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Pellets are widely used for power generation because they use renewable raw material with easy 
storage, transport and high energy density. However, the structural fragility, disintegrating during 
handling, transport and storage, is one of the main problems of pellets, but the addition of binders/
additives can minimize this fragility. The objective of this study was to evaluate the properties of wood 
pellets with the addition of starch (corn and wheat) and kraft lignin in different proportions. Pellets 
were produced with the addition of starch (wheat and corn) and kraft lignin in the proportions of 1, 
2, 3, 4 and 5% in relation to the mass of wood particles of Pinus sp., with 12% moisture (dry basis), 
classified in 3 and 1 mm sieves and compacted in a pelleting press in the laboratory, according to 
European standard EN 14961-2. Physical and mechanical properties of the pellets were evaluated and 
their densitometric profiles obtained from the Faxitron LX-60 X-ray equipment. Corn starch and kraft 
lignin additives at 4% improved pellet properties (density, fines and hardness), reducing their losses 
during handling, storage and transport.

Fuel pellets are widely used in Europe as an alternative to firewood, due to their ease of storage and high energy 
density1–3. The fragility of the pellet structure facilitates its disintegration, generating fines (crushed or powdered 
material) during handling and transport, which is the main problem of this material4–6. Organic additives such 
as starch from corn, manioc, pea starch, potato, sweet potato, rice, wheat, or yam as well as kraft lignin, may 
reduce pellet cracking and disintegration7–9.

The starch applied with water vapor should be added for the melting and gelatinization of the particles 
during pellet production7. The biomass heating, with a moisture content of 8–12% in the dry basis, alters the 
pellet particles, denaturing the proteins and increasing their hardness and quality10–12. In addition to its binding 
action, starch lubricates the pelletizing matrix and facilitates the flow of the densified raw material during pellet 
production6.

Kraft lignin, a residue from the wood pulping process, may increase the pellet’s mechanical strength and 
energy properties13–15. This material has potential because it is a waste product from the pulp production and can 
be obtained at affordable prices. Due to its chemical structure, lignin has found a number of applications. It can 
be used in cement composite fabrication16; as a filler for polymers17,18; in bio-based composite thin sheet films19; 
it was evaluated as an active material in II generation glucose biosensor20 and as component of adhesives21,22.

The quality of the raw material affects that of the pellets23, and the bonds between its particles must be smooth 
to reduce fissures, cracking or disintegration during handling, transport and storage6. The pellet surface should 
appear, to the naked eye, to be solid and with well-bonded particles without micro-cracks24. A weak cohesion 
between its particles reduces the mechanical strength and increases pellet cracking2. X-ray micro tomography 
and X-ray densitometry can analyze the internal structure of the material, enabling a more detailed analysis of 
different agroforestry products such as pellets and briquettes25.

The wood product quality can be evaluated using non-destructive methods such as the digital X-ray images 
used in fields such as dentistry, orthopedics, zoology and zootechnology26. X-ray densitometry has been used to 
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characterize and evaluate the deterioration of the eucalyptus wood due to white rot fungi, and to detect the limits 
of the heartwood-sapwood, the effect of forest management on the wood properties, the annual production of 
biomass and the relation with its anatomical structure27–29. However, this technique is under-used for evaluating 
the internal density of solid biofuels such as briquettes and pellets25,30,31.

The objective of this study was to use the gravimetric method and X-ray densitometry to determine the 
apparent density and density profiles of Pinus sp. pellets with the addition of starch (corn and wheat) and kraft 
lignin in different proportions, as well as to measure their fines and hardness.

We intend, therefore, to answer the following questions:
How do additions of starch and kraft lignin to pellets affect apparent density?
How do effects of starch and kraft lignin supply on pellets properties like fines content and hardness?
How do the density apparent vary along the pellets longitudinal axis?

Results and discussion
The fines content of the pellets, agglutinated with wheat starch and kraft lignin (both at 4%), was 125 higher and 
75% lower than in the control, respectively (Table 1). The fines generation of the pellets in all treatments was 
lower than 1% (0.03 to 0.27%) and, therefore, they met the marketing standard EN 14961-232.

The lower values of the fines content of the pellets produced with kraft lignin are possibly due to the densifi-
cation process of the pellet matrix with higher contents of this additive, generating pellets with better bonding 
characteristics between the particles and, consequently, less fines. In addition, lignin has a cementing action 
between the cells9 during the pressing process, and high temperature causes this compound to reach the glass 
transition stage, ensuring a strong bond between the particles8,33. Pellets with lower fines production during 
handling and transport should be preferred commercially34. The fines content increases with the moisture level 
of the material, causing cracks to exhaust gases, mainly water vapor, and, consequently, reducing their mechanical 
resistance during handling35. On the other hand, the low moisture content makes biomass compaction difficult, 
due to the water’s characteristic of helping the heat transfer and promoting lignin plasticization as a natural 
biomass binder36. The moisture content between 8 and 12% in the dry basis is ideal for reducing fines generation 
to within the European standard EN 14961-232.

