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Abstract

In a massive MIMO system, base stations (BS) utilize a large number of antennas to

simultaneously serve several (single or multi-antenna) users at once, where the number

of BS antennas is normally assumed to be significantly larger than the number of users.

In massive MIMO systems operating in time division duplex (TDD) mode, the channel

state information (CSI) is estimated via uplink pilot sequences that are orthogonal in a

cell but re-used in other cells. Re-using the pilots, however, contaminates the CSI estimate

at BSs by the channel of the users sharing the same pilot in other cells; thus causing pilot

contamination which creates coherent interference that, as the number of BS antennas

grows, scales at the same rate as the desired signal. Hence, in the asymptotic limits of

large antennas, the effects of non-coherent interference terms and noise disappear, except

for the pilot contamination interference. A common technique used in the literature to deal

with this interference is to treat it as noise (TIN). When using TIN, users’ throughput will

converge to a constant and thus the benefits of using an ever greater number of BS antennas

saturate. However, it is known that the use of TIN in interference networks is only preferred

in the weak interference regime, and it is sub-optimal in other regimes (e.g., moderate or

strong interference). In this thesis, we show that as the number of BS antennas increases,

the pilot contamination interference is no longer weak, and therefore it is beneficial to treat

it differently (e.g., decode it jointly with the desired signal) to improve users’ throughput.

In the first part of the thesis, we study the performance of interference decoding

schemes based on simultaneous unique decoding (SD) and simultaneous non-unique de-

coding (SND), and show that by doing so the rate saturation effect is eliminated as the

number of antennas increases; hence, the per-user rates grow unbounded. We analytically

study the performance of two well-known linear combining/precoding methods, namely,

MRC/MRT and ZF, for spatially correlated/uncorrelated Rayleigh fading channel mod-

els, and obtain closed-form expressions of rate lower bounds for these using a worst-case

uncorrelated noise technique for multi-user channels. We compare the performance of the

different interference management schemes, TIN/SD/SND, based on the maximum sym-

metric rate they can offer to the users. Specifically, we first obtain structural results for a

symmetric two-cell setting as well as the high SINR regime, that provide insights into the
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benefits of using interference decoding schemes in different regimes of number of BS an-

tennas. We numerically illustrate the performance of the different schemes and show that

with a practical number of antennas, SND strictly outperforms TIN. This gain improves

with increasing the number of antennas, and also ZF performs significantly better than

MRC/MRT due to better mitigation of multi-user interference. Furthermore, we study

the performance of regularized ZF (RZF) via Monte Carlo simulations, and observe that

it achieves better rates than ZF for moderately small number of antennas only. Lastly, we

numerically investigate the impact of increasing the number of cells, the cell radius, the

number of users, the correlation of the channel across antennas and the degree of shadow

fading on system performance.

In the second part of the thesis, we study the performance of partial interference de-

coding based on rate splitting (RS) and non-unique decoding. Specifically, we propose to

partition each user’s message into two independent layers, and partially decode the pilot

contamination interference while treating the remaining part as noise based on a power

splitting strategy. In particular, for a two-cell system, we investigate the benefits of an

RS scheme based on the celebrated Han-Kobayashi (HK) region, which provides the best

known achievable performance for a two-user interference channel (IC). In the case of more

than two cells, we propose a generalized RS scheme that non-uniquely decodes each layer

of the pilot contamination interference and uses only one power splitting coefficient per

IC. In addition, we establish an achievable region for this generalized RS scheme using the

non-unique decoding technique. In both cases of two cells and more than two cells and

for a practical number of antennas, we numerically study the performance of the proposed

RS schemes by numerically optimizing the power splitting coefficients, and show that they

achieve significantly higher rates than TIN/SD/SND in all scenarios. Similar to the first

part of the thesis, we also numerically examine the impact of increasing the number of cells,

the cell radius, the number of users, the correlation of the channel across antennas and

the degree of shadow fading on the performance of the RS schemes. Lastly, our simulation

results reveal that by replacing the numerically optimized values of the power splitting

coefficients with their pre-computed average values (over a large number of realizations),

the performance loss is quite negligible, thus reducing the optimization complexity.
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Chapter 1

Introduction

1.1 5G Cellular Systems

With the ever increasing demand for significantly higher data rates in cellular communica-

tion systems as well as the development of new services such as Device-to-Device (D2D),

Internet of Things (IoT), High Speed Train (HST) communications, e-banking, e-health

and e-learning, the need for new technologies that have a great potential to provide higher

cellular system capacity is inevitable. In particular, it is predicted that by 2023 approxi-

mately two-thirds of the world population will have access to the Internet, i.e., about 5.3

billion Internet users [3]. In 2018, this number was about 3.9 billion (i.e., 51 percent of the

world population) [3]. According to [3], it is also anticipated that there will be a total of

29.3 billion connected devices by 2023 (more than three times the world population). The

explosive increase of mobile data traffic is real, driven primarily due to the increased use

of smart phones, tablets, video streaming services as well as machine-to-machine (M2M)

connections. Hence, the need for a new generation of highly scalable cellular networks is

inescapable. In particular, this new generation should:

• have a highly scalable and flexible architecture to support various services and ap-

plications, such as massive device connectivity in IoT and M2M communications;
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• provide larger capacity and improved coverage, while reducing the complexity and

cost of ultra dense network deployment;

• be able to make efficient use of different spectrum resources, including both licensed

and unlicensed bands as well as high frequency and low frequency bands;

• improve network energy efficiency to adapt to the performance requirements of dif-

ferent applications and services;

• reduce the complexity incurred due to the co-existence of multi radio access tech-

nologies (multi-RATs), and improve quality of users’ experience.

To meet the above requirements and to cope with the challenges of ever increasing

mobile data traffic as well as demands for much higher data throughput, the fifth generation

of cellular networks, also known as 5G new radio or 5G NR, is now becoming a reality. In

2018, the first full set of 5G NR standards were announced by 3rd Generation Partnership

Project (3GPP) in release 15 (5G NR phase 1) [4], followed by release 16 in 2020 which drove

5G NR phase 2 expansion [5]. Currently, 5G NR networks are being deployed globally,

and many 5G-ready smart devices (e.g., cell phones and tablets) are starting to come to

market. Unsurprisingly, it is also predicted that approximately 1.4 billion worldwide smart

devices will be 5G-ready by 2023, with a speed that will be 13 times faster (i.e., 575 Mbps)

than the current average mobile connection speed [3].

The International Telecommunication Union (ITU) has defined the following three re-

quirements for 5G NR, each to be fulfilled for one of the three 5G usage scenarios [6]

• peak data rate of 10-20 Gbps (required for the enhanced mobile broadband, eMBB

[7]);

• 1 million connected devices per square kilometer (required for massive machine type

communication, mMTC [8]);

• less than 1 ms latency (required for ultra reliable low latency communications,

URLLC [9]).
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URLLC renders time-sensitive communications possible for applications such as au-

tonomous driving [10] or remote medical surgeries [11], whereas mMTC defines connectiv-

ity between a massive number of IoT devices [12]. eMBB is undoubtedly the usage scenario

that wireless communication companies have been mainly waiting for since the start of 5G

development.

User throughput is defined as the amount of information bits that can be successfully

transmitted to a destination per unit time, i.e.,

Throughput [bit/sec] = Bandwidth [Hz] × Spectral efficiency [bit/sec/Hz]. (1.1)

Therefore, throughput can be improved by either increasing the bandwidth, the spec-

tral efficiency or both. While increasing bandwidth seems the easiest way of increasing

throughput, it is costly as the frequency spectrum is a limited resource shared by many

wireless technologies and applications, especially in sub-6 GHz bands. Nevertheless, mak-

ing good use of the vast spectrum available in mmWave bands (30-300 GHz) is considered

an interesting option for 5G NR. However, one should bear in mind that due to the large

attenuation as well as the high blockage sensitivity in higher frequencies, transmission

in mmWave bands can typically only be carried out for short range communications or

line of sight (LoS). Increasing spectral efficiency, which is the focus of this thesis, may

be achieved via multiple transmit/receive antennas at both the base station (BS) and the

mobile terminal.

The following key technology components are currently being considered attractive

solutions to achieve improved user throughput in 5G cellular networks:

• Multi-node/Multi-antenna transmission: development of advanced inter-node

coordination, relaying and multi-hop techniques as well as the study of innovative

transmission/reception schemes enabled by massive multi-antenna BSs [13].

• Heterogeneous multi-RAT and multi-layer networks: development of novel

and proactive demand, interference and mobility management techniques that are

adapted to the co-existence of multi-RATs, cells of different sizes and heterogeneous

deployments [14].
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• Spectrum usage: development of advanced spectrum sharing techniques as well

as investigation of new spectrum resources, e.g., making efficient use of mmWave

bands [15].

With respect to the multi-node multi-antenna transmission, massive multi-input multi-

output (MIMO) technology is currently under active research investigations with the

promise of significantly improving data rates, spectral efficiency, energy efficiency and

coverage [13].

1.2 Brief Review of multi-user MIMO Technology

In multi-user MIMO (MU-MIMO), the BS can simultaneously transmit to several sin-

gle/multi antenna terminals spatially sharing the same channel, and thus large improve-

ments in terms of spectral efficiency can be achieved [16]. More specifically, BS antennas

will be used to direct a signal towards each of the desired terminals in the downlink, and

to separate signals received in the uplink. However, prior knowledge of the channel state

is essential in MU-MIMO, as effective signal processing techniques that are adapted to

the instantaneous channel state information (CSI) are required to eliminate the interfer-

ence. Over the past decades, an enormous number of papers have been published in the

area of MU-MIMO, among which are the pioneering works of [17–20] on array processing,

and [21–25] on characterizing achievable multi-user capacity assuming known CSI.

The main advantages brought by MU-MIMO systems are:

• improved coverage resulting from increased received signal power via beamforming;

• improved link reliability resulting from diversity schemes that reduce the effects of

fading;

• larger throughput resulting from spatial multiplexing of several data streams over

the same time-frequency resource;

• reduced delay dispersion resulting from channel shortening effects via beamforming.
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In theory, when a transmitter/receiver is equipped with more and more antennas, MU-

MIMO technology has a greater potential to enlarge the scale on which the spatial domain

is utilized. As a result, with more antennas one can expect to achieve better performance

in terms of the MIMO advantages mentioned above.

1.3 Massive MIMO

In a massive MIMO communications system, each BS utilizes a large number of antennas,

which allows for the simultaneous serving of several (single or multi-antenna) users over

the same time-frequency resource, where the number of BS antennas is normally assumed

to be significantly larger than the number of users.

The introduction of massive MIMO technology dates back to the seminal work of

Marzetta in [26]. Therein, it was shown that when the number of BS antennas grows

without limit, due to the channel hardening and favorable propagation, the effects of small-

scale fading, additive noise and non-coherent interference asymptotically disappear. The

only remaining impediment is the inter-cell interference that results from users in other

cells utilizing the same pilot sequences for channel estimation. This effect will be discussed

in detail in the next chapter of the thesis. Even though the striking results reported by

Marzetta rely heavily on his choice of propagation and system model, Marzetta opened

the gate to an important path in which future cellular networks may significantly evolve.

The key advantages brought by massive MIMO systems are:

• Multiplexing gain: It is theoretically possible to increase the capacity by 10x using

aggressive spatial multiplexing [27].

• Spectral efficiency: Using a massive number of BS antennas to simultaneously

multiplex several data streams to many users was shown to significantly improve

spectral efficiency [28, 29].

• Energy efficiency: Analytically, it was shown that the uplink transmit power of
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each user can be scaled inversely proportional to the number of BS antennas, without

any performance loss [28, 30].

• Improved link reliability: By increasing the number of BS antennas, diversity

gains increase and the effects of additive noise and intra-cell interference all vanish;

hence improving link reliability and data rate [26, 31].

• Simple linear processing: It has been shown that linear matched filtering is op-

timal when the number of BS antennas is much larger than the number of user

antennas [26, 32].

• Low cost RF power components: Reduced energy consumption due to the large

number of antennas makes the use of low cost milli-Watt RF amplifiers practical [31].

Since the introduction of the massive MIMO concept in 2010, many theoretical and

experimental studies have been carried out to understand its benefits as well as limitations

and challenges [32–42]. Additionally, in response to the concerns regarding the theoretical

channel models used in massive MIMO literature, it was reported in [43] that based on

channel measurements for a large number of BS antennas, achieved array and multiplexing

gains are relatively close to the ones provided by theory.

Furthermore, implementation and demonstration of several real-time massive MIMO

testbeds have been reported in [44–48], and today massive MIMO is considered a key

integral part of 5G. One of the very first massive MIMO products was the AIR 6468, built

by Ericsson in 2017, which uses 64 antennas in both uplink and downlink operating in sub-6

GHz band [47]. It should also be pointed out that Ericsson developed this product for 4G

LTE-A, and it is thus considered a pre-5G product. In 2018, the first line of massive MIMO

products for 5G NR was approved by the federal communications commission (FCC),

among which was the Ericsson AIR 6468. Since then, many other massive MIMO products,

including the Huawei AAU and Nokia Airscale, have been developed for massive MIMO

BSs equipped with 128 antennas. This evolution has made massive MIMO technology,

operating with a large but finite number of antennas in the conventional sub-6 GHz band,

a reality. Moreover, many communication carriers (e.g., the massive MIMO deployment
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by the US-based carrier Sprint [13]) has been using the term “massive MIMO” in their

marketing and advertisements. In addition, during the Mobile World Congress (MWC) in

2019, Huawei announced that 95 percent of their current commercial products will support

either 32 or 64 antennas [49]. More recently, a new research direction has been introduced in

the massive MIMO literature, known as extremely large aperture arrays (ELAA), allowing

new designs of massive antenna arrays that can support thousands of antennas [13].

On the other hand, at higher carrier frequencies such as mmWave bands, massive

MIMO can be leveraged to reduce the effects of high propagation loss [50]. In recent

years, there has been a significant progress in the development of massive MIMO arrays

for communications in mmWave bands (i.e., beyond 30 GHz) [15, 51–54].

1.4 Some of the Challenges associated with Massive

MIMO

Although, massive MIMO communication systems offer many advantages and performance

gains, there still exist several challenges that must be taken into account. Below we discuss

some of these challenges in more details.

1.4.1 Frequency Division Duplexing (FDD)

To fully benefit from the capacity gains brought by massive MIMO systems, the BS requires

instantaneous CSI. It is, however, known that as the number of BS antennas increases the

overhead incurred from obtaining CSI using feedback in FDD mode also increases. On the

other hand, by exploiting the channel reciprocity assumption in TDD mode, the overhead

becomes independent of the number of BS antennas [31]. As a result, most research in

the context of massive MIMO are focused on TDD systems that induce much less CSI

overhead compared to FDD systems.

Due to its efficient utilization of radio resources, the use of TDD mode has been sug-

gested as the “canonical form” of massive MIMO [13]. Nevertheless, the use of FDD mode
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is also widely studied in the literature [55–58]. Thus, the possibility of using FDD mode

in massive MIMO systems is still under investigation [59–63].

1.4.2 Pilot Contamination

It is evident that the spectral efficiency gains and achievable throughput in MIMO systems

rely heavily on the type of linear precoding and combining techniques used at the BS on the

downlink and uplink, respectively. As mentioned earlier, however, the performance of linear

processing at the BS is itself directly affected by the accuracy of CSI estimation. Therefore,

the performance gains offered by massive MIMO systems depend on how accurately CSI

is obtained at the BS using the transmission of uplink pilots in TDD mode. In addition, it

should be noted that the number of pilot sequences that can be used within each coherence

interval is limited, as the length of the coherence interval is finite due to the movement of

mobile users. Hence, a finite number of orthogonal pilot sequences may be re-used across

the cells, e.g., the kth pilot sequence is assigned to the kth user of all cells [38, 64, 65].

Consequently, the channel estimation of an arbitrary user at the BS will be contaminated

by the channel of users in other cells using the same pilot sequence. This phenomenon,

known as pilot contamination in TDD mode, will inevitably cause inter-cell interference

that does not vanish even when the number of BS antennas grows unboundedly, and thus

saturates the system throughput [28]. As a result, pilot contamination is deemed a major

challenge that limits the performance of multi-cell massive MIMO systems.

1.5 Motivation and Overview of Contributions

Pilot contamination is a source of interference that precludes the unbounded growth of

users’ rate with the number of BS antennas. Although, many novel techniques based on

treating interference as noise (TIN) have been proposed in the literature to eliminate or

alleviate the effects of pilot contamination interference [38–40, 65–70], it is still an active

area of research under investigation. In addition, TIN is known to be a sub-optimal de-

coding strategy in some scenarios [71]. Therefore, a natural question to ask is whether
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one can propose alternative solutions that treat pilot contamination interference differ-

ently, and can achieve, in principle, unbounded throughput when the number of antennas

is sufficiently large?

In this thesis, we aim to answer the above question by replacing TIN with more ad-

vanced interference-aware schemes based on full/partial interference decoding, and it is

observed that by doing so the rate saturation effects are eliminated. We summarize the

major contributions of this thesis as follows:

• In Chapter 3, we study the performance of full interference decoding techniques.

Specifically, we first intuitively show that using the capacity region obtained by

simultaneous unique decoding (SD) of the desired signal and pilot contamination

interference (as opposed to TIN), when linear combining/precoding techniques are

applied in uplink/downlink, noise-free channels are obtained as M → ∞, and thus

the per-user rates tend to infinity. We also establish a worst-case uncorrelated noise

technique for multiple access channels (MAC) that yields new expressions of achiev-

able rate lower bounds. Using this worst-case uncorrelated noise technique as well

as the derivations of the minimum mean squared error (MMSE) channel estimate

for a spatially correlated channel model, we derive new achievable lower bounds for

the uplink and downlink of a multi-cell massive MIMO system that applies joint

decoding to each set of pilot sharing users across all cells. These lower bounds are

valid in general, do not depend on specific linear combining/precoding techniques,

and help to evaluate the performance of combining/precoding techniques such as

regularized zero forcing (RZF) via Monte Carlo simulation. We then specialize these

lower bounds to the cases of maximum ratio combining/transmission (MRC/MRT),

and obtain closed-form expressions for both uplink and downlink. Furthermore, for

the cases of MRC/MRT as well as zero forcing (ZF), we simplify these lower bounds

assuming that a spatially uncorrelated channel model is used.

• In Chapter 3, it is also shown that when decoding interference due to pilot con-

tamination, reusing the same orthogonal pilots across all cells (as opposed to using

different rotated versions of pilots) is preferable as it requires decoding significantly
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fewer interference terms. In addition, the benefits of using simultaneous non-unique

decoding (SND) [72] is investigated in Section 3.2.6, which strictly contains regions

SD and TIN and thus outperforms these schemes. Moreover, a simplified subset of

SND (S-SND) is studied in Chapter 3, which is shown to be strictly larger than SD

and also provides a lower bound to SND.

• To evaluate the performance of the different schemes TIN/SD/SND, the problem of

maximum symmetric rate allocation (i.e., maximizing the minimum achievable rate)

is investigated in Chapter 3. The full interference decoding schemes of this chapter

only require a mechanism to find a rate vector (e.g., the maximum symmetric rate

vector) inside the achievable region. This can be done, for example, using rate

adaptation with feedback [73]. Another approach would be to make the average

effective channel gains for each set of pilot-sharing users available at the BSs. These

gains vary slowly (i.e., stay constant over many channel coherence intervals), and

can thus be estimated and tracked efficiently. In Chapter 3, it is shown that for the

special case of an uncorrelated Rayleigh fading channel, these gains are a function of

large-scale fading coefficients only, for which it has been argued previously that these

can be estimated and tracked efficiently [38, 64, 74].

• In Chapter 3, structural results are also presented for the high SINR regime. In

particular, it is found that when the number of BS antennas M is truly large, the

full interference decoding schemes SD/SND achieve the same performance and also

strictly outperform TIN. For the special case of a two-cell system and assuming a

symmetric geometry, it is shown that for relatively small values of M , pilot con-

tamination interference is “weak” in that SND and TIN achieve the same rate and

both of these strictly outperform SD. Hence, one may choose TIN which is simpler

to implement. Nevertheless, for large values of M , pilot contamination interference

becomes “strong” so that the full interference decoding schemes SD/SND provide

the same performance and both of these strictly outperform TIN. Analytical con-

ditions in terms of mutual information expressions under which these results hold

are also found. We also numerically study the performance of networks with three,

four and seven cells, and show that with a practical number of antennas M , SND
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outperforms all other schemes, and further show that RZF and ZF achieve higher

rates than MRC/MRT, while RZF also outperforms ZF for small values of M (e.g.,

M < 64) only.

• Moreover, in Chapter 3, we numerically study the impact of increasing the number

of users, the number of cells, cell radius, correlation magnitude as well as shadow

fading on the performance of the proposed schemes. In particular, it is found that

while increasing the number of users, cell radius and shadow fading degrade the per-

formance of all schemes, they lead to improving the gain provided by SND over other

schemes. Also, increasing the correlation magnitude gives rise to improving the per-

formance of both TIN and SND, and thus results in reducing the gain provided by

SND. Therefore, the maximum gain is obtained in scenarios with a spatially uncor-

related channel model. Nevertheless, for the case of moderate spatial correlation, it

is observed that SND still provides a significant gain over the other schemes. Lastly,

it is found that increasing the number of cells improves the gain offered by SND over

the other schemes; hence showing the importance of the proposed scheme in practical

implementations.

• In Chapter 4, we study the performance of partial interference decoding schemes for

the cases of two cells and more than two cells. In particular, we observe that decoding

part of the pilot contamination interference while treating the remaining part as noise

(according to a power splitting strategy that is optimized), yields performance that

is considerably better than the schemes of Chapter 3. Specifically, for the case of a

two-cell system, we study the performance of a rate splitting (RS) technique based

on the celebrated Han-Kobayashi (HK) [75] scheme by numerically optimizing the

power splitting coefficients, and show that this scheme strictly outperforms SND for a

practical range ofM , while providing a significant gain that improves with increasing

the number of antennas M .

• An extension of the RS scheme to the case of more than two cells (i.e., three, four

and seven cells) is also proposed in Chapter 4, where the corresponding achievable

rate region based on non-unique decoding is derived. Since the rates of individual
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layers for each set of pilot-sharing users needs to be adjusted globally across the entire

network, the partial interference decoding schemes of this chapter are implemented

in a centralized manner. Specifically, in Chapter 4, it is shown that by centrally op-

timizing the rates of all individual layers (e.g., with the help of a centralized network

controller, where the mean of the effective channel gains for each set of pilot-sharing

users are available), for a practical number of BS antennas one can achieve higher

rates compared to full interference decoding schemes.

• In Chapter 4, for the case of three cells the true performance of the RS scheme is

studied, while for the cases of four and seven cells an achievable sub-region of the

proposed RS scheme is investigated. By numerically optimizing the power splitting

coefficients, it is shown than in all scenarios the proposed RS scheme provides a sig-

nificant gain over the schemes of Chapter 3, and this gain improves by increasing the

number of antennas M . It is also observed that the impacts of increasing the number

of users, the number of cells, cell radius, correlation magnitude as well as shadow

fading on the performance of the proposed RS scheme are similar to those observed

in Chapter 3. Lastly, the results of Chapter 4 reveal that by replacing the optimized

values of the power splitting coefficients, found via exhaustive search, with their pre-

computed average values (over a large number of realizations), the performance loss

is quite negligible. This means that in a practical implementation of a multi-cell mas-

sive MIMO system performing the proposed RS scheme, the optimization complexity

can be reduced.

1.6 Organization of the thesis

The rest of this thesis is organized as follows.

• In Chapter 2, we present an extensive survey of various pilot contamination miti-

gation/reduction techniques proposed in the literature. We further classify different

mitigation techniques based on the rational behind them and provide a comprehen-

sive discussion of their advantages and limitations. Next, in order to provide some
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background in connection to our work, we present the multi-cell massive MU-MIMO

system model with imperfect CSI, and discuss some well-known existing results on

uplink/downlink achievable throughput under pilot contamination effect. We further

provide the derivations of TDD-based CSI estimation for both cases of a spatially

correlated channel and an uncorrelated channel.

• In Chapter 3, the performance of interference decoding schemes based on unique/non-

unique decoding of pilot contamination users is studied. Closed-form lower bounds for

both uplink/downlink of a multi-cell massive MIMO system are also established, and

the maximum symmetric rates of different schemes are evaluated via comprehensive

simulation results.

• In Chapter 4, the performance of partial interference decoding schemes based on

RS is investigated, where extensive simulation results are also provided for various

scenarios.

• In Chapter 5, conclusions derived from the thesis are provided and several potential

directions for future studies are also outlined.

1.7 Notation

We use the following notations in the thesis.

We use boldface upper and lower case symbols to represent matrices and vectors, re-

spectively. The N × N identity matrix and the all-zero vector are denoted by IIIN and 000,

respectively.

The superscripts (.)T , (.)†, and (.)−1 denote the transpose, Hermitian transpose, and

inverse operations. A diagonal matrix with vector aaa along its main diagonal is represented

by diag(aaa), and tr(AAA) denotes the trace of a square matrix AAA.

The expressions E [.] and var [.] are used to denote the mean and variance of a random

variable, respectively, and CN (mmm, RRR) denotes the circular symmetric complex Gaussian

distribution with mean vector mmm and covariance matrix RRR.
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We use h(X) to denote the differential entropy of a random variable X . Given the

probability density function f(x), it is defined by

h(X) := −
∫

f(x) log f(x) dx.

The notation h(X | Y ) represents the conditional differential entropy of X given Y .

Assuming that the joint and conditional probability density functions are given by f(x, y)

and f(x | y), respectively, it is defined by

h(X | Y ) := −
∫ ∫

f(x, y) log f(x | y) dxdy.

The notation I(X ; Y ) denotes the mutual information between X and Y defined by

I(X ; Y ) := h(X)− h(X | Y ) = h(Y )− h(Y | X).
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Chapter 2

Literature Survey and Background

2.1 Channel Estimation and Pilot Contamination

The focus of this thesis is on massive MIMO systems operating in TDD mode. In this

chapter, we review various proposed techniques to mitigate or reduce the effects of pilot

contamination in multi-cell massive MIMO systems, followed by some background and

well-known results in the massive MIMO literature.

The availability of accurate channel state information (CSI) is deemed critical in wire-

less communication networks, and is considered a key component of massive MIMO com-

munication systems [76]. In particular, the performance of MIMO systems relies heavily

on the knowledge of CSI, which has been widely investigated in the literature [77–79]. In

order to acquire CSI, several techniques have been proposed, among which the use of train-

ing pilots [80], semi-blind techniques [81] or blind techniques [82] are the most common

approaches.

When uplink and downlink transmissions are separated in frequency, as in the FDD

protocol, the uplink and downlink channels will be different. Hence, to estimate the down-

link channels the BS needs to send downlink pilots to the users. After the estimation of the

downlink channels, users send the channel estimates back to the BSs through a feedback

link creating a backhaul overhead that grows with M , and that is significant when M is
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large. On the other hand, with a TDD protocol, the uplink and downlink channels are the

same due to channel reciprocity. This suggests the attractive solution of using one pilot

sequence per user to estimate the uplink channel between the user and all antennas of the

BS. As the uplink channels are the same as the downlink ones, the estimate of uplink chan-

nels can be used at the BSs to compute the precoding vectors during the downlink data

transmission phase. Therefore, the significant overhead in FDD incurred due to feeding

back the channel estimates from the users to the BSs is no longer an issue.

Elimination of inter-cell interference in multi-cell communication systems, under the

assumption that full CSI is available at the BS, has been widely studied in the literature.

For instance, the works of [83–85] have proposed coordinated beamforming to mitigate

inter-cell interference in multi-cell multi-antenna systems assuming that the BS has full

CSI. In practical implementations, however, CSI must be estimated. Particularly, in TDD

based massive MIMO systems the channel estimate of an arbitrary user will be contami-

nated by the channel of users in other cells that are using the same pilot sequence. This

phenomenon creates coherent inter-cell interference whose power grows at the same rate

as that of the desired signal [86]. This results in the saturation of the achievable rates of

users [87], which also adversely impacts spectral efficiency. This effect will be discussed in

subsection 2.3.7 in more detail.

With respect to imperfect CSI, several approaches in the literature have been proposed

to mitigate or reduce the effects of inter-cell interference caused by pilot contamination.

Although sharing orthogonal pilots across different cells during the channel estimation

phase is considered the main cause of pilot contamination, especially in the context of

massive MIMO systems, pilot contamination can also be caused by hardware impairments.

In a practical implementation, for instance, hardware impairments result in in-band and

out-of-band distortions that interfere with pilots, and have been recognized as another

source of pilot contamination in regular multi-antenna cellular systems [88] as well as

massive MIMO communication systems [89, 90].

In Section 2.2 below, we present an extensive survey of proposed solutions to mitigate

or reduce the effects of pilot contamination interference in multi-antenna communication

systems, and more specifically in massive MIMO systems. Then, in Section 2.3, we present
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some background followed by well-known results in massive MIMO literature.

2.2 Proposed Methods to Tackle Pilot Contamination

Based on the approach taken for channel estimation, we classify the proposed methods of

coping with pilot contamination into two groups, i.e., pilot-based estimation approaches

and data-aided estimation approaches. In the former, channel vectors are estimated us-

ing orthogonal training pilots, while the same set (or a rotated version thereof) of pilot

sequences is shared either arbitrarily or in a smart manner among users across different

cells. In contrast, in the data-aided approach, the users’ channels are estimated with no

or only a few pilot signals. Below, we discuss these two approaches and summarize the

related works accordingly.

2.2.1 Pilot-Based Approaches

In [1], a time-shifting strategy during the pilot transmission phase is proposed that aims

to mitigate inter-cell interference caused by pilot contamination. More specifically, the

location of pilot signals is shifted in time frames within adjacent cells in such a way that

the transmission of pilots is done at non-overlapping times (see Fig. 2.1). In addition,

in [91] the performance of the time-shifting method of [1] was improved by including a

power control algorithm. Even though this approach seems very attractive, a big challenge

in practical implementations is how to adaptively synchronize the pilot transmissions over

the entire network so that there is no overlap at all. As pointed out in [92], however, with

the deployment of dynamic small cells over existing multi-layer HetNets, overlap in time

and frequency seems inevitable. In [69,93], a channel estimation approach using the covari-

ance matrix of the desired user in conjunction with the interfering users has been proposed.

Under the condition that the covariance matrices of interfering users span a different sub-

space than that of the desired user, the authors have shown that when the number of BS

antennas grows unbounded, the effects of pilot contamination asymptotically disappear.
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Figure 2.1: The time-shifted pilot scheme of [1].

In [94], a similar technique has been adopted for mitigating pilot contamination in a cogni-

tive massive MIMO communication system. Therein, the authors reported that the effects

of pilot contamination interference were greatly reduced and thus uplink/downlink achiev-

able rates significantly increased. It should be pointed out that this approach requires the

knowledge of the covariance matrix of all users’ channels and hence is likely infeasible in

practical implementations. In [95], the authors considered a semi-blind channel estimation

technique to separate the subspace of the desired user channel from that of interfering users

caused by pilot contamination. However, in order to completely eliminate pilot contamina-

tion, this method requires that the channel coherence time goes to infinity. Unfortunately,

this assumption is not true in practice either.

In [96], a sophisticated two-stage processing approach is proposed to mitigate pilot

contamination. Specifically, a downlink pilot transmission phase is followed by a scheduled

uplink pilot transmission phase. During the downlink training phase, all BSs first send the

pilot signals using only their first antenna to their users. Then, all BSs repeat this process

using all of their antennas simultaneously. At the end of this two-step downlink training,

users estimate the downlink channels by processing the received pilots. The estimation of

downlink channels is then followed by an (L + 1)-step (where L is the number of cells)

scheduled uplink training phase. In particular, during the initial step, all users send their

uplink pilots to their BSs. Then, during each of the next L steps of the uplink training

phase, the users in cell l transmit a pre-distorted version of their pilots to BS l, while users

in other cells transmit their uplink pilots to their BSs. More precisely, by transmitting the

pre-distorted pilots, users encapsulate their non-contaminated downlink channels in the
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uplink pilot signals so that each BS will be able to extract the channels of its own users

from the received uplink pilots by removing pilots of users in other cells; thus, mitigating

pilot contamination. A main disadvantage of this technique, however, is the significant

overhead occurred during the sophisticated multi-step training phases. In [87], a multi-

cell MMSE precoding technique is proposed so that the precoding matrix minimizes an

objective function involving two parts: (i): the sum of the MSE of the downlink received

signals at mobile terminals in the same cell, and (ii): the mean-square interference at

users in other cells. Although, significant performance gains have been reported in [87]

compared to conventional schemes, this approach requires full cooperation between BSs,

the knowledge of second-order statistics of users’ channels at BSs, and is not applicable to

arbitrary pilot allocation schemes.

In another interesting line of work to tackle the rate saturation phenomena due to

pilot contamination, several novel schemes have been proposed [38, 39, 64, 65, 68, 86, 95].

These solutions work well in the asymptotic regime provided that some assumptions and

requirements are satisfied. In [68], a pilot contamination precoding (PCP) method has

been proposed, assuming that the estimates of all large-scale fading coefficients as well as

the data signals of all users across the network will be shared among all BSs. While the

large-scale fading coefficients vary slowly (i.e., stay constant over many channel coherence

intervals [38,64,74]) and can thus be estimated and tracked efficiently, the main drawback

of this scheme is that the data signals of all users will need to be processed by all BSs. Also,

the efficiency of this approach relies heavily on having a very large number of antennas,

i.e., M > 106, as well as the accuracy of the computation of PCP matrices. This method

has been further improved in [38, 65, 86] by adding an outer-cell processing called large-

scale fading precoding (LSFP) and large-scale fading decoding (LSFD) creating additional

computational complexities. More specifically, using matrix inversion the LSFD/LSFP

matrices of all users across the network must be computed at a centralized processor

(known as network controller), where the data signals of all users are shared. In addition,

this method has been extended to the cases of spatially correlated channels [64], correlated

channels with phase shift [70], maximizing the product of SINRs [41] as well as cell-free

massive MIMO communication systems [40]. Different from these lines of work, the work

19



of [39] proposes a multi-cell MMSE precoding/combining technique and assumes that pilot-

sharing users must have asymptotically linearly independent covariance matrices. This

assumption, however, may not always be true and also requires the knowledge of channel

covariance matrices at the BSs.

Smart pilot assignment approaches have also been proposed in the literature. By care-

fully assigning pilots to users, the effects of pilot contamination are reduced, but not fully

eliminated [97–100]. However, properly assigning pilots to the users normally gives rise

to solving combinatorial optimization problems that are typically dealt with heuristically.

In particular, one approach is to let each BS assign and re-assign pilots to its users in an

iterative fashion until a given objective function is optimized. For instance, if a cell edge

user is experiencing substantial pilot contamination, it can switch its pilot sequence with

a user close to the cell center with a stronger channel, thus reducing the adverse effects of

pilot contamination on system performance. A location-based pilot assignment strategy

was proposed in [101] to alleviate the effects of pilot contamination in a distributed cell-free

MIMO communication system with a central control unit that has access to all BSs. In

particular, the work of [101] proposes to group the users across the network into a number

of clusters, i.e., sets of pilot-sharing users, based on their relative distance (with the help

of a central unit) where non-orthogonal pilots are assigned to users that are far from each

other.

2.2.2 Data-aided Estimation Approaches

The use of data-aided channel estimation method (also known as subspace based estima-

tion) is deemed an attractive solution in the literature to mitigate pilot contamination

and to increase spectral efficiency, as no pilot sequences are required. One of the early

works in this area, which also predates the introduction of massive MIMO systems, is [102]

which has proposed a subspace based blind channel estimation approach. An extension

of this blind estimation method is reported in [103] and is based on the eigenvalue de-

composition (EVD) of covariance matrices. In particular, the method is not impacted by

pilot contamination and thus can potentially outperform estimation techniques based on
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the transmission of pilot training signals. However, its accuracy and complete elimina-

tion of pilot contamination rely on having a very large number of BS antennas as well

as unbounded coherence interval. In other words, if the length of the coherence interval

does not grow unbounded, the channel estimates that result from this method will still

suffer from residual pilot contamination. This approach has also been investigated in the

context of multi-cell TDD massive MIMO systems, with the purpose of mitigating pilot

contamination [66].

Further studies in the context of pilot decontamination reported in [67, 104, 105] have

proposed a blind method for channel estimation in conjunction with power control using

random matrix theory. More precisely, it is proposed to blindly estimate the system pa-

rameters in the subspace of the desired signal based on the singular value decomposition

(SVD) of the received signal matrix. Nevertheless, a drawback of this technique is the

condition that the channel of the desired user must be stronger than those of the interfer-

ing users, which is not always true in practice, especially in interference-limited scenarios

with shadow fading. In [106], a similar approach using the maximum a-posteriori (MAP)

principle for subspace based channel estimation in TDD massive MIMO systems is pro-

posed. It is reported that this technique outperforms the results of the blind estimation

methods in [67, 104, 105], but at the cost of increasing complexity. Moreover, in order to

reduce the effects of pilot contamination, a fast EVD-based channel estimation method for

massive MIMO systems using a diagonal Jacket matrix1 along with iterative least-square

with projection (ILSP) was developed in [108].

