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Abstract

One of the main reasons why the physics of quantum many-body systems is hard lies in
the curse of dimensionality: The number of states of such systems increases exponentially
with the number of degrees of freedom involved. As a result, computations for realistic
systems become intractable, and even numerical methods are limited to comparably small
system sizes. Many efforts in modern physics research are therefore concerned with finding
efficient representations of quantum states and clever approximations schemes that would
allow them to characterize physical systems of interest.

Meanwhile, Deep Learning (DL) has solved many non-scientific problems that have been
unaccessible to conventional methods for a similar reason. The concept underlying DL is
to extract knowledge from data by identifying patterns and regularities. The remarkable
success of DL has excited many physicists about the prospect of leveraging its power to
solve intractable problems in physics. At the same time, DL turned out to be an interesting
complex many-body problem in itself. In contrast to its widespread empirical applications,
the theoretical foundation of DL is strongly underdeveloped. In particular, as long as its
decision-making process and result interpretability remain opaque, DL can not claim the
status of a scientific tool.

In this thesis, I explore the interface between DL and quantum many-body physics,
and investigate DL both as a tool and as a subject of study. The first project presented
here is a theory-based study of a fundamental open question about the role of width and
the number of parameters in deep neural networks. In this work, we consider a DL setup
for the image recognition task on standard benchmarking datasets. We combine controlled
experiments with a theoretical analysis, including analytical calculations for a toy model.
The other three works focus on the application of Restricted Boltzmann Machines as
generative models for the task of wavefunction reconstruction from measurement data on
a quantum many-body system. First, we implement this approach as a software package,
making it available as a tool for experimentalists. Following the idea that physics problems
can be used to characterize DL tools, we then use our extensive knowledge of this setup to
conduct a systematic study of how the RBM complexity scales with the complexity of the
physical system. Finally, in a follow-up study we focus on the effects of parameter pruning
techniques on the RBM and its scaling behavior.

vi



Acknowledgements

My PhD was the best part of my academic career so far, and I wish to express my sincere
gratitude towards the people and organizations who made it such a delightful experience:

My supervisor Roger Melko for supporting all my endeavors and for providing valuable
guidance.

The PIQuIL collective I had the greatest pleasure working with and proudly being a
member of.

Juan Carrasquilla, whose work was inspiring to me since the beginning of my PhD, for
scientific advice and support, and for sharing his immense knowledge.

Angus Galloway for guidinig me into the Machine Learning community, for fun col-
laborations on adversarial attacks and our joint attempts to understand Deep Learning
through information theory.

NSERC, Vector Institute and Borealis AI for funding my research – without it my PhD
time could not have been as focussed and enjoyable.

Blueshift, and in particular Guy Gur-Ari and Behnam Neyshabur, for hosting me in
2019/2020 as an intern.

Perimeter Institute – arguably the best place in the world for a physicist – for hosting
me and all the inspiring people I met there.

Thank you all for being part of this journey – it was fun!

vii



Dedication

I dedicate this to the Pickle.

viii



Table of Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Theoretical approaches to Deep Learning 5

2.1 Deep Learning challenges classical learning theory . . . . . . . . . . . . . . 5

2.1.1 Towards a theory of Deep Learning . . . . . . . . . . . . . . . . . . 8

2.2 Deep Learning: a formal introduction . . . . . . . . . . . . . . . . . . . . . 9

2.3 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Neural network kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Bayesian neural networks and Gaussian Processes . . . . . . . . . . . . . . 20

2.5.1 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Are wider nets better given the same number of parameters? 22

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Empirical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



3.4.2 Bottleneck methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Sparsity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Theoretical analysis in a simplified setting . . . . . . . . . . . . . . . . . . 35

3.5.1 Approximating the kernel distance . . . . . . . . . . . . . . . . . . 39

3.5.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Restricted Boltzmann Machines 44

4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Final remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Quantum State Reconstruction with RBMs 54

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Positive wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3 Reconstruction of physical observables . . . . . . . . . . . . . . . . 60

5.4 Complex wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 The scaling of RBM learnability of quantum states 73

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



6.3 Defining a scaling study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Physical system and RBM setup . . . . . . . . . . . . . . . . . . . . 76

6.3.2 Learning criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 Scaling of the model parameters . . . . . . . . . . . . . . . . . . . . 78

6.4.2 Scaling of sample complexity . . . . . . . . . . . . . . . . . . . . . . 81

6.4.3 Reducing the number of model parameters post-training . . . . . . 83

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Pruning the RBM 88

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Discussion and Conclusion 100

Letters of Copyright Permission 104

References 107

APPENDICES 124

A Experimental details 125

A.1 ImageNet data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 ResNet-18 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3 Figures and experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



B Additional figures for ResNet-18 experiments 128

C Model parametrization 130

D Sparsity distribution code 131

E Sparsity in convolutional layers 133

F Sparsity in ResNet-18 135

xii



List of Figures

2.1 The bias-variance trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Computation in a single neuron of a NN . . . . . . . . . . . . . . . . . . . 13

3.1 Test accuracy vs widening results overview for ResNet-18 . . . . . . . . . . 24

3.2 Network widening methods: bottlenecks and sparsity . . . . . . . . . . . . 26

3.3 ResNet-18 results for bottleneck methods . . . . . . . . . . . . . . . . . . . 30

3.4 Sparsity distribution algorithm . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Test accuracy vs connectivity for MLP . . . . . . . . . . . . . . . . . . . . 32

3.6 Test and training accuracy for ResNet-18 on CIFAR and SVHN . . . . . . 34

3.7 Explained improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Kernel distance and performance for small MLP . . . . . . . . . . . . . . . 42

4.1 RBM graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Gibbs sampling in RBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Fidelity and KL divergence for TFIM . . . . . . . . . . . . . . . . . . . . . 61

5.2 Magnetization for TFIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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Chapter 1

Introduction

The field of Artificial Intelligence (AI) has long been attracting the interest of physicists,
but the advent of Deep Learning (DL) took the interactions between physics and AI
to a new level. The central paradigm of modern AI is machine learning (ML) – a set
of techniques that enable a machine (i.e., a computer) to solve complex tasks not by
following predefined rules, but instead by deriving the rules by itself based on provided
training data. DL is technically a subset of ML, comprising learning methods based on
deep artificial neural networks (DNNs) that came into play only recently; however, the
terms ML and DL are often used interchangeably.

The development of these methods propelled ML to a powerful and versatile tool for
automation that had a transformative impact on various technological fields. These novel
DNN-based tools have enabled machines to solve tasks that were inaccessible with pre-
vious methods. For instance, DNNs achieve super-human performance on image recog-
nition (Krizhevsky et al., 2012) tasks, which is the key technology behind autonomous
driving. Similar progress was made in speech recognition (Graves et al., 2013) and natural
language processing (Collobert et al., 2011; Sarikaya et al., 2014), which have facilitated
the development of virtual assistants on our mobile phones and have significantly improved
machine translation (Wu et al., 2016).

Given the remarkable progress that DL has elicited in industry, it became enticing to
scientists to apply DL to intractably difficult problems that can not be easily solved with
conventional methods. Ultimately, such problems in science are intractable for a similar
reason as those tasks in industry at which DL excels: They involve high-dimensional spaces
and large datasets. Therefore, it appears intuitive that DL could be the right tool to use.
Among the earliest attempts to deploy DL in physics were the search for exotic particles
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in high-energy physics (Baldi et al., 2014) and efficient solution of dynamical mean-field
theory with ML (Arsenault et al., 2015). Finally, Carrasquilla and Melko (2017) applied
ML to classify phases of quantum matter and caused a cascade of further works, such that
within the following three years a new scientific field has formed. Similar developments
happened in other subfields of physics, including quantum computing, particle physics and
cosmology, physical chemistry and material science. A recent review article by Carleo et al.
(2019) surveys the application areas and successes of DL in these domains.

However, the success of DL is being eyed with suspicion, because the tool itself is
largely not understood. The development of DL has been driven almost exclusively by the
purpose of non-scientific industrial applications, which naturally emphasize fast progress
rather than careful understanding. Successful practices and design principles for DL sys-
tems1 have been obtained by trial and error. Fueled by impressive achievements, the
empirical advancement of DL continued to rush forward, while the theory was left behind.
Indeed, in many non-scientific use cases DL tools can be highly effective and useful with-
out a theoretical foundation. However, the lack of interpretability and many instances of
unexplained behavior are putting limits on the applicability of DL tools. Deployment of
DL in science – or any setting that requires a justification of automated decisions and a
reliable uncertainty estimation – demands an understanding that goes beyond the empiri-
cally collected knowledge and ad-hoc heuristics. Thus, in order to establish DL as a tool
for scientific problems, scientists have to solve the problem of DL first.

The reason for the current underdeveloped state of DL theory, however, is not pure
neglect. DL experiments have been made maximally accessible through numerous software
libraries (Paszke et al., 2019; Abadi et al., 2015; Chollet et al., 2015; Jia et al., 2014) that
essentially provide DL construction kits with all required algorithms and training pipelines
already built-in, thus allowing anyone to build rather powerful DL systems on a personal
computer without much knowledge. In contrast, a formal theoretical treatment of such
systems is forbidding and presents a hard challenge for scientists of any domain. The
reason why DL systems are so hard to analyze lies in the following:

(1) The sheer number of interacting parts in the system and the dependence between
them.

(2) The stochasticity present in these systems.

(3) The nature of empirical datasets that these learning systems are trained on.

1Here, “DL system” refers to all parts of a DL setup for a given learning task, including the neural
network, its architecture, the training protocol, dataset etc.
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Point (1) pertains both to the learning system and to the learning process, including such
aspects as model architecture, learning algorithm, and training procedure. Point (3) ad-
dresses the fact that DNNs are typically trained on datasets that are not well characterized.
For instance, natural images or text samples collected automatically from the internet are
common DL training sets. Due to their enormous size2, a human review of such datasets
is not feasible, and as a result many important characteristics of the dataset remain un-
known. This is problematic because data that is used to train the learning algorithm
largely determines the properties of the resulting DL tool.

Remarkably, points (1) and (2) are essentially the same difficulties as we face in sta-
tistical and quantum many-body physics. In fact, artificial neural networks, which are at
the heart of DL, can be seen as valid examples of interacting many-body systems. Excited
by this analogy, some physicists have flipped the research question and turned towards DL
systems as the subject of study, attempting to gain insights into the fundamental principles
of these systems with the tools of theoretical physics.

The oldest strand of research of this kind studies NN-based learning systems through
the lens of statistical mechanics, or more precisely the statistical physics of disordered
systems (Engel and Van den Broeck, 2001). Central to this approach is the concept of
a spin glass – a disordered dynamical system characterized by randomness. Spin glasses
display features that are commonly found in various complex systems, including biological
and artificial neural networks (Amit et al., 1985; Watkin et al., 1993). Therefore, the set
of mathematical tools developed for spin glasses, based on the replica and cavity methods,
and the related message passing algorithms, can be used to analyze such systems. In
the 1980s-1990s these methods have facilitated theoretical progress in the understanding
of NNs. Unfortunately, however, they can only describe elementary NN structures, and
thus the explanatory power of obtained results is limited to very simple learning machines.
There have been efforts to extend these methods to DL, e.g. (Choromanska et al., 2015;
Zdeborová and Krzakala, 2016), yet the vast empirical evidence indicates that the essence
of DNNs can not be captured by describing the sum of their building blocks.

A plethora of work is dedicated to examining analogies between physics and various
aspects of DL. For instance, the hierarchical manner in which a multi-layer NN processes
input data is reminiscent of a coarse-graining procedure. This observation has led to spec-
ulations that DL might be related to the renormalization group (RG) flow. The connection
between RG and DL was studied in a number of works (Bény, 2013; Mehta and Schwab,
2014; Iso et al., 2018; Koch-Janusz and Ringel, 2018; Li and Wang, 2018; Funai and Giata-

2Among the current standard datasets used for benchmarking DL systems, the smaller ones comprise
about 60 thousand instances, and the larger ones have over a million instances.
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ganas, 2020; De Mello Koch et al., 2020) that have found interesting parallels. However, a
recent strand of research has put the correspondence between DNNs and Quantum Field
Theories (QFT) on a solid mathematical foundation (Dyer and Gur-Ari, 2019; Cohen
et al., 2021; Antognini, 2019; Yaida, 2020; Halverson et al., 2021), making it evident that
the relationship between DL and RG is rather a “spiritual resemblance”, but not an exact
equivalence. The connection between DNNs and QFT is based on the fact that infinitely
large DNNs are drawn from Gaussian processes (Lee et al., 2018a; de G. Matthews et al.,
2018), the analog of non-interacting field theories. Other examples of physics-inspired stud-
ies have exploited symmetries in the spirit of Noether’s theorem to analytically describe
the learning dynamics of DL systems (Kunin et al., 2021); mean-field techniques to char-
acterize the function of particular elements or structures in DNNs (Yang and Schoenholz,
2017; Yang et al., 2019; Gilboa et al., 2019); and power-law scaling (Bahri et al., 2021) to
explain empirical observations of scaling behavior in modern DNNs (Kaplan et al., 2020).
More examples can be found in a recent review by Bahri et al. (2020).

In this thesis, I present several studies that are situated at the intersection between
quantum many-body physics and DL. In my research, I explore both directions: How can
DL be leveraged as a tool to solve problems in physics and how can the principles of
theoretical physics be harnessed to advance our understanding of DL systems.

Outline of the Thesis

Chapters 3, 5, 6 and 7 present my contributions to the field in form of research projects
that I have worked on with various collaborators.

Chapter 1 is the current chapter, providing an introduction and motivating the theoret-
ical study of DL, in particular from the perspective of a physicist. In chapter 2 I describe
in more detail what kind of challenges a theoretical treatment of DL faces. I then pro-
vide a mathematical introduction to the central concepts of DL, as well as methods of DL
theory that will play a role in subsequent chapters. Chapter 3 presents a study aimed at
understanding a specific empirical phenomenon in DL through a combination of targeted
experiments and theory. In chapter 4 I review the theory of Restricted Boltzmann Ma-
chines (RBMs), as the following three chapters feature RBMs as the main tool. Chapter
5 is about the deployment of RBMs as generative models for quantum-state reconstruc-
tion; chapter 6 systematically studies the scaling of computational resources required for
the task of quantum state reconstruction with an RBM; chapter 7 builds on the previous
study and examines the scaling behavior of an RBM under the application of a parameter
reduction technique called pruning. I conclude in chapter 8.
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Chapter 2

Theoretical approaches to Deep
Learning

Part of this chapter used to be published as an article on the website “physicsml” that went
offline in early 2021.

2.1 Deep Learning challenges classical learning theory

Why do modern deep neural networks (DNNs) perform so well on previously unseen test
data, even when their number of weights is much larger than the number of data points
in the training set? This question keeps puzzling many theorists and practitioners doing
Deep Learning (DL), in particular those who are used to the rules of classical statisti-
cal modeling. For example, consider the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) (Russakovsky et al., 2015), which became a benchmark for state-of-the-art
DNNs. ImageNet is a database of labeled high-resolution images, designed for the purpose
of testing visual object recognition software. In the annual ILSVR challenge, ever new and
sophisticated DL models compete in classifying the data set of 1.2 million images from
1000 categories. Among the leaders on the winners list we find GoogLeNet, AlexNet and
VGGNet, with 4, 60 or 138 millions parameters, respectively.

