
agronomy

Article

Olive Oils from Fruits Infected with Different Anthracnose
Pathogens Show Sensory Defects Earlier Than
Chemical Degradation

Fátima Peres 1,2 , Pedro Talhinhas 2 , Hugo Afonso 2, Helena Alegre 2, Helena Oliveira 2 and
Suzana Ferreira-Dias 2,*

����������
�������

Citation: Peres, F.; Talhinhas, P.;

Afonso, H.; Alegre, H.; Oliveira, H.;

Ferreira-Dias, S. Olive Oils from

Fruits Infected with Different

Anthracnose Pathogens Show

Sensory Defects Earlier Than

Chemical Degradation. Agronomy

2021, 11, 1041. https://doi.org/

10.3390/agronomy11061041

Academic Editor: Helder Fraga

Received: 29 April 2021

Accepted: 19 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto Politécnico de Castelo Branco, Escola Superior Agrária, 6000-909 Castelo Branco, Portugal;
fperes@ipcb.pt

2 LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia,
Universidade de Lisboa, 1349-017 Lisbon, Portugal; ptalhinhas@isa.ulisboa.pt (P.T.);
hugoafonso95@gmail.com (H.A.); helenalegre@isa.ulisboa.pt (H.A.); heloliveira@isa.ulisboa.pt (H.O.)

* Correspondence: suzanafdias@mail.telepac.pt

Abstract: Anthracnose is the most important disease of olives responsible for olive oil depreciation.
The aim of this study is to compare the negative effects of the most common olive anthracnose
pathogens in Portugal, Colletotrichum nymphaeae, C. godetiae, or C. acutatum, on oil extracted from
fruits of the most cultivated Portuguese olive cultivars, ‘Galega Vulgar’ and ‘Cobrançosa’. Healthy
fruits (ripening index 3.5) were inoculated, incubated, and sampled over 14 days post-inoculation
(d.p.i.) for symptom assessment and oil extraction. Virgin olive oil (VOO) was characterised by
quality criteria parameters (acidity, peroxide value, UV absorbances, organoleptic assessment, fatty
acid ethyl esters (FAEE)), total phenols (TPH), main fatty acids, and waxes compositions. Galega
Vulgar fruits were more susceptible to anthracnose than Cobrançosa fruits. Colletotrichum nymphaeae
was equally highly virulent for both cultivars, while C. godetiae was less virulent especially in
Cobrançosa. VOO acidity increased reached 5% in Galega oils and 2% in Cobrançosa oils from fruits
infected with C. nymphaeae or C. acutatum at 14 d.p.i. FAEE were higher than the legal limit for extra
VOO in Galega oils from fruits at 7 d.p.i. with C. nymphaeae or C. acutatum, or 11 d.p.i. with C. godetiae.
TPH decreased through the experiments with all the inoculated fungi. The musty sensory defect was
detected in Galega and Cobrançosa VOO from fruits inoculated with C. nymphaeae or C. acutatum
at 3 or 7 d.p.i. earlier than chemical degradation, respectively. The degradation levels of olive oils
depended on the Colletotrichum species and olive cultivar.

Keywords: olive anthracnose; Colletotrichum nymphaeae; Colletotrichum godetiae; Colletotrichum acuta-
tum; fatty acid ethyl esters; olive oil; phenols; ‘Cobrançosa’; ‘Galega Vulgar’; sensory analysis

1. Introduction

Olive anthracnose, caused by diverse Colletotrichum species, is the most important
fungal disease of olive fruits worldwide, leading to significant yield losses, fruit rot and
drop and consequently poor olive oil quality. In the last decade, the recrudescence of olive
anthracnose epidemics has been attributed in part to climate change related to increased
relative humidity and rain levels in autumn and abnormal temperature fluctuations [1,2].
In addition to environmental conditions, the susceptibility of varieties and the virulence
of the pathogen populations are decisive for the occurrence of epidemics [3–5]. The
Mediterranean region is experiencing relevant changes in the frequency and distribution of
the olive anthracnose pathogen populations as a consequence of global change [6,7].

The disease develops preferentially as fruits mature, concomitantly with autumn
rains, and has a detrimental effect on olive oil quality by affecting its physicochemical and
organoleptic properties [8–10]. For different cultivars, threshold levels for anthracnose
incidence are established to obtain extra virgin olive oils (EVOO) [8,10].
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Diverse species of the genus Colletotrichum may incite anthracnose symptoms in
olive trees, most of them belonging to the “acutatum species complex” [6,11,12], each of
which differs in virulence and geographic distribution [4]. In the Mediterranean Basin,
C. godetiae is one of the most frequent species, but it seems to be in the process of being
replaced by the highly virulent C. acutatum [6,13]. In Southwestern Iberia, the equally
highly virulent C. nymphaeae is the most frequent species, coinciding to a large extent with
the distribution area of ‘Galega Vulgar’, a cultivar present in five of the six Portuguese
Protected Designation of Origin (PDO) for virgin olive oil (VOO) [14]. This cultivar is very
susceptible to anthracnose [4,6]. In turn, ‘Cobrançosa’, which is considered moderately
susceptible to the disease [5], with origin from NE Portugal where C. godetiae prevails [6,15],
is becoming widespread in Portugal.

