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ABSTRACT 

Retaining walls are typically considered auxiliary assets within the global transportation 

asset management scheme. However, failure cases to this structure class have attracted more 

attention to retaining wall assets. The possibility of failure also helps validate Moving Ahead for 

Progress in the 21st Century (MAP-21) requirements that transportation agencies develop asset 

management plans. 

Consequently, this thesis represents the development of a framework that combines the 

Analytic Hierarchy Process (AHP) and Markov Chain to rate and predict the future condition of 

retaining walls respectively. Based on the Field Survey of candidate retaining walls, the research 

uses AHP for hierarchical configuration and pair-wise comparison of retaining wall elements (and 

sub-elements) – to generate relative weights. This process of relative weighting ultimately lends 

towards individual wall condition rating scores. This score, together with transition probabilities 

derived from historical condition data forms the basis of the dynamic service life prediction using 

the Markov chain.   

Keywords: Retaining walls, Markov chain, AHP, Asset Management, Transportation agencies 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

From time immemorial, there has always existed a viable relationship between the success 

and progress of human society and the availability of public physical infrastructure (Uddin et al., 

2013). In the American case study within the global context, the situation is not any different. 

Hence, the battle to restore the long-lost glory in the infrastructure realm has never been direr 

considering the devastating effect on the country's economy and its ability to be globally 

competitive (ASCE 2017; Ellingwood 2005). According to the American Society of Civil 

Engineers (ASCE) infrastructure report card (2017), the country's physical infrastructure is fast 

aging, as at the last audit, it stands at D+. While this overall rating masks specific critical aspects, 

it presents America's infrastructure's general fast deteriorating condition as a system. However, 

this comprehensive rating does not accurately depict the exact picture as it is an aggregation of 

different infrastructure categories ranging from Bridges to Ports. Out of all these categories, a 

significant and often neglected category is missing – Earth Retaining Structures. 

Based on the Moving Ahead for Progress in the 21st Century Act (MAP-21), there is a 

need for state Departments of Transportation (DOTs) and other agencies to develop strict and 

performance-based programs for transportation assets and other assets along transportation 

infrastructure corridors. As such, some transportation agencies are now beginning to incorporate  
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Retaining wall management, being one of the visibly missing assets from the periodical 

infrastructure report card in their asset management programs. 

1.2 Retaining wall  

As one typical type of asset along transportation corridors, retaining wall (RW) is defined, 

by the National Highway Institute (NHI), as "a wall which makes an angle of 70 degrees or more 

with the horizontal and retains earth" (Brutus and Tauber, 2009). Being a critical geotechnical 

asset of a functional transportation system, retaining walls resist the lateral or other forces from 

soil, rock, and other mass to assist in the transportation functions of roads and bridge networks. 

The possibility of failure of these structures due to age-induced deterioration and the attendant 

effect on the host transportation network underlines how important it is for them to feature in 

transportation asset management programs (AASHTO, 2011; Lawal, 2017). Such a program that 

seeks to understand, track, and monitor the static and dynamic patterns of retaining wall systems 

thus becomes imperative to be put in place to ensure the safe operation of transportation systems. 

 

Figure 1.1: Typical retaining wall geometry (NYSDOT RW Inventory and Inspection Program) 

 



3 
 

 

Historically, retaining wall failures are relatively rare and are not often catastrophic 

(AASHTO, 2011), but recent incidents have called for the need for an effective management 

system (Hearn, 2003). The National Park Service, an agency of government responsible for 

maintaining thousands of miles of paved roads, oversees numerous subsidiary roadway features – 

including retaining walls. Retaining walls in this context are considered secondary assets but are 

nonetheless significant contributors to public safety and overall accessibility of the NPS road 

networks (DeMarco et al., 2010).  

1.3 Condition rating  

In the United States, transportation infrastructure asset management captures the 

development of modern data collection technologies, inspection techniques, and condition 

assessment methods of facilities (Schofer et al., 2010). There is no universally adopted condition 

rating technique, as the procedure varies for different agencies and departments of transportation. 

However, most transportation agencies assess structural performance through visual inspection-

based structure condition states (Fragopol and Liu, 2007). There is also the anticipation that most 

of the agencies with inventory and inspection programs use a numerical rating that relies solely on 

a single-digit number to measure the overall condition of the retaining walls (Gabr et al., 2018). 

This single rating could potentially mask critical components of the retaining wall that are deficient 

and do not project the complete assessment of the condition of the earth retaining structures (Gabr 

et al., 2018). Notable examples are the 1- 7 system used by the New York City Department of 

Transportation (Brutus and Tauber, 2009) and Pennsylvania Department of Transportation 

(Gerber, 2012), the good, fair, poor system used by the Oregon Department of Transportation 
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(Brutus and Tauber, 2009), and the 1-10 rating scale utilized as a part of the Retaining Wall 

Inventory and Condition Assessment Program (WIP) of the National Parks Services (NPS) 

(DeMarco et al., 2010), the 1-4 rating system proposed by (Butler et al., 2016). 

 

 

 

 

 

 

Figure 1.2: The earth retaining structure condition rating procedure (Butler et al., 2016) 

1.4 Service life prediction 

The growing degradation concern for retaining walls, just like other physical infrastructure 

systems, has encouraged the development of numerous computer-aided tools to predict the service 

life of structures (Marchand and Samson, 2009). Thompson et al. (2012) defined performance 

measures upon which infrastructure life prediction relies to include four distinct arguments. These 

are: when the asset is performing below agency standards, and rehabilitation seems to be the most 

viable alternative; when the asset is in a state where the risk of sudden failure is imminent; when 

the asset is living its extended life, after rehabilitation; and when each element that makes up the 

asset has its own set of preservation actions. With these in mind, coupled with the cost, labor-

intensiveness, and subjectivity of visual inspection of structures such as bridges once every two 
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years, there exist the need for a system that can effectively predict the dynamic condition and 

service life of civil structures (Chang et al., 2003).  

1.5 Problem Statement 

In September 2003, the retaining wall at the eastern end of the bridge on Jefferson Street 

on-ramp to I-40 West Davidson County, Tennessee, failed suddenly. Although there were no 

injuries or significant damage to approaching vehicles, the sudden collapse led to the closure of 

the existing ramp to traffic. The attendant effect of the closure led to the establishment of a detour 

and lost downtime. The post-failure assessment revealed that the last scheduled inspection was 

done two years prior - albeit to the overpass bridge alone. This event, though isolated, reveals the 

problem with the lack of systematic tally and rating of retaining wall components which are 

principal contributors to the safety and functionality of roadway systems. As a result, these 

structures' condition, performance, and reliability are mainly unknown, and eventually, the 

required preventive maintenance plans and associated budgets are difficult to schedule. These 

ultimately embed severe threats to public safety and roadway operation in Tennessee. This 

problem aligns with the realities of the tight maintenance and rehabilitation budget DOTs have to 

contend with yearly in the face of numerous projects.  

Thus, there is the need for a system that can help identify and prioritize maintenance action 

of retaining walls, make in-state condition ratings, and predict the active service life. The result is 

an expectation of better decision-making, resource allocation, and overall improved asset 

management practices for transportation agencies.  
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1.6 Purpose of the Research 

This thesis is part of a UTC team's effort to build a comprehensive, searchable inventory, 

rating, and performance prediction system of retaining walls for the State of Tennessee, a project 

funded by the Tennessee Department of Transportation. Therefore, the overarching goal of this 

thesis was to develop a model for retaining wall condition rating assessment and dynamic service 

life prediction based on the current state rating. It is essential for management that a retaining wall 

system can predict the future state based on its current condition. 

The in-state condition rating forms the basis of future prediction efforts. The rating uses 

the Analytic Hierarchy Process – a technique that helps aggregate the ratings of the different 

components of a wall based on each element's relative weights. The prediction model uses the 

Markov chain to exhibit the stochastic nature of retaining wall condition changes.  

The specific objectives identified in achieving this are: 

1. To identify sample retaining walls in locations within Tennessee; 

2. To provide an Analytic Hierarchy Process (AHP) based condition rating system for 

retaining walls considering key characteristics; 

3. To develop a Markov Chain-based structure deterioration model to estimate the retaining 

walls' service life and dynamic condition (ii). 

1.7 Scope of the Research 

While part of the broader research aim involves developing a GIS-based mapping system, 

showing locations and attributes of retaining wall structures in Tennessee, this thesis focuses on 

condition rating and service-life prediction. The scope is realized in a step-wise manner through: 

1. Field survey of identified retaining walls; 
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2. Using AHP multi-criteria decision-making tool in generating relative weight of RW 

attributes; 

3. Applying the weighted attributes and field survey result in condition rating;  

4. Subsequent stochastic modeling of the deterioration using the principles of the Markov 

chain. 

1.8 Research Approach 

The research aims to develop an integrated AHP and Markov Chain-based condition rating 

and deterioration model. Therefore, to achieve the broad research goal, the approach entails 

reviewing past literature and subsequent application of findings to retaining wall case studies 

within Tennessee. 

Literature Review 

A comprehensive review of literature in different areas of infrastructure asset management 

using varied sources, including journals, books, and the worldwide web. The review takes place 

to synthesize information related to best practices and current models in infrastructure asset 

management. More specifically, the literature review addresses the following areas in terms of past 

research work done as it relates to the topic: 

1. Retaining wall types, defects, and failure modes; 

2. Infrastructure Asset management; 

3. Multi-criteria Decision Making (MCDM) in Asset Management; 

4. Stochastic Modelling; 

5. Analytic Hierarchy Process; 

6. Markov-Chain for Stochastic Modeling of Civil Infrastructure. 
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Data Collection 

Information on retaining wall history is sourced from Wall owners, primarily the Tennessee 

Department of Transportation, being the area under study. A questionnaire was designed and 

forwarded to engineers in the four regions within the State of Tennessee. This questionnaire helps 

in aggregating unavailable data relating to the construction and maintenance history of the 

surveyed walls. Retaining wall information is also collected from a geotechnical database provided 

by the Tennessee Department of Transportation, TDOT. This database serves as the first point of 

call. The location information is derived and subsequently plugged into google earth for additional 

pre-survey information such as geographical coordinates, height, and length. 

Development of condition rating scale, AHP model, and Markov chain 

This process begins with establishing rating criteria, condition rating scale and develops an 

Analytic Hierarchy Process model for weight assignments and eventual condition rating. The next 

stage is developing a Markov Chain-based deterioration model of the selected retaining walls for 

the dynamic service-life prediction.  

1.9 Thesis Structure 

This thesis consists of six chapters.  

Chapter 1 represents the introduction and generally sets the tone for the entire body of 

work. The chapter's research background, problem statement, purpose, scope, and thesis 

structure are all defined.  

Chapter 2 presents the results of a comprehensive review of past literature.  

Chapter 3 explains the methodological approaches to achieving the research goals, with 

specific entries for equipment, case studies, and applied methods.  
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Chapter 4 discusses the results and outcomes of the research. 

Chapter 5 contains the summary and conclusions drawn, the references used to prepare 

the thesis, and the appendices follow. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This research seeks to address the problems in retaining wall asset management as part of 

a broader transportation asset management plan using AHP and Markov chain concepts. While 

these separate approaches have been used extensively in modeling different transportation assets 

in terms of deterioration and resource prioritization, there has not been broad joint applicability of 

both methods for Retaining walls. Thus, this chapter summarizes the previous works that apply 

these concepts within the confines of infrastructure asset management.  

