
AN MPI-BASED 2D DATA REDISTRIBUTION

LIBRARY FOR DENSE ARRAYS

By

Evelyn Namugwanya

Anthony Skjellum Amanda Bienz
Professor of Computer Science Professor of Computer Science
(Chair) (Committee Member)

Michael Ward
Professor of Computer Science
(Committee Member)

AN MPI-BASED 2D DATA REDISTRIBUTION

LIBRARY FOR DENSE ARRAYS

By

Evelyn Namugwanya

A Thesis Submitted to the Faculty of the
University of Tennessee at Chattanooga

in Partial Fulfillment of the Requirements of the
Master of Science in Computer Science

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

August 2021

ii

Copyright © 2021

Evelyn Namugwanya

All Rights Reserved

iii

ABSTRACT

In HPC, data reorganizations of dense arrays are used in parallel applications for perfor-

mance and data-locality compatibility with parallel operation sequences. Data reorganizations

change the arrangement of data across distributed memories. This is achieved through message

passing plus algorithmic re-indexing.

Our primary goal is to generate a library capable of diverse data reorganizations. We aim

for a high-level Application Programming Interface working compatibly with the Message Passing

Interface to accomplish data redistributions in data-parallel applications and libraries, such as in

conjunction with the Polymath matrix-multiplication poly-algorithm library.

We compared performance trends of the Polymath parallel matrix-multiplication library

based on different grid shapes, problem sizes, and numbers of processes when combined with our

reorganization algorithms, producing a choice of “compute as is” or “redistribute then compute.”

We found it more efficient to redistribute data in 37 cases, but, importantly, not in all cases. We

also studied and demonstrated data transpose algorithms.

iv

DEDICATION

I dedicate this work to my family and friends. A special feeling of honor to my loving

parents, Emmanuel and Concepta Maviiri whose love and words of comfort ring in my ears. My

sisters Angel, Jackie, Leticia, Martha and my brothers Vegas, and Ben have never left my side

and are very special. I also dedicate this thesis to my friends at church who have prayed for

me throughout the process. May God Bless you, especially Terry Ruff, Pastor. Mathew, Pastor.

Kwaku and Devone. I dedicate this work and give special thanks to Dr. Maxwell Omwenga for all

his kindness and the technology skills I have learned from him. I dedicate this work to my best

friend Grace Nansamba for being my source of inspiration and having my back throughout the

entire program. You have been my best cheerleader!

v

ACKNOWLEDGMENTS

First and foremost, I would like to praise and thank God, the Almighty, who has granted

blessings, knowledge, opportunity, and the gift of life to me and everyone reading this thesis.

My sincere appreciation goes to my advisor, Dr. Anthony Skjellum, for his exceptional

support, enthusiasm, knowledge, and all opportunities he has given me, which have been vital and

fundamental towards my research and for challenging me with various tasks to learn and grow. Dr.

Skjellum, thank you for being patient with me, and you bring out the best in everyone! I would

also like to extend my appreciation to Derek Schafer, I would not have made it without you! Thank

you for challenging me and teaching me all life coding skills!

I would also like to extend my appreciation to my entire committee Dr. Anthony Skjellum,

Dr. Michael Ward and Dr. Amanda Bienz; thank you for reading my thesis and advising me through

my tasks; I am forever grateful! I thank the University of Tennessee at Chattanooga, Department

of Computer Science, faculty staff for giving me the chance to have a meaningful and outstanding

education and experience. I want to say thanks to the SimCenter staff for providing me apparatus

for my research, Am forever grateful!

I also thank Grace Nansamba for all the support towards my research team. I acknowledge

Dr. Maxwell Omwenga, Dr. Amani Altarawneh, Dr. Joseph Kizza and Dr. Immaculate Kizza for

affirming me whenever I needed support! Lastly, I would like to thank Kim Sapp, thank you for

encouraging me and for all those lovely dresses.

vi

TABLE OF CONTENTS

ABSTRACT . iv

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 2
1.2 Problem Statement and Objectives . 3
1.3 Contributions . 4
1.4 Outline . 5

2. BACKGROUND AND LITERATURE REVIEW . 6

2.1 Data Reorganization Interface . 6
2.2 The fftMPI Library . 6
2.3 Data Transposition . 7
2.4 Poly-algorithms . 8
2.5 Efficient Data Reorganization Research . 8
2.6 Neural Networks Data Reorganization Research 10
2.7 Redistributing Data in Cyclic Blocks . 11
2.8 Summary . 14

3. METHODOLOGY . 15

3.1 Design methodology . 15

vii

3.1.1 Data Grid . 15
3.1.2 Process Grid . 15
3.1.3 Data Mapping . 16

3.1.3.1 Reshaping the Process Grid . 17
3.1.3.2 Additional Examples . 20

3.2 Implementation . 21
3.2.1 Data Layout . 21
3.2.2 Process Layout . 22
3.2.3 Mapping Rules class . 24
3.2.4 Special Rules . 27
3.2.5 RawBlock . 28

3.3 Algorithms . 29
3.3.1 Matrix Transpose . 29

3.3.1.1 Sending Phase . 30
3.3.1.2 Receiving Phase . 31

3.3.2 Resizing the Process Grid . 31
3.3.2.1 Sending Phase . 32
3.3.2.2 Receiving Phase . 32

3.3.3 Second Resizing Algorithm . 33
3.3.3.1 Sending Phase . 34
3.3.3.2 Receiving Phase . 34

3.3.4 Rotating a Matrix by 90 degrees . 35
3.3.4.1 Sending Phase . 35
3.3.4.2 Receiving Phase . 36

3.4 Summary . 36

4. PERFORMANCE EVALUATION . 38

4.1 Experimental Setup . 38
4.1.1 Test Cases . 39
4.1.2 Results Gathered . 40

4.2 Additional Polymath Runs . 41
4.3 Discussion of Results . 42
4.4 Comparisons . 54
4.5 Summary . 56

5. CONCLUSIONS AND FUTURE WORK . 57

5.1 Conclusions . 57
5.2 Future Work . 58

REFERENCES . 61

viii

APPENDICES

A. RAW DATA FROM 117 CLUSTER RUNS . 66

B. SOURCE CODE OF ALGORITHMS PRESENTED 78

VITA . 96

ix

LIST OF TABLES

3.1 Numerical example of MappingRules methods . 26

4.1 Results for reshaping a matrix size, M = N = 20,000 using 16 processors 43

4.2 Results for reshaping a matrix size, M = N = 40,000 using 16 processors 45

4.3 Results for reshaping a matrix size, M = N = 20,004 using 24 processors 46

4.4 Results for reshaping a matrix size, M = N = 40,008 using 24 processors 48

x

LIST OF FIGURES

3.1 An example of a data grid with M = 6 and N = 4 . 16

3.2 An example of a process grid, with three rows and two columns 16

3.3 An example of a 6×4 data grid mapped onto a 3×2 process grid 17

3.4 A 2×3 process grid . 18

3.5 Four processes with a 3×1 data distribution and two processes with an extra column . 18

3.6 A 1×4 process grid . 20

3.7 A 6×4 data grid . 20

3.8 A 9×9 matrix mapped on 3×3 process grid . 21

3.9 A 9×9 matrix after being resized to a 1×9 process grid 21

3.10 An example of start i, j and end i, j . 25

3.11 SpecialRules allocating extra work to the first column and extra rows to the last row . 27

3.12 Before Transpose . 29

3.13 After Transpose . 30

4.1 Reshaping 16×1 grid to other shapes, matrix size M = N = 40,000 51

4.2 Reshaping 1×16 grid to other shapes, matrix size M = N = 40,000 52

4.3 Reshaping 1×24 grid to other shapes, matrix size M = M = 20,004 53

4.4 Reshaping 24×1 grid to other shapes, matrix size M×M, M = 20,004 54

4.5 Reshaping 1×24 grid to other shapes, matrix size M×M, M = 40,008 55

4.6 Reshaping 24×1 grid to other shapes, matrix size M×M, M = 40,008 56

xi

LIST OF ABBREVIATIONS

API — Application Programming Interface

BLAS — Basic Linear Algebra Subprograms

DRI — Data Reorganization Interface

FFT — Fast Fourier Transform

HPC — High Performance Computing

MPI — Message Passing Interface

xii

CHAPTER 1

INTRODUCTION

Data redistribution is one of the most important operations performed on application

programs to improve performance or support operation compatibility in high performance

computing (HPC). No efficient, standalone or easily accessible data redistribution library has

been found in our study of open-source software that redistributes two-dimensional (2D) matrices

from one 2D logical process topology to another at constant or varying numbers of processes.

Such operations are evidently interspersed in applications or other scientific libraries that require

them, but without a systematic application program interface (API) that is application or library-

independent.

While the cases of 1-to-all (scatter) and all-to-1 (gather) are relatively easy to implement

with collective message-passing operations and derived data types in the Message Passing Interface

(MPI) [14], the cases where the shapes change but are both concurrent in both matrix rows and

columns is our primary focus; we address two-dimensional layouts across process memories here1.

Ultimately, our goal is to support general data organizations beyond linear layouts of data,

but we considered linear mappings of matrices to two-dimensional logical process grids (working

via MPI communicators [14]) here.

This thesis focuses on building an API and prototype implementation that uses the Message

Passing Interface (MPI) to provide a Data Redistribution Library.

We want to answer the research question about when it is useful to redistribute data

involving two-dimensional data layouts as a proof of utility of this library. Thus, a key part of the

experimental plan is to integrate loosely with linear algebra libraries like the Polymath library [29].

Ultimately, we will support what-if experiments about the performance benefits of redistributing

1Full or partial replication in a third dimension can be useful, but is not part of this thesis work.

1

versus working on data in a given 2D layout across a specific shape of logical process topology.

In this work, we use compatible cases to show when Polymath would prefer to redistribute with

our library, then compute, versus computing in the layout it was originally given to perform matrix

multiplication. In future work, a library-to-library integration will be achieved so that Polymath

gains redistribution capability at its current level of data-distribution flexibility.

Thus, our primary goal is to observe the performance trends of the Polymath library based

on different grid shapes, problem sizes, numbers of processes and decide whether it is valid to

redistribute data or not. Our secondary goal is to add data transposition functionality to our library,

but the performance of that library is not addressed in our results.

1.1 Motivation

Data reorganization is considered vital and fundamental in several scientific linear algebra

computations such as matrix transpose, swap, multiplication, shuffle. Data reorganization libraries

generally provide optimized implementations of other high performance computing libraries (e.g.,

Polymath) to improve performance.

Poly-algorithms refers to a group of related algorithms grouped to perform associated

operations. However, none of them is a faster algorithm, yet each can achieve the best performance

based on the given parameters. The poly-algorithm library was developed by Skjellum and

colleagues starting in 1991 [26]. This library contains algorithms that apply to the general case

of rectangular matrix multiplication on rectangular process grids and are classified according to

the communication primitives used. In the Polymath library, DGEMM kernel is used to perform

a double-precision matrix multiplication operation. Data redistribution/movement depends on the

basic operations such as rank one update, matrix-vector operations and all these influence the

choice of matrix algorithm as presented by Gunnels [16].

This thesis was inspired by DRI (Data Reorganization Interface) developed by the

Data Reorganization Forum in 2002 [36]. DRI provides a high-level API to accomplish data

redistributions in the data-parallel application (matrix transpose, swap etc.).

One of the significant challenges of data redistribution operations is that it is both costly

in terms of added memory and time-consuming. This thesis aims to produce a data reorganization

2

library that will prove to be efficient (fast and flexible). Our library manipulates different

data movements required to complete multiplication in parallel linear algebra libraries. It also

reorganizes different process shapes grids of the matrix (i.e., reorganizes a matrix on a 2D

R =P×Q logical process grid into a R = P′×Q′ grid).

In addition, the need to convert the DRI library specification from C language to C++

influenced this thesis. C++ features also motivated the development of the library, the object-

oriented nature of C++, quality of portability or platform independence which allows the user to

run the same program on different operating systems. The combination of MPI and C++ results

can produce quality library codes using C++ classes, templates, inline functions, overloading, and

many other features that enable maintainable, passing by reference and efficient code. MPI and

C++ were used in this thesis, as you are yet to discover through this work.

1.2 Problem Statement and Objectives

These are the research questions that we want to answer:

1. Is it always, sometimes, or never worthwhile to redistribute a dense matrix on a 2D process

grid? If so, in which cases should data be redistributed?

2. When combined with Polymath and redistribution proves useful for a given use case, does

the best algorithm to use on a given problem case change also after redistribution?

3. For given problem cases (generated via Polymath), does data redistribution lead to significant

performance enhancements for dense parallel matrix-matrix multiplication?

Our Data Redistribution Library will aim to reshape the logical 2D process grid P×Q to

P′×Q′ (with fixed total numbers of processes) and observe performance trends of the Polymath

algorithm, thus revealing the impact of data redistribution and decide appropriately on the need to

redistribute data.

With that in mind, the objectives of this thesis are as follows:

1. To redistribute dense matrices by reshaping the process grid P×Q to P′×Q′ on which they

are distributed, focusing on linear distributions.

3

2. To design, prototype, validate, and benchmark a high-level API to accomplish data

redistribution in data-parallel applications (dense rectangular arrays/matrices on 2D logical

process topologies).

3. We will test and compare the performance of Polymath use cases and the redistributed data

cases, to see when we should redistribute or not.

4. We will use C++ to design and prototype our library and exploit modern object-oriented and

meta-programming concepts to create a quality, initial library implementation.

1.3 Contributions

The following are the contributions we plan to make in our research:

• Design and implement a data redistribution library. We will design and implement a high

level Application Programming Interface that directly works with the Message Passing

Interface (MPI) to accomplish data redistributions of 2D arrays of data (matrices) on 2D

logical process grids (topologies). Our data redistribution library will include algorithms to

enhance data redistribution: Matrix transpose algorithm, this algorithm switches the rows of

a matrix with its columns. Rotating a matrix at 90 degrees algorithm flips the matrix by 90

degrees. The resizing P, Q algorithm reshapes the matrix from a P, Q logical grid to P′, Q′

logical grid with the same number of processes. This thesis will mainly focus on the resizing

P, Q, algorithm in terms of performance, but full performance for the transpose case will be

future work.

• We analyze whether to redistribute data based on the redistribution costs varying with

different shapes compared to the original computation costs in Polymath. This way, we

can tell how data redistribution (resizing the dimensions of the process grid) influences

the performance of Polymath algorithms. For the purpose of performance comparisons,

we choose to consider that one matrix is being redistributed for these comparisons. In

some cases, it may also be beneficial to redistribute both the A and B matrices of the form

C = A× B. We note that parallel applications determine input matrix shapes and sizes

4

based on their effort to reduce computation costs or because of algorithmic limits; providing

flexibility at parallel-operation interfaces is a value of our library and study.

1.4 Outline

The remainder of the thesis is organized as follows: Chapter 2 includes the background and

related work. Chapter 3 presents the methodology and the implementation of the algorithms. In

Chapter 4, we discuss the results from experiments that we carried out. We conclude the thesis in

Chapter 5 by discussing our findings and outlining future work.

5

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter discusses what has already been attempted in the parallel area of data

redistribution of matrices. First, we discuss the motivating specification of the Data Reorganization

Interface (DRI) 2002 by the DRI Forum, an informal standards group funded by the Defense Ad-

vance Research Projects Agency (DARPA) [36]. The remaining subsections cover complementary

algorithms, libraries, and domain-specific issues related to data transpose and reorganization, all of

which are relevant to this thesis. In particular, the Polymath library is a parallel algorithm collection

to support dense matrix-matrix multiplication, and is used in significant ways to demonstrate and

complement the work of this thesis. In the rest of this chapter, we consider relevant prior work

by other researchers about data redistribution of matrices on logical process topologies using the

message passing of parallel computing.

2.1 Data Reorganization Interface

This thesis was inspired by the DRI-1.0 (Data Reorganization Interface 2002) which was

developed by Dr. Skjellum and colleagues [36] in the Data Reorganization Forum. DRI provided a

high level API to accomplish data redistributions in data-parallel applications with dense matrices.

DRI specifies application programmer interfaces to transpose and redistribute data over logical

process topologies. This specification chose C as its descriptive implementation language, rather

than a language-neutral specification.

2.2 The fftMPI Library

The fftMPI redistribution library by Plimpton et al. [32] includes data reorganization for

multi-dimensional Fast Fourier Transform (FFT) operations. The fftMPI library computes 3D and

2D FFTs in parallel assets of 1D FFTs (via an external library) in each dimension of the FFT

6

grid interleaved with MPI communication to move data between processors. The fftMPI library

has four classes: FFT3D, FFT2D, Remap3D, Remap2D. The FFT classes perform 3D and 2D

ffts. The Remap classes perform a data remap, which communicates, reorders, and reorganises

the distributed 3D and 2D arrays across processors. However, FFTs were not needed for the data

redistribution library. Also, fftMPI library lacked some of the data redistribution functionalities

like resizing grid shapes and rotating data at 90 degrees. Therefore, we decided to think of a

library with all the missing functionalities from the prior libraries.

Note that our redistribution library is built to have some of the above functionality, which

makes it unique and relevant for linear algebra operation especially in dense matrix multiplication.

2.3 Data Transposition

Researchers have explored the concept of data redistribution for a many years. Choi et al.

[8] introduced parallel matrix transpose algorithms based on block-cyclic data distribution. They

assumed that the matrix is distributed over a P×Q processor template with block-cyclic data

distribution. Where P,Q and the block size could be arbitrary. The communication schemes of

the algorithms were determined by the greatest common divisor (GCD) of P and Q. If P and Q

were relatively prime, the matrix transpose algorithm involves complete exchange communication

on a two-dimensional template. They approached the above mentioned problem with a point-

to-point communication scheme. The algorithms use non-blocking (MPI Isend, MPI Irecv),

point-to-point communication between processors to overlap messages sent to different MPI

processes. The non-blocking calls also avoided unnecessary synchronization. The parallel matrix

transpose algorithms were combined with matrix multiplication routines which comprise a general-

purpose matrix multiplication package, called PUMMA [9]. This paper is motivates our transpose

functions, which are similar.