The identification of diverse species in the “acutatum species complex” as causal
agents of olive anthracnose is recent, emerging as a consequence of the recognition of sev-
eral species within what was previously known as “C. acutatum” and is now known as the
“acutatum species complex”, encompassing several species occurring on olives and many
other hosts [12,16]. The aetiology of olive anthracnose has therefore changed profoundly
in the last 2 decades and the use of names such as C. acutatum and C. gloeosporioides to
designate the causal agents of olive anthracnose must be considered with caution and
according to the date in which they were used. For instance, references to “C. acutatum”
must be carefully considered to ascertain whether they refer to C. acutatum sensu lato, i.e.,
prior to the Damm et al. (2012) revision [16], or C. acutatum sensu stricto [12,16]. Members of
the “acutatum species complex” differ in terms of their virulence towards olives and host
cultivars respond differently to each species of the complex [4]. Thus, for each pathogen–
host cultivar combination, it becomes important to determine the accurate disease aetiology,
either to predict losses or to properly manage the disease.

Olive oils from fruits affected by anthracnose present chemical and sensory defects
that may restrain their direct use as virgin oils [9]. The change of olive oil quality can be
marked enough to result in a downgrading of the oil category from “extra virgin olive
oil” to “virgin olive oil” or even to “lampante olive oil”, with severe economic losses for
the olive grower. However, the extent of the depreciation of olive oil and the parameters
affected in each pathosystem (fungal species x olive cultivar) are only partially known due
to the lack of updates to the current taxonomic status in the genus Colletotrichum and the
“acutatum species complex” in particular.

For several decades, olive oil quality has been assessed by chemical parameters (acidity,
peroxide value, and UV absorbances) and sensory evaluation. However, since 2011, the
European legislation [17] also started to consider the presence of fatty acid ethyl (FAEE)
and methyl esters (FAME) in olive oil as quality parameters for EVOO. FAME and FAEE
are non-volatile compounds that may be good indicators of the quality of olives and their
oil, as methanol and ethanol are formed during olive fermentation. A high concentration of
FAEE is considered by the EU legislation as an indicator of olive fermentation responsible
for olive oil sensory defects [17]. In turn, the content of wax esters tends to increase
through maturation, since olive pulp becomes softer. However, wax esters content is still
not considered a conclusive indicator of oil degradation [18].

Phenol composition of VOO can give important information on its quality because
phenols have an important impact on organoleptic evaluation since they are responsible
for positive sensory attributes of bitterness and pungency, as well as on the biological value
of olive oil due to the antioxidant effects of phenolic compounds [19–21]. Moreover, a
health claim can be declared for EVOO if it contains more than 5 mg of hydroxytyrosol
and its derivatives per 20 g of oil [22]. The content of phenolic compounds in olives is a
characteristic related to several factors, in which the cultivar and the state of ripeness of
the fruit are of utmost importance [23]. Additionally, these compounds play an important
role in fruit defence against abiotic and biotic stresses, including Colletotrichum spp. [24,25].

The ripening stage of olives is a critical factor for anthracnose development. Anthrac-
nose pathogens affect more severely ripened than green fruits in which the concentration
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of phenolic compounds is higher than in mature fruits [10]. This suggests that higher
concentrations of phenolic compounds in olive fruits may account for higher tolerance
of some cultivars to the anthracnose pathogens [25–27]. Accordingly, early harvesting of
the very susceptible cultivars is recommended to avoid secondary infections of ripe and
overripe fruits [3] and their detrimental effects on olive oil quality.

The aim of the present study was to investigate, under controlled laboratory condi-
tions, the effect of the most common olive anthracnose pathogens in Portugal, Colletotrichum
nymphaeae, C. godetiae, and C. acutatum, on early ripened fruits from two Portuguese olive
cultivars (Galega Vulgar and Cobrançosa), concerning olive oil quality and composition.

2. Materials and Methods
2.1. Olive Characterisation

Portuguese olive fruits (Olea europaea ssp. europaea var. europaea) of Cobrançosa and
Galega Vulgar used in this study were produced according to organic production guidelines
without the use of pesticides, in Beira Baixa Region, in a rainfed grove (39◦49′19′′ N,
7◦27′31′′ W). The climate of this region is classified as Csa (Mediterranean hot summer
climate) according to the Köppen climate classification [28]. The annual accumulated
precipitation of the year under study (2018) was 795 mm, which is very similar to the
average value in the period 1981–2010 for this region (783.2 mm) [29]. Olive fruits were
picked in the first fortnight of November 2018. Their ripening indices (RI) were determined
by following the guidelines of the International Olive Council (IOC) [30]; moisture and fat
content of the fruits were evaluated by NIR (FOSS-Olivia, Hillerod, Denmark).

2.2. Inoculation of Olives

Healthy fruits (ripening index 3.5) from Galega Vulgar (fat content dw = 36.63%
and moisture content = 58.2%) and Cobrançosa (fat content dw = 32.0% and moisture
content = 57.0%) were selected for the present study. Fruits (approx. 10 kg) of each cultivar
were surface disinfected in 0.5% NaClO for 1 min, thoroughly rinsed in sterile distilled
water and air-dried. Intact fruits of both cultivars were inoculated by spraying conidial
suspensions (106 spores/mL) of C. nymphaeae (isolate 18-006), C. godetiae (isolate 18-019), or
C. acutatum (isolate 18-015) as previously described [4]. Fruits were incubated at 20 ◦C and
100% RH and samples (2 kg) were collected at 3, 7, 11, and 14 days post-inoculation (d.p.i.)
for symptom assessment (% of fruits with symptoms) and olive oil extraction.

