
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ERROR PROPAGATION DUE TO APPROXIMATIONS

IN SOFTWARE PIPELINES

Diploma Thesis

Dimitrios Samakovlis

Supervisor: Christos Antonopoulos

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ERROR PROPAGATION DUE TO APPROXIMATIONS

IN SOFTWARE PIPELINES

Diploma Thesis

Dimitrios Samakovlis

Supervisor: Christos Antonopoulos

Volos 2021

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ ΛΟΓΩ ΠΡΟΣΕΓΓΙΣΤΙΚΟΥ

ΥΠΟΛΟΓΙΣΜΟΥ ΣΕ PIPELINES ΛΟΓΙΣΜΙΚΟΥ

Διπλωματική Εργασία

Δημήτριος Σαμακοβλής

Επιβλέπων: Χρήστος Αντωνόπουλος

Βόλος 2021

v

Approved by the Examination Committee:

Supervisor Christos Antonopoulos

Associate Professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Member Spyros Lalis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member Panagiota Tsompanopoulou

Associate Professor, Department of Electrical and Computer En­

gineering, University of Thessaly

Date of approval: 8­7­2021

vii

Acknowledgements

I would like to thank my supervisor, Associate Professor Christos Antonopoulos, for the

support and guidance he provided me throughout the whole process of the Thesis develop­

ment, as well as for his contribution to the selection of the subject. Your expertise was invalu­

able in formulating the researchmethodology, while your systematic approach and immediate

response to any arising issue saved me unproductive time and simultaneously inspired me to

become more professional.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re­

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Dimitrios Samakovlis

12­7­2021

x

Abstract

My diploma thesis explores the area of Approximate Computing (AC) and, in particular,

attempts to model the propagation of errors that arise from approximation techniques, mainly

precision scaling. We use two methods to model the approximation effect, namely Error In­

jection (EI) and Lossy Compression (LC). Both techniques target the distortion of the input

data of the operation under test. EI consists of introducing error to data, using the normal

or the uniform distribution, and LC includes compression and decompression of data using

two popular compressors in High­Performance Computing (HPC) datasets, SZ (Sneeze) and

ZFP. We conducted experiments on multiple applications like stereo vision matching (SPS­

Stereo), Matrix Multiplication (MM), Singular Value Decomposition (SVD), and Conjugate

Gradient (CG). The analysis of the error patterns highlights the complexity of simulating the

precision scaling approximations, albeit the success of the models in achieving the desired

metrics of quality. Nevertheless, we gain insight into the quality distortion and applicability

of SZ and ZFP through the experiments.

xi

Table of contents

Acknowledgements ix

Abstract xi

Table of contents xiii

Abbreviations xvii

1 Introduction 1

1.1 Scope of Thesis . 2

1.1.1 Contribution . 5

1.2 Structure of paper . 5

2 Background 7

2.1 Error Injection . 7

2.2 Lossy Compressors . 8

2.2.1 SZ . 10

2.2.2 ZFP . 10

2.3 Metrics . 10

2.3.1 Frobenius Norm . 11

2.3.2 PSNR . 11

2.3.3 Compression Ratio . 11

3 Stereo Vision Matching ­ SPS 13

3.1 Introduction . 13

3.2 Methodology . 14

3.2.1 Parameter Configuration . 15

xiii

xiv Table of contents

3.3 Evaluation . 15

3.4 Challenges . 18

3.5 Conclusion . 20

4 Matrix Multiplication 21

4.1 Introduction . 21

4.2 Methodology . 21

4.2.1 Parameter Configuration . 22

4.3 Evaluation . 22

4.3.1 Float approximation . 22

4.3.2 Lossy Compressors . 26

4.3.3 Integer approximation . 31

4.4 Conclusion . 33

5 Singular Value Decomposition 35

5.1 Introduction . 35

5.2 Methodology . 36

5.2.1 Parameter Configuration . 38

5.3 Results . 38

5.3.1 Error patterns in decomposed matrices 38

5.3.2 Reconstructed Images . 41

5.3.3 Effect of Lossy Compressors on Images 46

5.4 Conclusion . 47

6 Conjugate Gradient 49

6.1 Introduction . 49

6.2 Methodology . 49

6.2.1 Parameter Configuration . 51

6.3 Results . 51

6.3.1 Counter­example . 54

6.4 Challenges . 56

6.5 Conclusion . 56

Table of contents xv

7 Conclusion 57

7.1 Summary . 57

7.2 Keypoints . 57

7.3 Discussion . 58

Bibliography 61

Abbreviations

HPC High Performance Computing

AC Approximate Computing

EI Error Injection

LC Lossy Compression

CG Conjugate Gradient

MM Matrix Multiplication

SVD Singular Value Decomposition

PSNR Peak Signal­to­Noise Ratio

CR Compression Ratio

SGM Semi­Global Matching

SPS Slanted Plane Smoothing

xvii

Chapter 1

Introduction

As large­scale software has been developed for various domains, such as scientific com­

puting and socialmedia, it is evident that computational and storage requirements of computer

systems are continuously growing, resulting in excessive power consumption [1]. Moreover,

it is expected that the information managed by those applications will increase at a much

higher rate than the computational resources will [2].

Those facts suggest that over­provisioning of computing resources is about to pose a

great challenge for the computer industry, rendering the call for energy­efficient computing

stronger than ever [3]. Taking the above into consideration, and as traditional energy gains

derived from the Moore’s law are slowly diminishing [4] , computer engineers are obliged

to seek for alternative and creative solutions.

Approximate Computing(AC), based on the observation that not every part of the com­

putations requires high precision to achieve the desired target, offers a viable solution [5].

Many computationally expensive algorithms, usually derived from the area of data analyt­

ics, scientific computing, machine learning or computer vision, have been proven to produce

satisfactory results with approximate implementations that can achieve energy gains of up to

50 times by only sacrificing 5% quality loss [6], [7].

In the last two decades, numerous approaches have been proposed in the context of AC.

In general, approximation can be introduced at multiple levels, like algorithmic­, coding­,

architectural­ or microarchitectural­ level, depending on the nature of the application. To that

extent, a lot of research has been conducted to explore the potential of building approximate

frameworks in error resilient applications, in order to trade off accuracy for energy or perfor­

mance , while still maintaining acceptable quality of results [5].

1

2 Chapter 1. Introduction

Despite the great amount of work in the AC area, rigorous methods have not been es­

tablished to quantify the effect of specific approximations , but rather the approaches lie on

trial and error and on expert knowledge on the specific domain. Indeed, approximation is

inherently application­specific and it is tricky to generalize the effect of a specific technique

to a broader range of application domains. However, analyzing the error induced by an ap­

proximation and the way it is propagated in the computational pipeline is of high importance

when evaluating the applicability of an approximation.

That said, we believe that more research should be conducted in the direction of under­

standing the propagation of error due to approximations. On top of that, we believe that a

methodology capable of modeling the effect of approximation techniques, would be highly

appreciated by theAC community, as it would guide future software developers in the decision­

making process of selecting a suitable approximation method, by means of providing fast

insights on the effects of the quality of the final result. In this sense, we investigate methods

capable of modeling software approximations.

1.1 Scope of Thesis

The purpose of this work is to explore methods that can reliably model the effect of

approximations at the software level. Our method of work is summarized conceptually in Fig.

1.1. On the top row, it depicts the fully accurate pipeline, which is essentially the original

implementation of the algorithm using accurate computations. In the middle, there is the

approximate version, which uses some approximation technique at coding­ or algorithmic­

level. Finally, at the bottom row lies our modeling framework, which is based on the accurate

execution of the distorted data that have been provided as input to the approximate pipeline.

Both the approximate version and our modeling approach induce error relative to the

fully accurate calculated results. Our work essentially analyzes approximate and modeling

error patterns, in a bid to pinpoint which parts of the final result have been affected and to

what extent. Moreover, metrics of the quality of the final result for the two approaches are

directly compared. Evaluating both the error patterns and metrics of quality, we can infer the

efficiency of our modeling approaches, in particular how accurately the effect of the approx­

imation has been replicated or what insight about the distortion of quality has been gained.

Our modeling approach focuses on two main mechanisms, namely Error Injection (EI)

1.1 Scope of Thesis 3

Figure 1.1: Conceptual schema of our work

and Lossy Compression (LC), applied to a variety of applications and domains. Both methods

are based on the idea of distorting the data that are affected by the approximation technique.

We expect the propagation of error from the distorted data to simulate the error derived from

the approximation.

The EI method consists of adding error specified by two well­known statistical distribu­

tions, normal and uniform distribution, both centered at 0 but configurable regarding their

standard deviation and range respectively. It should be noted that the results derived from

EI are not reproducible and exhibit slight variability due to the randomness of the process.

However, the effect of a specific configuration tends to follow a certain pattern which renders

the EI a firm modeling method.

On the other hand, the LC mechanism lies on the idea that after compressing and de­

compressing a data structure using a lossy compressor, part of the information cannot be

retrieved, resulting in data distortion. Consequently, LC can be used in a similar way to the

EI, but rather than relying on statistical distributions, it is based on spatial continuity to re­

move redundancy and induce error­bounded distortion. The lossy compressors used are SZ

and ZFP (see Chapter 2). Both of them, require an error metric to be specified to bound the

error amongst the original value and the decompressed value of an element.

The experiments consist of applying the aforementioned methods, with different config­

uration parameters, on the data structure that is given as input to the approximate pipeline.

4 Chapter 1. Introduction

Practically, our work attempts to find out if there is a configuration of the parameters of EI

and LC which can simulate the approximation and how to specify the correct parameters for

a variety of input data.

