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Abstract: Pesticide applications in olive orchards could alter the biological control of parasitoid
Psyttalia concolor Szépligeti (Hymenoptera: Braconidae) on the key pest Bactrocera oleae Rossi
(Diptera: Tephritidae). Psyttalia concolor adults can be contaminated by exposure to spray droplets,
contact with treated surfaces or oral uptake from contaminated food sources. Pesticides impact
both pest and parasitoid populations when they coexist in time and space, as they reduce pest
numbers available for parasitoids and might cause toxic effects to parasitoids from which they
need to recover. Therefore, the appropriate timing and application of selective chemical treatments
provides the opportunity to incorporate this parasitoid in the IPM of B. oleae. This manuscript
reviews the current literature on lethal and sublethal effects of insecticides, fungicides, herbicides,
and biopesticides on P. concolor. Insecticides were generally more toxic, particularly organophosphates
and pyrethroids, while herbicides and biopesticides had less effects on mortality and reproductive
parameters. Some fungicides were quite harmful. Most of the studies were conducted in laboratory
conditions, focused on reproduction as the only sublethal effect, exclusively considered the effect
of a single pesticide and persistence was hardly explored. Field studies, currently quite scarce,
are absolutely needed to satisfactorily assess the impact of pesticides on P. concolor.

Keywords: biological control; Bactrocera oleae; biopesticides; insecticides; fungicides; herbicides;
integrated pest management

1. Introduction

Substantial quantitative and qualitative crop losses are caused by the incidence of pests and
pathogens [1]. These organisms can be reduced and eliminated with the application of biological,
chemical, physical, or cultural control measures. Traditionally, agriculture has extensively relied on
pesticides for pest control [2]. Application of pesticides offers advantages such as efficacy and low cost,
minimizing work force and reducing costly inputs as labor or fuel [3]. However, undesirable effects
include side effects on non-target organisms, pest resistance to active substances, secondary pest
outbreaks, or residue persistence in water, soil, and food chain [4–7].

The increasing number of farmers consciously alerting for a sustainable use of pesticides
contributed to the implementation of integrated pest management (IPM) [8,9], mandatory in the
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European Union (EU) under the directive 2009/128/EC [10]. In this context, an essential component
of IPM is the use of macrobial (predators or parasitoids) or microbial (bacteria, viruses, fungi,
or nematodes) agents against insect and mite pests [11]. However, in some cases biological control is
not as robust to reduce pest levels below the economic threshold, where the pest population or the
extent of crop damage exceeds the cost of controlling the pest, despite obvious advantages such as
the minimal disruption to agroecosystems. Up to date, the best strategy is the optimal management
of natural enemies, with actions targeted to enhance their establishment, conservation or increase,
supplemented with selective chemical treatments applied at an appropriate timing to maintain key
and secondary pest populations below economic thresholds [12]. In such scenario, the application
of pesticides impacts not only the pest but also the natural enemies’ population. The susceptibility
of natural enemies to pesticides will depend on the guild, developmental stage, sex, age, type of
pesticide, application method and timing, dose rate, and mode of action [7]. According to directive
2009/128/EC, it is essential to understand the risks of pesticides and adopt more effective and selective
substances [10]. Because of that, the first step for developing a successful IPM is the accurate evaluation
of the potential lethal and sublethal side effects of pesticides on the biological control agents [13–15].
Although sublethal concentrations do not directly kill the exposed natural enemies, they may interfere
with their physiological and behavioral traits, which can significantly affect their fitness and compromise
the success of biological control [5,16].

1.1. Bactrocera oleae—Psyttalia Concolor: Compatibility between Chemical and Biological Control

The olive fruit fly Bactrocera oleae Rossi (Diptera: Tephritidae) is a key pest of olive orchards
(Olea europaea L.) worldwide, the larvae of which are strictly monophagous feeding on the olive
mesocarp. Females lay their eggs in olive fruits, larvae feed off the pulp and finally pupate inside
the olive or exit to pupate on the ground [17]. This causes a premature fruit drop and fruit weight
loss. Moreover, microorganism growth inside the fruit increases the acidity of olive oils [18]. Not all
cultivars are equally susceptible to the olive fruit fly, being the severity of the damage influenced by
olive characteristics such as fruit size, color, exocarp hardness and chemical composition, geographical
area, and weather conditions [18,19].

