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Abstract

The gravitational interaction around the event horizon of black holes presents theo-
retical challenges. With the advent of the Event Horizon Telescope (EHT), we are now
entering an era in physics where we can probe the structure of spacetime on horizon scales.
The EHT presents the first opportunity to directly image the supermassive black holes at
the center of the Milky Way and M 87. By imaging the central black hole, we can directly
learn about the nature of spacetime and plasma physics on horizon scales.

The black hole images produced by the EHT are dominated by a bright ring. The
ellipticity of the ring could potentially signal deviations from general relativity. However,
whether the EHT imaging techniques can robustly detect ellipticity has not been fully
explored. Chapters 2–5 analyze the EHT’s ability to measure ellipticity in four parts.
First, in Chapter 2, we develop a method to extract image features (e.g., ring ellipticity)
called variational image domain analysis. Second, in Chapter 3, we apply variational
image domain analysis to the M 87 image reconstruction pipeline and demonstrate that it
is unable to measure ellipticity. The core reason for this failure is that traditional radio
imaging techniques cannot quantify image uncertainty. To solve this issue, in Chapters 4
and 5 we use Themis, a Bayesian parameter estimation framework for the EHT, to robustly
measure the ellipticity of M 87. To apply Themis to the problem of Bayesian imaging, we
developed a new sampler interface in Chapter 4. In Chapter 5 we apply Themis to M 87
and construct the first Bayesian estimates of its ellipticity. Furthermore, we demonstrate
that the measured ellipticity is consistent with the expected ellipticity from an accretion
disk around a Kerr black hole.

In Chapter 6 we describe a novel method to measure spacetime around Sgr A∗ using
hot spots. While M 87 is static over an observation, Sgr A∗ is dynamic, changing on
minute timescales. Furthermore, Sgr A∗ flares 1–3 times a day in sub-mm, infrared, and
X-ray. The Gravity Collaboration recently demonstrated that hot spots near the innermost
stable circular orbit explain Sgr A∗ flares. Using Themis, we construct an efficient semi-
analytical model of hotspots and fit simulated Sgr A∗ data from the 2017 EHT observations.
We demonstrate that the EHT could potentially make a sub-percent spin measurement of
Sgr A∗ by tracking the evolution of these flares. Furthermore, by observing multiple flares,
we can tomographically map spacetime around Sgr A∗, providing a test of general relativity
in the strong-field regime.
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Chapter 1

Introduction

1.1 Gravitational Physics

Modern physics is described by two pillars: quantum field theory and general relativity
(GR). However, after more than half a century of research (Rosenfeld, 1930; Heisenberg,
1938; Bergmann & Brunings, 1949; Dirac, 1950; Bergmann & Goldberg, 1955), general
relativity has not been unified with quantum field theory. From a theoretical perspective,
the challenges are both conceptual and technical. Technically, quantum gravity requires
advanced mathematical techniques such as topological quantum field theories (Witten,
1988). Conceptually, how to describe time within a quantum theory of gravity it still
unclear. In addition, while there are theoretical motivations for the failings of GR (e.g.,
non-renormalizability Hooft, 1973; Hooft & Veltman, 1974), there are no conclusive obser-
vations that contradict its predictions. For example, cosmological expansion and structure
formation can be explained by a cosmological constant and dark matter. Furthermore,
while there is tension between the local and early universe estimates of the Hubble con-
stant (Di Valentino et al., 2021), this measurement is still uncertain.

While GR has been continuously tested on solar system and cosmological scales, only
recently has it been probed on horizon scales. With the advent of LIGO, and the Event
Horizon Telescope (EHT), probing physics on horizon scales is now possible. Theoretically,
the event horizon of black holes has lead to many interesting hypotheses, such as Hawk-
ing Radiation (Hawking, 1976), the no-hair theorem (Israel, 1967), and the information
paradox (see Mathur, 2009, for a review). With the first detection of gravitational waves
(Abbott et al., 2016), tentative evidence suggests that novel physics may be occurring on
horizon scales (Abedi et al., 2017). Any deviations of GR on horizon scales would provide
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the first experimental evidence for a regime where GR is not valid. In this thesis, we will
explore what measurements the EHT can make on horizon scales.

All astrophysical black holes are described by the Kerr metric (Kerr, 1963):

g = −
(

1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2 + ρ2dθ2 +

Σ

ρ2
sin2 θdφ2, (1.1)

where ρ = r2 + a2 cos θ2, ∆ = r2− 2Mr+ a2, and Σ = (r2 + a2)2− a2∆ sin2 θ. This metric
is parameterized by two numbers: mass M and spin a. This implies that to external
observers, black holes show no evidence of their formation. This lack of information is
related to the information loss paradox (Hawking, 1976). At the core of this paradox, is
the nature of the event horizon and the applicability of GR on horizon scales (Mathur,
2009; Almheiri et al., 2013).

In addition to the event horizon, key qualitative features of the Kerr metric include the
ergosphere, photon sphere, and the innermost stable circular orbit (ISCO). The ergosphere
refers to the region around the black hole where all material must rotate in the same
direction as the black hole spin. The ISCO is the innermost radius in spacetime where
massive particles can move on stable circular orbits. The photon sphere is a compact 2D
surface in Kerr spacetime where photons travel on closed orbits around the black hole. For
a non-spinning black hole, all photon orbits occur at a Schwarzschild radius of r = 3M .
For spinning black holes the photon sphere flattens into an ellipsoidal surface. As a result,
there exists a family of bound orbits characterized by an orbital radius, r, which satisfies:

rγ− ≤ r ≤ rγ+ (1.2)

rγ± = 2M

[
1 + cos

(
2

3
arccos

(
± a

M

))]
. (1.3)

The existence of such a surface gives a black hole image its “shadow”. For an observer,
this sphere appears as multiple lensed rings(Luminet, 1979; Teo, 2003). Following the
notation of Johnson et al. (2020), these rings are labeled by the number of half-orbits the
light traverses around the black hole. For example, the n = 1 ring corresponds to photons
that do a single half orbit, while n = 2 is a full orbit. As n → ∞, this converges to
the photons that live on the photon sphere. For a non-spinning black hole, this visually
appears as a infinitely thin ring at a radius of r =

√
27M . The shape and relative spacing

between these nested rings can uniquely measure the spin and mass of the central black hole
(Johnson et al., 2020; Broderick et al., 2021). Furthermore, deviations from GR can alter
this relation, producing additional ellipticity or alter the spacing of the rings (Johannsen &
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Psaltis, 2011; Johannsen, 2013; Psaltis et al., 2015; Medeiros et al., 2020; Broderick et al.,
2021).

Another way to measure the impact of this photon sphere is through time delays. Light
emitted from an object around the black hole will orbit on different trajectories depending
on its initial direction. As a result, to an external observer, the light from the object
splits into multiple images seen at different times. This effect leads to a strong-gravity
version of the Shapiro delay and is known as black hole glimmer (Moriyama et al., 2019;
Wong, 2021). Glimmer is most visually apparent when, e.g., a localized flaring event occurs
around a black hole. The different arrival times and locations of the flare emission around
the black hole, uniquely characterize the black hole’s mass, spin, and inclination. However,
measuring glimmer and the black hole shadow require resolving the central black hole’s
horizon.

Interestingly, the shadow of the central black hole is related to the quasi-normal modes
or ring-down spectrum. This result was originally shown for Schwarzschild spacetimes in
Stefanov et al. (2010), and more recently for Kerr spacetime (Yang, 2021). This result
demonstrates that while LIGO and the EHT use different observations, both probe the
same gravitational observables. However, while LIGO is interested in solar mass black
holes, most of the known black holes live at the centers of galaxies and have masses ex-
ceeding 106M�.

1.2 Active Galactic Nuclei

Active galactic nuclei (AGN) are some of the most consistently luminous objects in the
night sky. Seyfert galaxies (Seyfert, 1943) are a class of AGN, where the central object has
a total intensity similar to the entire galaxy. Quasars, another form of AGN, first appeared
as star-like objects with extremely high luminosity and varied on timescales less than a
day. Soon after their discovery, it was realized that quasars had an extragalactic origin
(Schmidt, 1963).

The standard model of AGN asserts that at their center is a supermassive black hole
(Rees, 1984). The diverse behavior seen in AGN can hypothetically be explained by a small
number of parameters. These parameters are related to the central black hole’s mass, spin,
and the surrounding accretion environment. In Heckman & Best (2014) AGN are classified
into two main groups: radiative and jet mode AGN. It is important to note that there are
multiple subgroups within each group (e.g., radio-loud AGN and the existence of broad-
emission line regions).
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Radiative-mode AGN are classified by their relatively high luminosity L/LEdd & 0.01.
It is thought that the dominant energy output from these sources is from a geometrically-
thin and optically-thick accretion disk. In historical terminology, radiative-mode AGN
would be classified as Seyfret’s and quasistellar objects (QSO’s). These AGN often have
the “big blue bump”, a spectral feature characteristic of geometrically-thin accretion disks.
Additionally, the majority of these sources do not display strong jet-like emission, except
at the highest luminosity (Heckman & Best, 2014).

Compared to radiative-mode AGN, jet-mode AGN have lower accretion rates and sub-
sequently lower luminosity L/LEdd . 0.01. A key feature of these lower accretion rates is
that the protons are decoupled from the electrons and cannot radiate away most of their
energy. As a result, the accretion disk heats up, becomes vertically thick, and the energy is
advected towards the black hole (see Yuan & Narayan, 2014, for a review). This accretion
state is known as a radiatively inefficient accretion flow (RIAF). RIAFs can generically
support outflow, i.e., winds and jets (Blandford & Begelman, 1999; Yuan et al., 2002).
This property gives jet-mode AGN their name.

Jet-mode AGN display a variety of emission properties related to the observer’s line of
sight and accretion rate. For example, blazars are AGN where the observer’s line of sight
is parallel to the black hole’s jet. Blazars are highly variable and display super-luminal
motion in radio. Furthermore, they can also produce relatively large X-ray and gamma-ray
fluxes. On the opposite end of the spectrum, are low-luminosity AGN (LLAGN).

The two primary targets for the EHT, M 87 and Sgr A∗, are well known examples
of LLAGN. For instance, given M 87’s enormous mass, 6.5 × 109M�, its core bolometric
luminosity, 3 × 1042 ergs−1 (Prieto et al., 2016), is only 3.6 × 10−6 LEdd. Similarly, by
observing the motion of O and B stars near the Galactic center, Schödel et al. (2002);
Ghez et al. (2003); Ghez et al. (2008) were able to strongly suggest that Sgr A∗ is a
4.1 × 106M� black hole. Given this mass, the bolometric luminosity for Sgr A∗ is very
low, L ∼ 1036 ergs−1 ∼ 10−9LEdd. RIAFs (with non-thermal electrons) are able to explain
the observed properties of Sgr A∗ (Narayan et al., 1998; Yuan et al., 2004; Broderick &
Loeb, 2009; Broderick et al., 2011), and M 87 (Reynolds et al., 1996), and a variety of
other LLAGN (e.g., Di Matteo et al., 2000; Di Matteo et al., 2001; Ho et al., 2003).

While M 87 and Sgr A∗ are both LLAGN, they do have several differences. M 87 is a
giant elliptical galaxy, while the Milky Way is a spiral galaxy. Sgr A∗ is also a thousand
times less massive than M 87. For the EHT, this implies that while M 87 is approximately
static over a night, Sgr A∗ will constantly evolve. Additionally, the local environment
around M 87 is very different. M 87 has a large number of neighboring globular clusters
when compared to Sgr A∗. Another distinction of particular interest is the existence of a
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jet. While M 87 has a radio-loud jet (Curtis, 1918), Sgr A∗ has no visible jet emission.
Given that both black holes are likely RIAFs, the cause of this difference is currently
unknown. One explanation is that jets could be powered by black hole spin through the
Blandford-Znajeck process (Blandford & Znajek, 1977). Therefore, a measurement of spin
for Sgr A∗ and M 87 could have important implications for the formation of jets.

Sgr A∗, while displaying constant stochastic variability, also has brief high-excitation
periods, i.e., flares. Strong broadband flaring activity is observed 1–3 times a day, from
sub-mm to X-ray (Marrone, 2006; Gillessen et al., 2006; Witzel et al., 2012; Witzel et al.,
2018; Fazio et al., 2018). Broderick & Loeb (2005, 2006) suggested that these flares could
be due to magnetic reconnection events in the accretion disk. Given the highly magnetized
and the hot accretion disk, reconnection is expected and seen in high-resolution plasma
simulations (Ripperda et al., 2020). These magnetic reconnection events would then locally
accelerate electrons in the accretion disk, creating non-thermal “hot spots”. The hot spot
model predicts that the center of light of Sgr A∗ should appear to wobble during a flare
(Broderick & Loeb, 2005, 2006). Over a decade after its prediction, Gravity Collaboration
et al. (2018) observed precisely this motion, suggesting that at least a subset of these
flares could be explained through orbiting hot spots. One area that is still uncertain is the
nature of these flares in the sub-mm. Namely, while the X-ray and infrared observations of
flares are known to be correlated, their relation in the sub-mm is uncertain (Eckart et al.,
2008a,b).

The unknown questions raised above, namely the black holes spin and the nature of sub-
mm flares, require observing the black hole on horizon scales. While spin measurements
have been made for supermassive black holes using broad iron emission lines (Reynolds,
2003), the extremely hot accretion disk makes it unlikely that these iron lines exist around
M 87 or Sgr A∗. The EHT, however, provides the resolution to directly observe accretion
and variability around M 87 and Sgr A∗.

1.3 The Event Horizon Telescope

The EHT is a global network of mm-radio dishes. The 2017 EHT array consisted of 8
telescopes which are listed in Table 1.1, and shown visually in Figure 1.1. By utilizing the
techniques of very-long-baseline interferometry (VLBI), the EHT combines the individual
telescopes into one radio dish, achieving the highest angular resolution (20µas) telescope
in the world.

In a series of papers Event Horizon Telescope Collaboration et al. (2019a,b,c,d,e,f)
(hereafter EHTC I; EHTC II; EHTC VII; EHTC IV; EHTC V; EHTC VI respectively),
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Telescope Location Median SEFD
ALMA (AA) Chili 74
APEX (AP) Chili 4700
JCMT (JC) Hawaii 10 500
SMA (SM) Hawaii 6200
LMT (LM) Mexico 4500
SMT (AZ) Arizona 17 1000
SPT (SP) South Pole 19 300

Table 1.1: Telescopes that participated in the 2017 EHT observations, including the median
SEFD. These numbers are taken from EHTC II.

AA
AP

LM

PV

JC
SM

AZ

SP

Figure 1.1: World map with the 2017 EHT array stations highlighted.

the EHT published the first image of the black hole at the center of M 87. Follow-up
work published in 2021 (Event Horizon Telescope Collaboration et al., 2021a,b, hereafter
EHTC VII; EHTC VIII respectively) produced the first polarized image of a black hole.
These results provided the first horizon resolved image of a black hole and direct visual proof
that black holes power AGN. Furthermore, the brightening on the bottom is consistent with
Doppler beaming due to the relativistic motion of plasma. In the follow-up polarization
analysis, the magnetic field structure near the horizon was measured to be largely poloidal

6



(EHTC VII). By using the inferred polarization structure of the image reconstructions,
general-relativistic-magneto hydrodynamical (GRMHD) simulations with large magnetic
fluxes, i.e., magnetically arrested disks, were found to be preferred (EHTC VIII).

A primary goal of the first set of EHT papers was to measure the mass of the central
black hole. While the EHT analysis in EHTC IV; EHTC VI, produced a ring diameter,
its relation to the black hole mass is complicated. Theoretically, the diameter of the ring
and the black hole mass should be related. For instance, if the image was dominated by
the photon rings described above, the relationship between mass and ring diameter, d,
would be d ≈ 2

√
27GM/c2 for a Schwarzschild black hole. However, the direct emission

from the accretion disk dominates most of the observed emission (EHTC V) and shifts the
observed ring radius. Furthermore, the appearance of the accretion disk is very sensitive
to the properties of the emitting electrons (EHTC V). To overcome these theoretical chal-
lenges EHTC VI, used an empirical calibration procedure to account for the accretion disk
uncertainty.

The calibration procedure started by postulating that the measured ring diameter and
black hole mass were related by

d = α
GM

Dc2
, (1.4)

where α is an unknown variable which needs to be estimated, M is the black hole mass,
and D is the observer to black hole distance. To estimate α, 100 GRMHD simulations were
selected from the EHTC V library. From these simulations, simulated data matching the
properties of the 2017 M 87 observations was constructed. For each simulated data set, the
measured ring diameter was computed using two techniques. The first used the ensemble
of image reconstructions from the three imaging pipelines used in EHTC IV. Given these
images, the feature extraction tool REx was used to measure the ring diameter. The second
technique was to directly model the observed visibilities or closure products using simple
geometric crescent models. For the imaging approach, α = 10.5 − 11 depending on the
imaging pipeline. For the geometric modeling α = 11.5−12.0. Using this conversion factor,
the measured diameter from both the imaging and geometric modeling implied that M 87
had a mass of 6.5± 0.7× 109M�.

This result constituted the first horizon resolved mass measurement of a black hole
outside of our galaxy. Furthermore, this mass measurement settled a long-standing debate
on the mass of M 87. The conflict was based on two independent methods using stellar
(Gebhardt et al., 2011) or gas (Walsh et al., 2013) motion. The EHT result favored the
stellar mass, and implied that certain assumptions about the dynamical state of gas around
low-z AGN need to be revisited (Jeter et al., 2019). Moreover, reconciling the stellar and
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gas mass measurements suggests that M 87’s outer accretion disk is misaligned (Jeter &
Broderick, 2021).

1.4 Themis: An EHT Bayesian Parameter Estimation

Framework

If the EHT is going to detect deviations from GR, understanding uncertainty is paramount.
While the EHT can achieve extraordinary resolution, its coverage and dynamic range are
relatively poor (EHTC III; EHTC IV). As a result, any imaging or modeling of the data
will be highly uncertain.

Radio astronomy has a long history of overcoming these imaging uncertainties through a
variety of techniques. The most prominent of said techniques are deconvolution algorithms
such as the venerable CLEAN procedure (Hogbom, 1974; Schwarz, 1978; Clark, 1980;
Schwab, 1984). Additionally, due to increases in computational power, forward model-
ing approaches such as regularized-maximum-likelihood (RML) methods are now becoming
popular (Frieden, 1972; Gull & Daniell, 1978; Narayan & Nityananda, 1986; Chael et al.,
2016a, 2018a; Akiyama et al., 2017a). RML methods work by forward modeling the image
and then comparing it to the observed visibilities. These methods are very flexible and can
be automated more easily than CLEAN. Furthermore, their development was critical for
the first images of M 87. However, both RML and CLEAN rely on tuning hyperparame-
ters, e.g., regularizers. Currently, there is no applicable mathematical framework to assess
which regularizers work well with the present EHT array1. Instead, a series of parame-
ter surveys and heuristics are employed (EHTC IV). Furthermore, both RML and clean
methods only produce a single image per set of regularizers, while there are infinitely many
images consistent with the data. That is to say, RML and CLEAN methods cannot assign
uncertainty to images. Quantifying uncertainty motivates the use of Bayesian techniques
for imaging.

1.4.1 Bayesian Inference

Unlike traditional CLEAN or RML based imaging, Bayesian models do not produce a
single image, but rather a distribution. With this distribution, image uncertainty can be
quantified. For instance, error bars can be placed on quantities of interest, such as the
robustness of subdominant objects, or image features such as the ring diameter.

1Although see Akiyama et al. (2017a) for a potential solution
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Bayesian methods assume that any model, M , and its parameters, θ, are inherently
uncertain. Rather than describe model parameters as a single number to be “discovered”,
they are thought of as probabilistic statements on certainty and described by a distribution.
The probability distribution of the model parameters before a measurement is called the
prior p(θ|M). To connect the model to the data, we require the likelihood L(V |θ,M).
The likelihood denotes the probability of observing the data, V , given the model and
parameters. In addition, the likelihood acts as a penalty function, moving us from the
prior distribution to the posterior through Bayes theorem

π(θ|V,M) =
L(V |θ,M)p(θ|M)

p(V |M)
. (1.5)

The term in the denominator is typically known as the marginal likelihood or evidence,
and is needed to ensure that the posterior is normalized. The posterior describes the level
of certainty of the model parameters after the observations. If the observations are infor-
mative, the posteriors will appear different from the prior. However, if our observations
are not informative, the resulting distribution will appear similar to the prior. In the large
data limit, when the number of observations dominates over the number of parameters,
the Bernstein-von Mises theorem states that the Bayesian estimates converge to the fre-
quentist maximum likelihood estimates. However, this theorem does not hold in several
circumstances. For instance, if the model is misspecified2, then the Bayesian credible in-
tervals cannot be interpreted as frequentist confidence intervals (Kleijn & van der Vaart,
2012; Grünwald & van Ommen, 2018).

The RML imaging problem can, in some sense, be interpreted as a restricted version
of Bayesian inference. In this setting, the regularizers are replaced by priors3. The image
estimate is then given by the maximum a posteriori (MAP). However, the MAP does not
give any information about the uncertainty of the reconstruction. Fully Bayesian methods
are interested in the distribution of consistent images. Generally, finding this distribution
is difficult and computationally expensive. The next section describes the approach taken
in this thesis, Markov Chain Monte Carlo.

1.4.2 Markov Chain Monte Carlo

The main goal of Bayesian inference is to find the posterior. Using the posterior we can
then calculate quantities of interest through expectations i.e., integrals of the posterior

2“All models are wrong, but some are useful” (Box, 1976)
3However, these regularizer functions may not be probability distributions, meaning that the posterior

may not exist.
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with some function f :

Eπ [f ] =

∫
f(θ)π(θ|V,M)dθ. (1.6)

Computing these expectations are computationally challenging for two reasons. First, θ
is often a high-dimensional vector, making the integrals very expensive to compute us-
ing standard Riemannian methods. Second, expectations require computing the evidence
p(V |M), which is difficult. Monte Carlo methods were devised to solve this specific prob-
lem. Monte Carlo methods work by sampling from the probability distribution you wish
to explore. Using these N samples, θi, one can form the empirical distribution, or Monte
Carlo approximation of π(θ|V,M):

π(θ|V,M) ≈ 1

N

N∑
i=1

δ(θ − θi). (1.7)

The integrals in (1.6) are then replaced by simple summations:

Eπ [f ] =
1

N

N∑
i=1

f(xi). (1.8)

One can then show that this approximation converges to the true value at a rate of 1/
√
N ,

regardless of dimension (Robert & Casella, 2013).

However, directly sampling from the posterior is typically intractable. Several tech-
niques exist to solve this problem, such as rejection sampling, importance sampling, nested
sampling, and Markov Chain Monte Carlo (MCMC). Rejection and importance sampling
are known to scale poorly in dimension due to the difficulty of choosing an approximate
bounding/importance distribution (Robert & Casella, 2013). Nested sampling (Skilling,
2006), is a modern technique that attempts to solve the problem by sampling from in-
creasing likelihood bounding regions. Nested sampling works for multimodal distributions
with complex correlated structures (Feroz et al., 2009). However, current nested sampling
algorithms struggle in high dimensions, scaling as O(d3) (Handley et al., 2015).

MCMC methods (Metropolis et al., 1953; Hastings, 1970) are simple to implement and
are widely used in statistics and astronomy. Furthermore, they provide an asymptotically
exact method to produce samples from the posterior at the cost of them being correlated.
The theoretical properties of MCMC methods have been researched for decades, provid-
ing several tools to assess their performance and quantify their errors (see Brooks et al.,
2011, for a review). As well, certain MCMC methods should theoretically scale well with
dimension (Beskos et al., 2013, argues the scaling for Hamiltonian Monte Carlo is O(d4/3)).
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Almost all current MCMC methods use a form of the Metropolis-Hastings (MH) al-
gorithm (Metropolis et al., 1953; Hastings, 1970). The MH algorithm depends on two
ingredients: the complex distribution you wish the sample from π and a proposal distri-
bution q. Given an initial position, θ, the MH algorithm uses the proposal distribution
q(θ′|θ) to suggest a new position θ′. This new position is accepted with probability

α = min

(
1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

)
. (1.9)

If the proposal distribution is identical to π, then α = 1, reducing to perfect sampling.
Almost all current MCMC methods, e.g., Hamiltonian Monte Carlo, Gibbs Sampling,
Metropolis-Adjusted Langevin, Affine Invariant MCMC, are examples of MH with a spe-
cific proposal distribution. This proposal distribution is the main object to consider when
implementing an MCMC method. If the proposal distribution is inefficient, MCMC meth-
ods may not converge in feasible timescales.

1.4.3 Themis

Bayesian inference requires many different ingredients. For the EHT, this was a technologi-
cal hurdle. To solve this challenge, Broderick et al. (2020) developed a Bayesian parameter
estimation framework called Themis, specifically targeted for the EHT. Themis is a flexi-
ble framework written in C++ and MPI to enable massive parallelization. A typical Themis
program is built from “blocks”, that encapsulate different aspects of Bayesian program-
ming. These blocks are written in terms of the following C++ classes:

1. Data: Data class, that describes the different data products of the EHT.

2. Model: Model class that parameterizes some image that produces visibilities, e.g.
Gaussian’s, crescents, semi-analytical models.

3. Priors: Prior class

4. Likelihood: Connects the model and data, and describes the observational error.

5. Sampler: MCMC/Sampling framework for efficient posterior exploration

Each of these components is described in detail in Broderick et al. (2020). The benefit
of this compartmentalized approach is that Themis is easily extendable. For example,
including new models only requires that the user understands the model class. As a
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likelihood

sampler_MCMC_base

data_visibility
data_visibility_amplitude

data_closure_phase

prior_base transform_base

prior_linear
prior_gaussian

transform_none
transform_logit

likelihood_base

likelihood_visibility
likelihood_optimal_complex_gain_visibility

likelihood_visibility_amplitude
likelihood_closure_phase

model_visibility
model_visibility_amplitude

model_closure_phase
model_image

sampler_automated_factor_slice_sampler_MCMC
sampler_stan_adapt_diag_e_nuts_MCMC
sampler_deo_tempering_MCMC<S>

Figure 1.2: The layout of Themis. Each box defines an interface to the data, model,
likelihood, prior, and transform classes. As well, each interface has a number of child
classes, with only a small portion being shown in the figure. These compartments are
eventually merged into a large likelihood class that computes the un-normalized posterior.
This likelihood can then be passed to a sampler that will produce draws from the posterior
using MCMC methods. This compartmentalization allows users to easily extend the parts
they are interested in.

result of this flexibility, Themis was the driving force in the first EHT results on M 87
(EHTC VI; EHTC VII), 3c279 (Kim et al., 2020), and the historical variability analysis of
M 87 (Wielgus et al., 2020). Furthermore, Themis has been used to produce the first fully
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Bayesian radio-image reconstructions (Broderick et al., 2020). In this thesis, the results
from Chapters 4, 5, and 6 use the Themis framework.