We experiment with our models in various domains. The applications examined are:

• SPS­Stereo, a Stereo Vision Matching algorithm

• Matrix Multiplication of sparse matrices

• Singular Value Decomposition of sparse matrices and images

• Conjugate Gradient for solving linear systems with sparse matrices

The main approximation technique explored is precision scaling, which consists of us­

ing fewer bytes for the representation of real numbers and limits computational and storage

demands. It has been extensively used in the literature [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17]. It is one of the most straightforward approximations, that can be

employed both at the software and hardware level. We focus on applications that use dou­

ble floating­point precision and experiment with single precision, half­precision, and in some

cases, we even use integers in place of real numbers. All applications listed above, apart from

the SPS­Stereo, are eligible to experiment with precision scaling.

In all cases, results are visualized using heat maps representing the absolute or relative

difference in values amongst the fully accurate result and the result of each approximate

method or modeling mechanism. Moreover, domain­specific metrics, such as the Frobenius

norm and condition number for matrices or PSNR for images, are employed to assess the

quality degradation of the final result and directly compare the modeling approaches with the

approximate version.

Since performance is not of interest, we conduct all experiments on a desktop with CPU

Intel i5 10500 (6 cores ­ 12 threads), GPU Nvidia GeForce GTX 1660 Super, and 16 GB of

dual RAM. We develop software using C++, while we use python to produce the heat maps

and the graphs. For the error injection framework, we utilize a fast parallel library which

employs OpenMP [18], while for the lossy compressors we use the official Github CPU

implementations. Extra libraries used are stated explicitly in each chapter.

1.2 Structure of paper 5

1.1.1 Contribution

The contribution of this Thesis is two­fold. First, it offers an approach to model the effect

of existing approximation techniques, which is a new approach in the context of Approximate

Computing. Second, the analysis of the experiments provides valuable insight on the lossy

compressors SZ, ZFP which are widely used in the High Performance Computing area to

substantially reduce the footprint of the data and consequently improve the performance of

applications.

1.2 Structure of paper

The rest of the Thesis is organized as follows. Chapter 2 provides an overview of the

background needed to understand the methods employed. In particular, how to apply the

frameworks, and the relevant metrics we use to evaluate the quality of results. Each subse­

quent section discusses a different application case study. Chapter 3 analyzes the SPS­Stereo

matching algorithm and Chapter 4 refers to Matrix Multiplication. Chapters 5 and 6 examine

the Singular Value Decomposition and Conjugate Gradient respectively. Finally, chapter 7

summarizes the Thesis and highlights the main observations.

Chapter 2

Background

2.1 Error Injection

Error Injection (EI) is the process of deliberately introducing error to computations or

data. One potential application of EI is to study the sensitivity of a function or algorithm to

the distortion of the input. In our case, we want to test whether the added error, which is

derived from a statistical distribution, can simulate the effect that an existing approximation

technique has in the final results. In practice, we inject error to the input data of the operation

we test as illustrated in Fig. 2.1.

Figure 2.1: Error Injection framework

In our experiments we use normal and uniform distributions for the error. Normal distribu­

tion is used widely in practice to simulate noise, namely Gaussian noise. Normal distributions

used here are defined as:

N(0, σ2)

which means they have a mean of 0 and a standard deviation of σ. Similarly, the uniform

distribution is used as:

U(−a, a)

7

8 Chapter 2. Background

meaning that they are centered around 0 and are limited to a range of b = 2a. Each value

inside that space has an equal probability. For abbreviation, the normal distribution for the

rest of the work will be defined by its standard deviation σ and the uniform by its range b.

Both distributions are illustrated in Figure 2.1 for σ = 1 and b = 1.

It should be noted that for our experiments, we utilized a fast C++ library to produce

pseudo­random numbers following the aforementioned distributions. The omprng library

[18] employs a parallel OpenMP implementation which is crucial for performance efficiency

when running multiple experiments.

Figure 2.2: Power density function of N(0, 1) and U(−0.5, 0.5)

2.2 Lossy Compressors

Lossy compressors have been widely used in the last decade to reduce the footprint of

HPC datasets and thus speed up the intensive transfer of big data [19]. In contrast to a lossless

compressor, a lossy compressor induces data distortion in the reconstructed or so­called un­

compressed data, as shown in Fig. 2.3. The distortion of the original data is usually bounded

in terms of error magnitude. On the other hand, lossy compressors can achieve much higher

compression ratios than the state­of­the­art lossless compressors, a fact that makes them ideal

in frameworks where the data transfer is the bottleneck of performance.

In this work, we examine whether the data distortion a lossy compressor induces after the

decompression, can act similarly to the EI concept and form a firm model of the approxima­

tion error. We focus on two popular and successful lossy compressors, SZ and ZFP. Both have

been proved to provide high compression ratios in spatially correlated data across multiple

domains while preserving a user­specified metric of quality [19].

2.2 Lossy Compressors 9

Figure 2.3: Difference between lossy and lossless compression

Fig. 2.4 illustrates the LC framework we employ in our work. First, we write the data of

the program in a binary file. Then SZ or ZFP is employed via its terminal mode to compress

and directly decompress the binary file into a new binary file. Finally, we read back the

distorted data from the new binary file.

Figure 2.4: Lossy Compression framework

A variety of quality metrics are provided to the user by both compressors. Commonly

used are the point­wise relative error, relative error, absolute error, and PSNR. In this work,

we mainly focus on the simplest, which is the absolute error. However, in few cases where a

different metric is employed, it will be explicitly clarified.

In the analysis belowwe briefly summarize the main concept and features of the two lossy

compressors. It should be noted that the scope of this work does not focus on the performance

aspect but rather on the distortion of the data when applying compression and decompression.

Practically, we do not explore the applicability of the compressors in the context of AC, but

rather target the interpretation of the approximation error.

10 Chapter 2. Background

2.2.1 SZ

The fundamental concept of Squeeze (SZ) compression is that it exploits locality by em­

ploying prediction curves on subsequent data. The initial release is thoroughly analyzed in

[20]. Initially, SZ transforms multidimensional data into a 1D sequence. Then, predictable

data points are replaced by two bits, defining one of three curve­fitting models, which pass

through the preceding data points. On the contrary, unpredictable data points are normalized

to be closer to zero, their mantissa bits are truncated and leading­zero based floating­point

compression is applied on them. In both cases, the user­specified error bound is strictly re­

spected.

Subsequent releases of SZ came with many improvements. The prediction model has

been extended to work on multidimensional data using a multilayer approach, significantly

increasing the percentage of predictable data points, while new strategies like quantization

and Huffman coding have been implemented in [21]. Partitioning of data into blocks, new

prediction models for larger error bounds, and optimization techniques in model selection

have been introduced in [22]. The current version, which we use in our experiments, is 2.1

and is available on Github [23].

2.2.2 ZFP

ZFP follows a different principle than the prediction­based SZ, namely the transform­

based approach. The procedure is summarized in [24]. First, the data are partitioned into

4d ­ sized blocks, where d is the dimension of the data, and are converted to fixed precision

using a common exponent, that of the largest value. As a result, all values are in the range of

(­1,1). Then a reversible orthogonal transform is applied, changing the basis of representation

and producing coefficients with small magnitude. Finally, embedded coding is applied to the

coefficients, producing a stream of bits with decreasing significance, thus allowing truncation

with respect to the desired error bound. The code we used is available on Github [25].

2.3 Metrics

Apart from the heat maps of the error provided in almost all applications, there are some

metrics that are widely used to assess the data distortion. Obviously the nature of each appli­

cation suggests a different metric to evaluate data distortion. However, we focus on the most

2.3 Metrics 11

frequently used metrics for each case, which are the Frobenius norm for matrices and the

PSNR for images. Moreover, regarding the LC application the compression ratio establishes

an expressive metric for the redundancy of the data.

2.3.1 Frobenius Norm

The Frobenius norm is an element­wise norm widely used to assess the size of the ele­

ments of a matrix. Let A be anmxn matrix, then the Frobenius norm is defined as:

||A||frob =

√√√√ m∑
i=1

n∑
j=1

A2
ij

In our case, we use it to quantify the size of error between the original matrix A and its’ ap­

proximate versionA′, by calculating ||A−A′||frob. In the same manner, we use it to calculate

the error between the accurate result matrix and our models’ result matrices.

2.3.2 PSNR

Peak signal­to­noise ratio (PSNR) is a popular metric for evaluating the quality of signals,

like images and videos. It expresses the ratio between themaximumpossible power of a signal

and the power of noise. This ratio can be used as a quality measurement between the original

and a distorted image. The higher the PSNR, the better the quality of the compressed, or

reconstructed image. In our case, we use it on grayscale images where the bit depth is 8 bits.

PSNR is usually calculated as a logarithmic quantity using the dB scale. Let I be the

originalm× n image andK be the distorted one. Then:

PSNR = 20× log10(255)− 10× log10(MSE),

where

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2

MSE is the mean squared error and 255 is the maximum possible pixel value. Typically,

PSNR values between 30 and 50 are acceptable for compression of such images [26].

2.3.3 Compression Ratio

The compression ratio (CR) of a lossy compressor is equal to the ratio of the size of

uncompressed data to the size of compressed data. Taking bytes as the measure unit it is

12 Chapter 2. Background

defined as:

CR =
bytes of uncompressed data

bytes of compressed data

Evidently, a high CR indicates strong spatial coherency in data and is a verification that the

compressor is efficient. However, one must take into account that the looser the error bounds

specified to a lossy compressor, the higher the CR can be. Finally, it is a metric that can be

directly used to compare the efficiency of different compressors.