This degree of overparametrization is insane from the point of view of classical statistical
learning theory, which teaches us parsimony in model size selection. The argument for this
is intuitive: A larger number of parameters increases the model’s flexibility, allowing it
to express more complex functions. However, a more flexible model will adjust to many
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details of the training set which are not the general features of the data. As a result, its
performance on a previously unseen test data will be poorer. To sum up, the larger the
number of parameters in a model, the more prone it is to “overfitting”.

This is known as the bias-variance trade-off, a central concept in statistical learning
theory used to characterize the performance of parametric models. In this context, the
variance refers to the amount by which the fit function changes if estimated on a different
training set, and the bias measures how much the chosen ansatz for the fit function is off
from reality. Generally, when the model flexibility is increased, the variance will increase
and the bias will decrease. Figure 2.1a illustrates these concepts. The art of achieving a
fit that generalizes well lies in selecting a model that is sufficiently complex to capture the
reality and still rigid enough to ignore non-general features.

The discrepancy between the training and the test error is called the generalization
gap, and is used as a measure for the generalization ability of a model. In statistical learn-
ing theory, models are typically characterized through a bound on the generalization gap,
which is derived based on some notion of model complexity. A complexity measure is not
uniquely defined; there exists a variety of different suggestions, such as the Rademacher
complexity or the Vapnik-Chervonenkis (VC) dimension. The latter, for instance, is ex-
pected to be proportional to the number of parameters in the model. A classic result
states that in leading order the generalization gap scales as GG ∝

√
M/N , where M is a

measure for the model complexity, and N is the number of examples in the training set.
Thus, to put it simply, the model is not expected to generalize well as long as the number
of parameters exceeds the size of the training data set. The use of highly overparametrized
models in DL seems to directly contradict this rule in practice: Large DNNs commonly
achieve near-zero training error on data sets of moderate size, while still having excellent
performance on the test set. Moreover, the smallest test error is typically achieved by the
largest model.

The complexity of neural networks, particularly the DNNs, and the scale of modern
data sets, makes them essentially intractable. While a theoretical characterization of the
model complexity in modern DL remains elusive, many insights are gained from targeted
experimental analyzes. For instance, Zhang et al. (2017a) is a famous empirical work
that has pinned down the extent of DNN capabilities by establishing that modern DNNs
have enough capacity to fit random noise. They proved this claim in a series of simple
and systematic experiments on state-of-the art DNNs for the image classification task.
Essentially, they have demonstrated that a DNN that shows good generalization ability on
the original data set, still achieves zero training error when the original labels in the data
set are replaced by random labels, while the test error, of course, remains at the level of
random guessing. Moreover, even in the case when the true images in the original data
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(a) classical bias-variance curve (b) modern extension with “double descent”

Figure 2.1: Illustration of the bias-variance trade-off: Prediction error on the training
(blue) or test (orange) sample as a function of model complexity. (a) Is the classical
U-shaped curve from statistical learning theory. Dashed vertical line indicates the sweet
spot between “underfitting” (model complexity not large enough to capture the modeled
relations) and “overfitting” (model is too flexible, it is fitting the training data too closely
and fails to generalize).

set were replaced by completely random pixels, convolutional DNNs still achieved zero
training error. This result implies that a sufficiently large DNN has enough capacity to fit
training data that does not contain any learnable structure. The key insight provided by
these experiments is that the generalization gap of a model can be substantially increased
without changing the model, its size, the hyper-parameters or the optimizer, but rather
by randomizing the labels alone. This fact challenges the conventional view of statistical
learning theory, which establishes bounds on the generalization gap based on some model
features, while fully disregarding qualitative properties of the data set.

Because of the numerous seemingly unrecoverable contradictions, many consider sta-
tistical learning theory to be plainly the wrong tool for DL. Others, however, advocate for
holding on to the old concepts, and attempt to update them to account for the novelty of
DL. For instance, Belkin et al. (2019) made an interesting proposal to fit modern DNNs
into the bias-variance trade-off. They argued that for DL, the U-curve picture needs to be
extended along the complexity axis far beyond the point of zero training error as shown in
Figure 2.1b, as typical DNNs are complex enough to fit the training data perfectly. In this
interpolation regime where the training error is zero, a small test error is recovered when
model complexity is increased further – a phenomenon dubbed “double descent”, which
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has been observed in many typical DL settings.

Motivated by the fact that larger models show better performance, it is natural to
wonder what happens when the model size goes to infinity. While practitioners are limited
by the available compute, theorists have no reservations against such endeavors. Indeed,
similar to the situation in statistical physics, taking the number of NN parameters to
infinity results in tremendous simplifications and makes DNNs for once tractable. And
even though conclusions drawn in the infinite-model limit do not directly transfer to finite-
size models in general, they still provide useful guidance and help us advance the theoretical
foundations of DL.

2.1.1 Towards a theory of Deep Learning

The size of a NN model is measured by the number of its weights. Letting the number
of weights go to infinity allows us to treat them collectively as a statistical ensemble.
Specifically, this limit is achieved by taking the NN width to infinity, which corresponds
to the number of hidden units in a fully-connected layer, or to the number of output
channels in a convolutional layer. This infinite-width limit has opened up many research
directions towards a theoretical characterization of NNs. In this work, I focus mainly on
one of these directions which exploits the connection between NNs and kernel methods.

Interestingly, the research of NN kernels was developed by contributions from very dif-
ferent approaches. In fact, the infinite-width limit was first considered back when NNs
were not deep. The idea was put forward by Neal (1994) who approached NNs from a
Bayesian perspective. He was the first to draw the connection between NNs and ker-
nels by establishing that in the infinite-width limit single-layer NNs become equivalent
to Gaussian Processes (GPs) with a specific kernel (i.e., the GP covariance function).
Subsequently, Williams (1998) has shown how to compute this kernel analytically. Such
infinitely wide NN models are now called Neural Network Gaussian Processes (NNGPs).
About ten years later, at the beginning of the DL era, DNNs were shown to outperform
conventional learning approaches, yet the lack of theoretical foundation for these DL meth-
ods caused many reservations. Some researchers attempted to import the advantages of the
novel DL methods into the solid framework of conventional techniques. For instance, Cho
and Saul (2009) explored the possibility of doing DL in kernel machines: They derived
compositional kernels that mimic the computation in DNNs and used these to build “deep
kernel machines”. Later, this type of kernels proved to be useful in the context of NNGPs
again, when Neal’s and Williams’ results were extended to DNNs with arbitrarily many
layers (Lee et al., 2018a; de G. Matthews et al., 2018), and further generalized to a va-
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riety of nonlinearities and architectures, (Garriga-Alonso et al., 2019; Novak et al., 2020;
de G. Matthews et al., 2017).

The connection between Gaussian Processes (GPs) and Kernel methods (KMs) is subtle.
Despite the fact that GPs involve a kernel, they are not an instance of KMs. In particular
in machine learning context, GPs and KMs are both nonparametric approaches based on
positive-definite kernels, widely used for modeling nonlinear functional relationships. The
fundamental difference between them is the following: GPs are a method of Bayesian ML –
it models a problem probabilistically and produces a posterior distribution for the unknown
function of interest. KMs are frequentist models with a decision-theoretic approach to
learning – that is, they solve the task by defining a loss function and optimizing the
empirical risk. Kanagawa et al. (2018) dedicate a comprehensive review paper to the
connections and equivalences between these methods. In the context of my work presented
here, these details are not relevant, and thus I will be providing only a brief introduction
to each of these methods in the following sections. But before getting to the methods, I
shall introduce the concept of Deep Learning with artificial neural networks more formally.

2.2 Deep Learning: a formal introduction

In this section I provide a brief introduction to the essential concepts of Deep Learning
with artificial neural networks and set up the notation for future chapters. For more
mathematical details on various aspects of DL and additional references, consult the current
review article by Berner et al. (2021).

Learning

Learning is the process of gaining knowledge from data. In statistical terms, it is the pro-
cess of inductive inference, which can be roughly decomposed into three steps: (1) make
observations, (2) construct a model of the underlying phenomenon, and (3) make predic-
tions using this model. Statistical Learning Theory (SLT) formalizes learning as the
problem of function estimation from a given collection of data. Originally, SLT was con-
cerned with the mathematical analysis of learning models, but eventually it expanded to
include the design of learning algorithms that emerged based on the established theoreti-
cal foundation. This branch grew into a separate field called Machine Learning (ML),
which is essentially focused on the goal of automating the learning process. Deep Learn-
ing (DL) is a (large and comparably novel) subset of ML which emerged as advances in
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ML expanded to learning with deep neural networks. Nowadays, ML is heavily dominated
by applications, and the developments on the practical side have by far outpaced theory.

The learning problem

According to Vapnik (1995), the model of learning from examples can be analyzed in a
general statistical framework of minimizing expected loss using observed data.

We consider an input space X and an output space Y , and assume that the input-output
pairs (x, y) ∈ X ×Y are random variables distributed according to an unknown probability
distribution P (x, y) = P (x)P (y|x). Further, we assume that the relation between x and
y is perfectly captured by some unknown function g as g(x) = y, which we call the target
function (also referred to as ground truth). We define an ansatz for the target function
as fλ(x) parametrized by λ ∈ Λ which returns a prediction ŷ = fλ(x) for a given x.
This assumption defines the space of possible functions F = {fλ(x)}, referred to as the
hypothesis space. Note that in order to specify F we need to make an assumption about
the form of the target function. For example, if we assume that the target function is
linear, then F can be formally expressed as

F = {fλ : X → Y | fλ(x) = λ1x+ λ2} ,
that is, the set of all linear functions fλ mapping from the input space X to the output
space Y .

The problem of learning essentially consists in choosing from F a single hypothesis fλ
which provides the best estimate for the target function g. This selection is based on a
training set of m random independent identically distributed (i.i.d.) observations drawn
according to P (x, y):

S = {(x1, y1), . . . , (xm, ym)} . (2.1)

The discrepancy between the prediction ŷ and the target output y for a given input x is
measured by a loss L(y, ŷ). The expected value of this loss is called the risk functional:

R(fλ) =

∫
dP (x, y) L(y, fλ(x)) = E(x,y)∼P (x,y) [L(y, fλ(x))] . (2.2)

Thus, the solution to the learning problem consists in finding in the set F the function

f 0
λ = arg min

f∈F
R(fλ) , (2.3)

which minimizes the risk functional (2.2) given an i.i.d. sample (2.1) while the probability
measure P (x, y) is unknown. Three main types of learning problems – classification, re-
gression estimation, and density estimation – are specific cases of this general formulation.
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Empirical Risk Minimization

In practice, we can not minimize the risk functional directly when the probability measure
is unknown. Therefore, we introduce a proxy for the risk functional constructed based on
the training set, called the empirical risk functional:

Remp(fλ) =
1

m

m∑
i=1

L(yi, fλ(xi)) . (2.4)

We then approximate the function f 0
λ(x) which minimizes the true risk (2.2) by the function

f ?λ = arg min
f∈F

Remp(fλ) (2.5)

which minimizes the empirical risk (2.4). This approach is referred to as the Empirical
Risk Minimization (ERM) principle. In particular, the least-squares method in the
problem of regression estimation and the maximum-likelihood method in the problem of
density estimation are well-known instances of the ERM principle.

The minimization is carried out by an optimization algorithm of choice. This oper-
ation is in general computationally expensive, thus requiring to trade off accuracy for
computation cost – for instance, by stopping an iterative optimization algorithm before
convergence (Bousquet et al., 2004). Consequently, the result obtained by approximate
optimization, denoted as f̃ ?λ , will deviate from the ERM solution f ?λ , such that

|Remp(f̃ ?λ)−Remp(f ?λ)| ≤ ρ , (2.6)

where ρ ≥ 0 is a predefined tolerance.

Error decomposition

The practical solution f̃ ?λ deviates from the target function g by an error ε which is com-
posed of three parts arising due to approximation, estimation and optimization:

ε := E
[
R(f̃ ?λ)−R(g)

]
(2.7)

= E
[
R(f 0

λ)−R(g)
]

+ E
[
R(f ?λ)−R(f 0

λ)
]

+ E
[
R(f̃ ?λ)−R(f ?λ)

]
(2.8)

= εapp + εest + εopt , (2.9)

where the expectations are taken with respect to the random choice of the training set.
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The approximation error measures how closely the best function in F can approxi-
mate the ground truth g. It is determined by the expressivity of the chosen ansatz fλ and
the resulting hypothesis space F . The estimation error originates from minimizing the
empirical risk instead of the true risk, and can be reduced by increasing the number of ex-
amples in the training set. The optimization error arises from inaccurate optimization,
as discussed above, and can be reduced at the cost of longer computation time.

Types of learning problems

The main three types of learning problems are the following:

Regression. Regression considers real-valued outputs y ∈ R. The target regression
function f ?λ(x) =

∫
y dP (y|x) is known to be the one which minimizes the mean squared

error – that is the functional (2.4) for the quadratic loss:

L(y, fλ(x)) = (y − fλ(x))2 . (2.10)

Classification. Classification can be viewed as a special case of regression where the
output y takes only two values y ∈ {0, 1}, and F is a set of indicator functions. The loss
function is called the 0-1 loss, and is given by:

L(y, fλ(x)) =

{
0 if y = fλ(x)
1 if y 6= fλ(x).

(2.11)

This kind of learning problem is considered in the study presented in the next chapter 3.

Density estimation. Density estimation problem is typically solved by the maximum-
likelihood estimation (MLE) method which selects the density function f ?λ(x) that maxi-
mizes the probability of the data in the training sample. The corresponding loss function
is called negative log-likelihood, and is given by:

L(y, fλ(x)) = − log fλ(x) . (2.12)

The density estimation problem is discussed in chapter 4 in the context of Restricted
Boltzmann Machines.
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Figure 2.2: Computation in a single neuron of a NN: All incoming signals (i.e., the elements
of input vector x) to the i-th neuron in a hidden layer are weighted by the neuron’s
weights Wi and summed into a single input, called the pre-activation Φ̄. Application of
the activation function σ returns the activation Φ, which is passed forward to each neuron
of the next layer.

Artificial neural network

An artificial neuron was originally introduced as a simplified model of a biological neu-
ron (McCulloch and Pitts, 1943), and later repurposed as a computational element of a
learning machine by Rosenblatt (1958), who proposed the first trainable multi-layered net-
work of such artificial neurons. Neural-network based learning became the centerpiece of
ML, and later on a variety of NN architectures was developed empirically. In particular
since the advent of DL, NN design has been driven predominantly by the demands of in-
dustrial applications, rather than by analogy with biological systems. Below I discuss the
fully-connected feedforward NN – the basic architecture in ML – in detail. For an overview
of NN architectures, visit the NN zoo by Leijnen and Veen (2020).

In general, a NN can be viewed as a graph: Graph vertices represent individual neurons,
and the edges indicate weighted connections between the neurons. Each neuron is equipped
with an activation function σ and an array of weights w for all incoming connections. The
NN is structured into layers, each associated with a weight matrix W , which is composed of
the weight vectors of all neurons in the layer. The number of neurons in a layer is the layer
width, and the total number of layers is referred to as NN depth. The NN input is regarded
as layer 0, the last layer is referred to as the output layer, and all layers inbetween are called
hidden layers. A NN with more than one hidden layers is considered deep. Neurons within
a layer typically share the same activation function and are not connected to each other.
In the context of a learning problem, a NN is a specific implementation of the function
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family F = {fλ(x)} parametrized by the learnable NN parameters λ. Each neuron can be
viewed as an elementary computational unit of the NN function. The scheme in Figure 2.2
explains the principle of computation in a NN.