2.3. Olive Oil Extraction

Olive oils were extracted in a laboratory oil extraction system (Abencor analyser; MC2
Ingenieria y Sistemas S.L., Seville, Spain) under optimised conditions [31]. The olives were
crushed with a hammer mill equipped with a 4 mm sieve at 3000 rpm. Malaxation of the
pastes was performed at 27–30 ◦C, for 30 min, and centrifugation at 3500 rpm for 3 min.
After centrifugation, the olive oil was separated by settling in a graduated cylinder. Water
traces in the oil were removed with anhydrous sodium sulfate, filtered through a cellulose
filter, and stored in amber glass bottles at 4 ◦C. For each batch, 3 independent extractions
were performed.

2.4. Chemical and Sensory Characterisation of Olive Oil

Acidity value, peroxide value (PV), UV specific absorbances (K232 and K270), and fatty
acid ethyl esters (FAEE), which are considered by European Union as chemical quality
criteria, were evaluated for each VOO sample. Acidity, PV, K232, and K270 and the major
fatty acids (C16:0, C18:0, C18:1, and C18:2) were evaluated by NIR spectroscopy using
a spectrometer (MPA, Bruker Optics, Ettlingen, Germany), using the calibration model
B-Olive-Oil, Bruker Optics.

Samples of olive oils were also sensory evaluated by a panel test recognised by IOC.
Quantitative Descriptive Analysis (QDA) is applied using a profile sheet that mainly
considers the negative attributes (e.g., fusty, musty, muddy sediment, winey-vinegary,
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metallic, and rancid notes) which are the most commonly detectable negative attributes
in virgin olive oils. Other defects described in the specific vocabulary can be named by
means of designation to “others”. The profile sheet also indicates fruity, bitter, and pungent
sensations among positive notes. An unstructured scale, 10 cm long, is used to measure
attributes intensity [32]. The methodology is described in Regulation No. 1348/2013 [33].

In the determination of the content of waxes, FAME and FAEE were performed ac-
cording to the European Union official method [17] that is based on the addition of suitable
internal standards to the oil and fractionation by liquid chromatography on a hydrated
silica gel column. After recovery of the eluted fraction, capillary gas chromatography
analysis was carried out using a GC-FID (PerkinElmer 8600) equipped with an on-column
injector and a capillary column MEGA-5-HT (length 15 m, internal diameter 0.32 mm, film
thickness 0.10 µm). The oven program temperature was: 80 ◦C for 1 min, increasing by
20 ◦C/min until reaching 140 ◦C, increasing by 5 ◦C/min until 335 ◦C, and maintaining
for 20 min. The detector temperature was at 350 ◦C and the injection volume was 2.8 µL.
Helium was used as the carrier gas with a flow of 1 mL/min.

Total phenols were extracted by liquid microextraction and were evaluated by VIS
spectroscopy (JASCO 7800, Tokyo, Japan) according to Pizarro et al. [34]. Five hundred
milligram of olive oil were extracted with 1 mL of a methanol/water mixture (80:20, v/v)
in 2-mL Eppendorf reaction tubes. After vigorous shaking for 1 min using a vortex, the
sample was centrifuged (Eppendorf MiniSpin Plus Microcentrifuges, Eppendorf, Madrid)
at 13,400 rpm for 5 min at 20 ◦C. This process was performed 3 times. The 3 extracts
were mixed and the volume was adjusted to 5 mL with ultrapure water. The quantitative
determination of phenolic content is based on the reaction of Folin–Ciocalteau reagent
with the functional hydroxy groups of phenolic compounds. In the cuvette of 1 cm width,
for spectrophotometric analysis, 0.1 mL of the aqueous-methanolic solution of phenolic
compounds extracted from the VOO was diluted in 1.5 mL of ultrapure water, followed
by the addition of 0.1 mL of Folin–Ciocalteau reagent and maintained for 3 min. Then,
0.3 mL of 20% (w/v) sodium carbonate aqueous solution was added and mixed. The
absorbance of the solution was measured after 1 h against a blank sample using a UV–VIS
spectrophotometer at a wavelength of 765 nm. The calibration curve was constructed using
standard solutions of gallic acid. Results were expressed as milligram of gallic acid per
kilogram of oil (mg GAE/kg).

2.5. Statistical Analysis

Statistical analysis was performed using the software StatisticaTM, version 7, from
Statsoft, Tulsa, OK, USA. A One-way ANOVA was performed on fatty acid composition
and a post hoc Tukey test was used (p ≤ 0.05). Multivariate data analysis, namely Princi-
pal Component Analysis (PCA) and hierarchical Cluster Analysis (CA) were performed
on datasets considering chemical and sensory results for VOO samples obtained from
Galega Vulgar or Cobrançosa fruits submitted to different incubation times with different
Colletotrichum fungi. PCA and CA are pattern-recognition techniques that will help to
characterise the samples and to evaluate the presence of eventual groups, as well as identify
the most important variables on sample characterisation. Euclidean distance, as a distance
measurement between samples, and the single-linkage method were used in CA [35,36].