Recently, a technique based on message splitting has been adopted in the literature

to cope with the interference due to pilot contamination [109], which does not fall into

the above categories. In particular, the work of [109] has studied a single-cell massive

MIMO system operating in TDD mode, where all users inside the cell share the same

pilot sequence for channel estimation. Therein, assuming that each user applies single-user

successive interference cancellation in downlink, it is shown that the spectral efficiency is

increased compared to conventional schemes.

1The Jacket matrix is a generalization of the Hadamard matrix [107].
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2.3 Massive MIMO System Model

In this section, we describe the system model for uplink and downlink of a multi-cell

multi-user massive MIMO system and present some well known results associated with

pilot contamination effect. We consider a multi-cell communication system with L cells,

where each cell has a BS equipped with M antennas serving K (M > K) single antenna

users. Assuming a spatially correlated channel model, the channel matrix between the M

antennas of BS j and the users in cell l is denoted by GGGjl = [gggj1l, gggj2l, ..., gggjKl] ∈ CM×K .

More precisely, the channel vector gggjkl associated with user k in cell l is described by

gggjkl = RRR
1/2
jklhhhjkl, (2.1)

where hhhjkl ∼ CN (000, IIIM), and RRRjkl is the spatial correlation matrix of the channel, i.e.,

RRRjkl = E

[

gggjklggg
†
jkl

]

∈ CM×M or gggjkl ∼ CN (000, RRRjkl). Also, for the large-scale fading

coefficients we have

βjkl =
tr(RRRjkl)

M
, (2.2)

which model shadowing and path loss effects. A standard block-fading model is considered

here, where the channels are constant over one coherence interval with one independent

realization in each block, whereas the large-scale fading coefficients are constant over many

coherence time intervals. Furthermore, considering TDD operation, it is assumed that

reciprocity holds between uplink and downlink channels. A frequency re-use factor of one

is assumed, i.e., the whole frequency band is used in each cell. The following Lemma

from [110] will be used later in the sequel.

Lemma 1. Let xxx := [x1, x2, ..., xM ]T and yyy := [y1, y2, ..., yM ]T be mutually independent

M × 1 random vectors with distributions xxx ∼ CN (000, σ2
xIIIM) and yyy ∼ CN (000, σ2

yIIIM),

respectively. Then, by the strong law of large numbers,

xxx†xxx

M
a.s.→ σ2

x, and
xxx†yyy

M
a.s.→ 0, as M → ∞, (2.3)

where
a.s.→ denotes almost sure convergence.
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Figure 2.2: System model showing the channel gain between the mth antenna of the BS in
cell j and the kth user in cell l.

2.3.1 Uplink Data Transmission

We point out that the model used for uplink/downlink data transmission in this thesis is

similar to that of [32] with a slight change of notation. During the uplink data transmission

phase, the BS in cell j receives the baseband signal yyyulj ∈ CM×1 where

yyyulj =

L∑

l=1

K∑

k=1

√
ρulgggjklx

ul
l [k] +nnnj , (2.4)

and xxxull =
[
xull [1], x

ul
l [2], ..., x

ul
l [K]

]T
is the vector of transmit signals of the users in cell l,

ρul is the average uplink transmit power of the users, and nnnj ∼ CN (000, IIIM) is the additive

Gaussian noise vector at the BS in cell j. The assumption of unit noise variance is without

loss of generality2 and thus ρul can be interpreted as the uplink transmit SNR of the users.

2Consider yyyul
′

j =
∑L

l=1

∑K

k=1

√
ρ′
ul
gggjklx

ul

l [k] + nnn′

j , where ρ′
ul

is the transmit power and nnn′

j ∼
CN (000, σ2IIIM ). Then, let yyyulj = yyyul

′

j /σ with ρul = ρ′
ul
/σ2 being the transmit SNR.
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2.3.2 Downlink Data Transmission

During the downlink data transmission phase, the ith user in cell l receives the baseband

signal

ydlil =
L∑

j=1

√
ρdlggg

†
jilxxx

dl
j + zil, (2.5)

where xxxdlj =
[
xdlj [1], x

dl
j [2], ..., x

dl
j [M ]

]T
is the transmit signal of the BS in cell j, ρdl is the

per-user transmit power of the BS, and zil ∼ CN (0, 1) is the receiver noise of the ith user

in cell l. Thus similar to ρul, ρdl can be interpreted as the transmit SNR of the BSs. Also,

defining wwwjkj ∈ CM×1 as the precoding vector of the BS in cell j, we have

xxxdlj =
1
√
λj

K∑

k=1

wwwjkjsj[k] (2.6)

=
WWW jsssj
√
λj
, (2.7)

where sssj = [sj[1], sj[2], ..., sj[K]]T is the vector of data symbols intended for the K users in

cell j, WWW j = [wwwj1j,wwwj2j , ...,wwwjKj] ∈ C
M×K , and λj is a normalization factor used to make

sure the following constraint is satisfied at BS j

E

[

xxxdl
†

j xxxdlj

]

K
= 1, (2.8)

i.e., the downlink SNR per user of the BS in cell j equals ρdl. Specific choices of precoding

vectors will be discussed in subsection 2.3.6.

2.3.3 CSI estimation at BS

Following [38, 64, 65, 87, 91], it is assumed that the same set of pilot sequences

ψψψ1,ψψψ2, ...,ψψψK ∈ Cτ×1 of length τ (generally τ ≥ K, however here it is assumed that τ = K)

are used in all cells and thus the channel estimate will be corrupted by pilot contamina-

tion from the adjacent cells. Defining the pilot matrix ΨΨΨ = (ψψψ1,ψψψ2, ...,ψψψK)
T ∈ CK×K, we
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assume orthonormal pilots, i.e., ΨΨΨΨΨΨ† = IK .

During the uplink training phase of the TDD protocol, user k = 1, 2, ..., K in each cell

transmits the pilot sequence ψψψk to its BSs. The BS in cell j then finds the estimate Ĝ̂ĜGjj of

the local channels GGGjj. More specifically, the BS in cell j receives the matrix YYY p
j ∈ CM×K ,

i.e.,

YYY p
j =

L∑

l=1

√
ρpGGGjlΨΨΨ+ZZZj , (2.9)

where ρp is the average pilot transmission power, and ZZZj is the additive white Gaussian

noise (AWGN) at the BS with entries that are i.i.d CN (0, 1) random variables. Similar to

uplink and downlink data transmission, ρp can be interpreted as the pilot SNR. Generally,

ρp is a function of the average uplink transmit power of users ρul and the length of pilot

sequences τ . Multiplying YYY p
j by ΨΨΨ†, the kth column of the resulting matrix is

rrrjk =
L∑

l=1

√
ρpgggjkl + z̃̃z̃zjk, (2.10)

where z̃̃z̃zjk ∼ CN (000, IM). The MMSE estimate ĝ̂ĝgjkj of gggjkj, i.e., the vector ĝ̂ĝgjkj that

minimizes the mean squared error (MSE) E [‖gggjkj − ĝ̂ĝgjkj‖2], based on the observation rrrjk

is given by [111]

ĝ̂ĝgjkj =
√
ρpRRRjkjE

[

rrrjkrrr
†
jk

]−1

rrrjk (2.11)

=
√
ρpRRRjkj

(
L∑

l=1

ρpRRRjkl + IIIM

)−1

rrrjk (2.12)

=
√
ρpRRRjkj

(
L∑

l=1

ρpRRRjkl + IIIM

)−1









√
ρpgggjkj

︸ ︷︷ ︸

Intended channel

+

L∑

l=1,l 6=j

√
ρpgggjkl

︸ ︷︷ ︸

Pilot contamination

+z̃̃z̃zjk









(2.13)

It can be seen from (2.13) that the estimate of gggjkj is contaminated by the channel of

users in other cells that are using the same pilot sequence as user k in cell j. Due to
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the orthogonality property of MMSE estimation, one can decompose the channel gggjkj

as gggjkj = ĝ̂ĝgjkj + ǫǫǫjkj, where ǫǫǫjkj is an uncorrelated estimation error (thus statistically

independent of the estimate ĝ̂ĝgjkj as they are jointly Gaussian). The distribution of the

channel estimate ĝ̂ĝgjkj and the estimation error ǫǫǫjkj are as follows [111]

ĝ̂ĝgjkj ∼ CN



000, ρpRRRjkj

(
L∑

l=1

ρpRRRjkl + IIIM

)−1

RRRjkj



 (2.14)

ǫǫǫjkj ∼ CN



000, RRRjkj − ρpRRRjkj

(
L∑

l=1

ρpRRRjkl + IIIM

)−1

RRRjkj



 . (2.15)

Moreover, for the estimate of an inter-cell channel from users in other cells using the same

pilot signal ψψψk to BS j, provided that RRRjkj is invertible, using (2.11) we have

ĝ̂ĝgjkl =
√
ρpRRRjkl

(
L∑

l=1

ρpRRRjkl + IIIM

)−1

rrrjk (2.16)

= RRRjkl(RRRjkj)
−1ĝ̂ĝgjkj. (2.17)

This relation will be used in the proofs provided in the appendices. To simplify the notation,

from now on we use the following definition

ΛΛΛjk :=
L∑

l=1

ρpRRRjkl + IIIM . (2.18)

Uncorrelated Rayleigh Fading

For the special case of an uncorrelated Rayleigh fading channel, the spatial correlation

matrix becomes diagonal, i.e., RRRjkj = βjkjIIIM , and therefore (2.1) simplifies to

gggjkl =
√

βjklhhhjkl. (2.19)
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Consequently, the MMSE estimate of (2.11) reduces to the following

ĝ̂ĝgjkj = E

[

gggjkjrrr
†
jk

]

E

[

rrrjkrrr
†
jk

]−1

rrrjk (2.20)

=
√
ρpβjkj

(

1 + ρp

L∑

l=1

βjkl

)−1

rrrjk (2.21)

= αjkj









√
ρpgggjkj

︸ ︷︷ ︸

Intended channel

+
L∑

l=1,l 6=j

√
ρpgggjkl

︸ ︷︷ ︸

Pilot contamination

+z̃̃z̃zjk









, (2.22)

where αjkj :=
√
ρpβjkj

1+ρp
∑L

l=1 βjkl
. SubstitutingRRRjkj = βjkjIIIM into the distributions (2.14)-(2.15),

one can obtain the following for an uncorrelated fading channel

ĝ̂ĝgjkj ∼ CN
(
000,

√
ρpβjkjαjkjIM

)
(2.23)

ǫǫǫjkj ∼ CN
(
000,
(
βjkj −√

ρpβjkjαjkj

)
IM
)
. (2.24)

Lastly, using (2.17), the estimate of inter-cell channels from users sharing the same pilot

signal ψψψk to BS j, is given by

ĝ̂ĝgjkl =

(
βjkl
βjkj

)

ĝ̂ĝgjkj, (2.25)

which will be used in the proofs provided in the appendices.

2.3.4 Channel Hardening and Favorable Propagation

Below, we provide formal definitions for two important large-system effects in multi-

antenna systems, namely, channel hardening and favorable propagation. We then present

an example of these asymptotic effects based on the uncorrelated fading channel model.
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Channel Hardening

By asymptotically eliminating the effects of small-scale fading components, channel hard-

ening results in fast-fading channels asymptotically behaving like deterministic channels.

In other words, the effective channel gains become “asymptotically constant” over many

coherence intervals. Mathematically, this can be presented as follows:

‖gggjkl‖2
E [‖gggjkl‖2]

a.s.→ 1, as M → ∞. (2.26)

This implies that as the number of BS antennas M grows to infinity, the gain of the fading

channel ‖gggjkl‖2 becomes close to the mean value E [‖gggjkl‖2] = tr (RRRjkl).

Remark 1. One should note that the asymptotic convergence in (2.26) does not result

in ‖gggjkl‖2 a.s.→ E [‖gggjkl‖2], as M → ∞, as both the gain of the fading channel and its

mean value can generally diverge. However, one can see that the condition of ‖gggjkl‖2/M −
E [‖gggjkl‖2] /M a.s.→ 0, as M → ∞, yields the asymptotic channel hardening in (2.26).

Asymptotic Favorable Propagation

Asymptotic favorable propagation means that the direction of two distinct user channels

becomes asymptotically orthogonal. More specifically, the channel is said to have asymp-

totic favorable propagation, if the following holds:

ggg†jklgggnim
√

E [‖gggjkl‖2]E [‖gggnim‖2]
a.s.→ 0, as M → ∞, (j, k, l) 6= (n, i,m) (2.27)

i.e., the normalized channel vectors gggjkl/
√

E [‖gggjkl‖2] and gggnim/
√

E [‖gggnim‖2] have asymp-

totically zero inner products.

Remark 2. One should note that the asymptotic property in (2.27) does not mean that the

channel vectors gggjkl and gggnim become asymptotically orthogonal. However, it implies that

the direction of the two channel vectors becomes asymptotically orthogonal.
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Asymptotic favorable propagation helps the BS eliminate non-coherent inter-cell in-

terference, and thus linear procoding/combining techniques become sufficient [111]. This

property will be used later to present asymptotic limits of uplink/downlink achievable

rates.

Example: Consider the uncorrelated Rayleigh fading channel model described by

gggjkl =
√
βjklhhhjkl, where hhhjkl ∼ CN (000, IIIM). It can be verified that this channel model

satisfies both of these asymptotic properties with almost sure convergence [26], i.e.,

GGG†
jjGGGjj

M

a.s.→ diag (βj1j, βj2j, ..., βjKj) , as M → ∞. (2.28)

2.3.5 A Worst-case Uncorrelated Noise Technique

In this part, a useful technique that is frequently used in massive MIMO literature to

establish rate lower bounds for point-to-point channels is presented. Consider the following

point-to-point channel model:

y = xG + z, (2.29)

where xG is the zero mean input signal with complex Gaussian distribution, i.e., xG ∼
CN (0, P ), and z is the zero mean additive noise having variance σ2, and uncorrelated with

the input xG. It can be shown that the capacity of this channel is lower bounded by [112]

I(xG; y) ≥ I
(
xG; yG

)
(2.30)

= C

(
P

σ2

)

, (2.31)

where C(x) := log(1+x) is the Shannon rate function, yG = xG+zG, and zG is a zero mean

complex Gaussian random variable having the same variance as z, i.e., zG ∼ CN (0, σ2).

In other words, (2.30) implies that the worst effect that the additive uncorrelated noise z

can have on this channel is to behave as AWGN, hence the name worst-case uncorrelated

noise technique. This technique will be used later in this chapter to obtain lower bounds

for uplink/downlink achievable rates of massive MIMO systems.
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2.3.6 Spectral Efficiency: Treating Interference as Noise (TIN)

In this part, we present well-known lower bounds on the uplink/downlink achievable rates

of the multi-cell multi-user massive MIMO communication system discussed in subsections

2.3.1 and 2.3.2.

Uplink

Consider the baseband signal yyyulj in (2.4) received by BS j during the uplink data trans-

mission phase. Also, assume that the combining vector used by the BS to decode the

signal transmitted by user i in cell j is denoted by vvvjij. By adding and subtracting a term

associated with the mean of the effective channel vvv†jijgggjij in (2.4), the following is obtained

over one coherence interval for the estimate of the signal transmitted by user i in cell j:

ŷulji = vvv†jijyyy
ul
j (2.32)

=
√
ρulE

[

vvv†jijgggjij
]

xulj [i]
︸ ︷︷ ︸

Desired signal

+
√
ρul

(

vvv†jijgggjij − E

[

vvv†jijgggjij
])

xulj [i]
︸ ︷︷ ︸

Interference due to beamforming gain uncertainty

+
∑L

l=1

∑K

k=1,k 6=i

√
ρulvvv

†
jijgggjklx

ul
l [k]

︸ ︷︷ ︸

Inter-cell interference caused by other users

+vvv†jijnnnj
︸ ︷︷ ︸

Noise

(2.33)

= ηijx
ul
j [i]

︸ ︷︷ ︸

Desired signal

+ zjij
︸︷︷︸

Additive noise

, (2.34)

where the expectations are with respect to the channel realizations, ηij :=
√
ρulE[vvv

†
jijgggjij]

is the effective channel gain and zjij is the additive noise term incorporating the last three

terms in (2.33). Treating (2.34) as the output of a point-to-point channel similar to (2.29),

it can be verified that both the input signal ηijx
ul
j [i] and the additive noise term zjij are

zero mean random variables, and also the additive noise is uncorrelated with the input.

Defining Rul
ij as the uplink rate of the ith user in cell j, any rate tuple

(
Rul

i1, ..., R
ul
iL

)
is

achievable if it satisfies the following set of inequalities

Rul
ij ≤ I

(
ŷulji ; x

ul
j [i]
)
, for j = 1, ..., L, i = 1, ..., K. (2.35)
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Hence, assuming Gaussian signaling and applying the worst-case uncorrelated noise tech-

nique of (2.30), one obtains the following lower bound on the rate of decoding the signal

transmitted by user i in cell j [111]

I
(
ŷulji ; x

ul
j [i]
)
≥ C







ρul

∣
∣
∣E

[

vvv†jijgggjij
]∣
∣
∣

2

∑L
l=1

∑K
k=1 ρulE

[∣
∣
∣vvv

†
jijgggjkl

∣
∣
∣

2
]

− ρul

∣
∣
∣E

[

vvv†jijgggjij
]∣
∣
∣

2

+ E
[
‖vvvjij‖2

]






,

(2.36)

where the expectations are with respect to the channel realizations. Note that the nu-

merator and the denominator in (2.36) are the variance of the desired signal ηijx
ul
j [i] and

the variance of the uncorrelated additive noise zjij, respectively. It is worth mentioning

that the rate lower bound of (2.36) can be applied with any combining vector vvvjij and any

channel estimator (including the MMSE estimation discussed in the previous section).

Downlink

Consider the baseband signal ydlil in (2.5) received by user i in cell l during the downlink

data transmission phase. Furthermore, assume that the precoding vector used by BS l for

transmission of the data stream intended for user i in cell l is denoted by wwwlil. Similar to

the uplink, we add and subtract a term associated with the mean of the effective channel

ggg†lilwwwlil, which results in the following

ydlil =

√
ρdl
λl

E

[

ggg†lilwwwlil

]

sl[i]

︸ ︷︷ ︸

Desired signal

+

√
ρdl
λl

(

ggg†lilwwwlil − E

[

ggg†lilwwwlil

])

sl[i]

︸ ︷︷ ︸

Interference due to beamforming gain uncertainty

(2.37)

+
∑L

j=1

√
ρdl
λj

∑K

k=1,k 6=i
ggg†jilwwwjkjsj[k]

︸ ︷︷ ︸

Inter-cell interference caused by other users

+ zil
︸︷︷︸

Noise

= ζilsl[i]
︸ ︷︷ ︸

Desired signal

+ z′il
︸︷︷︸

Additive noise

, (2.38)
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where the expectations are with respect to the channel realizations, ζil :=
√

ρdl/λlE
[

ggg†lilwwwlil

]

is the effective channel gain and z′il is the additive noise term incor-

porating the last three terms in (2.37). Treating (2.38) as the output of a point to point

channel similar to (2.29), it can be verified that both the input signal ζilsl[i] and the additive

noise term zil are zero mean random variables, and also the additive noise is uncorrelated

with the input. Therefore, defining Rdl
il as the downlink rate associated with decoding sl[i],

any rate tuple
(
Rdl

i1, ..., R
dl
iL

)
is achievable if it satisfies the following set of inequalities

Rdl
il ≤ I

(
ydlil ; sl[i]

)
, for l = 1, ..., L, i = 1, ..., K. (2.39)

Thus, similar to the uplink case and assuming Gaussian signaling, by applying the worst-

case uncorrelated noise technique of (2.30) one obtains the following lower bound on the

downlink rate of decoding data stream sl[i] at user i in cell l [111]

I
(
ydlil ; sl[i]

)
≥ C







ρdl
λl

∣
∣
∣E

[

ggg†lilwwwlil

]∣
∣
∣

2

∑L
j=1

∑K
k=1

ρdl
λj

E

[∣
∣
∣ggg

†
jilwwwjkj

∣
∣
∣

2
]

− ρdl
λl

∣
∣
∣E

[

ggg†lilwwwlil

]∣
∣
∣

2

+ 1






, (2.40)

where the expectations are with respect to the channel realizations. Note that the numer-

ator and the denominator in (2.40) are the variance of the desired signal ζilsl[i] and the

variance of the uncorrelated additive noise zil, respectively. Similar to the uplink case, the

rate lower bound of (2.40) can be applied with any precoding vector wwwlil and any channel

estimator (including the MMSE estimation discussed in the previous section). In the next

section, we will present asymptotic limits of these rate lower bounds using the following

conventional linear combining/precoding schemes.

• Maximum ratio combining/transmission (MRC/MRT): Under MRC (MRT), the BS

tries to maximize the signal to noise ratio (SNR) for each data stream, while ignoring

the effects of interference. The combining (precoding) vector for MRC (MRT) is

given by vvvjij = ĝ̂ĝgjij (wwwjij = ĝ̂ĝgjij). An important advantage of this scheme is that it is

extremely easy to implement. However, as a disadvantage, one should bear in mind

that as maximum ratio neglects the effects of interference, its performance is inferior
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to other schemes in interference limited scenarios.

• Zero forcing (ZF): Unlike MRC/MRT, under ZF combining/precoding the effect of

additive noise is neglected, while taking into account the effects of intra-cell interfer-

ence. The ZF combining/precoding matrix at BS j is given by VVV jj = [vvvj1j, ..., vvvjKj] =

Ĝ̂ĜGjj

(

Ĝ̂ĜG†
jjĜ̂ĜGjj

)−1

. Noting that this is the pseudo inverse of the estimated channel ma-

trix Ĝ̂ĜGjj, it can be verified that VVV †
jjĜ̂ĜGjj = IIIK , and thereby

vvv†jkjĝ̂ĝgjmj = δmk, (2.41)

where δmk is the Kronecker delta function. In other words, the ZF scheme completely

nulls out the interference by projecting each data stream onto the orthogonal com-

plement of the intra-cell interference. Even though its computational complexity is

higher than MRC/MRT due to the calculation of the pseudo inverse, it performs

better in interference limited scenarios.

2.3.7 Large Antenna Regime

Using the uncorrelated Rayleigh fading channel model described in (2.19), we now present

well-known asymptotic limits for uplink/downlink achievable rate lower bounds under the

combining/precoding schemes discussed above.

Uplink

MRC: Assuming that MRC is used at BS j to estimate signal xulj [i] received from user i

in cell j, one can re-write (2.32) as

ŷulji = ĝ̂ĝg†jijyyy
ul
j (2.42)

=
L∑

l=1

√
ρulĝ̂ĝg

†
jijgggjilx

ul
l [i] +

L∑

l=1

K∑

k=1,k 6=i

√
ρulĝ̂ĝg

†
jijgggjklx

ul
l [k] + ĝ̂ĝg†jijnnnj. (2.43)
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Using Lemma 1, the following is obtained

ŷulji
M

a.s.→ √
ρulρpαjij









βjijx
ul
j [i]

︸ ︷︷ ︸

Desired signal

+

L∑

l=1,l 6=j

βjilx
ul
l [i]

︸ ︷︷ ︸

Interference due to pilot contamination









, as M → ∞, (2.44)

which confirms both the channel hardening effect and asymptotic favorable propagation.

The decoding strategy which is widely used in the massive MIMO literature is called

treating interference as noise (TIN). More precisely, assuming TIN in uplink, the BS in

cell j only decodes the desired signal xulj [i] while treating the remaining interfering signals

xull [i], l 6= j as noise. Doing so, it has been shown in [26] that when MRC is used, the

following lower bound is obtained on the uplink achievable rate:

I
(

ŷulji ; x
ul
j [i]
∣
∣
∣ĝ̂ĝgjij

)
a.s.→ C

(

β2
jij

∑L
l=1,l 6=j β

2
jil

)

, as M → ∞. (2.45)

ZF: Assuming that ZF combining is used at BS j to estimate signal xulj [i] received from

user i in cell j, (2.44) changes to the following:

ŷulji
a.s.→ √

ρul









xulj [i]
︸ ︷︷ ︸

Desired signal

+
L∑

l=1,l 6=j

(
βjil
βjij

)

xull [i]

︸ ︷︷ ︸

Interference due to pilot contamination









, as M → ∞, (2.46)

i.e., both the channel hardening effect and asymptotic favorable propagation are observed

here. Similar to MRC, assuming that BS j performs TIN by only decoding the desired

signal xulj [i] while treating the remaining interfering signals xull [i], l 6= j as noise, the

following asymptotic lower bound is obtained

I
(

ŷulji ; x
ul
j [i]
∣
∣
∣ĝ̂ĝgjij

)
a.s.→ C

(

β2
jij

∑L
l=1,l 6=j β

2
jil

)

, as M → ∞. (2.47)
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Interestingly, regardless of whether MRC or ZF is used in uplink, it is observed that the

asymptotic limits on achievable rates are identical. In other words, as M grows to infinity,

the performance of MRC and ZF converge in uplink [26, 111, 113].

Throughout this thesis, it is assumed that the noisy channel estimates ĝ̂ĝgjij are known

locally at the BSs. Thus, from now on, to simplify notation they will be omitted from the

mutual information expressions.

Downlink

MRT: Analogously for downlink, now assume that MRT precoding is applied at BS j, i.e.,

wwwjkj = ĝ̂ĝgjkj. The normalization factor λj for this precoding vector can be found from (2.8)

as follows

λmrt
j =

E

[

tr
(

WWW †
jWWW j

)]

K
(2.48)

=
tr
(

E

[

WWW †
jWWW j

])

K

=

∑K
i=1 E

[

ĝ̂ĝg†jijĝ̂ĝgjij
]

K

=
M
∑K

i=1

√
ρpβjijαjij

K
. (2.49)

A similar expression was derived in [32] using a slightly different notation for a spatially

correlated Rayleigh fading channel. One can rewrite (2.5) for the ith user in cell l as follows

ydlil =

L∑

j=1

√
ρdl
λmrt
j

K∑

k=1

ggg†jilĝ̂ĝgjkjsj[k] + zil. (2.50)
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Similar to (2.44), using Lemma 1 one can obtain

ydlil√
M

a.s.→
√

Kρdlρp










βlilαlil
√
∑K

k=1

√
ρpβlklαlkl

sl[i]

︸ ︷︷ ︸

Desired signal

+
L∑

j=1,j 6=l

βjilαjij
√
∑K

k=1

√
ρpβjkjαjkj

sj [i]

︸ ︷︷ ︸

Interference due to pilot contamination










, (2.51)

as M → ∞, which again confirms both the channel hardening effect and asymptotic

favorable propagation. Assuming TIN in downlink, user i in cell l only decodes the desired

signal sl[i] and treats the remaining interfering signals sj[i], j 6= l, as noise. Hence, the

following asymptotic lower bound on the downlink achievable rate is obtained

I
(
ydlil ; sl[i]

) a.s.→ C




β2
lilα

2
lil/
(
∑K

k=1 βlklαlkl

)

∑L
j=1,j 6=l β

2
jilα

2
jij/

(
∑K

k=1 βjkjαjkj

)



 , as M → ∞. (2.52)

ZF: If ZF precoding is applied at BS j, i.e., WWW j = Ĝ̂ĜGjj

(

Ĝ̂ĜG†
jjĜ̂ĜGjj

)−1

, the normalization

factor λj from (2.8) is found as follows

λzfj =
tr
(

E

[

WWW †
jWWW j

])

K

=

∑K
i=1 E

[

www†
jijwwwjij

]

K

(a)
=

1

K(M −K)

K∑

i=1

1
√
ρpβjijαjij

, (2.53)

where (a) follows from a standard result in random matrix theory [114]. A similar expres-

sion was derived in [32] using a slightly different notation for a spatially correlated Rayleigh
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fading channel. Using (2.41) and applying Lemma 1, it is obtained asymptotically

ydlil√
M

a.s.→
√

Kρdl














1
√

∑K
k=1

1
√
ρpβlklαlkl

sl[i]

︸ ︷︷ ︸

Desired signal

+
∑

j=1,j 6=l

(βjil/βjij)
√

∑K
k=1

1
√
ρpβjkjαjkj

sj [i]

︸ ︷︷ ︸

Interference due to pilot contamination














, (2.54)

as M → ∞. Similar to MRT, by performing TIN, user i in cell l only decodes the desired

signal sl[i] and treats the remaining interfering signals sj [i], j 6= l, as noise. Doing so yields

the following asymptotic lower bound on the downlink achievable rate

I
(
ydlil ; sl[i]

) a.s.→ C








1
∑K

k=1 (1/βlklαlkl)

∑L
j=1,j 6=l

(βjil/βjij)
2

∑K
k=1 (βjkjαjkj)







, as M → ∞. (2.55)

Note that these asymptotic limits on the uplink/downlink achievable rates have been previ-

ously established in the literature with a slightly different notation (e.g., see the expressions

of (7) and (11) in [91], (16) in [87], (4.51) and (4.52) in [111], (4.36) and (4.37) in [113]).

Remark 3. One should note that as the number of BS antennasM becomes large enough in

(2.44), (2.46), (2.51), and (2.54), the effects of all inter-user interference and noise terms

vanish except the terms associated with the users in other cells using the same pilots. These

terms are coherent inter-cell interference caused by pilot contamination. As explained in

the previous chapter, in most works in the literature, a receiver only decodes the desired

message coming from (or intended for) the main user inside its own cell while treating

the interfering message of users sharing the same pilot in all other cells as noise. This

approach, known as TIN, results in saturation of achievable rates even when M grows

unbounded (see (2.45), (2.47), (2.52), and (2.55)).

Remark 4. It was shown in [111] that even with the assumption of a spatially correlated

fading channel, applying TIN at the receiver yields the same conclusion and thus users’ rate
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asymptotically saturate to a constant independent of M . It should, however, be pointed out

that since the distributions of channel estimates and the estimation error are slightly more

complicated in the case of a spatially correlated Rayleigh fading channel (see (2.14) and

(2.15)), more work is required to find the asymptotic limits of the achievable rates. For

instance, the expressions of (4.49) and (4.50) in [111] show the asymptotically saturated

rates after applying MRC and MRT, respectively.

To avoid rate saturation, the decoding schemes proposed in the next two chapters of

this thesis allow for the desired message from the current cell to be decoded along with

either full decoding or partial decoding of the messages from users in other cells that are

sharing the same pilot as the desired user.
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Chapter 3

Performance of Full Interference

Decoding

3.1 Interference Decoding

As discussed in the previous chapters, a common technique widely used in the literature to

deal with the interference caused by pilot contamination in massive MIMO systems is to

treat it as noise. More specifically, it was shown in Chapter 2 that, when the number of BS

antennas grows unbounded the effects of additive noise, small-scale fading and non-coherent

interference all vanish, except for the coherent interference due to pilot contamination

from users of other cells sharing the same pilot as the desired user. When decoding the

message of the desired user, by applying TIN at the receiver (i.e., treating the coherent pilot

contamination interference as noise), the user’s rate converges to a constant asymptotically

and thus the benefits of increasing M saturate. For interference networks, while applying

TIN is considered a better option when interference is weak [115, 116], it is known to

be suboptimal in other interference regimes [71, 117]. In particular, when interference is

strong, it is known that fully decoding interference along with the desired signal (also

known as simultaneous or joint decoding) is optimal and achieves the sum-capacity of the

interference channel (IC) [118]. While fully decoding interference or treating it as noise
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are two extreme interference management strategies that are preferred in strong and weak

interference regimes respectively, they are not always optimal. These two extreme policies

will be bridged and reconciled by a partial interference decoding scheme presented in the

next chapter.

Optimality and performance limits of schemes that work based on fully decoding in-

terference have been extensively studied in the literature from an information theoretic

perspective [71, 72, 117, 119–121]. In this chapter, we argue that when the number of BS

antennas is sufficiently large, the power of inter-cell interference terms due to pilot contam-

ination becomes strong enough that the interference can be decoded. More specifically, we

show that when M is large enough, both simultaneous unique decoding (SD) and simul-

taneous non-unique decoding (SND) of pilot contamination interference outperform the

conventional schemes based on TIN, which are commonly used in the massive MIMO lit-

erature. We further show that with a practical number of antennas M , SND outperforms

both TIN and SD. Using a worst-case uncorrelated noise technique, we derive new closed-

form expressions of achievable rates for the uplink and downlink of a multi-cell massive

MIMO system with a spatially correlated/uncorrelated Rayleigh fading channel model. In

addition, the performance of full interference decoding schemes (SD/SND) is investigated

with MRC/MRT, ZF and RZF combining/precoding techniques, and it is shown that both

RZF and ZF provide significantly higher rates than MRC/MRT, while RZF also outper-

forms ZF for a small number of antennas M . Structural results are also established in the

case of a two-cell system with a symmetric setup as well as in the high SINR regime when

M → ∞. Moreover, the impact of increasing the number of cells, the number of users,

cell radius, correlation magnitude as well as shadow fading on the performance of different

schemes is numerically studied in this chapter.

3.2 Decoding Pilot Contamination

Following [38, 64, 65, 87, 91], it is assumed that the same set of orthogonal pilot sequences

are used in all cells, resulting in pilot contamination interference. Hence, if one performs

TIN, as the number of BS antennas M grows unbounded, the expressions of achievable
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rates for uplink in (2.45) and (2.47), as well as those of the downlink in (2.52) and (2.55)

saturate. In other words, treating interference due to pilot contamination as noise results

in a fundamental limitation that constitutes a major bottleneck in the overall performance

of massive MIMO systems with imperfect CSI [26].

In this chapter1, as opposed to simply performing TIN, we propose a more advanced

scheme based on full interference decoding. More specifically, we treat pilot contamination

interference terms as individual users, similar to an interference channel (IC), and thus try

to fully decode them. As will be seen in the subsequent part, this change of perspective

results in new achievable rate expressions that grow without bound as M → ∞.

3.2.1 Simultaneous unique Decoding (SD)

Note that in the expressions of the uplink received signal after performing MRC in (2.44)

or ZF in (2.46), the first term is the desired signal and the remaining non-vanishing terms

are all inter-cell interference caused by users in other cells that are sharing the same

pilot sequence, ψψψi, i = 1, . . . , K, as the ith user of cell j. Now, let us consider (2.43)

which is the output of the jth BS after performing MRC. If the baseband signals ŷulji , for

j = 1, 2, ..., L, i = 1, ..., K, are considered together, then these represent the outputs of

K separate/non-interfering L-user ICs, one such L-user IC for each pilot sequence ψψψi, i =

1, . . . , K as in Fig. 3.1: each L-user IC consists of L transmitters, i.e., the ith user of each

cell that is using the same pilot sequence ψψψi, and L receivers, i.e., the BSs. One should also

note that at each of the L receivers of each IC, an asymptotically noise-free L-user multiple

access channel (MAC) is observed (see (2.44) for MRC and (2.46) for ZF). For instance, in

the L-user MAC of (2.44), by uniquely jointly decoding the signals
[
xul1 [i], x

ul
2 [i], ..., x

ul
L [i]
]T
,

unbounded rates are obtained as M → ∞. A similar argument applies to ZF in uplink by

considering the noise-free L-user MAC of (2.46).

Analogously for the downlink, by considering the received signals ydlil , for l =

1, ..., L, i = 1, ..., K, together we have the outputs of K separate/non-interfering L-user

1The results of this chapter were partially presented in [122].
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Figure 3.1: The L-user IC in uplink associated with the ith users of each cell, sharing pilot
sequence ψψψi. There are a total of K separate/non-interfering such ICs in the network.

ICs, with input signals [s1[i], s2[i], ..., sL[i]]
T as in Fig. 3.2. Hence, the asymptotic expres-

sions of (2.51) and (2.54) suggest that by performing MRT or ZF precoding at BSs, when

M goes to infinity at a given user, say the ith one in cell l, we have an asymptotically

noise-free L-user MAC with infinite rate. Particularly, by uniquely jointly decoding the

signals [s1[i], s2[i], ..., sL[i]]
T , unbounded rates are obtained as M → ∞.