Fully-connected feedforward NN. A fully-connected feedforward NN (FCNN) con-
sists of L layers with N` neurons in each layer `, and the respective activation functions
σ` : R → R. The width and depth of the architecture are given by ‖N‖∞ and L. The
learnable parameters λ of this NN are the weight matrices W (`) ∈ RN`×N`−1 for ` = 1, . . . , L
and bias vectors b(`) ∈ RN` for ` = 1, . . . , L− 1. The total number of learnable parameters
is given by

P =
L∑
`=1

N`N`−1 +N` . (2.13)

In practice, biases are optional in most architectures, and in theory, it is common to absorb
the bias into the weight vector of the neuron by defining an additional (zeroth) coordinate
of the input and setting its value to 1 in order to declutter the notation.

The NN function is defined by fλ(x) := Φ̄
(L)
λ (x), where the functions Φ̄

(`)
λ (·) : RN0 → RN`

are called the pre-activations and Φ
(`)
λ (·) : RN0 → RN` the activations of the `-th layer, and

are defined as

Φ̄
(1)
λ (x) = W (1)x+ b(1) , (2.14)

Φ̄
(`+1)
λ (x) = W (`+1)Φ

(`)
λ (x) + b(`+1) , (2.15)

Φ
(`)
λ (x) = σ(Φ̄

(`)
λ (x)) , (2.16)

for ` = 1, . . . , L, where σ is applied component-wise. The corresponding function space,
a.k.a. the hypothesis space, is defined as F = {fλ : RN0 → RNL}. The NN realization
function F : RP → F maps parameters λ to functions fλ in the space F .

Common activation functions used in practice are variants of the rectified linear unit
(ReLU), given by σ(x) := xH(x), where H(x) := 1x>0 denotes the Heaviside step function,
and sigmoidal functions, such as the logistic function σ(x) := 1/(1+e−x), or σ(x) := tanh(x).

More sophisticated architectures may include recurrent connections (loops in the NN
graph), parameter sharing, and computational operations other than the weighted sum of
inputs. However, the basic concepts explained here still apply and can be generalized to
these architectures.
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Training

Training a NN refers to the process of optimizing its parameters with the goal of fitting the
target function based on the given data, i.e., the training set. Commonly, gradient-based
optimization algorithms are employed for this task, the most popular in contemporary DL
being Stochastic Gradient Descent and its variants (Ruder, 2017).

Gradient Descent (GD) is an iterative method for finding a local minimum w? of a
differentiable function f : Rd → R. The principle is intuitive: Starting from a random value
w(0), move stepwise into the direction of steepest descent, which is given by the negative
gradient of f at the current point w. This procedure is summarized by the following update
rule:

w(t+1) = w(t) − η∇f(w(t)) (2.17)

with step size η > 0, also called the learning rate in the context of ML.

Now consider the case of ERM in a ML setting, where the objective function is the
empirical risk (2.4) and the optimization is done with respect to the NN parameters λ.
Standard GD performs updates computed on the entire training set containing m examples:

λ(t+1) = λ(t) − η 1

m

m∑
i=1

∇L(yi, fλ(xi)) . (2.18)

This step is computationally expensive for large training sets. A practical workaround is
to perform each update step based on a subset of the training set, called a mini-batch. The
result is a stochastic approximation to the GD algorithm, known as Stochastic Gradient
Descent (SGD). The SGD algorithm can be summarized in pseudo-code as follows:

Choose an initial parameter vector λ(0).

For epoch = 1...k, do:

Randomly shuffle examples in the training set.

For i = 1...b, do:

λ(t+1) = λ(t) − η 1
m′
∑m′

i=1∇L(yi, fλ(xi))

Here, m′ is the mini-batch size and b is the number of mini-batches, chosen such that
m′ · b = m. The term epoch refers to the number of times SGD cycles through the training
set. An alternative to setting a fixed number of epochs (here k) is to continue training until
a convergence criterion is fulfilled. Note that due to its stochastic nature SGD never stops
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– unlike standard GD that stops when the gradient vanishes. That means, convergence
of SGD has to be defined via some threshold. The advantage, however, is that SGD can
escape saddle points and local maxima, whereas GD gets stuck at any stationary point of
the objective function.

2.3 Kernel Methods

Kernel Methods (KMs) are arguably one of the most powerful techniques for nonlinear
statistical learning problems. KMs belong to the class of nonparametric learning methods,
and usually take a decision-theoretic approach to learning by defining a loss function and
optimizing the empirical risk (Kanagawa et al., 2018). The main idea of KMs is to com-
bine the expressive power of nonlinear transformations with robust and simple algorithms
for linear problems. In particular, KMs achieve this by embedding the input data in a
(higher-dimensional) vector space called the feature space, thus allowing for non-linear
representations. Then, a linear model is applied on these features instead of directly on
the inputs themselves.

What makes this method fly is the kernel trick: Firstly, the algorithms are formu-
lated solely in terms of inner products of inputs, such that the coordinates of the embedded
points are not required, only their pairwise inner products. (This procedure is called ker-
nelization.) Secondly, the algorithms are formulated such that the pairwise inner products
in feature space can be computed directly from the original inputs using a kernel func-
tion k. The kernel function implicitly defines the mapping into the feature space, and thus
has to be chosen dependent on the specific data type and domain knowledge of the data
source (Shawe-Taylor and Cristianini, 2004).

To formulate this in mathematical notation, let x, x′ ∈ X ⊆ Rd be two data points
in the input space X , and φ : X → H be a nonlinear feature map between the input
space X and the feature space H. The inner product between φ(x) and φ(x′) in H can
be computed as 〈φ(x), φ(x′)〉H = k(x, x′) using a kernel function k(·, ·) : Rd × Rd → R.
In practice, the kernel function k is directly given in terms of x, x′, such that the inner
product 〈φ(x), φ(x′)〉H can be obtained without finding the explicit expression of φ.1

Kernelization has been used to enhance linear models. A notable example are Support
Vector Machines (SVMs), which represent one of the most influential early approaches to
supervised learning (Boser et al., 1992; Cortes and Vapnik, 1995). Kernel SVMs dominated

1For a comprehensive mathematical treatment of KMs refer to Liu et al. (2021) and Shawe-Taylor and
Cristianini (2004).
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ML until Hinton et al. (2006) demonstrated that NNs can outperform the most powerful
kernel SVM on the MNIST benchmark (Goodfellow et al., 2016). The downside of kernel-
ization is that we need to compute the kernel matrix that consists of k applied to all pairs
of data points. As a result, a kernelized learning algorithm requires time that grows at least
quadratically in the data set size, and predictions with a kernelized procedure require ac-
cess to the entire training set. For instance, given N samples in the original d-dimensional
input space X , kernel ridge regression (a popular KM tool for regression) requires O(N3)
training time and O(N2) space to store the kernel matrix (Liu et al., 2021). Because of
the large computation and storage costs, KMs become infeasible for large training sets.

Kernel approximation

The poor scalability of KMs can be overcome via kernel approximation. A variety of
algorithms has been developed to achieve this, including data-dependent and independent
techniques. One of the most popular data-independent techniques is the Random Fea-
tures model proposed by Rahimi and Recht (2008): Instead of leveraging the kernel trick,
construct an explicit mapping ψ : Rd → Rn to a low-dimensional feature space, such that
the inner product between a pair of transformed points approximates their kernel value,

k(x, x′) = 〈φ(x), φ(x′)〉 ≈ ψ(x)>ψ(x′). (2.19)

Note that unlike the kernel feature map φ, the randomized feature map ψ is low-dimensional.
This approximation results in substantial computational savings, allowing for a linear
model to be learned in the transformed space in O(Nn2) time and with O(Nn) mem-
ory, while still retaining the expressive power of nonlinear methods. In the original
work (Rahimi and Recht, 2008), the authors have demonstrated that RF models even
with small dimension n achieve excellent results on regression and classification tasks.

2.4 Neural network kernels

The random feature model can be realized as a two-layer NN where the weights in the first
layer are fixed and only the weights in the output layer are trained. Specifically, consider
a two-layer NN with parameters u ∈ Rn×d and v ∈ Rn×D, implementing the function

f(x) =
1√
n
v>σ(ux), (2.20)

where σ denotes some activation function, and the input is x ∈ Rd. Let N denote the
initialization distribution over parameters u, v (usually Gaussian with proper scaling).
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The Random Features or Gaussian Processes kernel

When u are fixed and only v are optimized, the NN represents a RF model with feature
map ψ(x) = σ(ux) and kernel

k(x, x′) = Eu∼N [σ(ux) · σ(ux′)] . (2.21)

This correspondence extends to deep fully-connected NNs with more than two layers,
where all weights before the output layer are fixed at their random initial values and only
the output layer is trained. Kernel behavior is then obtained in the limit when the widths
of the hidden layers go to infinity. With f(x) denoting the output and v the output layer
parameters of this DNN, the kernel definition (2.21) can be written more generally as

k(x, x′) = Ev∼N [∇vf(x) · ∇vf(x′)] . (2.22)

Note that because of its relevance in NNGPs, in current papers this kernel type is often
referred to as the GP kernel.

Note that the RF or GP kernel describe the general kernel type, but the kernel resulting
from computing (2.22) for a specific NN is architecture-dependent. In particular, different
kernels can be expressed by varying the activation function σ(·). The popular ReLU
activation σ(x) = max[0, x] = xH(x) and the Heaviside-step activation σ(x) = H(x)
correspond to the arc-cosine kernel of first and zeroth order, respectively.

The Arc-Cosine kernel

Cho and Saul (2009) aimed to combine the elegance of principled kernel learning with the
expressive power of DL. For this purpose, they introduced a family of kernel functions
called “arc-cosine” (AC) that would mimic NN computation in a kernel machine.

The lth-order AC kernel function is defined via the following integral representation:

Kl(x, y) =
1

(2π)d/2

∫
ddw e−‖w‖

2/2(w · x)l(w · y)lH(w · x)H(w · y) (2.23)

for x, y, w ∈ Rd, and with H(·) denoting the Heaviside step function. This integral can be
solved analytically, and the final result can be expressed as

Kl(x, y) =
1

2π
‖x‖l‖y‖lJl(αx,y), (2.24)
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where αx,y is the angle between the inputs x and y,

α = arccos

(
x · y
‖x‖‖y‖

)
, (2.25)

and Jl(α) is a family of functions defined in a closed-form expression provided in the original
paper (Cho and Saul, 2009); the first few are:

J0(α) = π − α , (2.26)

J1(α) = sinα + (π − α) cosα , (2.27)

J2(α) = 3 sinα cosα + (π − α)(1 + 2 cos2 α) . (2.28)

The ACK functions arise in computation with the simplest kind of NN that consist of a
single weight matrix W , and are equipped with a one-sided polynomial activation function
σl(z) = zlH(z). Note that for l = 0, σ0 is a step function – then the NN is an array
of perceptrons, and for l = 1, σ1 is the ReLU activation. The NN function maps inputs
x ∈ Rd to outputs f(x) ∈ RD, with f(x) = σ(Wx), where σ is applied element-wise, and
the elements of W are randomly initialized from a Gaussian distribution, Wij ∼ N (0, 1).
Consider now the inner product between two NN outputs:

f(x) · f(y) =
D∑
i=1

(Wi · x)lH(Wi · x) (Wi · y)lH(Wi · y), (2.29)

where Wi denotes the i-th row of the weight matrix W . In the limit where the NN width
D goes to infinity, this inner product (normalized by D) yields the integral formula for the
AC function:

lim
D→∞

1

D
f(x) · f(y) = Kl(x, y) , (2.30)

Note that the order l of the ACK function corresponds to the order of NN activation
function.

The ACK function will be relevant for the computations presented in the next chapter.

Neural Tangent kernel

In a standard setting, all layers of the NN are trained by stochastic gradient descent. In
this case, it has been observed that, when the width of the hidden layers is very large,
the model remains close to its linearization around its random initialization throughout
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training, known as “lazy training” regime. Learning is then equivalent to a kernel method
with another architecture-specific kernel, namely the Neural Tangent Kernel (NTK),
popularized by Jacot et al. (2018). The NTK is defined as the inner product between the
gradients of the NN outputs with respect to the NN parameters:

k(x, x′) = Eθ∼N [∇θf(x) · ∇θf(x′)] . (2.31)

2.5 Bayesian neural networks and Gaussian Processes

As mentioned in the beginning of the chapter, the correspondence between infinite NNs and
GPs was fist studied in the context of Bayesian learning. The Bayesian approach to NNs is
in general different from the NN-based ML methods currently prevalent in practice. In the
study of NN kernels, the GP kernel plays a role in both the Bayesian and the non-Bayesian
case. However, the distinction between these cases if often not stated clearly, which – I
found – makes the topic of NN kernels confusing for non-experts. Therefore – even though
my research presented in this thesis is not about Bayesian NNs – in this section I provide
background information on the Bayesian perspective and GPs. Furthermore, because the
original connection between NNs and kernels was made in the Bayesian framework, I find
it interesting and valuable to retrace the line of thought which lead to these discoveries.

When NNs just came up in the 1990s, it was largely unclear how exactly to apply them
to learning in practice, due to the lack of a principled approach to NN design, including
the number of hidden units in a layer, the choice of activation function, the training hyper-
parameters, etc. (Rasmussen and Williams, 2006). And while classical learning theory
taught that one has to aim for the sweet spot in the bias-variance trade-off, to Bayesians
it did not make sense to limit the number of parameters and make the model less capable.

In the Bayesian framework, which is radically different from conventional NN training,
inference begins by specifying a prior distribution over model parameters. The prior en-
codes the user’s assumptions (which are made based on knowledge, or educated guessing)
about the relationships that are being modeled. By applying Bayes’ theorem, the prior is
then updated to the posterior based on observations (i.e., training data). Finally, predic-
tions are made by averaging over all likely explanations under the posterior distribution.

Neal (1994) attempted to fuse NNs with Bayesian inference. The tricky part about this
was identifying the proper prior: In NNs, the model parameters are the weights (and the
biases), but since the weights do not have any direct interpretation, the prior over weights
lacks any meaning. What matters is the prior over functions computed by the network,
which is indirectly implied by the prior over the weights. Therefore, it is not immediately
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clear how to design a prior distribution that expresses one’s beliefs. Neal argued that since
in the Bayesian framework the problem of overfitting does not occur, there is no reason to
consider small NNs with limited expressivity, and thus proposed to use NNs with infinitely
many hidden units. He established that in this limit, the prior over functions will converge
to a Gaussian Process, making it possible to analyze the nature of the priors over functions
that result from certain prior for the weights.

2.5.1 Gaussian Processes

Gaussian processes are stochastic processes. Intuitively, a stochastic process can be thought
of as a generalization of a probability distribution: While a probability distribution de-
scribes a finite-dimensional random variable, a stochastic process describes functions. The
Gaussian type is particularly favorable, as then the computations required for inference
and learning become relatively easy.