Table 1.   Fine content (%), hardness (%), bulk density (g m−3), apparent density (g m−3) by gravimetric method 
and apparent density (g m−3) by X-ray densitometry of Pinus wood pellets produced with different percentages 
of the additives (A) corn and wheat and kraft lignin and in the control. Means followed by the same uppercase 
letter, per column, or lower case, per line, do not differ by Tukey test (p > 0.05). *Differences between 
treatments and the control by the Dunnett test (α = 0.05).

Parameter A% Lignin Corn Wheat Control

Fine content (%)

1 0.11 ± 0.08aA 0.16 ± 0.13aA 0.11 ± 0.04aA

0.12 ± 0.04

2 0.10 ± 0.04aA 0.14 ± 0.02aA 0.12 ± 0.14aA

3 0.05 ± 0.03aA 0.13 ± 0.04aA 0.17 ± 0.10aA

4 0.03 ± 0.02bA 0.22 ± 0.11aA 0.27 ± 0.03aA

5 0.12 ± 0.06aA 0.05 ± 0.03aA 0.15 ± 0.03aA

Hardness (%)

1 32.75 ± 4.72aA* 39.80 ± 4.37bA* 31.15 ± 3.44aA*

49.10 ± 9.75

2 42.90 ± 6.79bB* 41.20 ± 3.02bA* 32.75 ± 7.82aA*

3 42.75 ± 4.90bB* 44.60 ± 4.95bA 28.50 ± 5.35aA*

4 45.45 ± 8.37bB 41.80 ± 6.20bA* 31.75 ± 4.18aA*

5 60.00 ± 8.49cC* 44.75 ± 6.09aA 39.95 ± 4.25bB*

Bulk density (g.m-3)

1 0.64 ± 0.03bC* 0.66 ± 0.04aA 0.62 ± 0.01cA*

0.67 ± 0. 01

2 0.64 ± 0.03aC* 0.64 ± 0.03aB* 0.60 ± 0.03bB*

3 0.69 ± 0.01aA* 0.61 ± 0.03bC* 0.61 ± 0.07bAB*

4 0.64 ± 0.05aC* 0.64 ± 0.03aB* 0.61 ± 0.09bAB*

5 0.67 ± 0.03aB 0.63 ± 0.01bB* 0.62 ± 0.04cA*

Apparent density by grav. (g m−3)

1 1.20 ± 0.05aA* 1.21 ± 0.04aA* 1.17 ± 0.06aA

1.11 ± 0.11

2 1.16 ± 0.07aA 1.22 ± 0.05aA* 1.16 ± 0.07aA

3 1.23 ± 0.03aA* 1.16 ± 0.07aA 1.15 ± 0.06bB

4 1.21 ± 0.01aA* 1.16 ± 0.06aA 1.18 ± 0.05aA

5 1.22 ± 0.05aA* 1.18 ± 0.06aA 1.17 ± 0.04aA

Apparent density by X-ray dens. (g m−3)

1 1.26 ± 0.03bAB 1.31 ± 0.03bB 1.00 ± 0.05aA*

1.26 ± 0.04

2 1.25 ± 0.05abAB 1.27 ± 0.03bB 1.22 ± 0.06aC

3 1.27 ± 0.04bAB 1.16 ± 0.03aA* 1.16 ± 0.03aB *

4 1.23 ± 0.03aA 1.29 ± 0.05bB 1.19 ± 0.06aBC*

5 1.28 ± 0.04bB 1.28 ± 0.04bB 1.18 ± 0.06aBC*
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The hardness of the pellets was similar with the different percentages of corn starch, but it was higher with 
wheat starch (Table 1). The hardness increased by 22% when the percentage of kraft lignin reached 5%, in rela-
tion to the control. The hardness of the pellets with 3 and 5% of corn starch and 4% of kraft lignin was similar 
to the control.

The similar hardness of the pellets with the different percentages of wheat starch confirms studies that bind-
ers can reduce the mechanical properties of pellets at a higher moisture content, because water takes the place 
of hydrogen bonds, affecting cohesion between the particles37. Higher hardness affects pellet length, because 
the higher the hardness, the greater the breaking strength after contact with the pelletizing press knife15. In 
addition, pellets with lower hardness have points for water ingress, increasing the moisture content and conse-
quently the breaking point and causing higher fine generation38. The higher hardness of pellets produced with 
5% kraft lignin is possibly due to the decrease of their hygroscopic equilibrium moisture, due to the hydrophobic 
character of this compound. The kraft lignin residue is a compound of C–C and C–O–C phenylpropane units 
with low water relationship39. In addition, the constant pressing temperature of 120 °C plasticizes kraft lignin 
as an adhesive, increasing particle contact and reducing expansion due to lower hygroscopicity, consequently 
increasing hardness40. Kraft lignin, as an additive, facilitates the use of this residue and confers better properties 
to pellets by increasing their mechanical strength13–15.