Azari et al. presented algorithms for transposing a matrix on a mesh-connected array

processor (MCAP) [2]. They discussed both synchronous and asynchronous algorithms. In

the synchronized approach, algorithms apply a global clock to synchronize the communications

between processing elements. They further explained that the number of time units required

by synchronous algorithms for transposing an m× n matrix on an n× n MCAP is 2(n− 1).

7

The synchronous algorithms eliminate simultaneous requests for using channels between process

elements. An asynchronous approach was proposed to check the problem of clock skews and

delays since it is a self-timed approach. They performed a feasibility of the asynchronous

algorithm, and the simulation of the algorithm was demonstrated for different sizes of matrices.

There is evidently a significant additional literature in data transpositions beyond PUMMA.

Since transposition was not the primary deliverable of this thesis, we do not provide further

literature review here on this topic.

2.4 Poly-algorithms

Poly-algorithms refers to having a group of related algorithms that perform equivalent

operations. However, none of them is always known to perform best for arbitrary problem

shapes, sizes, and con-currencies. Jin Li et al., Nansamba [21, 29] asserted that Polymath forms a

backbone in the building of high performance linear algebra libraries. They affirm that no single

algorithm in a library is the best because its performance will deteriorate in different situations

and excel in other scenarios. Different algorithms operate differently concerning computation,

communication, overheads, and potential overlaps when one changes the dimensions of the grid

or the matrices. This leads to some algorithms changing for the better, and some become worse

in terms of performance. Polymath incorporates 14 algorithmic variants of parallel, dense matrix-

matrix multiplication that generalize classical parallel multiplication algorithms in order to offer

the best performance for a given 2D layout of data on logical topologies when the matrices are

rectangular, and the process grids are, in general, rectangular.

2.5 Efficient Data Reorganization Research

Data redistribution aims to reshuffle data in order to optimize some objective for an

algorithm. Cao et al. in Flexible Data Redistribution [5] presented a flexible and general

redistribution algorithm for a task-based runtime system that supports any regular and irregular

data distributions. They further provided an implementation in a task-based runtime PaRSEC.

The practical evaluation of their implementation showed that it could achieve better performance

compared with existing tools supporting some level of data redistribution. They noticed that

PaRSEC performance results show great capability compared to ScaLAPACK [22]. Cao et al.

8

presents a two different approaches for efficient data reorganization [5]. It combines (i) a proposed

DRAM-aware reshape accelerator integrated within 3D-stacked DRAM, and (ii) a mathematical

framework that is used to represent and optimize the reorganization operations. The algorithm

applies to dense matrices. They used blocked data layout and Morton data layouts which involves

space filling curves and are based on recursive blocking. Large data sets were divided into blocks

recursively until the small leaf blocks reach the desired size. Software Transparent Data Layout

Transformation focuses on hardware based data layout transform for address remapping. The

key findings in this paper included the observation that common data reorganization operations

could be represented as permutations. A mathematical framework was utilized to manipulate the

permutations for efficient operation within the stack.

Siegel et al. [35] developed an improved algorithms, MADRE, that combines the advan-

tages investigated by Pinar and Hendrickson from two families of memory-limited redistribution

algorithms. The first family had a couple of advantages however, it failed on specific inputs. Also,

it was not implemented carefully; it may have led to an explosion in the number of local data

copies. The second family eliminated the possibility of failure at the expense of considerable

additional overhead. They were both evaluated according to the following specific criteria. They

applied the data layout to avoid local movement during scheduled execution. The authors used

a sparse format to represent a phase structure. They further developed the Local Copy Efficient

(LCE) algorithm O(m) local data copies on each process. It was observed that the LCE algorithm

performs better than the other MADRE algorithms in most cases. They used MPI operations for

different functionalities i.e mapping processes to one cores.

Sudarsan et al. [37] introduced a framework, “reshape,” which enables parallel message-

passing applications to be resized during execution. They extended the resizing functionality in

reshaping to support redistribution of 2D block-cyclic matrices distributed across a 2D processor

topology. The authors derived an algorithm for redistributing two-dimensional block-cyclic arrays

from P to Q processors, organized as 2D processor grids. The algorithm ensures a contention-free

communication schedule for data redistribution if P r ≤ Q r and P c≤ Q c. It implements circular

row and column shifts on the communication schedule to minimize node contention. Block-cyclic

9

data redistribution was required to achieve computational efficiency. The authors applied four main

stages in data redistribution: data identification and index computation, communication schedule

generation, message packing and unpacking and data transfer. The algorithm builds an efficient

communication schedule using non-all-to-all communication for data redistribution. The authors

applied row and column transformations using the circulant matrix formalism to minimize node

contentions in the communication schedule. They further discussed the modifications needed

to port an existing scientific application to use the dynamic resizing capability of reshaping the

algorithm using the given framework’s API.

Prylli et al. [33] was the closest related work to the reshape redistribution algorithm

because it supports redistribution on checkerboard processor topology. They planned to reshape a

more extensible framework so that support for heterogeneous clusters, grid infrastructure, shared

memory architectures, and distributed memory architectures could be implemented as individual

plug-ins to the framework.

Omiecinski [30] presents research works about physical data reorganization in memory to

improve performance. Physical data reorganization is significant because computations are free

of data dependencies. However, due to limited data reuse, reorganization operations are bound to

incur considerable energy and overheads in conventional systems as discussed by Akin et al. [1].

2.6 Neural Networks Data Reorganization Research

The authors see a growing need for data reorganization in recent neural networks for various

applications such as Generative Adversarial Networks (GANs). Kang and Ha [24] proposed a

novel technique, called tensor virtualization technique. This technique perform data reorganization

efficiently with a minimal hardware addition for adder-tree based CNN accelerators. In the

proposed technique, a data reorganization request is specified with a few parameters and data

reorganization is performed in the virtual space without overhead in the physical memory. It is

urged that the proposed technique reduces the computation workload of DCGAN and DiscoGAN

significantly by skipping the ineffectual computation and efficient handling of zero paddings by

tensor virtualization. It also reduces the DRAM access volume significantly for the U-Net model

with NN upsampling and for SRGAN with sub-pixel convolution. It further extends the application

10

domain of traditional CNN accelerators drastically by adding a minimal hardware the module that

executes some software functions.

2.7 Redistributing Data in Cyclic Blocks

Several past research efforts by Chung et al., Desprez et al., Guo and Pan, Hsu et al.,

Kalns et al., Kaushik et al., Park et al., Ramaswamy et al., Thakur et al., Thakur et al.,Walker

et al., [10, 11, 17, 20, 23, 25, 31, 34, 38, 39, 40] aimed at redistributing cyclically distributed

one-dimensional arrays between the same set of processors in a cluster on a 1D processor

topology. Walker and Otto [40], and Kaushik et al. [25] proposed a K-step communication

schedule based on modulo arithmetic and tensor products to reduce the redistribution overhead

cost. The PITFALLS redistribution technique [11] uses line segments to map array elements

to a processor. The algorithm can also handle any arbitrary number of source and destination

processors. Thakur et al. [39, 38] use GCD and LCM methods for redistributing cyclically

distributed one-dimensional arrays on the same processor set. Thakur et al. [38] and Ramaswamy

et al. [34] describe algorithms that use a series of one-dimensional redistributions to handle

multidimensional arrays. However, the approach can lead to significant redistribution overhead

cost due to unwanted communication. Kalns et al. [23] presents a technique that reduces the total

amount of data that must be communicated during redistribution. The technique is essential for

mapping data to processors by assigning logical processor ranks to the target processors. Hsu et

al. [20] extended this work by Kalns et al. [23] and proposed a generalized processor mapping

technique for redistributing data from cyclic(kx) to cyclic(x), and vice versa. x denotes the number

of data blocks assigned to each processor. However, this method is not flexible as it is applicable

only when the number of source and target processors is the same.

Chung et al. [10] proposed an efficient method for index computation using basic-cycle

calculation (BCC) technique for redistributing data from cyclic(x) to cyclic(y) on the same

processor set was proposed. Hsu et al. [18] extended this work and used a generalized basic-

cyclic calculation method to redistribute data from cyclic(x) over P processors to cyclic(y) over

Q processors. The generalized basic-cycle calculation uses a bipartite matching approach for data

11

redistribution. Park et al. [31] developed a redistribution framework that could redistribute one-

dimensional arrays from one block-cyclic scheme to another on the same processor set using a

generalized circulant matrix formalism. In order to generate a conflict-free schedule, the algorithm

applies row and column transformations on the communication schedule matrix.

Prylli and Tourancheau [33] assumed that the data are stored contiguously in a cyclic block

fashion on the processors; the problem was to find which data items stored on processor Pi will be

sent to processor Pj. These data items have to be packed in one message before being sent to Pj

to avoid start-up delays. The authors introduced algorithms that could operate in one dimension.

The algorithm scans the matrix indices of the data blocks stored on Pi and those stored on Pj

simultaneously. The algorithm keeps two counters, one corresponding to Pi’s data location in the

global matrix and Pj’s one. The counters are incremented progressively by block as in a merge

sort. In order to determine the overlap areas, pack the data items corresponding to the overlap

areas in one message to be sent to Pj. They argued that redistributing data improves the efficiency

of parallel linear algebra routines. However, to ensure improved efficiency from data redistribution,

the elapsed time for the redistribution of data has to be efficient. The algorithm complexity analysis

shows that the scanning is negligible for arrays of standard size. They also applied optimization

like distribution parameters only at run time instead of at compile time. Experimental results affirm

that redistribution of data with the discovered algorithms can efficiently perform up to 80/100 gain

and assure the average that the computation time stays close to the optimal even with bad initial

data distribution choices for both block sizes and grid shape. Tests were run on a Cray T3D and an

Intel Paragon. The computation of the data sets was negligible compared to the communication and

packing and the global redistribution routine execution time. They plan to improve their algorithm

by integrating redistribution routines in the linear algebra kernel themselves. The maybe efficient

results of this research encourage the frequent use of these redistribution library routines in explicit

parallel programming. The algorithms are implemented within the ScaLAPACK library [22].

Hsu and colleagues presented a processor replacement scheme to efficiently perform block-

cyclic data redistribution on a symmetric matrix by minimizing the cost of interprocessor data

exchange during runtime [19]. The key idea of the technique was to develop a replacement

12

function for reordering logical processors in the destination phase. A realigned sequence of

destination processors is derived and used to perform data decomposition in the receiving phase

in the replacement function. The desired destination distribution can be accomplished without

interprocessor communication for some exceptional cases by remapping the ranks of destination

processors combined with the matrix transposition scheme. They also affirmed that with local

matrix and compressed CRS vector transposition schemes, the interprocessor communication

could be eliminated during runtime. Since redistribution is performed at runtime, there is a

performance tradeoff between the efficiency of the new data decomposition for a subsequent

phase of an algorithm and the cost of redistributing data among processors. Secondly, the

paper introduces a generalized symmetric redistribution algorithm to analyze the efficiency of the

proposed technique. The algorithm proves that the technique is efficient, saving up to (p− 1)/p

data transmission cost. For general cases, the symmetric redistribution algorithm saves 1/p of

communication overheads compared with the traditional method. Experimental results also show

a superior performance of the algorithm in most data redistribution instances. The techniques apply

to both dense and sparse matrices.

Choi and Dongarra [6] demonstrated core factorization routines that can be parallelized

easily to the corresponding ScaLAPACK routines with a small set of low-level modules which

include: the sequential BLAS, the Basic Linear Algebra Communication Subprograms [13],

and the PBLAS [7]. The PBLAS (Parallel BLAS) are particularly useful for developing and

implementing a parallel dense linear algebra library relying on the block cyclic data distribution.

They also noted that parallel routines implemented with the PBLAS have good performance.

This is because the computation performed by each process within PBLAS routines could be

performed using the assembly-coded sequential BLAS [12]. The designing and implementing

software libraries had a tradeoff between performance and software design considerations, for

example modularity and clarity. The authors illustrated the practicability of combining messages

to reduce the communication cost in several places. They also described the chance of replacing

the high level routines by calls to the lower level routines, such as the sequential BLAS and the

13

BLACS. The key finding in this paper was the ScaLAPACK factorization routines which have

good performance and scalability on the Intel iPSC/860, the Delta, plus the Paragon systems.

Moreton-Fernandez et al. [27] presented a method based on four combinable operators

to efficiently and redistribute partial domains selected by the programmer at run time. The

four operators efficiently implement distributed memory algorithms, making the data partition,

relocation and data movement transparent to the programmer. The solution presented in this paper

provides programming abstractions to manage data redistributions. With the proposed solution,

the programmer does not need to deal with data-redistribution implementation issues that are not

related to the algorithms but are pivotal in performance. The proposed solution and optimized

MPI codes have the same performance as optimized MPI codes with tailored data redistribution

solutions hard-wired into the code. The authors argue that that its advantageous to use the proposed

solution since the programming effort is significantly reduced in the proposed solution. This is an

interesting idea to research about. However this is not similar to our research.

2.8 Summary

In this chapter, we discussed selected efforts regarding data redistribution of dense matrices

on 2D logical process topologies. We considered additional relevant prior work by other

researchers such as the Data Reorganization Interface, the fftMPI Library [32] (which computes

2D and 3D parallel FFTs), data transpositions in the PUMMA matrix multiplication algorithm,

poly-algorithms, efficient data reorganization research, neural network data reorganizations, and

redistributing data in cyclic blocks. Despite the discussed efforts about data redistribution

libraries to improve the performance of parallel dense matrices, there is no standalone library

that redistributes two-dimensional (2D) matrices from one 2D logical process topology to another

at constant or varying numbers of processes. Such procedures are tightly coupled with specific

algorithmic libraries (like PUMMA [9] or ScalaPack [22]), making it difficult to evaluate the cost

of redistributions vs. computation in a potentially suboptimal data distribution. It would also be

an important contribution to the literature to know when it is useful to redistribute data involving

two-dimensional data layouts in conjunction with parallel algorithms or when not to redistribute

data.

14

CHAPTER 3

METHODOLOGY

In this chapter, we discuss our approach for designing our data redistribution library for

dense matrices on 2D logical grid topologies with MPI. The first section of this chapter describes

the design methodology, which presents the core ideas and concepts used by the library along

with other essential functionality used in the library. Section 3.2 details our implementation of the

concepts presented in the first section of this chapter. The implementation discussion elaborates

on the data structures used to represent the data layout, process layout, and mapping rules. Finally,

Section 3.3 presents the algorithms provided by our library, including how they are coordinated.

3.1 Design methodology

Three key concepts drive our library: the data grid, the process grid, and the data mapping.

A data grid is mapped on the process grid according to the rules of a given data mapping. Each

component is defined and discussed in turn.

3.1.1 Data Grid

A data grid is a collection of elements assigned to a matrix A with dimensions M×N. A

data grid uses a similar notation as a matrix to allow individual elements to be referenced by their

coordinates inside the matrix. For the remainder of this work, i will be used to denote the row

of an element and j will be used to denote the column of a given element. Both coordinates are

zero-based. Figure 3.1 shows an example of a 6× 4 data grid of matrix A. As an example of the

notation, element 14 in the data grid in Figure 3.1 has the coordinates: i = 3, j = 2.

3.1.2 Process Grid

A process grid is a collection of processes assigned to a shape of P×Q where P×Q is

the total number of processes. A process grid notation allows the process to be referenced by

15

Figure 3.1 An example of a data grid with M = 6 and N = 4

its coordinates (p,q) within a process grid, where p maps the P dimension and q maps the Q

dimension. For a given grid shape P×Q, the grid has indexes p such that 0 ≤ p < P and q such

that 0≤ q<Q, respectively. Figure 3.2 shows an example of a process grid where six processes are

mapped to a 3×2 process grid. Different colors represent processes. In this example, the yellow

process has the following coordinates in the process grid: p = 2 and q = 0.

Figure 3.2 An example of a process grid, with three rows and two columns

3.1.3 Data Mapping

Data mapping is the mapping (or allocation) of the data matrix onto the process grid. In

other words, we map the process grid onto the data grid. Given a matrix A, the 6×4 data grid from

Figure 3.1 is mapped onto a 3×2 (P, Q) process grid of six processes (from Figure 3.2). Here, the

number of rows per process is derived from the number of rows in the data grid, M, divided by the

16

number of rows in the process grid, P. The number of columns per process is similarly derived

from the number of columns in the data grid, N, divided by the number of columns in the process

grid, Q. in the M dimension is derived from the row size of the matrix A divided by P processes.

The number of columns in the N dimension is derived from the column size of matrix A divided

by Q processes.

Figure 3.3 An example of a 6×4 data grid mapped onto a 3×2 process grid

Thus, the inner data grid for each process will be 2× 2, as shown in picture Figure 3.3.

Each inner data grid 2× 2, meaning each process gets two rows and two columns worth of data.

From the picture (Figure 3.3), we see that each process (show by the different colours) hold four

total elements (the count of elements in each color). That is how data is distributed to processes.

This is similar but not identical to how data is distributed in Polymath library [26]; when there is

a lack of divisibility, this library will usually distribute that imbalance differently than Polymath’s

distribution algorithms. We change the process grid from P×Q to any shape P′×Q′ as long as the

data grid and the number of processes are fixed (i.e., P×Q to P′×Q′ with fixed processes). This

way, we can compare the effects of different process grid shapes on the total run time performance

of the poly-algorithms.

3.1.3.1 Reshaping the Process Grid

Figure 3.4 shows Q×P (2×3) process grid reshaped from the P×Q (3×2) process grid in

Figure 3.2. That example demonstrates that there are now two rows in the P dimension and three

17

Figure 3.4 A 2×3 process grid

columns in the Q dimension. The new process grid shape shown in Figure 3.4 affects how the data

grid is mapped onto the process, resulting in a different mapping as compared to Figure 3.2.