Remark 5. Note that since large-scale fading coefficients from contaminating users are

unknown at the BS, and also the effective channel gains in the MAC of (2.44) are functions

of these coefficients, this MAC can be regarded as a compound MAC [123], where the

channel gains from transmitters to the receiver are unknown. It has been shown in [123]

that the achievable rates of a compound MAC (i.e., a MAC with unknown channel gains)

are the same as those of the standard MAC, where all channel gains are known. Therein, it

has been shown that the lack of knowledge of channel gains at the receiver does not affect the

achievable rates, i.e., the users’ signal can still be successfully decoded. A similar argument

is applied to the downlink if the large-scale fading coefficients (and thus the effective channel

gains) are unknown at the users, and therefore the corresponding downlink L-user MACs

can be treated as a compound MAC.
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Figure 3.2: The L-user IC in downlink associated with the ith user of each cell, sharing
pilot sequence ψψψi. There are a total of K separate/non-interfering such ICs in the network.

An intuitive way to understand why the result explained in Remark 5 is true is the

following. Consider, for instance, the case of uplink where each user transmitting with

codewords of length n can use log(n) training symbols interspersed across the frame to

identify the channel gains at the receiver. As n grows, the resulting loss in rate due to

log(n) can be made arbitrarily small. Moreover, as mentioned in the previous chapter, the

large-scale fading coefficients remain fixed for many channel coherence intervals. Since we

code over multiple coherence intervals, the BS essentially needs to estimate the large-scale

fading coefficients only once for a number of coherence intervals. Therefore, if one allocates

a small number of symbols across multiple coherence blocks, a negligible rate loss would

be incurred.

Due to the finite coherence time of wireless channels resulting from user mobility, only

a limited number of orthogonal pilot sequences are available. One way to address this issue

is to re-use the same set of orthonormal pilots across all cells as described in Section 2.3.3.

However, an alternative approach to that of Section 2.3.3 would be to use different sets of

orthonormal pilots in different cells. To illustrate this alternative, assume that a single set

of orthonormal pilots is picked for one cell, and different rotated versions of this set are
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used in all other cells. In particular, user k in cell l transmits the pilot sequence ψψψkl to its

BS, where the entire pilot matrix used in cell l is denoted by ΨΨΨl. As the sequences of other

pilot matrices, ΨΨΨj , j 6= l ∈ {1, 2, ..., L}, are rotated versions of sequences in ΨΨΨl, they have

non-zero inner product.

After transmission of all pilot sequences, the BS in cell j receives the matrix YYY p
j ∈

CM×K , given by

YYY p
j =

∑L

l=1

√
ρpGGGjlΨΨΨl +ZZZj . (3.1)

Multiplying YYY p
j by ΨΨΨ†

j, the k
th column of the resulting matrix is

rrrjk =
√
ρpgggjkj +

∑L

l=1,l 6=j

√
ρpGGGjlΨΨΨlψψψ

†
kj + qqqjk, (3.2)

where qqqjk ∼ CN (000, IIIM). Therefore, the MMSE estimate ĝ̂ĝgjkj of gggjkj based on the obser-

vation rrrjk is

ĝ̂ĝgjkj = E

[

gggjkjrrr
†
jk

]

E

[

rrrjkrrr
†
jk

]−1

×
(√

ρpgggjkj +
∑L

l=1,l 6=j

√
ρpGGGjlΨΨΨlψψψ

†
kj + qqqjk

)

. (3.3)

One can readily see from (3.3) that the channel estimate ĝ̂ĝgjkj is now contaminated by

the channel of all users in other cells. Thus, by letting M → ∞, the non-vanishing

terms in (2.44), (2.46), (2.51), and (2.54) will include the signal of every user in every

other cell. In turn, when decoding pilot contamination interference, using the same set of

pilots in different cells results in decoding L users, whereas using different sets of pilots

in different cells, as explained above, results in decoding K × (L − 1) + 1 users. As will

be explained in Remark 10 later in this chapter, this alternative approach that requires

decoding K×(L−1)+1 users (instead of L users) degrades the performance of interference

decoding schemes, as compared to the approach of Section 2.3.3. Moreover, the complexity

of jointly decoding K × (L− 1) + 1 users is larger than that of decoding L users. Hence,

when decoding pilot contamination interference, using the same set of orthogonal pilots

in different cells (as opposed to different sets of pilots) is preferable as it results in fewer

interference terms to be decoded.
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Below, we provide a detailed analysis of the uplink/downlink achievable rates by fully

decoding pilot contamination interference terms along with the intended user in the finite

M regime.

Uplink

In order to establish achievable rate lower bounds, we first need to generalize the worst-case

uncorrelated noise technique of (2.30) to the case of a multi-user channel, i.e., MAC. This

is formally presented in the following lemma.

Lemma 2. Consider the L-user MAC given by y =
∑L

i=1 x
G
i + z, where the users’ signals

xGi , i = 1, ..., L are independent with complex Gaussian distribution xGi ∼ CN (0, Pi), and

the additive noise z is a complex random variable with mean zero and variance σ2
z . If z is

uncorrelated from xGi , i = 1, ..., L, then

I
(

xxxGΩ; y
G
∣
∣
∣xxxGΩc

)

≤ I
(

xxxGΩ; y
∣
∣
∣xxxGΩc

)

, (3.4)

where xxxGΩ is the vector with entries xGi , i ∈ Ω ⊆ {1, 2, ..., L},Ω 6= ∅, Ωc := {1, 2, ..., L} \ Ω,
yG =

∑L
i=1 x

G
i + zG, and zG ∼ CN (0, σ2

z).

Proof. See Appendix A.1.

Note that using Lemma 2, one can obtain an achievable lower bound on the capacity of

a MAC with uncorrelated additive non-Gaussian noise by replacing the noise term with an

independent zero mean Gaussian noise having the same variance. This is a natural exten-

sion of the worst-case uncorrelated noise result of [112], discussed in the previous chapter

for a point-to-point channel, to the case of a multi-user channel. When the additive noise

is independent of the users’ signals, Gaussian noise has been proven to be the worst-case

noise for point-to-point, MAC, degraded broadcast and MIMO channels [115]. However,

the proof provided in Lemma 2 only requires the additive noise to be uncorrelated of the

users’ signals.
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Let us revisit the received baseband signal of (2.33) in the uplink for a general combining

vector vvvjij applied at BS j. Following the above discussion, the ith users of all cells,
{
xull [i]

}L

l=1
, sharing pilot sequence ψψψi, are now treated as the desired signals to be decoded

jointly. Following an approach similar to that of (2.33), by adding and subtracting a term

associated with the mean of the effective channel vvv†jijgggjil in (2.43), the expression below is

obtained over one coherence interval

ŷulji =
√
ρul
∑L

l=1
E

[

vvv†jijgggjil
]

xull [i]
︸ ︷︷ ︸

Desired signals

+
∑L

l=1

√
ρul

(

vvv†jijgggjil − E

[

vvv†jijgggjil
])

xull [i]
︸ ︷︷ ︸

Interference due to beamforming gain uncertainty

+
∑L

l=1

∑K

k=1,k 6=i

√
ρulvvv

†
jijgggjklx

ul
l [k]

︸ ︷︷ ︸

Interference caused by other users

+vvv†jijnnnj
︸ ︷︷ ︸

Noise

(3.5)

=
∑L

l=1
ηilx

ul
l [i] + z′jij , (3.6)

where ηil :=
√
ρulE[vvv

†
jijgggjil] and z

′
jij is the effective noise term incorporating the last three

terms in (3.5).

Note that the power of the desired signals in (3.6) is proportional to |ηil|2 and is thus

proportional to M2. Moreover, the power of the effective noise term z′jij is proportional to

M . Therefore, by uniquely jointly decoding the signals
{
xull [i]

}L

l=1
in (3.6), the achievable

rates of the corresponding MAC grow unboundedly as M → ∞.

We now consider the MAC of (3.6) at BS j. Using the usual definitions as in [124], each

message ml ∈ [1 : 2nR
ul
il ], l = 1, ..., L (distributed uniformly) is encoded into the codeword

xxxul,nl [i](ml) of length n which is generated iid CN (0, 1). By applying simultaneous unique

decoding (SD) and the standard random coding analysis as in [124], it can be shown that

the decoding error probability tends to zero as n→ ∞, i.e., the rate tuple
(
Rul

i1, ..., R
ul
iL

)
is

achievable, if
∑

l∈Ω
Rul

il ≤ I
(

ŷulji ; xxx
ul
Ω

∣
∣
∣ xxxulΩc

)

, (3.7)

for all Ω ⊆ S = {1, 2, ..., L}, Ω 6= ∅, and xxxulΩ is the vector with entries xull [i], l ∈ Ω. The set

of rate vectors
(
Rul

i1, ..., R
ul
iL

)
that satisfies the inequalities of (3.7) defines the achievable

region at BS j, denoted by RSD
ij , associated with uniquely jointly decoding the signals
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{
xull [i]

}L

l=1
at this BS. Finally, to obtain the achievable region network-wide (at all BSs)

for the ith pilot-sharing users, one should take the intersection of achievable regions over

all BSs, i.e., RSD
i =

⋂

j RSD
ij , j = 1, ..., L.

Note that the effective noise term in (3.6), z′jij, which contains the last three terms

in (3.5) involves the inner product of random vectors such as vvv†jijnnnj, and hence is neither

Gaussian nor independent of the users’ signals. However, as will be shown below, it is

uncorrelated from the users’ signals.

The signals xull [i] and x
ul
j [k] are independent for (l, i) 6= (j, k), and the interference term

associated with channel estimation error is zero mean and thereby uncorrelated from the

desired signals. It is easy to verify that the last two terms in (3.5) are also uncorrelated

from the desired signals. Therefore, for transmission over multiple coherence intervals all

interference and noise terms in (3.5) are uncorrelated from the desired signal components.

Thus, applying Lemma 2, an achievable lower bound on I(ŷulji ; xxx
ul
Ω

∣
∣ xxxulΩc) in (3.7), similar

to (2.36) can be obtained. More specifically, replacing the uncorrelated noise z′jij in (3.6)

by an independent Gaussian noise with a variance equal to the sum of the variances of the

interference and noise terms in (3.5), provides a lower bound on (3.7). This is formally

presented in the following theorem.

Theorem 1. Assuming Gaussian signaling, i.e.,
[
xul1 [i], x

ul
2 [i], ..., x

ul
L [i]
]T ∼ CN (000, IIIL) for

i ∈ {1, 2, ..., K}, the following set of achievable lower bounds is obtained for the MAC given

in (3.6) at BS j

I
(

ŷulji ; xxx
ul
Ω

∣
∣
∣ xxxulΩc

)

≥ C







∑

l∈Ω ρul

∣
∣
∣E

[

vvv†jijgggjil
]∣
∣
∣

2

∑L
l=1

∑K
k=1 ρulE

[∣
∣
∣vvv

†
jijgggjkl

∣
∣
∣

2
]

−∑L
l=1 ρul

∣
∣
∣E

[

vvv†jijgggjil
]∣
∣
∣

2

+E
[
‖vvvjij‖2

]







(3.8)

:= Cul
LB(Ω), ∀Ω ⊆ {1, 2, ..., L},

where the expectations are taken with respect to the channel realizations.

Proof. See Appendix A.2.
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Note that the numerator in (3.8) is the variance of the desired signal
∑

l∈Ω ηilx
ul
l [i], and

the denominator is the variance of the uncorrelated additive noise z′jij .

Remark 6. The lower bound of (3.8) is valid in general and does not depend on specific

choices of the linear combining vector vvvjij or channel distributions, and the expectations

can be computed using the Monte Carlo simulation.

Downlink

A similar analysis can be applied to the downlink in (2.37). Specifically, considering the

MAC obtained on the downlink at user i in cell l, the intended symbols for the ith users

of all cells, i.e., {sj[i]}Lj=1 are now treated as the desired signals to be decoded jointly.

Therefore, (2.37) changes to the following

ydlil =

L∑

j=1

√
ρdl
λj

E

[

ggg†jilwwwjij

]

sj[i]

︸ ︷︷ ︸

Desired signals

+

L∑

j=1

√
ρdl
λj

(

ggg†jilwwwjij − E

[

ggg†jilwwwjij

])

sj [i]

︸ ︷︷ ︸

Interference due to beamforming gain uncertainty

(3.9)

+
∑L

j=1

√
ρdl
λj

∑K

k=1,k 6=i
ggg†jilwwwjkjsj [k]

︸ ︷︷ ︸

Inter-cell interference caused by other users

+ zil
︸︷︷︸

Noise

=
L∑

j=1

ζijsj [i]

︸ ︷︷ ︸

Desired signals

+ z′il
︸︷︷︸

Additive noise

, (3.10)

where (3.10) is the output of the MAC obtained at user i in cell l, with input signals

{sj[i]}Lj=1, and z
′
il is the effective noise incorporating the last three terms of (3.9).

The power of the desired signals in (3.9) is proportional to |ζij|2 and is thus proportional

to M2. Moreover, the power of the effective noise term z′il is proportional to M . Hence, by

unique joint decoding of the input signals {sj[i]}Lj=1 in (3.10), the achievable rates of the

corresponding MAC grow without bound as M → ∞.

Considering the MAC of (3.10) at user i in cell l, it is assumed that each message
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wj ∈
[

1 : 2nR
dl
ij

]

, j = 1, ..., L (distributed uniformly) is communicated over this MAC by

encoding it into the codeword sssnj [i](wj) of length n, generated i.i.d. CN (0, 1). Therefore,

by joint decoding of all desired messages uniquely as in SD, decoding error probability can

be shown to approach zero for n→ ∞, if the set of rate tuples
(
Rdl

i1, ..., R
dl
iL

)
is such that

∑

j∈Ω
Rdl

ij ≤ I
(

ydlil ; sssΩ

∣
∣
∣ sssΩc

)

, (3.11)

for all Ω ⊆ S = {1, 2, ..., L}, and sssΩ is the vector with entries sj[i], j ∈ Ω. Finally,

the network-wide achievable region is obtained by taking the intersection of the MAC

achievable regions over all receivers.

Since sdll [i] and s
dl
j [i] are independent for l 6= j, with a similar argument to that of uplink

one can verify that for transmission over multiple coherence intervals the zero mean effective

noise term z′il is uncorrelated from the desired signal components. Hence, we are able to

establish achievable lower bounds for the mutual information terms in (3.11), based on the

worst-case uncorrelated noise technique of Lemma 2. In particular, as formally presented in

the following theorem, the effective noise term z′il is replaced by an independent Gaussian

noise having the same variance.

Theorem 2. Assuming Gaussian signaling, i.e., [s1[i], s2[i], ..., sL[i]]
T ∼ CN (000, IIIL) for

i ∈ {1, 2, ..., K}, the following set of achievable lower bounds is obtained for the MAC of

(3.10) at user i in cell l

I
(

ydlil ; sssΩ

∣
∣
∣sssΩc

)

≥ C







∑

j∈Ω
ρdl
λj

∣
∣
∣E

[

ggg†jilwwwjij

]∣
∣
∣

2

∑L
j=1

∑K
k=1

ρdl
λj

E

[∣
∣
∣ggg

†
jilwwwjkj

∣
∣
∣

2
]

−∑L
j=1

ρdl
λj

∣
∣
∣E

[

ggg†jilwwwjij

]∣
∣
∣

2

+ 1






,

(3.12)

:= Cdl
LB(Ω), ∀Ω ⊆ {1, 2, ..., L},

where the expectations are taken with respect to the channel realizations, and λj, j = 1, ..., L

is found based on the choice of precoding vector wwwjij.
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Proof. See Appendix A.3.

As the numerator in the lower bound of (3.12) is the variance of the desired signal

and the denominator is the variance of the effective noise term z′il, following the discussion

below (3.10) this achievable lower now grows without bound as M → ∞.

Remark 7. The lower bound of (3.12) is valid in general and does not depend on specific

choices of the linear precoding vector wwwjij or channel distributions, and the expectations

can be computed using the Monte Carlo simulation.

In the following, by using a spatially correlated/uncorrelated Rayleigh fading channel

model, we specialize the uplink/downlink lower bounds of (3.8) and (3.12) to specific

choices of the linear combining/precoding schemes discussed in the previous chapter.

3.2.2 Spatially Correlated Rayleigh Fading

Uplink

Consider the uplink achievable rate of Theorem 1, and assume that the channel estimates

ĝ̂ĝgjij are obtained for a spatially correlated Rayleigh Fading model using the MMSE esti-

mator described in (2.13), (2.14) and (2.15). When applying MRC at BS j, i.e., vvvjij = ĝ̂ĝgjij,

the result presented in the following theorem computes the closed-form expression of this

lower bound.

Theorem 3. Using MRC combining based on the MMSE estimator for a spatially cor-

related Rayleigh fading channel model, the lower bound in (3.8) for finite M is found as

below

I
(

ŷulji ; xxx
ul
Ω

∣
∣
∣ xxxulΩc

)

≥ C






∑

l∈Ω ρulρ
2
p

∣
∣
∣ tr
(
RRRjilΛΛΛ

−1
ji RRRjij

)
∣
∣
∣

2

∑L
l=1

∑K
k=1 ρulρp tr

(
RRRjklRRRjijΛΛΛ

−1
ji RRRjij

)
+ ρp tr

(
RRRjijΛΛΛ

−1
ji RRRjij

)




 ,

(3.13)

for all Ω ⊆ {1, ..., L} and ΛΛΛji is given in (2.18).
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Proof. See Appendix A.4.

It is readily confirmed that the tr(.) operation in (3.13) scales proportional to M , and

thus the numerator, which is the variance of the desired signal components, is proportional

to M2. On the other hand, the denominator, which is the variance of non-coherent inter-

ference plus the variance of noise, is proportional to M , and thereby the lower bound of

(3.13) scales as O(logM).

Downlink

Now, let us consider the downlink achievable rate of Theorem 2 for a spatially correlated

Rayleigh fading channel model, and also assume that MRT precoding is applied at all BSs,

i.e., wwwjij = ĝ̂ĝgjij. First, note that the normalization factor λmrt
j can be obtained as follows

λmrt
j =

∑K
i=1 E

[

ĝ̂ĝg†jijĝ̂ĝgjij
]

K
(3.14)

(a)
=

∑K
i=1 tr

(
ρpRRRjijΛΛΛ

−1
ji RRRjij

)

K
, (3.15)

where (a) follows from the distribution of ĝ̂ĝgjij in (2.14). One can use the following theorem

to find the closed-form expression of the lower bound in (3.12).

Theorem 4. If MRT precoding based on the MMSE estimator is used at all BSs, the lower

bound in (3.12) for finite M is found as below

I
(

ydlil ; sssΩ

∣
∣
∣sssΩc

)

≥ C








∑

j∈Ω
ρdlρ

2
p

λmrt
j

∣
∣
∣ tr
(
RRRjijΛΛΛ

−1
ji RRRjil

)
∣
∣
∣

2

∑L
j=1

∑K
k=1

ρdlρp
λmrt
j

tr
(
RRRjilRRRjkjΛΛΛ

−1
jkRRRjkj

)
+ 1







, (3.16)

for all Ω ⊆ {1, ..., L} and λmrt
j is given in (3.15).

Proof. See Appendix A.5.
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Similar to the uplink, the numerator is the variance of the desired signal components,

while the denominator is the variance of non-coherent interference plus the variance of

noise. First, observe that λmrt
j in (3.14) grows linearly with M . Hence, it can be verified

that asM → ∞ the numerator in (3.16) scales proportional toM , whereas the denominator

saturates; hence, the lower bound of (3.16) scales as O(logM).

3.2.3 Uncorrelated Rayleigh Fading

In the following, we specialize the expressions of the uplink/downlink achievable lower

bounds to the case of a spatially uncorrelated Rayleigh fading channel model, and further

find the bounds of ZF combining/precoding for this special case.

3.2.4 Uplink

Let us consider the special case of an MMSE estimator for a spatially uncorrelated Rayleigh

fading channel model given in (2.22) with corresponding distributions in (2.23) and (2.24).

Using the substitution RRRjij = βjijIIIM , the following is obtained

ΛΛΛji =

(

1 +

L∑

l=1

ρpβjil

)

IIIM . (3.17)

MRC

Assuming MRC, one can use the following corollary to simplify the uplink achievable rate

of (3.13).

Corollary 1. Assuming that MMSE estimates are obtained for a spatially uncorrelated

Rayleigh fading channel model, the lower bound in (3.8) (and therefore the one in (3.13))

simplifies to the following

I
(

ŷulji ; xxx
ul
Ω

∣
∣
∣ xxxulΩc

)

≥ C




M2

∑

l∈Ω ρulρpβ
2
jilα

2
jij

M
√
ρpβjijαjij

(
∑L

l=1

∑K
k=1 ρulβjkl + 1

)



 , (3.18)
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for all Ω ⊆ {1, ..., L} and αjij =

√
ρpβjij

1 +
∑L

l=1 ρpβjil
.

Proof. See Appendix A.6.

As the array gains in the numerator and denominator of (3.18) are now apparent, it

can be observed that the uplink achievable rate now grows as O(logM).

ZF

Assuming that BS j applies ZF combining to estimate the signal of the ith user in cell j,

we obtain at BS j

ŷulji = vvv†jijyyy
ul
j (3.19)

(a)
=

L∑

l=1

K∑

k=1

√
ρulvvv

†
jij (ĝ̂ĝgjkl + ǫǫǫjkl) x

ul
l [k] + vvv†jijnnnj

=
L∑

l=1

√
ρulvvv

†
jijĝ̂ĝgjilx

ul
l [i]

︸ ︷︷ ︸

Desired signals

+
L∑

l=1

K∑

k=1,k 6=i

√
ρulvvv

†
jijĝ̂ĝgjklx

ul
l [k]

︸ ︷︷ ︸

Interference caused by other users

+
L∑

l=1

K∑

k=1

√
ρulvvv

†
jijǫǫǫjklx

ul
l [k]

︸ ︷︷ ︸

Interference due to estimation error

+vvv†jijnnnj
︸ ︷︷ ︸

Noise

(3.20)

(b)
=

L∑

l=1

√
ρulvvv

†
jij

(
βjil
βjij

)

ĝ̂ĝgjijx
ul
l [i]

︸ ︷︷ ︸

Desired signals

+
L∑

l=1

K∑

k=1,k 6=i

√
ρulvvv

†
jij

(
βjkl
βjkj

)

ĝ̂ĝgjkjx
ul
l [k]

︸ ︷︷ ︸

Interference caused by other users

+
L∑

l=1

K∑

k=1

√
ρulvvv

†
jijǫǫǫjklx

ul
l [k]

︸ ︷︷ ︸

Interference due to estimation error

+vvv†jijnnnj
︸ ︷︷ ︸

Noise

, (3.21)

where (a) follows from the decomposition gggjij = ĝ̂ĝgjij + ǫǫǫjij, and (b) is due to (2.25). As

already discussed in Chapter 2, by applying ZF the second term in (3.21) disappears as a
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result of (2.41). Therefore, using (2.41), one can further simplify (3.21) as below

ŷulji =
L∑

l=1

√
ρul

(
βjil
βjij

)

xull [i]

︸ ︷︷ ︸

Desired signals

+
L∑

l=1

K∑

k=1

√
ρulvvv

†
jijǫǫǫjklx

ul
l [k]

︸ ︷︷ ︸

Interference due to channel estimation error

+vvv†jijnnnj
︸ ︷︷ ︸

Noise

(3.22)

=
L∑

l=1

νilx
ul
l [i]

︸ ︷︷ ︸

Desired signals

+ z′′jij
︸︷︷︸

Additive noise

, (3.23)

where νil =
√
ρul

(
βjil
βjij

)

and z′′jij is the effective noise term which is neither Gaussian nor

independent of the desired signals. With a similar argument as before, however, it can be

readily verified that the term associated with interference-plus-noise in (3.22) is zero mean

and uncorrelated from the desired signal components. Consequently, one can apply the

worst-case uncorrelated noise technique of Lemma 2 to obtain an achievable lower bound

for ZF in uplink. The following theorem establishes this result.

Theorem 5. Assuming ZF and also Gaussian signaling, i.e.,
[
xul1 [i], x

ul
2 [i], ..., x

ul
L [i]
]T ∼

CN (000, IIIL) for i ∈ {1, 2, ..., K}, the following set of achievable rates is obtained for the

MAC given in (3.23) at BS j

I
(

ŷulji ; xxx
ul
Ω

∣
∣
∣ xxxulΩc

)

≥ C








∑

l∈Ω ρul

(
βjil
βjij

)2

1

(M −K)
√
ρpβjijαjij

(
∑L

l=1

∑K
k=1 ρul

(
βjkl −√

ρpβjklαjkl

)
+ 1
)







,

(3.24)

for all Ω ⊆ {1, ..., L}.

Proof. See Appendix A.7.
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Using further algebraic simplifications, one can simplify (3.24) as follows

I
(

ŷulji ; xxx
ul
Ω

∣
∣
∣ xxxulΩc

)

≥ C

(

(M −K)
√
ρpρul

∑

l∈Ω βjilαjil
∑L

l=1

∑K
k=1 ρul

(
βjkl −√

ρpβjklαjkl

)
+ 1

)

. (3.25)

Therefore, in the asymptotic regime where M → ∞, the uplink achievable rates for ZF

scale as O(logM) and thus grow without bound.

3.2.5 Downlink

Considering the MRT/ZF precoding, we now specialize the downlink achievable rate of

(3.12) to the case of a spatially uncorrelated Rayleigh fading channel model.

MRT

Assuming MRT, one can use the following corollary to simplify the downlink lower bound

in (3.16).

Corollary 2. Assuming that MMSE estimates are obtained for a spatially uncorrelated

Rayleigh fading channel model, the lower bound in (3.12) (and therefore the one in (3.16))

simplifies to the following

I
(

ydlil ; sssΩ

∣
∣
∣sssΩc

)

≥ C







M2
∑

j∈Ω
ρdlρp
λmrt
j

β2
jilα

2
jij

M
∑L

j=1

ρdl
λmrt
j

∑K
k=1

√
ρpβjkjαjkjβjil + 1






, (3.26)

for all Ω ⊆ {1, ..., L} and λmrt
j is given in (2.48).

Proof. See Appendix A.8.

Noting the array gains in the numerator and denominator of (3.26), it is observed that

the downlink rate of MRT scales as O(logM).
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ZF

Using ZF precoding, a similar analysis can be applied to the downlink at the ith user in

cell l. Thus, one can write

ydlil =

L∑

j=1

√
ρdl
λzfj

K∑

k=1

(

ĝ̂ĝg†jil + ǫǫǫ†jil

)

vvvjkjsj[k] + wil (3.27)

=
L∑

j=1

√
ρdl
λj
ĝ̂ĝg†jilvvvjijsj[i]

︸ ︷︷ ︸

Desired signals

+

L∑

j=1

√
ρdl
λzfj

K∑

k=1,k 6=i

ĝ̂ĝg†jilvvvjkjsj[k]

︸ ︷︷ ︸

Non-coherent interference caused by other users

+

L∑

j=1

√
ρdl
λzfj

K∑

k=1

ǫǫǫ†jilvvvjkjsj[k]

︸ ︷︷ ︸

Iterference due to estimation error

+ wil
︸︷︷︸

Noise

(3.28)

(a)
=

L∑

j=1

√
ρdl
λzfj

(
βjil
βjij

)

ĝ̂ĝg†jijvvvjijsj [i]

︸ ︷︷ ︸

Desired signals

+
L∑

j=1

√
ρdl
λzfj

K∑

k=1,k 6=i

(
βjil
βjij

)

ĝ̂ĝg†jijvvvjkjsj [k]

︸ ︷︷ ︸

Non-coherent interference

+
L∑

j=1

√
ρdl
λzfj

K∑

k=1

ǫǫǫ†jilvvvjkjsj [k]

︸ ︷︷ ︸

Interference due to estimation error

+ wil
︸︷︷︸

Noise

(3.29)

(b)
=

L∑

j=1

√
ρdl
λzfj

(
βjil
βjij

)

sj [i]

︸ ︷︷ ︸

Desired signals

+
L∑

j=1

√
ρdl
λzfj

K∑

k=1

ǫǫǫ†jilvvvjkjsj[k] + wil

︸ ︷︷ ︸

Interference + Noise

(3.30)

=

L∑

j=1

θijsj[i]

︸ ︷︷ ︸

Desired signals

+ w′′
il

︸︷︷︸

Additive noise

, (3.31)

where (a) follows from the decomposition gggjij = ĝ̂ĝgjij + ǫǫǫjij, (b) is due to (2.25), θij :=
√
ρdl
λzfj

(
βjil
βjij

)

, w′′
il is the effective noise term which is neither Gaussian nor independent

of the users’ signals and λzfj is given in (2.53). Using a similar argument as before, the
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term associated with interference-plus-noise in (3.30) is zero mean and uncorrelated from

the desired signal components. One can thus apply the worst-case uncorrelated noise

technique of Lemma 2 to obtain an achievable lower bound for ZF in downlink. This is

formally presented in the following theorem.

Theorem 6. Assuming ZF and also Gaussian signaling, i.e., [s1[i], s2[i], ..., sL[i]]
T ∼

CN (000, IIIL), for i ∈ {1, 2, ..., K}, the following set of lower bounds can be achieved for

the MAC of (3.31)

I
(

ydlil ; sssΩ

∣
∣
∣sssΩc

)

≥ C









∑

j∈Ω

(

ρdl
λzfj

)(
βjil
βjij

)2

∑L
j=1

(

ρdl
λzfj

)

∑K
k=1

βjil −√
ρpβjilαjil

(M −K)
√
ρpβjkjαjkj

+ 1









, (3.32)

for all Ω ⊆ {1, ..., L}.

Proof. See Appendix A.9.

Noting the value calculated for λzfj in (2.53), for fixed K and large M , 1
λzf
j

∝ M , and

thereby as M grows the downlink achievable rates of (3.32) for ZF precoding scale as

O(logM).

It is important to note that, in downlink, user i in cell l is only interested in correctly

decoding sl[i]. Thus, incorrectly decoding sj [i], j 6= l, should not penalize the rates

achievable at this user. Furthermore, the power of the received signal for the users located

in distant cells is very small, and thus trying to decode signals of such users can reduce

achievable rates considerably.

Similarly for uplink, BS j is only interested in correctly decoding xulj [i]. Thus, in-

correctly decoding xull [i], l 6= j, should not penalize the rates achievable at BS j. As

will be illustrated later in this chapter, there exist scenarios where system performance is

constrained by these distant cells. This motivates the need for more advanced decoding

schemes such as simultaneous non-unique decoding (SND), which decodes pilot contam-

ination interference signals non-uniquely. In particular, this decoding scheme achieves
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higher rates than SD since the stringent conditions of uniquely decoding interference (i.e.,

applying SD) are now relaxed. Below, we discuss the SND scheme in more detail.

For the remainder of this chapter we only focus on the downlink. The analysis for

uplink is similar.

3.2.6 Simultaneous Non-unique Decoding (SND)

In this part, we investigate the benefit of using SND and further show that it enlarges

the region obtained by SD for finite M . The optimality of this decoding scheme for in-

terference networks with point-to-point codes and time-sharing was shown in [72]. From

the perspective of practical implementations, it is worth mentioning that low complex-

ity techniques, known as sliding-window coded modulation (SWCM) and sliding-window

superposition coding (SWSC) have recently been proposed in the literature and achieve

performance close to that of the theoretical SND [125–131].

Let us recall the downlink IC associated with the ith user of all cells which are sharing

pilot sequence ψψψi. More specifically, consider the downlink received signals ydlil , for l =

1, ..., L in (3.10), which together constitute the L outputs of an L-user IC, with input

signals [s1[i], s2[i], ..., sL[i]]
T . Also, as mentioned before, note that there are in total K

separate/non-interfering such L-user ICs in the downlink. The L BSs are the transmitters

of this IC, while the ith user of all cells are the receivers.

When performing the non-unique decoding scheme of SND, the ith user in cell l simul-

taneously decodes the intended signal sl[i] and the interference signals sj[i], j 6= l, where

incorrect decoding of the interference signals does not incur any penalty. More precisely,

user i in cell l finds the unique message ŵl such that (ŝssnl [i](ŵl), ŝ̂ŝs
n
S\{l}[i](wS\{l}), yyy

dl,n
il ) is

jointly typical for some wS\{l}, where ŝ̂ŝs
n
S\{l}[i](wS\{l}) is the tuple of all codewords ŝ̂ŝs

n
j [i](wj)

for j ∈ S \ {l}.

In [72], the capacity region of an IC when point-to-point random codes are used was

derived. Applying the results of [72] to the setting of the IC associated with the ith users
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across the L cells, the capacity region can be described by

R
SND
i =

⋂

l∈S
RSND

il , (3.33)

where RSND
il is the rate region achievable at user i in cell l, given by

RSND
il =

⋃

{l}⊆Ω⊆S

Ri
MAC(Ω,l), (3.34)

andRi
MAC(Ω,l) represents the achievable rate region obtained from uniquely jointly decoding

signals sj[i], j ∈ Ω at user i in cell l. Therefore, Ri
MAC(Ω,l) can be described by the system

of inequalities
∑

j∈ω
Rdl

ij ≤ I
(

ydlil ; sssω

∣
∣
∣ sssωc

)

, ∀ω ⊆ Ω, (3.35)

where sssω is the vector with entries sj[i], j ∈ ω, ω 6= ∅. Note that Ω in (3.34) (the achievable

region obtained by SND at user i in cell l) must contain the index of the intended signal

sl[i].

The rate region Ri
MAC(Ω,l) has the following properties:

[P1] The region does not include the rates Rdl
ij , j ∈ Ωc, and is thus unbounded in these

variables.

[P2] The signals sj [i], j ∈ Ωc, are treated as noise in the rate expressions defining the

region.

One can readily see that RSND
il strictly contains the MAC region, obtained from SD, at

user i in cell l. Therefore, the capacity region Ci in (3.33) (obtained from SND) is strictly

larger than the intersection of the MAC regions at ith users in cells l = 1, ..., L. Another

important observation is that, due to [P2], Ril also contains the TIN region (a similar

observation was also made in [72] and [71]). Hence, as it will also be confirmed later via

simulation results, the performance of SND should always be at least as good as TIN and

SD.
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Recall that the SD scheme must decode all users, including the (possibly weak) pilot

contamination interference terms. Hence, as will be seen later in this chapter, it achieves

worse rates than SND.

Remark 8. Note that there exists a complexity-performance trade-off between SD/SND

and TIN. Specifically, while the proposed schemes of SD/SND have more complexity than

TIN as they need to decode additional users, for large number of antennas M , the rates

achieved by TIN saturate to a fixed value that does not increase with M . In contrast,

the rates for SND/SD increase as O(logM), and hence unbounded rates are obtained as

M → ∞.

Remark 9. Note that the successive interference cancellation (SIC) technique used in [37]

is different from the SND/SD of this chapter in the following manner: the work of [37]

considers a setting in downlink where each user is served by all BSs through the reception

of L independent data symbols from the L BSs. In particular, each user applies SIC to

sequentially decode the L intended data symbols transmitted by the BSs, while treating all

interfering signals, including pilot-sharing interfering signals, as noise, thus resulting in

the rate saturation problem. This is in contrast to the approach proposed in this chapter. As

the receivers (i.e., BSs in uplink or users in downlink) try to jointly decode (either uniquely

or non-uniquely) the intended signal along with the signal coming from the pilot-sharing

users, there is no rate saturation as M increases.

3.2.7 A Simplified Subset of SND (S-SND)

We now consider a simplified achievable region which is a subset of SND and also described

in [115, Eq. (6.5)]. We refer to this region as S-SND, which is denoted by RS−SND
il at user

i in cell l, and described by the following set of inequalities

∑

j∈Ω
Rdl

ij ≤ I
(

ydlil ; sssΩ

∣
∣
∣ sssΩc

)

, (3.36)

for all Ω such that {l} ⊆ Ω ⊆ {1, 2, ..., L}. To obtain the network-wide achievable region

across all cells (for the ith pilot-sharing users), denoted by R
S−SND
i , one should take the
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intersection of RS−SND
il over l = 1, ..., L, i.e., R

S−SND
i =

⋂

l RS−SND
il .

One can directly verify that RS−SND
il can be obtained from RSD

il by removing all 2L−1−1

inequalities in (3.7) that do not involve the rate Rdl
il . Hence, the region SD is strictly

contained in S-SND. Furthermore, due to the results of (3.16) for a spatially correlated

channel as well as (3.26) and (3.32) for an uncorrelated channel, it can be verified that the

boundaries of RS−SND
il and R

S−SND
i grow as O(logM).

The motivation behind considering this region is as follows. It will be shown in the

next section that, as opposed to SND, RS−SND
il is in the form of a convex polytope which

makes it easy for computing the maximum symmetric rate allocation. Therefore, even for

large networks (e.g., large number of cells) the maximum symmetric rate of S-SND can

be computed in a computationally efficient way. Furthermore, since S-SND is a subset of

SND, it provides a lower bound to SND.

3.3 Maximum Symmetric Rate Allocation

Considering (3.10), it is evident that users with relatively small effective channel gains

ζij, j = 1, ..., L, i = 1, ..., K, suffer from smaller rates compared to users with stronger

channels. Therefore, fairness among users when allocating resources should be considered.