2.2 Retaining Wall Asset Management  

A Retaining wall, otherwise known as Earth Retaining Structures (ERS), is any structure 

designed and constructed to offer stabilization to an otherwise unstable soil mass through the 

provision of lateral support (AASHTO, 2003). Retaining walls, just like other transportation assets, 

requires management in the form of inspection, maintenance, and repair to achieve its functional 

purpose and to ensure longevity. However, unlike bridges, pavements, and signages, there is no 

broad applicability of Asset Management techniques to ERS. Asset management broadly shares 

similar fundamental concepts and can be achieved through the three stages of Information 

collection, data analytics, and policy-making (Brutus & Tauber, 2009). 
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1. Informational stage: this consists of all the processes that enable asset managers to identify the 

assets that are most in need of action (maintenance, repair, or even closure) to avoid further 

deterioration or sudden failure. This stage also typically involves developing a comprehensive 

database where condition information and other data can show. 

1. Analytical stage: This stage is where the data from the database can be analyzed to make 

reliable forecasts of cost, service life, and failure risk of the assets under consideration. 

2. The policy-making stage essentially is the phase where information turns into data-driven 

policy actions. These actions could be in the form of a review of standard specifications or 

assessing conditions appropriate for using the different assets. 

These stages, according to Brutus and Tauber (2009), can be shown in Figure 2.1 below: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Stages of Asset Management of ERS (Brutus and Tauber, 2009) 

Effective infrastructure asset management, while not a myth, remains challenging to 

achieve for public agencies. Development of infrastructure objectives, management of different 

stakeholders with varying interests, and establishment of a uniform alignment between set 
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objectives, situation, and intervention represents some of the critical challenges associated with 

infrastructure asset management (Schraven et al. 2011). Uddin et al. (2013), in their book on Public 

Infrastructure Asset Management, talked about the lack of systemic planning for operational 

maintenance and rehabilitation of public infrastructure. He noted how important it is for life-cycle 

analysis through condition prediction and deterioration and performance management to ensure 

optimal treatment at the right time using the suitable method. Figure 2.2 shows the analysis below: 

 

Figure 2.2: Life-cycle cost streams for infrastructure analysis (Brutus and Tauber, 2009) 

Although it has been established that most of the asset management processes are 

applicable across the different transportation infrastructures, there exists a significant limitation of 

current systems in its consideration of geotechnical issues (Stanford et al., 2003). This leads us to 

analyze the current practice for retaining wall asset management through a review of associated 

literature. 
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2.3 Current State of Practice 

Outside of Tennessee, many highway agencies have expanded their infrastructure asset 

management to accommodate earth retaining structures. Below is a synthesis of some DOTs 

regarding their current adaptability and approach regarding retaining wall management. There are 

about 18 of these agencies and DOTs with varying degrees of progress in their Inventory and 

Inspection. The summary is in a table, and an additional explanation is provided on each DOT's 

current state of practice. 

Table 2.1: Agencies with Inspection Programs (Gabr et al. 2018; Brutus et al. 2011) 

 

Agency 

With 

inventory 

OR an 

inspection 

program 

With 

inventory 

AND 

inspection 

program 

With 

inventory 

AND 

inspection 

program in an 

asset 

management 

system 

With only 

accessible 

guidance 

manuals 

AND/OR 

inspection 

forms Rating scale 

Alaska DOT X --- --- --- --- 

British Columbia Ministry of 

Transportation X X X --- --- 

California DOT X --- --- --- --- 

City of Cincinnati X X X --- --- 

Colorado DOT X --- --- --- --- 

FHWA and NPS  X X X X 1-10 

Kansas DOT X X --- --- --- 

Maryland DOT X --- --- --- --- 

Minnesota DOT X --- --- --- --- 

Missouri DOT X --- --- --- --- 

New York City DOT X X --- X 1-7 

New York State DOT X X --- X 1-7 

Oregon DOT X X --- --- Good/Fair/Poor 

Pennsylvania DOT X X X --- 2-8 

VicRoads Technical Consulting 

for Victoria Australia X X X X 1-4 

Nebraska Department of Roads --- --- --- X 0-9 

Ohio DOT --- --- --- X Yes/No 

Utah DOT --- --- --- X Yes/No 
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Indiana Department of Transportation 

Khedekar et al. (2019) "Creation of Statewide Inventory for INDOT's Retaining walls" 

developed geotechnical asset management, specifically focusing on retaining walls for the state. 

In doing this, it was necessary to identify the challenges that had to be overcome in building an 

inventory of the structures. For instance, many of the dated structures were not documented in 

terms of construction history and locations. Overcoming this database difficulty meant that a new 

system had to be developed that could smartly store the vital data - and this was achieved through 

the use of ArcGIS collectors. The data collection process included fieldwork where trained 

inspectors were deployed to identified locations to examine walls for defects, take pictures, and 

input defects and wall ratings in the database. 

Alaska Department of Transportation 

Thompson (2017), in the "Geotechnical asset management plan: technical report" for 

Alaska DOT, identified in line with federal regulations condition rating categories. While the 

FHWA (2017) broadly used the good, fair and poor system, the Alaska DOT utilizes a five-

category condition rating system with two different fair and poor condition ratings, respectively, 

in addition to 'good'. Typically, a score of 100 is assigned to assets in condition 1, i.e., good, while 

0 is assigned when the asset is in its worst possible state, i.e., condition state 5. Despite the dollar 

value of Alaska's soil slopes and earth retaining structure, the department does not have a 

comprehensive inventory of geotechnical assets, with significant performance gaps in the existing 

partial inventories. 

 

 



15 
 

Idaho Department of Transportation 

MSE walls, predominantly used in bridges and along highways in Idaho, were surveyed as 

part of the state's overall asset management program. It was essential to preselect a list of attributes 

upon which the database would be built. These include location, wall dimensions, wall type and 

functionality, historical data, structural data, drainage. The wall information was generally difficult 

to locate owing to the lack of record-keeping, with predominantly most of the information 

available coming from a region known for the building of MSE walls in recent years. It was also 

realized that Unmanned Aerial Vehicle (UAV) could also help photograph areas that inspectors 

would otherwise not be able to reach (Sharma et al., 2019). 

Colorado Department of Transportation 

The Colorado Department of Transportation has a built asset management program for 

ancillary transportation assets, including retaining walls, sound walls, and other geotechnical 

assets. The program was formulated within a year to improve public mobility, safety, and 

performance through corrective actions. However, the retaining wall component of the asset 

management program was integrated with the state's bridge management program and cascaded to 

the National Bridge Inventory (NBI) system level. It is worth noting that the data collection and 

inventory development and overall management of the retaining wall assets were carried out using 

hand-held web-based mobile devices (Vessely et al., 2015). 

North Carolina Department of Transportation 

In 2014, North Carolina State DOT developed a retaining wall inventory and assessment 

system (NCDOT, 2015). This was eventually published as part of efforts towards incorporating 

retaining walls into inventory and inspection programs of all transportation agencies (Butler et al., 
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2016). NCDOT developed a systematic means of cataloging retaining wall assets along highways, 

including the condition assessment of the structures. This was done as part of the organization's 

efforts towards efficient retaining wall maintenance, rehabilitation, and replacement priorities 

supporting the "Moving Ahead for Progress in the 21st Century Act", MAP-21. 

New York State Department of Transportation 

In its Retaining wall inventory and inspection program, the New York State Department of 

Transportation (NYSDOT) established how essential asset inventory data is to maintain the 

validity of the asset management program. A vast majority of the approach taken by the DOT is 

similar to other state transportation agencies, including the types of data collected. However, the 

agency uses a different overall condition rating scale of 1-4, with 1 representing a wall in a new to 

a good state and 4 denoting a wall in a critical to severe condition. The inventory program also 

accommodates a risk rating component based on wall condition, age factor, failure consequence, 

AADT factor, and height factor. The risk score obtained from a simple multiplication of the listed 

input helps classify the walls of either low risk, moderate risk, or elevated risk (NYSDOT, 2018). 

Minnesota Department of Transportation 

The Minnesota Department of Transportation was one of the DOTs at the forefront of 

developing an inventory and inspection program for retaining wall asset management, catching the 

wave in 2013. Through a transportation research synthesis (TRS 1305), the agency sought to 

understand what other DOTs were doing and approaches taken to develop their different 

management plans. This was done to understand the needed inspection guidelines, essential 

attributes, criteria, methods, performance measures, and risk management strategies that could 

optimally serve the needs of MnDOT (TRS, 2013).  
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2.4 MCDM in Infrastructure Asset Management 

Multi-Criteria Decision-Making methods have been in use since the 18th century 

(Zavadskas et al., 2015). In retaining wall management, just like other infrastructure asset 

management, there exists the need for critical decision-making, frequently coming in a 

multidimensional manner. Since all the retaining walls in a state cannot be surveyed, priorities 

would have to be set using specific criteria. The contribution of the different attributes to the 

condition rating is not equal, leading to the assignment of weights. In this vein, this section reviews 

practices related to how these multi-criteria decisions have been made scientifically over the years 

in infrastructure management, highlighting the options available with their strengths and 

limitations, respectively.  

Kabir et al. (2014) reviewed different MCDM approaches as applied to different 

infrastructure class types (e.g., bridges and pipe), and prevalent intervention (e.g., repair and 

rehabilitate). The paper focused on such approaches as the Weighted sum model (WSM), 

Weighted product model (WPM), Compromise Programming, Analytical Hierarchy Process 

(AHP), etc. However, the different approaches shared similar underlying mathematical principles 

of assigning values for each criterion and alternative and ultimately outputting a total score of the 

multiplication of weights and assigned values. The application area trend showed AHP to be the 

most widely used approach among the considered methods for all application areas ranging from 

water resources to bridges and buildings. 

Niekamp et al. (2015), in their paper titled "A multi-criteria decision support framework 

for sustainable asset management and challenges in its application," presented a case for analytical 

decision support for management of industrial assets in the face of multiple objectives. The 

research underscored the importance of factoring both Life cycle assessment and Life cycle costing 
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in defining the sustainability criteria for asset management. It ultimately presented a framework 

that includes criteria and alternatives identification, choice of MCDM approach, alternatives 

scoring, and finally result in comparison, considering the input from major stakeholders. Again, 

among the considered approaches, Analytical Hierarchy Process remains the most prominent.  

 

 

 

 

 

 

 

Figure 2.3: MCDA framework (Niekamp et al. 2015) 

 

Niekamp et al. (2015) further x-rayed the challenges associated with the application of 

MCDM frameworks. Data availability and formatting mainly manifests in inconsistent data or 

even sometimes an absolute lack of it. Criteria and weighting resulting from different stakeholders' 

involvement can pose a challenge due to subjectivity and difficulty to agree on some overall 

consents. 

Schraven et al. (2011), in their case study of the Dutch provincial agency, showed that 

infrastructure objectives are at the heart and core of achieving effective asset management. 

Specifically, this devolved to mean evaluation criteria are derived from the goals of the 
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infrastructure management program. Ultimately, it is shown that infrastructure objectives need to 

be monitored and evaluated based on prevailing changes in the infrastructure situation. The paper 

also revealed the decision-making challenges in infrastructure asset management, citing cases 

relating to aligning decision areas, difficulty articulating objectives, and challenges of managing 

multiple stakeholders. 

Torres-Machi et al. (2015) analyzed the different economic, technical, and environmental 

considerations in Pavement management decision-making. With sustainability being the theme, it 

becomes essential for pavement managers to integrate these factors in evaluating available 

maintenance alternatives over the pavement's life cycle. The research shows the different methods 

explored to assist transportation agencies and researchers in incorporating sustainability into 

pavement management. Similarly, varying forms were considered with their inherent merits and 

disadvantages. Strikingly, Analytic Hierarchy Process (AHP) seems to be encouraged when the 

alternatives being considered are small (a threshold of seven or eight advised). The choice of AHP 

is due to the complexity that results from the pair-wise comparison of large alternative sets. 