Furthermore, Figure 3.5 shows how the 6× 4 data grid from Figure 3.1 will be mapped

onto the 3× 2 process grid in Figure 3.2. Similar to our prior example, the number of rows per

process is derived from the number of rows in the data grid, M, divided by the number of rows in

the process grid P (i.e., M/P = 6/2 = 3). The number of columns per process is also derived from

the number of columns in the data grid, N, divided by the number of columns in the process grid,

Q (i.e, N/Q = 4/3 = 1, with a remainder of one). In this case, all processes are observed to have

an initial data distribution of three rows and one column.

Figure 3.5 Four processes with a 3×1 data distribution and two processes with an extra column

However, because the division for the number of columns per process resulted in a

remainder, there will extra columns that need to be assigned to a process; in Figure 3.5, these are

the columns with the yellow numbers. As such, we will assign the last two processes in each row

(the green and red processes) an extra column (the yellow colored column), as shown in Figure 3.5

18

above. This particular assignment is the result of our strategy; namely, “pizza cutter.” Imagine

cutting a pizza into four slices then serving it to only three people. After initially giving everyone

an equal number of slices (in this example, everyone gets one slice), one slice remains and you

assign it to the third person. As such, the third person will end up with two pieces while the first

and second person will each only receive one slice of the pizza. If you have six slices and three

people, everyone will be given two slices; if you had eight slices instead of six, you initially give

everyone two slices, and then give the remaining two slices to the last person, who ends up with a

total of four slices.

Going back to the example shown in Figure 3.5, we used a similar strategy to assign the

extra column to the last process in each column in the process grid, resulting in a local data matrix

that is 3× 2 instead of 3× 1. This is because we assign the extra last chunk of data to the last

process in a given dimension. This is also illustrated by this pseudo code below (given matrix

A = M×N):

1 int i_rows_per_process = M / P;

2 int j_cols_per_process = N / Q;

3

4 if((M % P != 0) && (p+1 == P))

5 i_rows_per_process += (M%P);

6

7 if((N % Q != 0) && (q+1 == Q))

8 j_cols_per_process += (N % Q);

Listing 3.1: One strategy of assigning extra rows and columns to processes

Listing 3.1 demonstrates that if the number of rows M is not evenly divisible by P processes

and if the given p coordinate is the last process a row of the process grid, then that process adds

the remaining chunk of data in the P dimension to the number of rows it was initially assigned.

If the first condition is not true, the process is not assigned any extra rows (i.e., the process will

be assigned normal data (rows)). Similarly, if the number of columns N is not evenly divisible

by Q processes and if the given q coordinate is the last process in a column in the process grid,

19

then that process adds the remaining chunk of data in the Q dimension to the number of columns

it was initially assigned. Likewise, if any part of the second condition is not true the process is not

assigned any extra columns. Lastly, if both conditions are not true, the process is not assigned any

extra data (i.e., the process will be assigned normal data (columns and rows)).

3.1.3.2 Additional Examples

Lastly, first consider a 1× 4 (P×Q) process grid consisting of four processes (each

represented by a different color: purple, orange, yellow, blue), as shown in Figure 3.6 below:

Figure 3.6 A 1×4 process grid

Then consider how the 6× 4 data grid from Figure 3.1 would be mapped on that process

grid. Figure 3.7 shows the result of this mapping. The resizing of the process grid affects how the

data grid is mapped onto each individual process, thus reshaping data. We carried out experiments

to see the effects of different shapes of P,Q process grids on the performance of different poly-

algorithms.

Figure 3.7 A 6×4 data grid

Figure 3.8 and Figure 3.9 provide another example of changing the process grid while

keeping the data grid constant. In Figure 3.9, we are resizing the process grid P×Q from 3×3 to

20

Figure 3.8 A 9×9 matrix mapped on 3×3 process grid

Figure 3.9 A 9×9 matrix after being resized to a 1×9 process grid

1×9, holding all other factors constant. As a result, each process will have a local data matrix that

is 9×1 in size; each process will have nine rows and one column locally.

3.2 Implementation

In our code, we have several classes that combine together to help represent the concepts

explored in the previous sections. This section explores our design for these classes, along with

some of their features.

3.2.1 Data Layout

The DataLayout class describes the data grid that all processes will use. Each process has

its own copy of the data grid. It represents rows, columns, number of row items in a block, number

of column items in block. The main variables we use in this class are defined below:

• I: total number of rows of the matrix .

• J : total number of columns of the matrix.

• NIIIB: number of I items in a block.

21

• NJIIB: number of J items in a block.

We have a method, constructor that creates an object for the DataLayout class and updates

the number of rows, columns, NIIIB and NJIIB of the object. We also have accessor functions for

the NIB, NJB, as shown in Listing 3.2. We can use another function to update rows or columns in

layout, or update both rows and columns using a particular function.

1 NIB = I / NIIIB

2 NJB = J / NJIIB

Listing 3.2: Number of I and J Blocks

After we have all rows and columns, we can swap them to obtain the transposed layout

of data using a specific function. The method passes the oldLayout object and updates its rows

and columns with swapped I and J hence the transposed layout that is used in Section 3.3.1. In

addition, we have two methods to update the DataLayout object. The first method only updates

the rows (i) and columns (j) of the entire layout holding all other factors constant.

The second method generates a new data layout with updated rows, columns, number of i

items, and number of j items (NJIIB). The method passes the old data layout by constant reference

because it has a non fundamental datatype (DataLayout) and passes new I, J, NIIIB, NJIIB by

value because they have a fundamental datatype int. In other words, it can be called to create the

new matrix size I× J and resizing the inner blocks using the new values of NIIIB and NJIIB. The

method returns an updated DataLayout with the new values of I, J, NIIIB, NJIIB. lastly we can

cross check DataLayout of a process by using a function print to print all variables I, J, P, Q,

NIIIB, NJIIB. That way we can know whether the DataLayout will fit data exactly depending on

the operation or algorithm behavior.

3.2.2 Process Layout

The ProcessLayout class is responsible for processes on the process grid. Variables we

used in this class include:

• P: Processes in the row dimension

22

• Q: Processes in the column dimension

• p: Process coordinate p that references P processes

• q: Process coordinate q that references Q processes

• NJBPP: Number of column blocks in a process.

• NIBPP: Number of row blocks in a process.

The ProcessLayout class has P,Q, p,q and bases on the MPI communicator’s group of

ranked processes. The layout also has accessor functions that access different member objects of

this class: In MPI, a communicator is a group of all processes that communicate to one another

and a unique context for that communication [14]; each communicator has a particular size which

depends on the number of processes in that communicator. We use an MPI API to access the size

of a communicator.

Each element in a DataLayout is locally owned by process p in the row dimension, and

it is locally owned by process q in the column dimension. We use accessors, methods to access

the references of process coordinates p,q. Each process has a unique identification referred to as

its rank; we use an accessor function to access the rank of a given MPI process in the underlying

communicator.

We also calculate the number of column blocks in a process (NJBPP) using a method that

takes in the number of blocks in the column dimension and divides it by the number of processes

in the column dimension, Q. We use an accessor function to access this NJBPP. We also specify

constexpr to suggest to the compiler to evaluate the value of NJBPP at compile time hence

improving the performance of the program.

We calculate the number of row blocks in a process in a similar way to the number of

column blocks in a process except that this time the method passes the number of blocks in the row

dimension and divides it by the number of processes P in the row dimension.

23

3.2.3 Mapping Rules class

In this class, we discuss mapping patterns and rules between elements and processes (i.e.,

what elements each process is supposed to own). Variables that are defined in this class include:

• local i: local row block, process index.

• local j: local column block, process index.

• global i block : global row index of a block.

• global i block: global column index of a block.

• i size: total number of rows

This class uses the DataLayout and ProcessLayout objects to map the process grid onto

the data grid and allocate normal data and extra data to some processes based on the MappingRules

object. We figure out which process owns what and which process owns only standard blocks and

what processes own extra blocks as explained below: This class contains methods that identify

processes that would own standard data and processes that will need extra work, data. We also have

a method, constructor that overloads the assignment operator to create an object of MappingRules

and updates the DataLayout and ProcessLayout objects.

We also have methods to update the DataLayout used by the MappingRules after

creation. This method takes a DataLayout object by reference, and it updates the reference

stored in the MappingRules object. We also have a similar, but different, method to update the

ProcessLayout used. Here we pass the reference to a ProcessLayout object to the method and

the ProcessLayout reference inside the MappingRules is updated.

In addition, we can also update the ProcessLayout and the DataLayout at once using

an interesting function that seeds two objects: one for the ProcessLayout, second for the

DataLayout. The method updates both objects at the same time using an assignment operator.

When we are mapping the DataLayout object onto the ProcessLayout object, it is

important to mark, know where processes start or end in any dimension. A couple of lines below

are discussing accessor methods to the exact start and end of processes. We have a method to

24

access the first row of a process. It returns a method that fetches P process and finds out where

each will start).

We have a method to access the last row index of a process. It returns a method that fetches

p process and finds out where each will end. It also determines which processes should own extra

data. In our strategy, we allocate extra row data to the last process in the row dimension. Therefore

having known that this the last row it will also check if its the last process and allocates extra

chunks of data in row dimension to it.

In addition, we used similar functions to access the start of the first column index of a

process. We also have a method to access the last column index of a process. It passes a method

which fetches q process and finds out where each will end. It also determines which processes

should own extra data in the column dimension. In our strategy we allocate extra column data to

the last process in the column “q” in the column dimension. Therefore having known that this the

last column it will also check if it’s the last process and allocates extra chunks of data in column

dimension to it.

Figure 3.10 An example of start i, j and end i, j

Figure 3.10 and Table 3.1 provide a visual and numerical example, respectively, of the start

i, j and end i, j for four processes. In our code, we used start i, j to mean the index of the first row

and column of a process and End i, j to mean the index of the last row and column of a process.

Having known the boundaries of each process, we designed a couple of other methods

which perform different functionalities to aid, support our mapping patterns: In our code, each

25

Table 3.1 Numerical example of MappingRules methods

Color Process Start (i, j) End (i, j)
Yellow 0 (0,0) (1,1)
Green 1 (0,1) (1,3)

Light Blue 2 (1,0) (2,1)
Dark Blue 3 (1,1) (2,3)

element can be accessed globally (with the entire matrix, block) and locally (within a given

process). This extends to our blocks, they can be accessed both locally and globally. Each element

has a local location and a global location In cases we have a local row block index and we need

to know its global position. we use a method which converts local row block index to global row

block index. The method passes the local row block index and returns the global row block index

of an item. We have another method which performs the reverse, a method which converts global

row block index of an item Back to local row block index.

We also designed a method which converts local column block index to global column

block index. The method passes the local column block index and returns the global column block

index of a global item (i, j). However, we also have another method which performs the reverse.

The method converts the global column index of an item back to the local column block index. We

apply this function when we finding the local process, block column index of a global item given

the items global column index “J”.

We also used virtual methods to provide a possibility for the methods to be overwritten in

the child class (i.e., we override a couple of the virtual methods in the SpecialRules class which

is a child class to MappingRules class). A couple of these interesting methods have been discussed

below:

A virtual method that calculates the row size (i size) of a localblock (i.e., how many rows

are in the local block). The method passes the local i, converts local i into global i block and

returns another method which passes global i block and returns the i size of the local block.

26

A virtual method that calculates the row size (i size) of a block (i.e., how many rows are in

the block). The method passes the block i. The method determines whether the row size has extra

blocks or whether it has standard blocks.

A virtual method which calculates the owner of the global index after a given operation

such as transpose. The method passes the global i index and the global j index. It calculates

Pprime and Qprime. Pprime owns the global I index and Qprime owns the global J index. In case

Pprime is greater or equal to P(total number of processes in the P processes). Then it sets Pprime

to be equal to be the last process in the P dimension (i.e., pprime == (p layout.P - 1)). This is also

our strategy to assign the extra work (cols or transposed rows) to the last process. The method

returns the rank of the process that owns global I, J after a given operation (such as transpose).

A method to calculate blocks per process. It passes i, j blocks per process by reference.

This method calls other two methods to calculate the i, j blocks per process. Thus ending up with

blocks per process.

3.2.4 Special Rules

Figure 3.11 SpecialRules allocating extra work to the first column and extra rows to the last row

The SpecialRules class is a variation of the mapping rules class. This class contains

rules that are responsible for assigning the extra work (i.e., rotating the matrix by 90 degrees).

SpecialRules allocates extra chunk of data (columns) to the first processes in the q dimension.

These rules perfectly fit the flipping of data hence rotating the matrix at 90 degrees. While

SpecialRules allocate extra columns to the first q process in the column dimension, our strategy

normally assigns extra slack to the last process in a given dimension. This means the application

of rules to map data depends on the operation to be carried out. A brief description of how special

27

rules work is shown in the Figure 3.11. The special rules belong to the SpecialRules class, a

child class to the MappingRules class.

Similar to the MappingRules class, In the SpecialRules class, we also have a method to

calculate the column size of the block. This method overrides this function from its parent class.

This is because instead of giving extra columns to the last process, we give it to the first process

instead. The extra rows assignment is unchanged.

We also modify the methods to access the first and last process coordinates in the column

dimension by assigning the possible extra data to the first q process in the column dimension.

Lastly, we also have a method that calculates the owning process, the rank of an element once

we provide it with the global coordinates of the element. This method also makes sure that the

elements belong to the right processes.

3.2.5 RawBlock

The RawBlock class is the class responsible for holding the memory buffer that is large

enough to hold all of the elements a process will be responsible for a given DataLayout and

ProcessLayout. This class is created by first providing the number of rows and columns the local

process will be responsible for, and is templated C++ templates to allow for flexibility in the type

of matrix held(e.g., a matrix of doubles or integers).

We have provided two methods that can populate the local buffer in this class (i.e.,

populating the local process): one for local population (i.e., for the process(es) that already have

all of the data they will use locally), and one for remote population from a predetermined root

process. For the former, the function requires the starting row and column coordinates, along with

the column size of the global matrix and uses those values to copy the data out of the provided

source buffer. The second method utilizes MPI’s non-blocking receive function to obtain the entire

data set for the process calling the receive. Since the RawBlock knows how many elements it

will end up holding, it already knows how many items to tell MPI to expect. The only unknown

constants, the source rank and the MPI tag, are expected to be provided by the user1. Since this

function is non-blocking, it returns the MPI Request to the user to check on completion at a later
1MPI communication functions do not currently work with C++ templates, so extra work will be needed in the

future to fully support templates in the RawBlock class.

28

point. Finally, for our tests, the matching MPI Send call is called from a helper function that can

be used to distribute a matrix from a root process.

In addition to accessor functions for the RawBlock’s row size, column size, and total

number of elements, the RawBlock class also has methods to send and/or receive a chunk of its

buffer. The latter two functions are useful for the algorithms in Section 3.3 that can vary in how

many items they send at once2. These methods utilize non-blocking MPI communications, and

therefore return an MPI Request to the caller.

A method is also provided for local transfers between two RawBlocks. In this function,

the caller provides the local i, j coordinates for each RawBlock, along with how many elements to

copy over. The RawBlock object calling the method is used as the destination, while the provided

RawBlock object is used as the source location in the underlying memcpy.

3.3 Algorithms

In this section, implement the libraries’ functionalities. We also provide some code excerpts

(see Appendix B) and figures to further illustrate how our algorithms operate.

3.3.1 Matrix Transpose

Transposing a matrix involves switching the row and column indices of matrix A; the

product of this operation is another matrix, often denoted by AT . An example of this product

is shown in Figure 3.13, with the original matrix before the transpose in Figure 3.12.

Figure 3.12 Before Transpose

In our matrix transpose algorithm, we begin with creating a new DataLayout object that

contains the new dimensions of the transposed matrix, AT . We then create a MappingRules

2Note that the current implementation of these functions does not allow for “slicing” of the local matrix (e.g., the
functions cannot chunk only a given column). The chunks must be contiguous in the local buffer.

29

Figure 3.13 After Transpose

object using this new DataLayout. Seeding this MappingRules object with the “transposed”

DataLayout helps our library correctly assign extra work to the appropriate process(es) even when

rows and columns are swapped. Since each new local description will have a new RawBlock, each

process will (temporarily) have a new buffer until the transpose is complete. Our algorithm also

assumes a constant process grid during the operation, so the present implementation will only be

able to transpose a matrix (M×N) for a given process grid (P×Q) if all of the following are true:

M/P≥ 1, N/P≥ 1, N/Q≥ 1, and M/Q≥ 1. In our implementation, the matrix is not required to

be square as long as the aforementioned conditions are met.

Similar to MPI point-to-point communication, we break our algorithm into two phases, a

sending side and a receiving side. The sending phase is focused on making sure that all the data is

sent to where it needs to go, while the receiving phase is focused on making sure all the data ends

up where it needs to be. The receiving phase also handles any data that is to be locally transferred

to the new buffer. The messages from different processes are identified by tags; in each case, we

used the global index of elements as unique identification tags for messages. Before the sending

phase, we also initialize a vector object that will store all MPI Requests produced in each phase.

3.3.1.1 Sending Phase

For the first step of the sending phase, the algorithm first finds the first and last coordinate,

in each dimension, that a given process currently holds (done with the functions from the original

MappingRules object). From there, the algorithm iterates over each element in that range and

”transpose” the coordinates so that it now knows where this element will end up in the transposed

30

matrix. After those calculations, the algorithm can then ask the MappingRules built with the

transposed DataLayout which process rank owns this element. With this new rank, the underlying

RawBlock is asked to send the element3 to the process rank identified, using the element’s

coordinates as the tag. Because the RawBlock functions expect local coordinates, the algorithm

first converts the coordinates from the global matrix to the coordinates in the local buffer. If the

new rank is the same rank as our process, nothing happens and the algorithm moves onto the next

element. For each send, the MPI Request is saved into the vector to be checked on later.