Control methods are based on the use of (a) insecticide treatments (bait applications
(insecticides mixed with an attractant) and cover sprays); and (b) traps [20]. Organochlorides,
organophosphates and carbamates were the first insecticides used against the olive fruit fly, followed by
the introduction of pyrethroids, neonicotinoids, and spinosad as bait treatment, which is recognized to
be an integral component of IPM as it reduces pesticide levels and environmental impact on natural
enemies and pollinators [21–25]. Kaolin works as a physical barrier that prevents egg laying in the
olive fruit [26]. Although insecticides have been efficient and cost-effective, this pest has developed
resistance to the most commonly used active substances [20,22,27–29]. Entomopathogenic nematodes
are also effective and safe control agents against larvae and pupae in laboratory experiments [30,31],
although nematode efficacy in field conditions is still a challenge. In the Mediterranean area, biological
control is mainly achieved by chalcidoidea ectoparasitoids Eupelmus urozonus Dalman (Eupelmidae),
Pnigalio mediterraneus Ferriere and Delucchi (Eulophidae), Eurytoma martellii Domenichini (Eurytomidae)
and Cyrtoptyx latipes Rondani (Pteromalidae), and the ichneumonoidea endoparasitoid Psyttalia concolor
Szépligeti (Braconidae) [32,33]. All of them are native, except P. concolor, whose presence is linked
to historical and recent releases. Since these releases were not as effective as desirable to control
B. oleae in some of the regions, at present, most of the studies are focused on conservation biological
control, which seeks to contribute to pest management by supporting populations of the natural
enemies present in the agroecoystems [34]. Unfortunately, up to date, the control of B. oleae still
relies on the use of insecticides. Psyttalia concolor is a synovigenic—females mature eggs throughout
their life—, koinobiont—the host continues its development after parasitization—, larval–pupal
endoparasitoid of many Tephritidae (Diptera), released or already established in Mediterranean and
Californian olive groves with varying levels of success [17,33,35,36]. Psyttalia concolor was originally
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described by Szépligueti from B. oleae infested olives in Tunisia in 1910. It is a member of a complex
of closely related species from Africa, which also includes P. humilis and P. perproximus, which have
been treated as synonyms of one another, amongst others. In fact, shortly after being described in
Tunisia, it was introduced to olive-growing regions of Italy, Greece and France [17,37]. It is able to
attack at least sixteen tephritids on different wild and/or cultivated plants, but only two are known
as typical hosts in its native range: The olive fruit fly and the medfly Ceratitis capitata Wiedemann
(Diptera: Tephritidae) [38]. This parasitoid has been used in different Mediterranean areas for the
biological control of B. oleae by inundative and propagative releases and recently released in Californian
olive-groves as a part of classical biological control programmes [17]. Parasitism rates of P. concolor
are low, ranging between 22.4 and 23.4% in Spanish organic orchards in the Balearic Islands [35].
The presence of ecological infrastructures in olive groves influences the compatibility of P. concolor
with pesticides. Flowering strips, banker plants and hedgerows provide food (pollen, nectar and
hemipteran honeydew), alternative hosts and refuges, which are important resources for parasitoid
establishment in agroecosystems [39,40]. However, these structures should also be free of pesticides
because of the possible risk of contamination. Psyttalia concolor can be contaminated by contact with
pesticide droplets or residues, or oral uptake from contaminated food sources. On one hand, pesticide
residues persist in plant tissues long enough to contaminate pollen and nectar [41,42], essential source
of energy and protein for parasitoid survival, host foraging and reproduction [43]. Psyttalia concolor
may also feed on the liquid exuded from the host, particularly important for egg maturation of
synovigenic females [44,45], thus increasing the risk of exposure. On the other hand, parasitoids
are also exposed to pesticides by direct contact with leaves during host searching, feeding, mating,
and resting activities [46–48]. Pesticides induce changes in the chemical constituents of flowering or
host plants, which may decrease their nutritional value or became less attractive to parasitoids [49–51],
interfere with olfactory orientation during oviposition (reduced capacity to find the host or respond to
host kairomones), change foraging patterns or sex pheromonal communication [46,47,52,53].

1.2. Standard Methods for Testing Side Effects of Pesticides on Natural Enemies

Side effects of pesticides on biological control agents have been extensively studied in the last
forty years. In 1974, the working group “Pesticides and Beneficial Organisms” of the International
Organization for the Biological Control (IOBC) was established with the major aim at encouraging
“the development of standard methods for testing the side effects of pesticides on natural enemies” [54].
IOBC test methods are based on a sequential scheme of three levels (laboratory, semi-field, and field) [55,56].
This sequence assumes that pesticides that are harmless at laboratory level will also be safe in semi-field
and field conditions, and do not need to be further evaluated. However, when a chemical is
categorized as harmful in laboratory conditions, its effect cannot be inferred in the next level, and the
sequential scheme must be followed until (1) it displays no negative effects at semi-field level or
(2) the evaluation finishes at field conditions because the chemical was also harmful at semi-field level.
Laboratory methods evaluate the lethal effect (mortality) and sublethal effects (typically reproductive
parameters) of pesticide residues on an inert substrate, although topical and ingestion uptake
routes have been also included in this review. Semi-field tests are performed as direct application
of pesticides on plants, and field studies are carried out in semi-natural field conditions [55–57].
Pesticides are ranked for (a) laboratory studies in (1) (harmless, <30% corrected mortality with the
control treatment), (2) (slightly harmful, 30–79%), (3) (moderately harmful, 80–98%) and (4) (harmful,
>99%); and (b) semi-field and field studies in (1) (harmless, <25%), (2) (slightly harmful, 25–50%),
(3) (moderately harmful, 51–75%), and (4) (harmful, >75%) [58].

This work aims at reviewing the available literature on the side effects of active substances,
currently registered in the EU, tested on P. concolor, categorized as insecticides, fungicides and
herbicides according to their mode of action, discussing their implications on parasitoids in IPM.
Moreover, we have included the available literature concerning ecotoxicology of microbial and botanical
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compounds on this parasitoid, even if their current use in olive groves can be questioned except for
Bacillus thuringiensis.

2. Side Effects of Pesticides on Psyttalia concolor

In addition to the insecticides registered in olive groves against B. oleae, other pesticides can be
applied against other olive pests, such as the moth Prays oleae Bernard (Lepidoptera: Praydidae) or the
scale Saissetia oleae Olivier (Hemiptera: Coccidae), fungal diseases and weeds. For instance, anthracnose
(Colletotrichum spp. complex) and olive leaf spot (Venturia oleaginea (Castagne) Rossman and Crous)
are two important diseases causing significant yield losses and reduction of the quality of the olive
oil and table olives [59,60]. Traditionally, they were controlled with copper-based fungicides [59,61],
however site specific fungicides such as difenoconazole and tebuconazole, trifloxystrobin or dodine
are applied nowadays [60,62]. Sulfur and mancozeb are contact fungicides with protective activity
used to reduce the incidence of anthracnose [61]. Thus, although insecticides would presumably cause
the most damage to P. concolor, the complex of plant protection products applied in olive trees has been
included in this review, as these compounds could also have toxic effects on this parasitoid.