MCDM was used to analyze the taxi fleet's sustainable strategies in Beijing based on 

economic, policy, and environmental factors within a life-cycle analysis framework. In the 

research carried out by Cai et al. (2017), results showed the Multi-criteria Decision Analysis 

(MCDA) capability for taxi implementation utilizing available technologies as applied explicitly 

to Beijing. This research was conducted using data collection and questionnaire survey, life-cycle 

assessment, impact assessment, and ultimately multicriteria decision analysis. The MCDA 

considered three suitable methods for analyzing the data based on best to worst scenario rankings. 

These methods, namely, Technique for Order of Preference by Similarity to Ideal Solution 
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(TOPSIS), Simple Additive Weighting (SAW), and Elimination and Choice Expressing Reality 

III (ELECTRE III).  

Tscheikner-Gratl et al. (2017) compared side-by-side five MCDM methods (ELECTRE, 

AHP, WSM, TOPSIS, and PROMETHEE) in an integrated rehabilitation management system 

using a case study. Given the inherent differences between the methods, the results obtained 

were not equal. Results also revealed that criteria definition and score scaling influence the 

results far greater than the choice of the MCDM method. Consequently, the decision of the 

method to use for rehabilitation planning is more dependent on the available resources and data. 

Thus, serving to say that in cases where data quality is low and available resources in terms of 

the workforce are greatly limited, analysts should defer the choice to the most straightforward 

method. AHP and WSM are usable without any advanced programming skills and are quickly 

advised in this case. 

The Analytic Hierarchy Process 

Amongst the MCDM processes, the AHP is one of the most straightforward and most 

widely adopted approaches (Belton 1986; Velasquez & Hester 2013; Mulliner et al. 2016;). The 

Analytic Hierarchy Process, AHP, as Saaty (1987) explored, focuses on modeling different 

problem structures that could achieve a hierarchic configuration through pair-wise comparisons. 

Thus, there is an overarching objective for every hierarchy from which the criteria and sub-criteria 

descend. The author sampled different examples in the paper ranging from an application to 

politics, as in the case of the Finland parliament, to decide on a college for a prospective 

undergraduate student. The case studies considered were based on a fundamental scale, as shown 

in Table 2.2. 
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Table 2.2: The Fundamental Scale (Saaty, 1987) 

Intensity of importance 

on an absolute scale 

Definition Explanation 

1 Equal importance Two activities contribute 

equally to the objective 

3 Moderate importance Experience and judgment 

slightly favor one activity 

over another 

5 Essential or strong 

importance 

Experience and judgment 

slightly favor one activity 

over another 

7 Very strong importance An activity is strongly 

favored and its dominance 

demonstrated in practice 

9 Extremely important The evidence favoring one 

activity over another is the 

highest possible order of 

affirmation  

2,4,6,8 Intermediate values 

between the two adjacent 

judgments 

When compromise is 

needed 

Reciprocals If activity i has one of the 

above numbers assigned 

to it when compared with 

activity j, then j has the 

reciprocal value when 

compared with i 
 

Rationals Ratio arising from the 

scale 

If consistency were to be 

forced by obtaining n 

numerical values to span 

matrix 

 

In a study conducted by Smith et al. (1997), AHP was used to select bridge materials as 

part of the decision-making process for some states. Different project stakeholders ranging from 

state DOT Engineers to local highway officials were interviewed to find their material preferences 
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and ultimately model these individual choices to give an overall decision. The team achieved the 

evaluation through the succinct definition of objective, decision-makers, criteria such as 

maintenance requirements to the material's lifespan, and material options ranging from steel to 

reinforced concrete. Results ultimately affirmed how decision modeling using AHP could be used 

in representing material choices of a select group of decision-makers. 

Wang, Liu et al. (2008), in its paper titled "An integrated AHP-DEA methodology for 

bridge risk assessment," used a fusion of the technique with Data Envelopment Analysis (DEA) 

in evaluating bridge risks for hundreds of thousands of bridge structures in the United Kingdom. 

The author used AHP in projecting the different bridge priorities in terms of their overall risk 

scores based on Multiple Criteria Decision Making (MCDM). The criteria considered were: 

• Safety of the general public concerning its continued use. 

• The functionality of the bridge structures is based on how well it serves the public. 

• Sustainability of both expenditure and workload. 

• Effect of the systems on the environment. 

These criteria were subsequently assigned weights determined by a top manager in charge 

of bridge maintenance projects, with a total of 20 bridges making the shortlist as alternatives 

(Wang, Liu, et al. 2008). 

A sequel to bridge infrastructure risk assessment is the possibility of replacement action 

for select defaulting candidates. As a result, Saito (1987) examined the application of the Analytic 

Hierarchy Process to making priorities on bridge replacement projects. In his paper, the author 

used the technique to rank bridges based on specific criteria such as structural condition, remaining 

service life, road narrowing, deck width, service/cost, and approach condition. It is essential to 

carry out qualitative risk and reliability evaluation on case study structures to see the physical 
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extent of defects (Lawal, Jimoh, et al., 2017). The six criteria were compared and assigned values 

based on perceived relative importance. These were then followed by ranking the project 

alternatives based on the defined criteria and comparing them. However, to apply this method on 

a larger scale, judgments and preferences of more decision-makers would have to be incorporated 

as against that of a single researcher (Saito 1987). 

AHP was used in network-level infrastructure maintenance decision-making in 

determining the weighting of some preselected decision-making factors in a study conducted by 

(Li, Ni et al., 2018). The technique was explicitly applied to network-level pavement maintenance 

decision-making, considered five maintenance-related factors: pavement performance, pavement 

structure strength, traffic loads, pavement age, and road grade. The research selected these factors 

were through a review of past literature, a survey of experts' opinions, and an analysis of database 

information. All of the results from the decision-making process were subsequently subjected to 

sensitivity analysis to determine the factors with the most significant effects on the decision from 

both cost and service-life perspectives. 

Analytic Hierarchy Process has, over time, proven to be a multicriteria decision-making 

tool in different spheres and has found its applicability in supporting both subjective and objective-

based choices in infrastructure projects with social impact (Álvarez, Moreno, et al., 2013). 

According to the authors, AHP offers an excellent technique in assessing the effects of different 

stakeholders' participation in civil infrastructures projects.  

The AHP, according to (Saaty 1987), is thus a "structured technique for organizing and 

analyzing complex decisions based on mathematics and psychology". This multicriteria decision-

making tool affords individuals and organizations a systematic way to allocate and strategically 
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solve a wide array of problems. The technique employs an approach that is divided into three 

categories, namely 

• hierarchic design, 

• methodology for the establishment of priorities, and 

• pair-wise comparisons of the different possible outcomes or alternatives. 

2.5 Stochastic Modeling in Infrastructure Asset Management 

Mathematical modeling represents the quantitative description of a natural phenomenon, 

and can either be deterministic or probabilistic (Pinksy and Karlin 2010; Bender 2012). The term 

“stochastic” originates from the Greek language, and means “random or probable”. Directly 

opposite this is “certain or deterministic”. To put things into perspective, a “deterministic model 

predicts a single outcome from a set of circumstances, while a stochastic model predicts a set of 

possible outcomes weighted by their likelihoods, or probabilities” (Pinsky and Karlin 2010). 

Consider the case of a classical statistical theory with random variables 𝑋0,......, 𝑋𝑛, i.e. 

P (𝑋0𝜖𝐴0,......, 𝑋𝑛𝜖𝐴𝑛) = ∏𝑛
𝑖 = 0 P (X 𝜖𝐴𝑖), 

where X is defined as a generic random variable with the same distribution as the 𝑋𝑖(Guttorp 

2018). “A stochastic process is thus a family of random variables 𝑋𝑡, where t is a parameter 

running over a suitable index set T” (Pinksy and Karlin 2010).  

P (𝑋0𝜖𝐴0,......, 𝑋𝑛𝜖𝐴𝑛) 

= P {𝑋0𝜖 𝐴0}∏𝑛
𝑖 = 1 P (𝑋𝑖 𝜖𝐴𝑖| 𝑋0𝜖𝐴0,.....𝑋𝑖−1𝜖𝐴𝑖−1), 

Stochastic models and processes can be grouped into different categories and differ majorly 

based on their mathematical properties. Amongst the various types of these random processes, 
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discrete and continuous-time Markov chains are the most commonly used in modeling randomly 

evolving systems (Latouche and Ramaswami 1999).  

Andrews et al. (2014) developed a stochastic model for railway track asset management. 

Given that the research found the geometry degradation process to be dependent on the 

maintenance history of the track, this becomes a problem that can model mathematically. The 

paper focused on predicting the present state of the track geometry and life-cycle costs using the 

Petri net method. The model was built off deterioration, inspection, intervention, and renewal 

processes, respectively. The model represented the deterioration process empirically to reflect the 

geometry's condition ranging from its pristine state to its worst possible form. Transition rate data 

are generated and executed to analyze deterioration time distribution through a Monte Carlo 

simulation of the model. 

Morcous and Akhnoukh (2006) applied stochastic modeling to infrastructure deterioration, 

specifically concrete bridge decks. Since stochastic modeling can be either state-based or time-

based (Mauch and Madanat 2001), the paper presented a close comparison between a state-based 

(using Markov chain) model and a non-parametric time-based model to guide decision making. 

Due to traffic loads, the reinforced concrete (RC) decks were selected as the most impacted part 

of a bridge structure. Based on the database condition rating system, bridge decks were assigned 

an initial condition vector P (0) and are assumed to have a future condition P(t) after (t) number 

of transition periods (Collins 1972). 

P(t) = P (0) * 𝑃𝑡 

where, P =   
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𝑝66 1 − 𝑝66 0 0 0 0
0 𝑝55 1 − 𝑝55 0 0 0
0 0 0 1 − 𝑝44 0 0
0 0 0 𝑝33 1 − 𝑝33 0
0 0 0 0 𝑝22 1 − 𝑝22

0 0 0 0 0 1

 

For the state-based (Markov chain) deterioration model, 

• P represents the Transition Probability Matrix (TPM) of order (n x n) where (n) is the 

number of condition ratings, with transition probabilities for all likely condition changes 

over a given period, based on the governing deterioration parameters.  

• This model assumes that the future condition of the deck only depends on its initial/most 

current state.  

On the contrary, the time-based model reflects the probability distribution of facility 

transition times based on set deterioration criteria. Ultimately, the research shows that choosing 

which type of data is used relies heavily on the kind of data available and the degree of accuracy 

decision-makers require. 

Straub (2009) developed a generic framework for stochastic modeling of deterioration 

processes using Bayesian networks. The developed model was then applied to case studies of 

fatigue crack growth involving time-variant random variables and fatigue crack growth as a 

stochastic process. Results revealed that the Bayesian framework could provide a computationally 

robust approach to stochastically monitor the condition and reliability of structural members that 

are prone to deterioration. However, the limitation of this method is in the number of random 

variables it could take in and the intense computation time required. 

Mishalani and Madanat (2002) presented a stochastic approach that considers the 

limitations of causal variables in developing a time-based discrete-state model. The most crucial 
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assumption in the model is a probabilistic relationship between deterioration indicators and the 

actual deterioration process. The transition probability is determined from the duration model.  

Markov Chain 

Performance and Uncertainty modeling represents an essential aspect of asset management. 