The bulk density of pellets with 1% corn or wheat starches and 3% kraft lignin was higher than other mixtures 
(Table 1). The bulk density of kraft lignin pellets was higher than those with corn or wheat starch. The bulk den-
sity of pellets with 1% corn starch and 5% kraft lignin was lower than those with 3% lignin, which were denser 
than those with only wood (control).

The higher bulk density values for 3% kraft lignin pellets may be associated with a higher amount of lignin in 
the mixture (wood + additive), which plasticizes more efficiently, generating a smooth and uniform texture in the 
pellets and improving their density. The pelletizing matrix temperature influences the durability and bulk density 
of pellets36, as lignin is a natural wood binder and requires temperatures above the glass transition (75–100 °C) 
to produce bonding between the particles. Temperatures above 90 °C improve pellet characteristics, and require 
lower compaction pressure at increasing compaction matrix temperatures4,41. The lower density values of wheat 
starch pellets may be due to the high moisture content of the steam generated during the high temperatures in 
the compaction process (120 °C), causing micro-cracks in the pellet structure and reducing its density35. Starch 
acts as a lubricating agent in the pelletizing process, facilitating the flow of raw material through the pelletizing 
matrix36. The bulk density of the pellets was greater than the minimum required by the European Marketing 
Standard EN 14961-232, equal to or greater than 0.60 g cm−3 in all treatments. This highlights the potential use 
of additives in pelletizing, which should be at most 2% relative to the dry mass of primary raw material.

The apparent density of pellets varied in a fashion similar to that of bulk density (Table 1), with no effect 
from the type and amount of additive added to the particles mass, comparing the three different additives and 
considering the same proportion used, except for pellets produced with 3% wheat starch, with lower apparent 
density. The apparent density of pellets produced with 1 and 2% corn starch and 1, 3, 4 and 5% kraft lignin was 
higher, and the other treatments were similar to the control (Table 1). Lignin and corn starch promoted better 
connection between particles, favoring biomass compaction and increasing pellet density.

The variation in the apparent density of the pellets, similar to that of bulk density between 1.15 g m−3 (3% 
wheat) and 1.23 g m−3 (3% lignin), is possibly due to the wheat starch gelatinization process starting at lower 
temperatures (± 70 °C) than that of corn starch (± 85 °C)42. This leads to the starch adhering to the pellet feeder 
system wall, reducing the proportion of additive that reaches the pelletizing matrix and consequently diminishing 
the unit density of the pellet. The higher apparent density of pellets produced with 1 and 2% corn starch and 1, 3, 
4 and 5% kraft lignin is due to the lower rate of return of the pelletizing process and the higher molecular weight 
of the additives, influencing the pellet density7,36. Bulk density and apparent density determine pellet storage 
and transport conditions, and are directly related to energy density in those with 1 and 2% corn starch and 1, 3, 
4 and 5% lignin, with higher density and a higher amount of energy per volume unit43.

The apparent density of the pellets produced with additives and evaluated by X-ray densitometry ranged from 
1.00 to 1.31 g m−3 in their longitudinal axis (Table 1), with the lowest value for pellets produced with 1% wheat 
starch, and the highest value with 1% corn starch.

The lower apparent density values of wheat starch pellets can be associated with the presence of cracks 
(empty spaces), directly related to the susceptibility to rupture2. Low density peaks indicate small cracks that are 
attributed to a moisture content of the mixture or particle sizes inadequate for pelletizing4, affecting the physical 
properties of biomass densification44. The average apparent density of pellets is within the range established by 
the German standard DIN 51731, from 1.00 to 1.40 g m−345.

Pellet density varied in longitudinal density profiles, with one uniform and one irregular pattern (Fig. 1). 
The apparent density variation of pellets produced without additives along the longitudinal axis (coefficient of 
variation of 5.29%) was higher. On the other hand, the apparent density variation of the profile (coefficient of 
variation of 4.19%) with additives was lower, showing greater cohesion between the particles and the additives. 
X-ray densitometry showed pellet density variations for all additives and in the control.