1.5 Summary

This thesis explores the capabilities of the current EHT to constrain the structure of
spacetime on horizon scales. This will be accomplished by analyzing the shape of the black
hole image, and variability of Sgr A∗ during flares. General relativity predicts that the
shadow should be symmetric given the inclination angle of the black hole M 87 (Mertens
et al., 2016). A robust detection of ellipticity in the image reconstructions of M 87 could
signal new gravitational physics on horizon scales.

The first part of the thesis develops a method called variational image domain analysis
(VIDA) (Chapter 2) that extracts features such as ring ellipticity from image reconstruc-
tions. Feature extraction is required since imaging is non-parametric. To demonstrate
VIDA’s flexibility, we analyzed thousands of reconstructions from previous EHT simulated
datasets to recover image features such as diameter, orientation, and ellipticity. Chapters
3-5 use VIDA to constrain the ellipticity of M 87 using RML and Bayesian imaging methods.

In Chapter 3, we analyze whether the RML imaging pipeline used in EHTC IV is
sensitive to ring ellipticity. We find that the set of imaging hyperparameters used for M 87
is unable to recover ellipticity. Even for simple geometric models, the true ellipticity is not
recovered. To calibrate for the imaging bias, we then image 550 GRMHD images, using
the M 87 hyperparameters, and find that GRMHD simulations with an 3 : 2 axis ratio are
consistent the M 87 eht-imaging results. Measuring the sensitivity to additional ellipticity
that could occur from non-GR effects, we find that simulations with intrinsic axis ratios of
2 : 1 are consistent with the M 87 eht-imaging results.

The results of Chapter 3 are a symptom of standard imaging techniques inability to
assign a statistically meaningful uncertainty to image reconstructions. However, with
Themis, Bayesian imaging of radio astronomy datasets is now possible. To enable Bayesian
imaging requires exploring high dimensional multi-modal distributions. Chapter 4 de-
scribes the next generation samplers implemented in Themis. These samplers include a
state-of-the-art Hamiltonian Monte Carlo (HMC) sampler using the no u-turns (NUTS)
adaptation scheme. While NUTS works very well for single-mode distributions, it strug-
gles to move between well-separated modes. By combining HMC with a non-reversible
parallel tempering scheme, we allow for a global exploration of parameter space. These
improvements have enabled polarized Bayesian imaging, which requires efficient sampling
of models with 300− 500 parameters.
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In Broderick et al. (2020), a novel Bayesian imaging technique was applied to simulated
data based on the 2017 EHT coverage of M 87. Chapter 5 extends this analysis to the
ellipticity measurement of M 87. By combining the image posteriors from Themis with
feature extraction techniques from VIDA, we produce the first-ever Bayesian ellipticity
estimates of M 87. This is done in two steps. First, we validate the Bayesian ellipticity
method on the simulated ellipticity tests from Chapter 3, that the RML methods failed to
recover. Second, we analyze the M 87 data and find an axis ratio . 5 : 4 across all days.
Furthermore, we show that this ellipticity measurement is consistent with the expected
ellipticity from GRMHD simulations.

Future observations of dynamical phenomena provide a powerful way to probe space-
time properties. Sgr A∗, flares 1–3 times a day depending on the wavelength. These flares
could arise through magnetic reconnection events in the accretion flow, forming a hot spot.
In Chapter 6, we construct a semi-analytical model that includes the effects of shearing as
a spot moves along the accretion flow. We then explore the ability of the 2017 EHT to
recover said hot spots. Even including significant systematic uncertainties, such as thermal
noise, diffractive scattering, and background emission due to an accretion disk, we were
able to recover the hot spot and black hole spin to sub-percent precision. Moreover, by
observing multiple flaring events, we show how the EHT could be used to tomographi-
cally map spacetime. This provides new avenues for testing relativistic fluid dynamics and
general relativity near the event horizon of supermassive black holes.
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Chapter 2

Variational Image Domain Analysis
for the Event Horizon Telescope

2.1 Introduction

Generating quantitative measurements about intrinsic radio images from very long baseline
interferometry (VLBI) is a computationally and theoretically difficult task. In practice,
the small number of stations participating in the Event Horizon Telescope (EHT), and
thus sparse coverage in the u-v plane, results in variety of potential image structures. As
a result, the process of reaching quantitative conclusions about image features requires
significant additional analysis. For the EHT analysis of the 2017 M 87 data, this has taken
two, complementary forms (EHTC I).

The first is a traditional Bayesian parametric modeling approach (EHTC VI). Here,
simple geometric models are fit to the visibility data, and direct quantitative inferences
about the image properties are encoded within the model, e.g., ring diameter. However,
to give reliable estimates, these geometric models need to provide good approximations
to the true on-sky image. Therefore, while geometric models give direct measurement of
relevant features, they require a priori knowledge of the image structure.

The second approach is non-parametric, and usually referred to as “imaging” (EHTC IV).
This category of methods is broadly defined, and includes deconvolution algorithms like
CLEAN (Hogbom, 1974; Schwarz, 1978; Clark, 1980; Schwab, 1984) and forward model-
ing approaches like “maximum entropy” (Frieden, 1972; Gull & Daniell, 1978; Narayan &
Nityananda, 1986), regularized maximum likelihood (RML) analyses (Chael et al., 2016a,
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2018a; Akiyama et al., 2017a,b), and Bayesian imaging (Broderick et al., 2020). For the
EHT, the output of imaging is an ensemble of image reconstructions that reproduce the
observed visibility data Event Horizon Telescope Collaboration et al. 2019d. These imaging
methods have the significant advantage that they are extremely flexible, and therefore are
reasonably expected to cover the “truth”. However, unlike parametric modeling, imaging
methods do not give direct quantitative measurements of the image features of interest,
e.g., ring diameter, width, orientation, etc. Therefore, reaching quantitative conclusions
about the image properties requires an additional processing step, which we call “feature
extraction”. It is this final step that is the subject of this chapter.

Feature extraction is similar to the geometric/parametric modeling above, but is applied
in the image domain rather than visibility domain. However, it differs in one important
respect: by virtue of being performed after imaging, the class of applicable “models”, i.e.,
image features to be measured, is already well known. For example, in EHTC IV and
EHTC VI, quantitative image features were extracted by the algorithm “ring extractor”
REx (Chael, 2019). However, REx is only applicable to images that have a dominant ring-like
feature. In general, images from the EHT can have a complex structure and are dependent
on the intrinsic source. For instance, the active galactic nucleus 3c 279 is displays a jet
morphology which while poorly described by a ring, can be described by a set of Gaussians
(Kim et al., 2020).

One possible approach to feature extraction is to “template” relevant image features
using a transformation. For example, the Hough transform (Hough, 1964; Duda & Hart,
1972), is used to extract rings and other shapes from images using template matching. A
related method is to approximate the complicated image reconstruction with parametric
templates that describe the features of interest. This idea is more akin to the parametric/-
geometric modeling approach of visibility data in EHTC VI and is the approach taken in
this chapter.

Any comparison requires a suitable quality metric, i.e., objective function. Because the
total flux is typically an arbitrary rescaling, and the image brightness is positive definite,
there is a natural identification between the flux-normalized image and probability distri-
bution. This motivates the use of “divergences” as an extremely flexible class of objective
functions for comparing images; for this reason divergences have been used extensively in
image processing (e.g., Goudail et al., 2004; Choi & Lee, 2003; Aherne et al., 1998).

We adopt a method similar to variational inference (Blei et al., 2017), in which compli-
cated distributions are approximated by simple parametric forms. The optimal parameters
are estimated via the minimization of an appropriate divergence. In this chapter, we de-
velop a number of appropriate parametric forms and explore the performance of a variety
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of divergences for application to image feature extraction. Therefore, we call this method
variational image domain analysis, or VIDA. The VIDA algorithm has been implemented in
the open source package VIDA.jl1 written in Julia (Bezanson et al., 2017).

There are two main reasons that imaging reconstruction followed by feature extraction is
advantageous when compared to directly fitting simple geometric models to the data. First,
choosing the correct geometric model is difficult before imaging, meaning imaging is the
first step in both methods. Second, fitting simple geometric models can “underfit” the data
leading to biased results. For instance, in EHTC VI additional “nuisance” Gaussians were
required to obtain a reasonable reduced chi-square. On the other hand, Bayesian imaging
techniques (e.g., Broderick et al. (2020) and Chapter 5) make minimal assumptions about
source structure. Combining the Bayesian imaging posterior with VIDA then provides a
deterministic map from image to feature posteriors. VIDA’s feature posteriors can then be
compared to the geometric modeling results, testing whether the features are robust across
methods. Therefore, VIDA fills a gap in the EHT modeling pipeline and is generic, unlike
current EHT tools.

The layout of this chapter is as follows: In Section 2.2, we present the details of VIDA.
Namely we detail, the different types of templates implemented, and the objective function
used to find the best approximation to the true image. Section 2.3 applies VIDA to a variety
of ring-like image reconstructions from the test set of EHTC IV and compares the results
to REx. This is an empirical demonstration that we can recover the optimal template,
even through the objective function is non-convex. In Section 2.4, we demonstrate VIDA’s
flexibility by applying it to non-ring images from the test set of EHTC IV. Finally, the
conclusions are detailed in Section 2.5.

2.2 Variational Image Domain Analysis

The critical insight behind VIDA is that images (sans polarization and modulo total flux)
and probability densities are in one-to-one correspondence. Namely, images are point-wise
positive and integrable. Probability divergences are a natural class of objective functions
used to compare two probability distributions. Furthermore, they have been used in image
feature extraction and similarity measures before.

VIDA consists of three ingredients:

1. Image I(α, β) whose features we want to extract

1https://github.com/ptiede/VIDA.jl
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2. Template (or approximate image) that parameterizes the features of interest, e.g.
ring radius

3. A divergence, i.e. the objective function we minimize

Each of these building block have independent abstract types in VIDA.jl enabling users
to easily add additional image templates, and divergences2. In Section 2.2.1 and 2.2.2 we
will review the templates and divergences currently implemented in VIDA respectively.

2.2.1 Image Templates in VIDA.jl

The choice of template used will depend on the structure of the image. For example, the
images of M 87 from EHTC IV are ring-like, while the reconstructions of 3c 279 from Kim
et al. (2020) can be described by several Gaussian brightness distributions. In this section,
we present the various templates that are implemented in VIDA.jl.

Gaussian template

To model a source of compact flux we include an asymmetric Gaussian template. The
parameters of the Gaussian template are:

1. The size, σ =
√
σaσb, where σ2

a,b are the variances in the principal directions of the
Gaussian.

2. The ellipticity, τ = 1−σb/σa, measures the ellipticity of the Gaussian and we assume
σa > σb.

3. ξ, rotation angle (relative to the Gaussian center) of the principal axes measured east
of north.

4. x0, y0, the center of the Gaussian.

2See the documentation at https://ptiede.github.io/VIDA.jl/dev/ for a tutorial on how to add
additional templates
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Figure 2.1: An example of VIDA run. Left: image reconstruction of a GRMHD simula-
tion from EHTC V; EHTC IV. Middle: VIDA reconstruction using the CosineRing{1,4}
template and Bh divergence. Right: vertical (red) and horizontal (blue) chords through
through the center of light of the truth image. The dashed lines are for the VIDA optimal
template, and solid for the reconstruction. This plot can be made in the VIDA.jl package
using the triptic function and is used to assess the quality of the template approximation.

Disk template

In Section 2.3 we will test VIDA.jl on a number of synthetic data tests. One of the test
images is a disk. To approximate disks we use the template:

fDisk(r; r0, α, x0, y0) = N

{
1 r < r0

exp(−(r − r0)2/2α2) r > r0,
(2.1)

where r0 is the radius of the flat disk, α controls the smoothness of fall off and N ensures
the template is normalized. The radial distance, r, is relative to the center x0 y0 and N
is the normalization. When r0 = 0 this template reduces to a symmetric Gaussian with
standard deviation α.

Ring templates

One of the principal quantities of interest in images of M 87 is the ring diameter, d0,
since it is related to the mass of the central black hole. Additionally, the ring is expected
to have some thickness, w, due to the emitting material around the black hole. The
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simplest template would be a circular Gaussian ring with some thickness. Doppler boosting,
however, can cause the emission to appear asymmetric. To model this a slash can be
added to the ring template. Additionally, the ring itself does not have to be circular. Ring
ellipticity could occur from e.g., the emitting material not being azimuthally symmetric
around the black hole. As well, due to the sparse coverage of the EHT array and imaging
algorithms, ellipticity may be introduced into the reconstructions. Consolidating each of
these features into a template parameter, we get the following:

• d0: the geometric mean of the semi-major, a, and semi-minor, b, axis d0 = 2
√
ab

which is related to the area of the ellipse, π(d0/2)2.

• τ : the ellipticity of the ellipse, τ = 1− b/a

• ξτ : the position angle of the semi-major axis measured east of north.

• w: the width of the Gaussian ring, defined to be the full width half max (FWHM)
of the Gaussian, i.e. w = 2

√
2 log 2σ, where σ is the standard deviation.

• s: the strength of the slash described in equation (2.4).

• ξs: the position angle of the slash measured east of north.

• (x0, y0): the center of the ring.

The functional form of the template is given by:

hθ(x, y) = S(x, y; s, ξ) exp

[
−(dθ(x, y))2

2σ2

]
, (2.2)

where S(x, y; s, ξ) is the slash function and dθ(x, y) is the minimum distance between the
ellipse with parameters θ = (d0, τ, x0, y0) and the point x, y. If τ = 0, dτ=0(x, y) =
| ‖x− x0‖ − d0/2|. However, for an ellipse there is no analytical equation. Instead one has
to numerically minimize the function,

L(x, y, ex, ey) = ‖(x− ex, y − ey)‖ , (2.3)

subject to the constraint that ex, ey are points on the ellipse with parameters d0, τ, ξτ .

For the slash function S, we use a first order cosine expansion in azimuthal angle φ
around the center x0, y0:

S(x, y; s, ξs) = N0 [1 + s cos(φ− ξs)] , (2.4)

20



where N0 is a normalization factor to ensure the template is unit normalized. To prevent
image flux from becoming negative, we restrict s ∈ [0, 1]. In the VIDA.jl package, this
template is called GeneralGaussianRing (GGR) and an example reconstruction using said
template is shown in Figure 2.1.

Additionally, VIDA.jl has a number of other ring-like templates currently implemented:

• GaussianRing: Symmetric Gaussian ring with constant azimuthal intensity (i.e.
GGR with τ, s = 0)

• SlashedGaussianRing: Symmetric Gaussian ring with azimuthal slash described by
Equation 2.4 (i.e. GGR with τ = 0)

• EllipticalGaussianRing: Elliptical Gaussian ring with constant azimuthal flux
(i.e. GGR with s = 0)

• TIDAGaussianRing: GGR template where the slash and ellipticity position angle are
either aligned or anti-aligned.

We also include a more general version of the GGR called the CosineRing{N,M}. This
template is similar to the GGR template but where the width, σ, and slash function (2.4)
are replaced by a higher order cosine expansion in azimuthal angle φ:

SM(φ; s, ξ(s)) = 1−
M∑
m=1

sm cos
[
m(φ− ξ(s)

m )
]
, (2.5)

σN(φ;σ, ξ(σ)) = σ0 +
N∑
n=1

σn cos
[
n(φ− ξ(σ)

n )
]
, (2.6)

where s, σ, ξ(.),, are vectors with the cosine expansion coefficients of the slash, standard
deviation, and angular offset. We can reproduce the GeneralGaussianRing template by
setting M = 1 and N = 0 in (2.5) and (2.6) respectively. This template can be used if
image has a ring-like feature that has a bumpy azimuthal profile.

Background Templates

We found that many image reconstructions had a diffuse amount of flux throughout the
image due to poor dynamic range from sparse coverage and regularization effects. To
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model the background, we added a constant intensity template. This template is typically
required to be included in any analysis to ensure reliable feature extraction.

A more complex background structure is also included with the DiffuseBack template.
This decomposes the background into a uniform grid of intensities that are blurred with
some Gaussian kernel. Typically we find a very coarse 2× 2 or 3× 3 grid works well.

Composite Templates

A general image reconstruction from a VLBI observation may have multiple image features.
As such, VIDA.jl allows the user to combine multiple features into composite templates,
where each individual component is given a relative flux3. An example of this is shown in
Section 2.4.1 where three Gaussian templates are used to model the reconstructed images.

2.2.2 Probability Divergences

As mentioned above, VIDA.jl uses an analogy between images and 2-D probability dis-
tributions to motivate the use of divergences as objective functions. Divergences form a
general measure of similarity between two distributions. A divergence can be thought of
as a functional Fq[p] = D(p||q), comparing a the distribution p (template) to a reference q
(image), and is required to be non-negative, D(p||q) ≥ 0, and non-degenerate, D(p||q) = 0
if and only if p = q. Note that this definition is more general than a metric. Namely, a
divergence does not have to be symmetric, i.e. D(p||q) 6= D(q||p) or satisfy the triangle
equality.

One of the most well-known divergences is the Kullback-Leiber (KL) divergence (Kull-
back & Leibler, 1951) or relative entropy,

KL(p||q) =

∫
p(x) log

(
p(x)

q(x)

)
d2x. (2.7)

One issue with the KL divergence is its definition when the support of q and p differ, i.e.
if q(x) = 0. In this case we set the contribution to the integral to be zero.

In addition to the KL divergence VIDA.jl also includes the Bhattacharyya divergence
(Bh) (Bhattacharyya, 1943),

Bh(p||q) = − log

∫ √
p(x)q(x)d2x. (2.8)

3Note the absolute or total flux of the image is not recoverable since we renormalize each image to have
unit flux.
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The Bh divergence is related to a well known metric on probability spaces, the Square
Hellinger Distance :

H(p, q) =
1

2

∫
(
√
p(x)−

√
q(x))2d2x = 1− Bh(p||q). (2.9)

Therefore, the minimizing the Bh divergence is simply a least squares fit in the space of
the square root of distributions.

In this chapter we will present the results from optimizing the Bh divergence for two
reasons. First, we found that while the KL and Bh divergence produce near-identical
results, the Bh divergence required ∼ 25% less evaluations to converge. Second, the Bh
divergence has preferable theoretical properties compared to the KL divergence. Namely,
it is well defined when the image pixels have zero flux, and is symmetric.

2.2.3 Optimizing the Divergence

A problem when using probability divergences is that they give non-convex, non-linear
optimization problems. Furthermore, the nature of the problem will change if the template
changes, making an analytic analysis difficult. Therefore, to extract the globally optimal
template, we turned to heuristic global optimizers, such as Genetic/Evolutionary strategies
(see Das & Suganthan, 2011, for a review) and simulated annealing (Goffe, 01 Oct. 1996).
For this chapter we used the Julia package BlackBoxOptim.jl4 5. BlackBoxOptim.jl uses
natural-evolution and differential evolution strategies to perform a stochastic search of the
parameter space. In the next section, we will validate that our chosen optimizer is able to
reliably recover the optimal template.

2.2.4 REx and relating to VIDA parameters

The first step in REx (see EHTC IV, for details) is to identify the dominant ring in the
image. Given a center position (x, y), REx samples the image in radius r and azimuthal
angle θ, obtaining a intensity map I(r, θ|x, y). Then for that central map, the radius of
the ring is taken as the azimuthally averaged peak brightness:

rpk(θ|x, y) = argmax[I(r, θ|x, y)]r

r̄pk = 〈rpk(θ|x, y)〉θ∈[0,2π] .
(2.10)

4https://github.com/robertfeldt/BlackBoxOptim.jl
5VIDA.jl also has interfaces to other Julia optimization packages, such as Optim.jl and CMAESEvo-

lutionStategy.jl
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Figure 2.2: Comparison of the REx’s fractional radial dispersion and VIDA’s τ ellipticity
parameter. The blue curve shows the conversion for the case of an ellipse, the orange curve
is an ellipse with a constant white noise fluctuation in the found radius, with a variance of
0.012r̄2

pk. The green points are the results of fitting the Cres150 top set in Section 2.3 with
both REx and VIDA.

This provides a different “radius” for every point (x, y) in the image. To identify the ring
center, the fractional radius spread is minimized:

(x0, y0) = argmin

[
σr̄(x,y)

r̄pk(x, y)

]
, (2.11)

where σr̄(x, y) = 〈(rpk(θ|x, y)− r̄pk)2〉, is the radial dispersion. The diameter of the ring is
then:

d = 2r̄pk(x0, y0). (2.12)

To relate this to VIDA’s definition we consider an ellipse with semi-major axis a and
semi-minor axis b. VIDA parameterizes this ellipse with d0 = 2r0 = 2

√
ab and τ = 1− b/a.

The relationship between r0 and rpk is given by

r̄pk =
r0√

1− τ
1

2π

∫ 2π

0

√
1− ε2(τ) sin2(θ)dθ =

2

π

r0√
1− τ E

(
ε(τ)

)
, (2.13)
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where E(x) is the complete Elliptic integral of the second kind and ε(τ) =
√

1− (1− τ)2

is the orbital eccentricity.

REx’s measure of circularity is provided by the radial fractional dispersion:

fd =
σr̄
r̄pk

. (2.14)

To compare REx’s ellipticity measure, fd, to VIDA’s, it can be shown that

fd(τ) =

√
1− ε(τ)2 − 4/π2E(ε)2

√
1− τ =

√
(1− τ)2 − 4/π2E(ε)2

√
1− τ . (2.15)

Equation 2.14 is then used to convert this to a fractional diameter spread. Using linear
interpolation we invert the function achieving a map from fd to τ . One important thing
to note is that this conversion assumes that the image is a perfect ellipse. In general, this
will not be true for the image reconstructions. Therefore, REx’s reported ellipticity may
be larger than the VIDA measurement. To model the increase we consider rpk modified
by a white noise εθ term with dispersion proportional to the average radius 〈εθεθ′〉 =
σ2
wr̄

2
pkδ(θ − θ′). With this noise term, the average peak radius is unchanged since ε has

mean 0. However, the additional noise does impact the radial dispersion:

σr̄ → σr̄ + 2 〈εθrpk(θ)〉+
〈
ε2
θ

〉
. (2.16)

When we have a circular ring then this just becomes 〈ε2
θ〉 = σ2

ε r̄
2
pk adding an apparent

minimal ellipticity to the image after converting to τ . Figure 2.2 shows the conversion when
the ring is elliptical and compares it to the results of the Cres150 top set of Section 2.3,
with a conversion curve with noise floor (orange) fit by eye.

The width of the ring is defined by finding the FWHM at a fixed θ ray, and then
averaging over θ,

w = 〈FWHMr[I(r, θ|x0, y0)− Ifloor]〉θ . (2.17)

The flux floor is given by Ifloor = 〈I(r = 50µas, θ)〉θ and is included to avoid biasing the
measurement due to the low level flux present in the image. This is similar to including
the constant flux template during the VIDA extraction.

To characterize the azimuthal profile of the ring (ξs and s for VIDA), we consider the
azimuthal moments of the ring. Namely, the orientation ξs is given by:

ξs =

〈
Arg

[∫ 2π

0

I(r, θ|x0, y0)eiθdθ

]〉
r∈[rin,rout]

, (2.18)
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where rin = (d− w)/2 and rout = (d+ w)/2. The strength of the slash is given by

s = 2

〈∣∣∣∫ 2π

0
I(r, θ|x0, y0)eiθdθ

∣∣∣∫ 2π

0
I(r, θ|x0, y0)dθ

〉
. (2.19)

Note that the factor of 2 is included to match VIDA’s definition (Equation 2.4).

2.3 Validating VIDA

To validate VIDA we need to analyze two related quantities. First, we need to verify that
the objective function, i.e. the Bh divergence (2.8), is robust to the artifacts that occur
in image reconstructions. Namely whether the recovered parameter distribution contains
the true value. Additionally, given the complex nature of the optimization problem we
need to ensure that the chosen optimizer can recover the global maximum. Our validation
procedure will consist of:

1. Selecting an applicable ground truth image Itruth (see the left column of Figure 2.3

2. For each truth image create a simulated EHT observation matching the observation
characteristic of the EHT M 87 2017 observations.

3. Create an ensemble of image reconstructions of the simulated observations using the
same procedure as EHTC IV.

4. Apply VIDA to each image reconstruction and compare the inferred results to the
ground-truth parameters, and the reconstruction technique REx used in EHTC IV;
EHTC VI.

2.3.1 Step 1: Selecting Ground Truth Images

To validate VIDA, we applied it to a subset of the test set from Event Horizon Telescope
Collaboration et al. (2019d). The sources we considered are shown in Figure 2.3, and consist
of two geometric crescents and a general-relativistic-magneto-hydrodynamical (GRMHD)
simulation from Event Horizon Telescope Collaboration et al. (2019e). The geometric
crescent model is described by:

I(r, θ) = I0 (1− s cos(θ − ξ))δ(r − r0)

2πr0

. (2.20)
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The infinitely thin ring is then convolved with a circular Gaussian with FWHM 10µas. Two
orientations (measured east-of-north) ξ = 180◦ and ξ = 150◦ are considered in this chapter,
and are shown in the left and middle panels of Figure 2.3. These two crescent orientations
are denoted by Cres180 and Cres150. For both orientations we took r0 = 22µas, s = 0.46,
and I0 = 0.6 Jy. After blurring the ring, it is important to note that the effective radius
(the intensity peak) is smaller than the original radius of the ring (see EHTC IV). The
amount the diameter is biased inwards is given approximately by:

dblur = dtrue −
1

8 ln 2

α2

dtrue

, (2.21)

where dtrue is the diameter of the non-convolved ring (44 µas), and α is the FWHM of
the Gaussian kernel (α = 10µas). Using (2.21) with dtrue = 44µas gives dblur ≈ 43µas. If
we also consider the finite resolution of the EHT array (∼ 20µas) this is further decreased
to ≈ 42µas. Therefore, we expect both VIDA and REx to recover a diameter of 42µas.
Additionally, the slash strength is also modified by the convolution. Fitting the crescent
with the GGR template we find s = 0.32, which is the value we will take as the ground
truth below.

2.3.2 Step 2: Creating Simulated EHT Observations

While VIDA could be applied to the ground-truth images shown in the left column of
Figure 2.3, this is not applicable to what the EHT observes. The EHT is a very-long-
baseline inferometer and instead observes complex visibilties, V (u, v) which are related to
the on sky image through the van Cittert–Zernike theorem (Thompson et al., 2017):

V (u, v) =

∫
e2πi(uα+vβ)I(α, β)dαdβ. (2.22)

In addition, atmospheric and telescope effects can further corrupt the signal. To model
these corruption effects we use the eht-imaging package (Chael et al., 2016a, 2018a) to
generate realistic simulated data.

2.3.3 Step 3: Generating an Ensemble of Reconstructed Images
from Simulated VLBI Data

To validate VIDA we used image reconstructions from the forward modeling or “regularized
maximum likelihood methods” (RML), e.g. Honma et al. (2014); Bouman et al. (2016);
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Figure 2.3: Images used for the imaging validation from EHTC IV. We considered 3 models:
top row crescent with position angle ξ = 180◦ north of east, middle row crescent with
position angle ξ = 150◦ and bottom row GRMHD simulation. The left column shows the
truth image, the middle columns an example reconstruction, and the right the optimal
VIDA template applied to the reconstruction.