Quantitative models could determine overall condition performance and life expectancies based 

on quantitative models (Thompson et al., 2012). These condition performance measures could be 

continuous, meaning condition changes on a smooth scale, or discrete, meaning condition changes 

on a step-wise scale. The next level is only dependent on the current status and independent of 

every other level (Thompson et al., 2012).  

 

Figure 2.4: How asset performance changes over time (Thompson et al.,2012) 

For simplicity, discrete models are often adopted, where uncertainty is estimated based on 

a constant transition probability from one condition state to the other in a year. This type of model 

is referred to as a Discrete Markov model or simply a Markov model (Thompson et al., 2012). 

Markov models are applied extensively in deterioration modeling due to their ability to capture the 

uncertainty and time-dependence of the deterioration process (Morcous and Mirza 2003). 

The Markov chain approach represents the most popularly adopted stochastic modeling 

technique for dynamic condition prediction of infrastructure facilities (Agrawal 2009). It has been 
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applied extensively to a host of different civil infrastructure deterioration modeling ranging from 

bridge management (Jiang and Sinha 1989; Cesare et al. 1992; Scherer and Glagola 1994; Madanat 

and Ibrahim 1995; Ng and Moses 2014); to pavement management (Camahan et al., 1987; Butt et 

al., 1994, Kidando et al., 2017); to railway assets management (Wellalage 2015); similarly, to 

wastewater systems (Jeong et al., 2005; Baik et al., 2006).  

Markov Chain for Service Life Prediction 

Markov chain, being an advanced statistics method, is a widely adopted method for 

modeling deterioration and predicting the remaining life of civil structures (Cesare et al. 1993, Li 

et al. 2014). In its simplest form, a Markov process describes a system in multiple states, with the 

likelihood of each state moving to the next state based on fixed probabilities (Li et al., 2014). These 

probabilities are termed as Transition probabilities, within the context of a finite Markov process, 

and given a trial t (t = 1, 2..., T) depends only on the outcome of the preceding trial (t-1) in every 

stage within the process (Lee et al. 1965). 

Service life represents one of the most critical factors for infrastructure asset managers to 

predict (Thompson et al. 2012), evidently in bridge asset management (Jiang & Sinha 1989); water 

distribution network management (Sempewo and Kyokaali 2016); wastewater systems 

management (Baik et al. 2006). In all of these, there are shared commonalities in the development 

of a typical Markov model framework. These include: 
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States Definition 

Markov chain as applied to performance prediction is hinged on defining states in terms of 

condition rating and obtaining the probabilities of these conditions to transition from one state to 

the other (Jiang and Sinha, 1989). Typically, the Markov chain (Discrete Markov) assumes that 

the conditional probability does not change over time (Baik et al., 2006).  

Therefore, for all states i and j and all t, P (𝑋𝑡+1 = j│𝑋𝑖 = i) is independent of t as expressed 

in Eq.:  

P (𝑋𝑡+1 = j│𝑋𝑖 = i) =𝑝𝑖𝑗 

where 𝑝𝑖𝑗 = transition probability given the system is in State i at time t, it will be in a state j at 

time (t+1). 

Madanat and Ibrahim (1995) explored the statistical appropriateness of the Markov chain 

process for deterioration modeling, as it applies to bridges.  

Transition Probabilities 

These probabilities are typically represented in a m x m matrix form termed transition 

probability matrix, P, where m is the number of condition states (Lee et al. 1965; Jiang and Sinha, 

1989; Baik et al., 2006). Estimation of transition probabilities typically requires historical 

condition assessment data for existing systems (Baik et al., 2006). However, in building the 

deterioration model of a system without historical condition rating data, safe assumptions can be 

made, and a fixed transition probability matrix can be used (Morcous et al., 2003; Thompson et 

al., 2012). In defining transition probabilities, the following assumptions are made: 

• That discrete transition time intervals exist through a constant population, i.e., transition 

probabilities do not vary with age) (Collins 1972); 
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• That probability of transition only depends on the current facility condition and not on the 

previous condition states (Collins 1972); 

• Transition probabilities assume that the condition can either stay the same or deteriorate to 

the next stage directly following only, e.g., an asset's condition can stay in condition state 

four or decline to 3 only. This also means that an asset cannot possibly go from a bad 

condition state to a good condition state, barring rehabilitation (Madanat et al. 1997); 

In the NYSDOT bridge inspection case study, condition ratings of 7 to 1 were defined, 

translating to seven Markovian states with each number corresponding to a condition state. Based 

on the assumptions of transition probabilities, the bridge system's condition rating would decrease 

with an increase in bridge age (Agrawal et al., 2008). 

If each condition rating represents a condition state, i.e., condition rating 7 represents state 

1, and rating 5 represent state 3; therefore, the transition probability matrix, P for this bridge 

system, is defined by the Equation (Agrawal et al. 2008):  

P = 

𝑝(1) 𝑞(1) 0 0 0 0 0
0 𝑝(2) 𝑞(2) 0 0 0 0
0 0 𝑝(3) 𝑞(3) 0 0 0
0 0 0 𝑝(4) 𝑞(4) 0 0
0 0 0 0 𝑝(5) 𝑞(5) 0
0 0 0 0 0 𝑝(6) 𝑞(6)
0 0 0 0 0 0 1

 

In the above equation, p (1) is the probability of transition from state 1 (condition rating 7) 

to state 1 (condition rating 7), i.e., the bridge remains in the same state. Similarly, q (1) is the 

probability of transition from state 1 (condition rating 7) to state 2 (condition rating 6). Since based 

on the assumptions, the bridge could only either remain in the same state or transition to the next 

state, q (1) = 1 - p (1). This is subsequently extended to all of the possible changes. 
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Service Life Prediction 

After estimating the transition probabilities, the service life prediction can then be 

conducted using Eq. and Eq. (Jiang and Sinha 1989). 

𝑄𝑡= 𝑄0* 𝑃𝑡 

where 𝑄𝑡 can be obtained by multiplying the initial state vector 𝑄0 and the transition 

probability matrix P raised to the power of t, i.e., after year 1, t = 1. 

E (t, P) = 𝑄𝑡 * 𝑅′ 

Here, R can be the vector of condition ratings, and 𝑅′ is the transform of R, therefore the 

estimated condition rating by Markov chain is defined by E (t, P) (Jiang and Sinha 1989).  
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

This research aims at providing a framework for retaining wall in-state condition rating 

and future condition prediction during its service life. It was necessary to comb through past 

literature to develop rating criteria for the different retaining wall types. Based on the developed 

criteria, the condition rating of the walls is carried out. This rating subsequently forms the input 

for the dynamic condition prediction part. The flowchart of activities is presented in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.1: Diagram showing the activity process flow 
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3.2 Case Study and Scope 

In recognition of the inherent limitation of surveying all the walls in the state, it was 

necessary to develop screening criteria to aid the selection of candidate walls for the research aim. 

With this in mind, the walls selected for the survey were based on such factors as: 

1. Route: Wall should be along State routes or Paved Tennessee interstate; 

2. Accessibility: Wall should be easily accessible and should not pose a significant hazard to 

the survey team; 

3. RW dimensions: The height of the wall must be greater than or equal to 6ft.; 

4. Relation to TN transportation asset: Wall should be of interest to TN Department of 

Transportation, which effectively eliminates the need to survey privately-owned walls; 

5. Importance: Potential wall failure should significantly affect TN roads through damage to 

highway assets and injury or death to the patronizing public. 

 
 

Figure 3.2: Sample retaining wall locations are taken from ArcGIS 
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3.3 Equipment 

The DJI Phantom 4 drone (Figure 3.3) is primarily used for data collection in this study. 

Considering the exposure of the data collection team to traffic hazards, traffic control safety gear 

such as cones, stop/slow signs, as well as reflectors are used in controlling traffic during the entire 

process. Hand-held measuring tape and electronic distance meter were also available to collect 

measurement data relating to dimensions. 

 

Figure 3.3: DJI Phantom 4 drone 

The data collected are in picture and video formats, with a complimentary side of visual inspection. 

3.4 Computational Tool 

R statistical package is used in implementing the Analytic Hierarchy Process and Markov 

Chain simulation components of the thesis.  

3.5 Data Collection Sites 

The study includes 31 data collection locations across the different regions in the state of 

Tennessee. Even though about 92 locations were identified during the preliminary data mining 

process using TDOT geotechnical database and google earth, most of these locations were left out 

due to data collection limitations and traffic control challenges. These locations are reflected in 

Table 3.1. 
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Table 3.1: Some Data Collection Sites with geographical coordinates and other wall data 

S/N

o. Location 

Geographical 

coordinates 

Lengt

h (ft) 

Avera

ge 

heigh

t (ft) 

Maxim

um 

height 

(ft) Retaining wall type 

1 

308 Ashland 

Terrace, 

Chattanooga, TN 

35°07’13” N 

85°17’07” W   215’4” 7’9” 9’8” Mortared Stone Gravity wall, GM  

2 

7244-7254 

E Brainerd Rd., 

Chattanooga, TN 

35°01’01” N 

85°10’01” W   149’2” 5’9” 8’7” Concrete Block, GB  

3 

TN-153, 

Off Bonny Oaks 

Dr., 

Chattanooga, TN 

35°04’52” N 

85°12’18” W   692’5” 

14’9”

  22’4” Concrete Cantilever Wall, CL  

4 

1301 

Washington 

Avenue, 

Knoxville, TN  

35°59’03” N 

83°54’50” W  

192’2”

  7’2” 11’3” 

Mechanically Stabilized Modular 

Block Facing, MS  

5 

Hall of Fame Dr.

, Knoxville, TN 

35°59’07” N 

83°55’07” W   144’5” 7’1”  10’7” Concrete Block, GB 

6 

James 

White Pkwy, 

Knoxville, TN  

35°57’54” N 

83°54’10” W   

1173’

10” 

15’7”

  27’3” Concrete Cantilever Wall, CL  

7 

N 

Broadway Ramp 

to I40, 

Knoxville, TN 

35°58’52” N 

83°55’07” W   

952’7”

  16’9” 24’9” Mechanically Stabilized wall, MS  

8 

Briley Pkwy, 

Nashville, TN  

36°08’04” N 

86°49’13” W   

723’6”

  15’6” 23’9” 

Prefabricated Modular Geosynthetic

 Facing Wall, MG  

9 

Northpoint Boule

vard, 

Chattanooga, 

TN  

35°07’47” N 

85°14’03” W 235’  7.3’  13.5’  Concrete Block, GB  

10 

Riverside Dr, 

TN-58, 

Chattanooga, TN 

35°03'04.53"N 85°17'5

2.89"W   272’8” 7’11” 12’2”  Concrete Gravity, CIP  

11 

Signal Mountain 

Rd., 

Chattanooga, 

TN  

35°05'02.25"N 85°19'2

6.56"W   

978’4”

  16’5” 21’7”  

Prefabricated Modular Gravity Wall

s  

12 

1727 

Dayton Blvd, 

Chattanooga, TN 

35°04'51.44"N 85°19'0

8.19"W  198’4” 7’6” 10’2”  Concrete Block, GB  

13 

222, Baker 

Street, 

Chattanooga, 

TN  

35°03'44.78"N 85°17'5

9.94"W   

110’2”

  

13’5”

  17’2”  Concrete Cantilever, CL  

14 

918-

988 Cherokee Bl

vd, Chattanooga, 

TN  

35°03'44.78"N 85°17'5

9.94"W 80’4” 15’4” 19’3”  Concrete Cantilever, CL 

15 

Elm Hill Pike, 

Nashville, TN  

36°09'02"N 86°41'34"

W 197’ 12’3” 14’7” 

Prefabricated Modular Gravity Wall
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3.6 General Framework Development 

Several data sources are required to develop an effective deterioration model for retaining 

walls. These data sources range from aggregated historical inspection data, weather data, and 

construction record data. (Davies et al. 2001). However, due to the dearth of historical records, 

alternative data sources had to be sought. The process employed in achieving this is presented in 

the flowchart shown in Figure 3.4. 