As a measure of fairness, we study the problem of maximum symmetric rate allocation

(which is the same as maximizing the minimum achievable rate among all users) for various

schemes. This measure of performance has been widely applied in the literature [111,

113, 132–137]. More specifically, we will compare the performance of the proposed full

interference decoding schemes SD/SND as well as the sub-region of S-SND with that of

TIN based on the maximum symmetric rate they can offer. In what follows, the analysis

is shown only for the L-user IC associated with the ith (i is arbitrary) users across all cells

that are employing the same pilot sequence ψψψi, since the same results hold for other sets

of pilot-sharing users.

The maximum symmetric rate associated with the rate region achievable at user i in cell

l is obtained by RSym,l = maxR such that the rate vector RRR = [R,R, ..., R]T belongs to the
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achievable region at user i in cell l. Therefore, the rate vector [RSym,l, RSym,l, ..., RSym,l]
T

must lie at the intersection of the diagonal
(
Rdl

i1 = ... = Rdl
iL

)
with the boundary of the

achievable region at user i in cell l.

One can verify that RSD
il in (3.7) (achieved at user i in cell l) can be represented as

the intersection of a finite number of closed half-spaces and is also bounded. Hence, it is

a convex polytope, denoted by

Rl =
{[
Rdl

i1, ..., R
dl
iL

]T
:
∑

j∈Ω
Rdl

ij ≤ gl(Ω), ∀Ω ⊆ {1, 2, ..., L}
}

, (3.37)

where the function gl(Ω) is the r.h.s of the inequality in (3.7). Similarly, it can be verified

that RS−SND
il in (3.36) is of the form (3.37), except now gl(Ω) = ∞ if l /∈ Ω, and is also a

convex polytope.

The following lemma can be used to find the maximum possible value for the minimum

entry of a vector RRR, where RRR ∈ Rl.

Lemma 3. In the polytope Rl, define

π = max min
i∈S

Ri (3.38)

subject to [R1, ..., RL]
T ∈ Rl, (3.39)

where S = {1, 2, ..., L}. Then,

π = min
Ω⊆{1,2,...,L},Ω 6=∅

gl(Ω)

|Ω| . (3.40)

Proof. Following the steps of [138], consider an arbitrary vector RRR ∈ Rl, and define δ =

mini Ri. Hence, for all Ω 6= ∅, we have δ ≤ ∑

i∈ΩRi/|Ω| ≤ gl(Ω)/|Ω|. Therefore,

minΩ 6=∅ gl(Ω)/|Ω| is an upper bound on mini Ri. Choosing RRR = (π0, ..., π0) ∈ Rl, where

π0 = minΩ 6=∅ gl(Ω)/|Ω|, the upper bound is thus achieved.

Therefore, the maximum symmetric rate (which also maximizes the minimum rate due
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to Lemma 3) at user i in cell l is

RSym,l = min
Ωl⊆{1,2,...,L},Ωl 6=∅

gl(Ωl)

|Ωl|
. (3.41)

Finally, to find the maximum symmetric rate network-wide one needs to compute

minRSym,l for l ∈ {1, 2, ..., L}. In the following, we discuss how (3.41) can be solved

over various regions.

SD: At user i in cell l, the minimization over RSD
il in (3.7) can be carried out by solving

min
Ωl

I(ydlil ; sssΩl
| sssΩc

l
)

|Ωl|
(3.42)

subject to Ωl ⊆ {1, 2, ..., L}. (3.43)

The expressions of (3.16) for a spatially correlated channel or (3.26) and (3.32) for an un-

correlated channel then allow one to find an achievable lower bound to the above problem.

For instance, when applying MRT and assuming that channels are spatially uncorrelated,

one needs to solve the following

[P1] min
Ωl

1

|Ωl|
log









1 +

MK
∑

j∈Ωl

(

ρdlρpβ
2
jilα

2
jij

∑K
k=1

√
ρpβjkjαjkj

)

K
∑L

j=1 ρdlβjil + 1









(3.44)

subject to Ωl ⊆ {1, 2, ..., L}. (3.45)

SND: It can be seen from (3.34) that the region RSND
il achieved by SND at user i

in cell l can not in general be represented by the intersection of a finite number of half-

spaces and thus does not fall in the category of convex polytopes. However, RSND
il in

(3.34) is represented as the union of a finite number of convex polytopes. Hence, to find

the maximum symmetric rate of SND at user i in cell l, one calculates the maximum

symmetric rate over each of these convex polytopes using Lemma 3, and then picks the

largest of these quantities. We will simulate the performance of SND in different scenarios
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and for different numbers of cells (i.e., L = 2, 3, 4, and 7) at the end of this chapter.

Moreover, the special cases of two-cell and three-cell systems, for which the SND region is

easier to investigate, will be analytically studied and discussed at the end of this section.

Below, we also investigate the maximum symmetric rate of S-SND which provides a lower

bound to SND.

S-SND: Using RS−SND
il , problem [P1] changes to the following

[P2] min
Ωl

1

|Ωl|
log









1 +

MK
∑

j∈Ωl

(

ρdlρpβ
2
jilα

2
jij

∑K
k=1

√
ρpβjkjαjkj

)

K
∑L

j=1 ρdlβjil + 1









(3.46)

subject to {l} ⊆ Ωl ⊆ {1, 2, ..., L}. (3.47)

Note that even though [P1] and [P2] have the same objective function, following the

discussion below (3.36) the solution Ωl of [P2] must include the index l associated with the

rate Rdl
il , and is thus not necessarily identical to that of [P1]. For an uncorrelated channel

with ZF precoding, (3.26) in [P1] and [P2] is replaced with (3.32), while for a spatially

correlated channel with MRT it is replaced with (3.16).

To tackle [P1] (or [P2]), we first consider the extreme regime of high SINR.

3.3.1 High SINR regime

Assume that ZF precoding is applied at the BSs. In this regime, the values of M and L

are such that

log









1 +

MK
∑

j∈Ωl

(

ρdlρpβ
2
jilα

2
jij

∑K
k=1

√
ρpβjkjαjkj

)

K
∑L

j=1 ρdlβjil + 1









≈ log(M). (3.48)
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For instance, this approximation holds when the number of BS antennas M is truly large

but finite while the number of cells L and users K are fixed. A similar approximation can

be obtained assuming that MRT is used.

Thus, in this regime the minimization in both [P1] and [P2] is achieved by Ω∗
l =

{1, 2, ..., L}, and thereby the maximum symmetric rate in cell l is given by

RSD
Sym,l = RS-SND

Sym,l =
I
(
ydlil ; s1[i], s2[i], ..., sL[i]

)

L
, (3.49)

which scales as O(logM). As discussed before, the performance of SND is at least as good

as SD and S-SND, i.e., RSND
Sym,l ≥ RSD

Sym,l = RS-SND
Sym,l . Thus, in the high SINR regime the maxi-

mum symmetric rate of SND occurs on one of its region boundaries that scales as O(logM).

In other words, from (3.34) the maximum symmetric rate achieved by SND in the high

SINR regime belongs to the full MAC, i.e., RSND
Sym,l ∈ Ri

MAC({1,...,L},l). Therefore, in the

high SINR regime one can upper bound RSND
Sym,l by R

SND
Sym,l ≤

1

L
I
(
ydlil ; s1[i], s2[i], ..., sL[i]

)
.

Consequently, we obtain for the high SINR regime RSND
Sym,l = RSD

Sym,l = RS-SND
Sym,l . To find the

allocation network-wide, denoted by RSym, one needs to calculate the smallest value of

(3.49) across all cells, i.e.,

RSym = min
j

I
(
ydlij ; s1[i], s2[i], ..., sL[i]

)

L
, (3.50)

which is the same for all interference decoding schemes. Therefore, compared to TIN we

obtain

RSym > min
j
I
(
ydlij ; sj [i]

)
= RTIN

Sym, (3.51)

i.e., joint decoding of all signals {sj [i]}Lj=1 performs strictly better than decoding only the

desired signal (e.g., sl[i] in cell l), while treating the interference signals (e.g., {sj[i]}Lj=1,l 6=j

in cell l) as noise (TIN).

Remark 10. Consider the alternative approach of using different pilots in different cells,

as explained before (3.1). One should note that, for the regime of large but finite M ,
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decoding all K(L − 1) + 1 number of interfering users at the current cell will generally

produce a smaller symmetric rate than the approach of Section 2.3.3 which only decodes

L users, due to the much smaller pre-log factor in the former case. For instance, in the

regime of high SINR, using (3.48)-(3.50), the achieved maximum symmetric rate of the

former case is ≈ 1/(K(L−1)+1) log(M), whereas that of the latter case is ≈ 1/L log(M).

Hence, when decoding pilot contamination interference, re-using orthonormal pilots cross

all cells is preferred as, for finite M , it results in larger symmetric rate across the network.

3.3.2 General case

Now, consider the problem of determining the maximum symmetric rate over the regions

TIN/SD/SND/S-SND in general, where the approximation of high SINR is no longer

assumed. Since it is difficult to comment on the performance of maximum symmetric

rate for SND in general due to the structure of the SND region, we next study the two

special cases of two-cell and three-cell systems which are analytically tractable. For a

symmetric two-cell system, we will find that either TIN is optimal (SND is always optimal,

and thus the performance of TIN equals that of SND) or the interference decoding scheme

of SD is optimal (and hence the performance of SD equals that of SND). Whereas, for the

three-cell system we will briefly illustrate examples where SND outperforms all the other

schemes. Cases with more cells (i.e., L = 4 and L = 7) will be evaluated at the end of this

chapter via comprehensive simulation results in different scenarios.

Two-cell system

We now consider a cellular system consisting of only two cells, and denote the indices

of the cells by j = 1, 2. For the downlink IC associated with the ith pilot-sharing users,

i = 1, 2, ..., K, the rate regions achieved by different schemes in cell 1 are given as below.

SD: From (3.7), we obtain for RSD
il

Rdl
i1 ≤ I

(
ydli1; s1[i]

∣
∣ s2[i]

)
(3.52)
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Rdl
i2 ≤ I

(
ydli1; s2[i]

∣
∣ s1[i]

)
(3.53)

Rdl
i1 +Rdl

i2 ≤ I
(
ydli1; s1[i], s2[i]

)
. (3.54)

SND: From (3.34), we obtain for RSND
il

Rdl
i1 ≤ I

(
ydli1; s1[i]

∣
∣ s2[i]

)
(3.55)

Rdl
i1 +min

{
Rdl

i2, I
(
ydli1; s2[i]

∣
∣ s1[i]

)}
≤ I

(
ydli1; s1[i], s2[i]

)
. (3.56)

S-SND: From (3.36), we obtain for RS−SND
il

Rdl
i1 ≤ I

(
ydli1; s1[i]

∣
∣ s2[i]

)
(3.57)

Rdl
i1 +Rdl

i2 ≤ I
(
ydli1; s1[i], s2[i]

)
. (3.58)

Note that, depending on the choice of precoding vector and whether the channel is cor-

related or not, the I
(
.; .
∣
∣.
)
terms above can be readily replaced by the bounds of (3.16),

(3.26) or (3.32), which scale as O(logM).

Remark 11. One can similarly obtain the rate regions in cell 2 by replacing ydli1 with ydli2

and swapping appropriate indices in (3.52)-(3.58).

Note that in a two-cell system, RSND
il is the union of RSD

il and the TIN region (or

alternatively the union of RS−SND
il and TIN). We now aim to investigate the performance

of different schemes with maximum symmetric rate allocation. For the two-cell system, we

first define the following cases:

Case (i): In this case, we have

I
(
ydli1; s2[i]

∣
∣s1[i]

)
< I

(
ydli1; s1[i]

)
. (3.59)

Case (ii): In this case, we have

1

2
I
(
ydli1; s1[i], s2[i]

)
≤ min

{
I
(
ydli1; s1[i]

∣
∣ s2[i]

)
, I
(
ydli1; s2[i]

∣
∣ s1[i]

)}
. (3.60)
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Figure 3.3: (a) Illustration of RSD
i1 in cell 1 representing the 3 sub-regions G1, G2 and G3

over which the diagonal Rdl
i2 = Rdl

i1 will intersect a particular facet of the rate region, (b)
Illustration of the rate regions achieved under TIN/SND/S-SND/SD in cell 1 for case (i):
the diagonal Rdl

i2 = Rdl
i1 intersects SD at point E, S-SND at point F, and SND/TIN at point

G, resulting in (3.66), (c) Illustration of the rate regions achieved under TIN/SND/S-
SND/SD in cell 1 for case (ii): the diagonal Rdl

i2 = Rdl
i1 intersects TIN at point H, and

SND/S-SND/SD at point I, resulting in (3.67).

Case (iii): In this case, we have

I
(
ydli1; s1[i]

∣
∣s2[i]

)
< I

(
ydli1; s2[i]

)
. (3.61)

From the perspective of the maximum symmetric rate, cases (i)-(iii) refer to conditions

(in terms of mutual information) under which the diagonal Rdl
i2 = Rdl

i1 intersects one of the

three facets of the rate region.

More specifically, consider the rate region RSD
i1 achieved by SD in cell 1, de-

picted in Fig. 3.3a, where the entire region is divided into 3 sub-regions G1, G2 and

G3. Also, from (3.52)-(3.54), note that the corner points are given by (C, A) =
(
I
(
ydli1; s1[i]

)
, I
(
ydli1; s2[i]

∣
∣s1[i]

))
and (D, B) =

(
I
(
ydli1; s1[i]

∣
∣s2[i]

)
, I
(
ydli1; s2[i]

))
.

Now, the conditions under which the diagonal Rdl
i2 = Rdl

i1 lies in sub-regions G1, G2 or

G3, are equivalent to the conditions of the three cases of (3.59)-(3.61) as follows: the diag-

onal Rdl
i2 = Rdl

i1 lies in G1, i.e., case (i) is true, iff C > A; the diagonal Rdl
i2 = Rdl

i1 lies in G2,

i.e., case (ii) is true, iff C ≤ A and B ≤ D; the diagonal Rdl
i2 = Rdl

i1 lies in G3, i.e., case (iii)

is true, iff B > D. Specifically, the conditions for case (i) in (3.59) and case (iii) in (3.61)
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are exactly those given by C > A and B > D, respectively.

For case (ii), note that one can also write

I(ydli1; s1[i], s2[i] ) = I(ydli1; s1[i] ) + I(ydli1; s2[i] | s1[i] ) (3.62)

= I(ydli1; s2[i] ) + I(ydli1; s1[i] | s2[i] ). (3.63)

Hence, in case (ii) where we have C ≤ A and B ≤ D, by replacing C and B with their

respective identity from (3.62) and (3.63), we reach the following conditions

1

2
I(ydli1; s1[i], s2[i] ) ≤ I(ydli1; s2[i] | s1[i] ) (3.64)

1

2
I(ydli1; s1[i], s2[i] ) ≤ I(ydli1; s1[i] | s2[i] ), (3.65)

resulting in (3.60).

Remark 12. If the worst-case uncorrelated noise bounds of (3.16), (3.26) or (3.32) are

substituted for the mutual information expressions in (3.59)-(3.61), case (iii) should not

happen as the effects of small-scale fading vanish in these three bounds and thus the received

power of s2[i] in cell 1 can not be larger than that of s1[i] in cell 1. Hence, case (i) and case

(ii) can be viewed as two complimentary and exhaustive conditions for a two-cell system in

cell 1.

Further note that the bounds of (3.16), (3.26) or (3.32) differ from the mutual expres-

sions in (3.61) due to two factors: (a) the expressions in (3.61) depend on the specific

fading gains, and (b) the effective noise is not necessarily Gaussian. However, as M in-

creases the channel hardening of (2.51) and (2.54) minimize the effects of (a). Moreover,

due to the channel hardening and favorable propagation effects in (2.51) and (2.54) as well

as the assumption of Gaussian signaling in the results of (3.16), (3.26) and (3.32), the

interference terms (effective noise) in (2.43) are asymptotically Gaussian.

The performance comparison of various schemes in cell 1 is summarized in the following

corollary.
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Corollary 3. If the condition of case (i) in (3.59) holds in cell 1, then

RSD
Sym,1 < RS-SND

Sym,1 < RSND
Sym,1 = RTIN

Sym,1, (3.66)

otherwise, if the condition of case (ii) in (3.60) holds in cell 1, then

RTIN
Sym,1 ≤ RSD

Sym,1 = RSND
Sym,1 = RS-SND

Sym,1 , (3.67)

with strict equality in (3.67) if and only if (3.60) holds with strict equality.

Proof. See Appendix A.10.

Fig. 3.3 illustrates an example of this corollary. Sub-figure (b) represents case (i) and

its consequence in (3.66), whereas sub-figure (c) represents case (ii) and its consequence in

(3.67). It is also verified from Fig. 3.3 that if the condition of case (iii) in (3.61) is active in

cell 1, its consequence is identical to that of case (ii) in (3.67), however it is not discussed

here due to Remark 12.

To further comment on the performance of various schemes over both cells, we consider

a symmetric setting which is easy to analyze, and provides insights into the benefits of

employing interference decoding schemes.

We define the symmetric setting as a scenario where the MACs seen in both cells 1 and

2 are identical, i.e., a symmetric two-user IC. Therefore, if case (i) is active in cell 1, it is

also active in cell 2, and the resulting rates are equal in both cells. Following Remark 11

it is thus obtained network-wide that

RSD
Sym < RS-SND

Sym < RSND
Sym = RTIN

Sym. (3.68)

Observation: Both SND and TIN achieve the same performance and strictly outperform

SD and S-SND. Thus, TIN may be the better choice of strategy in practice due to its

simplicity.

Similarly, if case (ii) is active with strict inequality in cell 1, it is also active with strict

inequality in cell 2, and the resulting rates are equal in both cells. Following Remark 11 it
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Figure 3.4: An example of symmetric geometry in a two-cell system, where users are located
at the same location on the cell edge, denoted by solid squares, and BSs are located at the
center of the cells.

is thus obtained network-wide that

RTIN
Sym < RSD

Sym = RSND
Sym = RS-SND

Sym . (3.69)

Observation: The interference decoding schemes SD/SND achieve the same performance

and strictly outperform TIN. Thus, SD may be the simpler one to implement in practice.

Examples of these cases will be demonstrated in the simulation results section.

Consider, for instance, a setup where all users are located at the same location on the

cell edge, denoted by solid squares, as in Fig. 3.4. With respect to the bounds of (3.16),

(3.26) and (3.32), this setup is symmetric as the effects of small-scale fading vanish in these

bounds.

Note that in a two-cell system, as discussed in Fig. 3.3, all faces of RSND
il , l = 1, ..., L,

are achieved by either TIN or SD. Next, we will briefly illustrate scenarios for a three-cell

system, where SND can strictly outperform all the other schemes.

Three-cell system

Now, consider a cellular system consisting of only three cells. In this case, the rate regions

under SD/S-SND can be obtained by a straightforward extension of (3.52)-(3.54) and

(3.57)-(3.58) to the three-cell system, thus omitted for brevity. Moreover for SND, the rate
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region RSND
i1 achieved in cell 1 can be found using (3.34) as follows:

Rdl
i1 ≤ I

(
ydli1; s1[i]

∣
∣ s2[i], s3[i]

)
(3.70)

Rdl
i1 +min

{
I
(
ydli1; s2[i]

∣
∣ s1[i], s3[i]

)
, Rdl

i2

}

≤ I
(
ydli1; s1[i], s2[i]

∣
∣ s3[i]

)
(3.71)

Rdl
i1 +min

{
I
(
ydli1; s3[i]

∣
∣ s1[i], s2[i]

)
, Rdl

i3

}

≤ I
(
ydli1; s1[i], s3[i]

∣
∣ s2[i]

)
(3.72)

Rdl
i1 +min

{
I
(
ydli1; s2[i], s3[i]

∣
∣ s1[i]

)
,

Rdl
i2 + I

(
ydli1; s3[i]

∣
∣ s1[i], s2[i]

)
,

Rdl
i3 + I

(
ydli1; s2[i]

∣
∣ s1[i], s3[i]

)
,

Rdl
i2 +Rdl

i3

}

≤ I
(
ydli1; s1[i], s2[i], s3[i]

)
. (3.73)

Similar to the two-cell system, depending on the choice of precoding vector and whether

the channel is correlated or not, the I
(
.; .
∣
∣.
)
terms above can be readily replaced by the

bounds of (3.16), (3.26) or (3.32), which scale as O(logM). An example of this region is

plotted in Fig. 3.5, where the dashed lines indicate that the region in cell 1 is unbounded in

variables Rdl
i2 and Rdl

i3, which is in agreement with property [P1] of the achievable region.

Also, note that following Remark 11 the regions corresponding to cells 2 and 3 can be

similarly found.

By comparing (3.70)-(3.73) with the achievable regions of SD, RSD
i1 , and S-SND,

RS−SND
i1 , it is noted that there are four faces in Fig. 3.5 that are only achieved by SND and

not by any other schemes. More precisely in cell 1, it is possible for RSym,1 to achieve one of

the rates, I(ydli1; s1[i]
∣
∣ s3[i] ), I(y

dl
i1; s1[i]

∣
∣ s2[i] ),

1
2
I(ydli1; s1[i], s2[i] ) or

1
2
I(ydli1; s1[i], s3[i] ).

Note that the first rate I(ydli1; s1[i]
∣
∣ s3[i] ) can be interpreted as the maximum rate

of the ith user of cell 1, while treating the ith user in cell 2 as noise. The second rate

I(ydli1; s1[i]
∣
∣ s2[i] ) can be interpreted similarly. Moreover, the rate 1

2
I(ydli1; s1[i], s2[i] )

can be interpreted as the maximum symmetric rate achieved by joint decoding of the

ith users of cells 1 and 2, while treating the ith user of cell 3 as noise. The fourth rate
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Figure 3.5: An example of the rate region, RSND
i1 , obtained by SND in cell 1.

1
2
I(ydli1; s1[i], s3[i] ) can be interpreted similarly. Therefore, neither SD/S-SND nor TIN

can provide these rates, in which case SND can strictly outperform all the other schemes.

More discussion will be provided in the simulation results section.

3.4 Simulation Results

To illustrate the performance of the different interference management schemes,

TIN/SD/SND, with maximum symmetric spectral efficiency (SE in units of bits/sec/Hz)

allocation, we simulate the downlink of a multi-cell massive MIMO system experiencing

pilot contamination. In particular, we consider hexagonal cells with a radius of r = 400

m where BSs are located at the center of the cell and K = 15 users are uniformly dis-

tributed at random within the area of each cell. To evaluate the performance, the average

of maximum symmetric SEs is calculated over 150 random realizations of user locations.

The downlink transmit power of each BS is taken to be 40 W, and to model large-scale
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Figure 3.6: The 3D distance model of [2], where hBS is the BS height taken to be 25 m,
and d2D is the 2D distance from the user to the BS.

(a) L = 2 (b) L = 3 (c) L = 4 (d) L = 7

Figure 3.7: Cell configurations for different scenarios depending on the value of L, (a)
L = 2, (b) L = 3, (c) L = 4, (d) L = 7.

fading coefficients, βjkl, a path-loss model adopted from [2] is considered:

[βjkl]dB = −13.54− 39.08 log10
(
d3Djkl
)
− 20 log10 (fc) + 0.6 (hUT − 1.5) , (3.74)

where d3Djkl is the 3D distance (in meters) from user k in cell l to BS j (see Fig. 3.6), the

carrier frequency is fc = 3.5 GHz, hUT is the user height which is taken to be 1.5 m. Also,

with a system bandwidth of 20 MHz, the noise variance is assumed to be −101 dBm. Note

that while the effects of shadowing are neglected in (3.74), we will investigate its impact

on system performance separately at the end of this section. It is further assumed that
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users are located at least 35 m away from their BSs, i.e., d2D ≥ 35 m. To study the impact

of changing the number of cells, L, on system performance we also consider four different

cell configurations when L ∈ {2, 3, 4, 7}, as shown in Fig. 3.7. It should also be mentioned

that wrap around topology is not used for the simulation results corresponding to the cell

configurations of Fig. 3.7. However, the effect of wrap around topology for L = 7 will be

studied separately at the end of this section.

For the sake of completeness, we also plot the performance of the sub-region S-SND

in all scenarios. Note that S-SND is not a communication scheme, but only a simple

sub-region of SND that serves as a good lower bound (clearly tighter than SD) to SND,

and thus is only used for performance comparison purposes. Below, we investigate the two

cases of a spatially correlated Rayleigh fading channel and an uncorrelated Rayleigh fading

channel separately.

3.4.1 Spatially correlated

We now study the downlink performance of MRT and ZF precoding when a spatially

correlated channel model is used. We adopt the exponential correlation model of [139],

i.e.,

RRRjkl = βjkl









1 r∗jkl · · ·
(
r∗jkl
)M−1

rjkl 1 · · ·
(
r∗jkl
)M−2

...
...

. . .
...

(rjkl)
M−1 (rjkl)

M−2 · · · 1









, (3.75)

which is widely used in the literature [39,64,140–143], where RRRjkl is the correlation matrix

from user k in cell l to BS j. In particular, in this model rjkl = κejφjkl is the correlation

coefficient, κ ∈ [0, 1] is the correlation magnitude and φjkl is the user angle to the antenna

array boresight. Unless otherwise specified, we assume κ = 0.4, i.e., moderate spatial

correlation.

Figs. 3.8 and 3.9 show the performance of ZF and MRT for L = 7 versusM , respectively.

While in both cases the achievable symmetric SEs increase with M , as discussed below

(2.41) ZF achieves significantly higher SEs compared to MRT. It can be seen from Fig. 3.8
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that the gain offered by SND compared to TIN is about 19% and 33% for M = 128

and M = 256, respectively, and this gain increases to about 52% when M = 1024. On

the other hand, Fig. 3.9 shows that when using MRT the gain offered by SND is about

7% and 12% for M = 128 and M = 256, respectively, and this gain increases to about

43% when M = 1024. Lastly, the two figures confirm that SD performs poorly in both

scenarios, as it tries to blindly decode pilot contamination interference terms regardless

of their strength. This is as opposed to the non-unique decoding scheme of SND, which

automatically determines which pilot contamination interference terms should be decoded

along with the message of interest while the remaining interference terms will be treated

as noise. Since MRT performs poorly compared to ZF, as observed in Fig. 3.9, we only

focus on the performance of ZF for the rest of the considered scenarios.

Figs. 3.10-3.12 show the performance of ZF for the cases of L = 4, L = 3 and L = 2,

respectively. While a pattern similar to that of Fig. 3.8 is apparent, one can notice that

the proposed schemes achieve higher SEs as the number of cells decreases. This is due to

the fact that by reducing L, while keeping the other system parameters fixed, the amount

of interference decreases, thus increasing the spectral efficiency. As a consequence, when

performing ZF for instance, the gain offered by SND decreases as the number of cells

reduces. In particular, for L = 4 this gain is about 18% when M = 256 (down from 33%

in the case of L = 7) and it decreases to about 7% when L = 2 and M = 256.

Next, we study the performance of regularized zero-forcing (RZF) precoding. Here, the

precoding matrix at BS j is given by

WWW rzf
j = Ĝ̂ĜGjj

(

Ĝ̂ĜG†
jjĜ̂ĜGjj + δIIIK

)−1

, ∀j, (3.76)

where δ is a regularization factor, which improves the numerical stability of the inverse

operation. Note that the choice of δ is arbitrary and could be further optimized (see for

example [87, Theorem 6] and [144]). The two choices of δ = K/ρdl (suggested by [145]) and

δ =M/ρdl (suggested by [32]) were investigated by simulation. The former provided better

performance for the setup and system parameters considered in this work. Therefore, in

this thesis we take δ = K/ρdl. One can verify that when M is large, the diagonal entries
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Figure 3.8: Performance of maximum symmetric SE for seven cells when ZF precoding and
a spatially correlated channel model are used.

of Ĝ̂ĜG†
jjĜ̂ĜGjj increase with M and therefore the approximation below can be used

(

Ĝ̂ĜG†
jjĜ̂ĜGjj + δIIIK

)−1

≈
(

Ĝ̂ĜG†
jjĜ̂ĜGjj

)−1

. (3.77)

Hence, when M is large, one expects the performance of RZF to resemble that of ZF. On

the other hand, whenM is small, with a proper choice of the regularization factor RZF can

outperform ZF [145]. These results are confirmed in the next figures. Specifically, Fig. 3.13

shows the performance of TIN/SD/SND with maximum symmetric SE for L = 7 and when

RZF precoding is applied at the BSs. Similar to the cases of ZF and MRT, as M increases

the gain offered by SND improves, while unsurprisingly SD is always outperformed by the
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Figure 3.9: Performance of maximum symmetric SE for seven cells when MRT precoding
and a spatially correlated channel model are used.

other schemes for this range of antennas. Particularly, the gain offered by SND is about

19% and 32% for M = 128 and M = 256, respectively, and this gain increases to about

51% when M = 1024. This is similar to ZF, and is indeed in agreement with the previous

discussion, asM is relatively large in these scenarios. This comparison becomes more clear

by looking at Fig. 3.14, which shows the performance of SND for RZF and ZF in the same

plot. One can observe that when M is small (i.e., M ≤ 64), there is a visible gain offered

by RZF, while for large M the performance of RZF converges to that of ZF.

Next, we study the impact of changing the number of users K and the correlation

magnitude κ on the performance of the different schemes. To this end, we assume that ZF

precoding is applied at the BSs. Fig. 3.15 shows the performance of TIN/SD/SND with
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Figure 3.10: Performance of maximum symmetric SE for four cells when ZF precoding and
a spatially correlated channel model are used.

maximum symmetric SE versus the number of users K, when L = 7 and M = 256. It can

be observed that increasing K results in smaller achievable symmetric SEs. This is similar

to the case of increasing L, as serving a larger number of users leads to smaller symmetric

SEs. Consequently, the gain offered by SND improves when K increases. More specifically,

Fig. 3.15 shows a gain of about 11% when K = 2, which increases up to about 33% when

K = 15.

The impact of changing the correlation magnitude κ on system performance is shown

in Fig. 3.16, where L = 7, M = 256 and K = 15. It can be seen from the figure that

increasing the correlation magnitude from 0 (equivalent to the case of uncorrelated fading)

to 0.8 (equivalent to strong spatial correlation) results in improving the performance of
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Figure 3.11: Performance of maximum symmetric SE for three cells when ZF precoding
and a spatially correlated channel model are used.

both TIN and SND, while the performance of SD does not change much. Consequently,

as the performance of both schemes improves by transitioning towards the strong spatial

correlation regime, the gain offered by SND reduces. More precisely, SND provides a gain

of about 56% in the spatially uncorrelated case (κ = 0), while this gain gradually reduces

to about 6% in the strong spatial correlation regime (κ = 0.8). Also, in the regime of

moderate spatial correlation (κ = 0.4) the gain of SND is about 33%.

The improvement of the performance obtained by TIN is in agreement with the results

reported in [111] and [64]. Particularly, it is known that spatial correlation can improve

the quality of MMSE channel estimates resulting in reduced pilot contamination effects

in massive MIMO systems, provided that users have different spatial correlation charac-
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Figure 3.12: Performance of maximum symmetric SE for two cells when ZF precoding and
a spatially correlated channel model are used.

teristics [111]. In other words, when pilot sharing users have different spatial correlation

characteristics, pilot contamination interference becomes negligible in the strong spatial

correlation regime. One should note that while the channel estimates of pilot sharing

users are correlated, these users can have very different correlation matrices. For instance,

this can happen when pilot sharing users have completely different angles to the antenna

boresight in (3.75). On the other hand, when these users have similar spatial correlation

characteristics, this interference becomes strong. An example of this scenario is the special

case of an uncorrelated channel where the correlation matrices are very similar (recall that

in this case RRRjkl = βjklIIIM). This is also confirmed by the fact that TIN has the minimum

symmetric SE (i.e., maximum pilot contamination interference) in Fig. 3.16 when κ = 0.
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Figure 3.13: Performance of maximum symmetric SE for seven cells when RZF precoding
and a spatially correlated channel model are used.

The performance improvement obtained by SND in the spatial correlation regime can

also be explained as follows. When performing SND, a receiver (an arbitrary user in the

downlink) automatically decides to decode pilot contamination interference non-uniquely,

only if its signal strength is good enough, otherwise it will be treated as noise. In other

words, when dealing with a spatially correlated channel, if a pilot sharing user is creating

strong enough interference at the receiver (e.g., when spatial correlation characteristics of

pilot sharing users are similar), it will automatically be decoded under SND. On the other

hand, if this user is creating weak interference (e.g., when its spatial correlation matrix is

different than that of the user of interest), it will effectively be treated as noise under SND.

Thus, it is expected that spatial correlation will improve the performance of SND as well.
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Figure 3.14: Performance comparison between RZF and ZF for L = 7, when SND is used.

Next, we study the impact of shadow fading on the performance of the proposed

schemes. In particular, we assume that a term associated with shadow fading is now

added to the large-scale fading model of (3.74) with a standard deviation of σshadow in dB.

Fig. 3.17 shows the achieved symmetric SEs of the different schemes where the standard

deviation of shadow fading, σshadow, varies in the range from 0 dB to 5 dB. The parameters

for this figure are the same as those in Fig. 3.16 except that correlation magnitude is now

fixed at κ = 0.4. It can be observed that, as expected, by increasing the shadow fading

the SEs achieved by all schemes reduce. Nevertheless, as σshadow becomes larger the gain

provided by SND over TIN increases, which shows the importance of the proposed scheme

in practical scenarios. In particular, when there is no shadowing in the path-loss model of

(3.74), SND provides 33% improvement over TIN, whereas when the shadowing increases
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Figure 3.15: Performance of maximum symmetric SE versus the number of users K, where
L = 7, M = 256, and ZF precoding with a spatially correlated channel model are used.

to σshadow = 3 dB the gain provided by SND over TIN improves to 186%, and it continues

to grow for larger values of σshadow.

Next, we consider the seven-cell configuration illustrated in Fig. 3.7d with wrap around

topology. In this case, the interference environment seen by the center cell will not change;

nevertheless, the six surrounding cells will be subject to greater interference. More specifi-

cally, wrap around will change the effective user-BS distances and therefore lead to greater

interference for these six cells. Hence, it is expected that this scenario will degrade the

achieved SEs. Fig. 3.18 shows the performance of the different schemes TIN/SD/SND

versus M when a wrap around topology is used with seven cells. It can be seen that while

the SEs have slightly reduced, due to the increased interference in the six surrounding
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Figure 3.16: Performance of maximum symmetric SE versus the correlation magnitude κ,
where L = 7, M = 256 and ZF precoding is used.

cells, SND still provides a notable gain over TIN, which again confirms the significance of

SND in realistic settings. In particular, this gain is about 30% and 40% for M = 128 and

M = 256, respectively, and improves to about 60% when M = 1024.

3.4.2 Spatially uncorrelated

We now consider the case of an uncorrelated Rayleigh fading channel model discussed

in Section 3.2.3, which is a special case of a spatially correlated channel model. Also,

using the closed-form expressions of the rate lower bounds for an uncorrelated channel

in Section 3.2.3, we are able to compute the performance for a significantly wider range
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Figure 3.17: Performance of maximum symmetric SE versus the standard deviation of
shadow fading σshadow, where L = 7, M = 256 and ZF precoding is used.

of M , thus providing insights into the asymptotic performance limits. Specifically, we

investigate the impact of changing the number of antennas M , number of cells L and cell

radius r on system performance. To do so, we simulate a multi-cell massive MIMO system

with spatial correlation matrices given by RRRjkl = βjklIIIM , and parameters similar to the

correlated case. In particular, the performance of the different schemes TIN/SD/SND with

maximum symmetric SE and ZF is studied for L = 2, 3, 4 and 7 and for two choices of

cell radius r = 400 m, 800 m. To evaluate the performance, the average of the maximum

symmetric SEs is calculated over 200 random realizations of user locations.

Fig. 3.19 shows these results for a range of moderately large M , while Fig. 3.20 shows

the same for a range of extremely large M , when L = 7. While the latter covers a range
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Figure 3.18: Performance of maximum symmetric SE for seven cells with wrap around
topology, when ZF precoding and a spatially correlated channel model are used.

of M that is beyond practical, the results of Fig. 3.20 can be used to confirm asymptotic

performance limits as M → ∞. By comparing Figs. 3.19a and 3.19b, it is concluded that

increasing the cell radius will slightly decrease the gain provided by SND. More specifically,

while the gain of SND for M = 128 and M = 256 is 43% and 56% when r = 400 m,

respectively, these gains reduce to 34% and 47% when r = 800 m. Also, when M = 1024

this gain increases to about 82% for r = 400 m, whereas it reaches approximately 72%

for r = 800 m. It is also confirmed via Fig. 3.20 that, when M grows unbounded, the

performance of TIN saturates to a constant value while the performance of both SD and

SND continue to improve and thus asymptotically converge. In other words, as discussed

before, this result confirms that when M becomes truly large, the system enters the high
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(a) r = 400 m (b) r = 800 m

Figure 3.19: Performance of maximum symmetric SE for seven cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

SINR regime so that the optimal performance is obtained by jointly decoding signals of all

pilot sharing users; hence almost identical performance is obtained under both SND and

SD. In addition, by comparing these results with the case of a spatially correlated channel,

one can clearly see that spatial correlation improves the performance of both TIN and

SND (as discussed before), which leads to a slightly smaller SND gain. Furthermore, as

expected, by increasing the cell radius more antennas will be required to achieve the same

symmetric SEs.