Chapter 3

Stereo Vision Matching ­ SPS

3.1 Introduction

Stereo vision matching is a very popular and important application in the computer vi­

sion domain. It is used for extracting distance information from a pair of stereo cameras and

is utilized in autonomous systems and image reconstruction. SPS ­ Stereo (SPS) [27] is a

popular approach to calculate the disparity image, flow estimation and perform occlusion

labeling and joint segmentation. It combines the Semi­Global Matching (SGM) [28] and

slanted plane algorithm which assumes that the 3D scene is piece­wise planar and the motion

is rigid or piece­wise rigid.

In our work, we focus only on the disparity image, which essentially is the image repre­

senting the distances of every point in the left image with relevance to the right image. Since

objects with large distance between the two captures are closer to the camera, the depth of an

object is essentially represented in the disparity image. The challenge of calculating disparity

is to identify the same object in two different captures of the scene.

SGM has been proved to efficiently provide an initial estimation of the disparity image

and is the part of the algorithm which is interesting to us. Fig. 3.1 shows the main part of the

SGMpipeline. In short, SGM is based on the idea of pixel­wisematching and cost aggregation

across multiple optimization paths in the image. Pixel­wise matching is performed using the

sobel filter to highlight the edges and using a bitmap of a square window around a pixel to

form a similarity metric. This provides an initial disparity estimation.

Given the intial disparity estimation, cost aggregation is performed by means of summing

minimum path costs across multiple 1D scanlines while taking into account a penalty factor

13

14 Chapter 3. Stereo Vision Matching ­ SPS

to deal with noise issues. Mathematically this optimization task is formulated as finding the

disparity image with the minimum global energy metric. In practice, this means finding the

globally optimum path for each pixel. On top of that, it is interesting that this process is

executed twice , each time using a different image as base and as matching, and the final

disparity image is derived from a consistency check amongst the two runs.

Figure 3.1: SGM pipeline

In the context of AC, the work of AcHEe [29] showcases how an approximate parallel

implementation in the cost aggregation of the SGM algorithm can contribute to performance

gains while maintaining acceptable disparity image quality. The approximate version sug­

gests substituting the global minimum along multiple scanlines with a local minimum in the

cost aggregation process, which eliminates synchronization and thus allows a massively par­

allel implementation, in this case a GPU implementation.

In this work, this approximation is replicated in CUDA C programming on top of a C++

SPS implementation publicly accessible on Github [30]. The purpose of our work is to model

the effect of this approximation on the final disparity image with EI and LC.

3.2 Methodology

To model the effect of the approximation, errors are induced in two intermediate matrices

derived from the cost aggregation process. Each matrix, which corresponds to the initial cost

matrix in Fig. 3.1, is derived from each run. Those matrices contain values in the range of

0 to 216, as they express a 16­bit pixel representation. They are composed of integer values,

hence of the two lossy compressors we can only utilize the ZFP compressor.

Regarding the LC methodology, we employ the LC framework once for each matrix,

before continuing the execution with the distorted data. The fixed precision mode used in

3.3 Evaluation 15

ZFP, refers to the number of bits of the decompressed values [31]. On the other hand, EI is

applied directly on the matrix via a function call with suitable parameters.

3.2.1 Parameter Configuration

After running multiple experiments and analyzing the error patterns and scale, we con­

cluded to the configuration of the models with the most accurate results. The parameters used

for our models are illustrated in Table 3.1.

Table 3.1: Parameter Configuration

Method Parameters

ZFP 2D mode ­ fixed precision of 26 bits

Normal σ = 512

Uniform b = 1024

3.3 Evaluation

The results of the experiments highlight the ability of EI and LC to estimate the approxi­

mation of local minimum cost aggregation of AcHEe, by inducing artifacts on the boundaries

of objects. Fig. 3.2 depicts the accurate disparity image, Fig. 3.3 the approximate disparity

image, while Fig. 3.4 and Fig. 3.5 show the results of normal distribution EI modeling and

ZFP modeling respectively. Albeit not replicating accurately the artifacts, both EI and LC

can be useful in pinpointing the areas of the final disparity image that will be affected, which

have been reported to primarily be the object boundaries in [29].

Figure 3.2: Fully accurate

16 Chapter 3. Stereo Vision Matching ­ SPS

Figure 3.3: AcHEe approximate

Figure 3.4: Normal distribution approximate

Figure 3.5: ZFP approximate

For better understanding, heat maps relative to the fully accurate disparity image have

been provided in Fig. 3.6. Using an 8­bit per pixel representation, the heat maps are con­

structed by the absolute pixel differences, and the scale is shown in Fig. 3.6iv. Fig. 3.6i

shows the heat map of the approximation, Fig. 3.6ii the heat map of the normal distribution

EI method and Fig. 3.6iii the heat map of the ZFP method. Uniform distribution has been

omitted for brevity, as it has fairly similar effect to the normal distribution on the final result.

To interpret the results, one must first identify the parts of the disparity image which have

been distorted by the initial approximation (Fig. 3.6i). The parts of the image that have been

affected by the initial approximation are the borders of the objects at the right side of the

image and to a lesser extent the top of the image, which essentially is the sky. Finally, there

3.3 Evaluation 17

(i) AcHEe heat map

(ii) Heat map of normal distribution

(iii) Heat map of ZFP

(iv) Scale of heat maps

Figure 3.6: Absolute error to accurate disparity image

is a small amount of distortion at the left side of the image.

Observing the normal distribution results (Fig. 3.6ii), all of the areas mentioned above

have also been affected , but in a different manner. Admittedly, the artifacts are not the same,

however the EI does a decent job in finding all the areas of the image that are prone to errors.

The problem with this approach is that it induces extreme distortion at the left side, which is

the part where the cost aggregation process starts.

Regarding the ZFP usage, the distortion is more conservative compared to the EImethods.

For example, the ZFP final disparity image (Fig. 3.6iii) shows a very large band of distortion

18 Chapter 3. Stereo Vision Matching ­ SPS

on object borders at the right side of the image, while it exhibits negligible distortion at the

top of the image. That said, it is interesting to note the compression ratio achieved by the

compressor, which is 10.2 . Tackling 2D integer data with spatial continuity suggests high

compression potential and that can be further improved with efficient preprocessing and a

different mode, as it will be shown in chapter 5.

3.4 Challenges

In spite of the positive observations, we cannot neglect the negative side. Both EI and LC

exhibited sensitivity to extreme distortion of the final image on the left boundary, as evident

in Fig. 3.6ii, 3.6iii). This phenomenon is more extreme in some pairs of images and limited

to others and may as well not be limited only to the left side of the image. To deal with this,

we provide a simple approach that proves efficient.

We introduce a simple yet efficient solution for this problem. However, including this

improvisation in the generic framework requires further work as it is image­dependent. The

extreme boundary distortion can be eliminated by applying EI only in a window of the image,

excluding the border pixels at the side where the problem is evident. The size and shape of

the window are image­dependent and would require further exploration.

Concerning the example image analyzed, simply omitting the left 50 columns of the im­

age, accounting for 5% of the total columns, solves the problem as shown in Fig. 3.7, 3.8.

Fig. 3.7 depicts the disparity image and Fig. 3.8 its’ heat map.

Figure 3.7: Windowed normal distribution

Finally, it must be outlined that the EI approach does not provide reproducible results be­

cause of the pseudo­random procedure that starts each time from a different seed. In practice,

most of the runs with the same configuration exhibit the same trend, however there are cases

3.4 Challenges 19

Figure 3.8: Heat map of windowed normal distribution

where areas of the image are excessively distorted, most frequently the parts of the image

that experience the larger distortion by default, which are the red regions at the heat maps.

An instance of extreme distortion can be seen in the heat map of Fig. 3.9, where the

extreme distortion at the left side of the image has expanded and also a strong artifact at the

right side of the image has been induced, at a place which did not seem susceptible to errors

in the previous analysis.

Figure 3.9: Heat map of extreme distortion case in normal distribution

Finally, the PSNR metric quantifies the quality of the produced disparity images and is

also used in the AcHEe paper. PSNR is calculated with respect to the fully accurate disparity

image. Table 3.2 summarizes the PSNR values of the AcHEe approximate implementation

and our approaches. It seems that the EI and ZFP approaches lack the quality achieved by

the AcHEe approximate, but this is linked to the phenomenon of extreme distortion analyzed

above. This assertion is proven by the fact that the windowed EI method produces slightly

better PSNR than the AcHEe approximation.

20 Chapter 3. Stereo Vision Matching ­ SPS

Table 3.2: PSNR relative to fully accurate

Method PSNR

AcHEe approx 37.19

Normal 33.22

ZFP 35.62

Normal windowed 39

3.5 Conclusion

To conclude, our models fail to simulate the effect of the approximation accurately. The

artifacts that have been induced by the approximation cannot be replicated by our models

in detail. Moreover, the left side of the disparity image is sensitive to extreme distortion

in our approach and although a solution is proposed, it cannot be embedded in the generic

implementation safely. On top of that, the variability of EI experiments, which can lead to

extreme distortions in particular parts of the image, also renders the EI models inconsistent.

However, it must be noted that our approach is consistent in detecting the parts of the disparity

image that will be distorted by the approximation.

Chapter 4

Matrix Multiplication

4.1 Introduction

Matrix Multiplication is a basic linear algebra operation widely used in many scientific

areas. Although the operation itself is not error resilient, approximation in matrix multiplica­

tion can be used to reduce the computational cost through precision scaling. Understanding

the propagation of error in case of such approximation is important to decide whether this

technique is effective in a given application. In this regard, a series of experiments is con­

ducted aiming to model the error induced by the use of floats, or in extreme cases integers,

in place of doubles.