2.1. Insecticides

Organophosphates (group 1B) [63], acetylcholinesterase inhibitors, are broad spectrum insecticides
with low selectivity, high acute toxicity and environmental impact [2]. Phosmet exhibited high toxicity
in glass residual contact laboratory tests, but it was harmless when the substrate was treated parasitized
C. capitata pupae (Table 1) [64]. Toxicity of organophosphates has been reported for other braconids,
such as Aphidius gifuensis Ashmead [65] or Diachasmimorpha longicaudata Ashmead [66].

Pyrethroids (group 3A) [63] are sodium channel modulators rapidly absorbed by the insect tegument.
They have a quick action, causing hyperactivity, convulsions and an immediate “knockdown” paralysis [67].
Beta-cyfluthrin, lambda-cyhalothrin, alpha-cypermethrin, zeta-cypermethrin, and deltamethrin greatly
compromised P. concolor survival when females were exposed to residual contact and ingestion
tests, but emergence was not affected when parasitized pupae were treated (Table 1) [64,68].
Short-term mortality of adults due to pyrethroids [65,66,69–72] and negative sublethal effects on larval
and pupal development, fecundity, sex-ratio or oviposition [70,73–75] have been well documented
in families Aphelinidae, Encyrtidae, Braconidae, Mymaridae, Trichogrammatidae, and Scelionidae.
Pyrethroids can interfere with the mobility and orientation of parasitoids searching for food sources
or host plants [76]. Other studies report that adults surviving to residual exposure retain their
ability to orient to host odors [77], or that impaired foraging and orientation can be recovered after
exposure [46,52]. As far as side effects are concerned, pyrethroids should not be recommended in
IPM programs including P. concolor due to the high risk of mortality and interference with multiple
behavioral functions [5].

Neonicotinoid imidacloprid (group 4A) [63] is a nicotinic acetylcholine receptor (nAChR)
competitive modulator, which blocks the transmission of stimuli in the insect nervous system.
Imidacloprid was harmless for P. concolor females in bait spraying but caused high mortality and
sublethal effects on parasitization rate and progeny when applied as cover spray in glass surface or
semi-field (Table 1) [78,79]. This revealed that ecological selectivity may result through the use of bait
treatment. High toxicity of imidacloprid and moderate toxicity of acetamiprid have been reported
with residues of up to 28 days in other braconids [65,66,72,75].

Spinosad (group 5) [63] is a combination of two fermentation factors, spinosyns A and D, produced by
the actinomycete Saccharopolyspora spinosa [80]. Spinosyns disrupt nicotinic acetylcholine receptors and
present high selectivity and reduced risks to the environment [80,81]. However, evidence about the
compatibility with natural enemies is still inconclusive, particularly parasitoids, as acute lethal and
multiple sublethal effects have been identified [82]. Spinosad is usually harmless for predators
but moderately harmful for parasitoids [81]. Spinosad was harmful to P. concolor via ingestion,
residual contact and topical application in laboratory conditions, but not in bait spraying of olive
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leaves (Table 1) [78,83]. Similarly, acute toxicity was found for braconids Bracon nigricans Szépligeti,
A. gifuensis and Aphidius colemani Viereck [65,75,84], but not for D. longicaudata [66]. Bait spraying in olive
orchards had no harmful effects on braconids Fopius arisanus Sonan and Psyttalia fletcheri Silvestri [84].
Spinosad residues degrade quickly, with little residual toxicity after 3–7 days post-application [66,81],
although high toxicity has also been reported after 10 days [85].

Insect growth regulators (IGRs) interfere with development and reproduction [24].
Fenoxycarb (group 7B) [63] presents low soil mobility, non-accumulation and quick degradation.
Potential toxicity on non-target insects has already been reviewed [86]. Fenoxycarb did not affect the
longevity and emergence of P. concolor (Table 1) [64,87]. More recently, it was found that fenoxycarb
was compatible with Eretmocerus eremicus Rose and Zolnerowich (Hymenoptera: Aphelinidae) [88],
but slightly harmful to Encarsia formosa Gahan (Hymenoptera: Aphelinidae) [89]. Although it is
important to increase the knowledge on P. concolor, it could be a rational candidate for IPM. Pyriproxyfen
(group 7C) [63], was slightly harmful to P. concolor survival but harmless for its reproduction (Table 1) [90].
In contrast, pyriproxyfen caused high mortality on E. eremicus and E. formosa larvae and pupae [88,89].
A recent study showed a strong evidence of vertical transmission of pyriproxyfen from the treated
female to the egg of parasitoid Trissolcus japonicus (Hymenoptera: Scelionidae) [91].

Diflubenzuron, an inhibitor of chitin biosynthesis type 0 (group 15) [63] drastically decreased
P. concolor emergence when C. capitata larvae were fed at 0.2 g a.i./kg diet compared to 0.02 g a.i./kg diet
(Table 1) [87]. A similar effect was reported in braconid Apanteles melanoscelus Ratzeburg [92].

Tebufenozide, an ecdysone receptor agonist (group 18) [63], decreased P. concolor emergence by
35% when the host larvae were treated at 6 g a.i./kg diet compared to 0.6 g a.i./kg diet (Table 1) [87].
On the contrary, it was completely harmless at a lower concentration by ingestion, residual contact
or topical application (Table 1) [83]. Methoxyfenozide, another ecdysone agonist, was harmless
to braconid A. gifuensis [65]. Therefore, it is important to clarify the compatibility of IGRs under
field conditions.