Akiyama et al. (2017a,b); Ikeda et al. (2016); Kuramochi et al. (2018) and more specifically
the eht-imaging package (Chael et al., 2016a, 2018a). The goal of RML methods is to
find the image, I, that minimizes the objective function

J(I) =
∑
data

αdχ
2
d(I)−

∑
regularizers

βrSr(I). (2.23)

Following EHTC IV, each χ2
d is defined solely from the data products from the EHT tele-

scope, e.g., complex visibilities. The second term encapsulates our additional assumptions,
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Figure 2.4: Results from VIDA (blue) and REx (orange) being applied to the simulated two
crescent and GRMHD data using the coverage from April 11. The left-two and middle-two
columns show the geometric crescent models’ results and the right-two for the GRMHD. In
all instances, we found excellent agreement between VIDA (blue) and REx (orange) for the
ring diameter, width, ellipticity, and location of the azimuthal brightness. Furthermore,
the crescent distributions for the diameter (after accounting for Equation 2.21), width,
slash strength s and position angle ξs are consistent with the truth image (black dashed
line). For the ellipticity, τ , both REx, and VIDA give similar results but are biased from the
truth. The origin of this bias will be explored in future work. The ellipticity orientation,
ξτ , is only recovered by VIDA, so there is no REx comparison. Similar results were found
using the coverage from April 5, 6, and 10.

or regularizers, that are placed on the image. The αd, βr, are the “hyperparameters”
that control the relative weighting of the regularizers and data products. For the list of
the regularizers used, see EHTC IV. In an attempt to model the uncertainty in the image
reconstructions, we used the same set of imaging hyperparameters as in EHTC IV. The
resulting set of image reconstructions is called the “top set” and results in 1572 reconstruc-
tions per dataset.
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2.3.4 Step 4: Applying VIDA to the Ring-Like Image Reconstruc-
tion Ensembles

VIDA was run on each set of image reconstruction ensembles using the GGR template with a
constant flux background whose relative intensity was free parameter, giving 9 parameters
in total. Some example reconstructions and corresponding optimal templates are shown in
Figure 2.3. The results are shown in Figure 2.4. For the crescent models, we were able to
recover the expected diameter d, width w, and azimuthal orientation ξs (black dotted lines
in Figure 2.4. In addition, we compared the VIDA results to the method used EHTC IV,
REx.

REx assumes that a single ring-like feature dominates the image reconstruction and
then finds the ring by finding the image location that leads to a ring with minimal radial
dispersion. REx characterizes (see Section 2.2.4 and EHTC IV for definitions) the ring
through a diameter d, width w, brightness moments s and orientation ξs and a fractional
dispersion of the diameter fd. The diameter and width, and brightness profile of the
REx measurement are similar to VIDA’s measurement with the GGR template. However,
the fractional dispersion is not directly measured. Instead, VIDA measures the elliptical
ellipticity of the ring. As a result, we expect that the ellipticity measured by REx will
be systematically larger than the one measured by VIDA. More specifically, as is shown in
Figure 2.2, we expect REx’s ellipticity measurement will have a floor of τ ∼ 0.05.

The agreement between REx and VIDA is excellent. The peak and overall width of
the distribution for each parameter in Figure 2.4 are consistent between REx and VIDA.
The ground truth values (black vertical lines) for the diameter, width, and brightness
orientation ξs are also consistent with the REx and VIDA results.

To compare VIDA and REx’s measurement of ellipticity, we first note that an additional
processing step is needed since the two definitions differ. REx doesn’t directly measure τ
but instead measures the fractional diameter dispersion of the ring fd (see Equation 2.14
for a definition). If we assume that the ring’s ellipticity dominates fd, then fd and τ are
related by an invertible map. For more information about this conversion, see Section 2.2.4.
In Figure 2.4 we show REx’s results after converting from fd to τ . Comparing the two
measurements of τ , we see that REx’s measurement is consistently greater than VIDA’s. This
bias is not unexpected given that when τ is small, the conversion described in Section 2.2.4
no longer applies. Instead, the fractional dispersion is dominated by random fluctuations in
the ring diameter, creating a floor in fd. If we then naively apply the previous conversion,
as was done in Figure 2.4, we will overestimate τ (see Figure 2.2).

VIDA also recovers the orientation of the ring ellipticity ξτ . Interestingly, in all instances,
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we measure a similar distribution for ξτ irrespective of the intrinsic image. This distribution
is biased so that the semi-major axis of the ellipticity is in the north-south direction. By
visually inspecting the image reconstruction ensembles (see Figure 2.3 for a typical example
reconstruction) we confirmed this feature was present in the reconstructions and was not
a bias from VIDA. The origin of this bias will be explored in Chapter 3, where we show this
is an inherent weakness of the eht-imaging top set.

2.4 Applying VIDA to Additional Simulated Image Re-

constructions

In the previous section, we saw that VIDA and REx gave similar answers to problems that
demonstrated similar ring-like structures. While REx is limited to ring extraction, VIDA can
be applied to any image given a suitable template function. This section will explore VIDA’s
capabilities of extracting features from a broader range of potential sources. To accomplish
this, we will consider the other non-ring test images from EHTC IV: the symmetric disk
and double Gaussian (see Figure 2.5). We will follow the same steps in the previous section
to evaluate VIDA’s performance.

2.4.1 Double Gaussian

Here we consider a source composed of a compact double with two circular Gaussian
components. Each Gaussian has an FWHM of 20µas. One of the Gaussians is placed at
the origin and has a flux of 0.27Jy, which we will call the NW component. The other
Gaussian is at ∆RA = 30µas and ∆DEC = −12µas and has a flux of 0.33Jy and will
be called the SE component. This type of source could arise when looking at AGN using
VLBI images, such as the recent 3c 279 results (Kim et al., 2020).

To extract the reconstruction’s compact components, we used a template with three
asymmetric Gaussian components and constant background. Two of the Gaussian compo-
nents were allowed to be arbitrary, while the third Gaussian component was forced to be
large (r0 > 15µas). The reason for the third Gaussian was there tended to be a region of
additional flux around the two dominant Gaussian components in the image reconstruc-
tions. This diffuse flux can be seen in the top middle panel of Figure 2.5. If we didn’t
include this third component, we found that the Gaussian components tended to be quite
large to soak up the extra flux.
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Figure 2.5: Results from applying VIDA to the non-ring test images from EHTC IV where
the left column shows the ground truth image, the middle an example reconstruction from
the top set, and right the optimal template from applying VIDA to the reconstruction.
Top: Shows the results for the double image. Bottom: Shows the same results for the disk.

VIDA’s results for the double Gaussian are shown in Figure 2.6. Overall the size of each
Gaussian, their separation, and flux ratio are reliably recovered. The ellipticity, τ , is larger
than zero, but this is to be expected since the algorithm can only add ellipticity to the
Gaussian components.

On April 6, we see that the ellipticity appears to be bimodal, and the parameter
uncertainties are greater than the other days. This uncertainty was unexpected, given the
relatively good EHT coverage on April 6. The origin of the discrepancy is from a subset
(10− 15%) of image reconstructions that exhibit an additional bright Gaussian feature. If
we remove these reconstructions, we find that the results on April 6 are consistent with
the other days.
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Figure 2.6: VIDA results for the two compact Gaussian components (blue for SE component
and orange for the NW) in the double Gaussian test image. The green curves are for
parameters that are a combination of the SE and NW components. On all days the true
values are included in the parameter distributions found by VIDA. Note, that the broad
distribution found on April 6th is due to an imaging artifact as discussed in the chapter.

2.4.2 Disk Image

The intrinsic image is a symmetric flat disk with a diameter of 70µas, which is then
convolved with a Gaussian with an FWHM of 10µas. The true image, an example recon-
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Figure 2.7: VIDA results of the diameter for the disk top set. The diameter is given by
(2.24). Ignoring April 10, we consistently find that the diameter is 4µas smaller than the
original image. The origin of this discrepancy is discussed in Figure 2.8. On April 10,
which has poor coverage compared to the other days, the imaging gives two modes. One
mode is similar to the other days, while the second fails to show a coherent disk structure
giving the second peak at 60µas.

struction, and optimal template for that reconstruction are shown in the lower left, middle
panel, and right panel of Figure 2.5.

To encode the diameter of the disk we use FWHM of the disk template:

dtemp = 2r0 + 2
√

2 log 2α, (2.24)

where r0 and α are described in Equation 2.1. We fit the disk template to the ground truth
image to calibrate the diameter definition to the disk’s true diameter. We found that the
optimal template for the true image had a dtemp ≈ 69µas. If we convolved the image by
an additional 20µas to take into account the finite resolution of the EHT array, we found
dtemp ≈ 68µas. This is the value we use as the ground truth diameter in all comparisons
below.

Figure 2.7 displays the results for VIDA applied to each day. Ignoring April 10, which
has poor coverage compared to the other days, we find that the results are very consistent
between days. On April 5, we find the median diameter dtemp = 65.7+0.42

−0.76 µas where the
range are the 68% interval about the median. Similarly, on April 6th we find dtemp =
65.6+0.40

−0.47 µas, and April 11th dtemp = 65.5+0.45
−0.80 µas. This demonstrates that VIDA is robust

to the slight difference in image reconstructions from different baseline coverages.

On April 10, however, we had a different result finding a bimodal diameter. Analyzing
the reason for this, we found that images with ddisk ≈ 60µas had a markedly different
structure than the rest of the images. Given the distinct non-disk structure of the image,
it is no surprise that VIDA struggles at recovering the correct diameter.
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Figure 2.8: Results when applying VIDA to the average disk top set reconstruction on April
11. The images were normalized to unit flux and centered before averaging. The average
radial profile is shown in solid blue. Comparing this to the optimal template (orange
dashed line) and the true profile (dotted lines), we see that the optimal template matches
the reconstruction’s radial profile but underestimates the ground truth image.

Comparing our result for the diameter to the true value, 68µas, we find that our result
has a consistent bias of ≈ 2.4µas on April 5, 6, and 11. Again, this appears to be an
artifact of the imaging process. In Figure 2.8, the radial profiles of the truth (dotted
lines), averaged image reconstructions6, and optimal templates are compared. VIDA does
an excellent job of recovering the size of the images, which are similarly biased toward
smaller radii. This suggests that the diameter bias is intrinsic to the top set used for this
disk. As discussed above, it is unlikely that this is due to the finite resolution of the EHT
array and is intrinsic to the imaging algorithms used.

6When averaging we first centered the images by computing the image centroid and normalized the
images to have unit flux.
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2.5 Summary and Conclusions

We present VIDA, a new image feature extraction technique appropriate for use by the
EHT. VIDA adopts a forward modeling approach to extract quantitative image properties
by approximating the image with a parameterized family of functions that encode the
desired image properties.

A key feature of VIDA is its flexibility. Multiple image components have already been
implemented, from which composite models of significant complexity can be constructed.
These include ring-like templates of particular relevance to EHT images, Gaussians, and
diffuse backgrounds.

The ability of VIDA has been demonstrated for several sources, each with over a thou-
sand reconstructions. These include image reconstructions from simulated data produced
from double Gaussians, slashed rings, and GRMHD simulations. In all cases, key quan-
titative features were accurately recovered where they appeared in the underlying image
reconstructions. These include separations, orientations, ring diameters, widths, brightness
profiles, and multiple measures of ellipticity. Application of these to the EHT observations
of M 87 will be explored in the next chapter.

The applicability of VIDA extends beyond EHT observations of M 87. The ability to
create composite models with multiple components is naturally relevant to VLBI recon-
struction of AGN, such as 3C 279, that is composed of multiple compact features (e.g.,
Kim et al., 2020).

It should be noted that image feature extraction methods, like VIDA, are generally most
useful when strong priors may be placed on the image structure itself. That is, VIDA is
primarily a method for quantifying what is already qualitatively apparent. Poorly chosen
models can lead to significant parameters biases, as seen in Section 2.4.1, where an extra
Gaussian blob was required to achieve acceptable results. However, because VIDA is an
image characterization tool, not an imaging tool in and of itself, this presents only a very
modest limitation on its utility.

In the next chapter we will apply VIDA to the eht-imaging reconstructions of M 87.
Furthermore, since VIDA can recover ring ellipticity, through the τ parameter, we will be
able to measure the ellipticity of M 87. We will also investigate the origin of the ξτ = 0
bias seen in the geometric reconstruction in Figure 2.4.
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Chapter 3

Constraining the ellipticity of M 87
from EHT Image Reconstructions

3.1 Introduction

The Event Horizon Telescope (EHT) can resolve the emission around the event horizon of
the supermassive black hole M 87 (EHTC I; EHTC II; EHTC III; EHTC IV; EHTC V;
EHTC VI). Using novel imaging techniques developed by the EHT collaboration, a ring-
like emission structure was observed. The measured ring radius was consistent with a
central black hole with mass 6.5 × 109M�. In addition to the mass, of particular interest
for gravitational physics is the structural ellipticity, or ellipticity, of the ring. If the no-
hair theorem breaks down near the event horizon of supermassive black holes, the shadow
may be deformed, inducing additional non-circularity (see, e.g., Johannsen & Psaltis, 2010;
Broderick et al., 2014; Johannsen et al., 2016; Medeiros et al., 2020). Therefore, using the
EHT image reconstructions to measure the image ellipticity may constrain near-horizon
deviations from GR.

In EHTC VI, a preliminary attempt at measuring the ellipticity of the image recon-
structions of M 87 was presented in Figure 18. To measure the ellipticity, they used REx’s
fractional dispersion detailed in the previous chapter. The measured dispersion implied
an axis ratio of 4 : 3, suggesting that M 87 images were highly symmetric. However, the
interpretation of this measurement is not straightforward.

While the EHT can resolve the horizon scale structure, its dynamic range and visibility
coverage is poor (EHTC II; EHTC III). As a result, infinitely many images can reproduce
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the data, and additional assumptions are imposed to the make the problem tractable. In
EHTC IV, regularized maximum likelihood (RML) methods were applied to the M 87 data.
RML introduces the additional assumptions through regularizers that enforce features such
as image smoothness (Bouman et al., 2016; Chael et al., 2016a; Kuramochi et al., 2018),
sparseness (Wiaux et al., 2009a,b; Honma et al., 2014; Akiyama et al., 2017b), and sim-
ilarity to some fiducial image (Narayan & Nityananda, 1986). However, the weights of
these regularizers are unknown. Therefore, the infinite image problem has been shifted to
selecting the weights of the regularizers. To combat this EHTC IV, performed a parameter
survey using simulated data and selected parameters that met some specified criteria. The
parameter survey used in EHTC IV did not include an asymmetric ring in simulated tests,
and thus the reliability of the EHTC IV ellipticity measurement is unclear. Furthermore,
these image surveys do not form a posterior, and any ellipticity recovered may be biased.
Whether the imaging parameter survey used in EHTC IV can reliably recover ellipticity
is, therefore, an open question.

In the previous chapter, we presented VIDA, a novel feature extraction technique for the
EHT image reconstructions. In this chapter, we will apply VIDA to the imaging parameter
surveys of M 87 to assess their ellipticity reconstruction fidelity. To evaluate whether the
surveys can reliably recover image ellipticity, we consider a new set of geometric tests
specifically targeted to measure ellipticity. We will show that the imaging surveys are not
able to reliably recover the ellipticity and its orientation. To overcome these issues, we will
then run the imaging surveys on set of GRMHD simulations to calibrate for the imaging
ellipticity bias. This is similar in spirit to mass calibration procedure done in EHTC VI,
and is necessary to interpret the ellipticity results from the imaging pipelines.

The layout of the chapter is as follows: In Section 3.2 we will review the M 87 imaging
survey, feature extraction techniques and the M 87 ellipticity results. Next in Section 3.3,
we show that the current parameter survey used in M 87 is not able to recover ellipticity.
Finally, we will analyze simulated data from 550 GRMHD simulations to calibrate the
image reconstruction ellipticity of the M 87 results.

3.2 Background

This section will review the standard image reconstruction techniques used by the EHT in
EHTC IV. The imaging techniques used in this thesis will be identical to the eht-imaging

pipeline used in EHTC IV. After, we will review the two feature extraction techniques we
use, i.e., REx and VIDA. Finally, we will apply REx and VIDA to the M 87 top set. As a
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Figure 3.1: UV coverage of the EHT 2017 array on April 11. The blue dots denote the 2017
EHT coverage on April 11 in units of Gλ. The black dotted lines show the characteristic
locations for the image features of size 50µas and 25µas in the uv domain. The red circles
highlight the coverage gap in the north-south direction.

result, we will reproduce the results from EHTC VI and extend the analysis to include the
orientation of M 87’s ellipticity.

3.2.1 Image Reconstructions and the M 87 top set

Our goal is to assess the capabilities of the parameter surveys, aka top sets, used for M 87.
Therefore, we will use the results outlined in Section 2.3. Namely, the M 87 top set is found
by fitting the simulated data sets including symmetric, crescents, rings, double Gaussians,
disks, and a small number of GRMHD snapshots. This top set will be applied to all
simulated data sets, including the elliptical ring models in Section 3.3 and GRMHD sets
in Section 3.4.
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3.2.2 Feature Extraction Techniques

Variational Image Domain Analysis VIDA

Recall that variational image domain analysis (VIDA) requires three ingredients: an image I,
a template image fθ, and a probability divergence D that measures the difference between f
and I. VIDA relies on the template function fθ being a reasonable approximation to the true
image. Given that we are interested in ring morphologies, we will use the CosineRing{N,
M} template1. Section 3.3 is interested in recovering the profile for a simple elliptical ring
with a slash. Therefore, we will take N = 0 and M = 1. We also tried higher-order mode
expansions and found that they were typically much smaller than the first mode and did
not change the results.

For the GRMHD reconstructions in Section 3.4 we take N = 1, M = 4, given their
complicated azimuthal structure. This template has 16 parameters in total. To characterize
the thickness or slash strength of the template, we will refer to the σ0 and s1 parameters
respectively. In addition to the above templates, we add a constant flux background where
the background intensity is also a parameter. This models the diffuse flux that is typically
found in image reconstructions.

To find the optimal template we will use the Bh divergence (Equation 2.8) from the
last chapter. To minimize the Bh divergence we use the same optimization strategy that
was validated in Section 2.3.

Ring Extractor REx

The other image feature extraction method used in this thesis is the ring-extractor or REx
algorithm used in EHTC IV and described in detail in Chael (2019). REx’s parameter
definitions and relation to VIDA’s parameters are detailed in Section 2.2.4. Note that we
automatically convert REx’s fractional dispersion to τ for all discussion and figures below.

3.2.3 Review of M 87 Ellipticity Measurement

Figure 18 of EHTC VI, showed the measured M 87 fractional deviation from REx applied
to the eht-imaging top set parameters. To reproduce these results, we applied VIDA and

1For more information about the other templates present in VIDA, please see https://github.com/

ptiede/VIDA.jl and Section 2.2.1
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Figure 3.2: eht-imaging reconstructions and ellipticity features of M 87 from the EHTC IV
top set across the different observations during the 2017 EHT campaign. The top row shows
the fiducial eht-imaging images from EHTC IV. The middle row shows the measured
ellipticity of eht-imaging top set from VIDA (blue) and REx (orange). The bottom row
shows the orientation of the measured ellipticity orientation angle east of north from VIDA.
No ellipticity orientation angle is shown for REx, since it is not currently able to measure
it.

REx to the eht-imaging top set. The results are shown in Figure 3.2. The top row shows
the fiducial image reconstruction from the eht-imaging top set across each observation
day. The ellipticity of the top set images is shown in the middle row. We find identical
results to those in EHTC VI for REx. The VIDA results are systematically lower than REx,
as expected from the discussion in Section 2.2.4. The bottom row presents, for the first
time, the orientation of this ellipticity from VIDA. Note that REx cannot currently measure
this orientation. Overall we find the ellipticity measurement is stable across all four days,
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Figure 3.3: Examples of image reconstructions and VIDA results for the different elliptical
rings. The top row shows the truth images at position angles ξs = 0◦, 45◦, 90◦, 135◦ north
of east. The middle row shows an example reconstruction from the M 87 top set for
each ring orientation. The bottom row shows the VIDA results for the ellipticity and its
positions angle from the top set with the 68% and 95% probability regions shown. We
found significant bias in τ and ξτ for rings whose semi-major axis was aligned in the east
west direction.

giving τ = 0.05− 0.2, and orientation ξτ = −75◦ − 0◦ east of north.

While it is interesting that the ellipticity measurements are consistent across days, it is
not clear whether this result is intrinsic to the source. In Chapter 2, we found statistically
identical ellipticity and orientation for the symmetric crescent models and GRMHD models.
Given that the crescent models are symmetric, it suggests that the measured ellipticity may
be an imaging artifact. Furthermore, the ellipticity orientation does align with a coverage
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Image d0 w τ ξτ (
◦) s ξs(

◦)

ξs = 90◦ ξτ = 90◦
REx 37.3+1.2

−1.0 12.4+4.4
−4.4 0.09+0.07

−0.04 . . . 0.54+0.07
−0.09 90.68+3.9

−7.8

VIDA 37.5+1.3
−1.2 11.1+3.5

−4.0 0.07+0.09
−0.05 12.6+48.8

−22.8 0.54+0.05
−0.07 91.4+3.9

−10.4

ξs = 45◦ ξτ = 45◦
REx 37.2+0.8

−1.2 11.2+4.7
−3.6 0.20+0.04

−0.04 . . . 0.52+0.11
−0.12 48.9+5.3

−7.8

VIDA 37.7+0.9
−1.4 10.0+3.9

−3.4 0.23+0.04
−0.03 21.9+8.1

−7.2 0.52+0.18
−0.12 48.0+6.5

−9.8

ξs = 0◦ ξτ = 0◦
REx 37.0+0.9

−1.3 11.2+4.3
−3.7 0.24+0.05

−0.03 . . . 0.45+0.15
−0.07 −5.7+33.3

−20.6

VIDA 37.5+0.7
−1.3 9.8+3.8

−3.3 0.25+0.04
−0.04 3.4+5.3

−3.6 0.45+0.13
−0.07 −3.4+27.1

−18.0

ξs = −45◦ ξτ = −45◦
REx 37.5+1.1

−1.1 11.7+4.3
−3.9 0.18+0.04

−0.04 . . . 0.52+0.09
−0.09 −49.4+22.1

−5.6

VIDA 38.3+0.9
−1.3 10.5+3.5

−3.5 0.17+0.06
−0.05 −15.8+8.8

−9.2 0.53+0.13
−0.04 −50.7+19.8

−6.0

ξs = −90◦ ξτ = 90◦
REx 37.5+1.1

−1.2 12.4+4.4
−4.4 0.09+0.07

−0.05 . . . 0.54+0.07
−0.12 −90.3+6.4

−6.6

VIDA 37.8+1.2
−1.2 11.1+3.5

−3.9 0.06+0.09
−0.05 12.6+42.4

−18.6 0.54+0.06
−0.08 −90.0+6.2

−8.6

ξ = −135◦ ξτ = 45◦
REx 37.1+0.7

−1.2 11.2+4.6
−3.6 0.20+0.15

−0.03 . . . 0.47+0.12
−0.09 −131.4+5.4

−6.0

VIDA 37.6+0.8
−1.2 9.9+3.8

−3.5 0.22+0.04
−0.03 21.3+8.8

−7.1 0.52+0.19
−0.09 −134.4+4.4

−7.7

ξ = −180◦ ξτ = 0◦
REx 37.0+0.9

−1.3 11.1+4.2
−3.7 0.24+0.04

−0.04 . . . 0.47+0.16
−0.08 −184.1.2+20.4

−27.0

VIDA 37.6+0.8
−1.2 9.8+3.9

−3.3 0.25+0.03
−0.03 4.3+3.7

−3.5 0.49+0.16
−0.07 −183.1+32.6

−12.9

ξ = 135◦ ξτ = −45◦
REx 37.6+1.2

−1.1 11.9+4.0
−4.3 0.18+0.04

−0.03 . . . 0.53+0.08
−0.05 127.9+8.3

−5.3

VIDA 38.3+0.8
−1.2 10.5+3.9

−3.3 0.17+0.03
−0.03 −13.2+3.7

−3.5 0.56+0.16
−0.07 127.9+7.5

−6.1

Truth 37.56 7.9 0.187 . . . 0.5 . . .

Table 3.1: Recovered parameters for the slashed elliptical rings test set. The parameters
are the median values and the 95% interval around the median. REx and VIDA give similar
results for all parameters, although no results for ξτ are given for REx since it cannot recover
it. All recovered parameter ranges, except the ellipticity τ and its orientation, ξτ contain
the true values.

gap (see the red circles in Figure 3.1). Finally, since the top set used for M 87 did not
include an ellipticity ring, it is not clear whether ellipticity can reliably be recovered. To
investigate fidelity of ellipticity reconstruction using the top set, we will apply it to simple
asymmetric ring images in the next section.
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3.3 Geometric Test

One of the potential issues with the M 87 top set is that no asymmetric rings were included
in the simulated data tests. Given that the identification of the top set was defined by its
performance on simulated data tests, the top set may not accurately recover ring ellipticity
even in simple cases. This section will analyze simulated data from an asymmetric ring
model using the M 87 top set.

3.3.1 Asymmetric Image Test

For the asymmetric image we used the CosineRing{0,1} template described in Section 3.2.2,
with parameters d0 = 37.56µas, w = 7.9µas, τ = 0.187, s = 0.5. The ring flux was set
0.6 Jy, matching the measured compact flux of M 87. We also aligned the orientation of
the slash and ellipse, i.e., we set ξs = ξτ = ξ. To test the impact of different orientations
of the ellipticity we considered ξ = 0◦ to 360◦ in steps of 45◦. A subset of the ground
truth images are shown in the top row of Figure 3.3. For each rotated ring we used the
eht-imaging top set pipeline from Section 2.3.3, to create 1572 reconstructions.

3.3.2 Geometric Results

Given the elliptical ring reconstructions, we then used VIDA and REx to extract the rele-
vant image features. Since the VIDA filter is identical to on-sky image, we would expect
to perfectly recover every parameter. The results for each orientation are summarized in
Table 3.1. Table 3.1 shows that the ring diameter and width are consistent across the ro-
tation angles, and are consistent with the truth. The slash and its orientation are similarly
recovered.

However, the ellipticity, τ , is significantly biased when ξτ = 90◦, i.e., when the semi-
major axis of the ellipse is aligned in the east-west direction. Furthermore, looking at
the bottom row of Figure 3.3, we see that the orientation of the ellipticity is consistently
biased towards ξτ = 0, i.e., the north-south direction. This bias can be visually confirmed
by looking at the reconstructions, e.g., the middle row of Figure 3.3. Furthermore, we see
that the true ellipticity and orientation is only recovered in the ξ = 0 case.