For the deterioration model, condition rating data and information related to the history of 

each retaining wall asset are needed. Condition rating data are typically sourced through field 

surveys and subsequent utilization of AHP. Although the quality of this data is subjective, the 

research team underwent thorough training to optimize the output of the field survey and visual 

inspection. 
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Figure 3.4: Flow chart of the dynamic service life prediction process using Markov chain 
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Development of Rating Criteria 

Retaining walls vary in type, and thus the specific metrics upon which their condition rating 

would be based might slightly differ. In recognition of this, different rating criteria were developed 

for the different types of retaining walls identified. These rating criteria provide the much-needed 

detailed guidelines for each wall element's rating scores under consideration. For instance, the 

rating criteria for a Concrete gravity wall will not be the same as Dry stone gravity wall, owing to 

the difference in elements. However, minimum retaining wall elements have to be incorporated in 

defining rating criteria (Brutus and Tauber, 2009). This, together with the standard structure of a 

typical retaining wall (RW) rating criteria, is shown in the following tables:  
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Table 3.2: Minimum primary elements to include in wall condition ratings (FHWA NPS WIPG) 

WALL 

TYPE 

Piles 

and 

Shafts Lagging 

Anchor 

heads 

Wire 

Geosyn. 

Facing Bin Concrete Shortcrete Mortar Brick 

Wall 

foundation 

materials 

Anchor, 

Tie back x x x       X 

Anchor 

Micropile x  x       X 

Anchor, 

Sheet Pile x  x       X 

Bin, 

Concrete     x     X 

Bin, Metal     x     X 

Cantilever, 

Concrete      X    X 

Cantilever, 

Soldier 

Pile x x        X 

Cantilever, 

Sheet Pile x         X 

Crib, 

Concrete     x     X 

Crib, 

Metal     x     X 

Crib, 

Timber     x     X 

Gravity, 

Brick        x x X 

Gravity, 

Concrete      X    X 

Gravity, 

Dry Stone          X 

Gravity, 

Gabion    x      X 

Gravity, 

Mortared 

Stone        x  X 

MSE, 

Geosyn    x      X 

MSE, 

Precast      X    X 

MSE, 

Segmental 

Block         x X 

MSE, 

Wire Face    x      X 

Soil Nail             x     X 

 

Where x = wall elements that should always be rated for a given wall type 
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Table 3.3: Minimum primary elements to include in wall condition ratings (FHWA NPS WIPG) 

WALL 

TYPE 

Wall 

drains 

Architectural 

facing 

Traffic 

Barrier Road/Sidewalk Slope Vegetation 

Other 

Secondary 

elements Performance 

Anchor, 

Tie back x  o O O   x 

Anchor 

Micropile x  o O O   x 

Anchor, 

Sheet Pile x  o O O   x 

Bin, 

Concrete x  o O O   x 

Bin, Metal x  o O O   x 

Cantilever, 

Concrete x  o O O   x 

Cantilever, 

Soldier 

Pile x  o O O   x 

Cantilever, 

Sheet Pile x  o O O   x 

Crib, 

Concrete x  o O O   x 

Crib, 

Metal x  o O O   x 

Crib, 

Timber x  o O O   x 

Gravity, 

Brick x  o O O   x 

Gravity, 

Concrete x  o O O   x 

Gravity, 

Dry Stone x  o O O   x 

Gravity, 

Gabion x  o O O   x 

Gravity, 

Mortared 

Stone x  o O O   x 

MSE, 

Geosyn x  o O O   x 

MSE, 

Precast x  o O O   x 

MSE, 

Segmental 

Block x  o O O   x 

MSE, 

Wire Face x  o O O   x 

Soil Nail x   o O O     x 

 

Where o = 1 of 2 primary elements required depending on location observed 
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Figure 3.5: Typical Structure for RW rating criterion narrative (Brutus and Tauber, 2009) 

 

After reviewing the different rating criteria adopted by different agencies and 

transportation agencies and considering the specific need of this research, a 1-4 rating scale was 

adopted. This is summarized in Table 3.2 below. 

Table 3.4: Retaining wall element rating scale 

Rating 

number Narrative 

1 
Severe- wall element is in a deplorable state 

and action is highly recommended 

2 Poor- wall element’s function is impaired 

3 Fair- wall element is in a fair condition 

4 
Good - wall element is in an overall good 

state 
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Development of Field Survey Form 

It is imperative that a field survey form reflects the developed rating criteria and allows 

condition ratings of individual elements to be achieved. 

3.7 AHP Development Methodology 

Analytic Hierarchy Process method is proposed in this study, where pair-wise comparison 

values are assigned based on the collected field data from ten different retaining walls within 

different regions in Tennessee, USA. A typical AHP implementation is shown in Figure 3.7 below 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: AHP implementation steps 

Description of Steps 

• Creating a pair-wise comparison matrix: where m is the number of evaluation criteria 

considered. For this case, the primary evaluation criteria are Structure, Auxiliary, 

Surrounding settings, and Service Functionality/Wall Overall performance. Therefore, m 

is 4. Similarly, sub-criteria are defined, and a pair-wise comparison is applied. Based on 

the criteria and sub-criteria involved, there is the need to calculate their relative weights. 

Therefore, the criteria weight vector, w, is estimated for all the evaluation criteria. This is 

calculated using the Equation.  

Pairwise comparison 

matrix for criteria 

Matrix of option 

scores 
Ranking the options 

• v = S . w 

• w = weight 

vector from A 

• s = score 

vector from B 

• 𝐵(𝑗) j = 1,,m • 𝐴𝑚𝑥𝑚 
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w = 
∑ 𝑎̅𝑗𝑘

𝑚
𝑖=1

𝑚
, where  𝑎̅𝑗𝑘 = 

𝑎𝑗𝑘

∑ 𝑎𝑙𝑘
𝑚
𝑙=1

 

𝑎𝑗𝑘= preference level of two compared criteria based on Saaty (1987). 

m = number of evaluation criteria 

• Computing the matrix of option scores: The option score matrix represents a matrix S of 

dimension n x m. Here, n represents the number of options used in the two-part rating 

system. For every entry of matrix S, the score of the ith option is taken relative to the jth 

criterion. 

• Option Ranking: This is based on Equation. 

v = S. w 

where v represents the global score assigned by the AHP to the ith option. 

In this research, the system used is two-part, which essentially entails individual wall 

element rating and an aggregated overall rating. This is further shown in the Figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: AHP-weighted two-part rating system used in the study 
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The AHP hierarchy is developed in Figure 3.9 to show the goal, the set criteria, and the 

attributes.  

 

Figure 3.8: The AHP hierarchy for element importance weighting of retaining wall 

3.8 Markov Chain Approach to Dynamic Service Life Prediction 

The Markov chain as applied to retaining wall dynamic service life prediction is based on 

concepts of defining states in terms of retaining wall condition ratings and obtaining the 

probabilities of the wall condition changing from one state to another. These probabilities are 

defined in a matrix form called the probability matrix or transition probability matrix of the 
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Markov chain. This is thus incumbent upon knowing the present state of the retaining walls. These 

states represent the initial state by which future conditions can be predicted through multiplications 

of transition probability matrix and initial state vector.  

P (𝑋𝑡+1 = 𝑖𝑡+1│𝑋𝑡 = 𝑖𝑡, 𝑋𝑡   1 = 𝑖𝑡      1,……., 𝑋1= 𝑖1, 𝑋0 = 𝑖0) 

= P (𝑋𝑖+1 = 𝑖𝑡+1 │𝑋𝑡 = 𝑖𝑡 ) 

 

Since the probability of moving to the next state only depends on the present state, 

irrespective of the previous states, the Markov chain transition is shown in figure 3.10 below. 

 

Figure 3.9: Markov chain state transitions (Wang & Shen, 2013) 

Markov chain-based structure deterioration modeling is used to estimate the service life of 

the retaining wall systems identified. Based on the defined targeted condition, the resulting time 

point for the target is estimated. This time point ultimately makes way for the prediction of the 

remaining service life of the retaining walls. Pictorially, this is depicted by way of Figure 3.11. 
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Figure 3.10: Service life prediction using Markov Chain (Lounis et al., 1998) 

 

Development of Transition Matrix 

Jiang and Sinha (1989) proposed a non-linear programming objective function to estimate 

transition probabilities for different age group categories. The programming function is shown in 

the Equation below: 

min ∑ │ 𝑌(t) − 𝐸(𝑡, 𝑃) │𝑁
𝑡=1  

where N = the number of years in one age group, 

I = number of unknown probabilities 

P = a vector of length I equal to [p (1), p (2), …., p (I)] 

Y(t) = average of condition ratings at time t, based on regression function 
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𝐸(𝑡, 𝑃) is derived through multiplication of the state vector at any time, t  (𝑄(𝑡)) by the transform 

of vector of the condition ratings (𝑅′), i.e.,  𝐸(𝑡, 𝑃) = 𝑄(𝑡)* 𝑅′ 

Similarly, 𝑄(𝑡) is estimated by multiplying Initial state vector 𝑄(0) by the transition probability 

matrix raised to the power t i.e., 𝑄(𝑡) = 𝑄(0)* 𝑃𝑡 

Description of Steps 

• Initial Condition Data: Based on the result of the field survey element rating and AHP, 

final condition rating data are obtained, which serves as the basis for dynamic service life 

prediction of the retaining walls.  

• Transition probabilities: This represents the percentage of the retaining walls that will 

transit from the current condition state to a worse condition state, say within one year. For 

the research, the condition rating scale used is a 4-1 system, where 4 represents the best 

possible start, and 1 is the state just before rehabilitation will be required.  

Therefore, P's transition probability matrix is a 4 x 4 matrix based on this four-point scale. 

P = 

𝑝44 𝑝43 𝑝42 𝑝41

𝑝34 𝑝33 𝑝32 𝑝31

𝑝24 𝑝23 𝑝22 𝑝21

𝑝14 𝑝13 𝑝12 𝑝11

 

Under a normal circumstance, i.e., without maintenance or rehabilitation action, the 

retaining wall condition can only stay the same or deteriorate for every given year within the useful 

life of the wall. Therefore, and are all equal to 0. This effectively reduces the matrix to: 

P = 

𝑝44 𝑝43 𝑝42 𝑝41

0 𝑝33 𝑝32 𝑝31

0 0 𝑝22 𝑝21

0 0 0 𝑝11
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Also, part of the founding assumptions was that since the deterioration conditions are 

considered yearly (1year interval), it would be an anomaly for a retaining wall in a condition state, 

say 4, to jump to 2 after a year. This thus means that, are all equal to zero. The resulting matrix is: 

P = 

𝑝44 𝑝43 0 0
0 𝑝33 𝑝32 0
0 0 𝑝22 𝑝21

0 0 0 𝑝11

 

However, given the lack of historical data on retaining wall condition, reasonable 

assumptions had to be made, consistent with relevant literature (Morcous et al., 2003; Morcous et 

al., 2006) and the NCHRP Report 713 on Estimating the Life Expectancies of Highway Assets, for 

which retaining wall assets are a part of (Thompson et al., 2012). 