4.2 Methodology

We explore the multiplication of three sparse square matrices frommatrix market [32], by

themselves. The fully approximate multiplication uses only doubles while the approximation

techniques consist of direct typecasting to floats and rounding to nearest integers respectively.

Regarding the modeling attempts, EI is exclusively applied to the non­zero elements of

the sparse matrix, whereas LC is applied first to the full 2D matrix and then to the 1D se­

quence of non­zero elements, as saved by the matrix market format in column­major style.

The application of LC to the full matrix will be referred to as global (i.e. ZFP­global).

The three matrices used are derived from different domains and have a different range of

values. The first matrix, named bcsstm27 [33], is a symmetric indefinitematrix used for buck­

ling analysis on an engine inlet of a Boeing jetliner and its’ values range is (−717, 1.44e3).

21

22 Chapter 4. Matrix Multiplication

We work only on the lower diagonal part of that matrix in order to save time in the experi­

ments. Also, for brevity, we will analyze only the experiments on the bcsstm27 matrix and

will generalize our conclusions.

For reference, the other two real and unsymmetric matrices are the bfw398a [34] and

impcol­a [35]. The bfw398a matrix is derived from the domain of electrical engineering. It

appears in a generalized eigenvalue problem regarding the millimeter wave technology. Its’

values range in (−2.43, 6.3). The impcol­a matrix regards the chemical engineering domain.

It is an initial Jacobian approximation for a sparse nonlinear equation modeling a chemical

process system. Its’ values range is (−376, 680).

For visualization purposes, we use heat maps of absolute differences between the fully

accurate implementation and each approximate one. From those heat maps, we have been able

to gain insight about the pattern of error and some interesting properties of the LC methods.

Apart from the visualization, the Frobenius norm of the difference of the fully accurate

and approximate matrix is calculated, as it expresses the sum of squared error for the ele­

ments of the matrix. In particular, the Frobenius norm is calculated twice, first to evaluate the

distortion of the initial matrix due to approximation, EI or LC, and then to quantify the error

on the final result matrix.

4.2.1 Parameter Configuration

Running multiple experiments with various configurations, we targeted for the config­

urations which achieve an error scale similar to the approximations. Table 4.1 shows the

parameters for the float approximation, while Table 4.2 illustrates the parameters for the

integer approximation.

4.3 Evaluation

4.3.1 Float approximation

The results of the experiments highlight the complexity of modeling the error induced by

the single­precision (float) approximation. Although, able to achieve similar error range in

final result, the modeling attempts cannot follow the error pattern of floats relative to doubles.

The error pattern of floats shows large outliers at scattered points throughout the non­zero

4.3 Evaluation 23

Table 4.1: Parameter Configuration ­ Float approximation

Method Parameters

SZ 2D mode ­ absolute error of 7e­5

ZFP 2D mode ­ absolute error of 5e­4

SZ­global 2D mode ­ absolute error of 7e­5

ZFP­global 1D mode ­ absolute error of 5e­4

Normal σ = 3.3e− 5

Uniform b = 1.44e− 4

Table 4.2: Parameter Configuration ­ Integer approximation

Method Parameters

SZ 2D mode ­ absolute error of 0.5

ZFP 2D mode ­ absolute error of 1

SZ­global 2D mode ­ absolute error of 0.5

ZFP­global 1D mode ­ absolute error of 1

Normal σ = 0.2

Uniform b = 1.04

elements of the matrix and negligible error for the majority of non­zero elements (Fig. 4.1).

The maximum absolute error is 0.281, while the maximum relative error reaches 0.41% and

the average relative error is 1.85× 10−5% when excluding zero elements.

In contrast, our modeling attempts form a more uniform error pattern, without showing

very large errors at distinct points (red points in heatmaps). Indeed, ZFP (Fig. 4.2), normal

(Fig. 4.3) and uniform distribution (Fig. 4.4) achieve similar maximum error to floats, but

rather have a higher overall error added to the final result. This can also be verified by the

Frobenius norm values of the second column of Table 4.3, which highlight that the float

approximation has a much lower error norm value in the result matrix.

Interestingly, observing the Frobenius norm values, it is evident that the SZ fails to com­

press the stream of non­zero elements and add any distortion to the initial matrix. Given ab­

solute error bound of 7e­5 , which works fine when applied to the whole matrix, it achieves a

24 Chapter 4. Matrix Multiplication

Figure 4.1: Float approximation result ­ Absolute error to accurate result matrix

Figure 4.2: ZFP float approximation ­ Absolute differences from fully accurate result matrix

4.3 Evaluation 25

Figure 4.3: Normal float approximation ­ Absolute differences from fully accurate result ma­

trix

Table 4.3: Frobenius norm of error ­ Float modeling

Method ||A− Aapprox||frob ||A2 − A2
approx||frob

Floats 0.0007 2.5465

SZ 0 0

ZFP 0.007 9.6404

Normal 0.0056 7.6664

Uniform 0.007 9.5394

CR of 1.03. This behavior is a direct outcome of lack of continuity in the stream of non­zero

elements.

Overall, we believe that the inability of our approaches to resemble the float approxima­

tion is directly related to the non­linear nature of float representation, which is denser in lower

values and sparser in higher values. In contrast, both EI and LC handle elements of data in

a uniform manner, regardless of their absolute values.On top of that, the modeling difficulty

increases due to the nature of the application, which has inherent error amplification proper­

26 Chapter 4. Matrix Multiplication

Figure 4.4: Uniform float approximation ­ Absolute differences from fully accurate result

matrix

ties, as shown by the Frobenius norm values in Table 4.3, where the size of error is always

higher for the result matrix than the original matrix.

Finally, another important observation is that the configurations of the modeling tech­

niques significantly vary amongst different matrices. In practice, higher absolute values in

matrix elements suggest higher error range in the EI process and higher error bounds in the

LC framework to achieve the same scale of error in final result. This fact is directly linked to

the sparser representation of floats in higher values.

4.3.2 Lossy Compressors

First, we would like to highlight the difference in the configuration parameters of SZ and

ZFP. Although using the absolute error bound for both, we observe that ZFP requires a looser

error bound than SZ to achieve similar size of distortion in final results. This is directly linked

to the fact that ZFP is very conservative on the error bound specified, in order to bound the

worst case scenario, as illustrated in [36]. This observation holds true for the rest of the

applications analyzed and will not be stated explicitly again.

4.3 Evaluation 27

Concerning the LC application, it is obvious that applying LC only on the non­zero ele­

ments is much more accurate than applying it to the full matrix. Interestingly, applying LC

to a full sparse 2D matrix highlights the weakness of SZ and ZFP in discontinuous data, by

means of distorting zero elements that are near non­zero elements.

Fig. 4.5 depicts the absolute values of the original matrix, while Fig. 4.6 and Fig. 4.7

show the absolute differences of the distorted matrix, by ZFP­global and SZ­global respec­

tively, with respect to the original matrix. As evident, zero elements are affected by their

neighboring non­zero elements in a square shape. Moreover, Fig. 4.8 shows the absolute

values of the accurate result matrix, while Fig. 4.9 and Fig. 4.10 illustrate the absolute dif­

ferences of the results of ZFP­global and SZ­global, with respect to the accurate result. Obvi­

ously, after the matrix multiplication the band of error is widened even more. This property

of LC must be realised to avoid large errors in applications involving sparse matrices.

Figure 4.5: Original matrix ­ Absolute values

28 Chapter 4. Matrix Multiplication

Figure 4.6: ZFP­global on original matrix ­ Absolute error to original matrix

Figure 4.7: SZ­global on original matrix ­ Absolute error to original matrix

4.3 Evaluation 29

Figure 4.8: Result matrix ­ Absolute values

Figure 4.9: ZFP­global on result matrix ­ Absolute error to accurate result matrix

30 Chapter 4. Matrix Multiplication

Figure 4.10: SZ­global on result matrix ­ Absolute error to accurate result matrix

Figure 4.11: Integer approximation ­ Absolute differences from fully accurate result matrix

4.3 Evaluation 31

4.3.3 Integer approximation

The integer approximation results in very large errors, as illustrated in Fig. 4.11. It reaches

a maximum absolute error of 2020.7 and a maximum relative error of 38×104%. The average

relative error is 78% disregarding the zero elements of the matrix.

Nevertheless, it is interesting how ΕΙ is able to replicate efficiently the pattern of error in

Fig. 4.13, 4.14 and even more so, how the SZ ,applied on the 1D sequence of non­zero data

and operating in 2D mode and 0.5 absolute error bound, is replicating exactly the effect of

rounding to nearest integer approximation (Fig. 4.12. This proves that this configuration of

SZ has identical behavior to the round to nearest integer approximation.

On top of the visualization, the Frobenius norm of error introduced in Table 4.4 , confirms

our conclusions. SZ is a perfect model for this approximation, while the uniform and normal

EI also form a strong model with similar norms to the integer approximation. On the other

hand, ZFP fails to achieve the same scale of error with a much lower error norm value, a fact

also visible in Fig. 4.15.