The target protein responsible for the biological activity of azadirachtin, a limonoid
tetranor-triterpenoid chemical derived from the neem tree, is unknown [63]. Azadiracthin impaired
the beneficial capacity of P. concolor females when it was applied via treated host, residual contact or
ingestion (Table 1) [83,87]. Particularly, it provoked a large reduction in the longevity, which might be
related to the reported antifeeding effect of this product. Azadirachtin fresh residues also produced
lethal and sublethal effects on braconids B. nigricans and D. longicaudata; however, toxicity decreased
rapidly after 7–10 days [66,85].

Kaolin is a white aluminosilicate clay, non-porous, low-abrasive, and chemically inert over
a wide pH range [63,93]. Kaolin was harmless to P. concolor at laboratory and semi-field conditions
(Table 1) [26,78,94]. A reduction of abundance and diversity in the arthropod community of
kaolin-treated olive groves has been highlighted [95–97], probably due to its deterrent effect [93]. As a
general conclusion, kaolin is a recommendable pest control product in olive groves [98–100], with a
low impact on non-target organisms [95,97].
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Table 1. Toxicity of insecticides, currently registered in the European Union, tested on Psyttalia concolor adults.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Emergence 5 Attacked
Hosts (%) 6

Progeny
(%)

Longevity
(Days) Reference

Phosmet 1B Imidan®, ICI 0.125% a.i.
R glass 4 (IOBC) [64]
T parasitized pupa 1 (IOBC)

beta-Cyfluthrin 3A Bulldock®, Nufarm 0.03 mL/100 mL I adult 3 (IOBC) Unpublished
dataR olive leaves 4 (IOBC)

lambda-Cyhalothrin 3A Karate®, ICI 0.0038% a.i.
R glass 4 (IOBC)

[64]
T parasitized pupa 1 (IOBC)

alpha-Cypermethrin 3A Fastac®, Shell 0.004% a.i.

R glass
0.013

(0.012-0.014)
(LT50)

[68]

R glass 4 (IOBC)
[64]

T parasitized pupa 1 (IOBC)

zeta-Cypermethrin 3A Fury®, FMC 10 µL/100 mL I adult 2 (IOBC) Unpublished
dataR olive leaves 4 (IOBC)

Deltamethrin 3A Decis Evo®, Bayer 50 µL/100 mL I adult 4 (IOBC) Unpublished
dataR olive leaves 4 (IOBC)

Imidacloprid 4A

Confidor®, Bayer +
Biocebo®, Bioibérica

150 mg a.i./L + 1500 mg a.i./L
(bait spray) R olive leaves

8.0 ± 2.0%
(0 DAT 4);
1 (IOBC)

35.9 ± 4.8

[78]

Confidor®, Bayer 150 mg a.i./L (cover spray) R olive leaves
0.0 ± 0.0%
(0 DAT);
1 (IOBC)

55.4 ± 4.8

Confidor®, Bayer +
Biocebo®, Bioibérica

150 mg a.i./L + 2250 mg a.i./L
(bait spray) R olive leaves

8.0 ± 3.7%
(0 DAT);
1 (IOBC)

74.0 ± 5.0 77.1 ± 4.5

[79]
1500 mg a.i./L + 2250 mg a.i./L

(bait spray) R olive leaves
0.0 ± 0.0%
(0 DAT);
1 (IOBC)

72.4 ± 5.4 74.6 ± 5.5

Confidor®, Bayer 150 mg a.i./L (cover spray)
R glass 75.0 ± 9.2%;

3 (IOBC)

Sf small olive tree 15.6 ± 8.9%;
3 (IOBC) 38.1 ± 2.7 32.5 ± 13.1
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Table 1. Cont.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Emergence 5 Attacked
Hosts (%) 6

Progeny
(%)

Longevity
(Days) Reference

Spinosad 5

Tracer®, Dow
Agrosciences

120 mg a.i./L

I water 4 (IOBC) 0.5 ± 0.1

[83]R glass 4 (IOBC) 0.2 ± 0.4

T adult 4 (IOBC) 0.0 ± 0.0

Spintor-Cebo®, Dow
Agrosciences

20 mg a.i./L (bait spray) R olive leaves
4.0 ± 2.5%
(0 DAT);
1 (IOBC)

30.7 ± 5.1 [78]

Fenoxycarb 7B Insegar®, Maag

0.15% a.i.
R glass 1 (IOBC) [64]
T parasitized pupa 1 (IOBC)

5 g a.i./kg diet Th larvae of
Ceratitis capitata 43.9 ± 4.7% 29.2 ± 2.1

[87]

50 g a.i./kg diet Th larvae of
C. capitata 40.1 ± 4.6% 29.8 ± 2.6

Pyriproxyfen 7C Juvinal®, Kenogard

50 g i.a./ha I adult
46.6%

(0 DAT);
2 (IOBC) [90]

75 g i.a./ha I adult
53.8%

(0 DAT);
2 (IOBC)

Diflubenzuron 15
0.02 g a.i./kg diet Th larvae of

C. capitata 44.2 ± 1.6% 28.5 ± 1.6
[87]

0.2 g a.i./kg diet Th larvae of
C. capitata 3.3 ± 1.4%

Tebufenozide 18 Mimic®, Certis

0.6 g a.i./kg diet Th larvae of
C. capitata 40.8 ± 6.3% 30.7 ± 1.7

[87]

6 g a.i./kg diet Th larvae of
C. capitata 26.5 ± 8.4% 31.3 ± 2.0

180 mg a.i./L
I water 1 (IOBC) 91.3 ± 3.1 70.0 ± 5.4 26.3 ± 0.4

[83]R glass 1 (IOBC) 88.8 ± 2.0 71.2 ± 2.9 22.2 ± 1.1

T adult 1 (IOBC) 88.3 ± 2.2 73.9 ± 3.4 27.8 ± 1.0
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Table 1. Cont.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Emergence 5 Attacked
Hosts (%) 6