3.3.1.2 Receiving Phase

For the receiving phase, the first step is to make a new memory allocation for the resulting

local portion of the transposed matrix each process will end up with. We do this by using the

“transposed” DataLayout and MappingRules to create a new RawBlock. Once finished, the

algorithm then finds the first and last coordinate, in each dimension, that a given process will end up

holding after the transpose is finished. For each of the elements in this range, the algorithm figures

out the “non-transposed” version of the coordinates. With these coordinates, the algorithm then

asks the original MappingRules which process rank owns these coordinates. Like in the sending

phase, the algorithm then asks the new RawBlock to prepare to receive the element from the process

rank identified, using the element’s original coordinates as the tag. The returned MPI Requests

are also pushed into the vector. If the rank is the same as the current process, then it instead asks

the new RawBlock to transfer the element from the old RawBlock.

Lastly, the algorithm then waits on all the MPI Requests generated. Once this has finished,

each process should now correctly have their chunk of the new, transposed matrix. Before finishing,

the algorithm takes the new DataLayout, MappingRules, and RawBlock and replaces the old

versions of them. This allows further algorithms to be run on the matrix.

3.3.2 Resizing the Process Grid

We have two algorithms for resizing the process grid. They are similar but differ in the

number of items that can be sent or received from one process to another at one time. The first

3In the future, we aim to optimize this further by grouping items together, using collective MPI calls, and/or using
blocks to send more efficiently. The algorithm described in Section 3.3.3 features one such optimization.

31

version can only send or receive one element per message while the second version can send or

receive more than one element at a time. The two versions are explained below, and both versions

can only handle a resize such that the total number of processes involved must remain the same

(P×Q = P′×Q′).

Similar to the transpose algorithm, we begin this algorithm by first generating a new

ProcessLayout as well as a DataLayout. While the actual shape of the matrix is not changing,

we need to update some of the variables used in the DataLayout so that other algorithms will be

able to use the resulting matrix (and DataLayout) in other algorithms. The new ProcessLayout

is generated from the new P and Q provided to the algorithm. The two of these objects are then

used to create a MappingRules object that can be queried to find the owners of elements in the

matrix. Further, we again create a vector to hold all of the MPI Requests generated in each phase.

3.3.2.1 Sending Phase

Having calculated where each process starts and ends in the global matrix, the algorithm

can now begin sending out elements. As the algorithm iterates over the elements a process owns, it

queries the new MappingRules object for the new owner of the current element. If the owner

is a different process, the algorithm asks the RawBlock to send that item to the new owner,

using the element’s coordinates as the tag for the MPI communication. Otherwise, the algorithm

simply moves onto the next element. Any MPI Requests are appended to the current vector of

MPI Requests. In short, the sending phase for the first resizing algorithm is nearly identical to the

sending phase of the transpose, only differing on the query to the new MappingRules object.

3.3.2.2 Receiving Phase

Unlike the sending phase, where we concentrate on finding the new owner (destination),

here we are more interested in finding the old owner (source). This is possible by using the original

MappingRules to calculate the owner of the global index. If the old owner is not the current

process, then the process knows that it is to receive the item. In this case, the next step is to ask the

RawBlock to receive the element from the original owner, which results in an MPI Request being

returned and then stored in the vector mentioned earlier.

32

However, if a process is receiving from itself, the algorithm uses the transfer method to

transfer data elements from the old RawBlock to the new RawBlock. It should be noted that the

transfer method is like an explicit send and receive locally; that is why we do not use MPI calls for

communication. The transfer method transfers one item from one process to another or from the

old RawBlock to the new RawBlock. For future work, we plan to optimize the transfer method to

transfer more than one item at a time, which can mean transferring all items in the block at once

as long as they belong to the same destination.

The next important step is to call MPI Waitall to wait on all requests current stored in the

vector to complete since we used MPI non-blocking calls. Lastly, we update variables in the class

to new variables which we used in the resize method. Like with the transpose algorithm, we now

update the DataLayout, ProcessLayout, MappingRules, and RawBlock with the corresponding

objects created by this algorithm.

3.3.3 Second Resizing Algorithm

In our first process grid resizing algorithm, we were sending and receiving elements one

at a time. However, we discovered that sending and receiving one item was inefficient and time-

costly in terms of communication. So we modified the resizing algorithm to send more than one

item at a time. This algorithm still uses the same general structure as the prior algorithm, but it

instead collects several sequential elements that all go to the same process together before actually

sending them.

We introduced a new variable called send amount. This variable represents the count for

every send or receive to or from another process. Unlike our first algorithm, where the count is

always to be one, this variable enables the modified resizing algorithm to send varying numbers

of elements at one time, based on certain conditions. There are a couple of conditions favoring

our modified strategy. For example, when the MappingRules reports that the current element has

the same destination as the last element, we increase the number of items in the send amount

by one. When the destination rank for a given element is different from that of the last element,

the algorithm then sends the last chunk since send amount holds how many elements go to that

33

process. The exact rules for incrementing the send amount are discussed in the next section.

Excerpts of the source code will be provided in Appendix B and in full on GitHub.

3.3.3.1 Sending Phase

Since the modified resizing algorithm only changes the number of items sent at one time,

the setup of this algorithm is the same as the setup discussed in Section 3.3.2. The first steps of the

sending phase are also the same for this algorithm.

As the algorithm iterates over each element, it compares the destination of the current

element with the destination of the last element. If the current element has the same destination,

the algorithm increments send amount and moves on to the next element. If the algorithm finds

that the current element has a different destination, it then asks the RawBlock to send the entire

chunk of elements that have the same destination. Since the RawBlock expects the coordinates

of the item to send, the modified resizing algorithm also keeps track of the element’s coordinates

when the destinations change. As with all algorithms in our library, the algorithm adds the returned

MPI Request to the vector as the sends are fired off. While the algorithm iterates over the elements,

if it hits the end of a row in the current data grid, it goes ahead and sends the collective of elements

it has. This is to avoid having to pack or unpack any data in both phases, as the chunk of memory

being transmitted may not be locally contiguous on both processes.

3.3.3.2 Receiving Phase

In the receiving phase, we perform similar operations, as for every MPI Send there should

be a matching MPI Recv. However, this time round we are more interested in who we are receiving

from and how many items are we receiving. Like in the sending phase, the algorithm keeps track of

the source of the current element, and whether the that MPI process is the same as the last element.

If so, the algorithm keeps going; if not, the algorithm then asks the new RawBlock to receive the

current value of the send amount variable at the first element in that chunk. If the data originates

from itself, the process instead asks the new RawBlock to transfer it from the old RawBlock. We

then wait on all MPI Requests and update the same objects as the first resizing algorithm.

34

3.3.4 Rotating a Matrix by 90 degrees

This operation turns the matrix 90 degrees to the left or right (based on the desired

direction). The first step is transposing data elements, so we call on the transpose algorithm to

transpose the data. Note that corner-turn is given a transposed DataLayout from the transpose

algorithm. After transposing the matrix, the algorithm simply needs to flip all items to complete

the rotation. To assist with this flip, we create a set of rules called SpecialRules to allocate extra

data appropriately.

We apply this SpecialRules object to map the ProcessLayout object to the transposed

DataLayout object. In our transpose algorithm, we swap M×N and in our resizing algorithms,

we resize P×Q , but in corner-turn, all are constant; the matrix is now only flipping. That way, we

can neither use old rules nor new rules, so we use special rules that fit and allocate our extra data

appropriately; the choice of rules to use is about the desired goal of an operation.

3.3.4.1 Sending Phase

The first step is to find the first and last process coordinates from either dimension. This

is to map where exactly each process starts and ends. Each process will use functions from the

SpecialRules object to determine these values.

At this point, we start planning to flip the matrix rows. We go over all elements in the

matrix using two for loops to loop over rows and columns in a process.

1 flip_i = curr_i //for flipping the rows

2 flip_j = the_layout.J - 1 - curr_j //for flipping columns.

Listing 3.3: Flipping i and j

Listing 3.3 will in turn, flip the matrix by 90 degrees right. We go over the elements so that we know

which process will own which element after the flip. Having successfully flipped the elements, we

do some math to find out which process rank owns the flipped element. The next step is to identify

items which do not “flip.” In the case that those items do not flip, the algorithm does nothing; In

the case that the elements do flip, the algorithm asks RawBlock to send them to the process rank

identified, using the element’s coordinates as the tag. Because the RawBlock functions expect local

35

coordinates, the algorithm first converts the coordinates from the global matrix to the coordinates

in the local buffer. If the new rank is the same rank as the current process, nothing happens and the

algorithm moves onto the next element. Lastly, we add the send requests to MPI Request. This

tracks all sends on the network to complete.

3.3.4.2 Receiving Phase

Similar to the send side, on the receiver side, We have two for loops to loop over rows

and columns of all elements. Like at the send side, we flip current rows and columns of elements

at the receiving end as well in order to have the matrix corners turned at 90 degrees and also to

know which coordinates own the “flipped” element. Unlike the sending phase where we mainly

care about the destination processes and who is sending. At the receive side we are interested in

the source of the message and which process are we receiving from. We calculate which process

is to receive from what process. In the next step, with the help of the original MappingRules,

the algorithm finds the local coordinates of the element given its global coordinates (i,j). This is

because the Rawblock expects local coordinates. Next, the algorithm asks Rawblock to receive the

item sent to it, from an identified source, rank and a tag (global coordinates of an element) which

uniquely identifies each receive message. In case the sending rank is not the same as the receiving

rank we receive the element. For each receive, the MPI Request is saved, held until the receive is

complete.

However, if the element stays in the same process after flipping (i.e., the sending process

is same as the receiving process), the algorithm transfers the element to the new RawBlock. It

transfers one item at a time, copying the item from the old buffer to the new buffer.

Next, we use MPI Waitall to wait on all send and receive requests to make ensure that

each process has the correct data of the flipped matrix.

Finally, the algorithm updates all of the old versions of Class variables, objects such as the

DataLayout and ProcessLayout. This allows further algorithms to be run on the matrix.

3.4 Summary

In this chapter, we first defined three key concepts: the data grid, which allows individual

coordinates of a matrix to be referenced; the process grid, which allows individual coordinates of a

36

process to be referenced; and the data mapping, where we map the process grid onto the data grid.

We then presented our object-oriented, C++ implementation of these concepts, and described how

they will be used as the basis for our algorithms. Finally, we described the three algorithms our

library provides: matrix transpose, process grid resizing, and matrix rotation.

37

CHAPTER 4

PERFORMANCE EVALUATION

In this chapter, we first discuss the experimental setup (Section 4.1) and describe, in

particular, the specifications and configurations of the UTC one-seventeen cluster (117) x86-

64 cluster used for our experiments. We then discuss the experiments performed and the input

parameters (matrix dimensions, number of processes, etc.) and results we gathered for each test

case. Section 4.2 specifically discusses additional Polymath runs and the need to perform them for

the purpose of comparison with data redistribution times. In Section 4.3, we provide the results

showing tables and graphs generated from our experiments. We then conclude this chapter with

comparisons of the key observations from our results in Section 4.4.

4.1 Experimental Setup

One of our goals is to integrate features of our redistribution library with the Polymath

library based on different grid shapes, problem sizes (matrix sizes), and numbers of processes.

Our second goal is to observe the performance trends and determine whether it is worthwhile

to redistribute data or not prior to performing parallel matrix-matrix multiplication (in terms of

minimum time to solution). We set up experiments to to test this hypothesis.

The simulations (runs) discussed below were carried out on the 117 cluster at the

SimCenter, at the University of Tennessee at Chattanooga. This cluster was used since it is

one of the clusters used to obtain performance results for various poly-algorithms from the

Polymath library [29]. By using the same cluster, we eliminates some potential sources of variance

between our results and the poly-algorithm results. And, what is more important, we can directly

compare multiplication times for given problem sizes, linear distributions, and grid shapes with

our distribution times without rerunning those problems.

38

The 117 cluster incorporates 33 computer nodes and one login node. The compute nodes

are configured as follows: two (dual-socket) Intel Xeon E5-2680 v4, 2.4GHz chips, each with 14

cores for a total of 28 cores per compute node. There is 128 GB of RAM per compute node for

about 4.5 GB of RAM per core. One NVIDIA 16GB P100 GPU with 1,792 double precision cores

is available on each node. The theoretical peak performance of about 1 TFLOPs (CPU only) or

roughly 5.7 TFLOPs (CPU+GPU). Since Polymath used only multicore BLAS, and did not use

the GPUs, we did not use GPUs either. Redistribution algorithms are not floating point intensive,

but rather message-passing and indexing intensive1.

4.1.1 Test Cases

We designed experiments to test whether data redistribution impacts the performance of

the algorithms in the Polymath library. This was done by calculating the redistribution costs and

comparing it to the matrix multiplication costs. Then we check whether the impact is positive or

negative towards a given algorithm’s performance, thereby answering the hypothesis of whether it

is worthwhile or not to redistribute data prior to parallel computation for minimum time to solution.

Our initial experiments used a square matrix size of M×M, with M = 20,000, distributed

across 16 processes. This is a one-process per node MPI layout consistent with how Polymath

runs were done in Nansamba’s thesis [29]. We started testing from the smaller problem size of

20,000 because we wanted to scale upwards to larger identify if there were significant differences

in the value of redistribution vs. computation efficiency of the parallel matrix multiplication.

We conserved shapes, sizes and data layouts from the Polymath library for validity. We also

tested square matrices with M = 40,000 and M = 80,000 distributed across 16 processes because

we wanted to check the redistribution costs when it comes to a larger problem size. The

40,000 square shape ran successfully but the 80,000 case didn’t run successfully because when

M = 80,000, M2 = 6,400,000,000. As 6,400,000,000 is greater than the the maximum integer

limit (2,147,483,647), our library is currently not set up to handle this size of a problem. This is

left for future resolution (and is essentially a code formulation issue).

1Nonetheless, if a future version of Polymath uses GPUs, we would have to consider portions of our redistribution
algorithm also to be GPU offloaded, in future.

39

Note that the change from 20,000 to 40,000 reflects and eight-fold increase in algorithmic

work for the poly-algorithms, but only a four-fold work in redistribution effort. Therefore, this

size difference tests if, generically speaking, we see continued value in redistribution or computing

in place. For larger and larger problems, one asymptotically expects to redistribute more often

because of the communication to computation ratio. Nonetheless, both costs are significant in

practical cases noted in the next Section.

We also tested our redistribution algorithms on 24 processes on square shapes M = 20004,

M = 40008 because we wanted to see how the increased number of processes could affect the

performance of polymath algorithms. These shapes are all divisible by 24 and are close to square

shapes 20,000 and 40,000 that we had tested prior.

4.1.2 Results Gathered

The test runs were designed based on the need to align with the performance and use cases

of the Polymath algorithms for different grid shapes and sizes. The capacity of the cluster (117)

was also another factor we considered. We used 16 processes and each MPI process occupied

one node. These 16 nodes were tested with the following grid shapes (P,Q): 1× 16, 16× 1,

2× 8, 8× 2 and 4× 4 on suquare shapes M = 20,000 and M = 40,000. As noted above, intra-

node concurrency was utilized with parallel BLAS called by algorithms implemented in Polymath,

while we performed single-threaded data redistributions in our library2.

We varied P, Q five times but this depends on the factors of P, Q thus we keep on resizing

P, Q until all its factors are exhausted. The total number of processes is held constant through

redistribution: R = P×Q = P′×Q′.

We resized this P, Q (1×16) into four different P, Q process grid shapes; 1×16 to 1×16,

8×2, 2×8 and 4×4. We resized, reshaped each of the above shapes into new P, Q grid shapes;

we resized 1×16 to 16×1, 2×8, 8×2, and 4×4. They are four more P, Q shapes we used for

resizing grids for 16×1 grid into other shapes. Tables with more varying grid shapes based on the

factors of the processes, nodes are in given in the Appendix A.

2Multithreaded redistributions are a generalization to be considered in future, but not here.

40

We also tested 24 processes and each MPI process occupied one node. These 24 nodes

were tested with the following grid shapes (P,Q): 1×24, 24×1, 2×12, 12×2, 3×8, 8×3, 6×4,

and 4×6 on square shapes M = 20004,M = 40008. We resized, reshaped each of the above grid

shapes into new P, Q grid shapes; we resized 1×24 to 24×1, 2×12, 12×2, 3×8, 8×3, 6×4,

and 4× 6. They are seven other P, Q shapes we used for resizing grids for 24× 1 grid into other

shapes.

From the experiments, we measured the time it takes for a given matrix shape and process

grid to covert P, Q to the new shape P′ and Q′ (i.e., time to resize the matrix). The experiments

were run ten times and the maximum time over all processes was recorded for each run. Then,

the mean of the maximum run times was used to as the measure performance, together with the

standard deviation of this mean (standard error)3. This mean value is what we consider to be the

redistribution (or reshaping) time (± the standard error). The redistribution times are listed in

Tables 4.1, 4.2, 4.3, and 4.4 discussed below in Section 4.3.

4.2 Additional Polymath Runs

One of our goals is to integrate our Data Redistribution Library with the Polymath

library. Based on that goal, we integrated some of the results from the polymath dense matrix

multiplication experiments presented in Nansamba’s thesis [29]4. In particular, we used the results

from the 16 processes (with one MPI process per node) for square matrix shapes 20,000×20,000

in that work. For 16 processes five grid shapes were used: 1×16, 16×1, 2×8, 8×2 and 4×4.

For our calculations, we infer that if we have a given grid shape, we can get the results show in

Nansamba’s thesis and thus when we resize, we can compare the original shape’s performance to

another shape’s performance plus the cost of redistribution. Further, we define A as the time a given

shape (PA,QA) and matrix size completes its matrix multiplication using the fastest poly-algorithm,

and define B as the time it takes to go from PA,QA to PB,QB plus the time for the shape PB,QB to

complete its optimal poly-algortihm. If the time recorded for B is less than, or close to, A, then it

3This is the same measurement methodology used by Nansamba in her thesis for measuring Polymath algorithm
times [29]. It is statistically acceptable, from an engineering viewpoint, to model these as a normal distribution. We
did not formally test for normality, but this is not a usual step in taking parallel run data.