3. Results and Discussion
3.1. Olive Characterisation

Figure 1 shows the evolution of anthracnose incidence along 14 days post-inoculation
(d.p.i.) of Galega Vulgar and Cobrançosa fruits with C. acutatum, C. nymphaeae, or C. godetiae.
Regardless of the cultivar and the inoculated isolate, disease symptoms were detected only
at 7 d.p.i. with incidence increasing thereafter. Overall, the results showed that Galega
Vulgar fruits are more susceptible to anthracnose than Cobrançosa fruits, as previously
reported [4,5]. For both cultivars, C. nymphaeae and C. acutatum were equally virulent,
while C. godetiae was less virulent, especially in Cobrançosa fruits. At 11 d.p.i., more
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than 90% of Galega Vulgar fruits inoculated with C. acutatum or C. nymphaeae presented
anthracnose symptoms, while the disease incidence in Cobrançosa fruits was less than
60%. Colletotrichum godetiae infected 76 and 88% of Galega Vulgar fruits against only 24 and
48% of Cobrançosa fruits at 11 and 14 d.p.i., respectively. Cuticle and exocarp thickness
of Cobrançosa olives [37], cell wall composition [38], as well as the high phenolic content
reported for Cobrançosa fruits [39,40] can be positively related to higher fruit tolerance to
anthracnose disease.
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Figure 1. Evolution of anthracnose disease (% of fruits with symptoms) of Galega and Cobrançosa
fruits, after 3, 7, 11, and 14 days post-inoculation (d.p.i.) with Colletotrichum acutatum, C. nymphaeae,
and C. godetiae.

3.2. Olive Oil Characterisation by Quality Criteria

According to the European Union [41], acidity, peroxide value, UV absorbances, FAEE,
and sensory evaluation are considered quality criteria. Commercial virgin olive oils are
classified as EVOO and VOO according to their quality parameter values. Respectively,
seven (EVOO) and six (VOO) parameters are evaluated to check conformity with the
declared category (Table 1). These parameters were evaluated for all VOO extracted from
the fruits inoculated with each fungus to assess the effect of anthracnose severity on
VOO quality.

Table 1. Acidity, peroxide value (PV), UV absorbances (K270, K232, and delta-K) and fatty acid ethyl
esters (FAEE) quality characteristics for Galega and Cobrançosa oils at the beginning of experiments
(t0) and the legal limits for commercial virgin olive oils (Extra Virgin Olive Oil (EVOO) and Virgin
Olive Oil (VOO).

Quality Criteria
Olive Oils Olive Oil Category [41]

Galega Cobrançosa EVOO VOO

Acidity (% oleic acid) 0.04 0.04 ≤0.8 ≤2.0
PV (meq O2 kg−1) 6.26 10.18 ≤20 ≤20

K270 0.19 0.14 ≤0.22 ≤0.25
K232 1.59 1.67 ≤2.50 ≤2.60

Delta-K ≤0.01 ≤0.01 ≤0.01 ≤0.01
Median of defect (Md) 0 0 Md = 0.0 Md ≤ 3.5

Fruity median (Mf) 5.0 5.8 Mf ≥ 0 Mf ≥ 0
FAEE (mg/kg) 6 4 ≤ 35
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3.2.1. Chemical Parameters

Olive oil acidity, resulting from acylglycerol hydrolysis, exponentially increased with
d.p.i. for both cultivars (Figure 2). Again, for the same d.p.i. and fungus, the acidity (%
free fatty acid (% FFA)) of Galega VOO was higher than for Cobrançosa VOO. At the end
of the experiments (14 d.p.i.), olive oil acidity reached ca. 5% in Galega Vulgar and ca. 2%
in Cobrançosa from olives infected with C. nymphaeae or C. acutatum.

Agronomy 2021, 11, x  6 of 17 
 

 

Table 1. Acidity, peroxide value (PV), UV absorbances (K270, K232, and delta-K) and fatty acid ethyl 

esters (FAEE) quality characteristics for Galega and Cobrançosa oils at the beginning of experi-

ments (t0) and the legal limits for commercial virgin olive oils (Extra Virgin Olive Oil (EVOO) and 

Virgin Olive Oil (VOO). 

Quality Criteria 
Olive Oils Olive Oil Category [41] 

Galega Cobrançosa EVOO VOO 

Acidity (% oleic acid) 0.04 0.04 ≤0.8 ≤2.0 

PV (meq O2 kg−1) 6.26 10.18 ≤20 ≤20 

K270 0.19 0.14 ≤0.22 ≤0.25 

K232 1.59 1.67 ≤2.50 ≤2.60 

Delta-K ≤0.01 ≤0.01 ≤0.01 ≤0.01 

Median of defect (Md) 0 0 Md = 0.0 Md ≤ 3.5 

Fruity median (Mf) 5.0 5.8 Mf ≥ 0 Mf ≥ 0 

FAEE (mg/kg) 6 4 ≤ 35  

3.2.1. Chemical Parameters 

Olive oil acidity, resulting from acylglycerol hydrolysis, exponentially increased with 

d.p.i. for both cultivars (Figure 2). Again, for the same d.p.i. and fungus, the acidity (% 

free fatty acid (% FFA)) of Galega VOO was higher than for Cobrançosa VOO. At the end 

of the experiments (14 d.p.i.), olive oil acidity reached ca. 5% in Galega Vulgar and ca. 2% 

in Cobrançosa from olives infected with C. nymphaeae or C. acutatum. 

 

(a) (b) 

Figure 2. Acidity (% Free Fatty Acids) of Galega (a) and Cobrançosa VOO (b) obtained from fruits, after 3, 7, 11, and 14 

days post-inoculation (d.p.i.) with Colletotrichum acutatum, C. nymphaeae and C. godetiae (STD variation range: 0.01–0.03; 

not seen in the figures). 