Formally, a stochastic process (SP) is a collection of random variables {f(x) | x ∈ X}
indexed by a set X (Williams, 1998). In the supervised learning setting, X is Rd, where
d is the number of inputs. The SP is specified by the probability distribution for every
finite subset of variables f(x1), . . . , f(xn) in a consistent manner. In the special case of a
Gaussian process (GP), this distribution is a joint multivariate Gaussian:

p(f(x1), . . . , f(xn)) = N (µ,K) . (2.32)

The mean function µ = (µ(x1), . . . , µ(xn)) and the covariance function K – also called the
kernel function – with elements Kij = cov(xi, xj) fully specify the GP:

µ(x) = E[f(x)] (2.33)

cov(xi, xj) = E[(f(xi)− µ(xi)) (f(xj)− µ(xj))] (2.34)

The kernel function specifies all covariances in the model and thus encodes the prior of the
GP. The prior is adjusted to a given application by choice of kernel.
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Chapter 3

Are wider nets better given the same
number of parameters?

The work presented in this chapter has been published as Golubeva et al. (2021).

In the previous chapter, I have provided a formal description of NN learning and intro-
duced methods for a theoretical analysis of DL, in particular with a focus on illuminating
the connection between NNs and kernel methods. In the current chapter, I present a study
that applies some of the introduced theoretical methods to investigate the question posed
in the title: Are wider nets better given the same number of parameters? This question
is interesting from the theoretical perspective for any kind of NN and at the same time
highly relevant for DL practice where very large models play the main role. As mentioned
in chapter 1, overparametrization is a central characteristic property of DL models, and it
is the property that puts DL into a conflict with statistical learning theory (SLT). Accord-
ing to SLT, overparametrized NN models are expected to generalize very poorly, but in
practice we observe the exact opposite effect: DL models actually become better in their
generalization ability when the number of parameters is increased.

By construction, the number of parameters in a NN is immediately related to the layer
widths and the number of layers, i.e., the NN depth. While NN depth is the distinc-
tive feature that marked the transition from the “old-school” Machine Learning to the
practical and highly effective Deep Learning, it is constrained by the difficulties that it
introduces into the training procedure. The main problem associated with training of deep
NN models is the propagation of gradients during parameter updates, as required by the
Gradient Descent algorithm. Larger depth makes gradients less stable, meaning that their
magnitudes can fluctuate strongly, often leading to the problem known as exploding or
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vanishing gradients. Therefore, the number of parameters in a deep NN is typically in-
creased not by making it deeper, but by increasing its width. For instance, a popular DL
model for image recognition called ResNet (which was introduced by He et al. (2015) and
the name stands for “Residual Network”) was improved upon by increasing layer width.
Specifically, Zagoruyko and Komodakis (2017) have shown that a model now known as
“WideResNet” with 16 layers outperforms all previous variants of ResNet models that all
have more than 16 layers (standard ResNet variants have depths of 18, 34, 152 or 1001
layers).

The tradeoffs between depth and width for DL models have been studied quite ex-
tensively in a variety of context – see for instance Nguyen et al. (2021); Chatziafratis
et al. (2019) and references therein. Similarly, a large number of works examined over-
parametrization of deep NNs, both in the context of optimization and generalization.
However, in the vast majority of these works the number of parameters is increased by
increasing NN width. In contrast, the study I present in this chapter aims at disentangling
the effects of these very tightly connected quantities. The broader goal of this research work
is to refine the notion of overparametrization, as understanding the effects and features of
overparametrization is a step towards solving the puzzle of generalization in DL.

This analysis was conducted in a typical DL setting with a focus on the image classifi-
cation task, using standard DL models and datasets. The target audience for this study is
the ML community, and therefore some terms might sound unfamiliar to a physicist with
little background in modern DL. However, we provide ample references for specific terms
and an extensive appendix with details on every experiment. The research question that
this study addresses is highly intuitive, and therefore easily accessible even for a ML novice,
in particular given the introduction provided in the previous chapters and the paragraphs
above.

3.1 Abstract

Empirical studies demonstrate that the performance of neural networks improves with
increasing number of parameters. In most of these studies, the number of parameters
is increased by increasing the network width. This begs the question: Is the observed
improvement due to the larger number of parameters, or is it due to the larger width
itself?

We compare different ways of increasing model width while keeping the number of
parameters constant. We show that for models initialized with a random, static sparsity
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Figure 3.1: Test accuracy of ResNet-18 as a function of width. Performance improves as
width is increased, even though the number of weights is fixed. Please see Section 3.4.3
for more details.

pattern in the weight tensors, network width is the determining factor for good perfor-
mance, while the number of weights is secondary, as long as the model achieves high
training accuracy. As a step towards understanding this effect, we analyze these models
in the framework of Gaussian Process kernels. We find that the distance between the
sparse finite-width model kernel and the infinite-width kernel at initialization is indicative
of model performance.1

3.2 Introduction

Deep neural networks have shown great empirical success in solving a variety of tasks
across different application domains. One of the prominent empirical observations about
neural nets is that increasing the number of parameters leads to improved performance
(Neyshabur et al., 2015, 2019; Hestness et al., 2017; Kaplan et al., 2020). This happens
both for overparametrized networks, which have enough capacity to fit the training data,
and in underparametrized settings. In the underparametrized regime, the improved per-
formance can perhaps be attributed to the increase in the capacity due to the growing
number of model parameters. However, the increased capacity by itself cannot explain the
improved performance in the overparametrized setting, where the model already has enough
capacity to fit the training data. This mystery has motivated many research directions fo-

1Code is available at https://github.com/google-research/wide-sparse-nets
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cused on this phenomenon, and the consequences of the effect for model optimization and
generalization have been explored extensively. In the vast majority of these studies, both
empirical and theoretical, the number of parameters is increased by increasing the width
of the NN (Neyshabur et al., 2019; Du et al., 2019; Allen-Zhu et al., 2019). Network width
itself on the other hand has been the subject of interest in studies analyzing its effect on
the dynamics of NN optimization, e.g. using Neural Tangent Kernels (Jacot et al., 2018;
Arora et al., 2019) and Gaussian Process Kernels (Wilson et al., 2016; Lee et al., 2018a).

All studies we know of suffer from the same fundamental issue: When increasing the
width, the number of parameters is being increased as well, and therefore it is not possible
to separate the effect of increasing width from the effect of increasing number of parameters.
How does each of these factors — width and number of parameters — contribute to the
improvement in performance? We conduct a principled study addressing this question,
proposing and testing methods of increasing network width while keeping the number of
parameters constant. Surprisingly, we find scenarios under which most of the performance
benefits come from increasing the width.

Specifically, this work makes the following contributions:

• We propose three candidate methods (illustrated in Figure 3.2) for increasing network
width while keeping the number of parameters constant.

(a) Linear bottleneck: Substituting each weight matrix by a product of two
weight matrices. This corresponds to limiting the rank of the weight matrix.

(b) Non-linear bottleneck: Narrowing every other layer and widening the rest.

(c) Static sparsity: Setting some weights to zero using a mask that is randomly
chosen at initialization and remains static throughout training.

• We show that performance can be improved by increasing the width, with-
out increasing the number of model parameters. We find that test accuracy
can be improved using method (a) or (c), while method (b) only degrades perfor-
mance. However, we find that (a) suffers from another degradation caused by the
reparametrization, even before widening the network. Consequently, we focus on the
sparsity method (c), as it leads to the best results and is applicable to any network
type.

• We empirically investigate different ways in which random, static sparsity can be
distributed among layers of the network and, based on our findings, propose an
algorithm to do this effectively (Section 3.4.3).
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(a) Linear Bottleneck (b) Non-linear Bottleneck (c) Static Sparsity

Figure 3.2: Schematic illustration of the methods we use to increase network width while
keeping the number of weights constant. Blue polygons represent weight tensors, red
stripes represent non-linear activations, and diagonal white stripes denote a sparsified
weight tensor. We use f to denote the widening factor.

• We demonstrate that the improvement due to widening (while keeping the number
of parameters fixed) holds across standard image datasets and models. Surprisingly,
we observe that for ImageNet, increasing the width according to (c) leads to almost
identical performance as when we allow the number of weights to increase along with
the width (Section 3.4.3).

• To understand the observed effect theoretically, we study a simplified model and
show that the improved performance of a wider, sparse network is correlated with a
reduced distance between its Gaussian Process kernel and that of an infinitely wide
network. We propose that reduced kernel distance may explain the observed effect
(Section 3.5).

3.3 Related Work

Our work is similar in nature to the body of work studying the role of overparametrization
and width. Neyshabur et al. (2015) observed that increasing the number of hidden units
beyond what is necessary to fit the training data leads to improved test performance, and
attributed this to the inductive bias of the optimization algorithm. Soltanolkotabi et al.
(2018); Neyshabur et al. (2019); Allen-Zhu et al. (2019) further studied the role of over-
parametrization in improving optimization and generalization. Woodworth et al. (2020)
studied the implicit regularization of gradient descent in the over-parametrized setting,
and Belkin et al. (2019) investigated the behavior at interpolation. Furthermore, Lee
et al. (2018a) showed that networks at initialization become Gaussian Processes in the
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large width limit, and Jacot et al. (2018) showed that infinitely wide networks behave as
linear models when trained using gradient flow. Lee et al. (2020) systematically compared
these different theoretical approaches. In all the above works, the number of parameters is
increased by increasing the width. However, in this work, we conduct a controlled study
of the effect of width by keeping the number of parameters fixed.

Perhaps Littwin et al. (2020) is the closest work to ours, which investigates over-
parametrization achieved through ensembling as opposed to layer width. Ensembling is
achieved by connecting several networks in parallel into one “collegial” ensemble. They
show that for large ensembles the optimization dynamics simplify and resemble the dy-
namics of wide models, yet scale much more favorably in terms of number of parameters.
However, the method employed there is borrowed from the ResNeXt architecture (Xie
et al., 2016), which involves altering the overall structure of the network as width is in-
creased. In this work we try to make minimal changes to network structure, in order to
isolate the effect of width on network performance.

Finally, static sparsity is the basis of the main method we use to increase network
width while keeping the number of parameters fixed. There is a large body of work on
the topic of sparse neural networks (Park et al., 2016; Narang et al., 2017; Bellec et al.,
2018; Frankle and Carbin, 2018; Elsen et al., 2019; Gale et al., 2019; You et al., 2019), and
many studies derive sophisticated approaches to optimize the sparsity pattern (Lee et al.,
2018b; Evci et al., 2019; Wang et al., 2020; Tanaka et al., 2020). In our study, however,
sparsity itself is not the subject of interest. In order to minimize its effect in our controlled
experiments, the sparsity pattern that we apply is randomly chosen and static. A recent
work by Frankle et al. (2020) demonstrates that a random, fixed sparsity pattern leads to
equal performance as the more involved methods for pruning applied at initialization, when
the per-layer sparsity distribution is the same. However, we do not explore this direction
in our study.

3.4 Empirical Investigation

In this section, we first explain our experimental methodology and then investigate the
effectiveness of different approaches to increase width while keeping the number of param-
eters fixed. Finally, we discuss the respective roles of width and the number of parameters
in improving performance.
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3.4.1 Methodology

In order to identify how width and number of parameters separately affect performance,
we need to decouple these quantities. For a fully-connected layer, width is the number of
hidden units, and for a convolutional layer, width corresponds to the number of output
channels. Increasing the width of one layer ordinarily entails an increase in the number
of weights. Therefore, some adjustment is required to keep the total number of weights
constant. This adjustment can be made at the level of layers by reducing some other
dimension (i.e., by introducing a “bottleneck”), or at the level of weights by setting some
of them to be zero. When choosing a method for our analysis, we take particular care
about possible confounding variables, as many aspects of a neural network are intertwined.
For example, we prefer to keep the number of non-linear layers in the network fixed, as it
has been shown that changing it can significantly affect the expressive power, optimization
dynamics and generalization properties of the network. With these constraints in mind,
we specify three different methods listed above. In this section, we discuss these methods
in detail, evaluate them, and present the results obtained on image classification tasks.

In summary, our approach is as follows: We select a network architecture which specifies
layer types and arrangement (e.g., MLP with some number of hidden layers, or ResNet-18),
set layer widths, and count the number of weights. We refer to this model as the baseline,
and derive other models from it by increasing the width while keeping the number of
weights constant. In this way, we obtain a family of models that we train using the same
training procedure, and compare their test accuracies. For comparison and as a sanity
check, we also consider the dense variants of the wider models.

We tested a variety of simple models, and observed the same general behavior in the
context of our research question. For the discussion in this work, we focus on two model
types: a MLP with one hidden layer, and a ResNet-18. We chose the ResNet-18 archi-
tecture (He et al., 2015) because it is a standard model widely used in practice. Its size
is small enough that it allows us to increase the width substantially, yet it has sufficient
representational power to obtain a nontrivial accuracy on standard image datasets. When
creating a family of ResNet-18 models, we refer to the number of output channels of the first
convolutional layer as the width, and do not alter the default width ratios of all following
layers. Further details of each experiment and figure are specified in Appendix A.

3.4.2 Bottleneck methods

Here we discuss the two bottleneck methods described in the previous section and in
Figure 3.2.
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Linear Bottleneck

Substitute each weight matrix W ∈ Rdi×do by W1W2, where W1 ∈ Rdi×db , W2 ∈ Rdb×do and
db ≤ min(di, do). In the case of a ResNet-18 model, each convolutional layer is replaced
by two convolutional layers with kernel dimensions 3× 3 and 1× 1, respectively, and with
db = di = do before widening. Note that if db = min(di, do), then this reparametrization
has the exact same expressive power2 as the original network. Now, one can make the
network wider by increasing the number of hidden units (di and do here) and reducing the
bottleneck size db. This would correspond to imposing a low-rank constraint on the original
weight matrix W . Linear bottleneck has been proposed as a way to reduce the number
of parameters and improve training speed (Ba and Caruana, 2014; Urban et al., 2016).
The caveat of this method is that, even though the expressive power of the reparametrized
network is the same as the original one, the reparametrization changes the gradient descent
trajectory and hence can affect the final results. It is therefore not possible to control the
implicit regularization caused by this transformation. Note that substituting the weight
matrix by a product of two matrices changes the number of parameters of the model.

Non-linear Bottleneck

One way to create a non-linear bottleneck is to split each layer in two as described above
and add a non-linearity to the first layer. The problem with this approach is that adding
a non-linearity changes the expressive power of the model, and hence adds a factor that
we cannot control. An alternative approach, which is more favorable in our case and
which we adopt here, is to modify the layers in pairs. The input dimension of the first
layer is increased, while its output dimension (and consequently the input dimension of
the second layer) is reduced (db < d). Non-linear bottlenecks are widely used in practice,
particularly as a way to save parameters in very deep architectures, such as deeper variants
of ResNet (He et al., 2016) and DenseNet (Huang et al., 2017).