Therefore, it appears that imaging creates a preferred ellipticity direction ξτ ≈ 0,
τ . Namely, as τ increases, the ellipticity orientation tends to point in the north-south
direction. This orientation does approximately align with a large gap in the EHT coverage
for M 87 (see Figure 3.1).
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Given that the top set fails to recover ellipticity in our geometric tests, the ellipticity
measurement found in Figure 3.2 does not represent the true ellipticity of the on-sky image.
Instead, it measures an artifact from the top set. To account for this artifact, we need
to calibrate our result. In the next section, we will image a large number of GRMHD
simulations to measure the imaging ellipticity bias and uncertainty.

3.4 Calibrating the M 87 Ellipticity Measurement

To do calibrate the M 87 topset ellipticity we will use a similar procedure to the mass
calibration done in EHTC VI. Namely, we will select a number of GRMHD simulations
from the EHTC V library, and image them using the eht-imaging top set. Using this
set of reconstructions, we will infer ellipticity uncertainty and analyze what constraints on
M 87’s ellipticity can be made.

3.4.1 Scaled set

To construct the GRMHD images used in this chapter, we first cut the simulations from
EHTC V based on whether its total jet power was consistent with the observed jet power
of M87 (Table 2 Event Horizon Telescope Collaboration et al., 2019e). After, we randomly
selected 100 snapshots from this set and randomly assigned them a 2017 M 87 observation
day. Each image was then re-scaled to its best fit value according to the average image
scoring results of Event Horizon Telescope Collaboration et al. (2019f), and randomly
rotated. To include the effects of the mass uncertainty of M 87, we then further scaled
the intrinsic image by a factor of 0.8, 0.9, 1.1, 1.2 in both the x and y directions. The net
result is 500 images uniformly sampled over days, orientations and grided in mass relative
to the M 87 best fit value. We will refer to this list as the scaled set.

3.4.2 Stretched set

While the scaled set measures the expected ellipticity due to imaging and accretion tur-
bulence, it does not measure how sensitive imaging is to additional intrinsic ellipticity
that may occur from, e.g., non-GR spacetimes. To assess the ability to measure a non-
symmetric shadow, we randomly selected 10 additional GRMHD snapshots that fit M87’s
jet power. For each image we scaled them to their best fit mass, and randomly rotated
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Figure 3.4: Examples of image classification from the trained CNN. The top row shows
image reconstructions that passed the threshold, and the bottom are ones that failed. Most
of the failed reconstructions fail to demonstrate a single dominant ring-like feature in the
image.

them. Ellipticity was then added by picking two random orthogonal directions in the im-
age rx, ry and applying the transformation rx → αrx and ry → ry/α. To create different
amounts of ellipticity we let α = 0.8, 0.9, 1.0, 1.1, 1.2, giving a τ = 0.36, 0.19, 0.0, 0.17, 0.31
respectively. We will refer to this as the stretched set.

3.4.3 Removing failed top set reconstructions

While inspecting the top set reconstructions of the scaled and stretched GRMHD simula-
tions we noticed that a large number of images failed to show a ring-like feature. Instead the
image reconstructions had flux deposited across the image in pattern similar to the EHT
dirty beam. This is commonly known as “waffling” and is symptomatic of a poorly chosen
set of hyperparameters. For these reconstructions, VIDA and REx would give nonsensical
results since no dominant ring feature exists. To remove this bias these reconstructions
need to be removed. Unfortunately, no single set of hyperparameters was identified as hav-
ing caused the waffling. Therefore, we turned to machine learning techniques to remove
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Figure 3.5: Impact of the threshold on the inferred ellipticity of the scaled reconstructions.
Overall there is very little change in the distribution if the threshold is ≤ 0.5. In this thesis
we use the threshold of 0.10 which removes 42% of the scaled reconstructions.

any waffled images.

Machine learning and neural networks, have been used numerous times in astrophysical
settings to classify images (Davelaar et al., 2017; Dieleman et al., 2015, e.g.). To classify our
images we decided to use convolutional neural networks (CNNs) (e.g. Goodfellow et al.,
2016). CNN’s break the images into features of different scales and then group these
features to classify the image. For our neural network we used the Julia package Flux
(Innes et al., 2018; Innes, 2018).

For our image classifier we used a relatively shallow network using 3 convolutional
layers with a 2 × 2 max pooling. For the final layer we used a fully connected network
to the two-dimensional classification space. Between each convolutional layer we used
the ReLu activation function: f(x) = max(0, x). For the final fully connected layer no
activation function was used. Since we are interested in binary classification we used the
logitbinarycrossentropy in Flux, which is given by:

H(q) = −
N∑
i=1

yi log(σ(q)) + (1− yi) log(1− σ(q)), (3.1)

where σ(x) = (1+e−x)−1 and yi are the labels (1 for an image that waffled and 0 otherwise).
This choice of the loss function is equivalent to using a sigmoid activation function in the
last layer of the neural network but has better numerical stability.
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CNN’s are a form of supervised learning. Therefore, we first had to label a subset
of the image reconstructions by hand. To find the labels, yi, we analyzed 5000 random
images from the scaled GRMHD set and an additional 500 from the stretched set. We
then classified each image by whether it visually had a dominant ring-like feature or not.
Some examples of images that passed and failed are shown in Figure 3.4. Two-thirds of
these classified images were used for training, and the rest for our test set. To combat
overfitting, we also augmented the images by adding Gaussian random noise to each image
when evaluating the loss function. Finally, ADAM (Kingma & Ba, 2014) was used to
optimize the network using the options defined in the Flux model zoo package2 with some
minor changes. Namely, we broke our images into batches, with each batch containing 256
images and used a learning rate of 3 × 10−3. However, if predictive performance on the
training set did not improve after 10 epochs we dropped the learning rate by a factor of
10. The optimizer was run for 100 epochs and achieved an accuracy of 94% and 92% on
the training and testing set, respectively.

The trained neural network outputs a number awaffle between 0 and 1, that measures
the confidence that the image has waffled. To classify whether an image had waffled any
reconstruction with awaffle > athresh = 0.1 were cut. This threshold cut 42% of images in
the scaled set and 21% of the images in the stretched set. The impact of the value of athresh

on the recovered ellipticity is shown in Figure 3.5. As an additional test of the network,
we ran the classifier on the elliptical Gaussian reconstructions. We found that only ∼5%
of the elliptical images were cut. This results is consistent with our visual inspection.

3.4.4 Scaled set results

To analyze the scaled set of images, we used VIDA’s CosineRing{1,4} template and Bh
divergence. Using the CNN image classifier Section 3.4.3 we removed the “bad” recon-
structions, leaving 454,888 images. To compare the results to the GRMHD simulations
ellipticity we first blurred the ground truth snapshots with a Gaussian kernel with FWHM
15µas to model the finite resolution of the EHT array. Then we fit the blurred images with
the VIDA and the CosineRing{1,4} template. This formed our ground-truth ellipticity for
which we will compare all results below.

The results for ξτ and ellipticity τ for the entire scaled set is shown in the upper left
panel of Figure 3.6. We found that the ellipticity is quite uncertain in both VIDA and REx

extending to τ = 0.3, which is approximately a 5 : 3 axis ratio. This ellipticity is larger

2https://github.com/FluxML/model-zoo/blob/master/vision/mnist/conv.jl

48

https://github.com/FluxML/model-zoo/blob/master/vision/mnist/conv.jl


−50 0 50

Asymmetry Orientation ξτ E of N (degrees)

0.0

0.1

0.2

0.3

0.4

0.5

A
sy

m
m

et
ry
τ

Scaled GRMHD Recon.
VIDA
REx

−50 0 50

Asymmetry Orientation ξτ E of N (degrees)

0.0

0.1

0.2

0.3

0.4

0.5

A
sy

m
m

et
ry
τ

Scaled GRMHD Snapshots

−100 −50 0 50 100

Asymmetry Orientation ξτ E of N (degrees)

−0.2

−0.1

0.0

0.1

0.2

τ
−
τ t

ru
e

Figure 3.6: Joint marginal probability distribution between τ and ξτ , where the contours
are the 68% and 95% regions. The upper left shows the results for the entire reconstructed
scaled GRMHD set that satisfies awaffle < athresh = 0.1 threshold. The upper right is
when VIDA is applied directly to the GRMHD snapshot blurred with a 15µas FWHM
Gaussian kernel. Like the geometric results, we see a preference for ξτ ≈ 0◦, i.e., the north-
south direction regardless of the intrinsic image distribution. The bottom figure shows
the measured ellipticity orientation on the x-axis with the measured ellipticity residual
distribution.

than ground truth ellipticity measured from VIDA (right panel of Figure 3.6), which is quite
concentrated at τ ≈ 0.1 and extends up to τ = 0.25.

Focusing on the ellipticity orientation ξτ , we find the ellipticity is strongly biased in

49



the north-south direction. Furthermore, when ξτ ≈ 90◦, τ extends to highest values of
ellipticity. This orientation distribution is inconsistent with the GRMHD distribution
(right Figure 3.6), which is uniform in ξτ . The uniform distribution was the expected
result since each simulation is randomly rotated before imaging. The north-south bias is
similar to the results found for the elliptical ring in Section 3.3, and the circular crescents
in Figure 2.4.

Taking the measured ellipticity and orientation bias together suggests that the imaging
algorithms create a preferred ellipticity orientation, and along this direction the ellipticity
uncertainty is maximized. This is shown in the bottom panel of Figure 3.6. Here we see
that when the ellipticity orientation is aligned in the N-S direction, the recovered ellipticity
is very uncertain, and can be quite different from the truth. To add this ellipticity to the
results for M 87 we take each recovered ellipticity and orientation from the M 87 topset and
add the theoretical uncertainty. This gives that the ellipticity of M 87 is τ ∈ [0.0, 0.3]. This
limit however assumes that M 87 can be approximated by a GRMHD simulation. However,
as was shown in Section 3.3, the eht-imaging top set can also suppress ellipticity. In the
next section we will analyze what happens for the stretched set of GRMHD simulations
that include additional ellipticity.

3.4.5 Stretched set results

While the results from the scaled set of GRMHD simulation suggest an upper bound of
τ . 0.35, it does not answer what happens when additional ellipticity, not due to the
accretion disk, is in the image. To test this, we will use the GRMHD stretched data
set described above. To extract ellipticity and orientation from the stretched set, we
again used VIDA’s CosineRing{1,4} template with a constant background and the Bh
divergence. However, we found that a small subset of the image reconstructions had an
additional circular blob present. Due to the second component, VIDA would sometimes
report an artificially high ellipticity since the template would try to cover both the central
ring and Gaussian blob. To remedy this issue, we added a Gaussian component to the
template.

The residuals for the ellipticity position angle are shown in Figure 3.7. Note that we
only show the results for VIDA since REx is unable to measure the position angle of the
ellipticity. Looking at the bottom panel we see that for intrinsic τ . 0.2, the position
angle residuals are very broad, and can be significantly biased from zero. However, as the
intrinsic τ increases we find that the residuals improve. This bias for smaller ellipticity
is due to ξτ being strongly biased towards 0◦. This bias continues as τ increases but its
impact is lessened.
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Figure 3.7: Residual distributions of the stretched GRMHD data sets for the ellipticity
positions angle ξτ . The top panel shows the marginal distribution of the ellipticity residual
across the entire stretched GRMHD set. The bottom shows the 95% probability interval of
the position angle residuals for each simulation, separated by the intrinsic τ on the y-axis.
The intrinsic τ and ξτ was found by applying VIDA to the GRMHD snapshots blurred by
a Gaussian with a FWHM of 10µas. The large residuals for small τ are a result of the ξτ
being heavily biased north-south, similar to the elliptical ring, and scaled GRMHD results.

The left panel of Figure 3.8 shows a map from the recovered τ on the x-axis and the
intrinsic τ . The horizontal bars are the 95% confidence regions about the median of the
top set images. From this we see that the recovered ellipticity is largely independent of the
intrinsic ellipticity when the intrinsic τ . 0.325. Furthermore, even a GRMHD simulation
with intrinsic τ = 0.475, can have a recovered τ = 0.1, which is similar to the value
obtained for the M 87 top set.

To quantify the the maximum allowed ellipticity that is consistent with M 87 we first
made two cuts on the stretched GRMHD reconstructions. Namely, we remove any recon-
structions where τ > 0.2 and ξτ /∈ [−75◦, 0◦]. The remaining simulations, therefore, match
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Figure 3.8: Left: Intrinsic ellipticity τ vs recovered ellipticity of the stretched GRMHD
images. The intrinsic ellipticity was found by applying VIDA to the GRMHD snapshot
images blurred with a 15µas Gaussian kernel. The solid line shows the median recovered
ellipticity from VIDA (blue) and REx (orange). The filled in bars are the 95% confidence
intervals around the median. Right: The resulting intrinsic ellipticity distribution (mea-
sured by VIDA), for reconstructions with reconstructed ellipticity and orientation similar
to the observed M 87 top set values.

the M 87 top set measurements. The intrinsic ellipticity distribution from the remaining
simulations is shown in the right panel of Figure 3.8. From this distribution we see that
stretched simulations with ellipticity as high as 0.5 can have ellipticity similar to the ob-
served M 87 results. It is important to note that this is the highest intrinsic ellipticity
considered in the stretched set.

3.5 Summary and Conclusions

Measuring the ellipticity of the accretion flow around M 87 is a theoretically interesting
property related to the nature of the accretion flow and structure of spacetime. While
the results in EHTC VI measured an ellipticity in the image reconstruction of M 87, no
attempt was made to interpret or calibrate this result. This chapter has shown that the
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top set used for the M 87 images cannot directly measure the on-sky image ellipticity. We
demonstrated that even for simple geometric models, the eht-imaging top set failed to
recover the correct ellipticity in 8/10 test cases.

To account for ellipticity bias, we calibrated the M 87 ellipticity using a set of 550
GRMHD images. Assuming that the ellipticity in the reconstructions is due to accretion
turbulence, we found that accounting for the imaging bias the ellipticity of M 87 could be
anywhere from τ = 0 to τ = 0.3. However, if there is additional non-accretion induced
ellipticity from, for example, some non-GR effect, we found that ellipticity as high as
τ ≈ 0.5 could have a recovered ellipticity similar to the M 87 results.

The origin of this bias is twofold. First, the EHT coverage in the north-south direction
has a large gap around 3−5Gλ, which is roughly where the eht-imaging top set typically
tries to place the ellipticity. In this region eht-imaging relies on its regularizers to fill in
the uv-plane. One of the regularizers used in the eht-imaging top set is the maximum
entropy regularizer :

RMEM(I||P ) = −
∑
ij

Iij log

(
Iij
Pij

)
, (3.2)

where Pij is some prior image chosen to approximately match the expected image. For
eht-imaging, this prior image was a symmetric Gaussian. This prior image will prefer more
symmetric images, especially when the ellipticity is in a region of poor coverage. Second,
and more fundamentally, the reason for the ellipticity bias is that parameter surveys do
not form an image posterior. Instead, they rely on training sets to decide which set of
images meet some heuristic threshold and can fail when applied to images not originally
considered. To overcome this failure, a statistically rigorous method to assign uncertainty
is required. In the next two chapters we will use Themis’s Bayesian imaging to rigorously
measure the ellipticity of M 87.
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Chapter 4

Next Generation Samplers for
Themis

4.1 Introduction

In the previous chapter, we demonstrated that the imaging techniques used in EHTC IV
were unable to recover ellipticity even for simple geometric models. The reason for this
is due to image reconstruction uncertainty. The EHT array is very sparse, meaning that
many different image morphologies can explain observations. Classical imaging techniques
such as RML and CLEAN are unable to measure this uncertainty. However, as explained in
Chapter 1, Bayesian methods provide a mathematical framework to assign an uncertainty
to image reconstructions.

Bayesian imaging requires sampling from high dimensional multi-modal parameter
spaces. Unfortunately, standard MCMC methods such as Gaussian random walks and
ensemble methods like emcee (Foreman-Mackey et al., 2013) suffer from the “curse of di-
mensionality”. While the methods originally implemented in Broderick et al. (2020), were
able to sample from distributions with modest dimensionality . 25, their performance
degrades in higher dimensions (Huijser et al., 2015). Hamiltonian Monte Carlo (HMC) is
a state-of-the-art MCMC method that forms the basis of the popular statistical language
Stan (Carpenter et al., 2017). However, implementing these new samplers in Themis was
difficult since no formal interface existed. Furthermore, Themis samplers assumed we
used ensemble methods, making it time consuming to implement other methods such as
HMC. Motivated by these issues, in this chapter we develop a new sampler framework in
Themis. This framework defines a common abstract interface for Themis samplers. Using
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this framework, we developed an interface between Stan and Themis, and added a new
slice sampler targeted for low dimensional problems.

While HMC gives state-of-the-art performance for local posterior exploration, it strug-
gles to sample the parameter space globally in the presence of multiple modes. To solve this
global sampling problem typically requires additional algorithms to move between different
modes. One class of algorithms uses prior knowledge of the posterior modes locations and
then constructs swaps that preserve detailed balance (Pompe et al., 2020, e.g.,). However,
these methods require finding the different modes before sampling which can be just as
difficult as sampling (Ma et al., 2019). An alternative algorithm is parallel tempering (PT)
(Swendsen & Wang, 1986; Hukushima & Nemoto, 1996). Themis previously used a PT al-
gorithm from Vousden et al. (2016). While the tempering scheme worked well for some test
problems, we often found that it was suboptimal. That is, we would often not efficiently
use all the tempering levels. Furthermore, the Vousden et al. (2016) scheme only works
for ensemble-based samplers, preventing its use with more general samplers. To overcome
these issues, we implemented a new state-of-the-art parallel tempering scheme from Syed
et al. (2019).

This chapter will first review Themis’ new sampler interface, and detail the two new
local samplers implemented. In the next section, we will review parallel tempering and the
optimal scheme from Syed et al. (2019). Finally, we will benchmark our new samplers on
the Bayesian imaging problem for M 87.

4.2 Abstract Sampler Framework

In (Broderick et al., 2020), the samplers were treated differently than the rest of Themis.
Namely, while the model and likelihood framework had a single abstract class that defined
several primitive functions, Themis samplers had to be re-implemented from scratch when
a modification was required. This is unfortunate since large parts of the implementations
were identical. Moreover, copying over the redundant code from one sampler to another
is prone to subtle bugs. To alleviate these issues and simplify the process of adding new
samplers, we rewrote the sampler interface.

Samplers are now defined by a single abstract class, called sampler MCMC base.h. By
default, this class handles opening and closing output streams, setting MPI communication,
and post-processing like finding the best fit from an MCMC run. On top of this, it defines
the interfaces that a user must implement when adding new samplers:

• set initial location: specifies starting point of the chain.
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• get chain state: gets the current state of the sampler, i.e., the position in parameter
space and the current settings of the sampler.

• set chain state: set the state of the sampler, i.e., the position in parameter space
and the current settings of the sampler.

• write state: write the state of the sampler to the file. This function depends on
the sampler, e.g., HMC requires the mass matrix and other adaptation parameters.

• write checkpoint: writes the current state to a checkpoint file.

• read checkpoint: reads the checkpoint file and resumes the sampler.

• run sampler: runs the sampler.

The benefit of this approach is that we could write a generic parallel tempering sampler
that does not know the particulars of the local sampler. Therefore, adding a new local
sampler is decoupled from tempering. This implies and local sampler that satisfies this
interface can easily be used with Themis’ tempering algorithm.

4.3 Local Samplers

4.3.1 Hamiltonian Monte Carlo

Themis previously used ensemble-based samplers. More specifically, the affine invariant
MCMC method (Goodman & Weare, 2010) and the differential evolution sampler (Das &
Suganthan, 2011; Nelson et al., 2014). Unfortunately, ensemble-based samplers can scale
poorly to high dimensions (Huijser et al., 2015). Specifically, ensemble samplers tend to
have a long burn-in time that can be deceiving with just visual inspection of trace plots.
One of the problems with standard Gaussian random walk MH strategies, like ensemble
methods, is that these samplers struggle to take large steps in high dimensions. Theoretical
arguments (Roberts & Rosenthal, 2001) show that the optimal step size for RW MH goes
as 2.38/

√
d, meaning that step size actually decreases as the dimension increases. As a

result, the sampler tends to slowly diffuse around the parameter space. Hamiltonian Monte
Carlo (HMC) however can take larger steps and scales much better in dimension (Beskos
et al., 2013). This is accomplish by using deterministic proposals that greatly diminishes
the diffusive nature of the sampler (Betancourt, 2017).
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The first step in HMC is to introduce N new auxiliary parameters called momenta p,
where N is the number of parameters θ. This gives a new posterior π(p, θ) = π(p|θ)π(θ),
where π(θ) is the posterior of our original problem. For standard HMC, π(p|q) = π(p).
Furthermore π(p) is typically chosen to be a multivariate Gaussian with some constant
covariance matrix Σ. The extended posterior of the (p, θ) system is then defined by
π(p, θ) ∝ e−H(pθ), where H, the Hamiltonian, is given by

H(p, θ) =
1

2
pTΣ−1p+ V (θ), (4.1)

where V = − logL(V |θ)p(θ), is the negative log-joint distribution. HMC proposes a new
position (p′, θ′) in two steps:

1. At the current positions θ, generate a random momentum by drawing it from the
distribution π(p)

2. Propose the new position θT , pT by solving Hamilton’s equations

dθ

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂θ
. (4.2)

Interestingly, if we could exactly solve Hamilton’s equations then this is a valid MCMC
scheme, i.e. no acceptance step is needed. This is due to the fact that Hamilton’s equation
preserve the Hamiltonian and phase space volume through Liouville’s theorem. To see that
why no MH step is needed we start with the condition that any valid MCMC algorithm
must preserve π, i.e.

π(p′, θ′) =

∫
t(p′θ′|p, θ)π(p, θ)dθdp, (4.3)

where t(θ′|θ) is our transition kernel. The HMC transition kernel is

t(p′, θ′|p, θ) = δ(p′ − φpT (p, θ))δ(θ′ − φθT (p, θ)), (4.4)

where φθ,pT (p, θ) is the flow from solving Hamilton’s equation forward for T units, starting
from (p, θ). Substituting this into (4.3) gives the condition

π(p, θ) = π
(
φ−1
T (p, θ)

) ∣∣∣∣∂φ−1
T (p, θ)

∂(p, θ)

∣∣∣∣ , (4.5)

which is exactly satisfied since H is preserved and the Jacobian term is unity.
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Unfortunately, Hamilton’s equations cannot be solved analytically. Instead symplectic
solvers, such as the Leapfrog method, are used. These methods still preserve phase space
volume, implying the Jacobian term in (4.5) is unity. However, the Hamiltonian is no
longer preserved. To correct for the change in energy, a MH acceptance step is required to
enforce that HMC preserve samples from π:

α = min
(

1, e−(H(p′,θ′)−H(p,θ))
)
. (4.6)

HMC has several tuning parameters that are essential for good performance. The first
two are the step size of the symplectic solver ε and the total integration time T = Nlε,
where Nl is the number of leapfrog steps. If ε and Nl are too small, then HMC devolves
to standard random walk MH. Conversely, if Nl and ε are too large, the MH acceptance
ratio becomes small since ∆H becomes large due to leapfrog integration errors.

Generally, no constant Nl will work for complicated distributions (Betancourt, 2017).
Modern HMC samplers instead use dynamic methods to find the optimal number of
leapfrog steps at each HMC transition. A popular current method is the no u-turns or
NUTS sampler (Hoffman & Gelman, 2011). NUTS works by creating a tree of leapfrog
steps both forwards and backwards from the initial position p, θ until the NUTS condition
is met:

pT+ · (θ+ − θ−) < 0

pT− · (θ− − θ+) < 0,
(4.7)

where p±, θ± are the beginning and ends of the trajectories. Conceptually, this approxi-
mately gives the longest possible trajectory before the curve starts to close. For a more
detailed review of HMC and NUTS see Betancourt (2017). To find the best ε a Nesterov-
dual averaging scheme is used (see e.g., Hoffman & Gelman, 2011, for the details).

HMC also benefits from adapting the covariance matrix Σ of π(p), which is known as
preconditioning. Tuning Σ, N and ε together in an efficient manner is challenging. In-
stead of developing our own method, we used the NUTS sampler from the probabilistic
programming language Stan (Carpenter et al., 2017). Stan is written in C++, which allowed
us to easily incorporate its sampler into the MCMC framework described in Section 4.2.
Currently we have interfaces to Stan’s NUTS sampler with a dense1, and a diagonal mo-
mentum covariance matrix2. Following the Stan team’s suggestion, we mostly use the
diagonal covariance matrix. While the dense covariance matrix can model a linear param-
eter correlation, it is susceptible to numerical issues and can take a substantially longer to

1sampler stan adapt dense e nuts MCMC
2sampler stan adapt diag e nuts MCMC
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tune. Additionally, in our experience, diagonal NUTS and tempering can efficiently handle
linear correlations.

4.3.2 Automated Factor Slice Sampler

In addition to Stan’s HMC sampler, we also added an adaptive slice sampler from Tibbits
et al. (2014), known as the automated factor slice sampler (AFSS). Slice sampling is similar
in spirit to rejection and Gibbs sampling. However, unlike rejection sampling it does not
require a reference or bounding distribution to sample from. For a thorough introduction
see e.g., Neal (2003).

To describe slice sampling, we first consider a 1-dimensional distribution with an un-
normalized probability density γ(x). The slice sampling algorithm is:

1. Evaluate γ at the current parameter location x.

2. Generate a uniform random number between in [0, γ(x)], which we call h

3. Find the region, R = {x | γ(x) ≥ h}

4. Uniformly sample from R giving your new sample x′.

The difficulty with slice sampling is finding the region R in step 3. To find R, we use the
methods outlined in (Neal, 2003), called the expand and shrink procedure. This consists
of two steps:

• Expand:

1. Randomly drop a line-segment of length w around the initial point x

2. Evaluate gamma at the line-segment endpoint xl, xu.

3. If γ(xl) < h and γ(xu) < h proceed to the shrink step

4. Otherwise add another wedge of length w to the endpoint and return to step 2.

• Shrink:

1. Given the wedge [xl, xu] produced from the expand step, uniformly sample be-
tween xl and xh, giving the proposed sample c

2. If γ(c) > h we are done. Otherwise set the closer endpoint to c, i.e. xl or xh,
and repeat step one of the shrink procedure.

59



−8 −6 −4 −2 0 2 4 6
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

U
n

or
m

al
iz

ed
P

ro
b

ab
il

it
y

D
en

si
ty

γ(x)

R

hx′

w0w−1 w+1

Figure 4.1: Pictorial description of the slice sampling algorithm, using the expand and
shrink procedure from Neal (2003). For this step two expansions were required to find the
region R, one on each endpoint of the initial wedge.

This procedure is detailed graphically in Figure 4.1. How to choose the initial widths
will be detailed below. To generalize this to higher dimensions we iterate through each
parameter in the model. This is similar to Gibbs sampling. An added benefit of this
approach is that if certain parameters are cheaper to evaluate, we can sample from them
more frequently.