A similar pattern is observed in Figs. 3.21 to 3.26. Note that Figs. 3.21, 3.23 and

3.25 show the results for a range of moderately large M , whereas Figs. 3.22, 3.24 and

3.26 show the same results for a range of extremely large M . One can notice that for

L = 4, 3 and 2, the performance improves with increasing M , while achieved symmetric

SEs slightly reduce when cell radius increases from r = 400 m to r = 800 m, which results

in smaller SND gains. Moreover, similar to the case of L = 7, increasing the cell radius

in these scenarios gives rise to requiring more antennas to achieve the same SEs. Lastly,
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(a) r = 400 m (b) r = 800 m

Figure 3.20: Performance of maximum symmetric SE for seven cells with truly large M ,
when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b) r = 800
m.

one can also conclude from these figures that reducing the number of cells yields larger

symmetric SEs and thereby smaller SND gains; a pattern that was also observed for a

spatially correlated channel. For instance, in the case of L = 2, M = 256 and r = 400 m,

Fig. 3.25 shows a gain of 17% provided by SND (down from 56% when L = 7 with the

same parameters).

Next, we consider a somewhat pessimistic scenario where all users are located on the cell

edge at the farthest distance from their BSs. Specifically, consider the scenario depicted

in Fig. 3.27 for L = 2, where users’ positions are denoted by solid squares. While the

position of users in cell 1 is fixed, the position of users in cell 2 varies on an inscribed circle

inside the cell based on the angle θ ∈ [0◦, 360◦]. Note that the users’ location in this setup

is somewhat in favor of TIN, especially when θ is not close to 180◦. This is due to the

fact that this assumption makes the power of the signal of interest as well as that of the

interfering user from another cell at each receiver very small.

Fig. 3.28 shows the performance of different schemes for a two-cell system with a sym-
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(a) r = 400 m (b) r = 800 m

Figure 3.21: Performance of maximum symmetric SE for four cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

metric setup, i.e., θ = 0◦ in Fig. 3.27, and thus the MACs seen at both cells are identical.

The results of Fig. 3.28 are used to validate the analytical findings of Corollary 3 as well

as that of the high SINR regime.

It can be observed from Fig. 3.28 that approximately forM < 106, condition of case (i)

in (3.59) is active; thus, SND and TIN have the same performance and strictly outperform

SD, i.e., RSD
Sym < RSND

Sym = RTIN
Sym. In other words, for M < 106, to achieve the optimum

performance in each cell, one should only decode the signal of its own user while treating the

signal of pilot contamination interference as noise. On the other hand, when approximately

M > 106, the condition of case (ii) in (3.60) is active; thus, both interference decoding

schemes SD/SND are optimal, i.e., RTIN
Sym < RSD

Sym = RSND
Sym . Consequently, for significantly

large values of M , to achieve the optimum performance in each cell, one should jointly

decode both the signal of its own user as well as that of pilot contamination interference.

This observation also matches with the consequence of the high SINR regime for truly

large M in (3.51). These observations are all in agreement with the analysis performed in
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(a) r = 400 m (b) r = 800 m

Figure 3.22: Performance of maximum symmetric SE for four cells with truly large M ,
when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

Section 3.3.2.

Lastly, the results of maximum symmetric SE with ZF versus θ are shown in Fig. 3.29,

for four different values of M = 128, 256, 512, 1024. First, notice that since this is a

somewhat pessimistic scenario and in favor of TIN (as discussed above), for all values of

M there exists only a small range of θ where SND outperforms TIN. Second, it can be

verified that as M is increased and the performance of SND is thus improved, the range of

θ over which SND outperforms TIN expands. Specifically, forM = 128 this range is about

152◦ ≤ θ ≤ 204◦, while for M = 1024 it increases to about 136◦ ≤ θ ≤ 220◦. In addition,

one can notice that as θ increases and approaches 180◦, unsurprisingly its performance

constantly degrades. This is due to the fact that when θ approaches 180◦ the strength of

pilot contamination interference from users of cell 2 at BS 1 increases, as explained in more

detail below.

The characteristics of SEs can be classified into 2 regimes of θ: regime-1 where θ is

close to 180◦ and SND outperforms TIN (e.g., 136◦ ≤ θ ≤ 220◦ when M = 1024), and
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(a) r = 400 m (b) r = 800 m

Figure 3.23: Performance of maximum symmetric SE for three cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

regime-2 where θ is far from 180◦ and SND and TIN have the same performance (i.e.,

θ ≤ 136◦ and θ ≥ 220◦ when M = 1024). In regime-1, we have RSND
Sym > RTIN

Sym > RSD
Sym, as

explained in the following. Note that θ captures the distance between users and the BSs

in different cells, and when θ enters regime-1, users in cell 2 become relatively closer to

BS 1. Therefore, users in cell 2 create “strong” pilot contamination interference at BS 1;

hence, TIN performs poorly whereas SND outperforms all other schemes. In contrast, for

θ in regime-2, we have RSND
Sym = RTIN

Sym > RSD
Sym. Here, users in cell 2 are somewhat far from

BS 1, and thus the resulting pilot contamination interference becomes “weak” at BS 1.

Hence, performing TIN at both cells is optimal and provides identical performance to that

of SND. In the next chapter, we will propose a more advanced decoding scheme based on

partial interference decoding, and will observe that the proposed scheme outperforms both

TIN and SND for a much wider range of θ.
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(a) r = 400 m (b) r = 800 m

Figure 3.24: Performance of maximum symmetric SE for three cells with truly large M ,
when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b) r = 800
m.

(a) r = 400 m (b) r = 800 m

Figure 3.25: Performance of maximum symmetric SE for two cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.
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(a) r = 400 m (b) r = 800 m

Figure 3.26: Performance of maximum symmetric SE for two cells with truly largeM , when
ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b) r = 800 m.

Figure 3.27: Illustration of a two-cell system, where all users of the left cell are located
on the cell edge at the farthest distance from the BSs located at the center of the cells,
whereas the position of users in the right cell is changing on a circle inside the cell over
0◦ ≤ θ ≤ 360◦. The position of users is denoted by solid squares.
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Figure 3.28: Performance of TIN/SD/SND in a two-cell system with a symmetric setup,
i.e., θ = 0◦ in Fig. 2.1, as a function ofM , when ZF precoding and an uncorrelated channel
model are used.
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(a) M = 128 (b) M = 256

(c) M = 512 (d) M = 1024

Figure 3.29: Performance of TIN/SD/SND in a two-cell system with maximum symmetric
SE versus θ, when ZF precoding and an uncorrelated channel model are used, (a)M = 128,
(b) M = 256, (c) M = 512, (d) M = 1024.
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Chapter 4

Performance of Partial Interference

Decoding

4.1 Partial Interference Decoding

While fully decoding interference or fully treating it as noise are two common strategies for

managing interference, it is known that these extreme strategies are not always optimal.

For instance, as discussed in Chapter 3, TIN is preferred when interference is weak, whereas

SD is only preferred when interference is strong (i.e., when M is truly large). Furthermore,

while the results of the previous chapter revealed that SND outperforms both of these

schemes, the SND decoder is still effectively faced with only two options: treating the

interfering signal as noise or fully decoding it1; although which one to choose can now be

adapted to the strength of the interference. Therefore, the proposed interference decoding

schemes of Chapter 3 do not have the flexibility to decode only part of the interference

while treating the remaining part as noise. For instance, such flexible decoding can be

obtained by the celebrated Han-Kobayashi (HK) scheme [75], which provides the best

1Recall from Chapter 3 that each point inside the SND region is equivalent to the rate of decoding
a subset of interfering users fully, while treating the remaining ones as noise. However, under SD, an
interfering signal is always fully decoded; hence performing poorly in the weak and moderate interference
regimes.
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known achievable performance for the IC.

Motivated in part by the recent introduction of practical sliding-widow codes that can

achieve performance close to the HK inner bound for the two-user IC [146] as well as their

extension to practical 5G settings [128], in this chapter2, we depart from the viewpoints of

these two extremes (i.e., SD/SND at one extreme end and TIN at the other) and propose a

partial interference decoding scheme based on rate splitting (RS) and superposition coding

techniques. In this proposed partial interference decoding strategy, all users’ messages will

be partitioned into two independent layers so that each pilot contamination interference

term is split into two parts, an inner and an outer layer, based on a power splitting

coefficient. By varying the power splitting coefficients, this scheme enables each receiver

to partially decode one interference layer while treating the remaining layer as noise; hence

achieving a wider range of achievable rates. Therefore, by bridging the extreme strategies

of fully decoding the interference or fully treating it as noise, we show that the partial

interference decoding scheme of this chapter achieves higher spectral efficiencies for the

same number of BS antennas and thereby outperforms the proposed schemes of Chapter 3.

However, this performance improvement is achieved at the cost of additional computational

complexity due to centrally calculating the optimized rates of individual layers for all BSs.

4.2 Rate Splitting (RS)

When performing conventional RS, the message of each user is split into two layers (each

treated as a virtual user) that are superimposed to generate a single codeword at the

transmitter: one layer is intended to be decoded only at the targeted receiver (commonly

known as the private or outer part) while the other layer can be decoded at a subset/all of

the receivers (commonly known as the public or inner part). The total available transmit

power is divided into the transmit power of these two layers according to a power splitting

coefficient. One can also consider a more general RS scheme where the message of each

user is divided into more than two parts such that each part is decoded by a subset of

receivers [148, 149].

2The results of this chapter are partially presented in [147].
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The RS technique was first introduced by Carleial [150] for an IC and was later used

in the seminal work of [75] to establish the best known achievable rates for a two-user IC,

which contain all other known schemes as special cases (e.g., joint decoding or TIN). Since

the introduction of the HK scheme, much effort has been made to simplify this region in

closed-form for various special cases of the IC. For instance, the work of [151] has proposed

a simplified HK-based RS scheme that can achieve the capacity of a two-user Gaussian IC

to within one bit in the weak interference regime. The idea of splitting users’ messages in

conjunction with superposition coding has been considered in the literature for the purpose

of interference mitigation in cellular networks [152–155]. The work of [152] proposed a RS-

based scheme in the downlink of a multi-cell network with perfect CSI to jointly design

beamforming vectors for public and private parts. Therein, it was shown that by doing

single-user successive decoding with a fixed decoding order, higher rates are achieved by this

RS scheme compared to conventional TIN. Motivated by the HK scheme, [153] proposed

an interference cancellation technique via message splitting at the transmitter along with

the SIC decoder at the receiver, that maximizes the sum-rate in heterogeneous networks.

A similar technique has been adopted in [154] to mitigate inter-cell interference in a multi-

cell multi-user MIMO interference network. In [155], a single RS-based approach has been

developed to mitigate interference in the downlink of a MISO BC while minimizing the total

transmit power. Specifically, the approach of [155] splits the message of one user only (i.e.,

the one whose channel is most aligned with the other channels) at the BS, where single-user

SIC is used by this user to recover its private message. In another line of work, the idea

of message splitting has been used to enhance the efficiency of medium access techniques.

For instance, the work of [156] has proposed a RS multiple access (RSMA) technique that

improves the performance of schemes such as SDMA and Non-Orthogonal Multiple Access

(NOMA). The energy efficiency improvement provided by the RSMA technique has also

been investigated in [157].

Recently, RS has also been utilized in the context of massive MIMO communications

with imperfect CSI [109, 158, 159]. Specifically, a novel hierarchical RS scheme has been

proposed in [158] for the downlink of a single-cell massive MIMO system operating in FDD

mode. Therein, the precoding vectors of each public part is designed so as to maximize
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the minimum rate of the public part achieved by each user. In [159], the benefits of RS

scheme have been investigated to tackle adverse effects of hardware impairments in the

downlink of a TDD-based massive MISO broadcast channel. Compared to the case with

no RS, the authors in [159] have shown significant improvement from the view point of

sum-rate, especially in the high SNR regime. Lastly, the work of [109] has addressed the

pilot contamination problem in a single-cell massive MIMO system operating in TDD

mode, where all users inside the cell share the same pilot sequence. While the authors

have shown that the decoding scheme of [109] achieves higher sum SE compared to the

case without RS, by applying a single-user SIC decoder the intra-cell interference is still

treated as noise. This is different than the decoding scheme proposed in this chapter,

which tries to partially decode pilot contamination interference (jointly with the intended

signal), as will be discussed in the sequel.

In the following, we first discuss how RS can be applied in a two-cell massive MIMO

system. Then, motivated by this scheme, we propose a generalization of this scheme to

more than two cells (i.e., an L-user IC with L ≥ 3). Lastly, we study the performance of

this RS scheme with the maximum symmetric rate allocation, and elaborate on how the

corresponding optimization problem can be solved for each of these cases.

4.2.1 Two-cell system

Consider the two-user IC in Fig. 4.1, associated with the ith user of each cell in the downlink

of a two-cell massive MIMO system. To achieve the HK inner bound for this IC, we follow

the (simple) scheme of [115, Section 6.5]. As shown in [160], this scheme achieves the same

inner bound as the original HK scheme [75].

Recall that in SND, a message at BS l, mil ∈
[

1 : 2nR
dl
il

]

, l = 1, 2, is encoded into a

single codeword. In contrast, encoding in the RS scheme proceeds as follows. Adopting the

scheme of [115] for the Gaussian case, at BS 1, messagemi1 is first partitioned into two inde-

pendent parts m
(a)
i1 ∈

[

1 : 2nR
dl,(a)
i1

]

and m
(b)
i1 ∈

[

1 : 2nR
dl,(b)
i1

]

such that Rdl
i1 = R

dl,(a)
i1 +R

dl,(b)
i1 .

Then, part m
(b)
i1 is encoded into codeword sss

(b)
1 [i](m

(b)
i1 ) of length n (known as the “cloud

center” which carries “coarse information”), while part m
(a)
i1 is encoded into another code-
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Figure 4.1: The 2-user IC in downlink associated with the ith user of each cell, sharing
pilot sequence ψψψi. There are a total of K separate/non-interfering such ICs in this two-cell
network.

word sss
(a)
1 [i](m

(a)
i1 , m

(b)
i1 ) of length n; finally the latter codeword is superimposed (or lay-

ered) on the former to produce a single codeword for transmission sss1[i](m
(a)
i1 , m

(b)
i1 ) =

sss
(b)
1 [i](m

(b)
i1 ) + sss

(a)
1 [i](m

(a)
i1 , m

(b)
i1 ) (known as the “satellite codeword” which carries the full

information). Similarly, at BS 2, message mi2 is first partitioned into two independent

parts m
(a)
i2 ∈

[

1 : 2nR
dl,(a)
i2

]

and m
(b)
i2 ∈

[

1 : 2nR
dl,(b)
i2

]

such that Rdl
i2 = R

dl,(a)
i2 + R

dl,(b)
i2 . Part

m
(b)
i2 is then encoded into codeword sss

(b)
2 [i](m

(b)
i2 ) (i.e., the “cloud center”), while part m

(a)
i2

is encoded into another codeword sss
(a)
2 [i](m

(a)
i2 , m

(b)
i2 ). Finally, similar to the superposition

encoding at BS 1, the latter codeword is superimposed on the former to produce a sin-

gle codeword for transmission sss2[i](m
(a)
i2 , m

(b)
i2 ) = sss

(b)
2 [i](m

(b)
i2 ) + sss

(a)
2 [i](m

(a)
i2 , m

(b)
i2 ) (i.e., the

“satellite codeword”). The total transmit power budget for the ith user at each BS is split

into two fixed parts according to the power splitting coefficient µil ∈ [0, 1], l = 1, 2: the

fraction µil of the budget is allocated to the “outer” layer sss
(a)
l [i], l = 1, 2, while the fraction

(1 − µil) of the budget is allotted to the “inner” layer sss
(b)
l [i], l = 1, 2. Finally, sss

(a)
l [i] and

sss
(b)
l [i] are chosen to be i.i.d., zero-mean circularly symmetric complex Gaussian, with pow-

ers determined by µil for l = 1, 2. In other words, if the total available power budget for

sl[i] is given by Pil, then we have s
(a)
l [i] ∼ CN (0, µilPil) and s

(b)
l [i] ∼ CN (0, (1− µil)Pil).
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Note that while full information (m
(a)
il , m

(b)
il ), l = 1, 2, is carried in the satellite code-

word sssl[i], l = 1, 2, the inner layer sss
(b)
l [i], l = 1, 2, only carries coarse information m

(b)
il .

Therefore, due to the code construction, the inner layer can be decoded without decoding

m
(a)
il in the outer layer (while treating the outer layer as noise), whereas the outer layer

can be decoded either jointly with the inner layer, i.e., (m
(a)
il , m

(b)
il ), or only after m

(b)
il is

decoded first in the inner layer. Hence, when the channel condition is poor (e.g., when M

is small), a user may only decode m
(b)
il , while for strong channels (e.g., when M is large) it

may choose to decode (m
(a)
il , m

(b)
il ) from both layers. Such adaptability helps the RS scheme

outperform the SND scheme of Chapter 3, where messages are not layered, and thus full

interference is either non-uniquely decoded or treated as noise.

The decoding at user i in cell 1 proceeds as follows: it decodes both the inner and

outer layers of the intended message (m
(a)
i1 , m

(b)
i1 ) uniquely, and only tries to non-uniquely

decode the inner layer of the interfering message m
(b)
i2 , while treating the outer layer m

(a)
i2 as

noise. Similarly at user i in cell 2, both the inner and outer layers of the intended message

(m
(a)
i2 , m

(b)
i2 ) are decoded uniquely, and the inner layer of the interfering message m

(b)
i1 is

decoded non-uniquely. Using the standard random coding analysis as in [115, Section 6.5.1],

such a decoding procedure at user i in cell 1 is successful as n→ ∞, when the rates of the

inner and outer layers, R
dl,(a)
i1 , R

dl,(b)
i1 and R

dl,(b)
i2 , satisfy the following constraints

R
dl,(a)
i1 ≤ I

(

ydli1; s1[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

(4.1)

R
dl,(a)
i1 +R

dl,(b)
i1 ≤ I

(

ydli1; s1[i]
∣
∣
∣s

(b)
2 [i]

)

(4.2)

R
dl,(a)
i1 +R

dl,(b)
i2 ≤ I

(

ydli1; s1[i], s
(b)
2 [i]

∣
∣
∣s

(b)
1 [i]

)

(4.3)

R
dl,(a)
i1 +R

dl,(b)
i1 +R

dl,(b)
i2 ≤ I

(

ydli1; s1[i], s
(b)
2 [i]

)

. (4.4)

Similarly, as n→ ∞, the error probability of this RS scheme at user i in cell 2 goes to zero,

when the rates of the inner and outer layers, R
dl,(a)
i2 , R

dl,(b)
i2 and R

dl,(b)
i1 , satisfy the following

R
dl,(a)
i2 ≤ I

(

ydli2; s2[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

(4.5)

R
dl,(a)
i2 +R

dl,(b)
i2 ≤ I

(

ydli2; s2[i]
∣
∣
∣s

(b)
1 [i]

)

(4.6)
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m
(a)
i1 m

(b)
i1 m

(b)
i2 Joint pdf

E1 1 1 1 p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1|sss1[i], sss(b)2 [i])

E2 × 1 1 p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1|sss(b)1 [i], sss

(b)
2 [i])

E3 × × 1 p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1|sss(b)2 [i])

E4 1 × 1 p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1|sss(b)2 [i])

E5 × 1 × p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1|sss(b)1 [i])

E6 1 × × p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1)

E7 × × × p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1)

E8 1 1 × p(sss
(b)
1 [i], sss1[i])p(sss

(b)
2 [i])p(yyydli1|sss1[i])

Table 4.1: The joint pdfs induced by various
(

m
(a)
i1 , m

(b)
i1 , m

(b)
i2

)

triples, where ’×’ denotes

an incorrectly decoded message.

R
dl,(a)
i2 +R

dl,(b)
i1 ≤ I

(

ydli2; s2[i], s
(b)
1 [i]

∣
∣
∣s

(b)
2 [i]

)

(4.7)

R
dl,(a)
i2 +R

dl,(b)
i2 +R

dl,(b)
i1 ≤ I

(

ydli2; s2[i], s
(b)
1 [i]

)

. (4.8)

The network-wide region is obtained by taking the intersection of the achievable region in

cell 1, i.e., (4.1)-(4.4) and the achievable region in cell 2, i.e., (4.5)-(4.8).

In the following, we discuss a brief proof sketch of the achievability, as it provides

insights that are particularly important when considering more than two cells, for which

we will use similar arguments to describe the achievable region. Assume, without loss of

generality, that the message pairs (m
(a)
i1 , m

(b)
i1 ) = (1, 1) and (m

(a)
i2 , m

(b)
i2 ) = (1, 1) are sent. As

for the error events that result from different combinations of the triples (m
(a)
i1 , m

(b)
i1 , m

(b)
i2 )

at receiver 1 and (m
(a)
i2 , m

(b)
i2 , m

(b)
i1 ) at receiver 2, there are 8 cases to be considered at

each receiver. We only consider the 8 cases at receiver 1 (listed in Table 4.1 adopted

from [115, Section 6.5.1]) giving rise to (4.1)-(4.4). Similar arguments can be applied

at receiver 2 leading to (4.5)-(4.8). By the law of large numbers, the probability of the

error event that results from E1 tends to zero, as n → ∞. Also, since m
(b)
i2 is decoded

non-uniquely at receiver 1, E8 does not cause an error. In addition, as n → ∞, the

probabilities of the error events that result from E2 and E5 tend to zero if (4.1) and (4.3)

103



are satisfied, respectively. Moreover, as can be seen in the last column of Table 4.1, due

to the structure of the satellite codewords, E3 and E4 have the same joint pdf. Therefore,

as n → ∞, the probability of the error event that results from each of these cases tends

to zero if (4.2) is satisfied. Similarly, since E6 and E7 have the same joint pdf (due to

the code construction), the probability of the error events that result from these two cases

tends to zero if (4.4) is satisfied. Hence, as n → ∞, by the union bound the average

probability of error at receiver 1 tends to zero if (4.1)-(4.4) are satisfied. For a more

detailed proof refer to [160, Appendix B]. One can notice that, due to the special structure

of the satellite codewords, as explained, the constraints induced by E4 and E6 on R
dl,(b)
i1

and R
dl,(b)
i1 +R

dl,(b)
i2 , respectively, are redundant and can be removed. In other words, it is

concluded that due to the code construction, if both messages (m
(a)
il , m

(b)
il ) are decoded at

receiver l, then the constraints that involve R
dl,(b)
il but not R

dl,(a)
il are not needed and can

thus be omitted from the rate region. This observation will be used in the next section to

establish the rate region in the case of more than two cells.

One can also apply Fourier-Motzkin elimination procedure, as in [115, Appendix D], to

present the rate region only in terms of Rdl
i1 and R

dl
i2. Particularly, by substituting R

dl,(a)
i1 =

Rdl
i1−Rdl,(b)

i1 andR
dl,(a)
i2 = Rdl

i2−Rdl,(b)
i2 into (4.1)-(4.4) and (4.5)-(4.8) and performing Fourier-

Motzkin elimination with the additional constraints 0 ≤ R
dl,(b)
i1 ≤ Rdl

i1 and 0 ≤ R
dl,(b)
i2 ≤ Rdl

i2,

the following seven inequalities are obtained

Rdl
i1 ≤ I

(

ydli1; s1[i]
∣
∣
∣s

(b)
2 [i]

)

(4.9)

Rdl
i2 ≤ I

(

ydli2; s2[i]
∣
∣
∣s

(b)
1 [i]

)

(4.10)

Rdl
i1 +Rdl

i2 ≤ I
(

ydli1; s1[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

+ I
(

ydli2; s2[i], s
(b)
1

)

(4.11)

Rdl
i1 +Rdl

i2 ≤ I
(

ydli1; s1[i], s
(b)
2 [i]

∣
∣
∣s

(b)
1 [i]

)

+ I
(

ydli2; s2[i], s
(b)
1 [i]

∣
∣
∣s

(b)
2 [i]

)

(4.12)

Rdl
i1 +Rdl

i2 ≤ I
(

ydli1; s1[i], s
(b)
2 [i]

)

+ I
(

ydli2; s2[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

(4.13)

2Rdl
i1 +Rdl

i2 ≤ I
(

ydli1; s1[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

+ I
(

ydli1; s1[i], s
(b)
2 [i]

)

+ I
(

ydli2; s2[i], s
(b)
1 [i]

∣
∣
∣s

(b)
2 [i]

)

(4.14)
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Rdl
i1 + 2Rdl

i2 ≤ I
(

ydli1; s1[i], s
(b)
2 [i]

∣
∣
∣s

(b)
1 [i]

)

+ I
(

ydli2; s2[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

+ I
(

ydli2; s2[i], s
(b)
1 [i]

)

(4.15)

Note that the RS region in (4.9)-(4.15) is obtained for a fixed power splitting strategy

µi1 and µi2. To obtain the overall achievable region, one needs to take the union over all

possible such strategies satisfying (µi1, µi2) ∈ [0, 1]. Some special choices of µi1 and µi2

have interesting interpretations as given in the remark below.

Remark 13. On the one hand, setting µi1 = µi2 = 1 (equivalent to s
(b)
1 [i] = s

(b)
2 [i] = 0)

means that user i of each cell only decodes its own message while treating the interfering

signal of the other cell entirely as noise; hence, achieving the TIN region of Chapter 3. On

the other hand, setting µi1 = µi2 = 0 (equivalent to s
(b)
1 [i] = s1[i] and s

(b)
2 [i] = s2[i]) means

that user i of each cell jointly decodes its own message along with the entire part of the

interfering signal; hence, achieving the SD region of Chapter 3. Moreover, by taking the

union over the four different possibilities of µi1 ∈ {0, 1} and µi2 ∈ {0, 1}, one achieves the

SND region of Chapter 3, which is the union of TIN and SD (as discussed before).

The above remark confirms that by taking the union of all possible power splitting

strategies, the RS scheme achieves all other schemes of Chapter 3 (TIN/SD/SND) in

addition to providing the flexibility of partially decoding pilot contamination interference

while treating the remaining part as noise.

Using the assumption of Gaussian signaling and a fixed power splitting strategy of µi1

at BS 1 and µi2 at BS 2, one can use the lower bounds established in Chapter 3 to evaluate

I
(
.; .
∣
∣.
)
terms in the region described by (4.1)-(4.4) and (4.5)-(4.8). For instance, assuming

that ZF precoding is applied at the BSs and using the bound of (3.32) from the previous

chapter, define the following

Nl := K

L∑

j=1

ρdlβjil + 1 (4.16)

Pjl :=
MKρdlρpβ

2
jilα

2
jij

∑K
k=1

√
ρpβjkjαjkj

, (4.17)
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where Nl, l = 1, 2, is the noise power at receiver l and Pjl, j = 1, 2, l = 1, 2, is the received

power of the ith user from cell j at receiver l (refer to the 2-user IC in Fig. 4.1). Note that

when j = l, Pjl is interpreted as the received power of the intended user, whereas when

j 6= l, it is interpreted as the received power of pilot contamination interference. Therefore,

I
(
.; .
∣
∣.
)
terms in the expressions of (4.1)-(4.4) and (4.5)-(4.8) are lower bounded by

I
(

ydli1; s1[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

≥ C

(
µi1P11

µi2P21 +N1

)

(4.18)

I
(

ydli1; s1[i]
∣
∣
∣s

(b)
2 [i]

)

≥ C

(
P11

µi2P21 +N1

)

(4.19)

I
(

ydli1; s1[i], s
(b)
2 [i]

∣
∣
∣s

(b)
1 [i]

)

≥ C

(
µi1P11 + (1− µi2)P21

µi2P21 +N1

)

(4.20)

I
(

ydli1; s1[i], s
(b)
2 [i]

)

≥ C

(
P11 + (1− µi2)P21

µi2P21 +N1

)

(4.21)

I
(

ydli2; s2[i]
∣
∣
∣s

(b)
1 [i], s

(b)
2 [i]

)

≥ C

(
µi2P22

µi1P12 +N2

)

(4.22)

I
(

ydli2; s2[i]
∣
∣
∣s

(b)
1 [i]

)

≥ C

(
P22

µi1P12 +N2

)

(4.23)

I
(

ydli2; s2[i], s
(b)
1 [i]

∣
∣
∣s

(b)
2 [i]

)

≥ C

(
µi2P22 + (1− µi1)P12

µi1P12 +N2

)

(4.24)

I
(

ydli2; s2[i], s
(b)
1 [i]

)

≥ C

(
P22 + (1− µi1)P12

µi1P12 +N2

)

. (4.25)

4.2.2 Beyond two cells

When going beyond two cells (i.e., L ≥ 3), one possible generalization of the RS scheme can

be obtained by considering one power splitting coefficient for each user in the corresponding

IC, i.e., L different coefficients µil ∈ [0, 1] , l = 1, ..., L, for the L-user IC of Fig. 4.2.

However, taking the union over the combination of all such power splitting strategies

seems infeasible, especially for networks with large number of cells. This motivates the

need for a more feasible generalization of the RS scheme which enables the use of a much

simpler power splitting strategy. In the following, we propose one possible application of

RS to more than two cells that uses only one power splitting coefficient per IC, and show
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Figure 4.2: The L-user IC in downlink associated with the ith user of each cell, sharing
pilot sequence ψψψi.

that it can outperform all other schemes of Chapter 3 (TIN/SD/SND).

Consider the downlink L-user IC of Fig. 4.2, which corresponds to the ith user in each of

the L cells across the network. Below, we discuss the encoding and decoding stages of the

proposed RS scheme for this IC, and further characterize the rate region achieved by this

scheme. Recall that there are K non-interfering such ICs in the network and the analysis

is thus the same with respect to the index i ∈ {1, ..., K} of the users sharing the same pilot

sequence ψψψi. As such, for the rest of this chapter, to simplify notation, the index i will be

removed from equations.

Encoding: Encoding is similar to the case of a two-cell system in Section 4.2.1 that

uses superposition coding, except that now only one power splitting coefficient µ is uti-

lized by all users of the IC in Fig. 4.2. In particular, message ml, l = 1, ..., L, is first

partitioned into two independent parts m
(a)
l ∈

[

1 : 2nR
dl,(a)
l

]

and m
(b)
l ∈

[

1 : 2nR
dl,(b)
l

]

such that Rdl
l = R

dl,(a)
l + R

dl,(b)
l , l = 1, ..., L. Next, part m

(b)
l is encoded into codeword

sss
(b)
l (m

(b)
l ), l = 1, ..., L, of length n (i.e., the “cloud center” carrying only “coarse informa-

tion”), while part m
(a)
l is encoded into another codeword sss

(a)
l (m

(a)
l , m

(b)
l ), l = 1, ..., L, of

length n. Finally, the latter codeword is superimposed on the former to produce a single
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codeword for transmission sssl(m
(a)
l , m

(b)
l ) = sss

(b)
l (m

(b)
l )+sss

(a)
l (m

(a)
l , m

(b)
l ), l = 1, ..., L, (i.e., the

“satellite codeword” carrying the full information).

The total transmit power budget at all BSs is split into two fixed parts according to the

power splitting coefficient µ ∈ [0, 1]: the fraction µ of the budget is allocated to the “outer”

layer sss
(a)
l , l = 1, ..., L, while the fraction (1 − µ) of the budget is allotted to the “inner”

layer sss
(b)
l , l = 1, ..., L. Lastly, sss

(a)
l and sss

(b)
l are chosen to be i.i.d., zero-mean circularly

symmetric complex Gaussian, with powers determined by µ.

Decoding: In the decoding stage, the SND scheme of the previous chapter is applied to

non-uniquely decode each layer of all pilot contamination interference terms. Specifically,

the decoder at receiver l (i.e., user of cell l) uniquely decodes both the inner and outer

layers of its own message (m
(a)
l , m

(b)
l ), and non-uniquely decodes each layer of all interfering

messages
{

m
(a)
j , m

(b)
j

}

, j ∈ {1, ..., L} \ {l}. In Appendix A.11, a detailed derivation of the

achievable region for a two-cell system is provided. Below, the general achievable region for

L ≥ 2 is presented. The achievability proof follows the same steps as that in Appendix A.11,

but is significantly more tedious.

To characterize the rate region achieved by this RS scheme, we first need to define the

following sets:

Sl :=
{{

m
(a)
l , m

(b)
l

}}

×A1 × ...×Al−1 ×Al+1 × ...×AL, (4.26)

where × denotes the Cartesian product and Aj is given by

Aj :=
{

∅,
{

m
(b)
j

}

,
{

m
(a)
j , m

(b)
j

}}

. (4.27)

Furthermore, denote the achievable region for the rate vector
[

R
dl,(a)
1 , R

dl,(b)
1 , ..., R

dl,(a)
L , R

dl,(b)
L

]T

obtained by the proposed RS scheme at receiver l

and the network-wide achievable region by RRS
l and RRS, respectively. Then, following

the discussion in Appendix A.11, we have

R
RS =

⋂

l

RRS
l , l = 1, ..., L, (4.28)
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Figure 4.3: The 3-user IC in downlink with one user from each cell, sharing the same pilot
sequence.

where

RRS
l =

⋃

Ωl∈Sl

RRS
MAC(Ωl,l)

, (4.29)

where RRS
MAC(Ωl,l)

is a modified MAC region (as will be explained in the following) obtained

from decoding of the messages included in the set Ωl, where Ωl is an element of Sl defined

in (4.26) and thus
{

m
(a)
l , m

(b)
l

}

⊆ Ωl.

One should note that the |Ωl|-user MAC of RRS
MAC(Ωl,l)

has less than 2|Ωl|−1 constraints

(|Ωl| is the cardinality of the set Ωl), as some of the constraints will be relaxed because

of the following. As shown in Appendix A.11, if Ωl contains messages of both layers

(m
(a)
j , m

(b)
j ), for some j, then those constraints that contain R

dl,(b)
j but not R

dl,(a)
j will be

removed from the rate region. In Appendix A.11, for the case of a two-cell system we have

explicitly identified these constraints at each receiver. Below, we provide the example of a

three-cell system and discuss its achievable rate region under the proposed RS scheme.

Dropping the index i, consider a massive MIMO system consisting of only three cells

modeled by a 3-user IC as in Fig. 4.3. To apply the proposed RS scheme to this IC, the

message of each transmitter is first partitioned into two independent parts: m
(a)
1 , m

(b)
1 at
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BS 1, m
(a)
2 , m

(b)
2 at BS 2, and m

(a)
3 , m

(b)
3 at BS 3. Then, by applying superposition coding

and non-unique decoding as explained above, the set Sl, l = 1, 2, 3, at each BS is given by:

S1 =
{{

m
(a)
1 , m

(b)
1

}}

×
{

∅,
{

m
(b)
2

}

,
{

m
(a)
2 , m

(b)
2

}}

×
{

∅,
{

m
(b)
3

}

,
{

m
(a)
3 , m

(b)
3

}}

(4.30)

S2 =
{{

m
(a)
2 , m

(b)
2

}}

×
{

∅,
{

m
(b)
1

}

,
{

m
(a)
1 , m

(b)
1

}}

×
{

∅,
{

m
(b)
3

}

,
{

m
(a)
3 , m

(b)
3

}}

(4.31)

S3 =
{{

m
(a)
3 , m

(b)
3

}}

×
{

∅,
{

m
(b)
1

}

,
{

m
(a)
1 , m

(b)
1

}}

×
{

∅,
{

m
(b)
2

}

,
{

m
(a)
2 , m

(b)
2

}}

, (4.32)

where × denotes the Cartesian product. Therefore, the achievable region at each BS using

the RS scheme with non-unique decoding is obtained by taking the union of 9 modified

MAC regions as discussed before. For instance, at BS 1, one needs to take the union of

regions RRS
MAC(Ω1,1)

over the following 9 elements of S1, denoted by Ω
(j)
1 , j = 1, ..., 9,

Ω
(1)
1 =

{

m
(a)
1 , m

(b)
1

}

(4.33)

Ω
(2)
1 =

{

m
(a)
1 , m

(b)
1 , m

(b)
2

}

(4.34)

Ω
(3)
1 =

{

m
(a)
1 , m

(b)
1 , m

(b)
3

}

(4.35)

Ω
(4)
1 =

{

m
(a)
1 , m

(b)
1 , m

(a)
2 , m

(b)
2

}

(4.36)

Ω
(5)
1 =

{

m
(a)
1 , m

(b)
1 , m

(a)
3 , m

(b)
3

}

(4.37)

Ω
(6)
1 =

{

m
(a)
1 , m

(b)
1 , m

(b)
2 , m

(b)
3

}

(4.38)

Ω
(7)
1 =

{

m
(a)
1 , m

(b)
1 , m

(a)
2 , m

(b)
2 , m

(b)
3

}

(4.39)

Ω
(8)
1 =

{

m
(a)
1 , m

(b)
1 , m

(b)
2 , m

(a)
3 , m

(b)
3

}

(4.40)

Ω
(9)
1 =

{

m
(a)
1 , m

(b)
1 , m

(a)
2 , m

(b)
2 , m

(a)
3 , m

(b)
3

}

. (4.41)

One can similarly obtain 9 possible choices of Ω2 and Ω3, at BSs 2 and 3, respectively,

by swapping the appropriate indices. Moreover, as explained before, for each choice of Ω1

some of the rate constraints in the corresponding MAC region are removed, i.e.,
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• for Ω
(1)
1 , Ω

(2)
1 , Ω

(3)
1 and Ω

(6)
1 : constraints involving R

dl,(b)
1 but not R

dl,(a)
1 are relaxed,

• for Ω
(4)
1 , Ω

(7)
1 : constraints involving R

dl,(b)
1 but not R

dl,(a)
1 or R

dl,(b)
2 but not R

dl,(a)
2 are

relaxed,

• for Ω
(5)
1 , Ω

(8)
1 : constraints involving R

dl,(b)
1 but not R

dl,(a)
1 or R

dl,(b)
3 but not R

dl,(a)
3 are

relaxed,

• for Ω
(9)
1 : constraints involving R

dl,(b)
1 but not R

dl,(a)
1 or R

dl,(b)
2 but not R

dl,(a)
2 or R

dl,(b)
3

but not R
dl,(a)
3 are relaxed.