Figure 4.12: SZ integer approximation ­ Absolute differences from fully accurate result ma­

trix

32 Chapter 4. Matrix Multiplication

Figure 4.13: Normal integer approximation ­ Absolute differences from fully accurate result

matrix

Figure 4.14: Uniform integer approximation ­ Absolute differences from fully accurate result

matrix

4.4 Conclusion 33

Figure 4.15: ZFP integer approximation ­ Absolute differences from fully accurate result

matrix

Table 4.4: Frobenius norm of error ­ Integer modeling

Method ||A− Aapprox||frob ||A2 − A2
approx||frob

Integers 42.7254 60672.1

SZ 42.7254 60672.1

ZFP 28.5549 38737.6

Normal 33.8246 45731.3

Uniform 50.9448 69214

4.4 Conclusion

To sum up, our methods fail to simulate the float approximation effect in the matrix multi­

plication case. Although able to replicate the same scale of error, they cannot achieve similar

values in the Frobenius norm of the error neither produce the same patterns of error in the

result matrix. On the other hand, regarding the round to nearest integer approximation, we ob­

serve that SZ, employed with 2D mode and absolute error of 0.5, is a perfect model. Finally,

EI also forms a strong predictor achieving similar size and patterns of error.

Chapter 5

Singular Value Decomposition

5.1 Introduction

Singular Value Decomposition (SVD) is a well­known factorization technique to reduce

the storage space of a large matrix while accepting some quality loss. It essentially decom­

poses a matrix into the product of 3 matrices. Let A be an m × n real matrix, then SVD

factorizes the matrix in the form UΣV T , where U, V are orthogonal matrices of dimensions

m × n and n × n respectively, whereas Σ is a diagonal matrix whose elements are called

singular values.

Interestingly, the number of non­zero singular values is equal to the rank of matrix A,

while singular values are stored in descending order. This way, one can use only a portion of

them, and the corresponding columns of U and rows of V T , to perform the reconstruction via

multiplication. The more singular values used, the more accurate the reconstruction is, but

the less singular values used the less storage is required to store the matrix.

That being said, there are different algorithms to calculate the matrices U,Σ, V . In this

case, we focus on the iterative method of Golub and Reinsch introduced in [37]. This method

comprises three steps. First, an initial factorization is calculated where the middle matrix is

bidiagonal [38]. Second, the bidiagonal matrix is reduced to a diagonal matrix via an iterative

method, while the other two matrices are processed simultaneously to satisfy the equation.

Finally, the diagonal matrix is sorted to hold elements of descending order.

The actual version of the SVD algorithm used is described in [39]. We use the c++

library of [40] , which includes fully accurate implementation using doubles. To implement

an approximate version of this algorithm, we had to extend the library.

35

36 Chapter 5. Singular Value Decomposition

Similar to matrix multiplication, precision scaling is an interesting method to induce ap­

proximation in the SVD process described above. Our experiments involve both the use of

single precision and half precision arithmetic, which uses just 16 bits to represent floating­

point values. The latter is not natively supported by the machine nor the programming lan­

guage, but can be simulated using the library described in [41]. The software is available on

Github [42].

5.2 Methodology

The approximation method is based on the use of reduced precision, wherever there is

a need for floating point arithmetic in the SVD library referenced above. As always, our

modeling approaches lie on the fact of distorting the initial matrix using EI or LC, before

applying the fully accurate SVD version and comparing the error patterns. The error patterns

of the three matrices U,Σ, V with respect to the fully accurate decomposition of the original

matrix are visualized as heat maps.

Using this approach, we ran the first series of experiments on the matrices of Chapter

4 using only floats for the SVD algorithm. The error patterns of U, V were similar for the

float approximation and the rest of the techniques, whilst the error patterns for the Σ matrix

showed different patterns, yet an error of order 10−5, which is negligible for singular values

of order up to 103. The visualizations of the above observations are omitted for brevity, since

a similar approach will be analyzed below.

After promising experiments on sparse matrices, we decided to tackle an SVD applica­

tion. Image compression with SVD decomposition is a popular application, where reduced

number of singular values is used to reconstruct the initial image. We chose this application,

because an image is a fitting example of dense matrix where we can also assess the behav­

ior of LC in continuous data. Moreover, using different percentages of singular values for

reconstruction we can observe where most of the error lies in the decomposed matrices.

That said, we examine the case of a 16­bit grayscale image (Fig. 5.1) and decide to

normalize the pixel values to the [0,1] range. This way we can make good use of the LC

which is more efficient on floating­point data and also use more aggressive precision scaling

for the SVD algorithm. After experiments with floats showed negligible distortion in the

reconstructed image, as PSNR values were equal to the fully accurate implementation, we

5.2 Methodology 37

decided to experiment with half precision.

Figure 5.1: Original picture

Implementing the SVD only with half precision resulted in lack of convergence in the

iterative process of the algorithm, even with increased iterations. In addition, using floats in

the SVD and half precision in the reconstruction operations resulted in unacceptably large er­

rors. Finally, the use of half precision for the first and third step of the SVD, in combination

with the use of floats for the iterative second step, is the ideal approximation for this appli­

cation, as it induces acceptable error. We have to credit the work of [17] because it inspired

our mixed precision approach.

We refer to this pipeline as the mixed precision approximation from now on. The follow­

ing sections give the configuration of the modeling techniques used to simulate this approx­

imation and analyze the results of the experiments.

Table 5.1: Parameter Configuration

Method Parameters

SZ 2D mode ­ absolute error of 3e­2

ZFP 2D mode ­ absolute error of 3e­1

Normal σ = 1.5e− 2

Uniform b = 6e− 2

38 Chapter 5. Singular Value Decomposition

5.2.1 Parameter Configuration

The parameters used for the modeling methods are deliberately chosen to produce similar

PSNR values to the mixed precision pipeline. The actual parameters used can be seen in Table

5.1.

5.3 Results

5.3.1 Error patterns in decomposed matrices

First of all, we examine the range of values in the U , Σ and V matrices of the accurate

execution of SVD. As shown in Fig. 5.2, the absolute values of elements range from 0 to

0.28 in U and from 0 to 0.31 in V , while the singular values range from 0 to 515.

(i) U (ii) V

(iii) Σ

Figure 5.2: Fully accurate SVD ­ Absolute values

The absolute error of the mixed precision approximation with relevance to the accurate,

can be seen in Fig. 5.3. It ranges from 0 to 0.45 for both U and V matrices, which is signifi­

5.3 Results 39

cant bearing in mind the range of values of those matrices. However, for the singular values

relative error has been calculated, because we believe it is more meaningful due to the vari­

ability of singular values. It can be noticed the first half of the singular values shows a relative

error between 0 to 5%, while the second half has a larger error that ranges between 5% to 8%.

(i) U (ii) V

(iii) Σ

Figure 5.3: Mixed Precision SVD ­ Absolute error to accurate

Regarding the modeling techniques, we observe that the error range and pattern in U

and V is almost identical to the mixed precision case for the SZ, the ZFP and the Normal,

as illustrated in Fig. 5.4. The ZFP method introduces slightly larger error values at distinct

points while the Uniform case is similar to the Normal and is omitted for brevity.

Despite the success in simulating error patterns in U and V , our modeling attempts fail

to replicate the same error scale in the singular values. As shown in Fig. 5.5, all modeling

methods exhibit relative error above 300% in the smallest singular values, apart from the ZFP

which shows a maximum relative error of 100%.

Comparing the above to the singular values of the approximation (Fig. 5.3iii), it is ap­

parent that there is significant divergence in the error introduced in the singular values. The

40 Chapter 5. Singular Value Decomposition

relative error of our methods is two orders of magnitude larger. However, the effect of this

variation in the final result needs to be tested in the final reconstructed image, since matrix

multiplication is involved.

(i) SZ U (ii) SZ V

(iii) ZFP U (iv) ZFP V

(v) Normal U (vi) Normal V

Figure 5.4: Absolute error to accurate U , V

5.3 Results 41

(i) SZ (ii) ZFP

(iii) Normal (iv) Uniform

Figure 5.5: Absolute differences to accurate Σ

5.3.2 Reconstructed Images

The reconstructed images using all singular values for each approach are listed in Fig.

5.6. All the images are visually the same, since we attempted to retain a PSNR higher than

40. Nevertheless, slight differences are visible in the heat maps of absolute pixel differences

in Fig. 5.7. It must be noted, that the heat map of the fully accurate case, has been calculated

relevant to the original image, while for the rest relevant to the fully accurate case.

Using an 8­bit per pixel representation for the reconstructed images, the absolute pixel

differences have similar scale for all instances. However, the mixed­precision approxima­

tion (Fig. 5.7ii) has a unique error pattern that cannot be replicated by any of the modeling

techniques.

Firstly, the approximation induces a vertical line of distortion at the left side, which in­

cludes pixel differences over 25 and does not exist in any other method.Moreover, the general

error pattern shows horizontal locality, by means of similar errors in pixels of the same row.

42 Chapter 5. Singular Value Decomposition

(i) Fully accurate (ii) Mixed Precision

(iii) SZ (iv) ZFP

(v) Normal (vi) Uniform

Figure 5.6: Full SVD reconstruction

Again this horizontal continuity is not present in any other method.

Regarding the EI methods (Fig. 5.7v, 5.7vi), the error pattern is uniform around all

parts of the image and is of no interest to us. On the other hand, the LC techniques display

interesting error patterns that require elaborate analysis.

The SZ (Fig. 5.7iii) demonstrates a distribution of error that resembles the uniform. It

includes several regions of zero distortion, regions with moderate error, and some areas with

5.3 Results 43

(i) Fully accurate (ii) Mixed Precision

(iii) SZ (iv) ZFP

(v) Normal (vi) Uniform

(vii) Scale

Figure 5.7: Absolute pixel differences with full SVD reconstruction

larger distortion that are usually around areas of zero distortion. On the contrary, the ZFP

(Fig. 5.7iv) follows a distribution that mostly resembles the normal, since most pixels have

an error near zero. Moderate error values are scattered around the background while larger

error values exist at the face of the dog where detailed texture lies.