Like with HMC, slice sampling benefits greatly from adaptive tuning. For slice sam-
pling, we are concerned with two sets of tuning parameters. The first set is how to choose
the initial widths. If the initial widths are poorly chosen, then likelihood evaluations will
be wasted on constructing the regions R. Second is preconditioning the slice directions.
This preconditioning is similar to the momentum covariance matrix tuning in HMC. For
our adaptation strategy we mostly follow Tibbits et al. (2014).

To find the optimal widths, Tibbits et al. (2014) argue that the optimal value initial
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width is when the average number of expand Nexpand and shrink steps Nshrink satisfies

〈N〉expand

〈N〉shrink + 〈N〉expand

=
1

2
. (4.8)

To find the initial widths in each direction that satisfy this relation, the sampler is run for
some number of stepsNw, where we record the total number of expansions and contractions.
After Nw steps the widths are updated according to

w′ = 2w

(
〈N〉expand

〈N〉shrink + 〈N〉expand

)
. (4.9)

This satisfies a Robbins-Monroe condition on (4.8), and therefore is guaranteed to converge
to the optimal widths.

For preconditioning, we first find the Gaussian approximation of the posterior using the
current samples to estimate the covariance matrix. Note that we use the online covariance
estimator

∆n+1 = θn+1 − θ̂n

θ̂n+1 =
nθ̂n + θn+1

n+ 1

Σn+1 =
n− 2

n− 1
Σn +

1

n
∆n∆T

n .

(4.10)

This prevents us from having to keep the samples in memory. Given this covariance matrix
estimator, we find the rotation matrix that diagonalizes it. Given this rotation matrix, we
can then orient the slice directions to coincide with the principal axes of the covariance
matrix. The benefit of this approach is that after rotation, all linear correlations between
the parameters have been removed. Namely, if the posterior is a correlated multivariate
Gaussian, after applying the rotation, it is uncorrelated. Note that if there are non-linear
correlations, this adaptation strategy may struggle. In those cases, we have found that the
NUTS sampler performs better.

Both of these additions to the slice sampler typically require online adaptation. Similar
to the Stan adaptation, we break it into two steps. At the beginning of sampling, we
update the widths every 10 MCMC steps. We call this the fast adaptation round, and it
quickly updates the widths to reasonable values. After the fast adaptation, we update the
widths using a doubling time scale. That is, the next update is after 20 steps, and then the
next is 40 steps. The this reduces the Monte Carlo error in the estimates for (4.8). Finally,
after four times the number of parameters, we construct the covariance matrix from the
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previous samples. At this point, we then rotate the directions of the slices and restart the
fast width adaptations given the new slice directions. This process is then repeated, but
with the number of steps until the subsequent covariance matrix adaptation doubled. We
repeat this procedure until a user-specified number of adaptation steps.

The reason for doubling the number of adaptation steps and then terminating the adap-
tation is two-fold. First, constantly adapting an MCMC sampler changes the stationary
distribution (Roberts & Rosenthal, 2009; Robert & Casella, 2013), and either the adapta-
tion has to decrease geometrically or terminate during the run to ensure you are sampling
from the correct distribution. Second, early in the run, the estimates for the covariance
matrix will be noisy. However, not adapting at all during the beginning can also harm per-
formance. Thus, by combining a geometric increase and terminating, we get the benefits
of both approaches.

4.4 Global Samplers: Parallel Tempering

In the previous section, we introduced the general sampler class in Themis, and two new
local samplers. However, neither sampler can easily move between different modes. In this
case, a global sampler that explores the entire surface is needed. To solve this, we will use
parallel tempering (PT) which was independently developed in both physics (Swendsen &
Wang, 1986; Hukushima & Nemoto, 1996) and statistics (Geyer, 1991). PT was used in
both of Themis’ previous samplers and has been used extensively in astrophysics (e.g., De
et al., 2018; Ashton et al., 2019; Biwer et al., 2019).

4.4.1 Review of Parallel Tempering

PT attempts to sample from the difficult posterior distribution π(θ) by introducing a path
from a easy to sample or reference distribution π0 to π using,

π(β)(θ) =

(
π(θ)

π0(θ)

)β
π0(θ) = Lβ(θ)π0(θ), (4.11)

where β ∈ [0, 1], and Lβ(θ) = (π/π0)β. Note that sometimes β is written as 1/T , making
a connection to the Boltzmann distribution and thermodynamics. Typically π0 is taken
to be some simple distribution or the prior. The power of parallel tempering is that the
distributions with β ∼ 0 are assumed to be much easier to sample since they are “close”
to the reference distribution π0. The low β distributions then act as a bridge that allow
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Figure 4.2: Example of how tempering interpolates between the hard to sample distribution
π and the reference π0, for a Gaussian mixture model.

the sampler to move through low probability regions. This is shown in Figure 4.2 for a
Gaussian mixture model.

While in principle one could try to sample the continuous β variables this is quite
difficult (Betancourt, 2015). Instead, parallel tempering first partitions β such that 0 =
β0 < β1 < · · · < βNT−1 < βNT = 1. This partition, or ladder, will be denoted by P . This
gives NT + 1 distributions we need to sample from. Or equivalently we need to sample the
tuple θ = (θ0, θ1, . . . , θNT ) whose distribution is

Π(x) =

NT∏
i=0

π(βi)(θi) =

NT∏
i=0

Lβi(θ)π0(θ). (4.12)

To sample from Π requires two independent phases called exploration and communi-
cation. During the exploration phase, we independently apply a local MCMC kernel for
each βi. This process is trivially parallelizable, giving PT its name. After the exploration
phase, we need to communicate between different chains. This communication is achieved
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by swapping between different βi:

θ → θi,j = (θ0, θ1, . . . , θj, θi+1, · · · , θi, θj+1, · · · , θN). (4.13)

These swap are accepted with a probability

α(i,j) = min

{
1,

Π(θi,j)

Π(θ)

}
= min

{
1,

(
Lβi(θi)

Lβj(θj)

)}
. (4.14)

Which indices (i, j) are swapped are left as a design decision when implementing parallel
tempering. In Section 4.4.2, we describe the swapping kernel we use in Themis.

4.4.2 Optimizing Parallel Tempering

From Figure 4.2, we see that tempering allows one to move to different modes by traversing
from β = 1 down to β = 0, and back up to β = 1, which is commonly called a round trip.
Therefore, to optimize parallel tempering, we seek to minimize the number of communi-
cation steps n that it takes for a round trip to complete. In order to minimize the round
trip rate, τ , we consider two design choices:

1. Efficient communication or swapping strategy

2. Good partition or ladder, P , of β

To optimize the two points we follow Syed et al. (2019) which, under some mild assumptions
about π, is able to derive the optimal discretization of a certain class of non-reversible
parallel tempering schemes applicable to distributed computing environments.

Communication Strategy

Themis is typically run on large HPC environments typically composed of thousands
of independent CPUs. Therefore, to reduce communication overhead, we will restrict
ourselves to swapping schemes that do not have clashes. Namely, swapping only requires
communication between two levels. With this restriction, there are two swapping kernels
we can consider:

Keven =
∏
ieven

K(i,i+1), Kodd =

NT∏
iodd

K(i,i+1). (4.15)
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Therefore, to swap the entire ladder, we then need to compose these swaps. One method is
to randomly choose Keven or Kodd at each swap. This strategy preserves detailed balance
and is called stochastic even-odd swap (SEO). However, as is shown in Syed et al. (2019),
SEO suffers from a similar diffusion problem as in random-walk MH. To overcome this
limitation, Themis uses the Deterministic even odd (DEO) swapping scheme:

KDEO
n =

{
Keven if n is even,

Kodd if n is odd,
(4.16)

where n is the current swap number. Notice that this kernel is not reversible. Namely, if
the communication step i uses an even swapping kernel, then for the next swap, there is
no way for the sampler return to its previous state. To see the benefit of this approach, we
first define several necessary quantities that assess the performance of parallel tempering.

Let the r(βi, βj) be the average rejection probability between xi, xj, i.e.

r(βi, βj) = 1−
〈
α(i,j)

〉
. (4.17)

Then Syed et al. (2019) showed that for finite NT
3, the round trip rate goes as

τ =
1

2 + 2E(P)
, E(P) =

NT∑
i=1

r(i,i−1)

1− r(i,i−1)
. (4.18)

This is a direct consequence of using the DEO swapping scheme. If we had used the
reversible SEO tempering scheme, then τ goes as (2NT + 2E(P))−1 (Syed et al., 2019).
Therefore, for large enough NT , the performance of SEO decreases, due to its diffusive
properties. Equation 4.18 also implies that as long as the number of swaps is much larger
than the number of tempering levels, the DEO’s round-trip rate monotonically improves
with more tempering levels. That is, unlike SEO we never harm the performance of DEO
by increasing the number of tempering levels, as long as the number of swaps is much larger
than the number of tempering levels. However, while this motivates the use of DEO, we
still need to find the optimal partition P .

Optimal Ladder

Equation 4.18 also provides an avenue to optimize the ladder choice P . Namely, by min-
imizing E(P) we can increase the round trip rate. Intuitively, we can see that E(P) will

3This result does assume that the number of swaps or communication steps is much greater than the
number of tempering levels.
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decrease as N → ∞, since α(i,j) → 1. Therefore, to optimize E(P) we first turn to the
limit where the number of tempering levels is large or equivalently as the spacing goes to
zero.

In this limit, there are two important quantities λ(β) and Λ:

λ(β) =
d

dβ′
r(β, β′)

∣∣∣∣
β′=β

, Λ(β) =

∫ β

0

λ(β′)dβ′. (4.19)

λ and Λ are called the local and global communication barriers respectively.

In the high N limit Syed et al. (2019) proved that the round trip rate for DEO ap-
proaches

τ opt =
1

2 + 2Λ(1)
, (4.20)

and that it approaches it monotonically from below, i.e. τopt is optimal. Λ(1) then measure
the total communication bottle neck of the problem, and measures how similar the reference
distribution π0 is to the posterior π.

Following Syed et al. (2019), we can then optimize our ladder partition by finding a P
such that Λ(β) ≈ E(P). For this we will first need the following result from (Syed et al.,
2019):

Λ(βj) ≈
j∑
i=1

r(βj−1, βj), (4.21)

for any P . Finding the optimal ladder then amounts to minimizing E(P) subject to the
constraint that

∑N
i=1 r(βi−1, βi) = Λ(1). This problem can easily be solved using Lagrange

multipliers for r(βi−1, βi). The resulting minimum gives that the rejection rates between
tempering levels should be constant.

Since the optimal ladder had constant rejection rates, we have that Λ(βk) satisfies

Λ(βk) ≈
k

N
Λ(1). (4.22)

Since Λ(β) is a monotonically increasing function, we can then solve for each βk using a
root finding algorithm, such as the bisection method. Furthermore, keeping track of Λ(βk),
just involves storing a single number during sampling, adding negligible computational
overhead.
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4.4.3 Implementation in Themis

To implement DEO in Themis, we used created a subclass of the sampler MCMC base

class called sampler deo tempering MCMC.h. To specify the exploration kernel, we use
C++ templates to specify the exploration kernel. This allows the user to easily specify
different exploration kernels with minimal changes to their Themis scripts. Our imple-
mentation mostly follows the suggestions made in (Syed et al., 2019). However, we do not
swap β between MPI communicators but rather, the parameters θ. This change is mathe-
matically equivalent but makes designing efficient local exploration kernels easier. Namely,
we can keep the adaptation schemes from Section 4.3. Additionally, while any reference
distributions can be used, Themis defaults to set π0(x) to be a uniform hypercube with
boundaries specified by the user. In the future other reference distributions may be chosen.

To adapt the ladder we follow (Algorithm 2. Syed et al., 2019), which breaks the a run
into tempering rounds. The number of swaps characterizes each round and is increased
geometrically between rounds4.

The output of a Themis run is several ASCII text files. In addition, we provide
several diagnostic plots to summarize the performance of the ladder. These diagnostics
are included with the Themis post-processing python package ThemisPy and provides
several sampler performance diagnostics.

4.4.4 Comparison to Themis’ Previous PT Sampler

Themis’ tempering scheme differs from the old scheme in two ways. First, the old tem-
pering scheme was restricted to only work with ensemble-based methods. This restriction
was a significant motivation to implementing a new tempering scheme. Secondly, the old
samplers used a different tuning strategy, based on continuous diminishing adaptation from
(Vousden et al., 2016). In practice, we often found that the ladder would not adapt fast
enough, and by the time the adaptation had essentially frozen, the ladder would be poorly
adapted. Additionally, we often found that the ladder would never extend to low enough
β, Namely, we often had instances where most tempering levels would concentrate around
β = 1, essentially removing any effects of tempering. To fix this problem, we adapted the
(Vousden et al., 2016) scheme to drive all acceptance rates to 0.5. While this prevented
the β = 1 concentration, we found that instead, large parts of the ladder would peel off
to β = 0. This behavior was because we had effectively over-saturated the ladder, wasting
computational resources. With the new Syed et al. (2019) tempering scheme, all these

4Themis allows you to specify the geometric factor, but in most instances, we set it to 2.
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issues have been solved. Additionally, we find that the new adaptation scheme is quite
efficient, only requiring 5-6 rounds to converge to constant rejection rates.

4.5 Assessing MCMC Convergence

As part of our new sampler interface, we added a number of MCMC convergence diagnostics
to the Themis python post-processing pipeline ThemisPy5. To assess the local sampling
performance, we now included analyses of the integrated autocorrelation time (IACT) of
the MCMC chain, the related effective sample size, and the improved split-R̂ statistic from
(Vehtari et al., 2021).

IACT, is a key quantity of interest in assessing the performance of the sampler. Namely,
it is related the to Monte Carlo error that arises from using the chain to estimate expec-
tations of the function f :

Eπ [f ] = µf ≈
1

N

∑
t

f(xt). (4.23)

From the central limit theorem, the Monte Carlo standard error (MCSE) goes as

MCSEf =
σf√
N
, (4.24)

where σf is the variance of f , i.e.

σ2
f =

1

N

∑
t

(f(xt)− µf )2. (4.25)

However, since samples from an MCMC chain are correlated, (4.24) is not valid. Instead
it is replaced6 by

MCSEf =
σf√
N/`f

, (4.26)

where `f is defined as

`f = 1 +
2

σ2
f

N∑
i=1

cf (τ), cf (t) =
1

N − t
N−t∑
n=1

(fn − µf )(fn+t − µf ). (4.27)

5https://github.com/aeb/ThemisPy
6This formula only holds for MCMC chains that are geometrically ergodic. This is a rather stringent

condition that may not hold generically (Robert & Casella, 2013).
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The quantity N/` is known as the effective sample size (ESS). Therefore, if ` is large,
the ESS is small, and the Monte Carlo estimate will be poor. To estimate ` we currently
provide two independent calculations from Geyer (1992) and Sokal (1996).

The other primary convergence diagnostic we consider is split-R̂. Split-R̂ is mainly
a convergence diagnostic, providing a guide about whether the chain is approximately
stationary or still evolving. It was first proposed in Gelman & Rubin (1992) and uses
splits chains to measure between chain variance compared to within chain variance. If both
variances are similar, then the chains are considered to be “well-mixed”. More recently, the
original split-R̂ was improved by using rank-normalized versions of the chain (see Vehtari
et al., 2021, for details). Additionally, this version is still defined even if the posterior does
not have a first or second moment. This statistic, is the version we use in ThemisPy.

To assess tempering performance, we have added for visualizations in ThemisPy. An
example figure is shown in Figure 4.3. For a well-tuned ladder both the left and right
panels of Figure 4.3 should be comprised of horizontal lines. The right panel shows the
estimate for λ(β) (4.19), and reports the optimal round-trip rate τ̂opt (continuous ladder)
and estimated rate for the latest round τ̂est in the top right. λ(β) measures the local
communication bottleneck of the ladder. A high λ means that it is more difficult to swap
in that region. As a result, the our adaptation scheme will concentrate the partition in
that region to smooth it out. In practice, we often find that λ increases as β → 0. This
signifies that Themis’ current default reference distribution, a uniform box, is the main
bottleneck for tempering.

4.6 Bayesian Imaging Validation

Bayesian imaging was one of the main motivations for adding new samplers to Themis.
While the ensemble sampler with the were used in Broderick et al. (2020), the run-time was
significant and required considerable computational resources. Therefore, in this section,
we will use the new samplers to explore the Bayesian image posterior of M 87 and compare
their efficiency to the ensemble samplers. For this, we will only consider imaging one day,
April 11. The results from imaging all days will be presented in the next chapter.

For our image model, we will consider an image with a 5× 5 raster, using the bicubic
interpolation kernel to make a continuous image (for a thorough description of the model,
see Section 5.2). For this test we will consider four samplers:

1. Differential evolution sampler using Themis old adaptation scheme based on the
Vousden tempering scheme
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Figure 4.3: An example DEO tempering diagnostic plot taken from the validation Bayesian
imaging run in Section 4.6. The left plot shows the evolution of the tempering β parameters
over different adaptation rounds. The middle panel shows the average rejection rate and
the standard deviation of the rejection rates over each round. The right panel shows the
local communication barrier as a function of β across different rounds. In the top right
corner is the optimal round-trip rate τopt, and the estimated round trip rate for using the
latest ladder τest. This plot was produced using ThemisPy.

2. Differential evolution sampler using the DEO tempering scheme

3. Automated factor slice sampler using the DEO tempering scheme

4. NUTS sampler with a diagonal mass matrix and using the DEO tempering scheme

We will use 60 tempering levels for each sampler, where the first round computes 20 swaps,
and the number of swaps for each round increases by a factor of 2. The differential evolution
and AFSS sampler will use 25 steps per swap, while NUTS will only use ten because it
typically takes larger steps than either AFSS or the differential evolution samplers. To
ensure computational consistency between methods, we will ran each sampler for 48 hours
using 60 cores. While the differential evolution sampler could be further parallelized for
each local MCMC move, this is unfair since we could also run additional copies of AFSS and
NUTS runs and combine them. All runs are initialized from the same region in parameter
space. To compare the results to the truth, we will compare the results to the long runs
(over 10 days) used in the next chapter.

The results of the benchmark are shown in Figure 4.4. We found that both the AFSS
and NUTS samplers quickly approached the best mode of the posterior in the first 2% of
the run. On the other hand, both differential evolution samplers were still approaching
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Figure 4.4: Imaging benchmark for the three samplers: AFSS (orange), NUTS (blue),
and the ensemble differential evolution sampler using the (Syed et al., 2019) PT scheme
(burgundy) and Vousden et al. (2016) PT scheme (green). We also include the chain from
the long-time runs in the next section. All three samplers used the same tempering scheme
and were initialized at the same region of parameter space. While the AFSS and NUTS
samplers quickly moved to the high probability region, the differential evolution sampler
struggled, never exploring the highest likelihood regions.

the peak even after extending the run for an additional 24 hours. This is emblematic of
ensemble samplers in higher dimensions. Namely, they tend to have extremely long burn-in
times (Huijser et al., 2015). Comparing the results of the Syed et al. (2019) and Vousden
et al. (2016) tempering schemes (grey and purple), we see that the Syed et al. (2019)
scheme is moving the peak faster. More quantitatively, the mean log-likelihood values are
−1755 v.s. −1796, and the maximum values are −1728 v.s. −1749 for the Syed et al.
(2019) and Vousden et al. (2016) respectively. Given the superior performance of the Syed
et al. (2019) tempering scheme, we will not consider the Vousden et al. (2016) scheme in
the comparisons below.

To compare the performance of the samplers, we will attempt to find the mean image.
However, we found that the resulting image structure was quite multimodal. Therefore,
rather than averaging all the modes together, we first used a k-mean clustering algorithm
to assign cluster labels. Once we identified the clusters, we then averaged over each image
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Figure 4.5: Comparison of the performance of the NUTS (second column), AFSS (third
column), and differential evolution (fourth column) relative to the “ground-truth” found
from a very long run. Given that the posterior is multi modal we took the chain of each run,
and identified each image cluster using a k-means algorithm. Overall the NUTS and AFSS
samplers are able to find the same three dominant image modes when compared to the
long-run. Furthermore, the NUTS sampler has already found the correct average likelihood
for the three modes, demonstrating it superior mixing properties. The differential evolution
sampler has still not found the three best image structures.

in the cluster. The results of this procedure for the NUTS, AFSS, and differential evolution
samplers compared to a long run, are shown in Figure 4.5. Overall we find that NUTS
and AFSS were able to identify the three most prominent image structures from the long
run. However, the probabilistic mass of each cluster is still evolving to the correct value.
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Furthermore, the NUTS sampler has already converged to the correct average likelihood in
each cluster. On the other hand, the differential evolution sampler still has not identified
the three most dominant clusters, and the average log-likelihood in each cluster is lower
by a factor of 10.

This experiment suggests that for Bayesian imaging, the default sampler of choice
should be the NUTS sampler, followed by the AFSS. We also found that while the ensemble
sampler produces many samples at each “step”, the samples are highly correlated and take
a long time to diffuse to the high probability regions of parameter space even with the
aid of tempering. This burn-in could be reduced with an optimization algorithm and then
starting the sampler from the best fit. However, we found that finding the maximum a
posteriori value of the Bayesian imaging problem to be difficult due to its highly multimodal
nature.

4.7 Future Improvements

As described in Section 4.4.2 there are three ingredients in parallel tempering:

1. Ladder

2. Communication

3. Reference distribution.

In this work, we have focused on optimizing the first and second points. However, as
Figure 4.2 demonstrates, our current communication bottleneck arises from the choice of
reference distribution. Namely, as β decreases we see that λ(β) increases greatly. One way
to improve this would be to simultaneously optimize our choice of reference distribution
during the tuning phase. For instance, we could use variational inference Blei et al. (2017),
with some simple variational family to approximate the posterior. Variational inference
itself has no guarantees for the asymptotic convergence of expectations of the posterior,
e.g., the mean and variance will be biased (sometimes greatly) from the truth. However,
we can use this variational approximation of the posterior as the reference distribution and
then use parallel tempering exactly sample from the posterior.

The other way to improve parallel tempering is to choose better “paths” between the
reference posterior distribution. Parallel tempering takes the linear interpolation path
between the log-posterior and log-reference:

log π = β log π(θ|V ) + (1− β) log π0(θ|V ). (4.28)
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By using a finite number of tempering levels we are discretizing this path. The communi-
cation strategy detailed in Section 4.4.2 then amounts to finding the optimal discretization
given the number of discrete points. In Syed et al. (2021), they demonstrated that the
linear path is not optimal even in simple toy models. Instead of picking a linear path we
could for instance pick a set of curves η1(β) and η0(β) such that

log πβ(θ|V ) = η1(β) log π1(θ|V ) + η0(β) log π0(θ|V ), (4.29)

where we require η1(1) = 1, η1(0) = 0, η0(1) = 0, and η0(0) = 0.

Another improvement would be to improve the adaptation of the local exploration
kernel. While we independently adapt the covariance matrix for each tempering level, this
adaptation is not ideal. For instance, if each mode has a different local covariance, the
adaptation will struggle to explore each mode efficiently. One way to improve this would
be to take inspiration from some of the clustering analysis used in nested sampling (Feroz
et al., 2009). Namely, during the adaptation phases of each tempering round, we could use
an online clustering algorithm, such as k-means, to find and track the different clusters.
Once assigning the samples to each cluster, we could compute the local covariance matrix
of each cluster. We could then switch local covariance matrices depending on the current
cluster. This adaptation is similar in spirit to the strategy detailed in (Pompe et al., 2020),
except that we will use parallel tempering to identify the individual clusters.

4.8 Conclusion

In the previous chapter, we demonstrated the need for Bayesian imaging to solve the EHT
imaging reconstruction ellipticity problem. However, Bayesian imaging is a complex prob-
lem given its high-dimensionality, and potentially multi-modal structure. In this chapter,
we have developed a new sampler interface for Themis and implemented the NUTS and
AFSS samplers. Our validation exercise found that this greatly increased our sampling
efficiency for Bayesian imaging. Additionally, we built a new optimal tempering scheme
that can be used with any local sampler in Themis.

These developments have already been applied to several analyses of EHT data. For
instance, the AFSS was used to measure the non-Gaussian structure of the Sgr A∗ at 86
GHz, believed to arise from the interstellar scattering kernel (Issaoun et al., 2021). The
NUTS sampler and DEO tempering scheme was also a driving factor in the first polarized
images of M 87 (Event Horizon Telescope Collaboration et al., 2021a). This required sam-
pling models with ∼ 350 parameters, which was not possible before the sampler upgrades
described in this chapter.
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The next chapter will apply this new sampler interface to the M 87 image elliptic-
ity problem. This will allow us to place fully Bayesian ellipticity constraints on M 87,
overcoming the challenges detailed in the previous chapter.
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Chapter 5

A Bayesian Image Estimate of M 87
ellipticity

5.1 Introduction

While historical imaging methods have been very successful, the sparse coverage of the EHT
makes it necessary to understand uncertainty. As a result, there has been a large number
of different Bayesian imaging tools developed in the past few years (Broderick et al., 2020;
Broderick et al., 2020; Sun & Bouman, 2020; Arras et al., 2021; Pesce, 2021). Each of
these tools makes different assumptions about the image structure, and/or, local posterior
structure. Sun & Bouman (2020); Arras et al. (2021), both use variational inference to
approximate the posterior, but these methods have no guarantee that the expectations
from the posterior approximation are reliable (Yao et al., 2018). Broderick et al. (2020)
and Pesce (2021) are similar in many regards, in that they use very similar image models
and NUTS for local posterior exploration. However, Pesce (2021) does not have parallel
tempering implemented, meaning it won’t be able to globally explore the parameter space.
Therefore, the methods from Broderick et al. (2020) and Chapter 4 should give the most
robust estimates.

In Chapter 3, we demonstrated that the traditional imaging tools used for M 87 were
unable to quantify the ellipticity of the on-sky image. Namely, we found that the imaging
top set failed to recover the correct ellipticity even for simple geometric models. Given this
bias, the distribution of measured image reconstruction ellipticity did not represent the true
ellipticity of the on-sky image. To overcome this bias, we calibrated the image uncertainty
from the top set by using it to image 550 GRMHD simulations. However, this calibration
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assumes that the accretion disk in M 87 is similar to the ones in GRMHD simulations.
Furthermore, when attempting to place an upper bound in ellipticity we found that images
with intrinsic ellipticity as high as τ = 0.5 could have a top set recovered ellipticity similar
to the measured M 87 values.

To solve these issues, this chapter will use the sampling tools presented in Chapter 4
to image the M 87 2017 EHT observations using Bayesian techniques. The product of
this analysis will be an image posterior. By combining the resulting image posterior with
the image feature extraction tool VIDA, we will construct ellipticity posteriors. To demon-
strate the validity of this process we will analyze the elliptical ring simulated data from
Section 3.3. Unlike the eht-imaging top set, we find that Bayesian imaging is able to
recover the correct ellipticity structure regardless of the orientation.

Given this result, the ellipticity posterior produced by Bayesian imaging does not have
to be calibrated. Therefore, we can directly compare the measured Bayesian ellipticity of
M 87 to the expected ellipticity from GRMHD simulations. As a result, we will be able
to independently check whether M 87 is consistent with the theoretical expectation from
general relativistic fluid dynamics.