Regardless of what µ is, some choices of Ω1 have special interpretations that are dis-

cussed in the following remark.

Remark 14. Note that Ω
(1)
1 is equivalent to decoding sss1 while treating (sss2, sss3) as noise,

i.e., performing TIN at BS 1. Also, Ω
(9)
1 is equivalent to jointly decoding (sss1, sss2, sss3), i.e.,

performing SD at BS 1. Moreover, Ω
(4)
1 is equivalent to jointly decoding (sss1, sss2) while

treating sss3 as noise, whereas Ω
(5)
1 is equivalent to jointly decoding (sss1, sss3) while treating sss2

as noise. Consequently, by taking the union of regions RRS
MAC(Ω1,1)

over these 4 choices of

Ω1, the SND region is obtained at BS 1 (see (3.34)). Similarly, it can be verified that there

are 4 choices of Ω2 at BS 2 and 4 choices of Ω3 at BS 3 that give rise to SND region at

BSs 1 and 2, respectively. Therefore, notwithstanding the value of µ, the SND region is

strictly contained in the region obtained by the proposed RS scheme.

Remark 15. If we choose R
dl,(a)
l = 0, l = 1, ..., L, in the code construction, then m

(a)
l = 1,

and the codewords are sssl(1, m
(b)
l ) = sss

(b)
l (m

(b)
l ) + sss

(a)
l (1, m

(b)
l ) := sssl(m

(b)
l ), l = 1, ..., L, and

these are all i.i.d Gaussian. Since in cell l, the messages m
(b)
j , j 6= l (i.e., messages from

the other cells) are decoded non-uniquely, and also m
(a)
l has only one possible value, then

for all µ ∈ [0, 1], Sl in (4.26) becomes the set of feasible message combinations of the form
{

mmm
(b)
Ω

}

{l}⊆Ω⊆{1,...,L}
, where mmm

(b)
Ω is the vector with entries m

(b)
j , j ∈ Ω. Also, as pointed out

in [72, Section 2], the region given by the resulting set of constraints is equivalent to the

SND region, i.e.,
[
Rdl

1 , ..., R
dl
L

]
∈ RSND ⇐⇒

[
0, Rdl

1 , ..., 0, R
dl
L

]
∈ RRS, ∀µ ∈ [0, 1].
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Remark 14 confirms that for the case of L = 3, considering 4 of the 9 choices is

sufficient to reproduce the SND region. Thus, considering the 5 additional choices of

Ωl, l = 1, 2, 3, at each receiver leads to additional flexibility due to partially decoding pilot

contamination interference while treating the remaining part as noise; hence, providing

room for improving the performance of SND. More specifically, taking the union over all

possible choices of µ enables the proposed RS scheme to enlarge the region achieved by

SND; thus, outperforming the schemes of Chapter 3, TIN/SD/SND.

Note that this generalization of the RS scheme is different from the HK scheme applied

to the two-cell case [115], for which the coarse information is non-uniquely decoded with

the outer layer treated as noise and we thus have AHK
j :=

{{

m
(b)
j

}}

.

4.3 Maximum Symmetric Rate Allocation

Similar to the previous chapter, here the maximum symmetric rate allocation is taken as

the measure of fairness among users, and thus the performance of the proposed RS schemes

of this chapter will be compared with those of the previous chapter based on the maxi-

mum symmetric rate they can offer. Below, we separately discuss how the corresponding

optimization problem is solved for the case of a two-cell system and that of more than two

cells.

4.3.1 Two-cell system

For a fixed µ1 and µ2 in the case of a two-cell system, the maximum symmetric rate is

obtained by solving the following problem

[P1] max min
{

R
dl,(a)
1 +R

dl,(b)
1 , R

dl,(a)
2 +R

dl,(b)
2

}

(4.42)

subject to (4.1)− (4.4) and (4.5)− (4.8) (4.43)

R
dl,(a)
1 , R

dl,(b)
1 , R

dl,(a)
2 , R

dl,(b)
2 ≥ 0, (4.44)

112



where the constraints of (4.1)-(4.4) and (4.5)-(4.8) describe the achievable region obtained

by the HK scheme in cell 1 and 2, respectively. [P1] can be solved by introducing an

auxiliary variable t as follows

[P1′] max t (4.45)

subject to (4.1)− (4.4) and (4.5)− (4.8) (4.46)

R
dl,(a)
1 +R

dl,(b)
1 ≥ t (4.47)

R
dl,(a)
2 +R

dl,(b)
2 ≥ t (4.48)

R
dl,(a)
1 , R

dl,(b)
1 , R

dl,(a)
2 , R

dl,(b)
2 , t ≥ 0. (4.49)

It is readily verified that [P1′] is a linear programming (LP) problem. Specifically, define

xxx :=
[

R
dl,(a)
1 , R

dl,(b)
1 , R

dl,(a)
2 , R

dl,(b)
2 , t

]T

, ccc := [0, 0, 0, 0, 1]T , and further rewrite (4.47) and

(4.48) as

−Rdl,(a)
1 −R

dl,(b)
1 + t ≤ 0 (4.50)

−Rdl,(a)
2 − R

dl,(b)
2 + t ≤ 0. (4.51)

As the constraints of the optimization problem [P1′] are a finite number of closed half-

spaces, one can write them in the form of a matrix inequality AAAxxx ≤ bbb(µ1, µ2), where AAA is

an 10 × 5 matrix and bbb(µ1, µ2) is an 10 × 1 column vector (the first 8 rows correspond to

(4.46) and the last two rows correspond to (4.50)-(4.51)) which is also a function of power

splitting coefficients µ1 and µ2. Hence, the following LP is obtained

[P1′] max cccTxxx (4.52)

subject to AAAxxx ≤ bbb(µ1, µ2) (4.53)

xxx ≥ 0, (4.54)

which can be solved efficiently, with the optimal solution denoted by t∗(µ1, µ2). Note that

this LP is solved for a fixed choice of µ1 and µ2. However, the overall achievable region

is obtained by taking the union over the combination of all power splitting strategies. As
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such, the optimal solution to the maximum symmetric rate problem is obtained by taking

the maximum over all possible power splitting coefficients, i.e.,

max
0≤µ1,µ2≤1

t∗(µ1, µ2), (4.55)

which is solved by numerically searching over the interval µ1, µ2 ∈ [0, 1] to find the best

symmetric rate.

4.3.2 Beyond two cells

In the case of more than two cells, we first fix µ and solve the following

[P2] max min
l

R
dl,(a)
l +R

dl,(b)
l (4.56)

subject to
[

R
dl,(a)
1 , R

dl,(b)
1 , ..., R

dl,(a)
L , R

dl,(b)
L

]

∈ R
RS, (4.57)

R
dl,(a)
l , R

dl,(b)
l ≥ 0, ∀l ∈ {1, ..., L}, (4.58)

where RRS is given in (4.28). Note that the region RRS
MAC(Ωl,l)

in (4.29) is in the form

of a convex polytope and the intersection of a finite number of these convex polytopes

yields another convex polytope. Therefore, by distributing the intersection in (4.28) over

the union in (4.29) (using the distributive law) the network-wide region RRS can be re-

written as the union of a finite number of convex polytopes, i.e., RRS =
⋃

n R̃RS
n , n ∈

IRS := {1, 2, ..., NRS}, where NRS is the total number of these convex polytopes, and

each n corresponds to one choice of (Ω1,Ω2, ...,ΩL) ∈ S1 × ... × SL,. Similar to [P1′] in

the case of a two-cell system, solving the maximum symmetric rate problem over one of

these convex polytopes can be formulated as an LP. Specifically, we first define the two

(2L + 1) × 1 (where L ≥ 3) column vectors xxx :=
[

R
dl,(a)
1 , R

dl,(b)
1 , ..., R

dl,(a)
L , R

dl,(b)
L , t

]T

and

ccc := [0, ..., 0, 1]T . Then, by writing R̃RS
n in matrix form as ÃAAnxxx ≤ b̃bbn(µ) and the constraints

−Rdl,(a)
l − R

dl,(b)
l + t ≤ 0, l = 1, ..., L, in matrix form as DDDxxx ≤ 000, the following equivalent
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LP is thus obtained

[P2′] max
n,xxx

cccTxxx (4.59)

subject to ÃAAnxxx ≤ b̃bbn(µ) (4.60)

DDDxxx ≤ 000 (4.61)

xxx ≥ 0 (4.62)

n ∈ IRS. (4.63)

Denote the optimal value of [P2′] over one of these convex polytopes (i.e., solving [P2′] for a

fixed n) by t̃n. Then, as the network-wide region RRS is the union of the convex polytopes

ÃAAnxxx ≤ b̃bbn(µ), the optimal solution to [P2] is found by taking the maximum value of t̃n,

denoted by t∗(µ), over all sub-regions R̃RS
n , i.e., t∗(µ) := maxn∈IRS t̃n. Lastly, noting that

[P2] (or [P2′]) is solved for a fixed µ and also recalling that the overall region is obtained

by taking the union over the combination of all possible power splitting strategies, the

optimal solution to the symmetric rate problem is found as below

max
0≤µ≤1

t∗(µ), (4.64)

which is solved by numerically searching over the interval µ ∈ [0, 1] to find the best sym-

metric rate. It is verified from (4.33)-(4.41) that for L = 3, one needs to solve (4.59) over

729 sub-regions, i.e., when L = 3 we have NRS = 729 and thereby IRS = {1, 2, ..., 729}.
However, as will be discussed in the next section, for the cases of L = 4 and L = 7 we will

only consider a subset of those sub-regions (i.e., a subset of convex polytopes defining the

network-wide region) and show that this subset still provides a significant gain over the

schemes of Chapter 3. Also, we will see in the next section that the optimization problems

in the last step of each case, i.e., (4.55) for two cells and (4.64) for more than two cells,

are not necessarily needed, and one can skip numerically optimizing µ and instead use

pre-computed average values of splitting coefficients with negligible performance loss.
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4.4 Simulation Results

In this section, the performance of rate splitting techniques for the cases of two cells and

more than two cells is illustrated using the maximum symmetric SE criteria. Specifically,

similar to the previous chapter, the downlink of a multi-cell massive MIMO system is

simulated, where the simple HK scheme of Section 4.2.1 for two cells and the RS scheme

of Section 4.2.2 for more than two cells are used to partially decode pilot contamination

interference while treating the remaining part as noise. For the sake of comparison, in

all scenarios we also show the performance of TIN and SND from the previous chapter.

The network configuration, path-loss model and parameters of the setup are identical to

those of Chapter 3. In particular, unless otherwise specified, we assume K = 15 users are

uniformly distributed at random within the area of each cell (at least 35 m away from the

BS) with a radius of r = 400 m and the downlink transmit power of each BS is 40 W.

The noise variance is also taken to be −101 dBm, and the large-scale fading coefficients

are modeled using (3.74) with the same parameters. Moreover, we only focus on the use of

ZF and RZF precoding, since, as observed in Chapter 3, MRT performs poorly compared

to these two precoding schemes.

Below, we study the two cases of a spatially correlated Rayleigh fading channel and an

uncorrelated Rayleigh fading channel separately.

4.4.1 Spatially Correlated

The exponential correlation model of (3.75) is used here with a correlation magnitude of

κ = 0.4. Below, we first investigate the performance of the HK scheme for the case of

L = 2 followed by the performance of the RS scheme for L = 3, 4 and 7, where similar to

the previous chapter, the average of the maximum symmetric SEs is calculated over 150

random realizations of user locations. Also, we separately study the effect of wrap around

topology with seven cells at the end of this section.

To compute the maximum symmetric SE of the HK scheme, two different approaches

are utilized. In the first approach, the maximum symmetric SE is found by solving (4.55)
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and numerically optimizing 0 ≤ µ1, µ2 ≤ 1 (with a step size of 0.01) to find the optimum

values of the power splitting coefficients. Then, the average of the optimum choices of µ1

and µ2 over 150 realizations is calculated and stored for each value of M . In the second

approach, rather than numerically optimizing µ1 and µ2, (4.55) is solved for 150 new

random realizations of user locations by searching over the combinations of µ1 ∈ {0, µavg, 1}
and µ2 ∈ {0, µavg, 1} in each realization, where µavg is the pre-computed average value

of optimum choices of µ1 and µ2 obtained in different random realizations of the first

approach. As such, the computational cost of numerically optimizing µ1 and µ2 in the first

approach is now reduced in the second approach, highlighting its importance in practical

implementations. The justification behind the inclusion of the 4 additional combinations

µ1 ∈ {0, 1} and µ2 ∈ {0, 1} is to make sure that the performance obtained in the second

approach is always at least as good as SND (cf. Remark 13).

Fig. 4.4 shows the performance of ZF with the HK scheme, when L = 2, using the

achieved maximum symmetric SE obtained from the two approaches explained above.

Interestingly, this figure shows that for eachM it is sufficient to use only the pre-computed

values µavg as in the second approach. Specifically, it is revealed in Fig. 4.4 that calculating

the maximum symmetric SE using the second approach yields almost the same performance

as that obtained from the first approach, and thus using the pre-computed average values

of the splitting coefficients can reduce the optimization complexity. In addition, it can be

seen that as M is increased the symmetric SE obtained by the HK scheme increases, an

observation that was also made in Chapter 3. This figure also shows that the performance

gain offered by the HK scheme compared to TIN/SND improves, as M is increased. In

particular, it is verified that the HK scheme provides gains of 78% and 80% over TIN, for

M = 128 and M = 256, respectively, and this gain improves to about 100% for M = 1024.

Also, compared to SND, the HK scheme offers 68% and 70% gains when M = 128 and

M = 256, respectively, while this gain increases to about 75% for M = 1024.

Figs. 4.5-4.7 show the performance of ZF for the cases of L = 3, 4 and 7, respectively. As

discussed in Section 4.3.2, when the number of cells increases beyond L = 2, an alternative

RS scheme is proposed that uses only one power splitting coefficient µ for the entire IC

representing a set of pilot sharing users. The maximum symmetric SEs achieved by this
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Figure 4.4: Performance of message splitting strategy using maximum symmetric SE for
two cells when ZF precoding and a spatially correlated channel model are used.

RS scheme are illustrated in Figs. 4.5-4.7. Again, two different approaches are taken

to compute the symmetric SE in each scenario. Specifically, in the first approach, the

maximum symmetric SE is found by solving (4.64) and numerically optimizing 0 ≤ µ ≤ 1

(with a step size of 0.02) to find the optimum value of the power splitting coefficient.

Then, for each value of M , the average of the optimum choices of µ over 150 realizations

is calculated and stored. In the second approach, rather than numerically optimizing µ in

(4.64), [P2] is solved using the pre-computed average value of µ and validated on 150 new

random realizations of user locations. It is revealed from these three figures that, similar to

the case of L = 2, the performance obtained using the second approach is almost the same

as the one obtained from the first approach, showing the advantage of using pre-computed
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Figure 4.5: Performance of message splitting strategy using maximum symmetric SE for
three cells when ZF precoding and a spatially correlated channel model are used.

average values of µ in practical implementations.

Fig. 4.5 shows the performance of ZF for L = 3, as a function ofM . It can be observed

that, compared to the SND scheme of Chapter 3, for all values of M the proposed RS

scheme provides significantly higher gains over TIN. Specifically, this gain is about 92%

and 99% for M = 128 and M = 256, respectively, and it increases to about 138% when

M = 1024. As explained before, this is due to the fact that the proposed RS scheme

provides the additional flexibility of decoding part of the interference (depending on the

strength of the signal which is a function ofM) while treating the remaining part as noise,

resulting in extra degrees of freedom in the decoding stage that are not offered by SND.
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Figure 4.6: Performance of message splitting strategy using maximum symmetric SE for
four cells when ZF precoding and a spatially correlated channel model are used.

Note that following the discussion provided in Section 4.3.2, when L = 4 or 7, to obtain

the maximum symmetric SE over the entire region RRS one needs to consider the union

of a large number of convex polytopes, which may not be feasible. Hence, to provide some

insights into the benefits of using the proposed RS scheme in networks with large number

of cells (e.g., L ≥ 4) we consider an achievable sub-region of RRS which provides a lower

bound to the true performance of the RS scheme, while offering a significant gain over TIN

and SND.

First, define a subset of Sl as follows

SSub
l :=

{{

m
(a)
l , m

(b)
l

}}

×
{{

m
(b)
1

}

, ...,
{

m
(b)
l−1

}

,
{

m
(b)
l+1

}

, ...,
{

m
(b)
L

}

, (4.65)
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Figure 4.7: Performance of message splitting strategy using maximum symmetric SE for
seven cells when ZF precoding and a spatially correlated channel model are used.

{

m
(b)
1 , ..., m

(b)
l−1, m

(b)
l+1, ..., m

(b)
L

}}

,

which gives rise to RSub ⊂ RRS as follows

R
Sub =

⋂

l

RSub
l , l = 1, ..., L, (4.66)

where

RSub
l =

⋃

Ωl∈SSub
l

RRS
MAC(Ωl,l)

. (4.67)

This sub-region RSub of RRS can be represented as the union of a finite number of convex
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polytopes, i.e., R
Sub =

⋃

n R̃
RS
n , n ∈ ISub, where ISub ⊂ IRS since SSub

l ⊂ Sl.

Note that one can also reproduce the SND region, RSND ⊆ RL, as a “sub-region” of

RS, RRS ⊆ R2L, as follows. Assuming µ = 0, from the description of the encoding stage in

Section 4.2.2, we have R
dl,(a)
l = 0 and thus Rdl

l = R
dl,(b)
l . Define the projection operator,

π : R2L −→ RL, as follows

π
(

R
dl,(a)
1 , R

dl,(b)
1 , ..., R

dl,(a)
L , R

dl,(b)
L

)

=
[

R
dl,(a)
1 +R

dl,(b)
1 , ..., R

dl,(a)
L +R

dl,(b)
L

]

. (4.68)

Therefore, for µ = 0, we can write

R
SND = π




⋂

l∈{1,...,L}
RSND

l



 , (4.69)

where

RSND
l =

⋃

Ωl∈SSND
l

RRS
MAC(Ωl,l)

, (4.70)

and the set SSND
l at receiver l is given by

SSND
l :=

{{

m
(a)
l , m

(b)
l

}}

×A′
1 × ...×A′

l−1 ×A′
l+1 × ...×A′

L, (4.71)

where A′
j :=

{

∅,
{

m
(a)
j , m

(b)
j

}}

, j 6= l. Also, from (4.71), it is readily verified that

SSND
l ⊂ Sl.

One can similarly re-write the region,
⋂

l∈{1,...,L}RSND
l , given in (4.69)-(4.70) as the

union of a finite number of convex polytopes, i.e.,
⋂

l∈{1,...,L}RSND
l =

⋃

n R̃RS
n , n ∈ ISND,

where ISND ⊂ IRS. Since ISND ⊂ IRS and ISub ⊂ IRS, it is readily verified that the

following problem provides a lower bound to (4.64)

[P3] max
µ,n,xxx

cccTxxx (4.72)

subject to ÃAAnxxx ≤ b̃bbn(µ) (4.73)

DDDxxx ≤ 000 (4.74)
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0 ≤ µ ≤ 1 (4.75)

xxx ≥ 0 (4.76)

n ∈ ISND ∪ ISub. (4.77)

Further define function f (µ, I) as follows

f (µ, I) := max
n,xxx

cccTxxx (4.78)

subject to ÃAAnxxx ≤ b̃bbn(µ) (4.79)

DDDxxx ≤ 000 (4.80)

xxx ≥ 0 (4.81)

n ∈ I. (4.82)

i.e., the optimum value of [P3] for a fixed µ and subset I ⊆ IRS. Also, define g(I) :=

max0≤µ≤1 f (µ, I). For instance, [P3] can be written as g
(
ISND ∪ ISub

)
. Now, it can be

verified that

g
(
ISND ∪ ISub

)
= max

{
g
(
ISND

)
, g
(
ISub

)}
(4.83)

= max

{

max
0≤µ≤1

f
(
µ, ISND

)
, max

0≤µ≤1
f
(
µ, ISub

)
}

(4.84)

≥ max

{

f
(
0, ISND

)
, max

0≤µ≤1
f
(
µ, ISub

)
}

(4.85)

= max
{
tSND,∗, g

(
ISub

)}
, (4.86)

where tSND,∗ is the optimal value of the objective function in the problem below

max
n,xxx

cccTxxx (4.87)

subject to ÃAAnxxx ≤ b̃bbn(0) (4.88)

DDDxxx ≤ 000 (4.89)

xxx ≥ 0 (4.90)
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n ∈ ISND, (4.91)

and g
(
ISub

)
is the optimal value of the objective function given below

max
µ,n,xxx

cccTxxx (4.92)

subject to ÃAAnxxx ≤ b̃bbn(µ) (4.93)

DDDxxx ≤ 000 (4.94)

0 ≤ µ ≤ 1 (4.95)

xxx ≥ 0 (4.96)

n ∈ ISub. (4.97)

Therefore, by calculating max
{
tSND,∗, g

(
ISub

)}
, a lower bound to (4.72) is obtained.

Also, note that tSND,∗ is the maximum symmetric rate of the SND region from the previous

chapter, i.e, tSND,∗ = RSND
Sym . As such, for L = 4 and L = 7, max

{
RSND

Sym , g
(
ISub

)}
is found,

thus providing a lower bound to the true performance of the RS scheme.

Figs. 4.6 and 4.7 show the performance of ZF for the cases of L = 4 and L = 7,

respectively. Notice that a pattern similar to those of Figs. 4.4 and 4.5 is apparent in

Figs. 4.6 and 4.7. Specifically, it can be seen from Fig. 4.6 that the gain offered by the RS

scheme over TIN is at least 79% and 92% for M = 128 and M = 256, respectively, and

it increases to more than 125% for M = 1024. Recall from Chapter 3 that increasing the

number of cells results in improving the gains provided by SND over TIN. While a similar

observation can be made here when moving from L = 2 to L = 3 (i.e., the performance

gains for L = 3 are larger than those for L = 2), these gains slightly drop when moving to

L = 4. This can be explained by the fact that for L = 3 the true performance obtained

by the RS scheme is calculated, whereas for L = 4 and L = 7 a lower bound to the true

performance of the RS scheme is calculated. Nevertheless, as the case of L = 7 is treated

in a similar manner, the gains provided by the RS scheme over TIN for seven cells are

larger than those in the case of four cells. In particular, when L = 7, Fig. 4.7 shows gains

of 79% and 98% for M = 128 and M = 256, respectively, and this gain increases to about

138% for M = 1024.
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Figure 4.8: Performance of message splitting strategy using maximum symmetric SE for
seven cells when RZF precoding and a spatially correlated channel model are used.

The performance of RZF precoding is illustrated in Fig. 4.8 which shows a similar

pattern to those of Figs. 4.4-4.7, and the precoding matrix is given in (3.76) where δ =

K/ρdl. As discussed in the previous chapter, it is expected that when M is small RZF

outperforms ZF, whereas for large values of M , the performance gap between RZF and

ZF vanishes. This is confirmed in Fig. 4.9. More specifically, Fig. 4.9 reveals that for

approximately M ≤ 64 a notable gain is provided by RZF compared to ZF, while this gain

gradually disappears for larger values of M .

The impact of increasing the number of users K on system performance is shown in

Fig. 4.10, when L = 7 andM = 256. Similar to the results of Chapter 3, it is observed that

while increasing the number of users degrades the performance of the RS scheme, the gain
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Figure 4.9: Performance comparison between RZF and ZF for L = 7, when the RS scheme
is used.

provided by the partial interference decoding scheme over TIN improves. In particular,

Fig. 4.10 shows that this gain is at least 30% when K = 2, and it increases to more than

98% when K = 15.

The impact of increasing the correlation magnitude on system performance is shown in

Fig. 4.11, when L = 7 and M = 256. The results presented in this figure are in agreement

with the discussions provided in Chapter 3. Specifically, as the spatial channel correlation

improves the performance of all schemes, the gain offered by the RS scheme over TIN is

at least 138% when κ = 0 (i.e., uncorrelated channel) and it reduces to about 34% when

κ = 0.8 (i.e., strong spatial correlation), however this gain is still significantly higher than

the one provided by SND.
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Figure 4.10: Performance of maximum symmetric SE versus the number of users K, where
L = 7, M = 256, and ZF precoding with a spatially correlated channel model are used.

Lastly, we study the impact of shadow fading on the performance of the proposed RS

scheme. Similar to the previous chapter, we assume that a term associated with shadow

fading is now added to the large-scale fading model with a standard deviation of σshadow

in dB. Fig. 4.12 shows this impact, where the standard deviation of shadow fading σshadow

increases from 0 dB to 5 dB. The parameters for this figure are the same as those in

Fig. 4.11 except that correlation magnitude is now fixed at κ = 0.4. It is observed that,

similar to TIN and SND, by increasing the shadow fading the symmetric SE of the RS

scheme reduces, yet for all values of σshadow it offers larger gains over TIN compared to

SND. Nevertheless, as σshadow becomes larger the gain provided by the RS scheme over

TIN increases, which shows the importance of the proposed scheme in practical scenarios.
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Figure 4.11: Performance of maximum symmetric SE versus the correlation magnitude κ,
where L = 7, M = 256 and ZF precoding is used.

In particular, there is a gain of at least 98% for σshadow = 0 dB, and it improves to more

than a factor of 4 when σshadow = 3 dB. This gain continues to improve for larger values of

σshadow.

Next, we assume that a wrap around topology is considered for the seven-cell configura-

tion illustrated in Fig. 3.7d. Similar to the observations made in Chapter 3, it is expected

that the SEs achieved by RS will be slightly degraded; nevertheless, since RS can better

manage the interference compared to TIN, it should still provide a significant gain over

TIN while outperforming SND. The results are shown in Fig. 4.13. It can be seen that

the gain offered by RS over TIN is at least 86% and 106% for M = 128 and M = 256,

respectively, and reaches about 136% when M = 1024. Hence, the use of RS or SND with
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Figure 4.12: Performance of maximum symmetric SE versus the standard deviation of
shadow fading σshadow, where L = 7, M = 256 and ZF precoding is used.

ZF can be considered a viable solution to combat the rate saturation problem due to pilot

contamination in practical implementations.

4.4.2 Spatially Uncorrelated

We now consider the special case of an uncorrelated Rayleigh fading channel, and evaluate

the performance of the message splitting techniques by simulating scenarios identical to

those of Section 3.4.2. Similar to the previous chapter, we study the impact of changing

the number of antennas M , number of cells L and cell radius r on the performance of

the proposed RS scheme. To this end, the downlink of a multi-cell massive MIMO system
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Figure 4.13: Performance of maximum symmetric SE for seven cells with wrap around
topology, when ZF precoding and a spatially correlated channel model are used.

with spatial correlation matrices given by RRRjkl = βjklIIIM is simulated with parameters

identical to the correlated case. In particular, the performance of the proposed message

splitting techniques along with TIN and SND from the previous chapter (for the sake of

comparison) are illustrated with ZF precoding and for L = 2, 3, 4, 7, with two choices of

cell radius: r = 400 m, 800 m. To evaluate the performance, the average of the maximum

symmetric SEs is calculated over 200 random realizations of user locations. Also, for each

scenario, the symmetric SE of the proposed partial decoding scheme is calculated using the

two approaches discussed in the previous section, namely, using the optimized value of the

splitting coefficient and using the pre-computed average value of the splitting coefficient.

Moreover, using the closed-form expressions of the rate lower bounds for an uncorrelated
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(a) r = 400 m (b) r = 800 m

Figure 4.14: Performance of maximum symmetric SE for two cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

channel in Chapter 3, we are able to compute the performance for a significantly larger

range of M .

Fig. 4.14 shows the performance of the HK scheme for a range of moderately large M ,

while Fig. 4.15 shows the same for a range of extremely large M , when L = 2. While the

latter covers a range of M that is beyond practical, the results of Fig. 4.15 can be used

to confirm asymptotic performance limits as M → ∞. The first observation to make here

is that, similar to the case of a spatially correlated channel, the symmetric SEs obtained

using the optimized values of splitting coefficients (i.e., first approach) have almost the

same values as the ones obtained using the pre-computed average values of the splitting

coefficients (i.e., second approach). Moreover, the results of this figure reveal that the gains

provided by the HK scheme over TIN here are larger than those observed in the spatially

correlated channel. A similar observation was already confirmed in Fig. 4.11. It can also

be seen that, for both choices of the cell radius, this performance gain improves as M is

increased. Specifically, when r = 400 m, this gain is about 96% and 108% forM = 128 and
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(a) r = 400 m (b) r = 800 m

Figure 4.15: Performance of maximum symmetric SE for two cells with truly largeM , when
ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b) r = 800 m.

M = 256, respectively, and it increases to about 133% for M = 1024. It is also observed

that increasing the cell radius reduces the achieved symmetric SEs and results in smaller

performance gains; nonetheless, these gains are still larger than those provided by SND.

Particularly, when r = 800 m, the HK scheme offers gains of about 45% and 60% for

M = 128 and M = 256, respectively, and the gain improves to about 85% for M = 1024.

Interestingly, in Fig. 4.15 one can notice that as M increases, the performance gain

provided by the HK scheme relative to SND gradually increases up to a point (i.e., approx-

imately somewhere in the range 104 < M < 105 in this case), beyond which the gap to

SND gradually reduces. This means that as M grows and thus the strength of the inter-

fering signal increases, the power of the inner layer can be increased. This result is better

illustrated in Fig. 4.16, which demonstrates the average of the optimized value of splitting

coefficients over 200 random realizations of user locations. Specifically, this figure shows

that increasing M yields a smaller value of µavg (i.e., larger value of 1− µavg which is the

fraction of power allotted to the inner layer), and as M grows unbounded µavg approaches

zero (i.e., 1 − µavg approaches one) and thereby a larger fraction of the interference can
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(a) r = 400 m (b) r = 800 m

Figure 4.16: Average of power splitting coefficients µ1, µ2 (i.e., fraction of power allotted to
the outer layer) for two cells as a function of M , when ZF precoding and an uncorrelated
channel model are used, (a) r = 400 m, (b) r = 800 m.

be decoded at each receiver. Another observation to make here is that, as expected, when

the cell radius increases the curve in Fig. 4.16 shifts slightly up, indicating that on average

more antennas will be required to be able to decode the same fraction of the interference

signal.

The performance of the proposed RS scheme with ZF precoding is shown in Figs. 4.17

to 4.25, for L = 3, 4 and 7. Note that Figs. 4.17, 4.20 and 4.23 illustrate the performance

for a range of moderately large values of M , while Figs. 4.18, 4.21 and 4.24 demonstrate

the same plots for a range of truly large values of M , and Figs. 4.19, 4.22 and 4.25 show

the average of the optimized splitting coefficients as a function ofM . In addition, it should

be pointed out that the performance of the RS scheme for the cases of L = 4 and L = 7

is evaluated using the lower bound obtained by the achievable sub-region discussed in

Section 4.4.1.

First, notice that patterns similar to those of the two-cell case are observed in all these

figures. Also, as expected, it can be seen that increasing the number of cells gives rise to
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(a) r = 400 m (b) r = 800 m

Figure 4.17: Performance of maximum symmetric SE for three cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

(a) r = 400 m (b) r = 800 m

Figure 4.18: Performance of maximum symmetric SE for two cells with truly largeM , when
ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b) r = 800 m.
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Figure 4.19: Average of power splitting coefficients µ (i.e., fraction of power allotted to
the outer layer) for three cells as a function of M , when r = 400 m ZF precoding and an
uncorrelated channel model are used

reducing the symmetric SEs of the RS scheme; nevertheless it still provides a larger gain

over TIN compared to SND. Also, as the number of cells increases the performance gain

offered by the RS scheme improves, except for the small drop in gain when moving from

L = 3 to L = 4 due to considering the sub-region rather than the entire region of RRS.

More specifically, it is observed from Fig. 4.17a that when L = 3 and r = 400 m, the

gain provided by the RS scheme over TIN is about 111% and 137% for M = 128 and

M = 256, respectively, and it improves to about 173% for M = 1024. Also, Fig. 4.17b

shows that when the cell radius increases to r = 800 m, this gain reduces to about 63% and

88% forM = 128 andM = 256, respectively, and it increases to about 138% forM = 1024.
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(a) r = 400 m (b) r = 800 m

Figure 4.20: Performance of maximum symmetric SE for four cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

Further note that by increasing the number of cells to L = 7 in Fig. 4.23a, when r = 400 m

the gain of the RS scheme over TIN improves to at least 112% and 144% for M = 128 and

M = 256, respectively, and it increases to more than 184% for M = 1024. One can also

observe, as expected, the slight degradation of the performance gains in Fig. 4.23b when

r = 800 m. More precisely, Fig. 4.23b shows a gain of at least 87% and 116% for M = 128

and M = 256, respectively, whereas this gain is more than 164% for M = 1024.

Lastly, Fig. 4.26 shows a scenario identical to the one depicted in Fig. 3.27 which is

somewhat pessimistic and also in favor of TIN, and the results are similar to those of

Fig. 3.29. In particular, it is assumed that L = 2 and all users of the left cell are located on

the cell edge at the farthest distance from the BSs, whereas the position of users in the right

cell is on the boundary of an inscribed circle inside the cell, determined by 0◦ ≤ θ ≤ 360◦.

The achieved maximum symmetric SEs with ZF as a function of θ are shown in Fig. 4.26,

for four different values of M = 128, 256, 512, 1024, where the performance of TIN and

SND from the previous chapter are plotted again for the sake of comparison.
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(a) r = 400 m (b) r = 800 m

Figure 4.21: Performance of maximum symmetric SE for four cells with truly large M ,
when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

It can be observed that the symmetric SEs achieved by the RS scheme follow a pattern

similar to those of TIN and SND. Specifically, Fig. 4.26 shows that, for a fixed value

of M , as θ increases and approaches 180◦, users of the right cell become closer to BS 1

and the interference thus becomes stronger (see the performance of TIN). Therefore, the

achieved symmetric SEs of the RS scheme reduce, nevertheless its performance gain over

TIN improves due to the severe degradation of the performance obtained by TIN. Finally,

one can notice that the RS scheme outperforms both TIN and SND for a significantly wider

range of θ, as it benefits from the additional flexibility of decoding part of the interference.

In other words, it is only for a small range where θ is close to either 0◦ or 360◦ (i.e., users of

the right cell are located at the farthest distance from BS 1), that the RS scheme achieves

a performance identical to those of TIN and SND. It is worth noting that, for a fixed value

of M , TIN offers its maximum possible performance in this range of θ.
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Figure 4.22: Average of power splitting coefficients µ (i.e., fraction of power allotted to
the outer layer) for four cells as a function of M , when r = 400 m ZF precoding and an
uncorrelated channel model are used
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(a) r = 400 m (b) r = 800 m

Figure 4.23: Performance of maximum symmetric SE for seven cells with moderately large
M , when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b)
r = 800 m.