The transition probabilities, are given in Table 3.3 

Table 3.5: Markov Transition Probability Matrix 

     

State Today (i.e., t = 0) 

State probability in one year (i.e., t = 

1) 

4  3  2  1  

4  0.93  0.07  0  0  

3  0  0.92  0.08  0  

2  0  0  0.9  0.1  

1  0  0  0  1  

 

This table shows that after year 1, there is a 93% probability of the retaining walls in condition 

state four as of today, i.e., year 0, remaining in state 4. Similarly, from basic probability, = 1- = 

7% (i.e., there is a 7% probability that the retaining walls in condition state four as of today will 

transition to the next lower condition state, 3. This same principle applies to retaining walls in 

condition states 3, 2, and 1 today and is the logic behind the populated transition probability matrix. 
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• Markov chain simulation: The Markov chain simulation follows the derivation of 

Transition Probability Matrix, TPM. The codes used are linked in the Appendix section of 

this thesis. 

• Statistical analysis with regression model: Following Jiang and Sinha (1989), a regression 

model showing the performance curve of the retaining walls is generated. The objective of 

this is to serve as a means to validate the Markov chain predicted values and also to show 

on its own the relationship between retaining wall age and their corresponding condition 

rating. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

4.1 Relative weighting of wall elements 

The AHP technique is applied to estimate the different weights of the wall elements' 

performance. The hierarchical structure is shown in Figure 4.1 below. 

 

Figure 4.1: Hierarchical Structure utilized in Relative weighting 
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The primary contributors (attributes) to the overall condition rating of the individual walls 

are defined at the topmost level, just beneath the objective of the Analytic Hierarchy Process. 

Based on the Analysis, the pair-wise comparison of these attributes (namely structure, auxiliary, 

surrounding setting, and service functionality) are presented in Table 4.1. 

Table 4.1: Pairwise Comparison of Main criteria 

   pairwise comparison 

matrix A  

normalized matrix A norm  criteria weight 

vector w  

Structure  1.00  5.00  9.00  3.00  0.608  0.547  0.409  0.662  0.556  

Auxiliary  0.20  1.00  7.00  0.33  0.122  0.109  0.318  0.074  0.156  

Surrounding 

setting  0.11  0.14  1.00  0.20  0.068  0.016  0.045  0.044  0.043  

Service 

functionality 0.33  3.00  5.00  1.00  0.203  0.328  0.227  0.221  0.245  

sum  1.64  9.14  22.00  4.53   1   1   1  1   1  

 

The pairwise comparison matrix from the table above is then modified and presented in 

Table 4.2. 

 

 

 

 



52 
 

Table 4.2: Modified Pairwise Comparison Matrix of Main Criteria 

   pairwise comparison 

matrix A  

normalized matrix A norm  criteria weight 

vector w  

Structure  1.00  5.00  9.00  3.00  0.608  0.547  0.409  0.662  0.556  

Auxiliary  0.20  1.00  7.00  0.33  0.122  0.109  0.318  0.074  0.156  

Surrounding 

setting  0.11  0.14  1.00  0.20  0.068  0.016  0.045  0.044  0.043  

Service 

functionality 0.33  3.00  5.00  1.00  0.203  0.328  0.227  0.221  0.245  

sum  1.64  9.14  22.00  4.53   1   1   1  1   1  

 

Subsequently, each wall element’s components are compared in a pairwise manner, 

forming the basis of the third-level of the hierarchy shown in figure above. 

For Structure, the pairwise comparison matrix for the sub-elements are presented in Table 

4.3: 
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Table 4.3: Pairwise Comparison Matrix for Criterion Structure 

  

Pairwise comparison 

matrix   

Normalized matrix B_1  Option scores 

s_1  

Weight sub-

elements 

according to 

main 

criteria  

Wall foundation 

material  

1.00  3.00  7.00  0.600  0.600  0.600  0.600  0.334  

Mortar  0.33  1.00  5.00  0.200  0.200  0.200  0.200  0.111  

Block/Brick & 

Concrete  

0.14  0.20  1.00  0.200  0.200  0.200  0.200  0.111  

sum  1.48  4.20  13.00  1  1  1  1  0.556  

 

For Auxiliary, the sub-elements are also compared in a pairwise manner and the matrix is 

presented in Table 4.4. 
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Table 4.4: Pairwise Comparison Matrix for Criterion Auxiliary 

  

Pairwise comparison 

matrix   

Normalized matrix B_2  Option scores 

s_2  

Weight sub-

elements 

according to 

main criteria  

Drainage  1  1  9  0.474  0.474  0.474  0.474  0.074  

Slope  1  1  9  0.474  0.474  0.474  0.474  0.074  

Architectural 

facing  0.11  0.11  1.00  0.053  0.053  0.053  0.053  0.008  

sum  2.11  2.11  19.00    1.00  1.00    1.00 1.000  0.156  

 

For surrounding settings, the sub-elements are compared and the pairwise comparison 

matrix is shown in Table 4.5. 

Table 4.5: Pairwise Comparison Matrix for Criterion Surrounding Settings 

  Pairwise comparison 

matrix  

Normalized matrix 

B_3  

Option scores s_3  Weight sub-

elements 

according to 

main criteria  

traffic barrier  1.00  0.20  0.17  0.17  0.167  0.007  

vegetation  5.00  1.00  0.83  0.83  0.833  0.037  

sum  6.00  1.20        0.044  
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Overall, the summary of the relative weights as obtained from the AHP analysis is 

displayed in the table 4.6 below. 

 

Table 4.6: Summary of Relative Weight for all elements 

 Relative Weight 

Performance rating  100% (1) 

Structure 0.556 

Wall foundation material 0.334 

Mortar 0.0556 

Block/Brick/Stone 0.0555 

Concrete 0.111 

  

Auxiliary 0.156 

Drainage 0.074 

Slope 0.074 

Architectural facing 0.008 

  

Surrounding settings 0.043 

Vegetation 0.007 

Traffic Barrier 0.037 

Service Functionality  

Wall Overall Performance 0.245 

 

Overall Condition Rating = Sum of (Relative weight of each element * element condition rating)   
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4.2 Retaining wall field inspection 

The team embarked on series of field inspections to collect the needed data for retaining 

wall condition rating. As described in the methodology, an Unmanned Aerial Vehicle UAV was 

used to ensure the effectiveness of the process, considering areas that are difficult to access for 

visual assessment. The result of a typical retaining wall inspection as obtained for this thesis is 

recorded in the field survey form in the form of wall description data, wall measurement data, wall 

location data, and the condition assessment of the wall elements. The condition assessment part, 

being the most important, is designed to reflect the research objectives and carry the elements 

assessed and the ratings assigned. A sample of the inspected retaining walls are included to 

demonstrate and further shed more light on the process that leads to the overall condition rating. 

Retaining wall case study 

The retaining wall on North Broadway Ramp, located in Knoxville, TN, is about 3.4 miles 

away from the University of Tennessee, Knoxville. The wall, being along a ramp leading to a 

major highway, is on a relatively busy route, and safety control gears had to be mounted to ensure 

the safety of the inspection crew. 

Condition assessment of Wall elements 

Based on the AHP, relative weights generated are combined with element rating to generate 

a weighted score for each element. An overall score, which represents the wall condition rating at 

this time, is calculated by summating all the weighted scores. These relationships are shown in the 

form of Equation. 

𝑠′ = w * s 

S = ∑ 𝑠′𝑗
𝑎  



57 
 

Where a = the first element assessed, and j = the last element assessed 

Table 4.7: Condition rating assessment table for retaining wall along N Broadway Ramp 

Element Relative 

weight, w 

Assigned 

rating (1-4), 

s 

Weighted 

score, 𝑠′ 

Wall foundation 

material 0.334 1 0.334 

Mortar 0.0556 1 0.0556 

Block/Brick 0.0555 1 0.0555 

Concrete 0.111 1 0.111 

Drainage 0.074 2 0.148 

Slope 0.074 2 0.148 

Architectural Facing 0.008 3 0.024 

Vegetation  0.007 3 0.021 

Traffic Barrier 0.037 2 0.074 

Overall 

Performance 0.245 2 0.49 

Overall condition rating, S 1.4611 

 

The condition assessments are based on the picture data collected using UAV and 

judgments from visual inspection. To corroborate the judgments, the following figures are 

attached  
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Figure 4.2: Concrete spalling observed on the base of the wall 

 

 

Figure 4.3: Drain at the base of the wall partially clogged 
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Figure 4.4: Upslope with a decently vegetated top 

 

 

Figure 4.5: Drainage channel at the top of the wall clearly defined, albeit with little to no 

blockage 
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Figure 4.6: Concrete Block elements of the wall with significant obvious weathering effect 

 

Figure 4.7: Noticeable presence of efflorescence and moderate-to-wide cracks  
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Figure 4.8: Aerial view of wall showing adjoining traffic and no traffic barrier 

4.3 Condition Rating 

It is necessary to classify the retaining walls surveyed into groups, and this is done based 

on age, using the Age group classification defined in Table 4.8. The output of condition ratings for 

the candidate retaining walls is presented in Table 4.9. 
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Table 4.8: Age group classification for retaining walls  

Age 

group # 

Age 

1 0-6 

2 7-12 

3 13-18 

4 19-24 

5 25-30 

6 31-36 

7 37-42 

8 43-48 

9 49-54 

10 55-60 

11 61-66 

12 67-72 

13 73-78 

14 79-84 

15 85-90 
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Table 4.9: Overall condition states of the 31 surveyed walls, classified by age group 

No. Retaining wall locations  Retaining wall 

age (yrs)  

Overall 

condition 

rating  

Age group 

#  

1 Northpoint Boulevard, Chattanooga, TN 13 2 3 

2 7244-7544 E Brainerd Chattanooga, TN 14 4 3 

3 N Broadway Ramp to I40, Knoxville, TN  15 1 3 

4 1727 Dayton Blvd, Chattanooga, TN  16 3 3 

5 Signal Mountain Road, Chattanooga, TN  18 3 3 

6 6312 Fisk Ave, Chattanooga, TN 16 4 3 

7 6828 Northside Dr. Chattanooga, TN 17 4 3 

8 9303 E Brainerd Rd. Chattanooga, TN 15 4 3 

9 Hall of Fame Drive, Knoxville, TN 19 2 4 

10 

TN-153, Off Bonny Oaks Dr., Chattanooga, 

TN  21 3 4 

11 1301 Washington Avenue, Knoxville, TN 21 3 4 

12 308 Ashland Terrace, Chattanooga, TN  22 2 4 

13 918-998 Cherokee Blvd, Chattanooga, TN  22 3 4 

14 222 Baker Street, Chattanooga, TN  24 3 4 

15 Elm Hill Pike, Nashville, TN  24 2 4 

16 SR-153 S, Chattanooga, TN 22 3 4 

17 US-27 N, Chattanooga, TN 23 3 4 

18 Riverside Drive, TN-58, Chattanooga  27 2 5 

19 1201-1261 Dayton Blvd, Chattanooga, TN 27 3 5 

20 US-27 S, Chattanooga, TN 29 3 5 

21 US-27 S, Chattanooga, TN 26 3 5 

22 US-27 N, Chattanooga, TN 25 3 5 

23 James White Pkwy, Knoxville, TN  31 2 6 

24 Briley Pkwy, Nashville, TN  35 2 6 

25 I-75 N, Chattanooga, TN 35 2 6 

26 I-75 S, Chattanooga, TN 36 2 6 

27 SR-153 S, Chattanooga, TN 38 2 7 

28 1701-1899 Meharry Dr, Chattanooga, TN 45 1 8 

29 6401 Lee Hwy, Chattanooga, TN 47 1 8 

30 4177 Willard Dr. Chattanooga, TN 48 1 8 

31 Birmingham Highway, Chattanooga, TN 49 1 9 
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4.4 Service Life Prediction 

Regression Models 

Regression Statistical Analysis (both Linear and Exponential) is used to derive the 

relationship between the two variables, i.e., Condition rating and Retaining wall age. Based on the 

generated models, the statistical significance of the estimated relationship is assessed. This value 

gives the degree of confidence to which the estimated relationship is close to the actual 

relationship. This analysis is carried out using the MS Office Excel tool.  