The performance of these methods on CIFAR-10 and CIFAR-100 datasets is demon-
strated in Figure 3.3. The results indicate that increasing width using the linear bottleneck
indeed leads to improved accuracy up to a certain width. Moreover, this effect is more
pronounced in smaller models that are less overparametrized. This is similar to the im-
provement gained when increasing the width along with the number of parameters (without
a bottleneck): The improvement tends to be diminished when the base network is wider.
However, as discussed above, the act of substituting a weight matrix by a product of two

2Here, expressive power refers to the set of functions that can be represented by the network.
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Figure 3.3: Best test accuracy obtained by ResNet-18 models widened using the bottleneck
methods. The performance of the baseline network (before introducing bottleneck layers)
is denoted by dashed lines. The legend indicates the number of weights in the baseline
network. In (a), it is equal to the number of weights before introducing bottleneck layers.
In (b), it is equal to the total number of weights.

weight matrices changes the optimization trajectory which could in turn affect general-
ization. Indeed, the performance of the original model, indicated by dashed horizontal
lines in the Figure, is significantly higher than that of the transformed models. Therefore,
even though the width increase at a constant number of weights with the linear bottleneck
method improves the result of the most narrow model obtained after the transformation,
it typically does not outperform the default ResNet-18 model. Due to lack of control over
the effect of inductive bias, we conclude that this choice does not qualify to be used in our
controlled experiments.

The non-linear bottleneck method does not suffer from the same issues as the linear
version in terms of inductive bias of reparametrization. However, as Figure 3.3 demon-
strates, no empirical improvement is obtained by increasing the width, except for the model
with 1.8e + 05 weights (and then the improvement is mild). Therefore, we conclude that
the non-linear bottleneck model does not show a significant enough improvement to be
considered as an effective method for our study.

3.4.3 Sparsity method

We now turn to the sparsity method illustrated in Figure 3.2c, which is the main method
studied in this work. We start with a baseline model that has dense weight tensors. We
then increase the width by a widening factor f and sparsify the weight tensors such that
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Figure 3.4: Illustration of our algorithm for distributing sparsity over model layers on a
toy example: a NN with four layers and a total of 13 weights. The goal is to remove nine
weights. Orange color indicates how these nine are distributed over the NN layers. The
code implementing this algorithm is included in Appendix D.

the total number of trainable weights is the same as in the baseline model. In an attempt
to run a controlled experiment and minimize the differences between the sparsified setup
and the baseline setup, we choose the sparsity mask at random at initialization and keep
it static during training. That is, the weights to remove are chosen at random, and their
values are set to zero throughout training. In this sense, our method differs from most other
pruning methods discussed in the literature, where the aim is to maximize performance
through optimized sparsity. The advantage of the sparsity method over the bottleneck
methods considered earlier is that it allows us to control the number of weights without
altering the overall network structure. We define the connectivity of a sparse model to be
the ratio between the number of its parameters and the number of parameters in a dense
model of the same width.

In order to implement the sparsity method, we need to choose how to distribute the
sparsity both across network layers and within each layer. To prevent smaller layers from
being cut out entirely, we choose the number of weights to be removed in each layer to
be proportional to the number of weights in that layer (except for BatchNorm layers,
which are kept intact). Figure 3.4 demonstrates the principle of our algorithm for sparsity
distribution. Within each layer, we distribute the sparsity uniformly across all dimensions
of the weight tensor. Overall, this method of distributing the weights led to the best
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Figure 3.5: Test accuracy (color-coded) on MNIST obtained by MLP models with 1 hidden
layer and ReLU or linear activations, as a function of overall connectivity (horizontal axis)
and of connectivity in the last layer (vertical axis). White stars indicate points with the
highest test accuracy.

performance among the different methods we tried in our experiments (see Appendix E for
more details).

MLP

We study a fully-connected network with one hidden layer trained on MNIST. We use this
simple setup to compare different sparsity distribution patterns across layers for a given
network connectivity, and to compare the effects of increased width with and without
ReLU non-linearities. Specifically, we consider a linear model to address the fact that
width increase introduces additional ReLU units and thus potentially enables the network
to express a more complex function.

The dense MLP at width n has two weight matrices: The first layer matrix has size
784 × n and the last layer has size n × 10. In the experiments, we set the total number
of weights to 3970 and consider widths ranging from 5 to 640, corresponding to network
connectivities between 1 and 5/640 ≈ 0.008. At each width, we vary the connectivity of
the last layer (the smaller of the two) between 1.0 and 0.1. Given a fixed total number of
weights, each valid combination of width and last-layer connectivity determines a model
(up to the random sparsity pattern, which depends only on the random seed).

For both ReLU and Linear activation, sparse wide models can outperform the dense
baseline, as shown in Figure 3.5. We find that sparse, wide models can outperform the
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dense baseline models for both ReLU and linear activations. The ReLU model attains its
maximum performance at around 3 − 6% connectivity, which corresponds to a widening
factor of 16 or 32. At the optimal point the connectivity of the last layer is high, above
80%. It is therefore advantageous in this case to remove more weights from the first layer
than from the last layer. This makes intuitive sense: Removing weights from a layer that
starts out with fewer weights can be expected to make optimization more difficult. This
result motivated our choice to remove weights proportionally to layer size when sparsifying
other models. Finally, the fact that larger width leads to improvement even in the deep
linear model implies that the improvement cannot be attributed solely to the increased
model capacity due to additional non-linearities in the network function.

ResNet-18

We train families of ResNet-18 models on ImageNet, CIFAR-10, CIFAR-100 and SVHN,
covering a range of widths and model sizes. A detailed example of the sparsity distribution
over all layers is shown in Appendix F.

Table 3.1 shows the results obtained on ImageNet. As expected, the performance
improves as the width and the number of weights increase (row 1). However, up to a
certain width, a comparable improvement is achieved when only the width grows and the
number of weights remains fixed (row 2). We believe the reason for declining test accuracy
at yet larger widths is that the connectivity becomes too small and impairs the trainability
of the model, as we observe that the training accuracy deteriorates along with the test
accuracy. Therefore, in this case the determining factor for model performance is width
rather than number of parameters. Figure 3.6 shows the results of training the ResNet-18
model families on several additional datasets. We again find that performance improves
with width at a fixed number of parameters, up to a certain widening factor. The effect is

width 64 90 128 181 256

dense 68.03 (11.7) 69.11 (22.8) 70.22 (45.7) 70.91 (90.7) 71.89 (180.6)
sparse – 69.56 (11.7) 70.02 (11.7) 70.66 (11.7) 70.53 (11.7)

Table 3.1: ResNet-18 on ImageNet: Top-1 test accuracy (in %) and in parentheses the
number of weights in millions. All sparse models have the same number of weights as the
smallest dense model, yet the improvement obtained with increasing width is on par with
the dense models, up to a certain width.
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Figure 3.6: Best test accuracy (a) and corresponding training accuracy (b) obtained
by ResNet-18 models of different width and size (approximate total number of weights
is shown in the legend). The leftmost data point of each color corresponds to the dense
baseline model, and all subsequent data points correspond to its wider and sparser variants.
The decline of performance at larger widening is because sparsity at these levels harms the
optimization procedure, making the training accuracy deteriorate. See Appendix B for the
same data plotted as a function of network connectivity, and for the version with error
bars.
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Figure 3.7: The fraction of test accuracy improvement (black triangles) obtained by widen-
ing the model without increasing the number of weights, compared to increasing the num-
ber of weights along with the width. The dashed vertical line indicates widening factor
for maximal training accuracy (red circles). Note that for ImageNet, at width 90 (widen-
ing factor 1.4) the sparse model attained a higher test accuracy than the dense model, as
reported in Table 3.1.

most pronounced for more difficult tasks and for smaller models that do not reach 100%
training accuracy, yet it is still present for models that do fit the training set.

Figure 3.7 compares the performance improvement of a sparse, wide model against that
of a dense model with the same width. In particular, it shows the fraction of the improve-
ment that can be attributed to width alone – that is, the ratio between the sparse/baseline
accuracy gap and the dense/baseline accuracy gap. We see that as long as the model can
achieve high training accuracy, most of the improvement in performance can be attributed
to the width.

3.5 Theoretical analysis in a simplified setting

We showed empirically that wide, sparse NNs with random connectivity patterns can
outperform dense, narrower NNs when the number of parameters is fixed. It is well known
that wider (dense) NNs can achieve consistently better performance. When the NN is
sparse, its performance as a function of width has a maximum. In this section we investigate
a potential theoretical explanation for this effect building on the connection between NNs
and kernel learning discussed in the previous chapter.

Specifically, we conjecture that the kernel of a finite-width NN at initialization is in-
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dicative of its performance, and that optimal performance is achieved when its distance to
the infinite-width kernel is minimized. We further hypothesize that this distance can be
reduced by increasing the NN width at a fixed number of parameters. In the following, we
formalize this conjecture and derive expressions for the kernel of a sparse finite-width NN
with one hidden layer. We calculate the kernel distance theoretically, and show that the
distance predicted using this result is in good agreement with experiments.

Consider a 2-layer ReLU network with the function f : Rd → R given by

f(x) =
1√
nd

vT [ux]+ , [z]+ := zH(z) . (3.1)

Here, x ∈ Rd is the input, the network parameters are u ∈ Rn×d and v ∈ Rn×D, and H(·) is
the Heaviside step function. For simplicity, we omit the biases, and set the output dimen-
sion D = 1. Note that in this section we use NTK parametrization, whereas in previous
sections we used LeCun parametrization (see Appendix C). Each network parameter is
sampled independently from N (0, σ2) with probability p, and is set to zero with probabil-
ity 1− p. We use the variable ω ∈ R representatively for all network parameters u, v. The
probability density function for each parameter ω is therefore given by

Pr(ω) =
p√

2πσ2
exp

(
− ω2

2σ2

)
+ (1− p)δ(ω) . (3.2)

where δ(·) is the Dirac delta function. We set σ2 = p−1.

In the following, we consider the Gaussian Process (GP) kernel of the network, defined as

ΘGP(x, y) := ∇vf(x)>∇vf(y) , (3.3)

where the gradients are taken with respect to elements of the last layer only. Note that

∂vif(x) =
1√
nd

∂vi
∑
j

vj
(
[ux]+

)
j

=
1√
nd

(
[ux]+

)
i

(3.4)

and thus

∇vf(x) = (∂v1f(x), . . . , ∂vnf(x))> =
1√
nd

[ux]+ , (3.5)

such that the inner product in the definition of the GP kernel is essentially the inner
product of the “hidden feature vectors”, i.e., outputs of the hidden layer:

ΘGP(x, y) = ∇vf(x)>∇vf(y) =
1

nd
[ux]>+ [uy]+ . (3.6)
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Therefore, we can use the arc-cosine kernel (ACK) functions introduced in section 2.4 to
express ΘGP(x, y) for a dense NN. Let Θn

GP be the dense kernel (with p = 1) at width n,
and let Θ∞GP = limn→∞Θn

GP be the dense infinite-width kernel. Because in the infinite-
width limit the kernel is given exactly by the relation (2.30), its mean and variance are
straightforwardly obtained:

Eω[Θ∞GP(x, y)] =
1

d
K1(x, y) , (3.7)

Var[Θ∞GP(x, y)] = 0 , (3.8)

with K1(x, y) given by (2.23).

To account for the case of a sparse NN with connectivity p, we generalize the defini-
tion (2.23) for the ACK function of l-th order as follows:

K̃l,p(x, y) :=

∫
ddw

d∏
i=1

Pr(wi)(w · x)l(w · y)lH(w · x)H(w · y) (3.9)

for x, y, w ∈ Rd, and with the random variables wi distributed according to (3.2). Note
that for p = 1 we recover the original integral (2.23), i.e., K̃l,1(x, y) = Kl(x, y).

We can express K̃l,p(x, y) in terms of Kl(x, y) by doing the following transformation: We
introduce a vector s = (s1, . . . , sd) with elements in {0, 1} which acts as a mask for the vec-
tors w, x, y, and denote the masked vectors by the subscript s, with ws = (w1s1, . . . , wdsd)
and analogously for xs, ys. Note that the elements of s are random variables drawn from a
binomial distribution with probability p for value 1, and the 2-norm of s, denoted ‖s‖, is
equal to the number of nonzero elements in s. Using the mask s allows us to restrict the
integration to non-zero elements of w, namely d‖s‖ws =

∏
i|si=1 dwi:

K̃l,p(x, y) = (2πσ2)−‖s‖/2
∑

s1,...,sd∈{0,1}
p‖s‖(1− p)d−‖s‖

×
∫
d‖s‖ws e

−‖ws‖2/2σ2

(ws · x)l(ws · y)lH(ws · x)H(ws · y)

= σ2l ·
∑

s1,...,sd∈{0,1}
p‖s‖(1− p)d−‖s‖ Kl(xs, ys) . (3.10)

Consider now the sparse kernel ΘGP. We want to compute its mean over all parameter
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initializations (i.e., the ensemble average) and its variance, that is,

Eω[ΘGP] =

∞∫
−∞

dLω

L∏
i=1

Pr(ωi) ΘGP , (3.11)

Var[ΘGP] = Eω
[
Θ2

GP

]
− Eω[ΘGP]2 . (3.12)

The mean is easily obtained:

Eω[ΘGP(x, y)] = Eω
[

1

nd
[ux]>+ [uy]+

]
(3.13)

=
1

nd
Eω

[
n∑
k=1

(uk · x)H(uk · x) (uk · y)H(uk · y)

]
, (3.14)

where we have used uk to denote the k-th row of u ∈ Rn×d. The contribution is the same
for each of the n rows. Changing to integral form of the expectation value we obtain:

Eω[ΘGP(x, y)] =
1

d

∞∫
−∞

dduk

d∏
i=1

Pr(uki) (uk · x)H(uk · x) (uk · y)H(uk · y)

=
1

d
K̃1,p(x, y) . (3.15)

To obtain the variance, we need to compute Eω[ΘGP(x, y)2]:

Eω
[
ΘGP(x, y)2

]
=

1

n2d2

×
n∑

k,k′=1

Eω[(uk · x)H(uk · x)(uk · y)H(uk · y)(uk′ · x)H(uk′ · x)(uk′ · y)H(uk′ · y)]

For k = k′, we have n equal terms:

Ik=k′ =
n∑
k=1

Eω
[
(uk · x)2H(uk · x)(uk · y)2H(uk · y)

]
= n

∞∫
−∞

ddω

d∏
i=1

Pr(ωi)(ω · x)2H(ω · x)(ω · y)2H(ω · y)

= n K̃2,p(x, y) . (3.16)

38



For k 6= k′, we obtain a contribution of n(n− 1) equal terms:

Ik 6=k′ =
n∑
k=1

∑
k 6=k

Eω[(uk · x)H(uk · x)(uk · y)H(uk · y)(uk′ · x)H(uk′ · x)(uk′ · y)H(uk′ · y)]

= n(n− 1)

∫
dduk

d∏
i=1

Pr(uki)(uk · x)H(uk · x)(uk · y)H(uk · y)

×
∫
dduk′

d∏
i=1

Pr
(
uk′i
)
(uk′ · x)H(uk′ · x)(uk′ · y)H(uk′ · y)

= n(n− 1) K̃1,p(x, y)2 . (3.17)

Putting them together, we obtain:

Eω
[
ΘGP(x, y)2

]
=

1

n2d2

[
nK̃2,p(x, y) + n(n− 1)K̃1,p(x, y)2

]
(3.18)

In summary, the mean and variance for the sparse ΘGP are:

Eω[ΘGP(x, y)] =
1

d
K̃1,p(x, y) , (3.19)

Var[ΘGP(x, y)] =
1

n2d2

[
nK̃2,p(x, y) + n(n− 1)K̃1,p(x, y)2

]
− 1

d2
K̃1,p(x, y)2

=
1

nd2

[
K̃2,p(x, y)− K̃1,p(x, y)2

]
. (3.20)

The mean squared distance between the sparse and the infinite-width GP kernel is thus:

Eω
[
(ΘGP(x, y)−Θ∞GP(x, y))2

]
= [Eω[ΘGP(x, y)]−Θ∞GP(x, y)]2 + Var[ΘGP(x, y)]

=
1

d2

[
K̃1,p(x, y)−K1(x, y)

]2

+
1

d2n

[
K̃2,p(x, y)− K̃1,p(x, y)2

]
.