(a) r = 400 m (b) r = 800 m

Figure 4.24: Performance of maximum symmetric SE for seven cells with truly large M ,
when ZF precoding and an uncorrelated channel model are used, (a) r = 400 m, (b) r = 800
m.
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Figure 4.25: Average of power splitting coefficients µ (i.e., fraction of power allotted to
the outer layer) for seven cells as a function of M , when r = 400 m ZF precoding and an
uncorrelated channel model are used
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(a) M = 128 (b) M = 256

(c) M = 512 (d) M = 1024

Figure 4.26: Performance of TIN/SND/HK in a two-cell system with maximum symmetric
SE versus θ, when ZF precoding and an uncorrelated channel model are used, (a)M = 128,
(b) M = 256, (c) M = 512, (d) M = 1024.

141



Chapter 5

Concluding Remarks

5.1 Summary of Contributions and Conclusions

The performance gains offered by massive MIMO systems rely heavily on the availability of

accurate CSI, which needs to be estimated. A popular technique to acquire CSI in TDD-

based massive MIMO systems that benefit from channel reciprocity is to transmit uplink

training pilots, which will be used at the BSs to estimate the channels. In a multi-cell

system, however, since the length of the channel coherence interval is small and finite due

to users mobility, the number of available orthogonal pilot sequences is limited. Therefore,

a natural approach to cope with this limitation is to re-use the orthogonal pilots (used

in one cell to obtain an estimation of the users’ channel in that cell) in other cells across

the network. This causes pilot contamination interference, also known as the coherent

interference, that scales at the same rate as the desired signal, and therefore does not vanish

asymptotically when the number of BS antennas, M , grows to infinity. Thus, by treating

this interference term as noise (TIN) which is a common technique used in the massive

MIMO literature, one obtains achievable rate expressions that, in the asymptotic limit of

M → ∞, converge to a constant independent of M . Hence, as a result of performing TIN

at the BSs in uplink or at the users’ side in downlink, the benefits of increasing the number

of BS antennas saturate, which constitutes a bottleneck in practical implementations of
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massive MIMO systems.

In this thesis, we have addressed pilot contamination problem (due to the re-use of

orthogonal pilots in different cells) for a multi-user multi-cell massive MIMO system. We

analytically studied both uplink and downlink with two well-known linear combining and

precoding techniques, i.e., MRC/MRT and ZF. The case of RZF was also numerically

studied. We showed that when the number of BS antennas increases, pilot contamination

interference is not detrimental to the system performance, provided that it is carefully

decoded jointly along with the desired signal. As a result, we proposed to jointly decode

the main signal along with pilot contamination interference terms (either fully or partially)

as opposed to performing TIN, and showed that by doing so the rate saturation phenomena

is resolved and one can therefore achieve unbounded rates as M → ∞.

The major contributions of the thesis are as follows:

In Chapter 3, for the uplink and downlink of a multi-cell massive MIMO system with

spatially correlated Rayleigh fading as well as uncorrelated Rayleigh fading channel mod-

els, we studied the performance of interference decoding schemes based on SD and SND.

Specifically, rather than treating pilot contamination interference as noise, we proposed

to jointly decode it (either uniquely as in SD or non-uniquely as in SND) along with the

useful signal, resulting in achievable rate expressions that grow with M .

The major findings from this study are as follows:

1. We intuitively showed that after performing linear processing techniques and letting

M → ∞, the resulting signal can be treated as a noise-free L-user MAC where

the capacity region grows unbounded. It was also shown that when decoding the

interference caused by pilot contamination, the re-use of orthogonal pilots across

cells (as opposed to using different pilots in different cells) is preferable, as it results

in decoding significantly fewer terms.

2. We extended the previously established result on the worst-case uncorrelated noise

of a point-to-point channel to the multi-user case. Using this technique, we derived

general expressions of achievable rate lower bounds for both uplink and downlink of
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a multi-cell massive MIMO system that applies joint decoding to each set of pilot-

sharing users. These lower bounds are independent of the choice of linear processing

technique, and can thus be used in conjunction with Monte Carlo simulations to eval-

uate the system performance under various types of combining/precoding schemes.

3. Using the derivations of MMSE channel estimate in the case of a spatially correlated

Rayleigh fading channel, we specialized the achievable lower bounds to the case of

MRC/MRT in uplink/downlink, and obtained new closed-form expressions for these

linear processing techniques that scale as O(logM). Moreover, assuming that an

uncorrelated Rayleigh fading channel model is used (as a special case of the correlated

Rayleigh fading model), we simplified these rate lower bounds, and further obtained

new closed-form expressions for ZF in both uplink and downlink, which again scale

as O(logM).

4. As a measure of fairness, we studied the performance of maximum symmetric rate

allocation and compared the performance of the two proposed full interference de-

coding schemes, SD/SND, with that of TIN based on this fairness criteria. We also

introduced a simplified achievable sub-region of SND, known as S-SND, and showed

that it strictly contains SD and also provides a lower bound to the performance of

SND. First, we considered the extreme regime of high SINR (i.e., when M is truly

large) and observed that both interference decoding schemes, SD/SND, have iden-

tical performance in this regime and also outperform TIN. Also, it was shown that

in the high SINR regime pilot contamination interference is strong enough that the

optimum performance is obtained by uniquely decoding all signals of pilot-sharing

users together.

5. We obtained structural results for a symmetric two-cell system, where the MACs seen

in both cells are identical. For this symmetric setting, it was found that when M is

small and pilot contamination interference is thus weak, SND and TIN have identical

performance while outperforming SD. On the other hand, when M is sufficiently

large and pilot contamination interference is therefore strong, SND and SD have the

same performance while outperforming TIN. We also found conditions in terms of
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mutual information expressions under which these results are valid.

6. We provided extensive numerical results by simulating the downlink of a multi-cell

massive MIMO system with correlated/uncorrelated Rayleigh fading channel models

in different scenarios. The first finding was that in all cases, unless M is truly large

and beyond practical limit, SD provides poor performance and is outperformed by

the other schemes. We also observed that, for a practical range ofM (e.g., M ≥ 128)

SND offers a notable gain over TIN, and this gain improves by either increasingM or

increasing the number of cells. It was further shown that both RZF and ZF produce

significantly larger rates compared to MRC/MRT, due to the better mitigation of

multi-user interference, while RZF also outperforms ZF for small values of M (e.g.,

M < 64) only.

7. In addition, we numerically studied the impact of changing the number of users,

the cell radius, the correlation magnitude and the standard deviation of shadow

fading on system performance. It was observed that while increasing the cell radius

(leading to reduced received power) or the number of users (leading to increased

interference) results in reducing the achievable rates of all schemes, it increases the

performance gain provided by SND over TIN. A similar observation was also made

when increasing the standard deviation of the shadow fading, i.e., increasing the

shadow fading degrades the performance of all schemes (as expected) while improving

the gain of SND over TIN. Lastly, we observed that spatial correlation improves

the performance of all schemes, resulting in reducing the gap between SND and

TIN. Nevertheless, it was seen that under moderate spatial correlation and with a

reasonable number of antennas SND still provides a significant gain over TIN. This

means that the gains offered by SND in the case of an uncorrelated Rayleigh fading

channel are larger compared to the correlated case.

In Chapter 4, we studied the performance of partial interference decoding schemes

based on RS and non-unique decoding in the downlink of a multi-cell massive MIMO

system. Specifically, in this chapter, we proposed to non-uniquely decode part of pilot

contamination interference, while treating the remaining part as noise. We showed that
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these additional decoding flexibilities lead to achieving significantly larger rates compared

to the schemes of Chapter 3, but at the cost of higher complexity.

We obtain the following findings from this study:

1. In the case of a two-cell system, we investigated the performance of an RS tech-

nique based on the well-known HK scheme (for an IC) and non-unique decoding. In

particular, the message of both users (i.e., the intended user and pilot contamina-

tion interference) were partitioned into two independent layers, known as the “inner

layer” and the “outer layer”, where at the receiver’s side both parts of the intended

message were decoded along with non-uniquely decoding only the inner layer of the

interfering signal. The rates of the individual layers at each cell are also adjusted

based on two power splitting coefficients that are numerically optimized.

2. This partial interference decoding scheme was also carefully generalized to the case

of more than two cells, while using only one power splitting coefficient per IC. Specif-

ically, unlike the two-cell case, it was proposed to non-uniquely decode each layer of

the interfering signals along with uniquely decoding both parts of the intended mes-

sage at each receiver. By doing so, it was shown that even though all pilot-sharing

users are applying the same numerically-optimized power splitting coefficient, ad-

ditional decoding flexibilities (compared to SND) will be provided at each receiver;

hence outperforming the schemes of Chapter 3.

3. To evaluate the performance of the proposed RS schemes, we numerically studied the

performance of maximum symmetric rate allocation for both cases of spatially cor-

related Rayleigh fading and uncorrelated Rayleigh fading, when the cellular network

comprises two, three, four or seven cells. We showed that the maximum symmetric

rate allocation problem can be equivalently formulated as an LP that can be effi-

ciently solved. While for the case of two and three cells the true performance of

the RS scheme was investigated, in the case of four and seven cells an achievable

sub-region of the proposed RS scheme was considered. In all cases, we observed that

by numerically optimizing the power splitting coefficients, the proposed RS schemes

produce significantly larger rates compared to SND and TIN, and the performance
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improves by increasing the number of antennas M . Furthermore, it was observed

that increasing the number of cells results in improving the gain provided by the RS

scheme such that the maximum gains in all scenarios were obtained in the case of

seven cells; thus showing the importance of the proposed scheme in practical imple-

mentations.

4. Similar to Chapter 3, the impacts of increasing the number of users, the cell ra-

dius, the correlation magnitude and the shadow fading on the achieved maximum

symmetric rate of the proposed RS scheme were also investigated. It was observed

that increasing the number of users, the cell radius and the shadow fading degrade

the performance of the RS scheme, while improving the gain it can offer. Besides,

increasing the correlation magnitude leads to improving the performance of the pro-

posed RS scheme (similar to the results of Chapter 3), thereby reducing the gain

provided by the RS scheme. Nonetheless, we observed that with a moderate spatial

correlation and a practical value of M (e.g., M = 128), the RS scheme still provides

a significant gain over the schemes of Chapter 3.

5. Lastly, we showed that by replacing the numerically-optimized values of the power

splitting coefficients with their mean value over a large number of random realiza-

tions of users’ locations, the performance loss is quite negligible; thus reducing the

complexity of the optimization problem in practical settings.

5.2 Directions for Future Work

In the following, we mention a few noteworthy future extensions of the current work.

While some of these are only consolidations or extensions of the present work, new ap-

proaches/techniques are possibly needed for the other problems.
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5.2.1 Other measures of fairness

In this work, we compared the performance of the different interference management

schemes, TIN/SD/SND/RS with the maximum symmetric rate they can offer. However,

other measures of fairness among users such as proportional fairness (i.e., maximizing

the geometric mean of the users’ rate) can also be considered and is expected to provide

larger rates (compared to the maximum symmetric rate allocation) to users with stronger

channels.

5.2.2 Cell-free massive MIMO systems

Cell-free massive MIMO refers to a special network configuration, where the BS antennas

(or access points) are distributed over a large area, rather than being co-located in a

compact array, and users in the network can potentially be served by all BSs [161]. It is thus

clear that the large-scale fading coefficients in a cell-free massive MIMO system depend on

both the BS antenna index as well as the user index. A number of papers have studied the

performance of cell-free massive MIMO under the assumption that perfect CSI is available

everywhere [162–166], though massive MIMO gains rely heavily on the accurate estimation

of CSI. Moreover, the work of [167] has investigated the performance of MRC in uplink

assuming that channel estimates are obtained using orthogonal pilots across the entire

network, thus eliminating pilot contamination effect. Recently, cell-free massive MIMO

systems with imperfect CSI have been also studied in the literature, where techniques such

as LSFD [40] have been proposed to cope with pilot contamination problem. One possible

direction for future work could be the investigation of the proposed interference decoding

schemes of this thesis (as opposed to TIN) in cell-free configurations to improve the system

performance. While studying the performance of the interference decoding schemes, it is

expected that user scheduling (i.e., which users should be served by which BSs) and proper

pilot assignment among users can also be challenges that need to be addressed [101, 168].
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5.2.3 Multi-cell systems with a central unit connected to all BSs

via fronthaul links

In a cloud radio access network (C-RAN), it is assumed that several remote radio heads

(RRH) (or BSs) are connected to a central unit (CU) to perform digital baseband process-

ing tasks [169]. A large amount of research has been reported in the literature addressing

the viability of massive MIMO implementations with C-RANs [170–172]. Hence, another

direction for future work would be to consider a C-RAN with imperfect CSI (thus experi-

encing pilot contamination) consisting of distributed RRHs that have a massive number of

antenna arrays. In turn, when sending all the BSs’ signals to the CU, it has access to the

signals of both strong and possibly weak users (pilot contamination interference terms).

Thus, by performing an additional layer of processing based on decoding pilot contami-

nation interference terms at the CU, one can potentially achieve an improved throughput

while requiring possibly smaller number of antennas at each RRH compared to regular

massive MIMO systems. In the simplest model, we can assume that RRHs are connected

to the CU via infinite-capacity fronthaul links and study the performance of interference

decoding schemes at the CU. In the next step, one can consider finite-capacity fronthaul

links, thus the need for proper signal quantization at RRHs while exploring the benefits of

interference decoding schemes.

5.2.4 Multi-antenna users

We have observed that the performance gains of massive MIMO systems performing

full/partial interference decoding schemes scale with the number of BS antennas. How-

ever, nothing in our analysis precludes the use of multi-antenna users. In particular, a

multi-antenna user can potentially benefit from a throughput increase that is proportional

to the number of antennas it possesses. Furthermore, multi-antenna users are capable of

performing more advanced interference suppression techniques. In the simplest case, one

could model each multi-antenna terminal as a multiplicity of single-antenna terminals. In-

vestigating the benefits of multi-antenna terminals in massive MIMO systems is still under

an active area of research, in both regular multi-cell configurations [173,174] as well as the
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cell-free deployments [175, 176]. Therefore, another interesting direction for future work

is the study of the performance of pilot contamination interference decoding schemes in

massive MIMO systems, where each BS serves several multi-antenna users.
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Appendix A

A.1 Proof of Lemma 2

Without loss of generality assume that Ω = {1, 2, ..., l} and thus Ωc = {l + 1, ..., L}. We

start by expanding the r.h.s of (3.4) as follows

I
(
xxxGΩ ; y

∣
∣xxxGΩc

)
= h

(
xxxGΩ
∣
∣xxxGΩc

)
− h

(
xxxGΩ
∣
∣y,xxxGΩc

)
(A.1)

(a)
= h

(
xxxGΩ
)
− h

(
xxxGΩ
∣
∣y,xxxGΩc

)
(A.2)

(b)
= log

(
(πe)lΠl

i=1Pi

)
− h

(
xxxGΩ
∣
∣y,xxxGΩc

)
, (A.3)

where (a) is because the entries of xxxGΩ and xxxGΩc are independent, and (b) follows from the

entropy of a complex Gaussian vector with independent entries. Also, using the chain rule

one can write

h
(
xxxGΩ
∣
∣y,xxxGΩc

)
(A.4)

=
∑

i∈Ω
h
(

xGi

∣
∣
∣xG1 , ..., x

G
i−1, y,xxx

G
Ωc

)

=
∑

i∈Ω
h

(

xGi − αi

(

y −
i−1∑

j=1

xGj −
∑

k∈Ωc

xGk

)
∣
∣
∣xG1 , ..., x

G
i−1, y,xxx

G
Ωc

)

,
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where αi is any constant. Defining ỹi = y −∑i−1
j=1 x

G
j −∑k∈Ωc xGk , we obtain

∑

i∈Ω
h
(
xGi − αiỹi

∣
∣xG1 , ..., x

G
i−1, y,xxx

G
Ωc

)
(A.5)

(c)

≤
∑

i∈Ω
h
(
xGi − αiỹi

)

(d)

≤
∑

i∈Ω
log
(
(πe)var

[
xGi − αiỹi

])
, (A.6)

where (c) is due to the fact that conditioning reduces the entropy and (d) follows as

Gaussian distributions maximize entropy. To obtain the tightest upper bound, one should

minimize var[xGi −αiỹi], i.e., αiỹi must be the LMMSE estimate of xGi . More precisely, one

can choose αi = E[ỹ∗i ỹi]
−1E[xGi ỹ

∗
i ] = Pi/(

∑l
j=i Pj + σ2

z), where the second equality follows

since z is uncorrelated from the users’ signals. Thus

var
[
xGi − αiỹi

]
=
Pi

(
∑l

j=i+1 Pj + σ2
z

)

∑l
j=i Pj + σ2

z

, (A.7)

and therefore we obtain

h
(
xxxGΩ
∣
∣y,xxxGΩc

)
≤
∑

i∈Ω
log



(πe)
Pi

(
∑l

j=i+1 Pj + σ2
z

)

∑l
j=i Pj + σ2

z



 (A.8)

= log

(

(πe)l
(Πi∈ΩPi)σ

2
z

∑

i∈Ω Pi + σ2
z

)

. (A.9)

Hence, from (A.3) the following lower bound is obtained

I
(
xxxGΩ; y

∣
∣xxxGΩc

)

≥ log
(
(πe)lΠi∈ΩPi

)
− log

(

(πe)l
(Πi∈ΩPi) σ

2
z

∑

i∈Ω Pi + σ2
z

)

(A.10)

= log

(

1 +

∑

i∈Ω Pi

σ2
z

)

= I
(

xxxGΩ; y
G
∣
∣
∣xxxGΩc

)

. (A.11)
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A.2 Proof of Theorem 1

The expression of ŷulji in (3.5) includes four different sums where each term in each sum is

zero-mean and also uncorrelated with every other term in the four sums. As the last three

sums in (3.5) are uncorrelated with xull [i], l = 1, ..., L, the variance of these can be treated

as the variance of an uncorrelated noise. Therefore, to prove the desired result, one needs

to calculate the variance of the interference due to beamforming gain uncertainty (denoted

by P ul
2 ), the variance of the interference caused by other uses (denoted by P ul

3 ) and the

variance of noise (denoted by P ul
4 ). It can be verified that the variance of the desired signal

components is

P ul
1 =

L∑

l=1

ρul

∣
∣
∣E

[

vvv†jijgggjil
]∣
∣
∣

2

. (A.12)

Also, since these four sums are uncorrelated, one can write

P ul
2 + P ul

3 + P ul
4 = var

[
ŷulji
]
− P ul

1 . (A.13)

Hence, we need to compute var
[
ŷulji
]
. First, observe that the uplink baseband signal ŷulji

can be equivalently written as

ŷulji =
L∑

l=1

K∑

k=1

√
ρulvvv

†
jijgggjklx

ul
l [k] + vvv†jijnnnj. (A.14)

Therefore, var
[
ŷulji
]
can be computed as follows

var
[
ŷulji
]
=

L∑

l=1

K∑

k=1

ρulE

[∣
∣
∣vvv

†
jijgggjkl

∣
∣
∣

2
]

+ E

[∣
∣
∣vvv

†
jijnnnj

∣
∣
∣

2
]

(A.15)

=
L∑

l=1

K∑

k=1

ρulE

[∣
∣
∣vvv

†
jijgggjkl

∣
∣
∣

2
]

+ E
[
‖vvvjij‖2

]
, (A.16)
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where we have used the fact that E
[∣
∣xull [k]

∣
∣
2
]

= 1, ∀l, k, and the last step follows by noting

that the elements of the noise vector nnnj have unit variance. We thus have

P ul
2 + P ul

3 + P ul
4 =

L∑

l=1

K∑

k=1

ρulE

[∣
∣
∣vvv

†
jijgggjkl

∣
∣
∣

2
]

+ E
[
‖vvvjij‖2

]
−

L∑

l=1

ρul

∣
∣
∣E

[

vvv†jijgggjil
]∣
∣
∣

2

. (A.17)

Furthermore, note that for the numerator in the r.h.s of (3.8) we have

var

[

√
ρul
∑

l∈Ω
E

[

vvv†jijgggjil
]

xull [i]

]

=
∑

l∈Ω
ρul

∣
∣
∣E

[

vvv†jijgggjil
]∣
∣
∣

2

. (A.18)

Therefore, since the effective noise is zero-mean and uncorrelated from the desired signals,

one can directly apply Lemma 2 in conjunction with the computed variances above to

obtain the lower bound in (3.8).

A.3 Proof of Theorem 2

The proof follows steps similar to those of Theorem 1. Specifically, note that the expression

of ydlil in (3.9) includes four zero-mean sums that are also uncorrelated. Denote the variance

of the desired signals by P dl
1 , the variance of the interference due to beamforming gain

uncertainty by P dl
2 , the variance of inter-cell interference caused by other users by P dl

3 and

the variance of noise by P dl
4 . Hence, since these four sums are uncorrelated with each other,

we have var
[
ydlil
]
= P dl

1 + P dl
2 + P dl

3 + P dl
4 . It is easy to verify that the variance of the

desired signals is

P dl
1 =

L∑

j=1

ρdl
λj

∣
∣
∣E

[

ggg†jilwwwjij

]∣
∣
∣

2

, (A.19)

which is followed from E
[
|sj[k]|2

]
= 1, ∀j, k. In addition, one can equivalently write ydlil as

ydlil =

L∑

j=1

√
ρdl
λj

K∑

k=1

ggg†jilwwwjkjsj[k] + zil. (A.20)
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Therefore, we obtain for var
[
ydlil
]

var
[
ydlil
]
=

L∑

j=1

K∑

k=1

ρdl
λj

E

[∣
∣
∣ggg

†
jilwwwjkj

∣
∣
∣

2
]

+ 1, (A.21)

where we have used the fact that the noise term has unit variance, i.e., E
[
|zil|2

]
= 1. As

such, P dl
2 + P dl

3 + P dl
4 is found as

P dl
2 + P dl

3 + P dl
4 =

L∑

j=1

K∑

k=1

ρdl
λj

E

[∣
∣
∣ggg

†
jilwwwjkj

∣
∣
∣

2
]

+ 1−
L∑

j=1

ρdl
λj

∣
∣
∣E

[

ggg†jilwwwjij

]∣
∣
∣

2

. (A.22)

Lastly, for the numerator in the r.h.s of (3.12) we have

var

[
∑

j∈Ω

√
ρdl
λj

E

[

ggg†jilwwwjij

]

sj[i]

]

=
∑

j∈Ω

ρdl
λj

∣
∣
∣E

[

ggg†jilwwwjij

]∣
∣
∣

2

. (A.23)

Therefore, since the effective noise is zero-mean and uncorrelated with the desired signals,

one can directly apply Lemma 2 in conjunction with the computed variances above to

obtain the lower bound in (3.12).

A.4 Proof of Theorem 3

Following a similar approach to that of [64, Appendix C], for the numerator of the lower

bound in (3.13), we calculate
∑

l∈Ω ρul

∣
∣
∣E

[

vvv†jijgggjil
]∣
∣
∣

2

with the combining vector given by

vvvjij = ĝggjij, i.e.,

∑

l∈Ω
ρul

∣
∣
∣E

[

ĝgg†jijgggjil
]∣
∣
∣

2

=
∑

l∈Ω
ρul

∣
∣
∣E

[

ĝgg†jij
(
ĝggjil + ǫǫǫjil

)]∣∣
∣

2

(A.24)

(a)
=
∑

l∈Ω
ρul

∣
∣
∣E

[

ĝgg†jijĝggjil

]∣
∣
∣

2

(A.25)

=
∑

l∈Ω
ρul

∣
∣
∣E

[

tr
(

ĝgg†jijĝggjil

)]∣
∣
∣

2

(A.26)
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=
∑

l∈Ω
ρul

∣
∣
∣tr
(

E

[

ĝggjilĝgg
†
jij

])∣
∣
∣

2

, (A.27)

where (a) follows by the fact that the estimate and the estimation error are uncorrelated

and have zero mean. Recall from Chapter 2 that ĝggjil = RRRjilRRR
−1
jijĝggjij. Therefore,

∑

l∈Ω
ρul

∣
∣
∣tr
(

E

[

ĝggjilĝgg
†
jij

])∣
∣
∣

2

=
∑

l∈Ω
ρul

∣
∣
∣tr
(

RRRjilRRR
−1
jijE

[

ĝggjijĝgg
†
jij

])∣
∣
∣

2

(A.28)

=
∑

l∈Ω
ρul
∣
∣tr
(
RRRjilRRR

−1
jijρpRRRjijΛΛΛ

−1
ji RRRjij

)∣
∣2 (A.29)

=
∑

l∈Ω
ρulρ

2
p

∣
∣tr
(
RRRjilΛΛΛ

−1
ji RRRjij

)∣
∣
2
. (A.30)

The first term in the denominator of the lower bound in (3.13) is computed as follows.

L∑

l=1

K∑

k=1

ρulE

[∣
∣
∣ĝgg

†
jijgggjkl

∣
∣
∣

2
]

=
L∑

l=1

ρulE

[∣
∣
∣ĝgg

†
jijgggjil

∣
∣
∣

2
]

+
L∑

l=1

K∑

k=1,k 6=i

ρulE

[∣
∣
∣ĝgg

†
jijgggjkl

∣
∣
∣

2
]

, (A.31)

i.e., we separately compute the summation over the users that share the same pilot sequence

as user i in cell j (the first summation in (A.31)) and the summation over users that are

using a different pilot sequence (the second summation in (A.31)). For the first summation,

we have

L∑

l=1

ρulE

[∣
∣
∣ĝgg

†
jijgggjil

∣
∣
∣

2
]

=

L∑

l=1

ρulE
[(

ĝgg†jijgggjil
)(

ggg†jilĝggjij

)]

(A.32)

=
L∑

l=1

ρulE
[

ĝgg†jij
(
ĝggjil + ǫǫǫjil

) (

ĝgg†jil + ǫǫǫ†jil

)

ĝggjij

]

(A.33)

(b)
=

L∑

l=1

ρulE
[

ĝgg†jijĝggjilĝgg
†
jilĝggjij

]

+

L∑

l=1

ρulE
[

ĝgg†jijǫǫǫjilǫǫǫ
†
jilĝggjij

]

, (A.34)

where (b) is due to the fact that the estimate and the estimation error are uncorrelated
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and have zero mean. For the second summation in (A.34), we obtain

L∑

l=1

ρulE
[

ĝgg†jijǫǫǫjilǫǫǫ
†
jilĝggjij

]

=
L∑

l=1

ρulE
[

tr
(

ǫǫǫjilǫǫǫ
†
jilĝggjijĝgg

†
jij

)]

(A.35)

(c)
=

L∑

l=1

ρultr
(

E

[

ǫǫǫjilǫǫǫ
†
jil

]

E

[

ĝggjijĝgg
†
jij

])

(A.36)

=
L∑

l=1

ρultr
((
RRRjil − ρpRRRjilΛΛΛ

−1
ji RRRjil

) (
ρpRRRjijΛΛΛ

−1
ji RRRjij

))
(A.37)

=

L∑

l=1

ρulρptr
(
RRRjilRRRjijΛΛΛ

−1
ji RRRjij

)

−
L∑

l=1

ρulρ
2
ptr
(
RRRjilΛΛΛ

−1
ji RRRjilRRRjijΛΛΛ

−1
ji RRRjij

)
, (A.38)

where (c) follows by the fact that the estimate and the estimation error are uncorrelated.

To compute the first summation in (A.34), we first need to present the following lemma

from [177, Lemma 2].

Lemma 4. Consider a zero-mean random vector qqq with distribution qqq ∼ CN (000, ΣΣΣ), where

ΣΣΣ ∈ C
M×M is the covariance matrix, and an arbitrary deterministic matrix WWW ∈ C

M×M .

Then, the following identity holds

E

[∣
∣qqq†WWWqqq

∣
∣
2
]

= |tr (ΣΣΣWWW )|2 + tr
(
ΣΣΣWWWΣΣΣWWW †) . (A.39)

Next, we re-write the first summation in (A.34) as follows

L∑

l=1

ρulE

[∣
∣
∣ĝgg

†
jijĝggjil

∣
∣
∣

2
]

(d)
=

L∑
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ρulE

[∣
∣
∣
√
ρprrr

†
jiΛΛΛ
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ji RRRjij

√
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ji rrrji
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∣
∣

2
]

(A.40)

=
L∑

l=1

ρulρ
2
pE
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†
jiΛΛΛ

−1
ji RRRjijRRRjilΛΛΛ

−1
ji rrrji

∣
∣
∣

2
]

, (A.41)

where (d) follows by the derivations of the MMSE channel estimate from Chapter 2, i.e.,
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ĝggjij =
√
ρpRRRjijΛΛΛ

−1
ji rrrji and ĝggjil =

√
ρpRRRjilΛΛΛ

−1
ji rrrji. Noting that rrrji ∼ CN (000, ΛΛΛji), and

assuming that qqq = rrrji and WWW = ΛΛΛ−1
ji RRRjijRRRjilΛΛΛ

−1
ji , we can apply Lemma 4 to obtain the

following

L∑

l=1

ρulρ
2
pE
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∣rrr

†
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ji RRRjijRRRjilΛΛΛ
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∣

2
]

=
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∣tr
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(A.42)

=

L∑

l=1
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∣
2

+
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)
(A.43)

=

L∑
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ρulρ
2
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∣tr
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RRRjilΛΛΛ

−1
ji RRRjij
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∣
2

+
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ρulρ
2
ptr
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RRRjilΛΛΛ
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ji RRRjilRRRjijΛΛΛ
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ji RRRjij

)
. (A.44)

Now, (A.32) which is the summation of (A.38) and (A.44) is found as

L∑

l=1

ρulE

[∣
∣
∣ĝgg

†
jijgggjil

∣
∣
∣

2
]

=

L∑

l=1

ρulρ
2
p

∣
∣tr
(
RRRjilΛΛΛ

−1
ji RRRjij

)∣
∣
2
+

L∑

l=1

ρulρptr
(
RRRjilRRRjijΛΛΛ

−1
ji RRRjij

)
.

(A.45)

For the second summation in (A.31) (i.e., summation over users that are using a different

pilot sequence), we obtain

L∑

l=1

K∑

k=1,k 6=i

ρulE

[∣
∣
∣ĝgg

†
jijgggjkl

∣
∣
∣

2
]

=

L∑

l=1

K∑

k=1,k 6=i

ρulE
[(

ĝgg†jijgggjkl
)(

ggg†jklĝggjij

)]

(A.46)
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=

L∑

l=1

K∑

k=1,k 6=i

ρulE
[

tr
(

gggjklggg
†
jklĝggjijĝgg

†
jij

)]

(A.47)

(e)
=

L∑

l=1

K∑

k=1,k 6=i

ρultr
(

E

[

gggjklggg
†
jkl

]

E

[

ĝggjijĝgg
†
jij

])

(A.48)

=

L∑

l=1

K∑

k=1,k 6=i

ρultr
(
RRRjklρpRRRjijΛΛΛ

−1
ji RRRjij

)
(A.49)

=
L∑

l=1

K∑

k=1,k 6=i

ρulρptr
(
RRRjklRRRjijΛΛΛ

−1
ji RRRjij

)
, (A.50)

where (e) is due to the fact that gggjkl and ĝggjij are uncorrelated for k 6= i, as these users

are using different pilot sequences. Hence, (A.31) (the first term in the denominator of the

lower bound in (3.13)) is simplified as below

L∑

l=1

K∑

k=1

ρulE

[∣
∣
∣ĝgg

†
jijgggjkl

∣
∣
∣

2
]

=

L∑

l=1

ρulρ
2
p

∣
∣tr
(
RRRjilΛΛΛ

−1
ji RRRjij

)∣
∣2 +

L∑

l=1

K∑

k=1

ρulρptr
(
RRRjklRRRjijΛΛΛ

−1
ji RRRjij

)
.

(A.51)

The computation of the second term in the denominator of the lower bound in (3.13)

follows steps similar to those of the numerator, except that now the summation is over all

l = 1, ..., L. We thus have

L∑

l=1

ρul

∣
∣
∣E

[

ĝgg†jijgggjil
]∣
∣
∣

2

=

L∑

l=1

ρulρ
2
p

∣
∣tr
(
RRRjilΛΛΛ

−1
ji RRRjij

)∣
∣
2
. (A.52)

Lastly, the third term in the denominator of the lower bound in (3.13) is calculated as

follows

E
[
‖vvvjij‖2

]
= E

[∥
∥ĝggjij

∥
∥2
]

(A.53)

= E

[

ĝgg†jijĝggjij

]

(A.54)
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= tr
(

E

[

ĝggjijĝgg
†
jij

])

(A.55)

= ρptr
(
RRRjijΛΛΛ

−1
ji RRRjij

)
. (A.56)

Therefore, for the denominator of the lower bound in (3.13), we obtain

L∑

l=1

K∑

k=1

ρulE

[∣
∣
∣vvv

†
jijgggjkl

∣
∣
∣

2
]

−
L∑

l=1

ρul

∣
∣
∣E

[

vvv†jijgggjil
]∣
∣
∣

2

+E
[
‖vvvjij‖2

]
(A.57)

=

L∑

l=1

K∑

k=1

ρulρp tr
(
RRRjklRRRjijΛΛΛ

−1
ji RRRjij

)
+ ρp tr

(
RRRjijΛΛΛ

−1
ji RRRjij

)
. (A.58)

Therefore, since the effective noise is zero-mean and uncorrelated from the desired

signals, one can directly apply Lemma 2 in conjunction with the computed variances above

to obtain the required lower bound. This completes the proof.

A.5 Proof of Theorem 4

Following a similar approach to that of [64, Appendix C], for the numerator of the lower

bound in (3.16), we compute
∑

j∈Ω (ρdl/λj)
∣
∣
∣E

[

ggg†jilwwwjij

]∣
∣
∣

2

, with the precoding vector given

by wwwjij = ĝggjij. Hence,

∑

j∈Ω

ρdl
λmrt
j

∣
∣
∣E

[

ggg†jilĝggjij

]∣
∣
∣

2

=
∑

j∈Ω

ρdl
λmrt
j

∣
∣
∣E

[(

ĝgg†jil + ǫǫǫ†jil

)

ĝggjij

]∣
∣
∣

2

(A.59)

(a)
=
∑

j∈Ω

ρdl
λmrt
j

∣
∣
∣E

[

tr
(

ĝggjijĝgg
†
jil

)]∣
∣
∣

2

(A.60)

(b)
=
∑

j∈Ω

ρdl
λmrt
j

∣
∣
∣tr
(

E

[

ĝggjijĝgg
†
jij

]

RRR−1
jijRRRjil

)∣
∣
∣

2

(A.61)

=
∑

j∈Ω

ρdl
λmrt
j

∣
∣tr
(
ρpRRRjijΛΛΛ

−1
ji RRRjijRRR

−1
jijRRRjil

)∣
∣2 (A.62)

=
∑

j∈Ω

ρdlρ
2
p

λmrt
j

∣
∣tr
(
RRRjijΛΛΛ

−1
ji RRRjil

)∣
∣2 , (A.63)
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where (a) follows by the fact that the estimate and the estimation error are uncorrelated

and have zero mean, and (b) follows from the identity ĝggjil = RRRjilRRR
−1
jijĝggjij.

Next, we need to compute the first and the second term in the denominator of the lower

bound in (3.12). For the first term, similar to the proof of uplink MRC, we separately

compute the summation over the users that are sharing the same pilot sequence as user i

in cell l and the summation over those users that are using a different pilot sequence, i.e.,

L∑

j=1

K∑

k=1

ρdl
λj

E

[∣
∣
∣ggg

†
jilĝggjkj

∣
∣
∣

2
]

=

L∑

j=1

ρdl
λmrt
j

E

[∣
∣
∣ggg

†
jilĝggjij

∣
∣
∣

2
]

+

L∑

j=1

K∑

k=1,k 6=i

ρdl
λmrt
j

E

[∣
∣
∣ggg

†
jilĝggjkj

∣
∣
∣

2
]

.