44 Chapter 5. Singular Value Decomposition

Regarding the areas of zero distortion, we confirm that those areas of the picture, show

little variability in pixel values. As a result, the compressors, which partition the image into

blocks, can provide compression without introducing errors. Since all values are similar, SZ

can predict them accurately based on the preceding values and ZFP can effectively truncate

their floating­point representation.

(i) Fully accurate (ii) Mixed Precision

(iii) SZ (iv) ZFP

(v) Normal (vi) Uniform

Figure 5.8: SVD reconstruction with 50(12%) singular values

Similarly, the error pattern of the approximation cannot be simulated for fewer singu­

5.3 Results 45

lar values. We include the reconstructed images using only 12% of the singular values in

Fig. 5.8. It is evident that even the accurate SVD results in blurry image and also includes

some corrupted pixels around the nose of the dog. The blur is present in all methods, yet the

corrupted pixels’ location varies.

(i) Fully accurate (ii) Mixed Precision

(iii) SZ (iv) ZFP

(v) Normal (vi) Uniform

(vii) Scale

Figure 5.9: Absolute pixel differences of SVD reconstruction with 50(12%) singular values

46 Chapter 5. Singular Value Decomposition

The relevant heat maps are provided in Fig. 5.9 and provide valuable insight. In Fig.

5.9i, the distortion of the accurate reconstruction is substantially larger than in Fig. 5.7i and

reaches differences of more than 30 around the nose of the dog, which is the most sensitive

part of the image. Moreover, the horizontal lines in the mixed precision heat map (Fig. 5.9ii)

still exist, whereas all methods show increased number of corrupted pixels around the nose

with relevance to the accurate image.

Regarding the LC techniques (Fig. 5.9iii, 5.9iv), the error is less uniform across the

image and also the areas of zero distortion have been partially or completely eliminated. This

is the result of the combination of errors derived from the distortion of the initial image due

to LC and the error induced by the use of fewer singular values. In a similar manner, the EI

approaches (Fig. 5.9v, 5.9vi) have partially lost their homogeneity of error across the image.

To conclude, we have summarized the PSNR values of the images in Fig. 5.10 for dif­

ferent singular values. It is evident that our models are consistently producing similar PSNR

values to the approximate method.

Figure 5.10: PSNR relative to original for various singular values

5.3.3 Effect of Lossy Compressors on Images

First of all, we clarify that the distortion induced above, by both LC and EI in the final

reconstructed image using all singular values, is primarily based on the distortion of the initial

image and not on the SVD process itself. We have confirmed that observation by omitting

5.4 Conclusion 47

the SVD process and calculating the heat­maps of the distorted images by LC or EI. As

a result, evaluating the results of the LC experiments on the reconstructed image with full

reconstruction is equivalent to evaluating the effect of direct application of LC on the images.

Regarding the error patterns analyzed above, we confirm that our observations on the

patterns of error match the observations of [36]. In particular, the SZ exhibits a uniform

distribution of error in image pixels whereas the ZFP tends to follow a normal distribution,

with higher pixel differences around the center of the image where most detailed texture

exists.

At last, we report the CRs for SZ and ZFP to be 37.4 and 26.6 respectively. Thismeans that

we have introduced a framework, where a grayscale 16­bit png image has been compressed

by a factor of 37, while achieving a PSNR of 42 with no obvious visual differences. The key

to our approach lies on the downscale of the pixel values to the [0, 1] interval, essentially

converting integer values to floating point values.

5.4 Conclusion

Our modeling methods are capable of providing similar error patterns to the approximate

method in the decomposed U and V matrices. However, there are significant differences

in the singular values calculated. As a result, despite achieving similar PSNR values in the

reconstructed image for various singular values used, our modeling attempts fail to replicate

the effect of the approximation or provide some valuable insight about it, for any number of

singular values used.

Chapter 6

Conjugate Gradient

6.1 Introduction

Conjugate Gradient (CG) is an iterative method for solving systems of linear equations,

whose matrix is positive­definite. As most iterative methods, it is not highly sensitive to

errors because the solution is improved at each iteration. Consequently, modeling the effect

of an approximate implementation with floats is practically useful for future users exploring

performance gains on the CG method.

The algorithm we developed is based on the first algorithm described in [43], which is

the simplest and most commonly used version of CG and is illustrated in Fig. 6.1. We define

maximum iterations to equal the number of rows of the matrix, while we use a tolerance

of 1e − 10 as our termination criterion. Moreover, we extend our terminating conditions to

include both the norm of the residual and the norm of subsequent solution vectors.

Essentially the problem can be formulated as:

Find x : Ax = b

where A is a real positive definite n× n matrix and b is a known n× 1 vector. The approach

we follow and the experiments we conducted are analyzed below.

6.2 Methodology

First, we employ the fully accurate CG with double precision to have the reference so­

lution vector. Second, we employ the approximate implementation with float precision and

49

50 Chapter 6. Conjugate Gradient

Figure 6.1: The Conjugate Gradient algorithm used

then we run the accurate pipeline on the distorted matrix by EI or LC. Finally, we construct

heat maps of the approximate solution and our modeling methods’ solutions with relevance

to the accurate solution.

This way we can analyze the error pattern and pinpoint any similarity, which would sug­

gest that our methods can simulate the approximation. However, results are highly dependent

both on the matrix A and the vector b used. We decided to experiment on three different ma­

trices, each with a different range of values. For each matrix, we first manually specify the

solution vector x in order to produce the vector b and test the algorithm, but we also exper­

iment with random number generation for the vector b. Finally, the initial estimation of x is

0⃗, which in all cases results in convergence.

Regarding the matrices used, once again we use matrices from matrix market. The matri­

ces are namely, bcsstk14 [44], nos3 [45] and nos5 [46]. Their elements’ absolute values are

of order 1e9, 1e3 and 1e5 respectively. Taking into account the high number of experiments

due to different matrices and setups, we will fully analyze the results of a particular matrix

and setup. However, we will discuss about the results of all experiments and highlight the

most noteworthy observations.

Regarding the data distortion, we apply EI to the elements as saved by the matrix market

6.3 Results 51

format, in column major order. This means that only the non­zero elements of the lower

triangular part of the matrix are saved, since the matrix is symmetric. Similarly, LC is applied

to the 1D stream of elements, as provided by the matrix market format.

Taking into account initial experiments with manually built solutions and using x = 0⃗ as

initial estimation, we acquired valuable insight about our methods. First, we realized that the

higher the absolute values of the matrix the harder the modeling attempts get. In particular,

for the bcsstk14 matrix, it was not possible to even achieve the same error scale with the

approximation. With the nos5 case the scale was similar, but the error pattern substantially

different and for the nos3 matrix the error scale was also similar, as was the error pattern for

some solutions.

To that extent, we regarded our modeling attempts as unsuccessful in high­value ranges

and decided to carry on more experiments on the nos3 matrix, which has the highest mod­

eling potential. Additional experiments include random number generation for the solution

vector. It has to be noted that nos3 has the same condition number as nos5, yet two orders

of magnitude smaller element values. We believe that the sparser representation density of

floating­point precision in higher absolute values renders the float approximation more com­

plex to model, as was the case in the matrix multiplication case in Chapter 3.

Below we analyze the error pattern on the CG of the nos3 matrix with solution vector

x = [0.5 0.5 . . . 0.5]T and initial estimation x = 0⃗. This example is a case of strong model­

ing potential of the approximation by our methods. However, a more challenging example

follows. Finally, we conclude in the last subsection the challenges faced by our approach.

6.2.1 Parameter Configuration

Table 6.1 includes the parameters of our modeling methods for the setup analyzed above

are shown:

6.3 Results

Table 6.2 illustrates the Frobenius norm of the difference amongst the solution reached by

the approximation or modeling technique and the fully accurate solution achieved by doubles.

This metric of error suggests that all modeling methods achieve a similar sum of squared

errors to the approximate version in the solution vector. Yet, the pattern of error is highly

52 Chapter 6. Conjugate Gradient

Table 6.1: Parameter Configuration

Method Parameters

SZ 2D mode ­ absolute error of 3e­7

ZFP 2D mode ­ absolute error of 2e­6

Normal σ = 5e− 6

Uniform b = 1.4e− 5

important to assess the success of our methods.

Table 6.2: Frobenius norm of error

Method ||x− xapprox||frob
Floats 3.98× 10−4

SZ 4.12× 10−4

ZFP 4.13× 10−4

Normal 3.65× 10−4

Uniform 4.61× 10−4

Figure 6.2 displays heat maps representing the absolute differences with respect to the

solution reached by the accurate CGwith doubles. In case of doubles, the heat map represents

absolute error with relevance to the actual solution. The error is of order 1e − 9 , suggest­

ing that the solution is accurate and the CG has converged. Similarly, the scale of error for

the approximation and the modeling methods is of order 1e − 5, also confirming that those

implementations converge.

The accurate implementation, as well as our models, converge in 510 iterations, where the

solution vector does not change. Interestingly, the CG with floats converges in 280 iterations,

with the same termination condition. This phenomenon applies to all experiments, proving

how efficient this approximation is. On average, the float implementation requires 40% fewer

iterations.

Observing the error patterns of Fig. 6.2iii, 6.2iv, 6.2v, 6.2vi, one can claim that all

modeling approaches resemble the pattern of error of the approximation , as shown in Fig.

