = 1, St−1 = 1).

The log-likelihood for observation t can be expressed as

lnL = L1 + L2 + L3 + L4,

where

L1 = δ001 ln(1− p000(x)) + δ000 ln(p000(x));

L2 = δ101 ln(1− p100(x)) + δ100 ln(p100(x));

L3 = δ011 ln(1− p010(x)) + δ010 ln(p010(x));

L4 = δ111 ln(1− p110(x)) + δ110 ln(p110(x)).

�
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Proof of Proposition 2

Consider the probability P (St = 0|St−1 = 0, St−2 = 0, ..., S0 = 0;x). The results
for other cases are similar. The event {St−1 = 0, St−2 = 0, ..., S0 = 0} represents
{yt−1 < z1, yt−2 < z1, ..., y1 < z1, y0 ≤ z0}. Therefore,

P (St = 0|St−1 = 0, St−2 = 0, ..., S0 = 0;x) ≡
≡ P (yt < z1|yt−1 < z1, yt−2 < z1, ..., y0 ≤ z0;x)

and since yt is an rth order Markov process,

P (St = 0|St−1 = 0, St−2 = 0, ..., S0 = 0;x)

= P (St = 0|St−1 = 0, St−2 = 0, ..., St−r = 0;x)

= P (yt < z1|yt−1 < z1, yt−2 < z1, ..., yt−r+1 ≤ z1, yt−r ≤ z0;x).

�

Proof of Theorem 3.2.1

For condition (3) (conditional density identification) note that

E[(xtβi,0 − xtβi)
2] = E[{xt(βi,0 − βi)}2] = (βi,0 − βi)′E(xtx′t)(βi,0 − βi) > 0 ,

where βi is the true parameter vector and βi,0 a parameter vector such that
βi,0 6= βi. Hence, xtβi 6= xtβi,0 with positive probability and since Λ(v) is
strictly monotonic, we have Λ(xtβi) 6= Λ(xtβi,0) when xtβi 6= xtβi,0.

Condition (4) holds if E[|log(f(St|St−1 = 0... = St−r = 0;xt;βi)|] < ∞ for
all βi .

For the logistic function, it is easy to verify that

|ln Λ(v)| ≤ |ln Λ(0)|+ |v|.

Furthermore, note that

|ln f(St|St−1 = 0, ..., St−r = 0;xt;βi)|
≤ |St| ln (Λ(xtβi))|+ |1− St| |ln (1− Λ(xtβi))|
≤ |ln (Λ(xtβi))|+ |ln (Λ(−xtβi))|

(since |St| ≤ 1 and |1− St| ≤ 1)

≤ 2[ |ln (Λ(0)|+ ||xt|| × ||βi|| ]
(due to the Cauchy-Schwartz inequality)

The nonsingularity of E(xtx′t) implies E(x2
it) < ∞ for all i and, therefore,

E(||x2
t ||) < ∞ and E(||xt||) < ∞. Thus, the nonsingularity of E(xtx′t) ensures

that the logit ML estimator is consistent. �
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Proof of Theorem 3.2.2

Condition (1) is satisfied for the logit model if the compact parameter space Bi is
taken to be Rp. Condition (2) is obviously satisfied. To check condition (3) note
that since E[St|St−1 = 0, ..., St−r = 0;xt] = Λ(xtβi), we have E[s(wt;βi)|xt] = 0
and, by the Law of Total Expectations E[s(wt;βi)] = 0.

In order to derive the conditional information matrix, note that, using the
standard rules of differentiation we have that,

E
[
∂2lnL

∂βi∂β
′
i

]
= −E

[
∂lnL

∂βi

∂lnL

∂β′i

]
+ E

[
1

lnL
∂2lnL
∂βi∂β

′
i

]
,

where it is easy to verify that the second term on the right-hand side is zero.
Thus, the following relationship between the expected value of the Hessian
matrix and the expected outer product of the scores holds:

−E[H(wt;βi)] = E[s(wt;βi) s(wt;βi)
′],

where s(wt;βi) and H(wt;βi) are the functions defined in (3.8) and (3.9),re-
spectively. Regarding the local dominance of the Hessian - condition (4) -, since
Λ(x′tβi)[1 − Λ(x′tβi)] < 1, we have ||H(wt;βi)|| ≤ ||xtx′t|| for all βi. It can be
shown that E[||xtx′t||] <∞ if E[xtx′t] is nonsingular (and hence finite). Finally,
condition (5) also requires that E[xtx′t] is nonsingular. �

Proof of Theorem 3.2.4

Under Assumption 1.B, the joint stationarity of {yt,xt} implies the joint sta-
tionarity of {St,xt}, given the measurability of (3.1). �
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Proof for equation (4.8)
Let us prove equation (4.8) in four steps.
Step 1 - some notations. First, let us define

πk+1 = P
(
Sτt = 1, ..., Sτt−k = 1

)
( k + 1 variables involved) (C.1)

pk = P
(
Sτt = 1|Sτt−1 = 1, ..., Sτt−k = 1

)
, (C.2)

with Sτt defined in 4.2.1.
By stationarity these probabilities are independent of t. It follows that

πk+1 = pkpk−1...p1π1 = pkπk. (C.3)

Step 2 - We derive the relation πk−π1πk−1 = α
(
πk−1 − π2

k−1

)
+β (πk − πk−1πk) .