Progeny
(%)

Longevity
(Days) Reference

Azadirachtin unknown Align®, Sipcam

0.015 g a.i./kg diet Th larvae of
C. capitata 27.3 ± 4.0% 32.0 ± 2.0

[87]

0.15 g a.i./kg diet Th larvae of
C. capitata 0.0 ± 0.0%

48 mg a.i./L

I water 3 (IOBC) 64.1 ± 8.2 43.9 ± 4.8 4.9 ± 0.1

[83]R glass 2 (IOBC) 86.4 ± 2.8 43.7 ± 5.0 21.2 ± 1.8

T adult 1 (IOBC) 96.5 ± 1.7 71.5 ± 4.7 28.8 ± 0.4

Kaolin unknown Surround®, Basf

4.75 kg/hL R olive leaves
2.0 ± 2.0%
(0 DAT);
1 (IOBC)

54.2 ± 9.0 [77]

5 kg/hL R glass 1 (IOBC) 1 (IOBC) 2 (IOBC) [94]

5 kg/hL

R glass
0.0 ± 0.0%
(0 DAT);
1 (IOBC)

97.7 ± 1.3 65.0 ± 3.9

[26]
T parasitized pupa 66.5 ± 6.6% 96.4 ± 1.5 38.6 ± 8.3

R olive leaves 89.4 ± 2.2 70.8 ± 1.4

Sf olive tree
1.1 ± 1.1%
(0 DAT);
1 (IOBC)

94.3 ± 2.7 45.2 ± 4.3

1 IRAC Mode of Action (MoA) classification: 1B: Organophosphates (nerve action); 3A: Pyrethrins (nerve action); 4A: Neonicotinoids (nerve action); 5: Spinosins (Nerve action);
7: Juvenile hormone mimics (growth regulation); 15: Inhibitors of chitin biosynthesis type 0 (Benzoylureas); 18: Ecdysone receptor agonists (Diacylhydrazines); Unknown: Compounds of
unknown or uncertain MoA [63]. 2 Intake route: R: Residual contact; T: Topical; I: Ingestion; Sf: Semifield; Th: Treated host. 3 Mortality is given as category of International Organization
for the Biological Control (IOBC), LT50 (lethal time that kills 50% of the treated insects), or percentage. 4 DAT: days after treatment (residue age). 5 Emergence is given as category of IOBC
or percentage. 6 Pupae without fly emergence.
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2.2. Fungicides

Information on the side effects of fungicides on P. concolor is scarce. The oximino-acetate
trifloxystrobin (group C3) [101] did not cause any deleterious effect on P. concolor mortality,
female activity and progeny (Table 2). Triazoles difenoconazole, penconazole and tebuconazole
(group G1) [101] were slightly or moderately harmful to females exposed to a fresh residue on
glass surface, but harmless when the parasitized C. capitata pupae were treated (Table 2) [64].
Cyproconazole was harmless even at glass residual contact tests (Table 2) [64]. Difenoconazole and
tebuconazole were harmless or slightly harmful in ingestion tests, respectively, harmless in olive leave
residual contact tests, and had no sublethal effects on female activity or progeny (Table 2).

Copper-based fungicides (group M01) [101], copper oxychloride, cuprous oxide and Bordeaux
mixture, a mixture of copper(II) sulphate (CuSO4) and slaked lime (Ca(OH)2), were slightly harmful or
harmful to females exposed to glass residual contact, but harmless when the parasitized pupae were
treated (Table 2) [64]. Conversely, other formulations of copper oxychloride and Bordeaux mixture
did not cause any deleterious effect on mortality neither sublethal effects on progeny in residual
contact and semi-field experiments (Table 2) [26]. Similarly, copper oxychloride was completely safe
to braconids A. gifuensis and A. colemani [65,72]. In this context, copper-based compounds can be
considered compatible with P. concolor.

Sulfur (group M02) [101] had negative effects to P. concolor survival in glass residual contact
tests, but not on parasitized pupae (Table 2) [64]. There is evidence that sulfur negatively impacts
natural enemies, namely parasitoids [54,102]. Mancozeb (group M03) [101], its mixture with copper
sulphate, and dithianon (group M09) [101] were completely harmless to P. concolor (Table 2) [64].
Literature indicates that mancozeb is not toxic to Anagyrus sp. near pseudococci Girault and
Coccidoxenoides perminutus Timberlake (Hymenoptera: Encyrtidae) [103]. Dodine (group U12) [101]
was harmful in ingestion tests but harmless in olive leave contact tests (Table 2).

Another important aspect to consider is that fungicides can reduce the diversity and richness
of nectar microorganisms (fungus and bacteria) in flowers, which decreases nectar quality,
sugar concentration or pH, having consequences for the feeding of natural enemies [104]. Therefore,
consequences of the application of fungicides on parasitoids should be further studied.
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Table 2. Toxicity of fungicides, currently registered in the European Union, tested on Psyttalia concolor adults.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Emergence
(%)

Attacked
hosts (%) 5

Progeny
(%) Reference

Trifloxystrobin C3 Flint®, Bayer 10 mg/100 mL
I adult 1 (IOBC) 99.8 ± 0.3 56.7 ± 3.5

Unpublished data
R olive leaves 1 (IOBC) 99.8 ± 0.3 52.2 ± 3.2

Cyproconazole G1 Alto®, Sandoz 0.0186% a.i. R glass 1 (IOBC) [64]

Difenoconazole G1 Score®, Ciba Geigy
0.125% a.i.