For Galega VOO, at 7 d.p.i., its acidity exceeds the legal limit for the commercial cat-

egory EVOO (Table 1) for fruits inoculated with C. acutatum (disease incidence 26%). By 

contrast, at 7 d.p.i., C. godetiae, which caused the highest disease incidence (44%), was un-

able to increase the acidity of the oil to levels incompatible with the EVOO category. An 

intermediate behaviour was registered for C. nymphaeae (Figure 2). At 11 d.p.i., all isolates 

(disease incidence ranging from 76–96%) caused an increase in the olive oil acidity to val-

ues above 0.8%, up to a maximum of 2.51% (C. nymphaeae). Consequently, these oils fall 

into the category of “VOO” or “lampante VOO”, respectively, in which the latter cannot 

be consumed as virgin olive oil [41]. 

Concerning Cobrançosa VOO, the effects on acidity at 7 d.p.i. can be neglected, even 

when oil is extracted from olives with a disease incidence similar to that of Galega Vulgar 

(Figure 2, e.g., C. acutatum). At 11 d.p.i., the acidity of olive oils resulting from fruits inoc-

ulated with C. acutatum (disease incidence 60%) or C. godetiae (disease incidence 24%) was 

Figure 2. Acidity (% Free Fatty Acids) of Galega (a) and Cobrançosa VOO (b) obtained from fruits, after 3, 7, 11, and 14 days
post-inoculation (d.p.i.) with Colletotrichum acutatum, C. nymphaeae and C. godetiae (STD variation range: 0.01–0.03; not seen
in the figures).

For Galega VOO, at 7 d.p.i., its acidity exceeds the legal limit for the commercial
category EVOO (Table 1) for fruits inoculated with C. acutatum (disease incidence 26%).
By contrast, at 7 d.p.i., C. godetiae, which caused the highest disease incidence (44%), was
unable to increase the acidity of the oil to levels incompatible with the EVOO category. An
intermediate behaviour was registered for C. nymphaeae (Figure 2). At 11 d.p.i., all isolates
(disease incidence ranging from 76–96%) caused an increase in the olive oil acidity to values
above 0.8%, up to a maximum of 2.51% (C. nymphaeae). Consequently, these oils fall into
the category of “VOO” or “lampante VOO”, respectively, in which the latter cannot be
consumed as virgin olive oil [41].

Concerning Cobrançosa VOO, the effects on acidity at 7 d.p.i. can be neglected, even
when oil is extracted from olives with a disease incidence similar to that of Galega Vulgar
(Figure 2, e.g., C. acutatum). At 11 d.p.i., the acidity of olive oils resulting from fruits
inoculated with C. acutatum (disease incidence 60%) or C. godetiae (disease incidence 24%)
was higher than 0.8% but lower than 2.0% (VOO category), while the acidity of the oil
resulting from fruits inoculated with C. nymphaeae (disease incidence 56%) was lower than
the legal limit for the EVOO category. At 14 d.p.i., regardless of the inoculated isolates, the
acidity of the Cobrançosa oils obtained never reached values within the “lampante VOO”
category [41].

The acidity of VOO showed to depend both on the susceptibility of the cultivar and
on the virulence of distinct Colletotrichum species, which might be related to the ability of
these fungi to produce lipases to catalyse olive oil hydrolysis.

All VOO samples showed Peroxide values (PV: 4–10.8 meqO2/kg) and UV absorbance
values (K232: 1.14–1.74.; K270: 0.07–0.19), which are lower than the maximum allowed for
edible VOO (Table 1), indicating that VOO oxidation during fruit incubation did not occur
in large extent. Therefore, this suggests that the production of enzymes responsible for
olive oil oxidation by the Colletotrichum species used in this study occurs to a limited extent.
Similar results were observed by Leoni et al. [10], with ‘Arbequina’ and ‘Frantoio’ fruits
inoculated with C. acutatum.



Agronomy 2021, 11, 1041 7 of 16

FAEE and FAME reflect the action of fermentative microorganisms on olives. The
European Union established the limit of 35 mg of ethyl esters per kg of oil for the EVOO
category [41].

The contents of FAME and FAEE of Galega and Cobrançosa VOO obtained from
fruits inoculated with each isolate, as a function of d.p.i., are presented in Figure 3. Again,
Galega olive oils showed higher amounts of methyl and ethyl esters than Cobrançosa olive
oils, but this varies according to the fungal species. At 14 d.p.i., the highest contents of
FAEE and FAME were observed in Galega VOO from fruits inoculated with C. acutatum
(160 mg/kg oil) and C. nymphaeae (984.5 mg/kg oil), respectively. At the end of the
experiments, FAEE contents in Galega VOO reached values between 1.3 (C. nymphaeae) and
5.7 times (C. godetiae) the values attained in Cobrançosa VOO, respectively with the same
pathogens. FAME contents in Galega VOO at 14 d.p.i. reached values 10 times higher than
in Cobrançosa VOO with C. nymphaeae, 8.2 times higher with C. godetiae and 3.2 times the
value with C. acutatum.

FAEE contents in Galega olive oils from fruits at 7 d.p.i. with C. acutatum or C.
nymphaeae (65 and 62 mg/kg oil, respectively) were higher than the legal limit for EVOO
(35 mg/kg oil). When Galega Vulgar fruits were inoculated with C. godetiae, FAEE were
higher than the legal limit only at 11 d.p.i. (38 mg/kg oil). For Cobrançosa olive oils, the
amounts of FAME and FAEE were similar, for each Colletotrichum species. At 14 d.p.i. with
C. acutatum or C. nymphaeae, Cobrançosa oils had more than the legal limit for FAEE in
EVOO (79 and 107 mg/kg oil, respectively), while the oils extracted from olives inoculated
with C. godetiae only had 15 mg/kg oil.
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The effect of each Colletotrichum species, as assessed by FAEE production in Galega
and Cobrançosa oils, shows the following order: C. nymphaeae ~ C. acutatum > C. godetiae.
This may be correlated with the lesser virulence reported for C. godetiae and the occurrence
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of interaction between the most virulent pathogens (C. acutatum and C. nymphaeae) for both
cultivars [4].