6.2ii. Indeed, the pattern of error in all cases progressively grows from the top to the bottom of

6.3 Results 53

the column vector. Although element­wise one can identify different error values, the general

pattern of error is arguably simulated accurately.

(i) Doubles relative to actual solution (ii) Float approximation

(iii) SZ (iv) ZFP

(v) Normal (vi) Uniform

Figure 6.2: Absolute error with relevance to accurate solution vector

Regarding the lossy compressors, we would like to report a significant difference in CRs

for the two compressors. SZ achieves a CR of 48while ZFP only reaches 2. These numbers are

54 Chapter 6. Conjugate Gradient

very contradicting to what we have seen so far in our experiments, where both compressors

achieve similar CRs and never have an order of magnitude difference. This fact can be linked

to high serial correlation of the particular stream of elements , which is better exploited by

the prediction­based SZ.

To sum up, we regard our approaches as highly accurate in simulating the approximation

effect in this particular setup. However, not every setup of solutions and matrices confirms

this efficient simulation.

6.3.1 Counter­example

Despite the success of our approaches in the example analyzed above, results have not

always been so accurate. For example, for the same matrix NOS3, given the solution vector

x = [2 − 1 2 − 1 . . . 2 − 1]T , our models fail to simulate the approximation. Table 6.3

introduces the Frobenius norm of errors in solution vectors. It is obvious that the LCmethods,

on their best configuration, fail to produce error values close to the float approximation. On

the contrary, the EI approach replicates similar error values.

Table 6.3: Frobenius norm of error

Method ||x− xapprox||frob
Floats 1.1× 10−3

SZ 4.21× 10−4

ZFP 5.22× 10−4

Normal 1.22× 10−3

Uniform 1.06× 10−3

Moreover, the heat maps of the absolute error have also been included in Fig. 6.3. Fig.

6.3i proves that the CG with doubles has converged to the actual solution, since error is

of order 10−9. Regarding the float approximation, Fig. 6.3ii depicts the error, while our

modeling methods errors are shown in Fig. 6.3iii, 6.3iv, 6.3v, 6.3vi.

Although ,in general, the error patterns are similar, one must observe that in the middle

of the vector, float approximation exhibits a special pattern, where per 40 consecutive ele­

ments, large error rapidly diminishes to small error. This pattern is not apparent in any of

our modeling attempts. In addition, no model has exactly the same scale of error with float

6.3 Results 55

approximation. In particular, the LC methods and the normal distribution have a maximum

error of 3.3× 10−5, the uniform distribution has a maximum of 4× 10−5, while the float has

a maximum of only 2.2× 10−5.

(i) Doubles relative to actual solution (ii) Float approximation

(iii) SZ (iv) ZFP

(v) Normal (vi) Uniform

Figure 6.3: Absolute error with relevance to accurate solution vector

56 Chapter 6. Conjugate Gradient

6.4 Challenges

Having analyzed two setups of our experiments, it is not clear whether EI and LC can form

strong models for the simulation of the approximation. To clarify this, we have concentrated

the challenges faced by our approach, which prove the inconsistency of it.

The first problem is the variability of our configuration parameters for different solution

vectors. This means that for the same matrix, there is no configuration for the LC and EI

methods that produces the same size of error, but rather a trial and error approach is required.

There is no obvious pattern on how the parameters should be modified for different solution

vectors.

In addition, variability is existent in subsequent EI runs with the same configuration. We

have noticed that the scale of error in the solution vector, as well as the Frobenius norm of

error, are significantly varying amongst consecutive runs of CG, with the same setup and

configuration. This phenomenon diminishes the modeling capabilities of the EI method, as

it cannot provide reliable results in this application.

Finally, a significant issue with our method is its’ dependency on the input matrix. After

experimenting with three different matrices of different range of values, we conclude that our

modeling attempts can only be helpful when dealing with low absolute values. In our case,

we found that for a matrix with order of values of 103 there is strong potential.

6.5 Conclusion

To sum up, taking into account both the successful and unsuccessful cases of modeling, as

well as the challenges that arose, we conclude that there is no generic parameter configuration

of our models capable of consistently simulating the approximation effect. The issues stated

above make the simulation of the approximation effect challenging, even for matrices where

the models seem to succeed under certain circumstances.

Chapter 7

Conclusion

7.1 Summary

We have explored an approach to model the effect of approximation techniques on a

variety of applications, employing error injection and lossy compression. Our approach pro­

vides valuable insight into the effect of the approximation in the case of the stereo vision

matching application, yet fails to deliver accuracy and consistency when it comes to scien­

tific computing applications that employ precision scaling as an approximation. We believe

the complexity of modeling precision scaling approximations lies in the fact that the error

induced has a nonlinear nature, as floating­point representation becomes sparser in higher

absolute values. However, through the experiments, valuable insight has been gained on the

functionality of the two lossy compressors, SZ and ZFP, reviewing and even extending the

findings of existing literature. To summarize our work, we outline our main observations

below.

7.2 Keypoints

The most noteworthy observations in our work are listed below:

• Our models in SPS ­ Stereo detect the areas of the image that will be affected by the

approximation, yet do not replicate the details of the distortion accurately (Chapter 3).

• Our models do not have adequate fidelity in simulating precision scaling approxima­

tions in matrix multiplication, singular value decomposition and conjugate gradient

(Chapters 4, 5, 6).

57

58 Chapter 7. Conclusion

• We have highlighted the squared manner in which SZ and ZFP work on 2D data (Chap­

ter 4).

• We have illustrated how SZ and ZFP can lead to large errors in sparse matrices (see

Chapter 4).

• We identified a configuration of SZ that rounds floating­point values to the nearest

integer (see Chapter 4).

• We have verified that the error values that arise by SZ and ZFP application, resemble

the uniform and the normal distribution respectively, which is also reported in [36]

(see Chapter 5).

• We have illustrated that ZFP introduces larger errors in detailed texture when com­

pressing grayscale images, while both SZ and ZFP do not distort low­textured areas

(see Chapter 5).

• We have showcased a framework to compress gray­scale png images, by a factor of

36 for SZ and 27 for ZFP, with negligible distortion (see Chapter 5). The idea is to

normalize pixel values to [0, 1] so that the compressors work on floating­point data.

• We have confirmed that SZ introduces errors closer to the maximum error bound spec­

ified while ZFP is conservative and only reaches the maximum error at distinct data

points.

• We have shown that SZ has consistently higher compression ratio than ZFP for spatially

correlated data, in one case even an order of magnitude higher, but also fails to provide

any compression for discontinuous data.

7.3 Discussion

Modeling the effect of approximation techniques is challenging. We provided an initial

approach based on the idea of distorting the input data of the operation. Although partially

successful in an algorithmic approximation, precision scaling approximations proved highly

challenging. We believe that a more efficient approach to the precision scaling would be to

distort data regarding the absolute values of the elements, albeit our experiments using lossy

7.3 Discussion 59

compression with relative error bound also being unsuccessful. Still, the problem with this

approach is that the error introduced by precision scaling is not linearly correlated with the

absolute values, as a large value could happen to be represented accurately by a low precision

representation. Finally, we believe that the idea of data distortion could provide efficient mod­

eling attempts in other types of approximation, more algorithmic ones, and requires further

research.

Bibliography

[1] Sparsh Mittal. Power management techniques for data centers: A survey. April 2014.

[2] John Gantz and David Reinsel. Extracting value from chaos. IDC IView, pages 1–12,

January 2011.

[3] Hrishav Barua and Dr­Kartick Mondal. Approximate computing: A survey of recent

trends—bringing greenness to computing and communication. The Journal of the In­

stitution of Engineers (India): Electronics and Telecommunication Division, 100:619–

626, June 2019.

[4] Mark Papermaster. Improving the energy efficiency of computing as moore’s law

slows—are the energy­related benefits from moore’s law slowing down?, 2015.[On­

line].

[5] SparshMittal. A survey of techniques for approximate computing. ACMComput. Surv.,

48(4), March 2016.

[6] Vinay Kumar Chippa, Debabrata Mohapatra, Kaushik Roy, Srimat T. Chakradhar, and

Anand Raghunathan. Scalable effort hardware design. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 22(9):2004–2016, 2014.

[7] Beayna Grigorian, Nazanin Farahpour, and Glenn Reinman. Brainiac: Bringing reli­

able accuracy into neurally­implemented approximate computing. In 2015 IEEE 21st

International Symposium on High Performance Computer Architecture (HPCA), pages

615–626, 2015.

[8] Thomas Y. Yeh, Petros Faloutsos, Milos D. Ercegovac, Sanjay J. Patel, and Glenn Rein­

man. The art of deception: Adaptive precision reduction for area efficient physics ac­

celeration. In 40th Annual IEEE/ACM International Symposium on Microarchitecture

61

62 Bibliography

(MICRO­40 2007), 1­5 December 2007, Chicago, Illinois, USA, pages 394–406. IEEE

Computer Society, 2007.

[9] Antonio Roldao­Lopes, Amir Shahzad, George Constantinides, and Eric Kerrigan.

More flops or more precision? accuracy parameterizable linear equation solvers for

model predictive control. pages 209 – 216, 05 2009.

[10] Mohammad Anam, Paul Whatmough, and Yiannis Andreopoulos. Precision­energy­

throughput scaling of generic matrix multiplication and convolution kernels via linear

projections. volume 24, pages 21–30, 10 2013.

[11] Peter Düben, Parishkrati, Sreelatha Yenugula, John Augustine, K. Palem, Jeremy

Schlachter, Christian Enz, and T. N. Palmer. Opportunities for energy efficient com­

puting: A study of inexact general purpose processors for high­performance and big­

data applications. In 2015 Design, Automation Test in Europe Conference Exhibition

(DATE), pages 764–769, 2015.