Pre-multiplying equation (4.7)

I{Sτt =1} = αI{
Sτt−1=1,...,Sτ

t−(k−1)
=1

} + βI{Sτt−1=1,...,Sτt−k=1} + εt, (C.4)

by I{
Sτt−1=1,...,Sτ

t−(k−1)
=1

} allows us to obtain

Cov
(
I{Sτt =1}, I{Sτt−1=1,...,Sτ

t−(k−1)
=1}

)
= αV ar

(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1}

)
(C.5)

+βCov
(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1}, I{Sτt−1=1,...,Sτt−k=1}

)
Both the left and right side of the previous equations can be expressed in terms
of {πi; i = 1, 2, ..., k}. In fact,

Cov
(
I{Sτt =1}, I{Sτt−1=1,...,Sτ

t−(k−1)
=1}

)
= E

(
I{Sτt =1} I{Sτt−1=1,...,Sτ

t−(k−1)
=1}

)
− E

(
I{Sτt =1}

)
E
(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1}

)
= E

(
I{Sτt =1,...,Sτ

t−(k−1)
=1}

)
− E

(
I{Sτt =1}

)
E
(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1}

)
= P

(
Sτt = 1, ..., Sτt−(k−1) = 1

)
− P

(
Sτt = 1

)
P
(
Sτt−1 = 1, ..., Sτt−(k−1) = 1

)
= πk − π1πk−1
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Regarding the right side of equation (C.5), we have

V ar
(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1}

)
= πk−1 − π2

k−1

Cov
(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1}, I{Sτt−1=1,...,Sτt−k=1}

)
= πk − πk−1πk

Therefore, equation (C.5) can be stated as

πk − π1πk−1 = α
(
πk−1 − π2

k−1

)
+ β (πk − πk−1πk) . (C.6)

Step 3 - We derive the relation πk+1 − π1πk = α (πk − πk−1πk) + β (πk − π2
k) .

Pre-multiplying (C.4) by I{Sτt−1=1,...,Sτt−k=1} allows us to obtain

Cov
(
I{Sτt =1}, I{Sτt−1=1,...,Sτt−k=1}

)
= αCov

(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1}, I{Sτt−1=1,...,Sτt−k=1}

)
+ β V ar

(
I{Sτt−1=1,...,Sτt−k=1}

)
.

(C.7)

Again, this expression can be expressed in terms of {πi; i = 1, 2, ..., k}
as follows:

Cov
(
I{Sτt =1}, I{Sτt−1=1,...,Sτt−k=1}

)
, = πk+1 − π1πk,

Cov
(
I{Sτt−1=1,...,Sτ

t−(k−1)
=1} I{Sτt−1=1,...,Sτt−k=1}

)
= πk − πk−1πk,

V ar
(
I{Sτt−1=1,...,Sτt−k=1}

)
= πk − π2

k

Therefore, equation (C.7) can be stated as

πk+1 − π1πk = α (πk − πk−1πk) + β
(
πk − π2

k

)
(C.8)

Step 4 - Formula for β
Equations (C.6) and (C.8) form the system{

πk − π1πk−1 = α
(
πk−1 − π2

k−1

)
+ β (πk − πk−1πk)

πk+1 − π1πk = α (πk − πk−1πk) + β (πk − π2
k)

which can be solved with respect to α and β. Thus,

β =
π2
k − πk+1πk−1

πk (πk − πk−1)
. (C.9)

Using the relation (C.3), πk+1 = pkpk−1...p1π1, equation (C.9) can be further
simplified as

β =
pk − pk−1

1− pk−1

.

�
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Proof for equation (4.10)
The OLS estimate of θ is

θ̂ =

∑n
t I{Sτt−1=1,...,Sτt−k=1}I{Sτt =1}∑n

t I2

{Sτt−1=1,...,Sτt−k=1}
.

Under certain conditions of regularity, the numerator converges to

∑n
t I{Sτt−1=1,...,St−k=1}I{St=1}

n
=

∑n
t I{St=1,St−1=1,...,St−k=1}

n
p−→ P

(
Sτt = 1, Sτt−1 = 1, ..., Sτt−k = 1

)
and the denominator,∑n
t I2

{Sτt−1=1,...,Sτt−k=1}
n

=

∑n
t I{Sτt−1=1,...,Sτt−k=1}

n

p−→ P
(
Sτt−1 = 1, ..., Sτt−k = 1

)
.

Therefore

θ̂
p−→

P
(
Sτt = 1, Sτt−1 = 1, ..., Sτt−k = 1

)
P
(
Sτt−1 = 1, ..., Sτt−k = 1

) = P
(
Sτt = 1|Sτt−1 = 1, ..., Sτt−k = 1

)
.

�
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