(A.64)

For the first term in the r.h.s of (A.64) (i.e., the summation over the users sharing the ith

pilot sequence), we obtain

L∑

j=1

ρdl
λmrt
j

E

[∣
∣
∣ggg

†
jilĝggjij

∣
∣
∣

2
]

=
L∑

j=1

ρdl
λmrt
j

E

[

ggg†jilĝggjijĝgg
†
jijgggjil

]

(A.65)

=

L∑

j=1

ρdl
λmrt
j

E

[(

ĝgg†jil + ǫǫǫ†jil

)

ĝggjijĝgg
†
jij

(
ĝggjil + ǫǫǫjil

)]

(A.66)

(c)
=

L∑

j=1

ρdl
λmrt
j

(

E

[

ĝgg†jilĝggjijĝgg
†
jijĝggjil

]

+ E

[

ǫǫǫ†jilĝggjijĝgg
†
jijǫǫǫjil

])

, (A.67)

where (c) is obtained by noting that the estimate and the estimation error are uncorrelated

and have zero mean. The first term in (A.67) is computed as follows

L∑

j=1

ρdl
λmrt
j

E

[

ĝgg†jilĝggjijĝgg
†
jijĝggjil

]

=

L∑

j=1

ρdl
λmrt
j

E

[∣
∣
∣ĝgg

†
jilĝggjij

∣
∣
∣

2
]

(A.68)

(d)
=

L∑

j=1

ρdl
λmrt
j

E

[∣
∣
∣
√
ρprrr

†
jiΛΛΛ

−1
ji RRRjil

√
ρpRRRjijΛΛΛ

−1
ji rrrji

∣
∣
∣

2
]

(A.69)

=
L∑

j=1

ρdlρ
2
p

λmrt
j

E

[∣
∣
∣rrr

†
jiΛΛΛ

−1
ji RRRjilRRRjijΛΛΛ

−1
ji rrrji

∣
∣
∣

2
]

(A.70)
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(e)
=

L∑

j=1

ρdlρ
2
p

λmrt
j

∣
∣tr
(
ΛΛΛjiΛΛΛ

−1
ji RRRjilRRRjijΛΛΛ

−1
ji

)∣
∣
2

+
L∑

j=1

ρdlρ
2
p

λmrt
j

tr
(
ΛΛΛjiΛΛΛ

−1
ji RRRjilRRRjijΛΛΛ

−1
ji ΛΛΛjiΛΛΛ

−1
ji RRRjijRRRjilΛΛΛ

−1
ji

)
(A.71)

=
L∑

j=1

ρdlρ
2
p

λmrt
j

∣
∣tr
(
RRRjilRRRjijΛΛΛ

−1
ji

)∣
∣
2

+

L∑

j=1

ρdlρ
2
p

λmrt
j

tr
(
RRRjilRRRjijΛΛΛ

−1
ji RRRjijRRRjilΛΛΛ

−1
ji

)
(A.72)

=

L∑

j=1

ρdlρ
2
p

λmrt
j

∣
∣tr
(
RRRjijΛΛΛ

−1
ji RRRjil

)∣
∣2

+
L∑

j=1

ρdlρ
2
p

λmrt
j

tr
(
RRRjijΛΛΛ

−1
ji RRRjijRRRjilΛΛΛ

−1
ji RRRjil

)
, (A.73)

where (d) is obtained using the identities ĝggjij =
√
ρpRRRjijΛΛΛ

−1
ji rrrji and ĝggjil =

√
ρpRRRjilΛΛΛ

−1
ji rrrji,

and (e) follows from applying Lemma 4 and noting that rrrji ∼ CN (000, ΛΛΛji).

The second term in (A.67) is obtained as follows

L∑

j=1

ρdl
λmrt
j

E

[

ǫǫǫ†jilĝggjijĝgg
†
jijǫǫǫjil

]

=

L∑

j=1

ρdl
λmrt
j

E

[

tr
(

ĝgg†jijĝgg
†
jijǫǫǫjilǫǫǫ

†
jil

)]

(A.74)

=

L∑

j=1

ρdl
λmrt
j

tr
(

E

[

ĝggjijĝgg
†
jij

]

E

[

ǫǫǫjilǫǫǫ
†
jil

])

(A.75)

=
L∑

j=1

ρdl
λmrt
j

tr
((
ρpRRRjijΛΛΛ

−1
ji RRRjij

) (
RRRjil − ρpRRRjilΛΛΛ

−1
ji RRRjil

))
(A.76)

=

L∑

j=1

ρdlρp
λmrt
j

tr
(
RRRjijΛΛΛ

−1
ji RRRjijRRRjil

)

−
L∑

j=1

ρdlρ
2
p

λmrt
j

tr
(
RRRjijΛΛΛ

−1
ji RRRjijRRRjilΛΛΛ

−1
ji RRRjil

)
. (A.77)

183



Thus, adding up (A.73) and (A.77), for the first summation in the r.h.s of (A.64) (i.e., the

summation over the users sharing the ith pilot sequence) we obtain

L∑

j=1

ρdl
λmrt
j

E

[∣
∣
∣ggg

†
jilĝggjij

∣
∣
∣

2
]

=

L∑

j=1

ρdlρp
λmrt
j

tr
(
RRRjijΛΛΛ

−1
ji RRRjijRRRjil

)

+

L∑

j=1

ρdlρ
2
p

λmrt
j

∣
∣tr
(
RRRjijΛΛΛ

−1
ji RRRjil

)∣
∣2 . (A.78)

For the second summation in the r.h.s of (A.64), we have

L∑

j=1

K∑

k=1,k 6=i

ρdl
λmrt
j

E

[∣
∣
∣ggg

†
jilĝggjkj

∣
∣
∣

2
]

=

L∑

j=1

K∑

k=1,k 6=i

ρdl
λmrt
j

E

[

ggg†jilĝggjkjĝgg
†
jkjgggjil

]

(A.79)

=
L∑

j=1

K∑

k=1,k 6=i

ρdl
λmrt
j

E

[

tr
(

ĝggjkjĝgg
†
jkjgggjilggg

†
jil

)]

(A.80)

(f)
=

L∑

j=1

K∑

k=1,k 6=i

ρdl
λmrt
j

tr
(

E

[

ĝggjkjĝgg
†
jkj

]

E

[

gggjilggg
†
jil

])

(A.81)

=
L∑

j=1

K∑

k=1,k 6=i

ρdl
λmrt
j

tr
(
ρpRRRjkjΛΛΛ

−1
ji RRRjkjRRRjil

)
(A.82)

=

L∑

j=1

K∑

k=1,k 6=i

ρdlρp
λmrt
j

tr
(
RRRjkjΛΛΛ

−1
ji RRRjkjRRRjil

)
, (A.83)

where (f) follows by the fact that ĝggjkl and gggjil are uncorrelated for k 6= i. Hence, by adding

(A.83) and (A.78), we obtain

L∑

j=1

K∑

k=1

ρdl
λj

E

[∣
∣
∣ggg

†
jilĝggjkj

∣
∣
∣

2
]

=

L∑

j=1

K∑

k=1

ρdlρp
λmrt
j

tr
(
RRRjkjΛΛΛ

−1
ji RRRjkjRRRjil

)
+

L∑

j=1

ρdlρ
2
p

λmrt
j

∣
∣tr
(
RRRjijΛΛΛ

−1
ji RRRjil

)∣
∣
2
.

(A.84)

Lastly, the second summation in the denominator of the lower bound in (3.12), with

the precoding vector given by wwwjij = ĝggjij, can be computed following steps similar to those
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of the numerator in (A.59), except that now the summation is over all j = 1, ..., L. Hence,

L∑

j=1

ρdl
λj

∣
∣
∣E

[

ggg†jilĝggjij

]∣
∣
∣

2

=

L∑

j=1

ρdlρ
2
p

λmrt
j

∣
∣tr
(
RRRjijΛΛΛ

−1
ji RRRjil

)∣
∣
2
. (A.85)

Therefore, the denominator of the lower bound in (3.12) is simplified as follows

L∑

j=1

K∑

k=1

ρdl
λmrt
j

E

[∣
∣
∣ggg

†
jilĝggjkj

∣
∣
∣

2
]

−
L∑

j=1

ρdl
λmrt
j

∣
∣
∣E

[

ggg†jilĝggjij

]∣
∣
∣

2

+ 1

=
L∑

j=1

K∑

k=1

ρdlρp
λmrt
j

tr
(
RRRjkjΛΛΛ

−1
jkRRRjkjRRRjil

)
+ 1. (A.86)

Therefore, since the effective noise is zero-mean and uncorrelated from the desired

signals, one can directly apply Lemma 2 in conjunction with the computed variances above

to obtain the required lower bound. This completes the proof.

A.6 Proof of Corollary 1

We start by computing the power of the desired signals, Pmrc
1 . Note that

Pmrc
1 =

∑

l∈Ω
ρul

∣
∣
∣E

[

ĝ̂ĝg†jijgggjil
]∣
∣
∣

2

=
∑

l∈Ω
ρul

∣
∣
∣E

[

ĝ̂ĝg†jij (ĝ̂ĝgjil + ǫǫǫjil)
]∣
∣
∣

2

(A.87)

(a)
=
∑

l∈Ω
ρul

∣
∣
∣E

[

ĝ̂ĝg†jijĝ̂ĝgjil
]∣
∣
∣

2

(A.88)

(b)
=
∑

l∈Ω
M2ρul

(
βjil
βjij

)2 ρ2pβ
4
jij

(

1 + ρp
∑L

l1=1 βjil1

)2 (A.89)

=M2
∑

l∈Ω
ρpρulβ

2
jilα

2
jij, (A.90)
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where (a) follows from the fact that ĝ̂ĝgjij and ǫǫǫjij are independent, and (b) is obtained by

noting that ĝggjil = (βjil/βjij)ĝggjij. Note that as explained earlier, all terms in the effective

noise are uncorrelated; thus var[z′jij] = Pmrc
2 + Pmrc

3 + Pmrc
4 , where Pmrc

2 is the variance of

interference due to the beamforming gain uncertainty, Pmrc
3 is the variance caused by other

users and Pmrc
4 is the variance of noise.

To compute Pmrc
2 , we write

Pmrc
2 =

L∑

l=1

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijgggjil − E

[

ĝ̂ĝg†jijgggjil
]∣
∣
∣

2
]

(A.91)

(c)
=

L∑

l=1

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijĝ̂ĝgjil − E

[

ĝ̂ĝg†jijĝ̂ĝgjil
]∣
∣
∣

2
]

+

L∑

l=1

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijǫǫǫjil

∣
∣
∣

2
]

, (A.92)

where (c) is due to the fact that ĝggjil = (βjil/βjij)ĝggjij. For the first term in (A.92) we obtain

L∑

l=1

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijĝ̂ĝgjil − E

[

ĝ̂ĝg†jijĝ̂ĝgjil
]∣
∣
∣

2
]

=

L∑

l=1

ρul

(
βjil
βjij

)2

var
[

ĝ̂ĝg†jijĝ̂ĝgjij
]

(A.93)

=
L∑

l=1

Mρul

(
βjil
βjij

)2 ρ2pβ
4
jij

(

1 + ρp
∑L

l1=1 βjil1

)2 . (A.94)

Similarly, for the second term in (A.92) we obtain

L∑

l=1

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijǫǫǫjil

∣
∣
∣

2
]

=

L∑

l=1

ρulE
[

tr
(

ĝ̂ĝg†jijǫǫǫjilǫǫǫ
†
jilĝ̂ĝgjij

)]

(A.95)

=
L∑

l=1

ρultr
(

E

[

ǫǫǫjilǫǫǫ
†
jil

]

E

[

ĝ̂ĝgjijĝ̂ĝg
†
jij

])

(A.96)
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=Mρul

L∑

l=1

(

βjil −
ρpβ

2
jil

1 + ρp
∑L

l1=1 βjil1

)(

ρpβ
2
jij

1 + ρp
∑L

l1=1 βjil1

)

. (A.97)

Therefore, using (A.94) and (A.97), one can verify that

Pmrc
2 =

L∑

l=1

Mρul

(
βjil
βjij

)2






ρ2pβ
4
jij

(

1 + ρp
∑L

l1=1 βjil1

)2




 (A.98)

+Mρul

(

ρpβ
2
jij

1 + ρp
∑L

l1=1 βjil1

)
L∑

l=1

(

βjil −
ρpβ

2
jil

1 + ρp
∑L

l1=1 βjil1

)

=M
√
ρpβjijαjij

L∑

l=1

ρulβjil. (A.99)

For the power of the interference of other users, Pmrc
3 , we write

Pmrc
3 =

L∑

l=1

K∑

k=1,k 6=i

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijgggjkl

∣
∣
∣

2
]

(A.100)

=

L∑

l=1

K∑

k=1,k 6=i

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijĝ̂ĝgjkl

∣
∣
∣

2
]

+

L∑

l=1

K∑

k=1,k 6=i

ρulE

[∣
∣
∣ĝ̂ĝg

†
jijǫǫǫjkl

∣
∣
∣

2
]

(A.101)

=
L∑

l=1

K∑

k=1,k 6=i

ρultr
(

E

[

ĝggjijĝgg
†
jij

]

E

[

ĝ̂ĝgjklĝ̂ĝg
†
jkl

])

+
L∑

l=1

K∑

k=1,k 6=i

ρultr
(

E

[

ĝ̂ĝgjijĝ̂ĝg
†
jij

]

E

[

ǫǫǫjklǫǫǫ
†
jkl

])

(A.102)

=
L∑

l=1

K∑

k=1,k 6=i

Mρul
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ρpβ
2
jij

1 + ρp
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)(
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2
jkl

1 + ρp
∑L

l2=1 βjkl2

)

+

L∑

l=1

K∑

k=1,k 6=i

Mρul

(

ρpβ
2
jij

1 + ρp
∑L

l1=1 βjil1

)(

βjkl −
ρpβ

2
jkl

1 + ρp
∑L

l2=1 βjkl2

)

=M
√
ρpβjijαjij

L∑

l=1

K∑

k=1,k 6=i

ρulβjkl. (A.103)
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Finally, for the power of the noise, Pmrc
4 , we obtain

Pmrc
4 = E

[∣
∣
∣ĝ̂ĝg

†
jijnnnj

∣
∣
∣

2
]

(A.104)

= tr
(

E

[

ĝ̂ĝgjijĝ̂ĝg
†
jij

]

E

[

nnnjnnn
†
j

])

(A.105)

=M
ρpβ

2
jij

1 + ρp
∑L

l1=1 βjil1
(A.106)

=M
√
ρpβjijαjij. (A.107)

Therefore, since the effective noise is zero-mean and uncorrelated from the desired

signals, one can directly apply Lemma 2 in conjunction with the computed variances above

to obtain the required lower bound.

A.7 Proof of Theorem 5

We start by computing the variance of the desired signals, Izf1 , in (3.22). We can easily

verify that

Izf1 =
∑

l∈Ω
ρul

(
βjil
βjij

)2

. (A.108)

Note that as explained earlier, all terms in the effective noise z′′jij in (3.22) are uncorrelated;

thus

var
[
z′′jij
]
= Izf2 + Izf3 , (A.109)

where Izf2 is the variance of interference due to channel estimation error and Izf3 is the

variance of noise in (3.22). For Izf2 , we obtain

Izf2 =
L∑

l=1

K∑

k=1

ρulE

[∣
∣
∣vvv

†
jijǫǫǫjkl

∣
∣
∣

2
]

(A.110)

=

L∑

l=1

K∑

k=1

ρultr
(

E

[

ǫǫǫjklǫǫǫ
†
jkl

]

E

[

vvvjijvvv
†
jij

])

(A.111)
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=

L∑

l=1

K∑

k=1

ρul
(
βjkl −

√
ρpβjklαjkl

)
E

[

vvv†jijvvvjij
]

(A.112)

=
L∑

l=1

K∑

k=1

ρul
βjkl −√

ρpβjklαjkl

(M −K)
√
ρpβjijαjij

, (A.113)

where in the last step we have used the following standard result in random matrix theory

[114]

E

[

vvv†jijvvvjij
]

=
1

(M −K)
√
ρpβjijαjij

. (A.114)

Finally, for the variance of noise, Izf3 , we can write

Izf3 = E

[∣
∣
∣vvv

†
jijnnnj

∣
∣
∣

2
]

(A.115)

= tr
(

E

[

vvvjijvvv
†
jij

]

E

[

nnnjnnn
†
j

])

(A.116)

= E

[

vvv†jijvvvjij
]

(A.117)

=
1

(M −K)
√
ρpβjijαjij

. (A.118)

Therefore, since the effective noise is zero-mean and uncorrelated from the desired

signals, one can directly apply Lemma 2 in conjunction with the computed variances above

to obtain the required lower bound. The proof is thus complete.

A.8 Proof of Corollary 2

Let Pmrt
1 be the variance of the desired signals in (3.9). We start by computing Pmrt

1 as

follows

Pmrt
1 =

L∑

j∈Ω

(
ρdl
λmrt
j

) ∣
∣
∣E

[

ggg†jilĝggjij

]∣
∣
∣

2
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=

L∑

j∈Ω

(
ρdl
λmrt
j

) ∣
∣
∣E

[

ĝgg†jilĝggjij

]

+ E

[

ǫǫǫ†jilĝggjij

]∣
∣
∣

2

(a)
=

L∑

j∈Ω

(
ρdl
λmrt
j

) ∣
∣
∣E

[

ĝgg†jilĝggjij

]∣
∣
∣

2

(b)
=

L∑

j∈Ω

(
M

√
ρpβjijαjij

)2
ρdlβ

2
jil

λmrt
j β2

jij

=M2
∑

j∈Ω

ρdlρpβ
2
jilα

2
jij

λmrt
j

, (A.119)

where (a) is due to the fact that ǫǫǫjil and ĝggjij are independent and (b) follows from ĝ̂ĝgjil =

(βjil/βjij)ĝ̂ĝgjij and the distribution of ĝ̂ĝgjkj explained below (2.11). Since all three terms in

the effective noise are uncorrelated, we have var [w′
il] = Pmrt

2 + Pmrt
3 + Pmrt

4 , where Pmrt
2 is

the variance of interference due to beamforming gain uncertainty, Pmrt
3 is the variance of

interference caused by other users and Pmrt
4 is the variance of noise in (3.9).

To compute Pmrt
2 , we write

Pmrt
2 =

L∑

j=1

(
ρdl
λmrt
j

)

E

[∣
∣
∣ggg

†
jilĝggjij − E

[

ggg†jilĝggjij

]∣
∣
∣

2
]

=

L∑

j=1

(
ρdl
λmrt
j

)

E

[∣
∣
∣ĝgg

†
jilĝggjij − E

[

ĝgg†jilĝggjij

]∣
∣
∣

2
]

+

L∑

j=1

(
ρdl
λmrt
j

)

E

[∣
∣
∣ǫǫǫ

†
jilĝggjij

∣
∣
∣

2
]

. (A.120)

For the first term in (A.120), it is obtained

L∑

j=1

ρdl
λmrt
j

E

[∣
∣
∣ĝgg

†
jilĝggjij − E

[

ĝgg†jilĝggjij

]∣
∣
∣

2
]

=
L∑

j=1

ρdl
λmrt
j

var
[

ĝgg†jilĝggjij

]

=M

L∑

j=1

ρdl
λmrt
j

ρpβ
2
jilα

2
jij. (A.121)
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Similarly, for the second term in (A.120), we obtain

L∑

j=1

ρdl
λmrt
j

E

[∣
∣
∣ǫǫǫ

†
jilĝggjij

∣
∣
∣

2
]

=
L∑

j=1

ρdl
λmrt
j

E

[

ĝgg†jijǫǫǫjilǫǫǫ
†
jilĝggjij

]

=

L∑

j=1

ρdl
λmrt
j

tr
(

E

[

ǫǫǫjilǫǫǫ
†
jil

]

E

[

ĝggjijĝgg
†
jij

])

=M

L∑

j=1

(
ρdl
λmrt
j

)

βjil
(
1−√

ρpαjil

) (√
ρpβjijαjij

)
. (A.122)

Adding up (A.121) and (A.122), Pmrt
2 is thus obtained. Next, for Pmrt

3 we write

Pmrt
3 =

L∑

j=1

(
ρdl
λmrt
j

) K∑

k=1,k 6=i

E

[∣
∣
∣ggg

†
jilĝggjkj

∣
∣
∣

2
]

=

L∑

j=1

ρdl
λmrt
j

K∑

k=1,k 6=i

(

E

[∣
∣
∣ĝgg

†
jilĝggjkj

∣
∣
∣

2
]

+ E

[∣
∣
∣ǫǫǫ

†
jilĝggjkj

∣
∣
∣

2
])

=
L∑

j=1

ρdl
λmrt
j

K∑

k=1,k 6=i

(

tr
(

E

[

ĝggjilĝgg
†
jil

]

E

[

ĝggjkjĝgg
†
jkj

])

+ tr
(

E

[

ǫǫǫjilǫǫǫ
†
jil

]

E

[

ĝggjkjĝgg
†
jkj

]))

=

L∑

j=1

(
ρdl
λmrt
j

) K∑

k=1,k 6=i

(

M
(√

ρpβjilαjil

) (√
ρpβjkjαjkj

)

+M
(√

ρpβjkjαjkj

) (
βjil −

√
ρpβjilαjil

) )

=M

L∑

j=1

(
ρdl
λmrt
j

) K∑

k=1,k 6=i

√
ρpβjkjαjkjβjil.

Finally, the power of the noise wil is P
mrt
4 = 1.

Therefore, since the effective noise is zero-mean and uncorrelated from the desired

signals, one can directly apply Lemma 2 in conjunction with the computed variances above

to obtain the required lower bound.
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A.9 Proof of Theorem 6

We start by computing the variance of the desired signal, i.e.,
∑

j∈Ω

√

ρdl/λzfj (βjil/βjij) sj[i]. It is readily verified that

var [ Desired signal ] =
∑

j∈Ω

(

ρdl
λzfj

)(
βjil
βjij

)2

. (A.123)

For the variance of the effective noise, w′′
il, we have

var [w′′
il]

(a)
= var [ Interference due to estimation error ] + var [wil] , (A.124)

where (a) is due to the fact that wil is uncorrelated from the interference caused by the

estimation error. To compute the first variance we can write

var [ Interference due to estimation error ]

=

L∑

j=1

(

ρdl
λzfj

)
K∑

k=1

E

[∣
∣
∣ǫǫǫ

†
jilvvvjkj

∣
∣
∣

2
]

(A.125)

=

L∑

j=1

(

ρdl
λzfj

)
K∑

k=1

E

[(

ǫǫǫ†jilvvvjkj
)(

vvv†jkjǫǫǫjil
)]

(A.126)

=
L∑

j=1

(

ρdl
λzfj

)
K∑

k=1

E

[

tr
(

ǫǫǫ†jilvvvjkjvvv
†
jkjǫǫǫjil

)]

(A.127)

=

L∑

j=1

(

ρdl
λzfj

)
K∑

k=1

tr
(

E

[

ǫǫǫjilǫǫǫ
†
jil

]

E

[

vvvjkjvvv
†
jkj

])

(A.128)

=

L∑

j=1

(

ρdl
λzfj

)
K∑

k=1

(
βjil −

√
ρpβjilαjil

) 1

(M −K)
√
ρpβjkjαjkj

, (A.129)

where in the last step we have used the following standard result in random matrix theory

[114]

E

[

vvv†jkjvvvjkj
]

=
1

(M −K)
√
ρpβjkjαjkj

. (A.130)
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Lastly, for the variance of the zero-mean noise, we have E
[
|wil|2

]
= 1. Therefore, since

the effective noise is zero-mean and uncorrelated from the desired signals, one can directly

apply Lemma 2 in conjunction with the computed variances above to obtain the required

lower bound. This completes the proof of the lower bound in (3.32).

A.10 Proof of Corollary 3

Using (3.52)-(3.58), it can be verified that in case (i) we have RSD,1
Sym = I(ŷ1i; x2[i]|x1[i]),

RS-SND,1
Sym = 1

2
I(ŷ1i; x1[i], x2[i]), and R

SND,1
Sym = RTIN,1

Sym = I(ŷ1i; x1[i]).

Furthermore, using (3.62), one can rewrite (3.59) as I(ŷ1i; x2[i]|x1[i]) <
1
2
I(ŷ1i; x1[i], x2[i]), and conclude that RSD,1

Sym < RS-SND,1
Sym . Moreover, using (3.62), one

can rewrite (3.59) as 1
2
I(ŷ1i; x1[i], x2[i]) < I(ŷ1i; x1[i]), and conclude that RS-SND,1

Sym <

RSND,1
Sym = RTIN,1

Sym . This is illustrated in Fig. 3.3b. Similarly, using (3.52)-(3.58), it

can be verified that in case (ii) we have RTIN,1
Sym = I(ŷ1i; x1[i]), and RSD,1

Sym = RSND,1
Sym =

RS-SND,1
Sym = 1

2
I(ŷ1i; x1[i], x2[i]). Also, using (3.62)-(3.63), one can rewrite (3.60) as

max{I(ŷ1i; x1[i]), I(ŷ1i; x2[i])} ≤ 1
2
I(ŷ1i; x1[i], x2[i]). Hence, when this condition holds it

yields (3.67), which is also illustrated in Fig. 3.3c.

A.11 An achievable region for the generalized RS

scheme

Here, to establish an achievable region, following a technique used in [72] we provide

analysis of the probability of error for the proposed generalization of the RS scheme when

applied to the case of L = 2. First, note that after dropping the index i, the cloud

center and the satellite codeword generated at BS l, l = 1, 2, are given by sss
(b)
l (m

(b)
l ), and

sssl(m
(a)
l , m

(b)
l ), respectively. We only show the achievability proof at receiver 1, i.e., user of

cell 1, as a similar analysis can be applied at receiver 2, i.e., user of cell 2.

Receiver 1 tries to uniquely recover both parts of its intended signal’s message,
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(m
(a)
1 , m

(b)
1 ) and to non-uniquely recover messages from each layer of the interfering signal,

(m
(a)
2 , m

(b)
2 ). Therefore, receiver 1 finds the unique pair (m̂

(a)
1 , m̂

(b)
1 ) such that

(

sss
(b)
1 (m̂

(b)
1 ), sss1(m̂

(a)
1 , m̂

(b)
1 ), sss

(b)
2 (m

(b)
2 ), sss2(m

(a)
2 , m

(b)
2 ), yyydl1

)

∈ T n
ǫ , for some (m

(a)
2 , m

(b)
2 ),

(A.131)

where T n
ǫ is the set of ǫ-typical n-sequences (see [115, Section 2.4] for formal description

of typical sets).

Assume without loss of generality that the message pairs (m
(a)
1 , m

(b)
1 ) = (1, 1) and

(m
(a)
2 , m

(b)
2 ) = (1, 1) are sent. Receiver 1 declares an error if one or both of the following

error events happen:

E1 =
{(

sss
(b)
1 (1), sss1(1, 1), sss

(b)
2 (1), sss2(1, 1), yyy

dl
1

)

/∈ T n
ǫ

}

, (A.132)

E2 =
{(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), sss2(m

(a)
2 , m

(b)
2 ), yyydl1

)

∈ T n
ǫ , (A.133)

for some (m
(a)
1 , m

(b)
1 ) 6= (1, 1), and some (m

(a)
2 , m

(b)
2 )
}

.

By the law of large numbers, P (E1) → 0, as n → ∞. We bound

P (E2) in three different ways. As in [72], note that the joint typical-

ity of the tuple
(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), sss2(m

(a)
2 , m

(b)
2 ), yyydl1

)

implies that
(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), yyydl1

)

∈ T n
ǫ , i.e., the triple

(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), yyydl1

)

is jointly

typical. Hence,

E2 ⊆
{(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), yyydl1

)

∈ T n
ǫ , for some (m

(a)
1 , m

(b)
1 ) 6= (1, 1)

}

= E21.

(A.134)

The event E21 can be partitioned into the following 3 events:

E
(1)
21 =

{(

sss
(b)
1 (m

(b)
1 ), sss1(1, m

(b)
1 ), yyydl1

)

∈ T n
ǫ , for some m

(b)
1 6= 1

}

, (A.135)

E
(2)
21 =

{(

sss
(b)
1 (1), sss1(m

(a)
1 , 1), yyydl1

)

∈ T n
ǫ , for some m

(a)
1 6= 1

}

, (A.136)

E
(3)
21 =

{(

sss
(b)
1 (m1(b)), sss1(m

(a)
1 , m

(b)
1 ), yyydl1

)

∈ T n
ǫ , for some (m

(a)
1 , m

(b)
1 ) 6= (1, 1)

}

, (A.137)
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leading to the following

P (E21) ≤ P (E
(1)
21 ) + P (E

(2)
21 ) + P (E

(3)
21 ). (A.138)

By the packing lemma [115, Section 3.2], P (E
(1)
21 ), P (E

(2)
21 ) and P (E

(3)
21 ) tend to zero, as

n→ ∞, if the following constraints are satisfied

R
dl,(b)
1 ≤ I

(

s1, s
(b)
1 ; ydl1

)

(A.139)

R
dl,(a)
1 ≤ I

(

s1; y
dl
1 |s(b)1

)

(A.140)

R
dl,(a)
1 +R

dl,(b)
1 ≤ I

(

s1, s
(b)
1 ; ydl1

)

(A.141)

Notice that due to the codewords construction, the r.h.s in (A.139) and (A.141) are identi-

cal, however the former is not necessary since the latter is the tighter condition. Therefore,

we are left only with two rate constraints, (A.140) and (A.141). Further note that the

special structure of the codewords yields

I
(

s1, s
(b)
1 ; ydl1

)

= I
(
s1; y

dl
1

)
. (A.142)

In addition, note that the joint typicality of the tuple
(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), sss2(m

(a)
2 , m

(b)
2 ), yyydl1

)

implies that
(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), yyydl1

)

∈ T n
ǫ , i.e., the quadruple

(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), yyydl1

)

is jointly typical. Consequently,

E2 ⊆
{(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), yyydl1

)

∈ T n
ǫ , (A.143)

for some (m
(a)
1 , m

(b)
1 ) 6= (1, 1), and some m

(b)
2

}

= E22

The event E22 can be partitioned into the following 6 events:

E
(1)
22 =

{(

sss
(b)
1 (m

(b)
1 ), sss1(1, m

(b)
1 ), sss

(b)
2 (1), yyydl1

)

∈ T n
ǫ , for some m

(b)
1 6= 1

}

, (A.144)

E
(2)
22 =

{(

sss
(b)
1 (1), sss1(m

(a)
1 , 1), sss

(b)
2 (1), yyydl1

)

∈ T n
ǫ , for some m

(a)
1 6= 1

}

(A.145)
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E
(3)
22 =

{(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (1), yyydl1

)

∈ T n
ǫ , for some (m

(a)
1 , m

(b)
1 ) 6= (1, 1)

}

(A.146)

E
(4)
22 =

{(

sss
(b)
1 (m

(b)
1 ), sss1(1, m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), yyydl1

)

∈ T n
ǫ , for some m

(b)
1 6= 1, and some m

(b)
2 6= 1

}

(A.147)

E
(5)
22 =

{(

sss
(b)
1 (1), sss1(m

(a)
1 , 1), sss

(b)
2 (m

(b)
2 ), yyydl1

)

∈ T n
ǫ , for some m

(a)
1 6= 1, and some m

(b)
2 6= 1

}

(A.148)

E
(6)
22 =

{(

sss
(b)
1 (m

(b)
1 ), sss1(m

(a)
1 , m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), yyydl1

)

∈ T n
ǫ , (A.149)

for some (m
(a)
1 , m

(b)
1 ) 6= (1, 1), and some m

(b)
2 6= 1

}

,

leading to the following

P (E22) ≤ P (E
(1)
22 ) + P (E

(2)
22 ) + P (E

(3)
22 ) + P (E

(4)
22 ) + P (E

(5)
22 ) + P (E

(6)
22 ). (A.150)

It can be verified that by the packing lemma, the probabilities P (E
(1)
22 ), P (E

(2)
22 ), P (E

(3)
22 ),

P (E
(4)
22 ), P (E

(5)
22 ), and P (E

(6)
22 ) all tend to zero, as n → ∞, if the following constraints are

satisfied

R
dl,(b)
1 ≤ I

(

s1, s
(b)
1 ; ydl1 |s(b)2

)

(A.151)

R
dl,(a)
1 ≤ I

(

s1; y
dl
1 |s(b)1 , s

(b)
2

)

(A.152)

R
dl,(a)
1 +R

dl,(b)
1 ≤ I

(

s1, s
(b)
1 ; ydl1 |s(b)2

)

(A.153)

R
dl,(b)
1 +R

dl,(b)
2 ≤ I

(

s1, s
(b)
1 , s

(b)
2 ; ydl1

)

(A.154)

R
dl,(a)
1 +R

dl,(b)
2 ≤ I

(

s1, s
(b)
2 ; ydl1 |s(b)1

)

(A.155)

R
dl,(a)
1 +R

dl,(b)
1 +R

dl,(b)
2 ≤ I

(

s1, s
(b)
1 , s

(b)
2 ; ydl1

)

. (A.156)

Notice that due to the codewords construction, the r.h.s of (A.151) and (A.153) are iden-

tical, however the latter is the tighter condition and thus the former can be omitted.

Similarly, it is verified that (A.154) is not necessary, since the constraint of (A.156) is
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the tighter condition. As such, by removing (A.151) and (A.154), we are left with only

four necessary constraints, i.e., (A.152), (A.153), (A.155) and (A.156). Also, due to the

structure of the codewords, we have

I
(

s1, s
(b)
1 ; ydl1 |s(b)2

)

= I
(

s1; y
dl
1 |s(b)2

)

(A.157)

I
(

s1, s
(b)
1 , s

(b)
2 ; ydl1

)

= I
(

s1, s
(b)
2 ; ydl1

)

. (A.158)

Lastly, the third way to bound P (E2) is to partition E2 into the following 12 events:

E
(1)
2 =

{(

sss
(b)
1 (m

(b)
1 ), sss1(1, m

(b)
1 ), sss

(b)
2 (1), sss2(1, 1), yyy

dl
1

)

∈ T n
ǫ , for some m

(b)
1 6= 1

}

, (A.159)

E
(2)
2 =

{(

sss
(b)
1 (1), sss1(m

(a)
1 , 1), sss

(b)
2 (1), sss2(1, 1), yyy

dl
1

)

∈ T n
ǫ , for some m

(a)
1 6= 1

}

, (A.160)

E
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{(
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1 , m
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1 ), sss

(b)
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dl
1

)

∈ T n
ǫ , (A.161)

for some (m
(a)
1 , m

(b)
1 ) 6= (1, 1)

}

,

E
(4)
2 =
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(b)
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(b)
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(b)
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(b)
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(b)
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)

∈ T n
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for some m
(b)
1 6= 1, and some m

(b)
2 6= 1

}

,

E
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2 =
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1 (1), sss1(m
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)

∈ T n
ǫ , (A.163)

for some m
(a)
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(b)
2 6= 1

}

,
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for some (m
(a)
1 , m

(b)
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,
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for some m
(a)
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for some (m
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}

,

E
(10)
2 =

{(

sss
(b)
1 (m

(b)
1 ), sss1(1, m

(b)
1 ), sss

(b)
2 (m

(b)
2 ), sss2(m

(a)
2 , m

(a)
2 ), yyydl1

)

∈ T n
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,
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(a)
1 , m
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leading to the following

P (E2) ≤P (E(1)
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2 ) + P (E

(4)
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+ P (E
(7)
2 ) + P (E

(8)
2 ) + P (E

(9)
2 ) + P (E

(10)
2 ) + P (E

(11)
2 ) + P (E

(12)
2 ).

Using the packing lemma, it can be shown that the probabilities P (E
(1)
2 ) through P (E

(12)
2 )

above tend to zero, as n→ ∞, if the following conditions are satisfied

R
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)
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It can be readily seen that the constraints of (A.172), (A.175), (A.176), (A.177), (A.178)

and (A.181) are redundant and can be removed. We are thus left with only 6 necessary

constraints, i.e., (A.173), (A.174), (A.179), (A.180), (A.182) and (A.183). Also, the code

construction yields the following
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Hence, by bounding P (E2) using these three different approaches, an achievable region

is established at receiver 1 (denoted by RRS
1 ), which is the union of the three regions

described above. One can similarly obtain the achievable region at receiver 2 (denoted

by RRS
2 ) by replacing ydl1 with ydl2 and swapping appropriate indices. The network-wide

achievable region obtained by the generalized RS scheme in conjunction with non-unique

decoding for a two-cell system can then be written in the following form

R
RS =

⋂

l

RRS
l , l = 1, 2, (A.189)

where

RRS
l =

⋃

Ωl∈Sl

RRS
MAC(Ωl,l)

, l = 1, 2, (A.190)

where RRS
MAC(Ωl,l)

is a modified MAC region, which has less than 2|Ωl| − 1 rate constraints,
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as some of the constraints are removed from the regular MAC region (due to the codewords

construction as explained above), and Sl, l = 1, 2, are given by

S1 =
{{

m
(a)
1 , m

(b)
1

}

,
{

m
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1 , m
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1 , m
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}
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}}

(A.191)
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}
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(b)
1

}}

. (A.192)

Specifically, if Ωl contains messages of both layers (m
(a)
j , m

(b)
j ), for some j, then those

constraints that involve R
dl,(b)
j but not R

dl,(a)
j are not needed and will thus be removed

from the rate region. In particular, the constraints that are removed from each of the three

regions described above are as follows: (A.139) from the first region, (A.151) and (A.154)

from the second region, (A.172), (A.175), (A.176), (A.177), (A.178) and (A.181) from the

third region.

One can also re-write Sl as follows

Sl =
{{

m
(a)
l , m

(b)
l

}}

×
{

∅,
{

m
(b)
j

}

,
{

m
(a)
j , m

(b)
j

}}

, l = 1, 2, j 6= l. (A.193)
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