R glass 2 (IOBC) [64]
T parasitized pupa 1 (IOBC)

0.06 mL/100 mL I adult 1 (IOBC) 99.8 ± 0.3 52.1 ± 4.6
Unpublished data

R olive leaves 1 (IOBC) 100 ± 0.0 52.8 ± 1.6

Penconazole G1 Omnex®, Ciba Geigy 0.0025% a.i.
R glass 2 (IOBC) [64]
T parasitized pupa 1 (IOBC)

Tebuconazole G1 Folicur®, Bayer
0.0938% a.i.

R glass 3 (IOBC) [64]
T parasitized pupa 1 (IOBC)

0.06 mL/100 mL
I adult 2 (IOBC)

Unpublished data
R olive leaves 1 (IOBC) 99.3 ± 0.8 51.1 ± 2.3

Copper oxychloride M01

Cupravit®, Bayer 0.196% a.i.
R glass 4 (IOBC)

[64]
T parasitized pupa 1 (IOBC)

ZZ-cuprocol®, Syngenta Agro 250 mL/hL

R glass
0.0 ± 0.0%
(0 DAT 4);
1 (IOBC)

92.2 ± 5.8 52.1 ± 4.4

[26]
T parasitized pupa 63.6 ± 3.6 5 98.8 ± 0.3 30.0 ± 13.9

R olive leaves 98.3 ± 0.8 78.6 ± 3.6

Sf olive tree
1.1 ± 1.1%
(0 DAT);
1 (IOBC)

93.3 ± 3.9 45.3 ± 4.1

Cuprous oxide M01 Oxiram®, Ciba-Geigy 0.3% a.i.
R glass 3 (IOBC) [64]
T parasitized pupa 1 (IOBC)
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Table 2. Cont.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Emergence
(%)

Attacked
hosts (%) 5

Progeny
(%) Reference

Bordeaux mixture M01

C. Bord Vallès®, I. Q. Vallès 0.2% a.i.
R glass 2 (IOBC)

[64]
T parasitized pupa 1 (IOBC)

Poltiglia®, Manica SPA 1 kg/hL

R glass
0.0 ± 0.0%
(0 DAT);
1 (IOBC)

91.8 ± 3.7 60.2 ± 4.8

[26]
T parasitized pupa 64.8 ± 4.3 98.7 ± 0.9 37.9 ± 10.4

R olive leaves 94.5 ± 1.1 72.3 ± 4.9

Sf olive tree
3.3 ± 1.9%
(0 DAT);
1 (IOBC)

90.2 ± 6.5 54.0 ± 3.5

Sulfur M02 Microtox®, Agrocros 0.432% a.i.
R glass 3 (IOBC) [64]
T parasitized pupa 1 (IOBC)

Mancozeb M03 Dithane M-45®, Rohm and Haas 0.208% a.i. R glass 1 (IOBC) [64]

Mancozeb + copper
sulphate

M03,
M01

Cuprodithane® + Fuerte®,
Rohm and Haas

0.048% a.i. + 0.144% a.i. R glass 1 (IOBC) [64]

Dithianon M09 Delan 75®, Shell 0.075% a.i. R glass 1 (IOBC) [64]

Dodine U12 Syllit Flow®, Kenogard 0.225 mL/100 mL
I adult 3 (IOBC)

Unpublished data
R olive leaves 1 (IOBC) 99.8 ± 0.3 51.4 ± 2.0

1 FRAC Mode of Action (MoA) classification: G1: Sterol biosynthesis in membranes (Triazoles); M01: Chemicals with multi-site activity (Inorganic copper); M02: Chemicals with multi-site
activity (Inorganic sulfur); M03: Chemicals with multi-site activity (Dithio-carbamates and relatives); M09: Chemicals with multi-site activity (Quinones); U: Unknown mode of action [101].
2 Intake route: I: Ingestion; R: Residual contact; T: Topical; Sf: Semifield. 3 Mortality is given as category of IOBC or percentage. 4 DAT: days after treatment (residue age). 5 Pupae without
fly emergence.
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2.3. Herbicides

From an integrated weed control strategy perspective, it is important to select herbicides compatible
with natural enemies. The only study available on the effects of herbicides on P. concolor adult females
found that the pyridyloxy-carboxylate fluroxypyr (group 4) [105] and the triazone metamitron
(group 5) [105] were slightly harmful in residual contact assays, but harmless when the parasitized
pupa was treated (Table 3) [64]. The phosphonate glyphosate (group 9); [105] was slightly harmful in
ingestion tests but safe in olive leave residual contact tests, without any deleterious effect on female
activity or progeny (Table 3). The benzofurane ethofumesate (group 15) [105] was completely safe,
even when tested at glass surface (Table 3) [64]. In conclusion, although these herbicides did not prove
to be toxic to P. concolor, literature is scarce and further studies are needed to understand the persistence
of herbicides on olive groves and, consequently, the real implications on parasitoids. As mentioned
for fungicides, some herbicides can also decrease pollen production and viability [50]. Besides that,
the indiscriminate application of herbicides can reduce floral community diversity, removes refuges
for natural enemies or plants with alternative hosts [106]. Herbicide studies have been traditionally
neglected, especially in the case of pre-emergence herbicides, due to its uncommon presence in the
exposure methodology proposed by IOBC. Nevertheless, from a broader perspective, all herbicides
can indirectly affect P. concolor population as they limit the growth of plants providing food or shelter.
In addition, post-emergence herbicides might potentially reduce the survival and reproduction of
P. concolor adults.
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Table 3. Toxicity of herbicides, currently registered in the European Union, tested on Psyttalia concolor adults.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Attacked Hosts (%) 4 Progeny (%) Reference

Fluroxypyr 4 Starane 180®, Dow Elanco 0.09% a.i.
R glass 2 (IOBC)

[64]
T parasitized pupa 1 (IOBC)