The layout of this chapter is as follows: Section 5.2 will review the Bayesian imaging
model from Broderick et al. (2020), and the VIDA templates used to extract the ellipticity
posterior. Section 5.3 will review the data product we use in this chapter. Section 5.4 will
apply Bayesian imaging to the elliptical ring simulated data. Finally in Section 5.5, we
measure the ellipticity of M 87 using Bayesian imaging and VIDA.

5.2 Bayesian Imaging and Feature Extraction

5.2.1 Image Domain Model

In Broderick et al. (2020), a new Bayesian imaging (BI) technique was developed that allows
for a robust quantification of image uncertainty. The image model starts by assuming that
the on-sky image can be described by a set of rectangular control/raster values cij. This
raster is positioned at the locations (xi, yi) = (iFOVx/(nx − 1), jFOVy/(ny − 1)). The
on-sky intensity is given by

I(x, y) =
∑
ij

cijκ(x− xi)κ(y − yj), (5.1)
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where κ is an image response function that converts the discrete set raster to a continuous
image. The Fourier transform of this image is

Ĩ(u, v) =
∑
ij

e2πi(uxi+vyj)cijκ̃(u)κ̃(v), (5.2)

where κ̃ is the Fourier transform of the image response function κ. The choice of κ is
an arbitrary choice, but for efficiency should have an analytic Fourier transform. We will
follow Broderick et al. (2020), and use a bicubic kernel:

κ(x) =


0 |x| ≥ 2

b
(
|x|3 − 5 |x|2 + 8 |x| − 4

)
1 ≤ |x| < 2

(b+ 2) |x|2 − (b+ 3) |x|2 + 1 |x| < 1

(5.3)

which has Fourier transform

κ̃(k) =− 4

k3
sin(k) (2b cos(k) + (4b+ 3))

+
12

k4

[
b− b cos(2k) + 2− 2 cos(k)

]
.

(5.4)

For a derivation of the Fourier transform, see Appendix A of Broderick et al. (2020). The
constant b is a free parameter of the interpolation kernel and is typically set to b = −0.51.
This model has been implemented in Themis as model image adaptive spline raster.

In Broderick et al. (2020), the grid itself was specified a priori, and then the preferred
field of view was found by performing a parameter survey with the field of view and number
of raster pixels as free variables. In this chapter, we instead allow the raster size and
orientation ξ to vary during sampling. This lowers the number of model hyperparameters
to just the number of pixels in the two principle directions.

Furthermore, Bayesian imaging, unlike RML methods, provides a mathematical frame-
work to choose the optimal hyperparameters. To choose the optimal number of raster
points, we let the number of pixels to be a model parameter. Therefore, we can form a
hierarchical model:

p(Nx, Ny, θ|V ) =
p(V |Nx, Ny, θ)p(θ|Nx, Ny)p(Nx, Ny)

p(V )
, (5.5)

1This kernel isn’t positive definite so it is possible for the image to have negative intensity. In practice
we find that this effect is minimal.
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where θ = (cij,FOVx,y, ξ), is the combined raster parameters. Marginalizing over θ gives

p(Nx, Ny|V ) =
p(V |Nx, Ny)p(Nx, Ny)

p(V )
. (5.6)

Setting the prior p(Nx, Ny) to be uniform over the considered pixel numbers, we see that
the model with the preferred model corresponds to model with the highest evidence,
p(V |Nx, Ny). Below we will consider a small survey of different pixels resolutions and
use the evidence, or rather an approximation of it, to find the optimal Nx, Ny. As a side
effect, this survey will also allow us to test whether the Bayesian imaging results are robust
to different pixel resolutions.

For our model priors we use a log-uniform distribution between e35Jy/str and e50Jy/str
on all the raster values, cij. The raster field of view FOVx,FOVy were set to be independent
with uniform priors over the interval [15µas, 120µas] and a uniform prior on the raster
orientation. For the gains, we used Gaussian priors on the amplitudes with unit mean and
standard deviation 0.1 on all stations except LMT, which used a prior amplitude of 1.0
to model the large pointing offsets during the 2017 observations (Event Horizon Telescope
Collaboration et al., 2019c). The gain phase priors were set to a zero-mean Gaussian with
a variance of 108 radians.

5.2.2 Image Feature Extraction

The output of Bayesian imaging is a posterior over the image. To move from the image
samples to feature posteriors we will use VIDA. We do not include results from REx since, as
was demonstrated in Chapters 2 and 3, it gives similar results to VIDA. Furthermore, REx is
unable to recover ellipticity orientation which is key in assessing whether the reconstruction
is reliable.

For VIDA, we will use the same templates and divergence as in Chapter 3. Namely
for the elliptical ring reconstructions we will use the CosineRing{0, 1} template. For the
M 87 reconstructions we will use the CosineRing{1, 4} template. In all cases we use the
Bhattacharyya divergence (2.8). We will mainly be interested in the ellipticity, τ , of the
ring and its orientation, ξτ , measured east of north.

5.3 Data

The EHT is a very-long-baseline interferometer. By the van Cittert–Zernike theorem
(Thompson et al., 2017) a perfect interferometer measures the Fourier transform of the

79



on-sky image:

Ĩ(u, v) =

∫
I(α, β)e2πi(uα+vβ)dαdβ, (5.7)

where I(α, β) is the on-sky image intensity. However, in reality the measurements are
corrupted by telescope and scan specific complex gain terms gi = γie

iθi giving

Ṽij = gig
∗
j Ĩij, (5.8)

where the Ṽij are known as the complex visibilities. This is the primary data product we
will consider in this chapter. The benefit of using complex visibilties is that the observation
likelihood of visibilities is just a complex Gaussian (Thompson et al., 2017)

L(V |θ) =
∏
i

(2πσ2
i )
−1 exp

−
∣∣∣Vi − g1,ig

∗
2,iV̂θ(ui, vi)

∣∣∣2
2σ2

i

 , (5.9)

where V̂ is the model visibility at ui, vi and θ are the model parameters. While closure
product are immune to gains their statistical properties are more complicated. Namely,
the likelihoods for closure phases and amplitudes are markedly non-Gaussian at low signal-
to-noise-ratio (SNR) (Thompson et al., 2017; Broderick et al., 2020). As a result low SNR
data are usually flagged, and could potentially bias results.

The downside of fitting complex visibilities is that the complex gains have to be for-
ward modeled. This could potentially introduce a large number of additional parameters
in the model (∼ 250 for the M 87 observations). To combat this, we will use Themis’
complex gain marginalization scheme. This scheme uses a Laplace approximation to ap-
proximate the marginalization using a saddle-point approximation at each MCMC step
(see Appendix A for a review). Intuitively, this effectively acts as a self-calibration for
each proposed image during sampling. In practice, we find that this adds a small addi-
tional cost for each likelihood evaluation, while greatly lowering sampling time compared
to directly fit the gains.

Finally, we follow the data processing choices used in EHTC VI. That is, we will be using
EHT data that has been coherently averaged over scans. By using scan-averaged data we
are effectively assuming that the gains are constant over each scan, which is approximately
true for M 87 (EHTC III). Additionally, we add an 1% fractional visibility error to the
reported thermal noise:

σ2
ij → σ2

ij + (0.01Vij)
2. (5.10)

This models the polarization leakage observed for M 87.
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To create simulated data for Themis we used the eht-imaging and ThemisPy pack-
ages following the same procedures as EHTC VI and Chapter 3. Namely, we added a zero
baseline unresolved flux to bring the total flux up M 87’s 1.2Jy, station-based complex
gains, and the effects of a 1% polarization leakage non-closing error. Finally, we note that
the EHT measures the complex visibilities in two frequencies, commonly called HI and LO
band. In Section 5.4 we only consider the LO band datasets. For Section 5.5, we use both
the LO band and HI+LO band datasets.

5.4 Geometric Tests

In principle, Bayesian imaging should be immune to the ellipticity bias in the eht-imaging
top set. To test this, we will consider the same ellipticity validation from Section 3.3.
Namely, we consider an elliptical Gaussian ring with ellipticity τ = 0.187 at various ori-
entations. Given the timescale of Bayesian imaging we only consider the orientations
ξτ = −45◦, 0◦, 45◦, 90◦, since the remaining cases just flip the location of the brightness
maximum.

To validate Bayesian imaging, we broke the analysis into two steps. First, we attempted
to find the optimal number of pixels given the observed data. Given the computational
timescale of Bayesian Imaging, we only attempted this on the elliptical ring with orientation
90◦. We chose this orientation since this was the case where the eht-imaging top set had
the largest biases (see Figure 3.3). Second, once the optimal number of pixels was identified,
we fixed the number of pixels and imaged the other orientations i.e., ξτ = ±45◦, and 0◦.

5.4.1 Pixel Optimization

To find the optimal raster grid we used the pixel configurations: 6x4, 5x5, 6x6, and 8x8.
This choice was inspired by Broderick et al. (2020), which found that the optimal number
of pixels was a 5 × 5 raster for 5 GRMHD simulations using the uv coverage on April
11. Using this as our starting point, we also considered two higher resolutions to test
whether increased resolution drastically changes the evidence and image structure. We
also considered the 6 × 4 resolution since this roughly matches the true ellipticity of the
ring.

To sample from the posteriors we used Themis’ new sampling interface described in the
previous chapter. Furthermore, the sampler settings were inspired by the validation exer-
cise in Section 4.6. For the local posterior exploration, we used the Stan NUTS sampler with

81



−9
0
−4

5 0 45 90
0.0

0.1

0.2

0.3

τ

−9
0
−4

5 0 45 90−9
0
−4

5 0 45 90−9
0
−4

5 0 45 90−9
0
−4

5 0 45 90

Themis 6× 4 Themis 5× 5 Themis 6× 6 Themis 8× 8 ehtim

Truth

ξτ residual

Figure 5.1: Comparison of the mean image reconstructions (middle row) and ellipticity
posterior (bottom row) compared to the sky-truth image (top row). The probability con-
tours show the 68% and 95% probability regions. All images have been blurred with a
circular Gaussian with a 15µas FWHM. The first row columns are the results using the
different number of pixels described in the text. The last columns show the results from
the eht-imaging top set. Overall we find the ellipticity is within the 95% probability
regions for all Bayesian imaging techniques. This is the opposite of the eht-imaging top
set, which failed to produce a single image representing the true ellipticity and orientation.

a diagonal mass matrix and 2000 adaptation steps. To enable global posterior exploration,
we used the DEO parallel tempering sampler with 60 tempering levels. The PT sampler
was run for 9-10 adaptation rounds, where we used the Stan adaptation scheme at the
beginning of each round. We found an optimal global communication barrier Λ ≈ 15− 16,
implying an optimal round-trip rate of 0.032. After 9 rounds the ladder had a communi-
cation barrier of E ≈ 20− 21, which gives a round-trip rate of 0.023. All chains were run
until the split-R̂ < 1.1 for all image raster cij parameters.
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Table 5.1: Elliptical Ring Raster Survey Results
8× 8 6× 6 5× 5 6× 4

∆BIC 240.6 68.9 5.2 0.0
χ2

red 1.49 1.28 1.23 1.22

The mean images from each run are shown in the second row of Figure 5.1. For the
6× 4, 5× 5, and 6× 6 rasters, the posterior was very multi-modal, usually displaying 3-4
distinct image clusters.

To move from the posterior of cij to image features, we randomly selected 2000 images
from the last tempering round. These images were then run through VIDA using the
templates described in Section 5.2. The resulting ellipticity and orientation for each raster
resolution are shown in Figure 5.1. We also include the eht-imaging results from Chapter 3
in the right-most column. We find that the true ellipticity and orientation are within the
95% confidence regions in all cases. This contrasts the eht-imaging topset, which, as
detailed in Chapter 3 does not contain a single reconstruction consistent with the on-sky
image.

The impact of adding more pixels/model freedom can be seen moving from left to right.
As the number of image pixels increases, the posterior tends to become broader. This is
expected since there the larger number of parameters enables the model more degrees of
freedom. This pattern could be continued further. Namely, we could keep adding more
and more pixels. As we do, the posteriors would become broader until we are effectively
sampling from the prior. However, in this case the marginal likelihood would be very low.

To find the preferred raster grid we turn to the Bayesian-information-criteria (BIC).
The BIC is defined as

BIC = χ2 + k ln(N), (5.11)

where k is the total number of non-gain parameters fit, N is the number of data points, and
χ2 is the minimum chi-square for the non-gain marginalized likelihood, i.e., Equation 5.92.
The BIC is a simple approximation Bayesian evidence (see Appendix B for a review)
and compares the optimal performance of the model (first term in Equation 5.11) to its
complexity (second term). The best model is the one that minimizes the BIC or conversely
approximately maximizes the Bayesian evidence.

The results of the parameter survey are shown in Table 5.1. Overall we find that the
BIC and reduced chi-square are the smallest for the 5× 5 and 6× 4 models. These results

2Note we don’t include gains, since they cancel when finding the ∆BIC.
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Figure 5.2: Comparison between eht-imaging and Themis’ Bayesian image reconstruc-
tions of the elliptical ring test from Chapter 3. The left column shows the on-sky truth
image. The second columns shows the mean image from the eht-imaging topset. The
third column shows the mean image from the Themis posterior using a 5 × 5 raster. All
images have been blurred by a Gaussian with a 15µas FWHM. The rightmost column
shows the joint distribution for the recovered ellipticity, τ , and its position angle, ξτ for
eht-imaging (orange) and Themis (blue). The contours display the 68% and 95% prob-
ability regions. The black dashed line shows the on-sky truth values, and the grey dashed
line the truth values after being blurred by a Gaussian with 15µas FWHM.

are consistent with the results from Broderick et al. (2020). Namely, Broderick et al. (2020)
found that the BIC favored the 5× 5 grid for simulated data from GRMHD models given
in Event Horizon Telescope Collaboration et al. (2019e). Additionally, unlike the 6 × 4
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resolution, the 5× 5 raster does not presume an ellipticity source structure. Motivated by
this reasoning, we use the 5× 5 raster in all future experiments.

5.4.2 Orientation Dependence of Bayesian Imaging

Given that 5× 5 optimizes the BIC, we now repeat our analysis on the simulated elliptical
ring data with ξτ = 45◦, 0◦, −45◦. We used the same sampler setting as above, and ran for
a similar number of steps. To construct the feature posteriors, we again randomly selected
2000 images from the last tempering rounds chain and extracted the image features using
VIDA. The mean images for Themis and eht-imaging are shown in Figure 5.2.

Visually from Figure 5.2 we see that Themis’ mean image appears more similar to
the ground truth image. Namely, it does not appear to have the same N-S bias as the
eht-imaging top set. Quantitatively we find that Themis’s ellipticity posterior contains
the truth in its 95% contours for all the orientations considered. Interestingly, we found
that for the ξτ = 90 orientation Themis reported substantially larger uncertainty, and has
regions with similar values as the eht-imaging top set. This implies that the M 87 uv
coverage is causing increased uncertainty for on-sky images with this ellipticity orientation.
However, it also demonstrates that Bayesian imaging is immune to the failures of the M 87
top set. Namely, in all cases the truth is contained in the posteriors.

5.5 M 87 Imaging

The previous section demonstrated that Bayesian imaging can recover the true ellipticity.
This result demonstrates that we can directly interpret the measured ellipticity as repre-
senting the ellipticity of the on-sky image. Therefore, in this section we will apply the
Bayesian imaging and VIDA pipeline to the 2017 EHT M 87 data.

To analyze the 2017 M 87 EHT data, we will consider two separate data sets. First,
to compare the results with those in Chapter 3, we will consider the LO band only data.
Second, we will combine HI and LO bands and fit the total HI+LO band data. We
expect that the combined data will increase the constraining power since we are effectively
doubling the amount of data. Additionally, by splitting the data into two sets, we are
effectively performing a jackknife test. Namely, if our model is an adequate representation
of the on-sky image, we expect consistent results between the two datasets.

For both datasets, we will use the same image model. Namely, following the parameter
exploration above, we will consider a 5×5 raster with adaptive field of view and orientation.
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Figure 5.3: Example image reconstructions of M 87 LO band on April 11 (left 3 plots) and
HI+LO band (right). For LO band we show three images corresponding to the three image
clusters seen in the MCMC chains. In the top left corner of the LO band plots, we show
the percentage of images in each cluster taken from the last 50% of the MCMC chain. For
HI+LO band we find that the extra data removes the two lower percentage modes.

Note that for the combined HI+LO analysis, we do not assume that the gains are the same
across bands. Additionally we apply Themis’ gain marginalization scheme separately to
each band.

For the LO band data, we used similar sampler settings for the elliptical ring simulated
data. Namely, 60 tempering levels, and 2000 adaptation steps at the beginning of each
tempering round. All samplers were run until the split-R̂ was less than 1.03. On April 5,
10, and 11 we found that the posterior was multi-modal, while on April 6 we only found a
single mode.

Each image mode on April 5, 10, and 11 had a slightly different image structure. To
identify the image clusters we used a k-means clustering algorithm on the last 50% of the
chain from the last tempering round. The mean images of each cluster and their relative
fractions on April 11 are shown in Figure 5.3. This demonstrates the power of Bayesian
imaging and our sampling techniques. We were able to identify three dominant image
modes, and assign a probability to each mode.

For the combined HI and LO data, we used 320 tempering levels. Each chain was run
for > 50000 MCMC steps and achieved a split-R̂ ≤ 1.03. Interestingly, we found that the
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Figure 5.4: Joint ellipticity value and orientation from M 87 on April 5, 6, 10, and 11.
The contours show the 68% and 95% probability regions from Themis using the combined
HI+LO band data (blue), LO band only (pink). The LO band and HI+LO ellipticity
results are consistent between bands.

additional data from fitting the combined bands eliminated the multi-modality on April
5 and 11. This is shown in Figure 5.3 for April 11. We see that while the LO band only
fits have three distinct modes, once we include the HI band data, the other two lower
probability modes disappear. On April 10, we found the same three modes for the HI+LO
band as the LO band only fits.

To create the feature posteriors, we created 2000 images from the last tempering round’s
chain and ran VIDA on it. The resulting ellipticity and orientation joint posteriors are shown
in Figure 5.4. Overall we find that combined HI+LO band ellipticity posterior is contained
in the LO band posterior. This is the expected result for a properly specified model, where
the increase in data should cause the posterior to consistently shrink. Given this result,
we will only consider the combined HI+LO band results in the following discussion since
they provide the strongest constraint.

In Figure 5.5 we compare the eht-imaging and Themis results across each observation
day. The top two rows show the mean Themis and eht-imaging images blurred by a
Gaussian with 15µas FWHM. The Themis and eht-imaging results are discrepant at
over 2σ on April 5, 6, and 11. On April 10 the ellipticity and position angles do overlap.
However April 10 has substantially less data that the other days. As a result the relative
error bars are much larger, likely aiding in the consistency.

Focusing on the Themis results, we see that on April 5 and 6 the resulting ellipticity
distributions are consistent at a 2σ level, while April 10 and 11 are consistent with each
other. Comparing April 5/6 with April 10/11, we see that there is no significant evidence
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Figure 5.5: Mean images from the Themis Bayesian imaging posterior (top) and ehtim
topset (middle) both blurred by a 15µas FWHM Gaussian. The bottom row shows the
joint distribution of the image ellipticity vs position angle for the Themis results(blue)
and eht-imaging results (orange)

(> 2σ) for ellipticity evolution M 87 across the 2017 observations.

5.5.1 Interpreting the M 87 ellipticity

In Section 5.4, we demonstrated that Bayesian imaging gives a faithful reconstruction of
ellipticity. This means that the calibration procedure applied in Section 3.4 is not needed.
Additionally, since we do not need to use GRMHD simulations to calibrate for imaging
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Figure 5.6: Comparison of recovered ellipticity of M 87 using Bayesian imaging (blue),
and the expected ellipticity from GRMHD simulations blurred with a 15µas Gaussian
kernel (green line). Both the GRMHD and Bayesian imaging asymmetries were found
using VIDA. We find that the recovered M 87 ellipticity is within the expected GRMHD
ellipticity distribution and thus is consistent with theoretical expectations.

uncertainty, we can now ask whether the Bayesian imaging results are consistent with the
expectation from GRMHD simulations.

A thorough analysis of this consistency question would require imaging a large number
of GRMHD simulations using the Bayesian imaging pipeline from Section 5.5. However,
given the computational timescale (∼ 5-6 days) of Bayesian imaging, this is not feasible.
However, from (EHTC VI), the image structure uncertainty will be dominated by accre-
tion uncertainty. Therefore, to check whether the measured ellipticity is consistent with
GRMHD simulations, we used the marginal ellipticity posterior from Section 3.4.1. Re-
call, that this was measured by applying VIDA to the raw GRMHD images, blurred with
a 15µas FWHM Gaussian. This accounts for the expected ellipticity from accretion tur-
bulence around M 87, and the blurring models the finite resolution of the current EHT
array. Figure 5.6 compares the Themis ellipticity posteriors to the distribution of expected
GRMHD ellipticity. We see that the Bayesian imaging posterior over the combined days
(sans April 10) are consistent with the expected ellipticity from simulations. This result
implies that GRMHD simulations are consistent with the M 87 ellipticity reconstructions.
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5.6 Conclusion

We have demonstrated that Bayesian imaging can reliably recover the on-sky ellipticity.
The ellipticity posterior is robust to the number of pixels chosen for the raster and ellipticity
orientation. This result is a demonstration of the power of Bayesian imaging. While it is
computationally more expensive than traditional RML methods, it can reliably quantify
image features. Furthermore, we did not need to use any calibration procedures to correct
for parameter bias.

The Bayesian ellipticity posteriors from M 87 are robust to coverage, and can measure
the actual ellipticity of the on-sky source. Analyzing the results from Figure 5.5, we see that
the marginal ellipticity posterior satisfies τ . 0.15 on all days except April 10. However,
April 10 has substantially worse coverage and even then only extends up to τ = 0.25.
Therefore, using the April 5,6, and 11 results, we see that Bayesian imaging improves the
ellipticity constraint by a factor of 3.3 compared the the calibrated M 87 top set results.
Furthermore, we demonstrated that M 87’s ellipticity posteriors are consistent with the
expectations from GRMHD simulations and thus are consistent with general relativity. In
the future, this ellipticity constraint can be further improved by fitting the entire 2017
M 87 dataset.

Unfortunately, this ellipticity constraint does not tell us much about the nature of
spacetime near the horizon. It is possible for non-GR metrics to have similar amounts of
ellipticity (Johannsen et al., 2016). Part of the problem is that we are only looking for non-
GR signatures from static signatures that require high resolution. One way to improve this
is through dynamics (Broderick et al., 2021; Moriyama et al., 2019). Unfortunately M 87,
given its mass, is approximately static over the 2017 observations. However, the other
primary EHT source Sgr A∗, is a ∼ 1000 times lighter and thus changes on the timescales
of seconds. In the next chapter, we will propose how to use Sgr A∗’s strong-variability to
test GR by tomographically mapping spacetime using orbiting hot spots.
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Chapter 6

Space Time Tomography with the
Event Horizon Telescope

6.1 Introduction

One of the primary science goals of the EHT is to probe accretion and spacetime in the
strong-gravity regime. In the previous chapters we explored the static image properties of
M 87. Static imaging, however, creates a degeneracy between when and where emission
arises near the black hole. By exploring time variability, we can break this degeneracy and
explore the dynamics of the emission region and structure of spacetime.

While M87 is static over a day, Sgr A∗ is constantly variable. Furthermore, Sgr A∗

displays strong variability through flaring events (Genzel et al., 2003) that can often (espe-
cially for bright X-ray flares) be seen (almost) simultaneously across multiple bands (Fazio
et al., 2018), from sub-millimeter (Fish et al., 2011), to infrared (Gillessen et al., 2006;
Witzel et al., 2012; Witzel et al., 2018) and X-ray (Neilsen et al., 2013; Ponti et al., 2017).
This emission appears to come from a compact region near the innermost stable circular
orbit (ISCO) of the black hole and is presumed to be from dynamical structures within the
accretion flow (Marrone, 2006; Gillessen et al., 2006; Gravity Collaboration et al., 2018).
An explanation for these flares comes from the creation of localized “hot spots” of non-
thermal electrons in the accretion disk surrounding the black hole and has been proposed
by several authors: Broderick & Loeb (2005, 2006); Eckart et al. (2006) and previously
Dovčiak et al. (2004). A natural origin is magnetic-reconnection events within the accre-
tion disk analogous to solar flares, an unavoidable consequence of radiatively inefficient
accretion models.
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Previous work on modeling orbiting hot spots assumed compact spherical Gaussian
structures that remain coherent during its orbit(Broderick & Loeb, 2005, 2006). In general,
however, hot spots are expected to be embedded within a differentially rotating accretion
disk, and therefore will shear and expand. Furthermore, shearing due the differential
flow of an accretion disk can lead to large observational differences for NIR flares (Eckart
et al., 2008a, 2009; Zamaninasab et al., 2010). For the EHT, including shearing may be
imperative since it is sensitive to horizon scale physics. To address these concerns, we
developed a computationally efficient model including generic shear and expansion, while
ensuring that spot number density is locally conserved.

As hot spots orbit, they probe different parts of spacetime. By observing a flare, we
not only probe the null structure of spacetime from the emission but also how massive
matter evolves in the vicinity of the event horizon. As we will show below, observing a
single hot spot with the EHT may lead to high precision spin measurements. Furthermore,
since each hot spot will form at a different radius, every flare will probe different regions of
spacetime. Combining multiple flares would then amount to constructing a tomographical
map of spacetime, leading to a new test of GR in the vicinity of black holes.

In practice, recovering the hot spots from EHT observations could be difficult. The
effective beam size of the EHT is 13µas, meaning that the hot spot may not be sufficiently
resolved by the EHT to precisely probe spacetime. Furthermore, there are several impor-
tant systematics present for Sgr A*, such as scattering and the background accretion flow.
To address these questions we used Themis (Broderick et al., 2020), a Bayesian parame-
ter estimation framework designed for use with the EHT. Therefore, we will numerically
explore the ability of the EHT to perform inference on hot spots using synthetic data that
matches the configuration of the EHT 2017 array and address the impact of some potential
systematics.

This chapter is organized as follows. In Section 6.2 we present an original hot spot model
that incorporates shearing and expansion while conserving particle number. Section 6.3,
explores the ability of the EHT in the 2017 configuration, to extract a hot spot from
potential observations of Sgr A*. As a result, we analyze whether the differential flow
parameters such as angular velocity and black hole spin, are degenerate. Additionally, we
study how the background flow, scattering, and the accretion disk inclination relative to
our line of sight impact our results. Section 6.4 details how multiple hot spots can be used
to tomographically map spacetime using the EHT and constructs hypothetical maps using
the EHT.
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Figure 6.1: Frames of a shearing spot movie intensity map in log-scale, with 64× 64 image
resolution set around Sgr A*. The movie lasts for two Keplerian orbits at a radius of
5.23M , and contains 12 frames in total. The parameters are a∗ = 0.5 cos Θ = 0.5, n0 =
5.5× 107, Rs = 0.5M, r0 = 5.23M ' 1.25 rISCO, φ0 = −90◦, α = 0.05, κ = 0.95.