4We are still in the software engineering process of creating a unified code application that does the work in a
single program run. That is also future implementation work, not crucial to demonstrating our hypothesis.

41

means redistributing is likely effective for a given initial shape, matrix size, and final shape. For

example, for the 16×1 shape, mm5 row is the best algorithm, it takes 2.68 seconds to perform a

matrix multiplication, and 8×2 is another shape with mm5 row as the best algorithm and its cost

of multiplication is 2.47 seconds. Therefore, we compare the performance of 16×1 which is 2.68

seconds and the performance of 8×2, which is 2.47 plus the cost, time it takes to reshape 16×1

to 8×2, in seconds.

As part of the experiment, we performed additional tests for the poly-algorithms in order

to obtain more results sets for larger square shapes. The new tests include using square shapes,

40,000× 40,000, 20004× 20,004 and 40,008× 40,008. We started with 16 processes with 5

grid shapes: 1× 16, 16× 1, 2× 8, 8× 2 and 4× 4 ran on square shapes 40,000× 40,000 In

addition, we used 24 processes with 7 different grid shapes on square shapes 20,004× 20,004,

40,008×40,008. Running larger shapes was vital in our research. This is because with this larger

shape, we were able to obtain different results cases that are data redistribution worthwhile. We

also noticed process grids that perform better after reshape. The results of the Polymath runs are

presented in Appendix A, and discussed with our results in Section 4.3.

4.3 Discussion of Results

The first test case was a square shape of size 20,000× 20,000 and we utilized 16 nodes

for the five possible grid shapes mentioned in Section 4.2. For each initial shape, we choose the

best algorithm (denoted as the original Algorithm in Table 4.1) time and compared it to the new

shape (Alg)time plus reshape time (i.e., redistribution algorithm time = New Alg time + reshape

time). This concept is exemplified in Table 4.1. Our main goal was to compare the original

algorithm’s time and redistribution algorithm time for the different shapes to determine whether it

is worthwhile to redistribute data. Table 4.1 shows the best algorithm and the redistribution time

for each shape to all other possible shapes using 16 processes.

The results for the 16 processes, with matrix size 20,000×20,000, shows no cases where

redistribution of data improves the performance of the poly-algorithms. It also clearly shows that

there are no shapes for which it is worthwhile to redistribute to yield a better time to solution for

the subsequent parallel matrix multiplication. Grid shapes such as 16× 1 and 1× 16 show that

42

Table 4.1 Results for reshaping a matrix size, M = N = 20,000 using 16 processors

Shape Original
Algorithm

Original Alg
Time

New.
Shape

Dest.
Algorithm

New.
Alg
Time

Reshape
Time

Total Reshaped
+ Multiplication,
NewAlg Time

16x1 mm5 row 2.68 16x1 mm5 row 2.68 0 2.68
2.68 8x2 mm5 row 2.47 2.24 4.71
2.68 4x4 cannon cg 2.52 2.28 4.8
2.68 2x8 mm5 col 2.54 2.22 4.76
2.68 1x16 mm5 col 2.78 2.35 5.13

8x2 mm5 row 2.47 16x1 mm5 row 2.68 2.24 4.92
8x2 mm5 row 2.47 0 2.47
4x4 cannon cg 2.52 2.34 4.86
2x8 mm5 col 2.54 2.49 5.03
1x16 mm5 col 2.78 2.56 5.34

4x4 cannon cg 2.52 16x1 mm5 row 2.68 2.32 5
8x2 mm5 row 2.47 2.62 5.09
4x4 cannon cg 2.52 0 2.52
2x8 mm5 col 2.54 2.47 5.01
1x16 mm5 col 2.78 2.56 5.34

2x8 mm5 col 2.54 16x1 mm5 row 2.68 2.34 5.02
8x2 mm5 row 2.47 2.48 4.95
4x4 cannon cg 2.52 2.34 4.86
2x8 mm5 col 2.54 0 2.54
1x16 mm5 col 2.78 2.69 5.47

1x16 mm5 col 2.78 16x1 mm5 row 2.68 2.68
8x2 mm5 row 2.47 2.32 4.79
4x4 cannon cg 2.52 2.53 5.05
2x8 mm5 col 2.54 2.7 5.24
1x16 mm5 col 2.78 0 2.78

the original shape takes relatively less time than other grid shapes, although we observe that it

does not pay to redistribute data for the either 16× 1 or 1× 16 to other shapes. For example,

the cost of multiplication of square matrices of size 20,000× 20,000 on a 16× 1 process grid

originally takes 2.68 seconds. After reshaping the data to an 8×2 grid, the cost of multiplication

43

after redistribution increased to 4.71 seconds. The cost of multiplication after redistribution is the

cost of multiplication of a shape (original algorithm time) plus the time it takes to convert from

one shape to another shape (reshape time). This means that this grid shape performed better with

its original shape of 16×1; therefore, there is no need to redistribute data.

None of the grids shapes used alongside the 20,000× 20,000 matrix were worth redis-

tributing. This is because we observe that for a couple of grid shapes, the redistribution time is

almost equal, more than cost of multiplication for the original shape. The reshape time for all

grid shapes ranges between 2.22 to 2.7 seconds. This is not efficient because it makes the cost

of redistribution high and in turn increases the cost of multiplication yet one of our goals is to

minimize the cost of computation, multiplication in the Polymath library.

Since the 20,000× 20,000 matrix had no shape that was worthy of redistribution, we

decided to test a larger, 40,000×40,000 matrix (while holding all other factors constant).

The results in Table 4.2 were obtained from 16 nodes using square matrix shapes of size

40,000× 40,000. The table shows the best algorithm (derived by Polymath’s set of algorithms)

and the redistribution time for each shape to all the other shapes. It also clearly shows which shapes

are ought to be redistributed in order to achieve better performance for the Polymath algorithm.

The results show the cases where redistribution using our data redistribution library

significantly improve the performance of the poly-algorithms. Reshaping the extreme grid shapes

such as 16×1 and 1×16 to other shapes shows that it pays to redistribute data. For example, the

cost of multiplication of square shape 40,000× 40,000 on a 1× 16 process grid originally takes

72.15 seconds. After reshaping into 4× 4 grid the cost of multiplication significantly reduced to

50.2 seconds which was our goal.

It is important to note that for the shapes for which it was worthwhile to redistribute data

the decrease in time was approximately more than 20 seconds (i.e., the redistributed cases runs 20

seconds faster).

The reshape time for all grid shapes does not exceed 17 seconds, which is an interesting

trend. The best reshape time is 8.81, reshaping 16× 1 to 8× 2. The worst reshape time is 16.95

reshaping 1×16 to 4×4.

44

Table 4.2 Results for reshaping a matrix size, M = N = 40,000 using 16 processors

Shape Original
Algorithm

Original Alg
Time

New.
Shape

Dest.
Alg

New.
Alg
Time

Reshape
Time

Total Reshaped
+ Multiplication,
NewAlg Time

16x1 mm3 row 66.9 16x1 mm3 row 66.9 0 66.9
8x2 mm3 row 38.85 8.81 47.66
4x4 mm3 row 33.25 15.34 48.59
2x8 mm3 col 40.39 9.65 50.04
1x16 mm5 col 72.15 9.65 81.8

8x2 mm3 row 38.85 16x1 mm3 row 66.9 14.73 81.63
8x2 mm3 row 38.85 0 38.85
4x4 mm3 row 33.25 16.26 49.51
2x8 mm3 col 40.39 9.78 50.17
1x16 mm5 col 72.15 16.26 88.41

4x4 mm3 row 33.25 16x1 mm3 row 66.9 9.74 76.64
8x2 mm3 row 38.85 16.62 55.47
4x4 mm3 row 33.25 0 33.25
2x8 mm3 col 40.39 10.36 50.75
1x16 mm5 col 72.15 16.38 88.53

2x8 mm3 col 40.39 16x1 mm3 row 66.9 9.89 76.79
8x2 mm3 row 38.85 9.82 48.67
4x4 mm3 row 33.25 16.91 50.16
2x8 mm3 col 40.39 0 40.39
1x16 mm5 col 72.15 16.52 88.67

1x16 mm5 col 72.15 16x1 mm3 row 66.9 9.9 76.8
8x2 mm3 row 38.85 15.73 54.58
4x4 mm3 row 33.25 16.95 50.2
2x8 mm3 col 40.39 10.63 51.02
1x16 mm5 col 72.15 0 72.15

45

For the 40,000×40,000 cases from the polymath library, Fox’s algorithm (as generalized

in Polymath) had the best performance and it is the one we considered to redistribute data.

Table 4.3 Results for reshaping a matrix size, M = N = 20,004 using 24 processors

Shape Original
Algorithm

Original
Alg Time

New
Shape New Alg New Alg

Time
Reshape
Time

Total Reshaped
+ Multiplication,
NewAlg Time

24x1 mm3 row 24.26 24x1 mm3 row 24.26 0 24.26
2x12 mm3 col 13.9 2.53 16.43
12x2 mm5 row 12.06 2.39 14.45
3x8 mm5 col 10.14 2.45 12.59
8x3 mm5 row 9.91 1.48 11.39
6x4 mm5 row 8.6 2.42 11.02
4x6 mm5 col 9.2 2.47 11.67
1x24 mm5 col 24.49 2.68 27.17

2x12 mm3 col 13.9 2x12 mm3 col 13.9 0 13.9
24x1 mm3 row 24.26 3.14 27.4
12x2 mm5 row 12.06 2.6 14.66
3x8 mm5 col 10.14 3.03 13.17
8x3 mm5 row 9.91 2.73 12.64
6x4 mm5 row 8.6 2.8 11.4
4x6 mm5 col 9.2 3.02 12.22
1x24 mm5 col 24.49 2.49 26.98

12x2 mm5 row 12.06 24x1 mm3 row 24.26 2.43 26.69
2x12 mm3 col 13.9 2.6 16.5
12x2 mm5 row 12.06 0 12.06
3x8 mm5 col 10.14 2.71 12.85
8x3 mm5 row 9.91 2.79 12.7
6x4 mm5 row 8.6 2.74 11.34
4x6 mm5 col 9.2 2.61 11.81
1x24 mm5 col 24.49 2.61 27.1

3x8 mm5 col 10.14 24x1 mm3 row 24.26 2.51 26.77
2x12 mm3 col 13.9 3.04 16.94
12x2 mm5 row 12.06 2.63 14.69
3x8 mm5 col 10.14 0 10.14
8x3 mm5 row 9.91 2.65 12.56

46

Table 4.3 (continued)

Shape Original
Algorithm

Original
Alg Time

New
Shape New Alg New Alg

Time
Reshape
Time

Total Reshaped
+ Multiplication,
NewAlg Time

6x4 mm5 row 8.6 3.02 11.62
4x6 mm5 col 9.2 2.9 12.1
1x24 mm5 col 24.49 3.23 27.72

8x3 mm5 row 9.91 24x1 mm3 row 24.26 2.49 26.75
2x12 mm3 col 13.9 2.59 16.49
12x2 mm5 row 12.06 2.66 14.72
3x8 mm5 col 10.14 2.69 12.83
8x3 mm5 row 9.91 0 9.91
6x4 mm5 row 8.6 2.59 11.19
4x6 mm5 col 9.2 2.67 11.87
1x24 mm5 col 24.49 2.78 27.27

6x4 mm5 row 8.6 24x1 mm3 row 24.26 2.45 26.71
2x12 mm3 col 13.9 2.65 16.55
12x2 mm5 row 12.06 2.85 14.91
3x8 mm5 col 10.14 2.86 13
8x3 mm5 row 9.91 2.87 12.78
6x4 mm5 row 8.6 0 8.6
4x6 mm5 col 9.2 2.88 12.08
1x24 mm5 col 24.49 2.92 27.41

4x6 mm5 col 9.2 24x1 mm3 row 24.26 2.49 26.75
2x12 mm3 col 13.9 2.84 16.74
12x2 mm5 row 12.06 2.57 14.63
3x8 mm5 col 10.14 2.77 12.91
8x3 mm5 row 9.91 2.83 12.74
6x4 mm5 row 8.6 2.79 11.39
4x6 mm5 col 9.2 0 9.2
1x24 mm5 col 24.49 2.85 27.34

1x24 mm5 col 24.49 1x24 mm5 col 24.49 0 24.49
24x1 mm3 row 24.26 2.59 26.85
2x12 mm3 col 13.9 3.33 17.23
12x2 mm5 row 12.06 2.61 14.67

47

Table 4.3 (continued)

Shape Original
Algorithm

Original
Alg Time

New
Shape New Alg New Alg

Time
Reshape
Time

Total Reshaped
+ Multiplication,
NewAlg Time

3x8 mm5 col 10.14 3.17 13.31
8x3 mm5 row 9.91 2.71 12.62
6x4 mm5 row 8.6 2.76 11.36
4x6 mm5 col 9.2 2.9 12.1

Table 4.4 Results for reshaping a matrix size, M = N = 40,008 using 24 processors

Shape Original
Algorithm

Original
Alg Time

New
Shape New Alg New Alg

Time
Reshape
Time

Total Reshaped
+ Multiplication,
New Alg Time

24x1 mm3 row 63.14 24x1 mm5 row 63.14 0 63.14
2x12 mm5 col 52.52 10.34 62.86
12x2 mm5 row 47.01 9.47 56.48
3x8 mm5 col 34.88 10.29 45.17
8x3 mm5 row 38.02 5.39 43.41
6x4 mm3 col 39.21 10.33 49.54
4x6 mm5 col 30.97 10.19 41.16
1x24 mm3 col 73.85 5.54 79.39

2x12 mm5 col 52.52 2x12 mm5 col 52.52 0 52.52
24x1 mm5 row 63.14 10.49 73.63
12x2 mm5 row 47.01 10.7 57.71
3x8 mm5 col 34.88 11.13 46.01
8x3 mm5 row 38.02 11.43 49.45
6x4 mm3 col 39.21 11.4 50.61
4x6 mm5 col 30.97 11.56 42.53
1x24 mm3 col 73.85 11.54 85.39

12x2 mm5 row 47.01 24x1 mm5 row 63.14 9.53 72.67
2x12 mm5 col 52.52 10.46 62.98
12x2 mm5 row 47.01 0 47.01
3x8 mm5 col 34.88 10.998 45.878
8x3 mm5 row 38.02 11.48 49.5
6x4 mm3 col 39.21 10.87 50.08
4x6 mm5 col 30.97 10.36 41.33

48

1x24 mm3 col 73.85 10.86 84.71

3x8 mm5 col 34.88 24x1 mm5 row 63.14 10.41 73.55
2x12 mm5 col 52.52 11.76 64.28
12x2 mm5 row 47.01 11.11 58.12
3x8 mm5 col 34.88 0 34.88
8x3 mm5 row 38.02 11.58 49.6
6x4 mm3 col 39.21 11.76 50.97
4x6 mm5 col 30.97 11.64 42.61
1x24 mm3 col 73.85 11.44 85.29

8x3 mm5 row 38.02 24x1 mm5 row 63.14 10.17 73.31
2x12 mm5 col 52.52 11.09 63.61
12x2 mm5 row 47.01 10.89 57.9
3x8 mm5 col 34.88 11.12 46
8x3 mm5 row 38.02 0 38.02
6x4 mm3 col 39.21 10.51 49.72
4x6 mm5 col 30.97 11.18 42.15
1x24 mm3 col 73.85 10.71 84.56

6x4 mm3 col 39.21 24x1 mm5 row 63.14 10.47 73.61
2x12 mm5 col 52.52 11.18 63.7
12x2 mm5 row 47.01 11.38 58.39
3x8 mm5 col 34.88 11.64 46.52
8x3 mm5 row 38.02 10.92 48.94
6x4 mm3 col 39.21 0 39.21
4x6 mm5 col 30.97 11.36 42.33
1x24 mm3 col 73.85 10.74 84.59

4x6 mm5 col 30.97 24x1 mm5 row 63.14 10.62 73.76
2x12 mm5 col 52.52 11.36 63.88
12x2 mm5 row 47.01 10.57 57.58
3x8 mm5 col 34.88 11.16 46.04
8x3 mm5 row 38.02 11.32 49.34
6x4 mm3 col 39.21 11.497 50.707
4x6 mm5 col 30.97 0 30.97
1x24 mm3 col 73.85 11.41 85.26

1x24 mm3 col 73.85 1x24 mm3 col 73.85 0 73.85
24x1 mm5 row 63.14 10.57 73.71

49

2x12 mm5 col 52.52 12.1 64.62
12x2 mm5 row 47.01 10.92 57.93
3x8 mm5 col 34.88 11.9 46.78
8x3 mm5 row 38.02 11.11 49.13
6x4 mm3 col 39.21 11.11 50.32
4x6 mm5 col 30.97 11.6 42.57

The results in Table 4.3 and Table 4.4 were obtained from 24 nodes using square matrix

shapes of size 20,004×20,004 and 40,008×40,008. The tables show the best algorithm (derived

by Polymath’s set of algorithms) and the redistribution time for each shape to all the other shapes. It

also clearly shows which shapes are ought to be redistributed in order to achieve better performance

for the Polymath algorithm. The results show several cases where redistribution using our data

redistribution library significantly improves the performance of the poly-algorithms. Reshaping

the extreme grid shapes such as 24× 1 and 1× 24 to other shapes shows the highest number of

shapes where its’ worthwhile to redistribute data. For example, the cost of multiplication of square

shape 20,004× 20,004 on a 1× 24 process grid originally takes 24.49 seconds. After reshaping

into 6× 4 grid the cost of multiplication significantly reduced to 11.36 seconds which was our

goal. Eighteen cases significantly improved performance with redistribution of square shapes

20,004x20,004 using our library. Nineteen cases improved performance with our redistribution

library for square shapes 40,008x40,008. In other words from both Table 4.3 and Table 4.4, there

are thirty seven cases of worthwhile redistribution. It is important to note that for most shapes

that were worthy to redistribute data for square shapes 40,008×40,008 the decrease in time was

approximately more than 10 seconds (i.e., some of the redistributed cases can run 20 seconds

faster).