The field data is combined with the AHP-generated weights to estimate the condition rating 

of each of the retaining walls. The age of the considered retaining walls is estimated using Google 

Earth Pro's combined resources and the Letting Data history collected from TDOT. While the age 

of the walls could not be ascertained perfectly, this method gives an approximate estimation of the 

age. The Excel output is shown in the figures below and explained: 

1. The coefficient of determination represents a good measure of the overall goodness of fit. 

For the Linear regression model, = 0.5107, which means 51.07% of the variation of the 

independent variable (condition rating) around its mean is explained by the dependent 

variable (age). This simple linear regression plot determined that after approximately 56 

years, the condition state becomes 1 (which is at the point the Retaining wall requires major 

rehabilitation, repair or replacement action to function optimally). 
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Figure 4.9: Simple Linear Regression Fitting 

2. Conversely, for the exponential regression model, the coefficient of determination = 0.469. 

This coefficient means 46.9% of the variation of the independent variable (condition rating) 

around its mean is explained by the dependent variable (age). This exponential plot shows 

that the retaining wall will take approximately 62 years to reach condition state 1 (i.e., 

requires major rehabilitation, repair, or replacement action). 
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Figure 4.10: Exponential least-square fitting 

3. The residuals versus independent variable, i.e., Retaining wall age, is plotted to evaluate 

the normality, linearity, independence of errors, and homoscedasticity assumptions. There 

is no clear pattern from the plot, and most of the points are symmetrically distributed, 

tending to cluster towards the middle of the plot. Hence, these assumptions are generally 

not seriously violated. 
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Figure 4.11: Residual versus age plot  

4. The data distribution is approximately normal, as reflected by the Normal probability plot. 

The data is neither totally skewed to the left nor right and can be easily approximated by a 

straight, diagonal line.  

 

Figure 4.12: Normal Probability Plot 
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Figure 4.13: Line Fit Plot Showing Observed and Predicted values 

Table 4.10: Summary Statistic 

Regression Statistics 

Multiple R 0.714651125 

R Square 0.51072623 

Adjusted R Square 0.49385472 

Standard Error 0.568630118 

Observations 31 

 

ANOVA 

     

  df SS MS F Significance F 

Regression 1 9.788 9.788 30.2715 6.29272E-06 

Residual 29 9.37687 0.32334   

Total 30 19.1649       
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Coefficients 

Standard 

Error 
t Stat P-value Lower 95% Upper 

95% 

Intercept 4.029073152 0.280469 14.3655 1.01874E-14 3.455449477 4.6027 

Retaining 

wall age 

(yrs)  

-

0.054332644 0.009875 -5.502 6.29272E-06 -0.07452959 -0.0341 

  

Markov Model 

The future condition forecast used in the Markov model is based on the equation 

𝑦𝑘= ∑ 𝑥𝑗𝑗 𝑝𝑗𝑘 

Where 𝑦𝑘 is the probability of state k in the next year? 

j = condition state in this year, i.e., j = 4, 3, 2, 1 

𝑝𝑗𝑘 = transition probability from state j to state k 

i.e., for a wall currently in condition state 4, the probability that it will stay in condition state 4 is 

𝑦4 = 𝑥4* 𝑝44 + 𝑥3* 𝑝34+ 𝑥2* 𝑝24 + 𝑥1 * 𝑝14 

where 𝑝14, 𝑝24, and 𝑝34 are zeroes, based on the assumption that the retaining wall could only 

either stay in the same condition, or transit to the next lower condition in any one year. As 

explained in the methodology, the transition probability matrix estimated is shown in Table 4.11 

 

Table 4.11: Markov Transition Probability Matrix used for all wall age group 

   

State Today 

State probability in one year 

4 3 2 1 

4 0.93 0.07 0 0 

3 0 0.92 0.08 0 

2 0 0 0.9 0.1 

1 0 0 0 1 
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Based on this, and using the equation above, the future condition forecast is generated and shown 

in Table 4.12: 

Table 4.12: Future Condition Forecasts Result using the Markov model 

Year  

Percentage by condition state  

4  3  2  1  

0  1  0  0  0  

1  0.930  0.070  0.000  0.000  

2  0.865  0.130  0.006  0.000  

3  0.804  0.180  0.015  0.001  

4  0.748  0.222  0.028  0.002  

5  0.696  0.256  0.043  0.005  

6  0.647  0.284  0.059  0.009  

7  0.602  0.307  0.076  0.015  

8  0.560  0.325  0.093  0.023  

9  0.520  0.338  0.110  0.032  

10  0.484  0.347  0.126  0.043  

11  0.450  0.353  0.141  0.056  

12  0.419  0.357  0.155  0.070  

13  0.389  0.357  0.168  0.085  

14  0.362  0.356  0.180  0.102  

15  0.337  0.353  0.190  0.120  

16  0.313  0.348  0.200  0.139  

17  0.291  0.342  0.207  0.159  

18  0.271  0.335  0.214  0.180  

19  0.252  0.327  0.220  0.201  

20  0.234  0.319  0.224  0.223  

21  0.218  0.310  0.227  0.246  

22  0.203  0.300  0.229  0.268  

23  0.188  0.290  0.230  0.291  

24  0.175  0.280  0.230  0.314  

25  0.163  0.270  0.230  0.337  

26  0.152  0.260  0.228  0.360  

27  0.141  0.250  0.226  0.383  

28  0.131  0.240  0.224  0.406  

29  0.122  0.230  0.220  0.428  

30  0.113  0.220  0.217  0.450  
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31  0.105  0.210  0.213  0.472  

32  0.098  0.201  0.208  0.493  

33  0.091  0.192  0.203  0.514  

34  0.085  0.183  0.198  0.534  

35  0.079  0.174  0.193  0.554  

36  0.073  0.166  0.188  0.573  

37  0.068  0.157  0.182  0.592  

38  0.063  0.150  0.177  0.610  

39  0.059  0.142  0.171  0.628  

40  0.055  0.135  0.165  0.645  

41  0.051  0.128  0.159  0.662  

42  0.047  0.121  0.154  0.678  

43  0.044  0.115  0.148  0.693  

44  0.041  0.109  0.142  0.708  

45  0.038  0.103  0.137  0.722  

46  0.035  0.097  0.131  0.736  

47  0.033  0.092  0.126  0.749  

48  0.031  0.087  0.121  0.761  

49  0.029  0.082  0.116  0.774  

50  0.027  0.078  0.111  0.785  

51  0.025  0.073  0.106  0.796  

52  0.023  0.069  0.101  0.807  

53  0.021  0.065  0.097  0.817  

54  0.020  0.061  0.092  0.827  

55  0.018  0.058  0.088  0.836  

56  0.017  0.055  0.084  0.845  

57  0.016  0.051  0.080  0.853  

58  0.015  0.048  0.076  0.861  

59  0.014  0.046  0.072  0.868  

60  0.013  0.043  0.069  0.876  

61  0.012  0.040  0.065  0.883  

62  0.011  0.038  0.062  0.889  

63  0.010  0.036  0.059  0.895  

64  0.010  0.034  0.056  0.901  

65  0.009  0.032  0.053  0.907  

66  0.008  0.030  0.050  0.912  

67  0.008  0.028  0.047  0.917  

68  0.007  0.026  0.045  0.922  

69  0.007  0.025  0.043  0.926  

70  0.006  0.023  0.040  0.930  
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71  0.006  0.022  0.038  0.934  

72  0.005  0.020  0.036  0.938  

73  0.005  0.019  0.034  0.942  

74  0.005  0.018  0.032  0.945  

75  0.004  0.017  0.030  0.948  

76  0.004  0.016  0.029  0.952  

77  0.004  0.015  0.027  0.954  

78  0.003  0.014  0.026  0.957  

79  0.003  0.013  0.024  0.960  

80  0.003  0.012  0.023  0.962  

81  0.003  0.011  0.021  0.964  

82  0.003  0.011  0.020  0.966  

83  0.002  0.010  0.019  0.968  

84  0.002  0.009  0.018  0.970  

85  0.002  0.009  0.017  0.972  

86  0.002  0.008  0.016  0.974  

87  0.002  0.008  0.015  0.975  

88  0.002  0.007  0.014  0.977  

89  0.002  0.007  0.013  0.978  

90  0.001  0.006  0.012  0.980  

91  0.001  0.006  0.012  0.981  

92  0.001  0.006  0.011  0.982  

93  0.001  0.005  0.010  0.983  

94  0.001  0.005  0.010  0.984  

95  0.001  0.005  0.009  0.985  

96  0.001  0.004  0.009  0.986  

97  0.001  0.004  0.008  0.987  

98  0.001  0.004  0.008  0.988  

99  0.001  0.003  0.007  0.989  

100  0.001  0.003  0.007  0.989  

 

From the table, at approximately 50% (i.e., 0.493) highlighted in yellow, the fraction in the 

severe state reaches 50%. This means approximately 50% would have reached condition state 1, 

and the wall would require rehabilitation, repair, or replacement action to function optimally. This 

coincides with the year 32.  
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For instance, the retaining wall along 1301 Washington Avenue, Knoxville, TN, has a 

condition of 3, and the current age is 21 years. Based on the Markov chain simulation, the retaining 

wall would reach condition state one after approximately 60 years.  

Service life = Current age + age as at condition rating 1 

This means the service life of the said retaining wall is predicted to be 81years. 

 

Figure 4.14: Condition state estimation and service life prediction  

 

 

 

 

 

 



74 
 

CHAPTER 5 

SUMMARY AND CONCLUSION 

5.1 Summary 

Retaining walls typically protect highways through slope retention and grade transition, an 

important asset class in transportation asset management. It suffices to say that when retaining wall 

assets sneeze, the host transportation network catches a cold. This applies because a failure to a 

critical retaining wall along a highway corridor directly affects the highway through the 

obstruction to traffic and even possible damage to the pavement structure. This underlines, in part, 

the need for proper attention to be paid to this class of structure by transportation agencies and 

other concerned stakeholders. 

This thesis proposed a framework primarily implemented in R statistical software, adopting 

Analytic Hierarchy Process and Markov Chain simulation techniques to solve this problem. This, 

together with a complementary field inspection process, forms the basis of the methodology for 

this research. The thought process behind the AHP part of the methodology is that all elements do 

not contribute equally to the overall rating of a wall, as some elements are weightier than others. 

Thus, AHP was used in generating relative weights for all of the elements based on sound 

judgment, literature reviews, and questionnaires.  
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The relative weights, combined with the element ratings obtained from the field survey 

process, form the condition rating. These condition rating values are then passed to the Markov 

chain simulation model to estimate the time in years, t, when the condition rating of the wall 

reaches a poor/severe state, i.e., condition state 1. This knowledge, together with the current age 

of the walls, presents the 'how' to the service life prediction objective of the thesis. 

It was necessary to carry out statistical analysis, and this was done by generating regression 

models (both simple linear and exponential), and comparing the outputs with that of the Markov 

model. Considering the closeness in the values of the service life prediction obtained from the 

models, the result is believed to be fairly accurate for the data size used. 