(3.21)

Next, we derive an approximate form of this expression (3.21) using plausible arguments.

3.5.1 Approximating the kernel distance

The following derivation is not rigorous, but we compare the results against an empirical
calculation (see Figure 3.8) and find good agreement. In this derivation, we make two
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assumptions: (1) We assume dp � 1, which is easily fulfilled in practice, as the input
dimension d is ∼ 1000 even for the smaller image datasets (e.g., d = 784 for MNIST).
(2) We assume that the inputs x, y ∈ Rd are independent random vectors with elements
sampled from N (0, 1). This is intuitively justified by the fact that normalizing input data
to have zero mean and unit variance is standard in ML.

For given p, we expect the dominant contribution to K̃l,p in the sum (3.10) to come
from terms where ‖s‖ =

∑
i si ≈ dp, and so we consider a mask s with this property.

xs and ys are then random vectors with effective dimension dp, and we can approximate
xs · ys ≈ dp and ‖xs‖ ≈

√
dp(1−1/4dp) (and similarly for ‖ys‖). Here we used the relation

for random vectors of dimension d: E
[
‖x‖l

]
= 2l/2 Γ((d+l)/2)

Γ(d/2)
. We denote the angle between

x, y by α, and the angle between xs, ys by αs. Then, from the above we expect:

cosαs ≈
ξ√
dp
, sinαs ≈

√
1− 1

dp
≈ 1− 1

2dp
, αs ≈

π

2
− ξ√

dp
, (3.22)

where ξ = ±1 is a random sign.

Next, we consider the integrals Kl(xs, ys), specifically their analytical solution (2.24).
Using the random vector approximations, we find

K1(xs, ys) =
1

2π
‖xs‖‖ys‖J1(αs) ≈

dp

2π

[
1 +

πξ

2
√
dp

]
, (3.23)

K2(xs, ys) =
1

2π
‖xs‖2‖ys‖2J2(αs) ≈

(dp)2

2π

[
π

2
+

4ξ√
dp

+
π

dp
+

ξ

2(dp)3/2

]
. (3.24)

For the sparse functions K̃l(x, y), we assume as before that the contribution from the
sum over masks is concentrated where the mask Σisi ≈ dp. For a mask s obeying this
condition we then have K̃l,p(x, y) ≈ σ2lKl(xs, ys), and specifically with σ2 = p−1:

K̃1,p(x, y) ≈ d

2π

[
1 +

πξ

2
√
dp

+
1

2dp

]
, (3.25)

K̃2,p(x, y) ≈ d2

2π

[
π

2
+

4ξ√
dp

+
π

dp
+

ξ

2(dp)3/2

]
. (3.26)

The diagonal elements where x = y and αs = α = 0 are given by K̃l,p(x, x) ≈ σ2lKl(xs, xs) ≈
σ2l(dp)l

2π

[
1 + l(l−1)

dp

]
Jl(0). In particular,

K̃1,p(x, x) ≈ d

2
, (3.27)

K̃2,p(x, x) ≈ 3d2

2

(
1 +

2

dp

)
. (3.28)
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Finally, using the approximations (3.25), (3.26), (3.27), (3.28), we obtain the approxi-
mate formula for the squared kernel distance (3.21):

Eω
[
(ΘGP(x, y)−Θ∞GP(x, y))2

]
≈ 1

4d

[
1

4

(
1√
p
− 1

)2

+
d

n

(
1− 1

π2

)]
, (3.29)

Eω
[
(ΘGP(x, x)−Θ∞GP(x, x))2

]
≈ 1

n

(
5

4
+

3

dp

)
. (3.30)

We would like to find the minimum of the distance (3.29) when the mean number of
parameters np is fixed. Roughly, we would like to minimize 1

4
(p−1/2 − 1)2 + dp

np
with np

constant. Assuming that the minimum is at
√
p� 1, we find that the minimum is at

p∗ ≈
√
np

4d
. (3.31)

3.5.2 Summary of results

We consider the GP kernel ΘGP of a 2-layer network with ReLU activations, input x ∈ Rd,
hidden layer width n, connectivity p, and with the weights sampled from Pr(ω).

The mean squared distance between ΘGP and the (dense) infinite-width kernel Θ∞GP is

Eω
[
(ΘGP(x, y)−Θ∞GP(x, y))2

]
=

1

d2

[
K̃1,p(x, y)−K1(x, y)

]2

+
1

d2n

[
K̃2,p(x, y)− K̃1,p(x, y)2

]
. (3.32)

Here,

K̃l,p(x, y) = σ2l ·
∑

s1,...,sd∈{0,1}
p
∑d
i si(1− p)d−

∑d
i siKl(xs, ys) , (3.33)

Kl(x, y) =
1

(2π)d/2

∫ ∞
−∞

ddw e−‖w‖
2/2(w · x)l(w · y)lH(w · x)H(w · y) , (3.34)

and s = (s1, . . . , sd) is a vector with elements in {0, 1}, and xs := (s1x1, . . . , xdsd) is the
vector x with some elements zeroed out.

The following closed-form approximation to the kernel distance holds under the assump-
tions that the input vectors x, y are independent random vectors and pd� 1:

Eω
[
(ΘGP(x, y)−Θ∞GP(x, y))2

]
≈ 1

4d

[
1

4

(
1√
p
− 1

)2

+
d

n

(
1− 1

π2

)]
. (3.35)
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Figure 3.8: MLP with one hidden layer and no biases trained on a subset of MNIST. (a)
Test accuracy achieved by dense (filled circles) and sparse (crosses) models of different
width. (b) Mean squared distance D of the sparse model’s kernel from the infinite-width
model’s kernel computed at initialization (both experimental (blue) and theoretical (gray)
result), and the test error attained by trained models (pink). The empirical distance D
is obtained by averaging the squared distance (ΘGP(x, x′)−Θ∞GP(x, x′))2 over 104 pairs of
test samples and over 10 random initializations. See Appendix A for additional details.

In order to keep the number of parameters fixed as we change the width, we set np =
const. Under this constraint, and assuming n� 1, the distance (3.35) is minimized when
p∗ ≈

√
np/4d.

In Figure 3.8b we compare this approximation with the GP kernel computed empirically
at initialization. We find good agreement with the theoretical prediction (3.35) when
dp � 1. Furthermore, we see that the minimal kernel distance at initialization and the
optimal performance of the trained network are obtained at a similar width, providing
evidence in support of our hypothesis.

3.6 Discussion

In this work we studied the question: Do wider networks perform better because they have
more parameters, or because of the larger width itself? We considered several ways of
increasing the width while keeping the number of parameters fixed, either by introducing
bottlenecks into the network, or by sparsifying the weight tensors using a static, random
mask. Among the methods we tested, the one that provided the cleanest approach was
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removing weights at random in proportion to the layer size, using a static mask generated
at initialization. In our image classification experiments, increasing the width using this
sparsity method (while keeping the total number of parameters constant) led to signifi-
cant improvements in model performance. The effect was strongest when starting with
a narrow baseline model. Additionally, when comparing the wide, sparse models against
dense models of the same width, we found that the width itself accounts for most of the
performance gains; this holds true up to the width above which the training accuracy of
the sparse models begins to deteriorate, presumably due to low connectivity between the
layers.

Focusing on the sparsity method, we initiated a theoretical study of the effect, hypoth-
esizing that the improvement in performance is correlated with having a Gaussian Process
kernel that is closer to the infinite-width kernel. We computed the GP kernel of a sparse,
2-layer ReLU network, and derived a simple approximate formula for the distance between
this kernel and the infinite-width dense kernel. In our experiment, we found surprisingly
strong correlation between the model performance and the distance to the infinite-width
kernel.

While our work is fundamental in nature, and sparsity is not the subject of this paper,
the method we propose may lead to practical benefits in the future. Using current hardware
and available deep learning libraries, we cannot reap the benefits of a sparse weight tensor
in terms of reduced computational budget. However, in our experiments we find that
the optimal sparsity can be around 1-10% for convolutional models (corresponding to
a widening factor of between 3-10). Therefore, using an implementation that natively
supports sparse operations, our method may be used to build faster, more memory-efficient
networks.
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Chapter 4

Restricted Boltzmann Machines

This chapter has been published online as part of the QuCumber software package docu-
mentation.

The previous chapters focused on the theory of and the fundamental open questions in
DL. Specifically, the work presented in chapter 3 investigated a problem related to over-
parametrization, and demonstrated a combination of experimental and theoretical analyses
as a successful strategy for the study of deep NNs. All experiments in that study were
carried out on the discriminative task of image classification, using standard modern NN
model architectures and computer vision datasets.

The current and the following three chapters represent a different line of research, as
they are dedicated primarily to ML for physical systems. The experiments and approaches
thus differ from the previous ones in several respects. Most importantly, the following
studies are situated in an entirely different domain of learning – namely, here we are working
with generative modeling, as opposed to classification tasks which fall under discriminative
learning. In particular, we investigate aspects of generative modeling using Restricted
Boltzmann Machines (RBMs). Generative modeling is a branch of unsupervised learning,
while discriminative learning considered in the previous chapter is a case of supervised
learning. In the generative setting, the goal of learning is to enable the model to produce
outputs from the same distribution as the training inputs. In essense, a generative model
is thought of as a NN-parametrized ansatz for the unknown target distribution. The
fundamental assumption underlying generative modeling is that the inputs contained in
the training set are all drawn from this target distribution.

RBMs are a prime example of NN models that are not deep; as such, they are not
part of applied ML – at most, RBMs can sometimes serve as building blocks in deep

44

https://qucumber.readthedocs.io/en/stable/theory.html


architectures. However, RBMs still play an important role in academical ML. The RBM
was first introduced by Smolensky (1986) under the name “Harmonium” and was meant
to model certain functions of the human brain. However, it became a practical ML model
only 15 years later when Hinton (2002) found an algorithm called Contrastive Divergence
that facilitated efficient training of RBMs. Later, Le Roux and Bengio (2008) have proven
that an RBM is an universal approximator of discrete distributions. In particular, their
paper showed that adding a single hidden unit strictly improves the modeling power as
it increases the log-likelihood of data, and thus with enough hidden units one can model
any discrete distribution. For more historical context, I recommend reading the respective
sections in Giacomo Torlai’s thesis (Torlai, 2018). The appeal of RBMs for those studying
ML is that these NN models have a solid theoretical foundation and display a powerful
ability in generative modeling despite the fact that, on the scale of modern DL, they are
small and comparably simple. In this sense, RBMs are situated right at the transition
point between old-school ML and modern DL.

In this chapter, I provide an introduction to RBMs in general (mainly based on Fischer
and Igel (2011); Hinton (2012)), in preparation for the following three chapters that all
employ the RBM for learning the distribution underlying the state of a quantum spin
system. The setup is discussed in detail in the respective chapters.

4.1 Definitions

RBMs are among the top methods in unsupervised machine learning, where the training
data are inputs without labels and the task is, broadly speaking, to extract some meaningful
information from this data. An RBM is a parametrized generative model representing a
probability distribution. The training data is assumed to be a sample drawn independently
from an unknown target distribution q. The goal of training is to fit the parameters λ
of the RBM’s distribution pλ such that it resembles the target distribution q as accurately
as possible.

Formally, RBMs belong to the class of undirected graphical models, also known as
Markov Random Fields (MRFs). Probabilistic graphical models describe probability dis-
tributions by mapping conditional (in)dependence properties between random variables
on a graph structure. Visualization by graphs is useful for understanding and motivating
probabilistic models. Moreover, it can be helpful for deriving complex computations by
using algorithms that exploit the graph structure.

Practically, an RBM is a two-layer network with bidirectionally connected stochastic
processing units, as shown in figure 4.1. The V units in the first layer, denoted by the vector
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Figure 4.1: RBM as a bipartite graph, with hidden units h, visible units v, and connecting
weights W .

v = (v1, ..., vV ), correspond to the components of an observation and are therefore called
“visible”, while the H units in the second layer h = (h1, ..., hH) represent latent variables,
and are referred to as “hidden”. Hidden units model dependencies between the observation
components and can be viewed as feature detectors. The term “restricted” refers to the
connections between the units: Each visible unit is connected with each hidden unit, but
there are no connections between units of the same kind. In the simplest case (which is the
case considered here), all units are binary, such that v ∈ V = {0, 1}V and h ∈ H = {0, 1}H ,
where the curved letters V and H are used to denote the space of the visible and hidden
vectors, respectively. Further, we use D to denote the training set containing |D| instances
of the visible vector (i.e., observations).

In analogy to spin models in statistical physics, the joint configuration (v, h) of visible
and hidden units is characterized by an energy

Eλ(v, h) = −b>v − c>h− h>Wv (4.1)

= −
V∑
i=1

bivi −
H∑
j=1

cjhj −
∑
ij

viWijhj ,

where vi, hj are binary states of visible unit i and hidden unit j, and bi, cj are their respec-
tive biases. Wij is the symmetric connection weight between the units. The complete
set of parameters is denoted by λ = {b, c,W}. All parameter values are real numbers.

Based on this energy function, the RBM assigns a probability to each joint configuration
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(v, h), which by convention is high when the energy of the configuration is low:

pλ(v, h) =
1

Z
e−Eλ(v,h) , (4.2)

known as the Gibbs distribution.

The RBM models the probability distribution of an input vector v, pλ(v), which
is formally obtained by marginalizing the joint probability distribution pλ(v, h) over all
possible hidden vectors h:

pλ(v) =
∑
h

pλ(v, h) =
1

Z

∑
h

e−Eλ(v,h) ≡ 1

Z
e−Eλ(v) , (4.3)

where I have introduced the effective energy Eλ(v).