Metamitron 5 Goltix®, Bayer 1.75% a.i.
R glass 2 (IOBC)

[64]
T parasitized pupa 1 (IOBC)

Glyphosate 9 Touchdown®, Special 0.7 mL/100 mL
I adult 2 (IOBC)

Unpublished data
R olive leaves 1 (IOBC) 99.8 ± 0.3 53.4 ± 4.2

Ethofumesate 15 Tramat 500®, Schering 0.5% a.i. R glass 1 (IOBC) [64]
1 HRAC Mode of Action (MoA) Classification: 4: Auxin mimics (Pyridyloxy-carboxylates); 5: D1 Serine 264 binders (Triazinones); 9: Inhibition of enolpyruvyl shikimate phosphate
synthase; 15: Inhibition of very long-chain fatty acid synthesis (Benzofuranes) [105]. 2 Intake route: R: Residual contact; T: Topical, I: Ingestion. 3 Mortality is given as category of IOBC.
4 Pupae without fly emergence.
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2.4. Microbial Insecticides

Microorganisms (bacteria, fungi, viruses, and others) have good potential as biopesticides
because of their high selectivity and safety to non-target organisms [107,108]. Bacillus thuringiensis,
a microbial disruptor of midgut membranes (group 11A) [63], has a relatively broad spectrum of activity
against coleopterans (subspecies tenebrinonis and lentimorbus), dipterans (subspecies israelensis)
and lepidopterans (subspecies kurstaki and aizawai) [109]. Subspecies kurstaki was compatible
with P. concolor (Table 4) [64]. Eleven field isolates of subspecies israelensis collected in several
countries, which produced significant mortality to B. oleae, were safe for P. concolor adults in ingestion
tests (Table 4) [110]. Likewise, subspecies kurstaki was harmless for braconids B. nigricans and
A. colemani [72,85]. On the other hand, subspecies kurstaki did not affect the reproductive success
of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) while a significant effect was
observed on longevity and the time spent on host eggs patches [111].

Fungal agent Beauveria bassiana is another biopesticide used to control the olive fruit fly [112].
Beauveria bassiana did not cause any mortality on P. concolor (Table 4) [14]. However, their beneficial
capacity was negatively affected via residual contact or treated host (lower progeny size), or by ingestion
(fewer attacked hosts). Also, P. concolor emergence decreased by 50% compared to control when the
fungal treatment was applied to parasitized pupae (Table 4) [113]. Although some studies evidenced
that some predators and parasitoids are susceptible in laboratory conditions, impact is minimum in the
field [114]. On the other hand, Metarhizium anisopliae did not posed any adverse effect on the emergence
of P. concolor (Table 4) [115]. Entomopathogenic nematode species Heterorhabditis megidis Poinar,
Steinernema feltiae Filipjev and H. bacteriophora are not entirely safe for P. concolor. Although they did
not cause direct mortality to P. concolor, they decreased the progeny size when females parasitized
on treated larvae, compared to control, but significant reductions were only observed for S. feltiae
(Table 4) [14].

For a safer use of microorganism-based biopesticides that can be used concomitantly with
P. concolor, more studies about side effects are needed. Also, microorganisms present in the field
should be further studied as landscape structure, crucial for the establishment of arthropod community,
constitutes an additional reservoir of genetic diversity with potential for pest management [39,40].

2.5. Botanical Compounds

Plant extracts and oils might be also used as alternative to conventional insecticides.
Extracts of Trichilia havanensis Jacq. (Meliaceae) seeds, F12 limonoids (azadirone) and F18
(1.7 + 3.7-di-O-acetilhavanensin), and Teucrium viscidum (Lamiaceae) seeds, M1 (Teucjaponic B) and
M9 (Teucvin), did not cause mortality on P. concolor, neither reduced the beneficial capacity in topical
or ingestion laboratory conditions (Table 4) [13,116]. Similar results were obtained when the olive
fruit was treated with Peganum harmala L. (Zygophllaceae) seed extract. There was no difference in the
emergence of P. concolor between treated and untreated fruit, wasps actively searched for hosts and
parasitoid mortality was not registered (Table 4) [117]. Conversely, Melaleuca alternifolia (Myrtaceae)
essential oil was slightly to moderately harmful to P. concolor, although it was considered more toxic
for the Mediterranean fruit fly, C. capitata, than for the parasitoid (Table 4) [118]. Finally, the mixture of
essential oils of Cymbopogon citratus (DC.) Stapf (Poaceae), Cedrus atlantica (Endl.) Manetti ex Carriére
(Pinaceae) and Corymbia citriodora (Hook.) K.D. Hill and L.A.S. Johnson (Myrtaceae) was harmless to
P. concolor (Table 4) [119].

Despite the limitations of botanical compounds on pest control, some authors have reported a
certain degree of efficacy of these products on pests B. oleae and C. capitata [117–119]. Thus, there is a
need to extend the research and use of these promising compounds within IPM programs of target
pests. Overall, microbial and botanical pesticides are harmless to P. concolor and should be used
to increase the sustainability of agricultural systems as these products have environmental safety,
target-specificity, efficacy and biodegradability [120].
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Table 4. Toxicity of microbial insecticides and botanical compounds tested on Psyttalia concolor adults.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Emergence 6 Attacked
Hosts (%) 7 Progeny (%) Reference

Entomopathogenic bacteria

Bacillus thuringiensis var. kurstaki 11A

Bactospeine®, S.C.
Agrocrós 1.7 × 107 IU/L

R glass 1 (IOBC)
[64]

T parasitized pupa 1 (IOBC)

Delfin DG®, Sandoz 3.2 × 107 IU/L R glass 1 (IOBC) [64]