Wax content (C42 + C44 + C46) of olive oils was always lower than the maximum
legal limit of 150 mg/kg of waxes for the EVOO category [41]. Galega VOO presented an
average wax content of 98.4 mg/kg, varying from 67.1 and 140.7 mg/kg. The wax content
of Cobrançosa VOO ranged from 40.9 to 71.9 mg/kg, with an average value of 64.6 mg/kg.
Thus, Galega olive oils always showed higher contents of waxes than Cobrançosa VOO.
For each cultivar, no relationship was observed between wax content and anthracnose
disease. In fact, high values of wax content have multiple causes and, as a consequence, is
not a good indicator of the degradation of olive fruits [18].

3.2.2. Sensory Analysis

All VOO were sensory evaluated by a trained panel to detect and quantify both
negative and positive attributes of VOO. According to the EU Regulations [41], “extra
virgin olive oils” must present a median of sensory defects equal to zero and a fruity flavour
median higher than zero. For the commercial category of “virgin olive oil”, the median of
defects may be ≤3.5 and the fruity flavour median higher than zero (Table 1). The median
of the defects is assumed as the median value of the defect which is present at the highest
intensity. In the case of olives damaged by anthracnose, a significant increase of aldehydes
such as heptanal, octanal, and nonanal was reported [42] due to the decomposition reactions
of hydroperoxides formed by the auto-oxidation of unsaturated fatty acids [43]. Figure 4
shows the median of the “musty” defect of Galega and Cobrançosa VOO obtained from
fruits at 3, 7, 11, and 14 d.p.i. with C. acutatum, C. nymphaeae, and C. godetiae. The musty
defect was detected in Galega VOO obtained from fruits inoculated with C. acutatum or C.
godetiae at 3 d.p.i., or at 7 d.p.i. with C. nymphaeae. With Cobrançosa fruits, the perception of
musty defect occurred only at 11 d.p.i. with all fungi. However, the intensity of the defect
was lower in oils from fruits infected with C. godetiae. Moreover, the musty defect detected
in the oils was accompanied by the presence of winey defect but always in lower intensity.
The presence of musty defect has been ascribed to the development of filamentous fungi
and yeasts, while the attribute “winey/vinegary” is basically due to the formation of acetic
acid, ethyl acetate, and ethanol by olive fermentation [32,44,45].
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post-inoculation (d.p.i.) with Colletotrichum acutatum, C. nymphaeae, and C. godetiae.

The observed behaviour for Cobrançosa may be due to the masking effect of bitterness
and pungency of those VOO against the musty defect, as already reported by Leoni et al.
(2018) [10].
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Figure 5 shows the decrease in the intensity of positive attributes (fruity, bitter, and
pungent) as the intensity of negative attributes increases in Galega or Cobrançosa VOO
from fruits inoculated with C. acutatum. Similar profiles were observed with the VOO
when C. nymphaeae or C. godetiae were considered.

The perceived defects result from the fungal/microbial activity of the inoculated fungi
on olive fruits throughout the incubation period. The intensity of positive attributes in
Galega VOO showed a faster decrease than in Cobrançosa oils, which may be explained
by a faster increase in the intensity of sensory defects. The detection of sensory defects
occurred in olive oil samples with less than 0.8% FFA or 35 mg FAEE/kg, which are the legal
limits for the EVOO category [41]. Therefore, the sensory evaluation was more sensitive
than chemical analysis to assess olive oil quality. This finding is not uncommon, because
other kinds of defects eventually not covered by chemical analysis can be evidenced during
the organoleptic evaluation [46].
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obtained from fruits, at times 0, 3, 7, 11, and 14 days post-inoculation (d.p.i.) with Colletotrichum acutatum.

3.3. Fatty Acid Composition

The four major fatty acids in olive oil (palmitic, stearic, oleic, and linoleic acids) were
quantified in all samples and the results are presented in Table 2. The extent of anthracnose
infection does not seem to have noticeable effects on the major fatty acid components of
Galega or Cobrançosa olive oils.

Both oils had similar contents of oleic acid: 74.1% on average in Galega (ranging from
72.98 to 75.53%) and 73.24% in Cobrançosa oils (ranging from 72.15 to 73.79%). Palmitic
acid content, the major saturated fatty acid, has an average value of 15.1 and 13.84% in
Galega and Cobrançosa olive oils, respectively. However, for all Galega and Cobrançosa
VOO obtained from fruits incubated with each fungus, a significant increase in linoleic acid
(C18:2) was observed along the incubation period (Tukey test; p ≤ 0.05). For other host–
fungal interactions, the accumulation of linoleic acid (C18:2) was suggested to be an early
component of the complex of responses associated with a defence against pathogens [47].
This may be explained by increased desaturation of stearic (C18:0) and oleic (C18:1) fatty
acyl chains to form phospholipids containing linoleic (C18:2) acyl chains. Additionally, in
the C. gloeosporioides–avocado interaction, the increase of linoleic acid, after elicitation with
the pathogen, was attributed to enhanced ∆-9 stearoyl-ACP desaturase expression, which
not only participates in a pathway leading to antifungal diene formation but also regulates
this pathway [48,49]. Although not covered in this work, the mechanism of accumulation
of linoleic acid should be further investigated for olive cultivars–Colletotrichum species
interactions.
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Table 2. Mean values of the major fatty acid composition (palmitic (C16:0), stearic (C18:0), oleic (C18:1), and linoleic acids
(C18:2)) of Galega (GAL) and Cobrançosa (COB) VOO obtained from fruits inoculated with Colletotrichum acutatum (Ac),
C. nymphaeae (Ny), and C. godetiae (Go), at 0, 3, 7, 11, and 14 days of incubation. Superscript indexes indicate significant
differences between days of incubation for each cultivar and fatty acid based on a Tukey test (p < 0.05).