The normalization factor Z, or partition function, is obtained by summing up the
Boltzmann factors for all possible configurations of the visible and hidden vectors:

Z =
∑
v∈V

∑
h∈H

e−Eλ(v,h) =
∑
v

e−Eλ(v) . (4.4)

The effective energy is defined as

Eλ(v) = −b>v −
H∑
j=1

ln

[
1 + exp

(
cj +

∑
i

Wijvi

)]
. (4.5)

Note that in some ML references this quantity is called the “free energy”, but it is not the
same as the free energy in physics, which is defined the partition function:

F = −kBT lnZ ⇔ Z = e−F/(kBT ) = e−βF (4.6)

The joint probability distribution is related to the conditional distributions via the chain
rule as pλ(v, h) = pλ(v|h)pλ(h) = pλ(h|v)pλ(v). Because there are no direct connections
between units of the same layer in an RBM, the conditional distributions pλ(h|v) and
pλ(v|h) factorize over each unit and are easy to compute. With some straightforward
algebra, one can show that

pλ(h|v) =
H∏
j=1

pλ(hj|v) , (4.7)

pλ(v|h) =
V∏
i=1

pλ(vi|h) , (4.8)
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and

pλ(hj = 1|v) = S
(
cj +

∑
i

viWij

)
, (4.9)

pλ(vi = 1|h) = S
(
bi +

∑
j

hjWij

)
, (4.10)

with S denoting the standard logistic sigmoid function:

S(x) =
1

1 + e−x
. (4.11)

4.2 Training

Training the RBM means adjusting parameters λ based on the given data set D, such that
pλ(v) is a good approximation of the true distribution q(v). In the supervised setting, we
would define a cost function that measures the discrepancy between the network prediction
and the desired output (which is part of the training set), and perform a minimization of
the cost function. Similarly, in the unsupervised setting we introduce a cost function Cλ
that measures how the probability distribution pλ predicted by the RBM is different from
q, known as the Kullback-Leibler (KL) divergence or the relative entropy:

Cλ = DKL(q‖pλ) =
∑
v

q(v) ln
q(v)

pλ(v)
= −H(q)− 〈ln pλ(v)〉q. (4.12)

In the expression on the right-hand side, the first term is simply the Shannon entropy of q,

H(q) = −
∑
v

q(v) ln q(v), (4.13)

and the second term is an expectation value of the quantity ln pλ(v) called the log-likelihood:

〈ln pλ(v)〉q =
∑
v

q(v) ln pλ(v). (4.14)

The goal of the training procedure is then to find a set of parameters λ that minimizes
the cost function Cλ. The minimization is performed by gradient descent, and the update
rule for the parameters has the familiar form

λ← λ− η∇λCλ, (4.15)
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where η is the learning rate.

Note that H(q) does not depend on λ, such that only the log-likelihood term is relevant
for the optimization:

∇λCλ = −∇λ〈ln pλ(v)〉q. (4.16)

However, the log-likelihood term involves the unknown target distribution q. In order to
proceed with the minimization, we approximate q by the empirical distribution of the
training data qD:

q(v) ' qD(v) =
1

|D|
∑
ṽ∈D

δ(v − ṽ). (4.17)

The expectation value in eq. (4.16) can then be evaluated as follows:

〈ln pλ(v)〉q ' 〈ln pλ(v)〉D =
1

|D|
∑
v

∑
ṽ∈D

δ(v − ṽ) ln pλ(v)

=
1

|D|
∑
v∈D

ln pλ(v)

= − lnZλ −
1

|D|
∑
v∈D
Eλ(v), (4.18)

where I have substituted the expression for pλ(v) from (4.3). Thus, the gradient of the cost
function is

∇λCλ ' −∇λ〈ln pλ(v)〉D =
1

|D|
∑
v∈D
∇λEλ(v) +∇λ lnZλ

=
∑
v

qD(v)∇λEλ(v)−
∑
v

pλ(v)∇λEλ(v)

= 〈∇λEλ(v)〉D − 〈∇λEλ(v)〉pλ . (4.19)

We evaluate ∇λEλ for each parameter in λ by computing the gradient element-wise:

∂Eλ(v)

∂Wij

= −vi S
(
cj +

∑
k

vkWkj

)
= −vi pλ(hj = 1|v) (4.20)

∂Eλ(v)

∂cj
= −S

(
cj +

∑
i

viWij

)
= −pλ(hj = 1|v) (4.21)

∂Eλ(v)

∂bi
= −vi (4.22)
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The expectation value over the empirical probability distribution, 〈∇λEλ(v)〉D, can
easily be computed based on the training set. The term 〈∇λEλ(v)〉pλ , however, poses some
serious problems. This expectation value is over the marginalized probability distribution
pλ(v) = e−Eλ(v)/Z and involves the partition function Z which requires evaluation of the
sum over all h ∈ H and v ∈ V , and is thus in general intractable. There are several
possible approximate methods to handle this term, but not all of them are practicable. The
straightforward approach is to approximate the expectation 〈∇λEλ(v)〉pλ by an estimator
sampled from the model distribution pλ using Gibbs sampling. In Gibbs sampling, each
variable is sampled from its conditional distribution given the current states of the other
variables. Starting from a randomly initialized visible state v = v(0), we alternate between
updating h and v according to pλ(h|v) and pλ(v|h). In RBMs, this procedure is particularly
efficient because the visible units are conditionally independent given the hidden units (and
vice versa), such that the calculation can be carried out for all units in parallel, as illustrated
in figure 4.2. This is referred to as Block Gibbs Sampling. We repeat this procedure on M
different initial states and use the average to approximate the expectation value:

〈∇λEλ(v)〉pλ =
∑
v

pλ(v)∇λEλ(v) ' 1

M

∑
v(t)∈M

∇λEλ(v(t)), (4.23)

where the index t refers to the number of Gibbs steps performed and M denotes the set
of M visible state vectors v(t).

However, to ensure that the Markov chain converges to stationarity, the sampling pro-
cess has to be run for a long time, i.e., the number of Gibbs steps t has to be large. Since
this process has to be repeated for each parameter update in the learning procedure, this
technique is computationally not feasible. Therefore, all methods that are employed in
practice introduce additional approximations.

The standard learning algorithm employed for RBM training is called Contrastive
Divergence (CD-k) (Hinton, 2002). Essentially, the idea of this algorithm is to perform only
k steps of Gibbs sampling starting from a current training vector v = v(0)1. Even though it
is only crudely approximating the true expectation, the learning works surprisingly well. In
general, larger k yields a less biased estimate; however, k = 1 is often sufficient to extract
meaningful features in practice.

To sum up, the main steps of the CD-k learning procedure are:

0. Select M vectors from the training data (referred to as mini batch) and perform the
next two steps for each of the M vectors in parallel.

1In contrast, in standard Gibbs sampling, one starts from a randomly initialized vector.
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Figure 4.2: In RBMs, the visible and hidden units are conditionally independent of each
other, such that Gibbs sampling can alternate between parallel updates of the hidden and
visible units. At t → ∞, the samples (v(t), h(t)) are guaranteed to be accurate samples of
the model distribution pλ(v, h).

1. Initialize by setting the visibles to the training vector v.

2. Perform the following Gibbs sampling procedure k times:

• Compute the states of the hiddens (in parallel) by setting each unit to 1 with a
probability given by eq. (4.9).

• Produce a “reconstruction” of v (denoted as v(i), where i is the iteration step
number), by setting each visible to 1 with a probability given by eq. (4.8).

3. Use the M reconstructions v(k) to compute the estimator for 〈∇λEλ(v)〉pλ and update
the model parameters λ.

4. Go back to step 0 and repeat the procedure until stopping criteria fulfilled.

The CD-k update rule for the weights can be written as

W ← W + η
[
S (b+Wv) v> − S (b+Wṽ) ṽ>

]
,

with a training example v ∈ D and the so-called “negative sample” ṽ, obtained from v by
Gibbs sampling. A simplified version of the same learning rule is applied to the biases ; it
involves the states of individual units instead of pairwise products:

a← a+ η (v − ṽ) ,

and
b← b+ η [S (b+Wv)− S (b+Wṽ)] .
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Note that some references define a short-hand notation

S (b+Wv) ≡ h(v),

because the logistic function essentially defines the state of h. However, it is important to
keep in mind that h is a binary vector, and S (b+Wv) does not provide the values, but
the probability for each element of h having the value 1. This actually leads to the following
practical remark:

A remark on computing the state of a binary unit

Given a visible vector v and the set of parameters λ, how do we compute the state
of a hidden unit hj? Since the unit is binary, its state is sampled according to the
Bernoulli distribution with the probability for hj having the value 1 given by eq. (4.9).
In practice, we sample a number u from a uniform distribution over the interval [0, 1],
u ∼ U [0, 1]. If u < pλ(hj = 1|v), set hj = 1, otherwise hj = 0.

A slight modification of the CD algorithm leads to the Persistent Contrastive Divergence
(PCD) algorithm (Tieleman, 2008). In PCD, instead of initializing the chain to v(0) = v ∈
D each time, we use the negative sample from the previous iteration. That is, PCD just
keeps the Markov chain evolving, with parameter updates done after each k steps. The
number of persistent chains used for sampling is a hyperparameter. In the standard case,
there is one Markov chain per training example in a batch.

4.3 Parametrization

In the standard definition, the values of the hidden and visible units in the RBM are in
{0, 1}. In some cases, it can be convenient to work with values in {±1}. The reparametriza-
tion from vi, hj ∈ {0, 1} to ṽi, h̃j ∈ {±1}

vi =
1

2
(ṽi + 1) ⇔ ṽi = 2vi − 1,

hj =
1

2
(h̃j + 1) ⇔ h̃j = 2hj − 1
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amounts to a simple parameter mapping in the RBM energy function:

b̃i =
1

4

(
2bi +

∑
j

Wij

)
, c̃j =

1

4

(
2cj +

∑
i

Wij

)
, W̃ij =

1

4
Wij , (4.24)

and a constant term Q̃:

Q̃ =
∑
i

b̃i +
∑
j

c̃j −
∑
ij

W̃ij (4.25)

=
1

2

∑
i

bi +
1

2

∑
j

cj +
1

4

∑
ij

Wij . (4.26)

4.4 Final remark

The following chapter demonstrates the implementation of an RBM for the task of quantum
state reconstruction.
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Chapter 5

Quantum State Reconstruction
with RBMs

The work presented in this chapter has been published as QuCumber.

In the previous chapter I provided an introduction to Restricted Boltzmann Machines
(RBMs) and their function as generative models in ML. The current chapter is the first
in a series of research projects that explore generative modeling with RBMs for physical
quantum systems. More specifically, the goal is to learn to model the distribution un-
derlying the states of a quantum spin chain. The training set is composed of projective
measurements of a physical quantum system that can in principle be a result from an
experiment performed in a lab, or simulated numerically. In theoretical investigations, we
consider spin configurations obtained from numerical simulations of a quantum spin model
in different coupling regimes, such as the transverse-field Ising model. The RBM-based
method is applicable in case when the quantum wavefunction is real and positive, but can
also be extended to the more general case of complex-valued wavefunctions. Both cases
are dicussed in this chapter.

The character of this chapter is rather technical, as it is concerned with the imple-
mentation of RBMs for the purpose of quantum state reconstruction in Python and was
written as a supplement to the open-source software package QuCumber. Its main pur-
pose is to provide a comprehensive user guide to the software, and therefore it walks the
reader through all applications with code examples. It also provides a brief introduction to
the problem of quantum state reconstruction and motivates the application of generative
modeling with RBMs as a possible efficient solution.

The QuCumber software package forms the technical base for two research projects,
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presented in the following two chapters, that focus on the study of various aspects of
RBM-based learning for quantum systems.

5.1 Abstract

As we enter a new era of quantum technology, it is increasingly important to develop meth-
ods to aid in the accurate preparation of quantum states for a variety of materials, matter,
and devices. Computational techniques can be used to reconstruct a state from data,
however, the growing number of qubits demands ongoing algorithmic advances in order
to keep pace with experiments. In this work, we present an open-source software package
called QuCumber that uses machine learning with an RBM to reconstruct a quantum state
consistent with a set of projective measurements. The RBM can efficiently represent the
quantum wavefunction for a large number of qubits. New measurements can be generated
from the trained machine to obtain physical observables not easily accessible from the
original data.

5.2 Motivation

Current advances in quantum technologies, as well as in reliable control of synthetic quan-
tum matter, are leading to a new era of quantum hardware where highly pure quantum
states are routinely prepared in laboratories. With the growing number of controlled
quantum degrees of freedom, such as superconducting qubits, trapped ions, and ultracold
atoms (Kandala et al., 2017; Moll et al., 2018; Bernien et al., 2017; Zhang et al., 2017b),
reliable and scalable classical algorithms are required for the analysis and verification of ex-
perimentally prepared quantum states. Efficient algorithms can aid in extracting physical
observables otherwise inaccessible from experimental measurements, as well as in iden-
tifying sources of noise to provide direct feedback for improving experimental hardware.
However, traditional approaches for reconstructing unknown quantum states from a set of
measurements, such as quantum state tomography, often suffer the exponential overhead
that is typical of quantum many-body systems.

Recently, an alternative path to quantum state reconstruction was put forward, based
on modern machine learning (ML) techniques (Torlai and Melko, 2016; Torlai et al., 2018;
Torlai and Melko, 2018; Carrasquilla et al., 2019; Lennon et al., 2018; Kim et al., 2018). The
most common approach relies on a powerful generative model called a Restricted Boltzmann
Machine (RBM) (Smolensky, 1986) – a stochastic neural network with two layers of binary
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units. A visible layer v describes the physical degrees of freedom, while a hidden layer h
is used to capture high-order correlations between the visible units. Given a set of neural
network parameters λ, the RBM defines a probabilistic model described by the parametric
distribution pλ(v). RBMs have been widely used in the ML community for the pre-training
of deep neural networks (Hinton, 2002), for compressing high-dimensional data into lower-
dimensional representations (Hinton and Salakhutdinov, 2006), and more (LeCun et al.,
2015). More recently, RBMs have been adopted by the physics community in the context
of representing both classical and quantum many-body states (Carleo and Troyer, 2017a;
Carleo et al., 2018a). They are currently being investigated for their representational
power (Gao and Duan, 2017a; Choo et al., 2018; Glasser et al., 2018a), their relationship
with tensor networks and the renormalization group (Mehta and Schwab, 2014; Koch-
Janusz and Ringel, 2018; Iso et al., 2018; Lenggenhager et al., 2018; Chen et al., 2018),
and in other contexts in quantum many-body physics (Nomura et al., 2017; Weinstein,
2018; Zheng et al., 2018).

In this post, we present QuCumber: a quantum calculator used for many-body eigen-
state reconstruction. QuCumber is an open-source Python package that implements neural-
network quantum state reconstruction of many-body wavefunctions from projective mea-
surement data. Examples of data to which QuCumber could be applied might be magnetic
spin projections, orbital occupation number, polarization of photons, or the logical state
of qubits. Given a training set of such measurements, QuCumber discovers the most likely
compatible quantum state by finding the optimal set of parameters λ of an RBM. A prop-
erly trained RBM is an approximation of the unknown quantum state underlying the data.
It can be used to calculate various physical observables of interest, including measurements
that may not be possible in the original experiment.

This work is organized as follows: In Section 5.3, we introduce the reconstruction tech-
nique for the case where all coefficients of the wavefunction are real and positive. We discuss
the required format for input data, as well as training of the RBM and the reconstruction
of typical observables. In Section 5.4, we consider the more general case of a complex-
valued wavefunction. We illustrate a general strategy to extract the phase structure from
data by performing appropriate unitary rotations on the state before measurements. We
then demonstrate a practical reconstruction of an entangled state of two qubits. Note, the
detailed theory underlying the reconstruction methods used by QuCumber can be found
in the original references (Torlai and Melko, 2016; Torlai et al., 2018) and a recent review
by Torlai and Melko (2020).
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5.3 Positive wavefunctions

We begin by presenting the application of QuCumber to reconstruct many-body quan-
tum states described by wavefunctions |Ψ〉 with positive coefficients Ψ(x) = 〈x|Ψ〉 ≥ 0,
where |x〉 = |x1, . . . , xN〉 is a reference basis for the Hilbert space of N quantum de-
grees of freedom. The neural-network quantum state reconstruction requires raw data
D = (x1,x2, . . . ) generated through projective measurements of the state |Ψ〉 in the refer-
ence basis. These measurements adhere to the probability distribution given by the Born
rule, P (x) = |Ψ(x)|2. Since the wavefunction is strictly positive, the quantum state is
completely characterized by the measurement distribution, i.e. Ψ(x) =

√
P (x).