Bacillus thuringiensis var. israelensis 11A Field isolates 106 IU/L I water 1 (IOBC) [110]

Entomopathogenic fungus

Beauveria bassiana - Naturalis L®,
Agrichem

2.3 × 1012 conidia/hL

R glass 10.8 ± 2.0%
(0 DAT 5) 42.8 ± 2.0 81.2 ± 5.5

[14]
T drop in the prothorax 4 2.9 ± 0.9%

(0 DAT) 60.0 ± 2.8 71.7 ± 2.8

I water 3.6 ± 1.2%
(0 DAT) 31.9 ± 3.1 81.7 ± 3.0

Th larvae of Ceratitis capitata 69.4 ± 3.5 48.6 ± 3.4

2.3 × 1010 conidia/hL T parasitized pupa 2 (IOBC) [113]

Metarhizium anisopliae - Field isolate 4 × 1012 conidia/ha T parasitized pupa 54.2 ± 12.6% [115]

Entomopathogenic nematodes

Heterorhabditis bacteriophora - Larvanem®, Koppert
100 infective
juveniles/cm2 Th larvae of C. capitata 15% [14]

Heterorhabditis megidis - Heterorhabditis
system®, Biobest

100 infective
juveniles/cm2 Th larvae of C. capitata 20% [14]

Steinernema feltiae - Steinernema system®,
Biobest

100 infective
juveniles/cm2 Th larvae of C. capitata 9.5% [14]

Botanical compounds

F12 Limonoids (azadirone) - - 1000 mg a.i./L

I water
3.3 ± 3.3%
(0 DAT);
1 (IOBC)

89.1 ± 1.9 50.2 ± 4.5

[116]

T drop in the prothorax 4
3.3 ± 3.3%
(0 DAT);
1 (IOBC)

87.0 ± 3.6 51.7 ± 3.9

I water 10.0 ± 3.3%
(0 DAT) 74.2 ± 3.5 63.6 ± 3.4 [13]
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Table 4. Cont.

Active Ingredient (a.i.) MoA 1 Trademark Concentration Exposure 2 Substrate Mortality 3 Emergence 6 Attacked
Hosts (%) 7 Progeny (%) Reference

F18
(1.7 + 3.7-di-O-acetilhavanensin)

- - 1000 mg a.i./L

I water
3.3 ± 1.9%
(0 DAT);
1 (IOBC)

85.0 ± 2.6 48.2 ± 5.9

[116]

T drop in the prothorax 4
6.7 ± 2.7%
(0 DAT);
1 (IOBC)

85.5 ± 3.4 51.2 ± 4.4

I water 11.7 ± 3.2%
(0 DAT) 70.6 ± 5.5 57.5 ± 6.9 [13]

M1 (Teucjaponic B) - - 1000 mg a.i./L I water 11.7 ± 1.7%
(0 DAT) 64.9 ± 5.2 49.4 ± 4.4 [13]

M9 (Teucvin) - - 1000 mg a.i./L I water 6.7 ± 3.8%
(0 DAT) 66.9 ± 6.0 51.2 ± 3.8 [13]

Peganum harmala seed extract - - 2% (w/w) Th larvae of Bactrocera oleae 1 (IOBC) 1 (IOBC) [117]

Melaleuca alternifolia oil - -

0.1 to 2% (w/w) I water
0.639%
(LD50);
<35%

[118]0.1 to 3 µL/cm2 R filter paper
0.147%
(LC50);
>60%

0.15 to 18 µL/L air F filter paper
9.348%
(LC50);
>50%

Cymbopogon citratus, Cedrus
atlantica, Corymbia citriodora oils - - 4.8% (w/w) Sf orange tree

0.0 ± 0.0%
(0 DAT);
1 (IOBC)

[119]

1 IRAC Mode of Action (MoA) classification: 11A: Microbial disruptors of insect midgut membranes [63]. 2 Intake route: R: Residual contact; T: Topical; I: Ingestion; Th: Treated host;
F: Fumigation; Sf: Semifield. 3 Mortality is given as category of IOBC, percentage, or LD50/LC50 (lethal dose/lethal concentration that kills 50% of the treated insects). 4 0.5 microliters/insect.
5 DAT: days after treatment (residue age). 6 Emergence is given as category of IOBC or percentage. 7 Pupae without fly emergence.
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3. Conclusions

• Insecticides cause more negative effects on P. concolor survival and reproduction than fungicides,
herbicides or biopesticides. Neurotoxic organophosphates and pyrethroids are the most toxic
insecticides to P. concolor adults, however they are usually harmless when applied in host pupae
stage, the most protected life stage. IGRs and kaolin are alternative pesticides compatible
with P. concolor, however the variety of responses urges for more research on side effects of
this parasitoid.

• Despite that the impact of fungicides on P. concolor is milder, some are harmful at residual contact
tests, thus negative effects due to foliar application on the olive canopy should not be ignored.

• Most studies focus on mortality and reproduction, but other sublethal effects such as longevity,
learning performance, behavior, neurophysiology, physiological or immunology should also
be considered.

• Most studies only consider a single compound but not the synergies of several substances applied
at the same time. For example, there are no data on the joint use of fungicides and insecticides.

• Literature about laboratory studies supported with field data is very scarce, especially for
herbicides, biopesticides and botanical extracts. Field ecotoxicological studies would allow the
optimization of the management of parasitoids after pesticide applications, establishing the use of
harmless pesticides for P. concolor as a pre-requisite for the control of B. oleae.

• The number of independent publications related to scientific ecotoxicological studies, beyond those
required for the registration of plant protection products, have sharply decreased in the EU.
Consequently, there is a need for updated data on the toxicity of novel substances on important
natural enemies of relevant crops, such as P. concolor.
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