[12] Chih­Chieh Hsiao, Slo­Li Chu, and Chen­Yu Chen. Energy­aware hybrid precision

selection framework for mobile gpus. Computers & Graphics, 37(5):431–444, 2013.

[13] Arnab Raha, Swagath Venkataramani, Vijay Raghunathan, and Anand Raghunathan.

Quality configurable reduce­and­rank for energy efficient approximate computing.

2015:665–670, 04 2015.

[14] Abbas Rahimi, Andrea Marongiu, Rajesh K. Gupta, and Luca Benini. A variability­

aware openmp environment for efficient execution of accuracy­configurable compu­

tation on shared­fpu processor clusters. In 2013 International Conference on Hard­

ware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10, 2013.

[15] Byonghyo Shim, S.R. Sridhara, and N.R. Shanbhag. Reliable low­power digital signal

processing via reduced precision redundancy. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 12(5):497–510, 2004.

[16] Ye Tian, Qian Zhang, Ting Wang, Feng Yuan, and Qiang Xu. Approxma: Approximate

memory access for dynamic precision scaling. In Proceedings of the 25th Edition on

Great Lakes Symposium on VLSI, GLSVLSI ’15, page 337–342, New York, NY, USA,

2015. Association for Computing Machinery.

Bibliography 63

[17] Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo Manica, Heiner Giefers,

Tomas Tuma, Costas Bekas, Alessandro Curioni, and Evangelos Eleftheriou. Mixed­

precision in­memory computing. Nature Electronics, 1(4):246–253, Apr 2018.

[18] Matthew Bognar. OMPRNG ­ Fast Parallel Random Number Generation. http:

//www.stat.uiowa.edu/~mbognar/omprng. Accessed: 2021 ­ 03 ­ 12.

[19] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,

Chun Hong Yoon, Xin­Chuan Wu, Yuri Alexeev, and Frederic T Chong. Use cases

of lossy compression for floating­point data in scientific data sets. The International

Journal of High Performance Computing Applications, 33(6):1201–1220, 2019.

[20] Sheng Di and Franck Cappello. Fast error­bounded lossy hpc data compression with sz.

In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),

pages 730–739, 2016.

[21] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improv­

ing lossy compression for scientific data sets based on multidimensional prediction and

error­controlled quantization. In 2017 IEEE International Parallel and Distributed Pro­

cessing Symposium (IPDPS), pages 1129–1139, 2017.

[22] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong

Chen, and Franck Cappello. Error­controlled lossy compression optimized for high

compression ratios of scientific datasets. In 2018 IEEE International Conference on

Big Data (Big Data), pages 438–447, 2018.

[23] Mathematics and Argonne National Laboratory Computer Science. SZ. https://

github.com/szcompressor/SZ, 2016.

[24] Peter Lindstrom. Fixed­rate compressed floating­point arrays. IEEE Transactions on

Visualization and Computer Graphics, 20(12):2674–2683, 2014.

[25] Lawrence Livermore National Laboratory. ZFP. https://github.com/LLNL/

zfp, 2014.

[26] S. Ilic, Mile Petrovic, Branimir Jaksic, P. Spalevic, L. Lazic, and M. Miloševi ́c. Ex­

perimental analysis of picture quality after compression by different methods.

http://www.stat.uiowa.edu/~mbognar/omprng
http://www.stat.uiowa.edu/~mbognar/omprng
https://github.com/szcompressor/SZ
https://github.com/szcompressor/SZ
https://github.com/LLNL/zfp
https://github.com/LLNL/zfp

64 Bibliography

[27] Koichiro Yamaguchi, David McAllester, and Raquel Urtasun. Efficient joint segmen­

tation, occlusion labeling, stereo and flow estimation. In ECCV, 2014.

[28] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual informa­

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):328–341,

2008.

[29] Panos Koutsovasilis, Christos Kalogirou, Christos Konstantas, Manolis Maroudas,

Michalis Spyrou, and Christos D. Antonopoulos. Achee: Evaluating approximate com­

puting and heterogeneity for energy efficiency. Parallel Computing, 73:52–67, 2018.

Parallel Programming for Resilience and Energy Efficiency.

[30] Koichiro Yamaguchi, David McAllester, and Raquel Urtasun. SPS ­ Stereo. https:

//github.com/siposcsaba89/sps­stereo, 2014.

[31] Peter Lindstrom. ZFP documentation. https://zfp.readthedocs.io/en/

release0.5.3/index.html, 2018.

[32] National Institute of Standards and Technology. Matrix Market. https://math.

nist.gov/MatrixMarket/, 2007.

[33] Boeing Computer Services. BCSSTM27: BCS Structural Engineering Ma­

trices Buckling analysis, symmetric half of engine inlet from Boeing jet­

liner. https://math.nist.gov/MatrixMarket/data/Harwell­

Boeing/bcsstruc4/bcsstm27.html.

[34] University of Kentucky. BFW398A: Bounded Finline Dielectric Waveguide. https:

//math.nist.gov/MatrixMarket/data/NEP/bfwave/bfw398a.html.

[35] Imperial College. IMPCOL A: Chemical engineering plant models Heat exchanger

network. https://math.nist.gov/MatrixMarket/data/Harwell­

Boeing/chemimp/impcol_a.html.

[36] Peter Lindstrom. Error distributions of lossy floating­point compressors. October 2017.

[37] G.H. Golub and C. Reinsch. Singular value decomposition and least squares solutions.

Numerische Mathematik, 14(5):403–420, March 1970.

https://github.com/siposcsaba89/sps-stereo
https://github.com/siposcsaba89/sps-stereo
https://zfp.readthedocs.io/en/release0.5.3/index.html
https://zfp.readthedocs.io/en/release0.5.3/index.html
https://math.nist.gov/MatrixMarket/
https://math.nist.gov/MatrixMarket/
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc4/bcsstm27.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc4/bcsstm27.html
https://math.nist.gov/MatrixMarket/data/NEP/bfwave/bfw398a.html
https://math.nist.gov/MatrixMarket/data/NEP/bfwave/bfw398a.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/chemimp/impcol_a.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/chemimp/impcol_a.html

Bibliography 65

[38] G. Golub andW. Kahan. Calculating the singular values and pseudo­inverse of a matrix.

In Milestones in Matrix Computation, 2007.

[39] J. H. Wilkinson and C. Reinsch. Handbook for automatic computation. vol ii, linear

algebra. Mathematics of Computation, 27:134–151, 1973.

[40] Mathematics Source Library C & ASM. Singular Value Decomposition.

http://www.mymathlib.com/matrices/linearsystems/singular_

value.html, 2004.

[41] Goran Flegar, Florian Scheidegger, Vedran Novaković, Giovani Mariani, Andrés E

Tom ́ s, A Cristiano I Malossi, and Enrique S Quintana­Ortí. Floatx: A c++ library

for customized floating­point arithmetic. ACM Transactions on Mathematical Software

(TOMS), 45(4), December 2019.

[42] Goran Flegar, Florian Scheidegger, Vedran Novaković, Giovani Mariani, Andrés E

Tom ́ s, A Cristiano I Malossi, and Enrique S Quintana­Ortí. FloatX. https:

//github.com/oprecomp/FloatX, 2019.

[43] Wikipedia contributors. Conjugate gradient method. [Online; accessed 30­April­2021].

[44] Georgia Institute of Technology. BCSSTK14: BCS Structural Engineering Ma­

trices Roof of the Omni Coliseum in Atlanta. https://math.nist.gov/

MatrixMarket/data/Harwell­Boeing/bcsstruc2/bcsstk14.html,

1982.

[45] Boeing Computer Services. NOS3: Lanczos with partial reorthogonalization ­ Finite

element approximation to biharmonic operator on a rectangular plate with one side

fixed and the others free. https://math.nist.gov/MatrixMarket/data/

Harwell­Boeing/lanpro/nos3.html, 1982.

[46] Boeing Computer Services. NOS5: Lanczos with partial reorthogonalization 3 story

building with attached tower. https://math.nist.gov/MatrixMarket/

data/Harwell­Boeing/lanpro/nos5.html, 1982.

http://www.mymathlib.com/matrices/linearsystems/singular_value.html
http://www.mymathlib.com/matrices/linearsystems/singular_value.html
https://github.com/oprecomp/FloatX
https://github.com/oprecomp/FloatX
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk14.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk14.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos3.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos3.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos5.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos5.html

	Acknowledgements
	Abstract
	Table of contents
	Abbreviations
	Introduction
	Scope of Thesis
	Contribution

	Structure of paper

	Background
	Error Injection
	Lossy Compressors
	SZ
	ZFP

	Metrics
	Frobenius Norm
	PSNR
	Compression Ratio

	Stereo Vision Matching - SPS
	Introduction
	Methodology
	Parameter Configuration

	Evaluation
	Challenges
	Conclusion

	Matrix Multiplication
	Introduction
	Methodology
	Parameter Configuration

	Evaluation
	Float approximation
	Lossy Compressors
	Integer approximation

	Conclusion

	Singular Value Decomposition
	Introduction
	Methodology
	Parameter Configuration

	Results
	Error patterns in decomposed matrices
	Reconstructed Images
	Effect of Lossy Compressors on Images

	Conclusion

	Conjugate Gradient
	Introduction
	Methodology
	Parameter Configuration

	Results
	Counter-example

	Challenges
	Conclusion

	Conclusion
	Summary
	Keypoints
	Discussion

	Bibliography