Graph (Figure 4.1) shows reshaping of 16× 1 grid to other shapes: 16× 1, 8× 2, 4× 4,

2× 8, 1× 16. The color purple represents original algorithm time, color orange represents new

algorithm time. The color green is the reshape time (i.e., time taken to convert from one grid shape

to another).

50

Figure 4.1 Reshaping 16×1 grid to other shapes, matrix size M = N = 40,000

From the Figure 4.1, we see three cases that are worthy of redistribution (i.e., their Total

Reshape Time plus the new algorithm multiplication time, is less than original multiplication,

algorithm time).

We observed that it takes less than 50 seconds to convert 16×1 to 8×2, 4×4, 2×8 which

is lower than the initial multiplication time. This means that shapes 16× 1 to 8× 2, 4× 4, 2× 8

perform significantly faster after redistribution. Therefore it is worthwhile to redistribute data in

those shapes.

Reshaping from one extreme to another extreme shape takes relatively less time than

reshaping to other shapes. However, the total reshape time plus the multiplication time is seen

to be high. For example, we see that it takes more than 75 seconds total reshape time plus the

multiplication time for 16× 1 to 1× 16. This is because the cost of multiplication for the poly-

algorithms is high so even when the reshape time is good, The multiplication algorithm slows it

down hence high redistribution costs (total reshape time plus the multiplication time).

51

Figure 4.2 Reshaping 1×16 grid to other shapes, matrix size M = N = 40,000

Graph (Figure 4.2), shows reshaping of 1× 16 grid to other shapes: 16× 1, 8× 2, 4× 4

and 2×8, matrix size M = M = 40,000. We see a similar trend to the graph in Figure 4.1, for the

grid shapes 16× 1 to 8× 2, 4× 4, 2× 8. Also, for reshaping from one extreme shape to another

extreme has the worst performance.

Graph (Figure 4.3), shows six cases that are worthy of redistribution (i.e., their Total

Reshape Time plus new New Alg Time, Multiplication Time is less than original Algorithm,

Multiplication Time). We observed that, for a given matrix size M×M, M = 20,004 it takes

less than four seconds to convert 1×24 to 24×1, 2×12, 12×2, 3×8, 8×3, 6×4, 4×6 which is

lower than the initial multiplication time. We observe that in some grid shapes, the redistribution

cost, time(New Alg Time + Reshape Time) is lower than the original polymath algorithm time.

This means that for grid shapes 2× 12, 12× 2, 3× 8, 8× 3, 6× 4, 4× 6 significantly improve

performance after redistribution. Therefore it is worthwhile to redistribute data in those shapes.

Figure 4.4 shows reshaping of 24×1 grid to other shapes: 2×12, 3×8, 8×3, 6×4, 4×6,

1×24, matrix size M×M, M = 20,004 . We see a similar trend to the graph in Figure 4.3, for the

52

Figure 4.3 Reshaping 1×24 grid to other shapes, matrix size M = M = 20,004

grid shapes 24×1 to 2×12, 12×2, 3×8, 8×3, 6×4, 4×6. In both graphs reshaping from one

extreme shape to another extreme has the worst performance (i.e., has the highest redistribution

costs).

Figure 4.5 illustrates a stacked bar graph reshaping grid shape 1×24 to other grid shapes,

matrix size M×M, M = 40,008. We observe six shapes which significantly improve performance

when redistributed to other shapes. Shapes which improve performance after redistribution

include: 1× 24 to 2× 12, 12× 2, 3× 8, 8× 3, 6× 4, 4× 6. We also observe that its only the

extreme case which registers no performance improvement after redistribution and this is because

of the polymath multiplication algorithm time is high.

Figure 4.6 shows reshaping of 24× 1 grid to other shapes: 2× 12, 12× 2, 3× 8, 8× 3,

6× 4, 4× 6 and 1× 24, matrix size M×M, M = 40,008. We see a similar trend to the graph

in Figure 4.5, for the grid shapes 24× 1 to 2× 12, 12× 2, 3× 8, 8× 3, 6× 4, 4× 6 which

improve performance after redistribution. For both graphs we observed a trend of 13 grid shapes

worthwhile redistribution. Reshaping from one extreme shape to another extreme still has the

53

Figure 4.4 Reshaping 24×1 grid to other shapes, matrix size M×M, M = 20,004

highest redistribution costs in both graphs. Further, we observed that in figure 4.5 reshaping from

grid shape 1x24 to grid shape 24x1 performs slightly better after redistribution and this is the

first occurrence in our experiments were it pays off to redistribute from one extreme grid shape to

another.

4.4 Comparisons

Performance comparisons follow:

• Using 16 processes, the 20,000× 20,000 square shapes, the Polymath algorithms were

significantly faster in their original shape compared to the redistributed version of the

algorithm (mm3 row, mm3 row, mm3 row, mm3 col, mm5 col)5. Therefore, there was no

need to redistribute data.

• For the 16 processes testing the 40,000×40,000 matrix shape was key in our research. This

is because, with this larger matrix size, we could obtain different results cases worthy of data
5These are all variants of Fox’s algorithm.

54

Figure 4.5 Reshaping 1×24 grid to other shapes, matrix size M×M, M = 40,008

redistribution. We also noticed process grids that perform better after reshape. The general

trend with 40,000×40,000 shows the significant need to redistribute data.

• From Table 4.1 and Table 4.2, we observe that the cost of computation for multiplication

and reshaping of the matrix increases exponentially as the size of the matrix increase.

Multiplication of a 40,000× 40,000 matrix size on a 16 process grid takes 66.9 seconds

compared to 2.68 seconds for a 20,000×20,000 matrix on the same grid size. The reshape

time for 40,000× 40,000 matrix size from an 8 grid to a 16 is 14.73 seconds as compared

to 2.24 seconds for a 20,000×20,000 matrix size.

• For the 24 processes testing 20,004×20,004, 40,008×40,008 matrix shapes, we observed

the effect of the increased number of processes towards the performance trend of polymath

algorithms. While matrix shape 40,000× 40,000 takes maximum reshape time of 16.95,

it takes matrix shape 40,008× 40,008 has only 12.1 seconds maximum reshape time. As

55

Figure 4.6 Reshaping 24×1 grid to other shapes, matrix size M×M, M = 40,008

we increased the number of processes from 16 to 24, there was a reduction in the time to

solution.

4.5 Summary

In this chapter, we presented our results from the designed experiments and described the

observed performance. We showed the experimental setup based on the goals of our thesis. We

included specifications of the cluster used, the test cases, and the results gathered. In Section 4.3,

we discussed the results where tables and graphs were presented and explained in detail. Finally,

we gave comparisons from the observations we made from the experiments. Overall, we found

that redistribution is useful in some situations, but not in others.

56

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We offer conclusions and recommendations for future work.

5.1 Conclusions

Our primary goal was to generate a library capable of diverse data reorganizations of

two-dimensional (2D) dense matrices laid out on 2D logical process topologies in distributed

memory; this library was created and tested for correctness. We aimed to develop a high-

level Application Programming Interface (API) that works with the Message Passing Interface

(MPI) and message-passing primitives to accomplish such data redistributions in data-parallel

applications and libraries.

We prototyped data reorganization of 2D matrices on 2D grid shapes with constant total

number of processes, restricted to linear data layouts in rows and columns with a particular layout

of any load imbalance on rows and columns to the highest process number in the respective

dimension. We computed the elapsed time for data redistributions for several square problem

sizes (most easy to compare with the Polymath library), as well as non-square matrix and grid

cases, during testing.

For specific cases, we measured the elapsed times to redistribute between two grid shapes

with the times the fastest Polymath parallel matrix-multiplication algorithm took in each data

distribution. We established that it is better to redistribute and compute in the modified data layout

with Polymath (perhaps with a different algorithm) in some of our cases, and in others not. A major

goal of this thesis is to see when it is and it is not beneficial to do redistributions; the fact that it is

sometimes beneficial, but not always, is important because it demonstrates the continued need for

polyalgorithmic approaches in Polymath, for example. Overall, even with the singular algorithm

for redistribution of grid shapes now supported in this thesis’ work, the Polymath algorithmic

57

policy of compute-as-stored is now generalized to vary from compute-in-place to redistributed-

and-compute, when seeking minimal time to solution. This was a key goal of our work.

Specifically, we tested square matrix shapes 20,000 and 40,000 on 16 processes and

20,004 and 40,008 on 24 processes, with one process per node and multicore BLAS kernels.

We varied grid shapes, changing how data is mapped across the process grid P× Q , at a

fixed number of processes R = P×Q. We tested different matrix sizes because we wanted

to check the redistribution costs with varying shapes, and if the cost of redistribution became

less significant as lower order work when we increased the total work of matrix multiplication

markedly. We observed that it pays to redistribute data for larger shapes as compared to smaller

shapes. For example, for square matrices of size 40,000× 40,000, we have six cases in which

data redistribution is better and for the square sizes 20,004× 20,004, 40,008× 40,008 we have

identified thirty seven cases in which its worthwhile to redistribute data; answering our hypothesis

question that it is worthwhile to redistribute data for lower time to solution at least in certain

situations. Even though communication represents lower order work than parallel multiplication

asymptotically speaking, the factors for finite problem sizes clearly made this a conditional

outcome, not always favoring redistribution.

In addition to changing the size of the data in terms of its layout on a logical process

topology (P×Q), we also studied and demonstrated data transpose algorithms in Section 3.3.1 and

how to rotate data at 90 degrees in Section 3.3.4, which are useful redistribution mechanisms for

dense linear algebra in distributed memory computing.

5.2 Future Work

As discussed in Section 3.2.3, our library currently only allows for the mapping pattern

demonstrated in Section 3.1.3.1 (e.g., any extra rows and/or columns are assigned to the last

process in each dimension in the process grid), and a special variant used to assist when turning a

matrix 90-degrees (see Section 3.2.4). However, the library was designed to take advantage of C++

class polymorphism to support future mapping patterns to be be added in as MappingRules class

extensions. These extensions would simply alter how they report which processes own certain

elements, and how many elements each process owns; the other components of our library already

58

expect such behavior from the abstract MappingRules class. Therefore, adding extra mapping

patterns can be achieved with minimal changes elsewhere in the code. Additionally, we are also

exploring addition of support for a matrix transpose algorithm that can conduct the transpose

alongside a remapping of the process grid (e.g., a matrix M×N on process grid P×Q is transposed

to N×M on process grid P′×Q′). The simpler form will have P×Q=P′×Q′. But, the goal is also

to allow, eventually varying the total number of processes used, and to support both overlapping

and non-overlapping cases. In this thesis, all operations involved a single MPI intra-communicator

(single group or clique).

Our aggregation for data reorganization is row-based only at present, and needs to be

extended to be multi-row aggregation to reduce latency impacts. This type of gather optimization

can best be done with a persistent interface, which would also be excellent for future work. In

particular, either derived datatypes for sends/receives or else MPI Alltoall* variants would come

into play.

Lastly, the Polymath libraries provides a data-distribution-independent (DDI) set of criteria

for matrix multiplication, that are far more general than linear, block linear, or scatter (wrapped)

distributions. Further, users can define other valid mappings as extensions. Conforming to the

full generality of Polymath’s ability to work with matrices mapped in general distributions to/from

the sequential (mathematical indexing in rows and columns) to P×Q grid topologies will be a

significant extension of this work. Supporting P×Q×R (3D) topologies, including replication,

and transpose as well as partial distribution is another set of useful extensions we will consider for

future work.

Our work did not exploit intra-node concurrency (threads). We focused on one process

per node, and the MPI+X model, where X=threads or OpenMP for intra-node concurrency.

However, we have made single threaded redistributions. We did not wish to use multithreaded

MPI in this thesis because there is significant evidence of slow down of message passing when

full, multithreaded support is activated using MPI THREAD MULTIPLE [15]. But, we foresee

two immediate technologies: partitioned point-to-point communication and persistent collective

communication (part of MPI-4) [28], and forthcoming partitioned collective communication (e.g.,

59

MPI Alltoall* variants) to be proposed in MPI-5. Focusing on what is actually in MPI-4, we

offer these items of future work. Partitioned point-to-point can be used to support multithreaded,

efficient communication, that may help ensure that we can completely achieve the injection

rate of the network from each node. While we did not test this issue in this work, other

work from Bienz et al. [3, 4] shows that injection rates from single processes is insufficient

in modern nodes. But, partitioned point-to-point communication aims to resolve this issue and

enable greater potential for communication and computation overlap. Second, persistent collective

communication [28] could be an efficient way to do certain redistributions, because we expect

those planned-transfer operations to be optimizable better than MPI Ialltoall*, which might

be another way to implement our redistributions apart from using point-to-point MPI sends

and receives. Regarding the partitioned communication operations, combining portions of the

redistributions with portions of the poly-algorithms is a future topic. We could be computing

on compatible portions of matrices and redistributing. While that is beyond our current scope,

it is possible that merging that redistribution and the matrix multiplication can do even better,

and partitioned communication could help support such overlapped work (assuming asynchronous

progress in the MPI implementation).

60

REFERENCES

[1] Akin, B., Franchetti, F., and Hoe, J. C. (2015). Data reorganization in memory using

3d-stacked dram. In 2015 ACM/IEEE 42nd Annual International Symposium on Computer

Architecture (ISCA), pages 131–143. 10

[2] Azari, N. G., Bojanczyk, A. W., and Lee, S.-Y. (1988). Synchronous And Asynchronous

Algorithms For Matrix Transposition On MCAP. In Luk, F. T., editor, Advanced Algorithms and

Architectures for Signal Processing III, volume 0975, pages 277 – 288. International Society for

Optics and Photonics, SPIE. 7

[3] Bienz, A., Gropp, W. D., and Olson, L. N. (2018). Improving performance models for

irregular point-to-point communication. In Proceedings of the 25th European MPI Users’

Group Meeting, EuroMPI’18, New York, NY, USA. Association for Computing Machinery.

60

[4] Bienz, A., Olson, L. N., Gropp, W. D., and Lockhart, S. (2020). Modeling data movement

performance on heterogeneous architectures. CoRR, abs/2010.10378. 60

[5] Cao, Q., Bosilca, G., Wu, W., Zhong, D., Bouteiller, A., and Dongarra, J. (2020). Flexible

data redistribution in a task-based runtime system. In 2020 IEEE International Conference on

Cluster Computing (CLUSTER), pages 221–225. 8, 9

[6] Choi, J. and Dongarra, J. (1995). Scalable linear algebra software libraries for distributed

memory concurrent computers. In Proceedings of the Fifth IEEE Computer Society Workshop

on Future Trends of Distributed Computing Systems, pages 170–177. 13

[7] Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., and Whaley, R. C. (1995). A

proposal for a set of parallel basic linear algebra subprograms. In International Workshop on

Applied Parallel Computing, pages 107–114. Springer. 13

61

[8] Choi, J., Dongarra, J., and Walker, D. (1993). Parallel matrix transpose algorithms on

distributed memory concurrent computers. In Proceedings of Scalable Parallel Libraries

Conference, pages 245–252. 7

[9] Choi, J., Walker, D. W., and Dongarra, J. J. (1994). Pumma: Parallel universal matrix

multiplication algorithms on distributed memory concurrent computers. Concurrency: Practice

and Experience, 6(7):543–570. 7, 14

[10] Chung, Y.-C., Hsu, C.-H., and Bai, S.-W. (1998). A basic-cycle calculation technique for

efficient dynamic data redistribution. IEEE Transactions on Parallel and Distributed Systems,

9(4):359–377. 11

[11] Desprez, F., Dongarra, J., Petitet, A., Randriamaro, C., and Robert, Y. (1998). Scheduling

block-cyclic array redistribution. IEEE Transactions on Parallel and Distributed Systems,

9(2):192–205. 11

[12] Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S. (1990). A set of level 3 basic

linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17. 13

[13] Dongarra, J. J. and Whaley, R. C. (1997). Lapack working note 94 a user’s guide to the blacs

v1. Tech.£ eport. 13

[14] Forum, M. P. I. (2015). MPI: A Message-passing Interface Standard, Version 3.1 ; June 4,

2015. High-Performance Computing Center Stuttgart, University of Stuttgart. 1, 23

[15] Grant, R. E., Dosanjh, M. G. F., Levenhagen, M. J., Brightwell, R., and Skjellum, A. (2019).

Finepoints: Partitioned multithreaded MPI communication. In Weiland, M., Juckeland, G.,

Trinitis, C., and Sadayappan, P., editors, High Performance Computing - 34th International

Conference, ISC High Performance 2019, Frankfurt/Main, Germany, June 16-20, 2019,

Proceedings, volume 11501 of Lecture Notes in Computer Science, pages 330–350, Frankfurt,

Germany. Springer. 59

62

[16] Gunnels, J., Lin, C., Morrow, G., and Van De Geijn, R. (1998). A flexible class of parallel

matrix multiplication algorithms. In Proceedings of the First Merged International Parallel

Processing Symposium and Symposium on Parallel and Distributed Processing, pages 110–116.

IEEE. 2

[17] Guo, M. and Pan, Y. (2005). Improving communication scheduling for array redistribution.