5.2 Conclusion 

This thesis has achieved its objectives in developing a framework for retaining wall service 

life prediction through the defined methodology. However, it is still noteworthy to point out that 

the estimations were performed under certain assumptions. These include:  

• That it is reasonable to estimate transition probability matrix for retaining wall with no 

historical condition data available (Morcous et al., 2003; Thompson et al., 2012).  

• That the same transition probability matrix exists for all the retaining wall age groups, 

which sometimes is not the case. Although, for the asset class under consideration 

(retaining walls) being without historical condition data, this would fly.  

• The data set obtained and utilized are not large and thus manifested through very low 

coefficient of determination, 𝑟2 in the regression models.  

• The age of the retaining walls was estimated through Google Earth historical imagery.  
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Nevertheless, the framework proposed in this work is readily applicable to future condition 

and service life prediction of retaining walls. 
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# Version: 2.0 

  

  ######################### 

 # Alternatives Section 

 # 

  

   Alternatives: &alternatives 

 # Here, we list all the alternatives, together with their attributes.  

 # We can use these attributes later in the file when defining  

 # preferenceFunctions. The attributes can be quantitative or  

 # qualitative. 

   Scenario A : 

     wall foundation materials: 4 

     mortar: 3 

     block/brick/stone: 3 

     concrete: 2 

     wall drains: 3 

     upslope: 3  

     downslope: 2 

     lateral slope: 3 

     architectural facing: 2 

     traffic barrier: 3 

     vegetation: 3 

     wall overall performance: 4 

   Scenario B : 

     wall foundation materials: 1 

     mortar: 1 

     block/brick/stone: 1 

     concrete: 2 

     wall drains: 2 

     upslope: 3  

     downslope: 2 

     lateral slope: 2 

     architectural facing: 2 

     traffic barrier: 2 

     vegetation: 3 

     wall overall performance: 3 

   Scenario C : 

     wall foundation materials: 1 

     mortar: 2 

     block/brick/stone: 2 

     concrete: 2 

     wall drains: 2 

     upslope: 1  
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     downslope: 2 

     lateral slope: 2 

     architectural facing: 1 

     traffic barrier: 2 

     vegetation: 2 

     wall overall performance: 2 

## # 

## # End of Alternatives Section 

## ##################################### 

##  

## ##################################### 

## # Goal Section 

## # 

##  

##  

 Goal: 

## # The goal spans a tree of criteria and the alternatives 

  name: Rating and identifying retaining wall that needs attention 

   description:> 

     This is a classic single decision maker problem. It models 

     the situation facing by a family that wants to buy a new car. 

  author: Abdulazeez Lawal 

  preferences: 

     # preferences are typically defined pairwise 

     # 1 means: A is equal to B 

     # 9 means: A is highly preferrable to B 

     # 1/9 means: B is highly preferrable to A 

     pairwise  : 

       - ["Structure", "Auxiliary", 5] 

       - ["Structure", "Surrounding setting", 9] 

       - ["Structure", "Wall overall performance", 3] 

       - ["Auxiliary", "Surrounding setting", 7] 

       - ["Wall overall performance", "Surrounding setting", 5] 

       - ["Wall overall performance", "Auxiliary", 3] 

   children:  

      Structure: 

       preferences: 

         pairwise: 

           - ["wall foundation material", "mortar", 5] 

           - ["wall foundation material", "block/brick/stone", 3] 

           - ["Wall foundation material", "concrete", 1] 

           - ["concrete", "mortar", 1] 

           - ["concrete", "block/brick/stone", 1] 

           - ["block/brick/stone", "mortar", 1] 
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       children:  

         wall foundation material: 

           preferences:  

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

         mortar: 

           preferences:  

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

         block/brick/stone:  

           preferences: 

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

         concrete:  

           preferences: 

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives   

     Auxiliary: 

        preferences: 

         pairwise: 

           - ["drainage", "slope", 1] 

           - ["drainage", "architectural facing", 9] 

           - ["slope", "architectural facing", 9] 

       children: *alternatives 

         drainage: 

           preferences:  

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

         slope: 
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           preferences:  

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

         architectural facing:  

           preferences: 

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

     Surrounding setting: 

       preferences: 

         pairwise: 

           - ["vegetation", "traffic barrier", 1] 

       children: *alternatives 

         vegetation: 

           preferences:  

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

         traffic barrier: 

           preferences:  

             pairwise: 

               - ["Scenario A", "Scenario B", 1] 

               - ["Scenario A", "Scenario C", 1] 

               - ["Scenario B", "Scenario C", 1] 

           children: *alternatives 

     Overall performance:     

       preferences: 

         pairwise:  

           - ["Scenario A", "Scenario B", 1] 

           - ["Scenario A", "Scenario C", 1] 

           - ["Scenario B", "Scenario C", 1] 

       children: *alternatives 

 # 

 

 



88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

 

AHP R STUDIO CODE 

 

 

 

 

 

 

 

 

 

 



89 
 

# loading ahp file that is stored in a text file in yaml format  

library(ahp)  

wallAHP <- Load("wallmac.txt")  

  

# print the data tree structure  

library(data.tree)  

print(wallAHP,filterFun = isNotLeaf)  

  

# Calculate priorities  

Calculate(wallAHP, pairwiseFun = PrioritiesFromPairwiseMatrixEigenvalues,  

          scoresFun = PrioritiesFromScoresDefault)  

  

# Visualize and display results  

print(wallAHP, priority = function(x) x$parent$priority["Total", x$name])  

Visualize(wallAHP)  

Analyze(wallAHP)  

AnalyzeTable(wallAHP,   

             variable = "priority",   

             sort = "orig",  

             pruneFun = function(node, decisionMaker) PruneByCutoff(node, decisionMaker, 0.05),  

             weightColor = "skyblue",  

             consistencyColor = "red",  

             alternativeColor = "green")  

  
  

The AHP hierarchy data tree structure for the retaining wall printed using the R statistics codes is 

given in the following:  
  

1 Rating and identifying retaining wall that need attention  

2   ¦--Structure                                              

3   ¦   ¦--wall foundation material                           

4   ¦   ¦--wall materials                                     

5   ¦   °--other structural elements                          

6   ¦--Auxiliary                                              

7   ¦   ¦--drainage                                           

8   ¦   ¦--slope                                              

9   ¦   °--other auxiliary elements                           

10 ¦--Surrounding setting                                    

11 ¦   ¦--vegetation                                         

12 ¦   °--traffic barrier                                    

13 °--Overall performance           

  

Sample results of priority for each wall elements and walls to be ranked are shown below:  

  

                               levelName   priority  

1 Rating and identifying retaining wall         NA  
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2   ¦--Structure                         0.56192181  

3   ¦   ¦--wall foundation material      0.74705283  

4   ¦   ¦   ¦--wall1                     0.65864419  

5   ¦   ¦   ¦--wall2                     0.18517401  

6   ¦   ¦   °--wall3                     0.15618181  

7   ¦   ¦--wall materials                0.13355863  

8   ¦   ¦   ¦--wall1                     0.65864419  

9   ¦   ¦   ¦--wall2                     0.18517401  

10 ¦   ¦   °--wall3                     0.15618181  

11 ¦   °--other structural elements     0.11938853  

12 ¦       ¦--wall1                     0.65864419  

13 ¦       ¦--wall2                     0.18517401  

14 ¦       °--wall3                     0.15618181  

15 ¦--Auxiliary                         0.14593100  

16 ¦   ¦--drainage                      0.47368421  

17 ¦   ¦   ¦--wall1                     0.65864419  

18 ¦   ¦   ¦--wall2                     0.18517401  

19 ¦   ¦   °--wall3                     0.15618181  

20 ¦   ¦--slope                         0.47368421  

21 ¦   ¦   ¦--wall1                     0.65864419  

22 ¦   ¦   ¦--wall2                     0.18517401  

23 ¦   ¦   °--wall3                     0.15618181  

24 ¦   °--other auxiliary elements      0.05263158  

25 ¦       ¦--wall1                     0.65864419  

26 ¦       ¦--wall2                     0.18517401  

27 ¦       °--wall3                     0.15618181  

28 ¦--Surrounding setting               0.04058678  

29 ¦   ¦--vegetation                    0.66666667  

30 ¦   ¦   ¦--wall1                     0.65864419  

31 ¦   ¦   ¦--wall2                     0.18517401  

32 ¦   ¦   °--wall3                     0.15618181  

33 ¦   °--traffic barrier               0.33333333  

34 ¦       ¦--wall1                     0.65864419  

35 ¦       ¦--wall2                     0.18517401  

36 ¦       °--wall3                     0.15618181  

37 °--Overall performance               0.25156041  

38      ¦--wall1                         0.65864419  

39      ¦--wall2                         0.18517401  

40      °--wall3                         0.15618181  
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# This script is for prediction of service life of retaining wall  

# in the state of Tennessee by using Markov chain model  

  

library(readxl)  

library(markovchain)  

library(heemod)  

library(diagram)  

  

# automatically set the working directory  

WD <- getwd()  

if (!is.null(WD)) setwd(WD)  

  

# using available dataset to estimate transition matrix  

#read history condition data from Excel file  

states<-read_excel("states.xlsx")  

  

#estimate transition matrix  

#default Maximum likelihood (ML)estimation method used  

#other methods that may be used include    

#"map", "Bootstrap" or "Laplace"  

estTransMat<-markovchainFit(data = states$conditions,  

                            name = "condStates" )$estimate  

  

#the following commands reverse rows and columns  

estTransMat<-estTransMat[nrow(estTransMat):1, ]  

estTransMat  

estTransMat<-estTransMat[,ncol(estTransMat):1 ]  

estTransMat  

  

#the transition probability matrix estimated based on dummy history data  

  

#             4-Good        3-Fair        2-Poor          1-Severe  

#   

# 4-Good      0.930000    0.07000     0.000000       0.00000000  

# 3-Fair      0.000000    0.920000     0.080000       0.00000000 

# 2-Poor      0.00000000 0.00000000 0.900000       0.100000  

# 1-Severe    0.00000000    0.0000000     0.0000000    1.0000000  

  

  

# The state values  

# 4-Good 3-Fair 2-Poor 1-severe  

conditionsRatings <- c("4","3","2","1")  

as.numeric(conditionsRatings)  

#   

# The transition matrix used below carry over from the estimation results above   

# the estimated transition matrix "estTransMat" will be automatically transferred  



93 
 

# to the object "predState" in the next report  

  

byRow <- TRUE  

transMatrix <- matrix(data=c(0.930000 ,0.07000,0.000000,0.00000000, 

0.000000, 0.920000,0.080000,0.00000000, 0.25000000, 0.00000000,0.00000000, 0.900000, 

0.100000, 0.00000000, 0.0000000, 0.0000000 ,1.0000000 ),  

                      byrow=byRow,nrow=4,  

                      dimnames = list(conditionsRatings,conditionsRatings))  

  

predState <- new("markovchain",states=conditionsRatings,byrow=byRow,  

                 transitionMatrix=transMatrix, name="Retaining Wall Condition")  

  

  

# Make predictions  

t <- 2  

  

# initial state vector,  

# assume initial state is 3 prob1 corresponding to rating 3  

initialState <- t(as.matrix(c(0,1,0,0)))  

  

# estimated state after t years  

estState <- initialState*(predState^t)  

estState  

  

  

# estimated condition ratings by Markovchain at time t  

numRatings <- t(t((as.numeric(conditionsRatings))))  

# estimated condition ratings after t years  

estRatings<-estState %*% numRatings  

estRatings 
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