6.2 Hot spot model

Hot spot models have been used to explain flares and variability in Sgr A* observations
using coherent Gaussian hot spots (Broderick & Loeb, 2005, 2006). Later models allowed
for adiabatic expansion (Eckart et al., 2009) and shearing (Zamaninasab et al., 2010).
However, in the latter work, the emission was restricted to a 2D disk and radiative transfer
effects were ignored. Here, we describe a model that includes both shearing and expansion
of a hot spot along a stationary and axisymmetric velocity field. Furthermore, this model
includes the 3-dimensional structure of the hot spot and includes the effects of radiative
transfer as will be described below. Additionally, we describe a semi-analytical procedure
for evolving the hot spot density that is marginally more computationally expensive than
the coherent hot spot model.

6.2.1 Density profile evolution

In Broderick & Loeb (2005, 2006), hot spots are modeled by orbiting, symmetric Gaussian
electron overdensities. The orbital position of the center of the spot, yµ0 is determined
by integrating the accretion flow four-vector field uµ around which the hot spot number
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density is given by,

ne(y
µ) = n0e

−(∆rµ∆rµ+(∆rµuµ)2)/(2R2
s), (6.1)

where ∆rµ = yµ − yµ0 , is the displacement vector from the center of the Gaussian spot, Rs

the spot size, and uµ is evaluated at the spot center. While this model is computationally
efficient, it ignores the potential for differential motion within the spot. For a Keplerian
velocity field, this approximation is rapidly violated: the inner edge of the spot has ad-
vanced relative to the outer-edge by one radian in r/3πRs orbits; within 1/3π orbits it has
advanced by Rs.

Therefore, we will assume that a hot spot will travel passively on some specified (e.g.
background accretion flow) velocity field uµ. That is, the density is described by the
continuity equation coupled with the condition that the particles move with the background
flow:

∇µ(neu
µ) = 0, (6.2)

dxµ

dτ
= uµ. (6.3)

We will denote the solution family of Equation 6.3 by the map ϕτ (y
µ). By fixing yµ we can

consider xµ(τ) = ϕτ (y
µ) as describing the motion of a particle at some time τ . Namely,

xµ(τ) satisfies Equation 6.3, with initial condition xµ(τ = 0) = yµ. On the other hand,
if we consider τ as fixed then φ(yµ) = ϕτ (y

µ) describes the coordinates of a family of
observers at rest with the background flow. Therefore, we can say for small τ that ϕτ (y

µ)
forms a 1-parameter family of diffeomorphisms. Therefore, we can solve Equation 6.2 using
the method of characteristics, giving

uµ∂µne + ne∇µu
µ =

d

dτ
ne + ne∇µu

µ = 0 (6.4)

and

ne(τ, x
µ) = ne,0(yµ) exp

(
−
∫ τ

τ0

∇µu
µdτ

)
, (6.5)

where yµ = ϕ−1
τ (xµ) is the initial position of the spot and ne,0 the initial proper density

profile. We can simplify this further by noting

∇µu
µ =

1√−g∂µ(
√−guµ), (6.6)

and thus,

ne(τ, x
µ) = ne,0(yµ)

√
−g(yµ)√
−g(xµ)

exp

(
−
∫ τ

τ0

∂µu
µdτ

)
. (6.7)
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Interpreting this result physically, we see that there are two forms of expansion included in
the model. The first is spacetime expansion and is encoded by the ratio of the metrics. The
second is the expansion of the velocity field itself irrespective of the background spacetime.
Note that for a hot spot outside the innermost stable circular orbit (ISCO) traveling on
a Keplerian orbit, Equation 6.12 simplifies to ne(τ, x

µ) = ne,0(yµ), since g(xµ) is constant
and ∂µu

µ vanishes. This does not mean that there is no deformation, as yµ = ϕ−1
τ (xµ).

Instead, the only deformation is due to shearing which does not affect the proper density1.
Note however, that this is an idealization and in reality the hot spot will adiabatically
expand during its evolution, meaning that its proper density will decrease over time.

In this chapter, we will focus on hot spots orbiting in the equatorial place, although the
density extends outside. Furthermore, we will assume that the spot has negligible vertical
motion compared to radial and azimuthal motion. To describe our vector field we follow
Pu et al. (2016). A form of the accretion flow that obeys the restrictions mentioned above
is

uµ = (ut, ur, 0, utΩ), Ω = uφ/ut. (6.8)

The normalization condition uµuµ = −1 for a black hole metric in Boyer-Lindquist like
coordinates gives

ut =

√
1 + grr(ur)2

−gtt − 2Ωgtφ − Ω2gφφ
. (6.9)

From this we can see that we require that gtt + 2Ωgtφ + Ω2gφφ < 0. To specify ur and Ω
we will use a combination of Keplerian and free-fall motion:

ur = urK + α(urff − urK), (6.10)

Ω = ΩK + (1− κ)(Ωff − ΩK), (6.11)

where α, κ ∈ [0, 1], are two free-parameters that control the rate of free-fall and the
sub-Keplerian motion respectively. Note that our definition of α differs from that of Pu
et al. (2016). For the Keplerian component, outside the ISCO, urK = 0. Inside the ISCO
urK 6= 0 and is specified by matching the energy and angular momentum at the ISCO. This
choice of velocity field brackets a useful collection of accretion flows. For example, taking
α = 0, κ = 1 gives a Keplerian orbit and α = 0, κ = 0 free-fall motion.

Due to the fact that this vector field is independent of the coordinates t and φ, we have

1We define shearing as the symmetric traceless part of the tensor ∇µuν . Since it is trace-free does not
directly impact the proper density of the hot spot (see Equation 6.7).
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that ∂µu
µ = ∂ru

r. Therefore, ∂µu
µ = (ur)−1u̇r, and Equation 6.5 simplifies to

ne(τ, x
µ) = ne,0(yµ)

√
−g(yµ)√
−g(xµ)

ur(yµ)

ur(xµ)
. (6.12)

This semi-analytic formula greatly increases the computational speed of the hot spot, and
is the same order of computational complexity as the coherent spot used in Broderick &
Loeb (2005).

As a final note, in principle, any smooth function could be used for the initial density
profile. However, in this chapter, we will assume that the spot is initially given by Equa-
tion 6.1. There are two reasons for this. First, this profile allows us to compare the hot
spot evolution results to Broderick & Loeb (2005, 2006). Second, since any image will be
distorted by the interstellar scattering screen (Bower et al., 2006; Johnson et al., 2018),
whose diffractive or blurring component is effectively a Gaussian with a semi-major axis of
22µas most small-scale structure of the hot spot will be unresolved. Therefore, since we are
assuming that a hot spot forms from local microphysics, i.e. fast magnetic reconnection,
we expect it to be contiguous, and the initial profile can be approximated as a Gaussian.

6.2.2 Radiative transfer and Ray-tracing

To create hot spot models that can be compared to EHT data, we need to create realistic
images. This means that near the black hole, general relativistic (GR) and radiative
transfer effects need to be included. These effects include the geometric and gravitational
time delays across the source (often called “slow light”) and the strong gravitational lensing
that magnifies the emission region and produces secondary images associated with photons
that complete half orbits around the black hole. Furthermore, optical depth becomes
important near the black hole since material moving towards the detector will have an
increased apparent density due to Doppler effects, making it optically thick.

To incorporate these effects we use the covariant ray-tracing and radiative transfer code
VRT2 (vacuum ray-tracing radiative transfer). For the EHT observation band (230GHz)
we assume the hot spot spectra in the plasma rest frame is given by the synchrotron self-
absorption model from Broderick & Blandford (2004), with a local plasma energy spectral
index of s = 2.25. At the observing frequency of the EHT (∼ 230GHz), synchrotron cooling
processes will be sub-dominant to the shearing timescale. The shearing timescale is roughly
the orbital period of the hot spot around Sgr A*. Taking the hot spot to be around the
ISCO, we get tshear ∼ 10−30 min for a 4×106 M� black hole. The timescale for synchrotron
cooling can be estimated from tsynch ∼ 3 × 107ν−0.5

9 B−3/2 s, where ν9 is the frequency in

96



GHz and B is in Gauss. Taking B ∼ 10 − 50 G we find that tsynch ∼ 1 − 20 hours at
230 Ghz. Therefore, in this chapter we ignore the cooling break and evolution during the
hot spots orbit. Note that in the other bands, e.g., the near-infrared and X-ray, cooling
and inverse Compton effects likely become important (Fazio et al., 2018) and will need to
be included.

To model the magnetic field assumed to arise from an accretion disk, we followed
Broderick et al. (2016) and used a toroidal magnetic field with a fixed plasma beta set to
10. Below we will also consider what happens when the hot spot is embedded in an accretion
flow. In this case, we use the accretion flow model from Broderick et al. (2016). This model
includes thermal electrons set in a radial power law in density and temperature, where the
power-law indices for the thermal electron and temperature distribution are −1.1,−0.84
respectively. Furthermore, we also include non-thermal electrons with a radial power-law
index −2.02 for the number density, and 1.24 for the photon spectral index. Note that
these parameters were chosen to match the values in Broderick et al. (2016), which are the
best fit values to the spectrum of Sgr A*.

The optical depth of the hot spot depends on a number of quantities, such as the
proper density of the hot spot, its orbital parameters, and the orientation of the orbital
plane relative to our line of sight. For instance, a hot spot with a 1 Jy flux near the ISCO
at 230 GHz with an inclination angle of 60◦, will tend to appear to be optically thick when
it is moving towards the observer due to Doppler beaming. Furthermore, as the hot spot
shears its effective optical depth will change. All of these effects are automatically included
into the relativistic radiative transfer that occurs in the construction of each frame of the
movie.

This completely describes the shearing hot spot model used in this chapter. In sum-
mary, this model, ignoring any spectral information, requires 10 parameters to describe
the evolution which are:

1. spin parameter a∗.

2. cosine of the inclination, cos Θ of the black hole relative to the image screen.

3. Spot electron density n0 in Equation 6.1.

4. Spot characteristic size, Rs, in units of M2 from Equation 6.1.

5. Spot injection time, t0, in units of M for an observer: the time which the spot is
instantaneously injected into the accretion flow. The actual spot appears at a fixed

2We are using geometrical units, where G = c = 1 in this chapter.
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proper time for an observer in a locally flat co-moving frame with uµ. This means
for the observers time, the hot spot gradually starts to appear.3

6. Initial hot spot radius, r0, i.e. the position of the spot center in Boyer–Lindquist
coordinates when it is initially injected.

7. Initial hot spot azimuthal angle, φ0, i.e. the angle in Boyer-Lindquist coordinates of
the hot spot center when it is injected into the accretion flow.

8. Radial accretion flow parameter, α, in Equation 6.10.

9. Angular accretion flow parameter, κ, in Equation 6.11.

10. Position angle of black hole spin and orbital axis, ξ.

Figure 6.1 presents a 12 frame movie with the parameters a∗ = 0.5, cos Θ = 0.5, n0 =
5.5 × 107, Rs = 0.5, t0 = −6M, r0 = 5.23M ' 1.25rISCO, φ0 = −90◦, α = 0.05, κ =
0.99, ξ = 0◦. The initial time of the spot was chosen to be −6M due to time delay effects
from ray-tracing. The inclination was chosen to be equal to the expected inclination for a
uniform distribution on a sphere, which is close to the observed inclination found in Brod-
erick et al. (2016). Different inclinations will be explored in Section 6.3.4. Additionally,
we chose the initial azimuthal angle of the hot spot to be −90◦ to ensure that when the
spot first passes in front of the black hole relative to our line of sight it hasn’t appreciably
sheared. The initial radius was chosen to be close to the ISCO since this is where a hot
spot would be expected to be found, which was recently seen in Gravity Collaboration
et al. (2018). Furthermore, an exploration of how radius and spin effects the images will
be discussed below. The accretion flow parameters α and κ were chosen to be close to a
perfect Keplerian motion since we anticipate this will be the motion of the accretion disk
in Sgr A*. The radial size of the spot Rs was chosen to be 0.5M to test the ability of
the EHT to resolve spots similar to the beam size of the EHT. The total observation time
was 2TK at the initial spot location, where TK is the Keplerian orbital period and for a
spot at 5.3rISCO = 53 min. Each of the twelve frames has a resolution of 64 × 64. While
higher resolutions can be used, we made this choice for two reasons: First, it is low enough
to allow for movies to make in a reasonable timescale for parameter estimation. Second,
higher resolutions did not appreciably impact parameter estimation, which is presented in
the next section.

3Since we assumed that hot spots are created from local microphysics, i.e. from fast magnetic recon-
nection, we expect the hot spot to appear suddenly and be localized initially.
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Figure 6.2: VLBI observables for the twelve frame movie shown in Figure 6.1. The top
panels show a subset of the 12 frames in logarithmic scale. The middle panels show
synthetic VM at the APEX+ALMA (blue) and SPT+ALMA (orange) for the 2017 EHT
observation baselines as a function of time. The bottom panels show the CP as a function
of time at the SMA+ALMA+SPT (blue), and SMT+SMA+ALMA (orange) triangles.
The gray dotted lines show where the time of movie snapshots in the top panel are taken.
Note that the discrete jumps in the observations are due to the fact that we only used a
12 frame movie.

6.3 Shearing hot spots with the EHT

To assess whether the EHT has sufficient fidelity to recover a shearing hot spot’s parame-
ters, we need to first convert our ray-traced movies, such as the one shown in Figure 6.1,
to the VLBI data that, e.g., the EHT 2017 array will observe. The EHT, like all VLBI
arrays, measure not the intensity map of an image but instead quantities associated with
its Fourier transform, namely the complex visibilities. Each pair of EHT stations form a
baseline for which a complex visibility is recorded. In this section, we will describe the
procedure we used to convert our images into EHT synthetic data. In the first part, we
describe what observables the EHT measures in more detail, and how we create synthetic
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data for the movie shown in Figure 6.1. In the second, we report a Bayesian MCMC pa-
rameter estimation exercise and analyze the EHT’s ability to reconstruct shearing hot spot
parameters from the simulated data. In the third part, we will analyze the impact of two
systematics (diffractive scattering and a background RIAF) will have on the parameters
posterior distribution. In all cases, we find that the EHT can recover all the true hot spot
parameters to sub-percent precision at 95% confidence about the median.

6.3.1 Creating Synthetic EHT Data

To explore how well the EHT can recover hot spots, we first need to convert the movie
into interferometric EHT data. The EHT measures complex visibilities defined by,

Vij =

∫
dαdβ I(α, β)e2πi(αu+βv). (6.13)

Due to phase calibration issues from atmospheric turbulence, the phases of individual
stations are practically randomized. To get around this, visibility amplitudes (VA), |Vij|,
are used, for which calibration or gain uncertainties are typically around 10% and can
effectively be modeled using the same gain marginalization procedure as in Appendix A.
To recover some information about the complex phase of the visibilities closure phases
(CP) are constructed

Φi,j,k = arg(VijVjkVki), (6.14)

which are just the sum of the phases of a triplet of visibilities. Because the baselines close,
i.e., they form a triangle (u, v)ij + (u, v)jk + (u, v)ki = 0, all station-specific gain errors
vanish from the CPs.

In this chapter, we will use VA and CP data to explore the ability of the EHT 2017 to
reconstruct shearing hot spot parameters at 230GHz. To convert spot intensity maps into
interferometric data we use the Event Horizon Telescope Imaging Library (eht-imaging)4;
(Chael et al., 2016b, 2018b; Chael et al., 2019)). eht-imaging provides the ability to
convert intensity maps into VA and CP data that uses the EHT 2017 array configuration
including the correct baseline information, atmospheric thermal noise, and gain errors.
This allows us to directly sample the image at the baselines the EHT will sample in a
given observation window. We created an observation at 51544MJD starting at 1800hr
with scan and integration time of 61s and 31s respectively. The total observation was
53 min, which corresponds to two Keplerian orbits for a spot at 5.25M . The specific

4https://github.com/achael/eht-imaging
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baselines we used are shown by the white points in Figure 6.7. We also include Gaussian
thermal noise in all observations, where the error, σij, for the (i, j) baseline is determined
by

σij =
1

0.88

√
SEFDiSEFDj

2 tintνbw

, (6.15)

where νbw is the bandwidth of the observation which we set to 4 × 109Hz, 2νbwtint is the
number of independent samples of the two station baseline (i,j), and the 1/0.88 factor is
due to two-bit quantization (Thompson et al., 2017). Furthermore, the SEFD (System
Equivalent Flux Density) of each station are provided by eht-imaging. While gain errors
can be included by eht-imaging, we will ignore their impact for simplicity.

When creating the synthetic VA and CPs we placed a signal to noise ratio (SNR) cut
of 2 on every baseline and debiased the VA’s according to

Vij =
√
|Vij|2 − σ2

ij. (6.16)

This allows us to approximate the error distributions of the VA and CP as a Gaussian to
< 10% accuracy (Thompson et al., 2017; Broderick et al., 2020). Furthermore, and SNR
cut of 2 only removes a handful of measurements. The resulting visibility amplitudes and
closure phases for a few baselines as a function of time are shown in Figure 6.2. Short
baselines, which probe large scales, show modest variations associated with the hot spot,
consistent with the light curve. In contrast, long baselines, which probe small scales, exhibit
large variations, associated with the rapidly varying structures within the image. In both
cases, the variations are easily identifiable, substantially exceeding the thermal noise.

6.3.2 Extracting spacetime and spot parameters with Themis

To quantitatively examine the ability of the 2017 EHT array to recover and constrain hot
spot parameters we use MCMC to recover the posterior distribution. To accomplish this,
we used the software suite Themis. Themis is a highly extensible parameters estimation
framework that was developed to deal with modeling and feature extraction of EHT ob-
servations. Furthermore, it can easily accommodate time variable structures. For more
information about Themis see Broderick et al. (2020). For modeling, we used Themis’
non-marginalized Gaussian likelihoods for both the visibility amplitudes and closure phases.

We expect EHT observations during quiescent, non-flaring periods to place strong con-
straints on the orientation of the black hole spin and the images azimuthal orientation.
Therefore, we hold the black hole inclination, cos Θ, and image position angle, ξ, fixed
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to their “true” values during each MCMC run. The reasoning behind this is that when
analyzing a real data set, we expect that imaging studies will provide a prior estimate for
both parameters. In principle, these parameters could be allowed to vary, however, we
found that it does not alter any of the results below.

Flat priors where chosen for for a∗ ∈ (0, 1), Rs ∈ (0.01, 10), t0 ∈ (−200, 200), r0 ∈
(1.5M, 20M), φ0 ∈ (−π, π), α ∈ (0, 1), κ ∈ (0, 1), and n0 used a logarithmic prior, ranging
from 103 to 1012. For the MCMC sampler we used the parallel tempered affine-invariant
sampler originally detailed in Goodman & Weare (2010); Vousden et al. (2016), with 48
walkers, 6 tempering levels, with temperature swaps every 50 MCMC steps. To speed up
convergence, the walkers were started at the true values of the model. A single run for
1000 MCMC steps took 150 000 core hours, on the Calcul Quebec and Compute Canada
cluster Mp2.

The joint parameter posterior probability distributions are shown in Figure 6.3. Every
spot parameter is recovered with sub-percent accuracy. For example, the median spin and
its 95% confidence interval was a∗ = 0.50002+0.00017

−0.00023. Every marginalized distribution was
single-peaked, showing no apparent degeneracies using the EHT 2017 array. The minimum
reduced chi-square was found to be 1.0001 with 1640 degrees of freedom. Therefore, we
conclude that the EHT 2017 array can accurately recover isolated shearing hot spots around
Kerr black holes with high precision and accuracy. While these results are encouraging, we
have ignored all potential systematics except the thermal noise present in the array. In the
next section, we will study the impact of a few potential systematics that are important
for Sgr A*.

6.3.3 Adding Systematics – Scattering and Background flows

In practice, the idealized observations described in the previous section are not directly
applicable to EHT data, which are subject to a variety of additional systematic effects.
Therefore here, we analyze how some of these systematics modify our conclusions. We
focus on two systematics that are expected to dominate the error budget: diffractive scat-
tering and a background accretion flow. Additionally, we analyze the impact of different
inclination angles of the accretion disk on our parameter estimation.

Diffractive Scattering

Emission from SgrA* is scattered by interstellar electrons (Bower et al., 2006; Johnson
et al., 2018; Issaoun et al., 2019). This both blurs the image (diffractive scattering) and
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Figure 6.3: Joint posterior probability distribution of shearing spot. The purple lines and
points show the true values of the model, which is shown in Figure 6.2.

stochastically lenses the image (refractive scattering). We consider the implications of the
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Figure 6.4: Comparison of movies snapshots (left) and their corresponding visibility am-
plitudes (right) as different systematics are added. The white dots denote the (u,v) points
sampled using the EHT array configuration described in the main text. The top figures are
the base case with no systematics. The second from the top is with diffractive scattering,
second from the bottom is with a RIAF and no scattering, and the bottom is with both a
RIAF and scattering.

former for the reconstruction of shearing hot spots here, leaving the latter for future work.
Diffractive scattering has the effect of washing out any structure below the scale of the
blurring kernel. For our kernel, we use the empirically determined, wavelength-dependent
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asymmetric Gaussian kernel from Bower et al. (2006) with parameters,

θmaj = 1.309

(
λ

1 cm

)2

mas,

θmin = 0.64

(
λ

1 cm

)2

mas,

(6.17)

where θmaj,min is the FWHM of the semi-major/minor axis of the Gaussian scattering ellipse
and ψ = 78◦ its orientation. At 230GHz this corresponds to a semi-major axis FWHM
of 22µas. The impact of diffractive scattering on the image is shown in the left panels
of Figure 6.4. As expected, the diffractive scattering removes structure smaller than the
typical kernel size of the image. For visibility amplitudes (right panels of Figure 6.4),
this corresponds to the suppression of visibility amplitudes at high baselines length. The
impact on the direct EHT observables for the hot spot movie in Figure 6.1 is shown in
Figure 6.5. Here we see that at long baselines, i.e. the SPT+ALMA baseline, variations
in the VM are damped. Note that since the scattering Kernel is a Gaussian the closure
phases are not modified.

RIAF Background

While hot spots can contribute substantially to the image flux, the main source of emission,
the accretion disk, will typically dominate. Where it does not, its opacity will still obscure
the hot spot emission. To include the impact of an accretion disk we included a radiatively
inefficient accretion flow (RIAF) model from Broderick et al. (2016) fitted to past proto-
EHT observations of Sgr A*. Figure 6.4, demonstrates how the RIAF background impacts
hot spot movies. The impact is twofold. One, we see that regions, where the emission is very
dim, is washed out by the background RIAF. Secondly, and most importantly, is the impact
of optical depth from the background accretion flow. This effect is especially pronounced
in the Doppler boosted region of the disk. In this region, the spot becomes entirely washed
out after it passes through the ISCO. This suggests that hot spots appearing inside the
ISCO will be much harder to observe with the EHT.

In terms of EHT observables, we see how the RIAF impacts the visibilities and images
in Figures 6.4 and 6.5). After adding the RIAF, the spot brightness above the background
drops from 0.8Jy to 0.5Jy from optical depth. The impact of optical depth is even more
pronounced after the spot makes two complete orbits5, as is seen in the third panel of

5Since the spot has radial motion it completes more than two orbits during the observation time.

105



18.0 18.2 18.4 18.6 18.8

0

1

2

3

V
[J

y
] APEX+ALMA

SPT+ALMA

Spot Spot+Blurring Spot+Blurring+RIAF

18.0 18.2 18.4 18.6 18.8

time [hr]

−100

0

100

C
P

[d
eg

]

SMA+ALMA+SPT
SMT+SMA+ALMA

Figure 6.5: Impact of scattering and a background RIAF on the VM (top) and CP (bottom)
as the spot falls into the black hole. We again use the same 12 frame movie parameters as
shown in Figure 6.2

the third column of Figure 6.4. Before adding the RIAF, the hot spot extends across the
entire face of the black hole and the secondary emission is visible. After, the hot spot is
practically invisible.

Another way to see this impact is by analyzing how the light curve of the spot changes
as the initial radius of the spot moves inwards, which is shown in Figure 6.6. To assure
a fair comparison as the initial radius of the hot spot is changed, we decrease the density
constant n0 too. This ensures the maximum brightness of the spot fixed to ∼ 0.5Jy.
Analyzing Figure 6.6 as the starting radius of the hot spot is moved inwards, it moves into
the optically thick region sooner. This leads to the second orbit of the spot is increasingly
obscured. As we will see below, for hot spots starting inside the ISCO, this negatively
impacts the ability of the EHT to recover hot spots.

Impact of systematics on parameter estimation

To estimate the impact of the systematics on the parameter estimation, we use the pro-
cedure described in Section 6.3.2, with identical starting parameters, priors, and sampler
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around a black hole with spin parameter a∗ = 0.5, at the four different radii specified in
Table 6.1. The units of the x-axis are given as a fraction for the Keplerian orbital period,
TK , at the initial radius for the respective spot.

options, but including the RIAF and blurring to the model when applicable. The impact
of the systematics on the posterior distribution is shown in Figure 6.7. Blurring does
not appear to impact the posteriors substantially. One reason for this is that diffractive
scattering doesn’t change closure phases. Additionally, looking at Figure 6.4, blurring is
a multiplication of the VA and can easily be inverted through modeling, since the kernel
has no nulls in visibility space. However, when the background RIAF and diffractive scat-
tering are both included the posteriors do broaden. For the black hole spin, the range of
the inferred values increases by roughly a factor of two. However, we still have sub-percent
precision, finding that a∗ = 0.5001+0.00073

−0.00129. Therefore, even with blurring and a RIAF
background, the EHT 2017 array can recover hot spots and sub-horizon-scale physics to
high accuracy.

In the absence of a background RIAF, all spacetime constraints arise from the shearing
hot spot. In the presence of a RIAF, the morphology of the quiescent accretion flow
provides additional information (Johannsen et al., 2016). Thus, we seek to assess the
improvement in the spin measurement, arising from the inclusion of the hot spot relative
to the background RIAF. Namely, if the spots are improving the measurement of spin, we
would expect the bound on the spin to improve relative to just fitting a RIAF background
during the same observation. To test this, we used the same array configuration as for the
hot spot simulations, and then created simulated data of a RIAF with the same parameters
used previously. The results are shown by the black curves in Figure 6.7, which compares
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Figure 6.7: Comparison of the joint-probability distribution of a shearing hot spot with
different systematics. The black contours show represent the base model without diffractive
scattering and a background RIAF. Blue the same spot but with diffractive scattering,
and red if the same spot with diffractive scattering and a RIAF background. The model
parameters are: spin of 0.5 with a viewing inclination of 60◦, accretion flow parameters
are set of α = 0.05 and κ = 0.99 (near-Keplerian), and the spot was initially placed at
1.25 · rISCO = 5.3M with a azimuthal angle of −90◦ and ξ = 0◦.

the joint probability distribution for the spin and two accretion flow parameters. For the
case of the RIAF, we find the spin is given by a∗ = 0.49964+0.00128

−0.00213. The 95% errors are then
70% larger than the hot spot and RIAF model. Therefore, we indeed see that catching a
flare does improve EHT measurements of spin.
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Figure 6.8: Comparison of hot spot motion embedded in the Broderick et al. (2016) best
fit RIAF model, over different accretion disk inclination angles Θ = 60◦, 30◦, 8◦. As
the inclination angle becomes smaller lensing is suppressed since optical depth from the
accretion disk becomes large.