Journal of Parallel and Distributed Computing, 65(5):553–563. 11

[18] Hsu, C.-H., Bai, S.-W., Chung, Y.-C., and Yang, C.-S. (2000). A generalized basic-

cycle calculation method for efficient array redistribution. IEEE Transactions on Parallel and

Distributed Systems, 11(12):1201–1216. 11

[19] Hsu, C.-H., Chen, M.-H., Yang, C.-T., and Li, K.-C. (2006). Optimizing communications

of dynamic data redistribution on symmetrical matrices in parallelizing compilers. IEEE

Transactions on Parallel and Distributed Systems, 17(11):1226–1241. 12

[20] Hsu, C.-H., Chung, Y.-C., Yang, D.-L., and Dow, C.-R. (2001). A generalized processor

mapping technique for array redistribution. IEEE Transactions on Parallel and Distributed

Systems, 12(7):743–757. 11

[21] https://software.intel.com/content/www/us/en/develop/documentation/onemkl-tutorial-

fortran/top/multiplying-matrices-using dgemm.html (2021). Multiplying matrices using

dgemm. 8

[22] Jaeyoung Choi and Dongarra, J. J. (1995). Scalable linear algebra software libraries for

distributed memory concurrent computers. In Proceedings of the Fifth IEEE Computer Society

Workshop on Future Trends of Distributed Computing Systems, pages 170–177. 8, 12, 14

[23] Kalns, E. and Ni, L. (1995). Processor mapping techniques toward efficient data

redistribution. IEEE Transactions on Parallel and Distributed Systems, 6(12):1234–1247. 11

[24] Kang, D. and Ha, S. (2020). Tensor virtualization technique to support efficient data

reorganization for cnn accelerators. In 2020 57th ACM/IEEE Design Automation Conference

(DAC), pages 1–6. 10

63

[25] Kaushik, S. D., Huang, C.-H., Johnson, R. W., and Sadayappan, P. (1994). An approach to

communication-efficient data redistribution. In Proceedings of the 8th International Conference

on Supercomputing, ICS ’94, page 364–373, New York, NY, USA. Association for Computing

Machinery. 11

[26] Li, J., Skjellum, A., and Falgout, R. D. (1995). A poly-algorithm for parallel dense matrix

multiplication on two-dimensional process grid topologies. 2, 17

[27] Moreton-Fernandez, A., Sierra, Y. T. D. L., Gonzalez-Escribano, A., and Llanos, D. R.

(2021). Operators for data redistribution: Applications to the stl library and raytracing

algorithm. IEEE Access, 9:38557–38570. 14

[28] MPI Forum (2021). MPI: A Message-Passing Interface Standard, Version 4.0 ; June 9 2021 .

Technical report, Univ. of Tennessee, Knoxville, TN, USA. 59, 60

[29] Nansamba, G. (2020). Second-generation polyalgorithms for parallel dense-matrix

multiplication. masters thesis, the university of tennessee at chattanooga. Master’s thesis,

University of Tennessee at Chattanooga. 1, 8, 38, 39, 41

[30] Omiecinski, E., Liehuey Lee, and Scheuermann, P. (1994). Performance analysis of a

concurrent file reorganization algorithm for record clustering. IEEE Transactions on Knowledge

and Data Engineering, 6(2):248–257. 10

[31] Park, N., Prasanna, V., and Raghavendra, C. (1999). Efficient algorithms for block-cyclic

array redistribution between processor sets. IEEE Transactions on Parallel and Distributed

Systems, 10(12):1217–1240. 11, 12

[32] Plimpton, S., Kohlmeyer, A., Coffman, P., Blood, P., and USDOE (2018). fftMPI, a library

for performing 2d and 3d ffts in parallel. 6, 14

[33] Prylli, L. and Tourancheau, B. (1996). Efficient block cyclic data redistribution. In European

Conference on Parallel Processing, pages 155–164. Springer. 10, 12

64

[34] Ramaswamy, S., Simons, B., and Banerjee, P. (1996). Optimizations for efficient

array redistribution on distributed memory multicomputers. J. Parallel Distrib. Comput.,

38(2):217–228. 11

[35] Siegel, S. F. and Siegel, A. R. (2009). A memory-efficient data redistribution algorithm.

In Ropo, M., Westerholm, J., and Dongarra, J., editors, Recent Advances in Parallel Virtual

Machine and Message Passing Interface, pages 219–229, Berlin, Heidelberg. Springer Berlin

Heidelberg. 9

[36] Skjellum, A., Cain, K., and Chelmsford, S. (2002). Document for the data reorganization

interface (dri-1.0) standard. In Proceedings of IEEE Scalable High Performance Computing

Conference. 2, 6

[37] Sudarsan, R. and Ribbens, C. J. (2007). Efficient multidimensional data redistribution for

resizable parallel computations. In Stojmenovic, I., Thulasiram, R. K., Yang, L. T., Jia, W.,

Guo, M., and de Mello, R. F., editors, Parallel and Distributed Processing and Applications,

pages 182–194, Berlin, Heidelberg. Springer Berlin Heidelberg. 9

[38] Thakur, R., Choudhary, A., and Fox, G. (1994). Runtime array redistribution in HPF

programs. In Proceedings of IEEE Scalable High Performance Computing Conference, pages

309–316. 11

[39] Thakur, R., Choudhary, A., and Ramanujam, J. (1996). Efficient algorithms for array

redistribution. IEEE Transactions on Parallel and Distributed Systems, 7(6):587–594. 11

[40] Walker, D., Otto, S. W., Walker, D. W., and Otto, S. W. (1996). Redistribution of block-cyclic

data distributions using MPI. 11

65

APPENDIX A

RAW DATA FROM 117 CLUSTER RUNS

66

In this section, we have included the new tests for Polymath library on 117 cluster.

The graphs include results for the 16 and 24 nominal nodes. We used square matrix sizes of

M=N=40,000 for 16 nodes and M=N=20,004 and M=N=40,008 for 24 nodes. Performance is

measured as run-time in seconds. The bold figures represent the fastest algorithm in each case.

Table A.1 Run-Time (seconds) 40,000×40,000×40,000 on 4×4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 33.254113 0.633873 29.897032 0.464219
mm3 col 34.382885 1.338233 30.941374 0.93666
mm4 row 33.831046 0.400532 30.497511 0.338755
mm4 col 34.529835 1.351721 31.103818 0.94884
bb 35.5486 0.418969 32.047524 0.32428
cannon c 35.740456 0.476861 32.364492 0.344026
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 34.285817 0.112407 32.392118 0.113691
cannon ag 37.351858 0.14432 35.247181 0.139169
cannon bg 37.547968 0.264141 35.261905 0.260334
summa N/A N/A N/A N/A
mm5 row 34.036908 0.181725 30.83477 0.148285
mm5 col 33.929283 0.116187 30.822928 0.087851

67

Table A.2 Run-Time (seconds) 40,000×40,000,×40,000 on 2×8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 33.254113 0.633873 29.897032 0.464219
mm3 col 34.382885 1.338233 30.941374 0.93666
mm4 row 33.831046 0.400532 30.497511 0.338755
mm4 col 34.529835 1.351721 31.103818 0.94884
bb 35.5486 0.418969 32.047524 0.32428
cannon c 35.740456 0.476861 32.364492 0.344026
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 34.285817 0.112407 32.392118 0.113691
cannon ag 37.351858 0.14432 35.247181 0.139169
cannon bg 37.547968 0.264141 35.261905 0.260334
summa N/A N/A N/A N/A
mm5 row 34.036908 0.181725 30.83477 0.148285
mm5 col 33.929283 0.116187 30.822928 0.087851

Table A.3 Run-Time (seconds) 40,000×40,000,×40,000 on 8×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 33.254113 0.633873 29.897032 0.464219
mm3 col 34.382885 1.338233 30.941374 0.93666
mm4 row 33.831046 0.400532 30.497511 0.338755
mm4 col 34.529835 1.351721 31.103818 0.94884
bb 35.5486 0.418969 32.047524 0.32428
cannon c 35.740456 0.476861 32.364492 0.344026
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 34.285817 0.112407 32.392118 0.113691
cannon ag 37.351858 0.14432 35.247181 0.139169
cannon bg 37.547968 0.264141 35.261905 0.260334
summa N/A N/A N/A N/A
mm5 row 34.036908 0.181725 30.83477 0.148285
mm5 col 33.929283 0.116187 30.822928 0.087851

68

Table A.4 Run-Time (seconds) 40,000×40,000,×40,000 on 16×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 66.900337 2.021473 57.232377 1.203567
mm3 col 72.976277 3.657021 71.44682 3.620058
mm4 row 70.084598 1.40222 60.266901 0.851871
mm4 col 71.854932 1.399811 70.276195 1.338071
bb 73.45339 1.712192 72.250716 1.654977
cannon c 68.540718 1.592156 58.975267 0.91932
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 70.252436 1.987365 68.746892 1.987617
cannon ag 71.470746 2.007677 69.567602 2.011387
cannon bg 84.58694 0.570892 83.008737 0.570831
summa N/A N/A N/A N/A
mm5 row 75.076822 1.083263 63.843674 1.129209
mm5 col N/A N/A N/A N/A

Table A.5 Run-Time (seconds) 40,000×40,000,×40,000 on 1×16 grid

Algorithm name avg max dev max avg min dev min
mm3 row 75.280708 1.691336 74.021984 1.623202
mm3 col 73.73954 1.794747 66.270352 0.902797
mm4 row 83.628078 1.82404 82.391084 1.784602
mm4 col 74.654968 1.390811 66.135745 1.092652
bb 81.541418 1.867861 80.438429 1.789672
cannon c 76.81882 0.887838 67.310265 0.650028
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 75.718356 1.928887 74.097879 1.93107
cannon ag 89.484543 0.792618 87.895551 0.794086
cannon bg 76.588868 2.466179 74.642605 2.47397
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 72.14789 1.593486 63.862657 1.506018

69

Table A.6 Run-Time (seconds) 20,004×20,004×20,004 on 1×24 grid

Algorithm name avg max dev max avg min dev min
mm3 row 32.126764 1.138611 31.56031 1.149369
mm3 col 24.571067 0.405932 18.154426 0.39846
mm4 row 37.060411 1.225749 36.4689 1.22918
mm4 col 25.573608 0.632522 18.745904 0.341602
bb 38.69272 0.972386 38.129276 0.964089
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 24.493409 0.456245 18.170936 0.235164

Table A.7 Run-Time (seconds) 20,004×20,004×20,004 on 24×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 24.259016 0.420932 17.606711 0.310861
mm3 col 34.077548 2.075687 33.465203 2.124443
mm4 row 24.656898 0.519319 17.909911 0.504169
mm4 col 33.36001 2.089585 32.762191 2.113774
bb 35.469228 1.004401 4.84613 0.978436
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 24.525999 0.372059 17.821397 0.336642
mm5 col N/A N/A N/A N/A

70

Table A.8 Run-Time (seconds) 20,004×20,004×20,004 on 12×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 12.311184 0.190739 9.637038 0.168978
mm3 col 13.061551 0.381882 12.47813 0.378797
mm4 row 12.638561 0.297857 9.789833 0.18354
mm4 col 12.772932 0.373636 12.222574 0.345714
bb 13.658 0.53542 12.073132 0.290487
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 12.05694 0.354816 9.81608 0.212761
mm5 col N/A N/A N/A N/A

Table A.9 Run-Time (seconds) 20,004×20,004×20,004 on 2×12 grid

Algorithm name avg max dev max avg min dev min
mm3 row 16.553113 0.760291 15.906824 0.761173
mm3 col 13.904026 0.452834 10.178519 0.255405
mm4 row 19.11215 0.853616 18.490721 0.845348
mm4 col 14.72021 0.366877 10.495772 0.201792
bb 19.007306 0.764379 14.101596 0.482258
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 14.287087 0.274112 11.369886 0.189267

71

Table A.10 Run-Time (seconds) 20,004×20,004×20,004 on 4×6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 10.045426 0.304763 8.467761 0.224316
mm3 col 10.152595 0.279306 9.361909 0.228181
mm4 row 10.442765 0.257658 8.549252 0.134465
mm4 col 10.387568 0.174849 9.16824 0.135761
bb 10.33925 0.396859 9.075637 0.325211
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 8.598746 0.133511 7.212485 0.076502
mm5 col N/A N/A N/A N/A

Table A.11 Run-Time (seconds) 20,004×20,004×20,004 on 6×4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 12.069932 0.327869 10.866063 0.297861
mm3 col 11.699591 0.216094 10.544954 0.12409
mm4 row 12.855406 0.32507 11.105147 0.281859
mm4 col 10.944176 0.572482 9.277613 0.394484
bb 12.083687 0.352172 10.465361 0.278856
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 9.196804 0.132236 8.200973 0.15033

72

Table A.12 Run-Time (seconds) 20,004×20,004×20,004 on 8×3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 11.096646 0.318037 9.236121 0.244168
mm3 col 12.545522 0.477853 11.944165 0.468415
mm4 row 11.361386 0.264217 9.266572 0.159199
mm4 col 12.4835 0.603744 11.823791 0.60914
bb 12.738451 0.533568 10.604853 0.468815
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 9.906581 0.413822 8.1708 0.456576
mm5 col N/A N/A N/A N/A

Table A.13 Run-Time (seconds) 20,004×20,004×20,004 on 3×8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 12.934521 0.504478 12.341157 0.493996
mm3 col 13.152129 0.175908 12.340832 0.147994
mm4 row 13.301971 0.250738 12.495185 0.249373
mm4 col 12.640834 0.342474 10.403088 0.240938
bb 13.624726 0.423979 11.406636 0.387692
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 10.14335 0.283347 8.61099 0.209421

73

Table A.14 Run-Time (seconds) 40,008×40,008×40,008 on 1×24 grid

Algorithm name avg max dev max avg min dev min
mm3 row 306.497297 4.40205 305.3313 4.381831
mm3 col 73.850106 1.481671 62.329668 0.956101
mm4 row 426.877681 22.28555 425.712302 22.263371
mm4 col 74.614984 1.690119 63.960414 1.340545
bb 382.206457 4.218542 381.20749 4.269252
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 74.533606 1.705108 62.630069 1.285857

Table A.15 Run-Time (seconds) 40,008×40,008×40,008 on 24×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 67.788511 0.895554 55.455848 0.593719
mm3 col 211.941884 86.826466 210.787712 86.800768
mm4 row 63.723799 0.993078 55.392326 1.228665
mm4 col 86.677524 1.351848 85.542924 1.31184
bb 90.675234 1.077123 89.700924 1.049238
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 63.142095 2.32502 53.4251 1.00021
mm5 col N/A N/A N/A N/A

74

Table A.16 Run-Time (seconds) 40,008×40,008×40,008 on 12×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 48.490661 0.571914 41.09129 0.581311
mm3 col 76.090198 1.965552 73.999222 1.973108
mm4 row 48.56446 1.233408 40.896441 0.471799
mm4 col 75.314394 1.061524 73.17014 1.011489
bb 77.34745 0.828151 66.033895 0.886008
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 47.010735 0.915232 40.108942 0.94563
mm5 col N/A N/A N/A N/A

Table A.17 Run-Time (seconds) 40,008×40,008×40,008 on 2×12 grid

Algorithm name avg max dev max avg min dev min
mm3 row 166.137791 2.613467 164.471879 2.63009
mm3 col 53.79967 1.046521 47.372701 1.062687
mm4 row 542.99172 942.437144 225.830247 5.263537
mm4 col 54.647212 0.543676 45.267252 0.531023
bb 197.114613 2.996338 133.192461 3.359988
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 52.51538 0.255013 46.721189 0.267024

75

Table A.18 Run-Time (seconds) 40,008×40,008×40,008 on 6×4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 48.033233 1.428994 42.484039 1.350775
mm3 col 39.213013 0.475651 36.846906 0.506682
mm4 row 46.005574 0.596393 38.373345 0.381021
mm4 col 40.193191 0.703863 36.852325 0.599731
bb 49.619109 1.698659 46.187199 1.628646
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 39.464672 0.736959 33.321532 0.754795
mm5 col N/A N/A N/A N/A

Table A.19 Run-Time (seconds) 40,008×40,008×40,008 on 4×6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 62.970895 2.201086 55.312284 1.748688
mm3 col 45.418044 1.498516 42.284341 0.716468
mm4 row 65.620416 1.093503 57.15345 1.27367
mm4 col 39.744764 1.054325 34.769688 0.667138
bb 62.27375 1.101748 55.516404 0.734022
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 30.970746 0.204961 28.595523 0.132144

76

Table A.20 Run-Time (seconds) 40,008×40,008×40,008 on 8×3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 47.419885 1.479107 42.752619 1.325647
mm3 col 46.963586 0.922736 45.477892 0.915265
mm4 row 42.081046 0.797277 36.610543 0.588133
mm4 col 47.295925 0.445786 43.870235 0.493232
bb 57.5859 0.952177 53.801772 0.727345
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 38.020289 0.324202 32.397931 0.341339
mm5 col N/A N/A N/A N/A

Table A.21 Run-Time (seconds) 40,008×40,008×40,008 on 3×8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 78.894098 2.163963 76.893758 2.080837
mm3 col 52.998941 0.471795 48.553697 0.924383
mm4 row 96.147678 3.266939 93.966794 3.400491
mm4 col 42.553911 0.455742 36.307063 0.348278
bb 80.34257 2.425976 66.519325 1.994653
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 34.875001 0.607888 31.265559 0.392019

77

APPENDIX B

SOURCE CODE OF ALGORITHMS PRESENTED

78

The code below is for the Transpose Algorithm. It transposes a matrix by switching the row

and column indices of matrix A and the product of this operation is another matrix, often denoted

by AT . This is done by creating a transposed Data Layout AT = N×M object, mapping it to the

Process Layout object, and then asking mapping rules to manage extra load imbalance. Lines 14-

18, we find where each process row, column starts or ends using accessors. Lines 20-46,47, go

over all elements in matrix A, as they swap rows and columns indices in lines 24, 25 to transpose

the matrix. Lines 27,28, find local coordinates of a given element then ask MappingRules in line

30 to find the process owner of the element. Line 33, if I don’t own these the local coordinates

ask Blockview to send to them the correct rank by calling MPI Isend in lines 37-42. In line 44,

push the send request to MPI request Vector, save the request to be checked later. Lines 49-102

operate the MPI receive Phase, this is similar to the lines discussed above. Line 104, Wait on all

MPI Requests produced. Lines 107-112, Update global variables

1 void transpose ()

2 { // vector of MPI requests for this transpose

3 std::vector <MPI_Request > request_vector;

4

5 // new layout we will use to get some info (and then swap to at

end)

6 DataLayout transposed_layout = DataLayout :: transpose(

7 global_description.get_layout (), global_description.

get_process_layout ());