Fatty Acid C16:0 (%) C18:0 (%) C18:2 (%) C18:1 (%)

Sample GAL COB GAL COB GAL COB GAL COB

t0 14.99 abc 13.57 bcde 2.44 a 2.93 cd 5.14 h 6.23 i 75.53 a 73.76 ab

Ac3 14.74 bc 13.29 cde 2.45 a 2.90 cd 5.85 f 6.87 fh 74.69 bc 73.79 a

Ac7 15.65 ab 13.20 de 2.43 a 2.97 bcd 6.42 e 6.69 h 73.60 def 73.66 ab

Ac11 15.56 ab 13.90 bc 2.76 a 3.00 abcd 6.77 d 7.19 e 73.78 de 73.36 abc

Ac14 15.61 ab 15.69 a 2.47 a 3.17 a 6.97 c 8.65 b 73.34 ef 72.40 d

Ny3 14.91 abc 13.53 bcde 2.36 a 2.82 d 5.44 g 6.68 h 75.09 ab 73.54 abc

Ny7 14.70 bc 13.02 e 2.38 a 2.91 cd 5.93 f 6.84 g 74.10 cd 73.52 abc

Ny11 15.92 a 13.66 bcde 2.31 a 3.03 abc 6.93 e 7.29 de 73.86 de 73.20 c

Ny14 15.26 abc 15.30 a 2.67 a 3.14 ab 6.80 d 9.05 a 73.95 de 72.15 d

Go3 14.74 bc 13.58 bcde 2.48 a 2.89 cd 7.20 ab 6.94 f 73.30 ef 73.59 abc

Go7 14.35 c 13.73 bcd 2.47 a 2.85 cd 7.25 a 7.36 d 73.31 ef 73.23 bc

Go11 14.88 bc 13.77 bcd 2.59 a 2.89 cd 7.12 b 8.14 c 73.39 ef 72.66 d

Go14 15.00 abc 14.19 b 2.60 a 2.94 cd 6.93 c 8.59 b 72.98 f 72.27 d

3.4. Phenol Contents

The content of total phenols in Galega and Cobrançosa VOO along the experiments
is presented in Figure 6. Cobrançosa VOO from healthy fruits presented a higher content
of phenolic compounds (1022 mg/kg) than Galega VOO (700 mg/kg). These results are
in accordance with previous findings in which Cobrançosa oils showed a higher content
of total phenols than Galega for a similar olive-ripening index (ca. 3.5) [23]. The higher
constitutive content of phenolic compounds in Cobrançosa VOO (and fruits) as compared
to Galega [27] may explain the higher tolerance to anthracnose disease usually reported
for Cobrançosa cultivar, in which phenols are likely able to counteract the initial attack
of Colletotrichum fungi on the fruits. Additionally, phenolic compounds are related to the
defensive reactions of plants against pathogens [50], namely to anthracnose pathogens [51],
either by the accumulation of pre-existing phenolic compounds or by de novo synthesis
of defence chemicals [52]. However, our results show no increase of phenols in olive
oils in response to the infection and indicate that the Colletotrichum spp. tested were not
inhibited by these compounds. In fact, in the present study, the phenolic content in the
oils from both cultivars decreased through the time post-inoculation (Figure 6). At the
end of the experiments (14 d.p.i.), an 83–89% reduction in the initial content of phenolic
compounds of Cobrançosa VOO and an 84–93% reduction in Galega VOO were observed.
The reduction of phenolic compounds content concomitantly with the increase of disease
incidence and progress is in line with the recognised role of fungi in the biodegradation
of natural phenolic compounds, most of them producing phenol oxidases [53,54]. The
decrease of total phenols in the time post-inoculation confirms that the storage of fruits
before processing is always a non-recommended practice even for the preservation of
bioactive compounds.

3.5. Multivariate Data Analysis

After the individual analysis of the evolution of the various quality criteria, fatty
acid composition, and total phenolic compound contents of Galega and Cobrançosa VOO
samples, multivariate analysis was performed in order to identify the pattern behind the
samples. Therefore, Principal Component Analysis (PCA) complemented by a Cluster
Analysis (CA) were performed on the multivariate data where the VOO samples of each
cultivar were characterised by 13 variables (acidity, FAME, FAEE, five sensory attributes,
four major fatty acids and the total phenolic compounds content).
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Figure 6. Total phenolic content (TPH), expressed in mg of gallic acid equivalent per kg of VOO (mg GAE/kg) in Galega (a)
and Cobrançosa VOO (b) extracted from fruits inoculated with Colletotrichum acutatum, C. nymphaeae, and C. godetiae, at
times 0, 3, 7, 11, and 14 days post-inoculation (d.p.i.) (mean values ± STD; STD variation range: 2.47–20.59; hardly seen in
the figures).