6.3.4 The impact of disk inclination

We have shown that the inclusion of a scattering screen and background accretion flow does
not drastically alter our ability to extract hot spots. However, most of the conclusions
so far have assumed that the inclination of the accretion disk is Θ = 60◦. While this
angle does match what Broderick et al. (2016) found for Sgr A*, the uncertainty in the
inclination is quite large. Furthermore, Gravity Collaboration et al. (2018) found that the
inclination angle of the orbital plane of the hot spot motion was ∼ 30◦ during a flare.
Figure 6.8 illustrates how the inclination angle changes the morphology of an image. As
the inclination angle decreases, the impact of the lensed emission from the hot spot is
suppressed since the disk becomes optically thick. Additionally, the variability of the light
curve becomes subdued since the hot spot doesn’t “disappear” behind the black hole at
Θ = 30◦, 8◦.
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Figure 6.9: Comparison of the joint-probability distribution of shearing hot spots with a
background RIAF and diffractive scattering at different inclination angles. Red represents
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Gravity Collaboration et al. (2018). Black is for Θ = 8◦. In all instances the measurement
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To analyze how disk inclination impacts hot spot measurements, we again followed the
same procedure as above. That is, we created a twelve frame movie with scattering and
background RIAF, and used eht-imaging to create a simulated dataset with the same
array configuration as the previous experiments. The results of the parameter estimation
are shown in Figure 6.9. Figure 6.9 demonstrates that the inclination angle has a negligible
effect on the ability of the EHT to extract hot spots when compared to the Θ = 60◦, again
recovering spin to sub-percent precision.
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Figure 6.10: Example of a spot movie with refractive scattering and a RIAF background
included. The movies uses 100 frames over a 2.5hr window. The model parameters are:
a∗ = 0, cos Θ = 0.5, Rs = 0.5, ne = 5.5 × 107, t0 = −6M, r0 = 10M, φ0 = −90◦, α =
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Future systematics to consider

We have shown that the systematics included in this chapter does not seem to impact the
ability of the EHT to recover hot spot parameters. However, other systematics need to
be considered in future work. These include gain errors, refractive scattering, and variable
background effects.

Even after array calibration, it is expected that there will be residual 10% gain errors in
observations (Event Horizon Telescope Collaboration et al., 2019c; Broderick et al., 2020).
In Broderick et al. (2020), a gain mitigation technique was developed that was able to
marginalize the impact of gains on parameter estimation and was applied in Event Horizon
Telescope Collaboration et al. (2019f) and typically increased posterior width by a factor
of a few. Extrapolating from Event Horizon Telescope Collaboration et al. (2019f), we do
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Table 6.1: Spacetime & Hot Spot Parameters

spin 0 spin 0.5 spin 0.9
r0/rISCO r0 [M ] Time [hr] r0/rISCO r0 [M ] Time [hr] r0/rISCO r0 [M ] Time [hr]

0.85 5.00 0.83 0.85 3.60 0.54 0.85 1.98 0.27
1.0 6.00 1.1 1.0 4.23 0.68 1.0 2.33 0.33
1.25 7.50 1.5 1.25 5.30 0.94 1.3 3.00 0.45
1.5 9.00 2.0 1.54 6.50 1.2 1.7 4.00 0.66

not expect that gains will then provide a significant obstacle to hot spot reconstruction.

While we have included diffractive scattering in this chapter, Sgr A* is also refractively
scattered (Bower et al., 2006; Johnson et al., 2018). Refractive scattering effectively adds
small scale structure to the movie impacting long-baseline visibilities. However, we don’t
expect this to form a barrier to hot spot reconstruction for two reasons. One, the timescale
of the spot evolution is much shorter than the dynamical time scale of the scattering screen.
The scattering timescale set by the orbital motion of the earth around the galactic center
and is over hours, while hot spot changes on the order of minutes. Therefore, we can
effectively treat the scattering screen as static during a flare. Second, as Figure 6.10
demonstrates, the scale of the scattering scintillation is typically on much smaller scales
than hot spots. This is due to diffractive scattering, which smears the hot spot to scales
much larger than the refractive scintillation. Taken together, this suggests that while
scattering mitigation is important, it should not significantly alter the results presented in
this section.

Sgr A* displays consistent small-scale variability (Witzel et al., 2018), which is pre-
sumed to arise from turbulence and shocks in the accretion disk. General relativistic
magneto-hydrodynamics (GRMHD) simulations suggest that we consistently expect small-
scale fluctuations in the accretion disk. For bright flares, this becomes less significant as
a single region presumably dominates the emission. Nevertheless, to model the impact of
this, we could include numerous sub-dominant spots, to model GRMHD turbulence, and
then only attempt to recover the bright flare. Additionally, we could inject our hot spot
model into a GRMHD simulation and then attempt to recover it6.

6GRMHD simulation struggle to produce these flares since they typically ignore the microphysics and
plasma resistivity needed to produce fast reconnection events.
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Figure 6.11: Impact of changing spin parameter (increasing from left to right) and initial
radius (increasing from top to bottom) of a shearing hot spot with a RIAF background,
with colors in log-scale, showing intensity per pixel.

6.4 Spacetime tomography

The frequency of flaring states in Sgr A* depends on the wavelength of the observations.
At NIR, Sgr A* has a significant flare ∼ 4 times per day (Genzel et al., 2003; Eckart et al.,
2006; Meyer et al., 2009, 2014; Hora et al., 2014), while only a quarter of those typically
have an X-ray counter part (Baganoff et al., 2001; Eckart et al., 2004; Marrone et al., 2008;
Porquet et al., 2008; Do et al., 2009; Neilsen et al., 2013; Mossoux et al., 2015). Sub-mm
occur 1–4 times a day (Marrone et al., 2008; Dexter et al., 2014). For the EHT however,
it is not entirely clear whether the NIR/X-ray or sub-mm rate is relevant, given that the
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observations are at horizon scales. Either way, for any of the flaring rates of Sgr A*, the
EHT will likely capture at least one flare per observational cycle. This implies that the
EHT will measure multiple flares in the next few years.

These flares permit the opportunity to reconstruct the spacetime parameters in a
position-dependent fashion, e.g., map the spacetime as a function of the initial hot spot ra-
dius. The bundle of light rays (i.e., null geodesics) connecting the primary and higher-order
images of a given hot spot will pass through different regions of the underlying spacetime
for spots launched at different orbital radii. Thus, the black hole mass and spin measure-
ments from subsequent flaring epochs provide a spatially resolved probe of the black hole
spacetime. Such a spatially-resolved spacetime probe, or tomographical map of spacetime,
provides a natural test of the no-hair theorem. We will explore the limits that can be placed
in practice on parameterized deviations from GR in a future publication. One caveat to
note is that in this chapter we have chosen a typical model for these flares where the initial
spot is in the disk. It is possible that the hot spot could form out of the plain of the disk or
have significantly different accretion dynamics from those assumed in this chapter. While
this does mean our tomographical map of spacetime is model dependent, is provides an
additional avenue to probe spacetime on event horizon scales.

6.4.1 Constructing a synthetic tomographical map of spacetime

To explore the ability of EHT to perform spacetime tomography, we placed a series of hot
spots in a Kerr spacetime varying both the initial radius of the hot spot and the spin of the
black hole. Table 6.1, lists the radii and spins that were considered. As the initial radius,
r0, changes, the orbital period varies as well. To ensure that each experiment contains
the same hot spot evolution, we restrict all movies to be 2TK(a∗, r0) each using 12 frames.
Additionally, due to optical depth effects, the brightness of a hot spot will change as the
spin and initial radius varies. Therefore, for each movie, we picked the hot spot density
normalization, n0, such that the brightness was ∼ 0.5 Jy’s above the quiescent emission.
This ensures our results aren’t due to the brightness of the hot spot. The other parameters,
Θ, Rs, t0, φ0, α, κ, ξ, were held fixed between experiments and set to the same values in
Section 6.3.2. Finally, each movie includes a background RIAF and diffractive scattering.

Figure 6.11, shows how the intensity maps of each movie in Table 6.1, with the consid-
erations in the above paragraph. The same subset of frames, in terms of TK , is chosen for
each movie. As the initial radius of the spot and spin of the black hole change so does that
image by significant amounts. Furthermore, for small r0 it becomes difficult to see the hot
spot after one orbit due to the optical depth of the accretion disk. As we will see below,
this can impact the ability of the EHT to recover hot spots close to the black hole.
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Figure 6.12: Joint probability distributions of the spin a∗, and two accretion flow parame-
ters α, κ, for a∗ = 0 (top left), a∗ = 0.5 (top right) and a∗ = 0.9 (bottom).
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To create the synthetic EHT data, we used the same procedure described in Sec-
tion 6.3.1. Namely, we used the same scan and integration time, observation frequency
and bandwidth, and the same MJD and start time of the observation. Due to the movies
being different lengths, each observation will have a different number of data points. This
is a realistic simulation of actual spot observations since the duration of a flare sets the
time interval we are interested in modeling.

6.4.2 Results

For parameter estimation, we used to same procedure described in Section 6.3.2 and 6.3.3.
The joint probability distributions for each run are shown in Figure 6.12 for the spin
0, 0.5, 0.9 cases. Every experiment was able to recover the spot parameters to sub-percent
levels using 95% confidence levels about the median of the marginalized posteriors. Fur-
thermore, the peaks of the joint-probability distributions are all statistically consistent
with the true values of the model, which is shown by the purple line.

Contrary to naive expectations based on spacetime considerations alone, the estimation
of the black hole spin does not substantially improve as the spot moves closer to the black
hole. This is because the optical depth from the accretion disk suppresses the intensity of
the spot dramatically as it falls past the ISCO. For spots farther out, more of the hot spot
is visible, giving much better constraints on the black hole spin.

Fixing the spin, we can associate each flare with a characteristic radius, i.e., the initial
radius7. The results of each column in Table 6.1 forms a tomographical map of the given
spacetime and is shown in Figure 6.13. General relativity predicts that for a given spin,
each flare must lie on a horizontal line in Figure 6.13. If there was evidence of curvature,
either the astrophysical model, e.g., accretion flow dynamics, is incorrect or that nature
may deviate from GR near horizon scales.

In summary, we have found that the EHT can tomographically map spacetime and
accretion flow dynamics near the event horizon, providing a new test of GR in the strong
gravity regime. While this test is not truly model-independent, it does provide an addi-
tional avenue to test the no-hair theorem, independent of others such as the black hole
shadow size (Johannsen et al., 2016; Psaltis et al., 2015, 2016).

7While other choices are possible, the initial radius is the simplest and is a model parameter

116



1.00 1.25 1.50 1.75

r0/rISCO

0.0

0.2

0.4

0.6

0.8

1.0
sp

in

0.8 1.0 1.2 1.4 1.6
0.496

0.498

0.500

0.502

0.504

Figure 6.13: Plots of recovered spin and initial radii parameters of shearing spots, with the
effects of diffractive scattering and a background RIAF included.

6.5 Conclusions

Resolving structural variability on timescales of minutes to hours presents an opportunity
to probe accretion processes and gravity on horizon scales. This is especially true for
Sgr A* that displays dramatic flaring events every 1–3 days. Gravity Collaboration et al.
(2018) associated these flares with hot spots in the accretion disk thought to have arisen
from magnetic reconnection events in the accretion disk and predicted over a decade ago
Broderick & Loeb (2005, 2006). It is expected that these spots will expand and shear
as they traverse around the black hole since they are embedded in an accretion flow.
Therefore, we introduced a novel semi-analytical shearing hot spot model enabling us to
perform parameter estimation studies with the EHT.

Using said model, we have shown that the 2017 EHT array can recover the hot spot
parameters, such as spin, to sub-percent precision. Without any systematics, we were able
to recover the spin to 0.1%. Including diffractive scattering and a background accretion
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flow (see Figure 6.7), we can recover spin to 0.4%, and were able to show that this results
did not depend on the black hole inclination. Furthermore, we were able to recover the
spin to 0.05%−0.5% for a variety of different initial radii, as can be seen in Figure 6.12. By
combining each of these results, we have demonstrated how observing hot spots naturally
leads to a notion of mapping out the radial structure of accretion and spacetime at horizon
scales and forming a tomographical map of spacetime. Furthermore, these results demon-
strate the power of variability as a tool to test GR. In Chapter 5, minimal constraints on
the nature of the black hole were made, other than it was consistent with expectations
from GR. However, no leverage on the spin or non-GR effects could be inferred.

In future works, we plan to analyze how additional systematics impact the results in
this chapter. Additionally, hot spots are not the only source of variability in Sgr A*.
Turbulence and shocks in the accretion disk are thought to be responsible for most of
the small-scale variability seen in Sgr A*. Therefore, we plan on analyzing the impact
of such variability on hot spot parameter estimation. This explores whether multiple hot
spots could be used to model the turbulence and shocks in GRMHD simulations and their
impact on the results in this chapter.
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Chapter 7

Conclusion

Understanding gravity and matter on horizon scales is a critical open question in physics.
With the advent of the Event Horizon Telescope, we are now entering an era where probing
this question is possible. In the first EHT publications, the mass and the polarization
structure of M 87 were measured. In this thesis, we have demonstrated the current and
future potential of the EHT to measure the nature of accretion and gravity on horizon
scales.

One of the key systematics in understanding gravity on horizon scales is characterizing
uncertainty. The EHT is a very sparse interferometer. As a result, image reconstructions
are highly uncertain. Chapter 3 demonstrates that the traditional imaging techniques
used by the EHT and radio astronomy are unable to reliably measure image ellipticity. To
account for this bias, complicated and needlessly conservative calibration procedures are
required. The origin of this problem is fundamental to the methods. Namely, they are
intrinsically unable to measure uncertainty.

In Chapter 5, we demonstrated that Bayesian techniques do not suffer from the same
problems as traditional imaging methods. Furthermore, since no calibration is required,
we improved M 87’s ellipticity constraint by a factor of 3. Additionally, we found that
the observed ellipticity of M 87 was consistent with the expected ellipticity of GRMHD
simulations. This analysis was made possible due to the recent development of Themis
(Broderick et al., 2020) and new sampling techniques detailed in Chapter 4.

Bayesian and sampling techniques from Broderick et al. (2020) and Chapter 4 have
already been applied to other imaging problems. For instance, in Event Horizon Telescope
Collaboration et al. (2021a) polarized Bayesian images were constructed, constraining the
polarization of the on-sky image. This information was then used to constrain the state of
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accretion around M 87 (Event Horizon Telescope Collaboration et al., 2021b). Currently,
efforts are underway to apply the Bayesian imaging pipeline to other AGN sources in the
EHT.

In the future, improving the scaling of Bayesian imaging will be essential, specifically
for the next-generation EHT (ngEHT). The ngEHT could have double the number of
telescopes compared to the EHT. This would quadruple the amount of data. The amount of
data could be further increased if additional frequencies are included, e.g., 86 and 345 GHz.
The effect of the increase in data is twofold. First, likelihood evaluation scales linearly
with the amount of data, becoming a significant bottleneck. Second, as the amount of
data increases, so does model complexity. In the context of Bayesian imaging, this will
require a larger number of raster control points, further increasing the computational cost.
To solve this problem will require new modeling and sampling tools, such as variational
inference (Blei et al., 2017; Sun & Bouman, 2020; Arras et al., 2021), or sub-sampling
MCMC schemes (Cornish et al., 2019).

Chapters 2-5 focused on modeling the on-sky image. However, describing the physical
processes on horizon scales that generate the on-sky image provides the greatest discov-
ery potential. For example, directly modeling the physical accretion disk would include
gravitational parameters, such as mass and spin. Therefore, using these physical models
would allow for direct inferences on spacetime structure (Johannsen et al., 2016). This
approach has already been applied to proto-EHT observations, and as a result constrained
the orientation and emission properties of Sgr A∗ (Broderick et al., 2016).

In Chapter 6, we demonstrated the power of modeling a variable source on horizon
scales. Using a hotspot model for Sgr A∗ flares, we demonstrated that a single observation
of Sgr A∗ during a flare could result in high-precision spin measurements. Furthermore, we
showed how a tomographic map of spacetime near the event horizon could be constructed
by observing multiple flares. Constructing such maps will be possible soon. During the
2017 EHT observation, Sgr A∗ was observed during an X-ray flare. Given that Sgr A∗

flares once per day, we expect to have observed multiple flares within a decade.

In the future, we will extend the hotspot model from Chapter 6 to infrared and X-ray
flare observations (Genzel et al., 2003; Neilsen et al., 2013). While infrared and X-ray
flares are known to be correlated (Ponti et al., 2017), after more than a decade of research,
the relation between flares at different wavelengths is still poorly understood (Fazio et al.,
2018). Thus, extending the hotspot model in Chapter 6 across multiple frequencies could
help elucidate the different emission properties. Furthermore, reconstructing these events
at different wavelengths would effectively form a tomographic map of phase space around
black holes, probing the nature of black holes and AGN on horizon scales.
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Appendix A

Complex Gain Marginalization

In the ideal case the complex visibilities Vij are related to the on-sky image through the two
dimensional Fourier transform. Unfortunately, due to atmospheric and telescope effects
these complex visibilities are modified by complex numbers gi for each station, called
complex gains. The measured quantities are then given by

Ṽij = gig
∗
jVij = γiγj exp [i(θi − θj)] , (A.1)

where γi,j and φi,j are known as the gain amplitude and phases respectively. While pre-
possessing of the EHT data can reduce the impact of the gains, they still can affect the
measured visibility amplitudes by 10%, and can extend up to 100% for certain stations such
as LMT. Furthermore, the gain phases are basically scrambled by atmosphere. Therefore,
these gains form an unknown or latent parameter that should be forward modeled in any
Bayesian analysis. Unfortunately, the gains are time dependent and can change drastically
from scan to scan due to, e.g., pointing issues. Therefore, directly modeling the gains can
introduce hundreds of additional parameters into the forward model, drastically increasing
the computational timescale.

However, Bayesian inference provides a way to deal with these parameters that can
effectively reduce the total number of parameters we need to model through marginaliza-
tion. To see this first note that the joint distribution for a static model θ with gains g can
be written as

p(V , g, θ) = p(θ)
∏
s

p(Vs|gs, θ)p(gs), (A.2)

where s denotes the scan over which the gains are assumed to be constant1, and Vs and gs

1For the 2017 EHT data this was typically set to be approximately 12 minutes.
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are the complex visibilities measured and station gains during said scan.

p(θ, g|V ) =
1

p(V )
p(θ)

∏
s

p(Vs|θ, gs)p(gs). (A.3)

The gains then essentially function as nuisance parameters needed to fully model the
observations, but are of little physical interest. Therefore, we will attempt to marginalize
over the gains, i.e. our posterior will be

p(θ|V ) =
1

p(V )
p(θ)

∏
s

∫
p(Vs|θ, gs)p(gs)dgs. (A.4)

Unfortunately, this integral isn’t analytically tractable. While there exist a number of
Monte Carlo methods to evaluate integrals of this form (e.g. Sequential Monte Carlo
(Del Moral et al., 2006)), we will instead use the Laplace approximation. The Laplace
approximation is a simple version of the saddle-point approximation used in physics to
evaluate integrals of the form

∫
exp(f(x))dx. The first step is to maximize the func-

tion in the integrand of Equation A.4. Namely we seek the complex gains ĝs such that
p(Vs|θ, gs)p(gs) is maximized. Given this point we will then Taylor expand the logarithm
of the integrand around ĝs, and truncate at second order:∫

p(Vs|θ, gs)p(gs) ≈ p(Vs|θ, ĝs)p(ĝs)
∫

exp

[
1

2
(gs − ĝs)>Cs(gs − ĝs)

]
, (A.5)

where Cs = ∂ logL
∂gt∂gt

∣∣
ĝ
. Note that due to ĝ being a maximum Cs is a negative definite matrix.

(A.4) is now a simple Gaussian integral giving:

p(θ|V ) =
p(θ)

p(V )

∏
s

√
− detCs(2π)NsL(Vs|θ, ĝs)p(ĝs), (A.6)

where Ns is the number of stations during scan s. This defines the marginal posterior
distribution used in all Themis analyses when fitting complex gains. Typically we choose
p(g) = p(γ)p(φ), i.e. we fit the gain amplitudes and phases. For the gain amplitudes the
prior is typically chosen to be log-normal with mean 0, i.e. γ = 1, and standard deviation
of 0.1. The phase prior is either uniform or normal with a large standard deviation to
reflect the potential scrambling effects of the atmosphere. With this choice of priors the
gain optimization of the integrand in Equation A.4 becomes a least-squares optimization
problem with a block diagonal structure. For the details of the optimization algorithm see
Broderick et al. (2020).
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Appendix B

Bayesian Information Criterion

In Bayesian analysis the model itself needs to be evaluated and considered during inference.
One way to assess models is to use the evidence or marginal likelihood to “score” the relative
performance of two competing models. However, computing the evidence for each model
is quite expensive in practise. Instead approximations are often employed. One common
approximation is the Bayesian Information Criterion (BIC) given by

BIC = −2 log p(V |θ̂)p(θ̂) +Nθ logNv, (B.1)

where θ̂ is the best fit model, i.e. the maximum likelihood estimate, Nθ is the number of
parameters, and NV is the number of data points.

To derive the BIC we start with the Bayesian evidence:

p(V ) =

∫
p(V |θ)p(θ)dθ (B.2)

This integral is typically intractable. While the tempering methods mentioned in Chap-
ter 4 can compute it with thermodynamic integration, we can also approximate the integral
using a Laplace approximation as in Appendix B. This means that we approximation the
logarithm of the integrand as:

log p(V |θ)p(θ) ≈ log p(V |θ̂)p(θ̂)− 1

2
(θ − θ̂)THθ̂(θ − θ̂), (B.3)

where θ̂ is the maximum of log p(V |θ)p(θ) and Hθ̂ is the Hessian matrix around the peak,
given by

Hθ̂ = −∂θ∂θ log p(V |θ)p(θ). (B.4)
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Plugging this expansion into the evidence integral we get the log evidence is

log p(V ) = log p(V |θ̂)p(θ̂) +
Nθ

2
log 2π − 1

2
log detHθ̂. (B.5)

To derive the BIC we need to make a number of assumptions:

1. The priors are rather flat near the maximum so we can ignore their contribution in
the Hessian.

2. The number of data points is ”large” and the V = (V1, . . . , VNv) are independently
and identically distributed.

These assumptions allow us to greatly simplify the Hessian Equation B.4

Hθ̂ ≈ −∂θ∂θ′ log p(V |θ) (using assumption 1.)

= −∂θ∂θ′
N∑
i=1

log p(Vi|θ)

=
1

Nv

∑
j

−NV ∂θ∂θ′ log p(yj|θ)

≈ E[NV log p(Vj|θ)] (using assumption 2.)

= NvIθθ′ ,

where Iθθ′ , is known as the Fischer information matrix. The determinant of the Hessian is
then given by:

detHθ̂ ≈ NNθ
v det Iθθ′ . (B.6)

With this approximation we the log-evidence is given by,

log p(V ) ≈ log p(V |θ̂)p(θ̂) +
Nθ

2
log 2π − 1

2
Nθ logNv −

1

2
log det Iθθ′ . (B.7)

In the large NV limit we then get:

log p(V ) ≈ log p(V |θ̂)p(θ̂)− 1

2
Nθ logNv. (B.8)

The BIC is then defined as −2p(V ) and we get

BIC = −2 log p(V|θ̂)p(θ̂) + Nθ log Nv. (B.9)

Note that in the presence of gains Nθ logNV expression becomes more complicated since
they are not “global parameters”. However, we only care about the difference in the BIC
between two models, and since the number of gains is constant, this contribution will drop
out.

138


	List of Figures
	List of Tables
	Introduction
	Gravitational Physics
	Active Galactic Nuclei
	The Event Horizon Telescope
	Themis: An EHT Bayesian Parameter Estimation Framework
	Bayesian Inference
	Markov Chain Monte Carlo
	Themis

	Summary

	Variational Image Domain Analysis for the Event Horizon Telescope
	Introduction
	Variational Image Domain Analysis
	Image Templates in VIDA.jl
	Probability Divergences
	Optimizing the Divergence
	REx and relating to VIDA parameters

	Validating VIDA
	Step 1: Selecting Ground Truth Images
	Step 2: Creating Simulated EHT Observations
	Step 3: Generating an Ensemble of Reconstructed Images from Simulated VLBI Data
	Step 4: Applying VIDA to the Ring-Like Image Reconstruction Ensembles

	Applying VIDA to Additional Simulated Image Reconstructions
	Double Gaussian
	Disk Image

	Summary and Conclusions

	Constraining the ellipticity of M 87 from EHT Image Reconstructions
	Introduction
	Background
	Image Reconstructions and the M 87 top set
	Feature Extraction Techniques
	Review of M 87 Ellipticity Measurement

	Geometric Test
	Asymmetric Image Test
	Geometric Results

	Calibrating the M 87 Ellipticity Measurement
	Scaled set
	Stretched set
	Removing failed top set reconstructions
	Scaled set results
	Stretched set results

	Summary and Conclusions

	Next Generation Samplers for Themis
	Introduction
	Abstract Sampler Framework
	Local Samplers
	Hamiltonian Monte Carlo
	Automated Factor Slice Sampler

	Global Samplers: Parallel Tempering
	Review of Parallel Tempering
	Optimizing Parallel Tempering
	Implementation in Themis
	Comparison to Themis' Previous PT Sampler

	Assessing MCMC Convergence
	Bayesian Imaging Validation
	Future Improvements
	Conclusion

	A Bayesian Image Estimate of M 87 ellipticity
	Introduction
	Bayesian Imaging and Feature Extraction
	Image Domain Model
	Image Feature Extraction

	Data
	Geometric Tests
	Pixel Optimization
	Orientation Dependence of Bayesian Imaging

	M 87 Imaging
	Interpreting the M 87 ellipticity

	Conclusion

	Space Time Tomography with the Event Horizon Telescope
	Introduction
	Hot spot model
	Density profile evolution
	Radiative transfer and Ray-tracing

	Shearing hot spots with the EHT
	Creating Synthetic EHT Data
	Extracting spacetime and spot parameters with Themis
	Adding Systematics – Scattering and Background flows
	The impact of disk inclination

	Spacetime tomography
	Constructing a synthetic tomographical map of spacetime
	Results

	Conclusions

	Conclusion
	References
	Appendices
	Complex Gain Marginalization
	Bayesian Information Criterion