8

9 // Rules for how to deal with extra work. In this case , we can

use original

10 MappingRules &rules_to_use = global_description.get_rules ();

11

12 MappingRules new_rules = rules_to_use;

13 new_rules.seed(transposed_layout);

14

79

15 int old_start_i = rules_to_use.get_start_i ();

16 int old_end_i = rules_to_use.get_end_i ();

17 int old_start_j = rules_to_use.get_start_j ();

18 int old_end_j = rules_to_use.get_end_j ();

19

20 for(int curr_i = old_start_i; curr_i <= old_end_i; curr_i ++)

21 {

22 for(int curr_j = old_start_j; curr_j <= old_end_j; curr_j ++)

23 {

24 int global_Iprime = curr_j;

25 int global_Jprime = curr_i;

26

27 int local_i = curr_i - old_start_i;

28 int local_j = curr_j - old_start_j;

29

30 int my_rankprime =

31 new_rules.calculate_owner_of_global_index(global_Iprime ,

global_Jprime);

32

33 if(my_rankprime != global_description.get_my_rank ())

34 {

35 BlockView <int > &my_block = local_description.get_ij(

local_i , local_j);

36

37 MPI_Request temp_send_var =

38 my_block.send_part(local_i - my_block.get_sub_i (),

39 local_j - my_block.get_sub_j (),

40 1,

41 my_rankprime ,

42 global_Iprime * the_layout.I + global_Jprime);

80

43

44 request_vector.push_back(temp_send_var);

45 }

46 }

47 }

48

49 LocalDescription <int > new_description =

50 global_description.generate_local_description(

transposed_layout , new_rules);

51

52 int new_start_i = new_rules.get_start_i ();

53 int new_end_i = new_rules.get_end_i ();

54 int new_start_j = new_rules.get_start_j ();

55 int new_end_j = new_rules.get_end_j ();

56

57 for(int curr_i = new_start_i; curr_i <= new_end_i; curr_i ++)

58 {

59 for(int curr_j = new_start_j; curr_j <= new_end_j; curr_j ++)

60 {

61 int global_Iprime = curr_j;

62 int global_Jprime = curr_i;

63

64 int local_i = curr_i - new_start_i;

65 int local_j = curr_j - new_start_j;

66

67 int my_rankprime =

68 rules_to_use.calculate_owner_of_global_index(

global_Iprime , global_Jprime);

69

70 if(my_rankprime != global_description.get_my_rank ())

81

71 {

72 BlockView <int > &my_block = new_description.get_ij(

local_i , local_j);

73 MPI_Request temp_send_var = my_block.recv_part(

74 local_i - my_block.get_sub_i (),

75 local_j - my_block.get_sub_j (),

76 1,

77 my_rankprime ,

78 curr_i * the_layout.I + curr_j);

79

80 request_vector.push_back(temp_send_var);

81 }

82 else

83 {

84 int old_local_i = curr_j - old_start_i;

85 int old_local_j = curr_i - old_start_j;

86

87 // Note: when going to ourself , we copy one at a time

88 BlockView <int > &my_block_original =

89 local_description.get_ij(old_local_i , old_local_j);

90

91 BlockView <int > &my_block_transposed =

92 new_description.get_ij(local_i , local_j);

93 my_block_transposed.transfer(

94 local_i - my_block_transposed.get_sub_i (),

95 local_j - my_block_transposed.get_sub_j (),

96 old_local_i - my_block_original.get_sub_i (),

97 old_local_j - my_block_original.get_sub_j (),

98 1,

99 my_block_original);

82

100 }

101 }

102 }

103

104 MPI_Waitall(request_vector.size(), request_vector.data(),

MPI_STATUSES_IGNORE);

105

106 // Now , we need to adjust all of the variables in this class!

107 local_description = new_description;

108

109 the_layout = transposed_layout;

110

111 global_description.update_layout(transposed_layout);

112 global_description.update_rules(new_rules);

113 }

The code below is for our second resizing Algorithm, It reshapes processes grid P×Q to P′×Q′

holding the number of processes constant. We used this algorithm for all the experiments in this

thesis. The algorithm has both the send and the receive phase. The algorithm attempts to send

all elements with the same destination process at once and this makes it different from the first

resizing algorithm which sends a count of one element at a time. The send phase starts from line

10 and the receive phase starts from line 98.

1 void resize_PQ(int P, int Q)

2 {

3 std::vector <MPI_Request > actions;

4

5 DataLayout & old_layout = global_description.get_layout ();

6 ProcessLayout &process_grid = global_description.

get_process_layout ();

7

83

8 const MappingRules &old_rules = global_description.get_rules ();

9

10 DataLayout new_layout =

11 DataLayout :: generate_new_layout_blocks(

12 old_layout , old_layout.I / P, old_layout.J / Q);

13

14 ProcessLayout new_grid = ProcessLayout(P, Q, MPI_COMM_WORLD);

15 LocalDescription <int > new_description =

16 global_description.generate_local_description(new_layout ,

new_grid);

17

18 MappingRules new_rules = old_rules;

19 new_rules.seed(new_layout , new_grid);

20

21 int old_start_i = old_rules.get_start_i ();

22 int old_end_i = old_rules.get_end_i ();

23 int old_start_j = old_rules.get_start_j ();

24 int old_end_j = old_rules.get_end_j ();

25

26 int new_start_i = new_rules.get_start_i ();

27 int new_end_i = new_rules.get_end_i ();

28 int new_start_j = new_rules.get_start_j ();

29 int new_end_j = new_rules.get_end_j ();

30

31 int last_sender = global_description.get_my_rank ();

32 int send_amount = 0;

33 int start_i = old_start_i;

34 int start_j = old_start_j;

35

36 for(int curr_i = old_start_i; curr_i <= old_end_i; curr_i ++)

84

37 {

38 for(int curr_j = old_start_j; curr_j <= old_end_j; curr_j ++)

39 {

40 int my_rankprime = new_rules.

calculate_owner_of_global_index(curr_i , curr_j);

41

42 if(my_rankprime != last_sender)

43 {

44 if(last_sender != global_description.get_my_rank ())

45 {

46 int local_i = start_i - old_start_i;

47 int local_j = start_j - old_start_j;

48

49 BlockView <int > &my_block = local_description.get_ij(

local_i , local_j);

50

51 MPI_Request temp_send_var =

52 my_block.send_part(local_i - my_block.get_sub_i (),

53 local_j - my_block.get_sub_j (),

54 send_amount ,

55 last_sender ,

56 start_i * the_layout.I + start_j);

57

58 actions.push_back(temp_send_var);

59 }

60

61 send_amount = 1;

62 start_i = curr_i;

63 start_j = curr_j;

64 last_sender = my_rankprime;

85

65 }

66 else

67 {

68 send_amount ++;

69 }

70 }

71 if(send_amount != 0)

72 {

73 if(last_sender != global_description.get_my_rank ())

74 {

75 int local_i = start_i - old_start_i;

76 int local_j = start_j - old_start_j;

77

78 BlockView <int > &my_block =

79 local_description.get_ij(local_i , local_j);

80

81 MPI_Request temp_send_var =

82 my_block.send_part(local_i - my_block.get_sub_i (),

83 local_j - my_block.get_sub_j (),

84 send_amount ,

85 last_sender ,

86 start_i * the_layout.I + start_j);

87

88 actions.push_back(temp_send_var);

89 }

90

91 send_amount = 0;

92 last_sender = global_description.get_my_rank ();

93 start_i = curr_i + 1;

94 start_j = old_start_j;

86

95 }

96 }

97

98 last_sender = -1;

99 send_amount = 0;

100 start_i = new_start_i;

101 start_j = new_start_j;

102 for(int curr_i = new_start_i; curr_i <= new_end_i; curr_i ++)

103 {

104 for(int curr_j = new_start_j; curr_j <= new_end_j; curr_j ++)

105 {

106 int old_owner = old_rules.calculate_owner_of_global_index(

curr_i , curr_j);

107

108 if(old_owner != last_sender)

109 {

110 int local_i = start_i - new_start_i;

111 int local_j = start_j - new_start_j;

112

113 if(last_sender == -1)

114 {

115 // Do nothing

116 }

117 else if(last_sender != global_description.get_my_rank ())

118 {

119 BlockView <int > &my_block =

120 new_description.get_ij(local_i , local_j);

121

122 MPI_Request temp_send_var =

123 my_block.recv_part(local_i - my_block.get_sub_i (),

87

124 local_j - my_block.get_sub_j (),

125 send_amount ,

126 last_sender ,

127 start_i * the_layout.I + start_j);

128 actions.push_back(temp_send_var);

129 }

130 else

131 {

132 int old_local_i = start_i - old_start_i;

133 int old_local_j = start_j - old_start_j;

134

135 BlockView <int > &my_block_original =

136 local_description.get_ij(old_local_i , old_local_j);

137

138 int new_local_i = start_i - new_start_i;

139 int new_local_j = start_j - new_start_j;

140

141 BlockView <int > &my_block =

142 new_description.get_ij(local_i , local_j);

143

144 my_block.transfer(local_i - my_block.get_sub_i (),

145 local_j - my_block.get_sub_j (),

146 old_local_i - my_block_original.get_sub_i (),

147 old_local_j - my_block_original.get_sub_j (),

148 send_amount ,

149 my_block_original);

150 }

151 send_amount = 1;

152 start_i = curr_i;

153 start_j = curr_j;

88

154 last_sender = old_owner;

155 }

156 else

157 {

158 send_amount ++;

159 }

160 }

161

162 if(send_amount != 0)

163 {

164 int local_i = start_i - new_start_i;

165 int local_j = start_j - new_start_j;

166

167 if(last_sender != global_description.get_my_rank ())

168 {

169 BlockView <int > &my_block =

170 new_description.get_ij(local_i , local_j);

171

172 MPI_Request temp_send_var =

173 my_block.recv_part(local_i - my_block.get_sub_i (),

174 local_j - my_block.get_sub_j (),

175 send_amount ,

176 last_sender ,

177 start_i * the_layout.I + start_j);

178 actions.push_back(temp_send_var);

179 }

180 else

181 {

182 int old_local_i = start_i - old_start_i;

183 int old_local_j = start_j - old_start_j;

89

184

185 BlockView <int > &my_block_original =

186 local_description.get_ij(old_local_i , old_local_j);

187

188 int new_local_i = start_i - new_start_i;

189 int new_local_j = start_j - new_start_j;

190

191 BlockView <int > &my_block =

192 new_description.get_ij(local_i , local_j);

193

194 my_block.transfer(local_i - my_block.get_sub_i (),

195 local_j - my_block.get_sub_j (),

196 old_local_i - my_block_original.get_sub_i (),

197 old_local_j - my_block_original.get_sub_j (),

198 send_amount ,

199 my_block_original);

200 }

201

202 send_amount = 0;

203 last_sender = -1;

204 start_i = curr_i + 1;

205 start_j = new_start_j;

206 }

207 }

208

209 MPI_Waitall(actions.size(), actions.data(), MPI_STATUSES_IGNORE

);

210

211 // Now , we need to adjust all of the variables in this class!

212 local_description = new_description;

90

213

214 the_layout = new_layout; // ProcessLayout

215 the_p_layout = new_grid;

216

217 global_description.update_layout(new_layout);

218 global_description.update_p_layout(new_grid);

219 global_description.update_rules(new_rules);

220 } // closes resize

The code below is for our algorithm to turn a matrix 90 degrees to the left or right based

on the desired direction. The algorithm first transposes a matrix by calling the transpose algorithm

and then flips it on lines 34, 35 to complete the rotation. We use SpecialRules to allocate extra data

appropriately to different processes even after the flip. The algorithm has a send phase starting at

line 14 and receive phase starting at line 60.

1 void rotation ()

2 { // Turns the matrix 90 degrees to the left or right (based on

direction)

3 transpose ();

4

5 // Vector for MPI actions

6 std::vector <MPI_Request > request_vector;

7

8 // A copy to the original rules

9 MappingRules old_rules = global_description.get_rules ();

10

11 // Now we just need to flip. We have already updated

12 // the DataLayout in the transpose , and now we just

13 // need to flip (which needs a new rule set).

14 SpecialRules new_rules(global_description.get_layout (),

15 global_description.get_process_layout ());

91

16

17 LocalDescription <int > new_description =

18 global_description.generate_local_description(new_rules);

19

20 int old_start_i = old_rules.get_start_i ();

21 int old_end_i = old_rules.get_end_i ();

22 int old_start_j = old_rules.get_start_j ();

23 int old_end_j = old_rules.get_end_j ();

24

25 int new_start_i = new_rules.get_start_i ();

26 int new_end_i = new_rules.get_end_i ();

27 int new_start_j = new_rules.get_start_j ();

28 int new_end_j = new_rules.get_end_j ();

29

30 for(int curr_i = old_start_i; curr_i <= old_end_i; curr_i ++)

31 {

32 for(int curr_j = old_start_j; curr_j <= old_end_j; curr_j ++)

33 {

34 int flip_i = curr_i;

35 int flip_j = the_layout.J - 1 - curr_j;

36

37 int my_rankprime =

38 new_rules.calculate_owner_of_global_index(flip_i , flip_j);

39

40 if(my_rankprime != global_description.get_my_rank ())

41 {

42 int local_i = curr_i - old_start_i;

43 int local_j = curr_j - old_start_j;

44

45 BlockView <int > &my_block =

92

46 local_description.get_ij(local_i , local_j);

47

48 MPI_Request temp_send_var =

49 my_block.send_part(local_i - my_block.get_sub_i (),

50 local_j - my_block.get_sub_j (),

51 1,

52 my_rankprime ,

53 flip_i * the_layout.I + flip_j);

54

55 request_vector.push_back(temp_send_var);

56 }

57 }

58 }

59

60 for(int curr_i = new_start_i; curr_i <= new_end_i; curr_i ++)

61 {

62 for(int curr_j = new_start_j; curr_j <= new_end_j; curr_j ++)

63 {

64 int flip_i = curr_i;

65 int flip_j = the_layout.J - 1 - curr_j;

66

67 int my_rankprime =

68 old_rules.calculate_owner_of_global_index(flip_i , flip_j);

69

70 int local_i = curr_i - new_start_i;

71 int local_j = curr_j - new_start_j;

72

73 if(my_rankprime != global_description.get_my_rank ())

74 {

75 BlockView <int > &my_block =

93

76 new_description.get_ij(local_i , local_j);

77

78 MPI_Request temp_send_var =

79 my_block.recv_part(local_i - my_block.get_sub_i (),

80 local_j - my_block.get_sub_j (),

81 1,

82 my_rankprime ,

83 curr_i * the_layout.I + curr_j);

84

85 request_vector.push_back(temp_send_var);

86 }

87 else

88 {

89 int old_local_i = curr_i - old_start_i;

90 int old_local_j = flip_j - old_start_j;

91

92 // Note: when going to ourself , we copy one at a time

93 BlockView <int > &my_block_original =

94 local_description.get_ij(old_local_i , old_local_j);

95

96 BlockView <int > &my_block =

97 new_description.get_ij(local_i , local_j);

98 my_block.transfer(local_i - my_block.get_sub_i (),

99 local_j - my_block.get_sub_j (),

100 old_local_i - my_block_original.get_sub_i (),

101 old_local_j - my_block_original.get_sub_j (),

102 1,

103 my_block_original);

104 }

105 }

94

106 }

107

108 MPI_Waitall(request_vector.size(), request_vector.data(),

MPI_STATUSES_IGNORE);

109

110 // Now , we need to adjust all of the variables in this class!

111 local_description = new_description;

112

113 global_description.update_rules(new_rules);

114 }

95

VITA

Evelyn Namugwanya was born in Mityana, Uganda, on October 10th 1992. She attended

high school in Rubaga girl’s school and St. Lawrence schools and colleges, Horizon campus, in

Kampala Uganda. She graduated in 2015 from Makerere University with a Bachelor of Information

Technology. She worked at Makerere University as a systems administrator, doing end-user

support for two years before she came to America in 2019 to pursue a master’s degree in Computer

Science at the University of Tennessee at Chattanooga; She worked as a graduate research assistant

for Dr. Anthony Skjellum, focusing on high-performance computing. Evelyn plans to advance her

education further through a PhD program in Computational Science at the University of Tennessee

at Chattanooga.

96

	Title
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Objectives
	1.3 Contributions
	1.4 Outline

	2 Background and Literature Review
	2.1 Data Reorganization Interface
	2.2 The fftMPI Library
	2.3 Data Transposition
	2.4 Poly-algorithms
	2.5 Efficient Data Reorganization Research
	2.6 Neural Networks Data Reorganization Research
	2.7 Redistributing Data in Cyclic Blocks
	2.8 Summary

	3 Methodology
	3.1 Design methodology
	3.1.1 Data Grid
	3.1.2 Process Grid
	3.1.3 Data Mapping
	3.1.3.1 Reshaping the Process Grid
	3.1.3.2 Additional Examples

	3.2 Implementation
	3.2.1 Data Layout
	3.2.2 Process Layout
	3.2.3 Mapping Rules class
	3.2.4 Special Rules
	3.2.5 RawBlock

	3.3 Algorithms
	3.3.1 Matrix Transpose
	3.3.1.1 Sending Phase
	3.3.1.2 Receiving Phase

	3.3.2 Resizing the Process Grid
	3.3.2.1 Sending Phase
	3.3.2.2 Receiving Phase

	3.3.3 Second Resizing Algorithm
	3.3.3.1 Sending Phase
	3.3.3.2 Receiving Phase

	3.3.4 Rotating a Matrix by 90 degrees
	3.3.4.1 Sending Phase
	3.3.4.2 Receiving Phase

	3.4 Summary

	4 Performance Evaluation
	4.1 Experimental Setup
	4.1.1 Test Cases
	4.1.2 Results Gathered

	4.2 Additional Polymath Runs
	4.3 Discussion of Results
	4.4 Comparisons
	4.5 Summary

	5 Conclusions and Future work
	5.1 Conclusions
	5.2 Future Work

	REFERENCES
	A Raw Data from 117 Cluster Runs
	B Source Code of Algorithms Presented
	VITA