Uniform or irregular density patterns according to longitudinal pellet density profiles are due to variations in 
pellet internal density, which can be attributed to factors such as additive molecular weight, particle size, and tem-
perature and pressure during pelletization46–48. Cracks are common in compacted material during pelletizing4,6, 
and can be attributed to inadequate pellet moisture content or particle sizes. The density of biomass varies with 
the moisture content44 and with the temperature strengthening the adhesion between the particles. Density pro-
files can explain the performance of pellets, whose cracks and high density variability affect their durability and 
final quality, since reductions in density are associated with cracks and, consequently, pellet breakage or rupture 
points, which can generate fines5. The apparent density of the pellets by gravimetric and X-ray densitometry, 
similar between treatments with additives, confirm that this technique, commonly used to evaluate the apparent 
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density of materials and easier to apply than other methodologies, can be used to evaluate the quality of the 
pellets. Variations in the apparent density and longitudinal density profile obtained with the gravimetric and 

Figure 1.   Longitudinal variation of pellet density with different proportions of the additives kraft lignin and 
corn and wheat starch.
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X-ray densitometry demonstrate that factors such as moisture, binder type, pressure and particle size interfere 
with the pelletizing process, causing variations in the material’s internal structure46,47. In addition, this technique 
accesses different parts of the pellet and therefore identifies point variations in the product density as reported 
for the 2% wheat starch pellet.

In conclusion, the additives reduced the fines content and increased the hardness and density of the pellets. 
Therefore, they have the potential to produce pellets with greater resistance to the transport, storage and handling 
processes. Apparent density along the longitudinal axis of the pellets without starch was higher. The apparent 
density of pellets containing starch increased the cohesion between the particles and reduced the density varia-
tion as shown by their densitometric profiles.

Methods
Pellet production.  The experiment was installed in the municipality of Viçosa, Minas Gerais state, Brazil 
(20°45′14″S and 42°52′54″W).

Sawdust residues from headrig log breakdown of Pinus sp. were air-dried to a moisture content of approxi-
mately 20% (dry basis). The particles of these residues were classified using overlapping sieves, with the fraction 
that went through the 3.0 mm sieve and was then retained in the 1.0 mm sieve being used in the experiment 
(Fig. 2B).

The pellets were produced in a laboratory pelletizing machine press manufactured by Amandus Kahl, model 
14–175 (Germany), with a production capacity of 30 kg h−1 (Fig. 2A). The average pelletizing temperature was 
100 ± 5 °C. The pelletizing matrix was pre-heated in oil at 200 °C for approximately 30 min.

The pelletizing machine had a system with a motor reducer, a speed controller and a continuous screw. Four 
nozzles installed along the continuous screw injected water vapor produced by autoclaving at a pressure of 0.8 
kgf/cm2.

Pellets were produced with the addition of corn and wheat starch and kraft lignin in the proportions of 1, 2, 
3, 4 and 5% each in relation to the Pinus sp. dry mass (Fig. 2C).

Pellet properties.  The fines content (particles smaller than 3.15 mm) was determined using the Holmen 
Ligno-Tester (United Kingdom), in accordance with EN 15210-134.

The hardness of the pellets was determined in a diametric compression test in a manual hardness tester with 
a scale of 0–100 kgf, manufactured by Amandus Kahl (Germany). One pellet at a time was inserted into the 
hardness tester, receiving an increasing load until the sample was fractured. The maximum load was defined as 
what a pellet could withstand before breaking.

The pellet bulk density was obtained according to EN 1510349, with the samples conditioned at 65% relative 
humidity and 20 °C temperature.

The apparent relative density was obtained by immersing the pellet in mercury50.

X‑ray densitometry.  The apparent density profile of the pellets was obtained in a Faxitron model LX-60 
(United States of America) cabinet X-ray system (Fig. 3A). The pellets (Fig. 3C) and a cellulose acetate calibra-
tion wedge (Fig. 3D) were inserted into the shielded X-ray compartment (Fig. 3B), followed by calibration and 
an automatic reading (30 kV, 19 s), generating high-contrast and high-resolution digital images in the monitor 
screen. These images were saved in TIF format and analyzed using ImageJ software by transforming the gray 
scale of the wedge into apparent density values every 50 μm of distance along the longitudinal direction of the 
sample.

Ten pellets with 19 mm of length per treatment were analyzed and conditioned in an acclimatized chamber 
at 20 °C and 65% relative humidity, with 12–15% equilibrium moisture content, for 24 h.

Statistical analysis.  The apparent density, bulk density, fines content and hardness data were analyzed in a 
completely randomized design in a factorial arrangement with three additives (corn starch, wheat starch or kraft 
lignin) in five percentages (1, 2, 3, 4 and 5%), besides the control (pellets of pure Pinus sp. without additives). The 

Figure 2.   Pellets production. (A) Pelletizing machine press by Amandus Kahl, model 14–175. (B) Particles of 
Pinus sp. (C) Pellets produced.
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averages were grouped using the Tukey test (p ≤ 0.05). The results considered the values of the control and were 
submitted to the Dunnett test (p ≤ 0.05).

Received: 12 August 2019; Accepted: 29 November 2019
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