By PCA, it was possible to reduce the initial 13-dimension hyperspace to a plane
defined by the first two principal components (new axis), containing 81.9 and 89.2% of the
variance of the original data matrix for Galega and Cobrançosa VOO samples, respectively.
The projection of the loadings of the original variables and VOO samples on these planes are
shown in Figure 7. For both cultivars, the positive part of the first axis is highly correlated
with positive sensory attributes (fruity, bitter, and pungent), oleic acid content (C18:1), and
total phenols (TPH), while the negative part is highly correlated with the sensory defects
(musty and winey), as well as with FFA, FAEE and FAME, and linoleic acid content (C18:2).
Thus, the first axis can be identified as the “quality axis”. Concerning the second principal
component, it is mainly correlated with palmitic acid (C16:0) in Galega oils. For Cobrançosa
oils, the second factor is not highly correlated with any of the original variables. It has
rather low importance since it only accounts for 7.5% of the original variance of the data
while the first accounts for 81.7%.

For both cultivars, samples are spread along the first axis according to their quality,
which increases from the negative to the positive side of the axis. Both initial Galega
and Cobrançosa VOO (t0 samples) were highly correlated with the positive chemical and
sensory attributes and higher contents of oleic acid. Galega VOO from fruits inoculated
with C. acutatum or C. nymphaeae at 11 and 14 d.p.i. presented the highest FFA, FAEE, and
FAME contents, and the highest scores in musty sensory defect, while VOO from fruits
inoculated with C. godetiae presented the highest intensity in winey defect at 7, 11, and
14 d.p.i. Concerning Cobrançosa VOO, a similar trend was observed and VOO samples
from fruits with 14 d.p.i. with C. nymphaeae or C. acutatum presented the lowest quality.

PCA is not a technique for grouping samples. Therefore, a hierarchical cluster analysis
(CA) was performed on the same data sets for Galega and Cobrançosa VOO to evaluate
the eventual presence of groups of similar samples suggested by PCA.

Figure 8 shows the hierarchical trees (dendrograms) for Galega and Cobrançosa VOO.
At a linkage distance of around 150, it is possible to identify in the Galega VOO dendrogram
the following groups of samples: Group 1 (Ac0, Go0, Ny0, Ac3, Ac7, Go3, and Ny3), Group
2 (Ny7, Go7, Go11, and Go14), and Group 3 (Ac11 and Ac14). The VOO Ny11 and Ny14
are not included in any group. For Cobrançosa VOO, the dendrogram shows two groups
also at a linkage distance of 150: Group 1 (Ac0, Go0, Ny0, Ac3, Go3, and Ny3) and Group 2,
containing all the other samples. For both cultivars, VOO from healthy fruits and fruits
at 3 d.p.i. with C. acutatum (Ac), C. nymphaeae (Ny), and C. godetiae (Go) present similar
properties. CA confirms that either Galega or Cobrançosa VOO samples are joined in
different groups according to their quality.
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Figure 7. Projections of the loadings of the original variables (a) and Galega or Cobrançosa VOO samples (b) obtained from
fruits inoculated with C. acutatum (Ac), C. nymphaeae (Ny), and C. godetiae (Go), at times 0, 3, 7, 11, and 14 d.p.i., on the
planes defined by first and second factors (principal components). Variables: FFA- free fatty acids; FAEE- fatty acid ethyl
esters; FAME- fatty acid methyl esters; TPH- total phenolic content; sensory scores: fruity, bitter, pungent, musty, and winey;
fatty acids- C16:0, C18:0, C18:1, and C18:2).
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4. Conclusions

This study confirmed C. acutatum and C. nymphaeae as more virulent than C. godetiae
to olives. This is a cause of concern, as C. godetiae seems to be in the process of being
replaced by the former two in several Mediterranean countries. This study also showed
Galega Vulgar is more susceptible to Colletotrichum pathogens than Cobrançosa but with
differences according to the fungal species. The combined effect of fungal species and olive
cultivar on VOO quality parameters was dissected in the time post-inoculation.

In the present study, the assessment of sensory defects in the time after inoculation
showed to be a more accurate tool to detect quality changes produced by each fungus than
chemical analysis used as quality parameters for olive oil classification (acidity, peroxide
value, UV absorbance, and FAEE content).

From a post-harvest point of view, this study also simulates the effects of olive storage
before processing olive oil, when infected fruits even asymptomatic are harvested and
stored. The disease evolves, and a few days after storage the effects can be dramatic for
the quality of the oil, especially for the sensory characteristics and phenol content. The
musty sensory defect was detected in olive oils obtained from Galega Vulgar or Cobrançosa
fruits inoculated with C. nymphaeae or C. acutatum, at 3 d.p.i. or 7 d.p.i., respectively. Thus,
defective olive oils are produced from Galega Vulgar fruits even at low disease incidence.
Cobrançosa VOO, richer in phenolic compounds, present strong “green”, “bitter”, and
“pungent” sensory notes, probably masking the defects during sensory evaluation.

Changes in anthracnose pathogen populations point towards the dissemination of
the most virulent species. The present study showed that the presence of more virulent
species, namely C. acutatum and C. nymphaeae, strongly promoted detrimental effects on
olive oil quality even after short incubation periods. This is particularly important for more
susceptible olive cultivars such as Galega Vulgar. In this context, climate change, with
increased unpredictability, namely concerning the occurrence of periods of high humidity
and mild temperatures, is a concern for the sustainable management of olive cultivation,
harvesting, and processing for producing high-quality EVOO.
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