The positivity of the wavefunction allows a simple and natural connection between
quantum states and classical probabilistic models. QuCumber employs the probability
distribution pλ(x) of an RBM (see Eq. 4.3) to approximate the distribution P (x) underly-
ing the measurement data. Using contrastive divergence (CD) (Hinton, 2002), QuCumber
trains the RBM to discover an optimal set of parameters λ that minimize the Kullback-
Leibler (KL) divergence between the two distributions (see Eq. 4.12). Upon successful
training (pλ(x) ∼ P (x)), we obtain an approximate representation of the target quantum
state,

ψλ(x) ≡
√
pλ(x) ' Ψ(x) . (5.1)

Note, the precise mathematical form of the marginal distribution pλ(x) defined in terms
of an effective energy over the parameters of the RBM is defined in the Glossary.

In the following, we demonstrate the application of QuCumber for the reconstruction of
the ground-state wavefunction of the one-dimensional transverse-field Ising model (TFIM).
The Hamiltonian is

Ĥ = −J
∑
i

σ̂zi σ̂
z
i+1 − h

∑
i

σ̂xi , (5.2)

where σ̂
x/z
i are spin-1/2 Pauli operators acting on site i, and we assume open boundary

conditions. For this example, we consider a chain with N = 10 spins at the quantum
critical point J = h = 1.

5.3.1 Setup

Given the small size of the system, the ground state |Ψ〉 can be found with exact diag-
onalization. The training dataset D is generated by sampling the distribution P (σz) =
|Ψ(σz)|2, obtaining a sequence of NS = 105 independent spin projections in the reference
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basis x = σz.1 Each data point in D consists of an array σzj = (σz1, . . . , σ
z
N) with shape

(N,) and should be passed to QuCumber as a numpy array or torch tensor. For example,
σzj = np.array([1,0,1,1,0,1,0,0,0,1]), where we use σzj = 0, 1 to represent a spin-
down and spin-up state respectively. Therefore, the entire input data set is contained in
an array with shape (N_S, N).

Aside from the training data, QuCumber also allows us to import an exact wavefunc-
tion. This can be useful for monitoring the quality of the reconstruction during training.
In our example, we evaluate the fidelity between the reconstructed state ψλ(x) and the
exact wavefunction Ψ(x). The training dataset, train_data, and the exact ground state,
true_psi, are loaded with the data loading utility as follows:

import qucumber.utils.data as data

train_path = "tfim1d_data.txt"

psi_path = "tfim1d_psi.txt"

train_data , true_psi = data.load_data(train_path , psi_path)

If psi_path is not provided, QuCumber will load only the training data.

Next, we initialize an RBM quantum state ψλ(x) with random weights and zero biases
using the constructor PositiveWaveFunction:

from qucumber.nn_states import PositiveWaveFunction

state = PositiveWaveFunction(num_visible =10, num_hidden =10)

The number of visible units (num_visible) must be equal to the number of physical spins
N , while the number of hidden units (num_hidden) can be adjusted to systematically
increase the representational power of the RBM.

The quality of the reconstruction will depend on the structure underlying the specific
quantum state and the ratio of visible to hidden units, α = num_hidden/num_visible.
In practice, we find that α = 1 often leads to good approximations of positive wavefunc-
tions (Torlai et al., 2018). However, in the general case, the value of α required for a given
wavefunction should be explored and adjusted by the user.

5.3.2 Training

Once an appropriate representation of the quantum state has been defined, QuCumber
trains the RBM through the function PositiveWaveFunction.fit. Several input param-

1The training dataset can be downloaded from https://github.com/PIQuIL/QuCumber/blob/master/

examples/Tutorial1 TrainPosRealWaveFunction/tfim1d data.txt
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eters need to be provided aside from the training dataset (train_data). These include the
number of training iterations (epochs), the number of samples used for the positive/neg-
ative phase of CD (pos_batch_size/neg_batch_size), the learning rate (lr) and the
number of sampling steps in the negative phase of CD (k). The last argument (callbacks)
allows the user to pass a set of additional functions to be evaluated during training.

As an example of a callback, we show the MetricEvaluator, which evaluates a function
log_every epochs during training. Given the small system size and the knowledge of the
true ground state, we can evaluate the fidelity between the RBM state and the true ground-
state wavefunction (true_psi). Similarly, we can calculate the KL divergence between the
RBM distribution pλ(x), and the data distribution P (x), which should approach zero for a
properly trained RBM. For the current example, we monitor the fidelity and KL divergence
(defined in qucumber.utils.training_statistics):

from qucumber.callbacks import MetricEvaluator

import qucumber.utils.training_statistics as ts

log_every = 10

space = state.generate_hilbert_space (10)

callbacks = [

MetricEvaluator(

log_every ,

{"Fidelity": ts.fidelity , "KL": ts.KL},

target_psi=true_psi ,

space=space ,

verbose=True

)]

With verbose=True, the program will print the epoch number and all callbacks every
log_every epochs. For the current example, we monitor the fidelity and KL divergence.
Note that the KL divergence is only tractable for small systems. The MetricEvaluator

will compute the KL exactly when provided with a list of all states in the Hilbert space.
For convenience these can be generated with
space = state.generate_hilbert_space(10).

Now that the metrics to monitor during training have been chosen, we can invoke the
optimization with the fit function of PositiveWaveFunction.

state.fit(

train_data ,

epochs =500,

pos_batch_size =100,
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neg_batch_size =100,

lr=0.01,

k=5,

callbacks=callbacks ,

)

Figure 5.1 shows the convergence of the fidelity and KL divergence during training. The
convergence time will, in general, depend on the choice of hyperparameters. Finally, the
network parameters λ, together with the MetricEvaluator’s data, can be saved (or loaded)
to a file:

state.save(

"filename.pt",

metadata ={

"fidelity": callbacks [0]. Fidelity ,

"KL": callbacks [0].KL

},

)

state.load("filename.pt")

With this we have demonstrated the most basic aspects of QuCumber regarding train-
ing a model and verifying its accuracy. We note that in this example the evaluation utilized
the knowledge of the exact ground state and the calculation of the KL divergence, which
we reemphasize is tractable only for small system sizes. However, we point out that Qu-
Cumber is capable of carrying out the reconstruction of much larger systems. In such
cases, users must rely on other estimators to evaluate the training, such as expectation
values of physical observables (magnetization, energy, etc). In the following, we show how
to compute diagonal and off-diagonal observables in QuCumber.

5.3.3 Reconstruction of physical observables

In this section, we discuss how to calculate the average value of a generic physical observable
Ô from a trained RBM. We start with the case of observables that are diagonal in the
reference basis where the RBM was trained. We then discuss the more general cases of
off-diagonal observables and entanglement entropies.
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Figure 5.1: The fidelity (left) and the KL divergence (right) during training for the recon-
struction of the ground state of the one-dimensional TFIM.

Diagonal observables

We begin by considering an observable with only diagonal matrix elements, 〈σ| Ô |σ′〉 =
Oσδσσ′ where for convenience we denote the reference basis x = σz as σ unless otherwise
stated. The expectation value of Ô is given by

〈Ô〉 =
1∑

σ |ψλ(σ)|2
∑
σ

Oσ|ψλ(σ)|2 . (5.3)

The expectation value can be approximated by a Monte Carlo estimator,

〈Ô〉 ≈ 1

NMC

NMC∑
k=1

Oσk , (5.4)

where the spin configurations σk are sampled from the RBM distribution pλ(σ). This
process is particularly efficient given the bipartite structure of the network which allows
the use of block Gibbs sampling.

A simple example for the TFIM is the average longitudinal magnetization per spin,
〈σ̂z〉 =

∑
j 〈σ̂zj 〉 /N , which can be calculated directly on the spin configuration sampled by

the RBM (i.e., the state of the visible layer). The visible samples are obtained with the
sample function of the RBM state object:

samples = state.sample(num_samples =1000, k=10)
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which takes the total number of samples (num_samples) and the number of block Gibbs
steps (k) as input. Once these samples are obtained, the magnetization can be calculated
simply as

magnetization = samples.mul (2.0). sub (1.0). mean()

where we converted the binary samples of the RBM back into ±1 spins before taking the
mean.

Off-diagonal observables

We turn now to the case of off-diagonal observables, where the expectation value assumes
the following form

〈Ô〉 =
1∑

σ |ψλ(σ)|2
∑
σσ′

ψ∗λ(σ)ψλ(σ′)Oσσ′ . (5.5)

This expression can once again be approximated with a Monte Carlo estimator

〈Ô〉 ≈ 1

NMC

NMC∑
k=1

O[L]
σk

(5.6)

of the so-called local estimator of the observable:

O[L]
σk

=
∑
σ′

ψλ(σ′)

ψλ(σk)
Oσkσ′ . (5.7)

As long as the matrix representation Oσσ′ is sufficiently sparse in the reference basis, the
summation can be evaluated efficiently.

As an example, we consider the specific case of the transverse magnetization for the
j-th spin, 〈σ̂xj 〉, with matrix elements

〈σ|σ̂xj |σ′〉 = δσ′j ,1−σj
∏
i 6=j

δσ′i,σi . (5.8)

Therefore, the expectation values reduces to the Monte Carlo average of the local observable

(σxj )[L] =
ψλ(σ1, . . . , 1− σj, . . . , σN)

ψλ(σ1, . . . , σj, . . . , σN)
. (5.9)
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Figure 5.2: Reconstruction of the magnetic observables for the TFIM chain with N = 10
spins. We show the average longitudinal (left) and transverse (right) magnetization per
site obtained by sampling from a trained RBM. The dashed line denotes the results from
exact diagonalization.

evaluated on spin configurations σk sampled from the RBM distribution pλ(σ).

QuCumber provides an interface for sampling off-diagonal observables in the ObservableBase
class. Thorough examples are available in the tutorial section in the documentation. 2 As
an example, σx can be written as an observable class with

import torch

from qucumber.utils import cplx

from qucumber.observables import ObservableBase

class SigmaX(ObservableBase ):

def apply(self , nn_state , samples ):

psi = nn_state.psi(samples)

psi_ratio_sum = torch.zeros_like(psi)

for i in range(samples.shape [ -1]): # sum over spin sites

flip_spin(i, samples) # flip the spin at site i

# add ratio psi_(-i) / psi to the running sum

psi_flip = nn_state.psi(samples)

psi_ratio = cplx.elementwise_division(psi_flip , psi)

2The observables tutorial is available at https://qucumber.readthedocs.io/en/stable/ examples

/Tutorial3 DataGeneration CalculateObservables/tutorial sampling observables.html
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psi_ratio_sum.add_(psi_ratio)

flip_spin(i, samples) # flip it back

# take real part and divide by number of spins

return psi_ratio_sum [0]. div_(samples.shape [-1])

The value of the observable can be estimated from a set of samples with:

SigmaX (). statistics_from_samples(state , samples)

which produces a dictionary containing the mean, variance, and standard error of the
observable. Similarly, the user can define other observables like the energy.

The reconstruction of two magnetic observables for the TFIM is shown in Fig. 5.2,
where a different RBM was trained for each value of the transverse field h. In the left plot,
we show the average longitudinal magnetization per site, which can be calculated directly
from the configurations sampled by the RBM. In the right plot, we show the off-diagonal
observable of transverse magnetization. In both cases, QuCumber successfully discovers an
optimal set of parameters λ that accurately approximate the ground-state wavefunction
underlying the data.

Entanglement entropy

A quantity of significant interest in quantum many-body systems is the degree of entangle-
ment between a sub-region A and its complement Ā. Numerically, measurement of bipartite
entanglement entropy is commonly accessed through the computation of the second Rényi
entropy S2 = − ln Tr(ρ2

A). When one has access to a pure state wavefunction ψλ(x), Rényi
entropies can be calculated as an expectation value of the “Swap” operator (Hastings et al.,
2010),

S2 = − ln
〈

ŜwapA

〉
. (5.10)

It is essentially an off-diagonal observable that acts on an extended product space consisting
of two independent copies of the wavefunction, ψλ(x) ⊗ ψλ(x), referred to as “replicas”.
As the name suggests, the action of the Swap operator is to swap the spin configurations
in region A between the replicas,

ŜwapA|σA,σĀ〉1 ⊗ |σ′A,σ′Ā〉2 = |σ′A,σĀ〉1 ⊗ |σA,σ′Ā〉2. (5.11)

Here the subscript of the ket indicates the replica index, while the two labels inside a ket,
such as σA,σĀ, describe the spins configurations within the sub-region and its complement.
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In QuCumber, the Swap operator is implemented as a routine within the entanglement
observable unit,

def swap(s1 , s2 , A):

_s = s1[:, A].clone ()

s1[:, A] = s2[:, A]

s2[:, A] = _s

return s1, s2

where s1 and s2 are batches of samples produced from each replica, and A is a list containing
the indices of the sites in sub-region A. While ideally those samples should be entirely
independent, in order to save computational costs, QuCumber just splits a given batch into
two equal parts and treats them as if they were independent samples. This is implemented
within the SWAP observable,

class SWAP(ObservableBase ):

def __init__(self , A):

self.A = A

def apply(self , nn_state , samples ):

_ns = samples.shape [0] // 2

samples1 = samples [:_ns , :]

samples2 = samples[_ns : _ns * 2, :]

psi_ket1 = nn_state.psi(samples1)

psi_ket2 = nn_state.psi(samples2)

psi_ket = cplx.elementwise_mult(psi_ket1 , psi_ket2)

psi_ket_star = cplx.conjugate(psi_ket)

samples1_ , samples2_ = swap(samples1 , samples2 , self.A)

psi_bra1 = nn_state.psi(samples1_)

psi_bra2 = nn_state.psi(samples2_)

psi_bra = cplx.elementwise_mult(psi_bra1 , psi_bra2)

psi_bra_star = cplx.conjugate(psi_bra)

return cplx.real(

cplx.elementwise_division(psi_bra_star , psi_ket_star)

)

65



Note the similarity in the implementation to that for the transverse magnetization observ-
able from the last section, once the amplitude of a sample is substituted with the product
of amplitudes drawn from each replica.

Using this observable, we can estimate the Rényi entropy of the region containing the
first 5 sites in the chain using Eq. 5.10,

A = [0, 1, 2, 3, 4]

swap_ = SWAP(A)

swap_stats = swap_.statistics_from_samples(state , samples)

S_2 = -np.log(swap_stats["mean"])

We apply this measurement procedure to a TFIM chain with results shown in Fig. 5.3.
As was the case with the magnetization observables, the trained RBM gives a good ap-
proximation to the second Rényi entropy for different subregion A sizes. Being a basis-
independent observable, this constitutes a useful test on the ability of QuCumber to capture
the full wavefunction from the information contained in a single-basis dataset for TFIM.
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Figure 5.3: The second Rényi entropy for the TFIM chain with N = 10 spins. The number
of sites in the entangled bipartition A is indicated by the horizontal axis. The markers
indicate values obtained through the “Swap” operator applied to the samples from a trained
RBM. The dashed line denotes the result from exact diagonalization.
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5.4 Complex wavefunctions

For positive wavefunctions, the probability distribution underlying the outcomes of pro-
jective measurements in the reference basis contains all possible information about the
unknown quantum state. However, in the more general case of a wavefunction with a non-
trivial sign or phase structure, this is not the case. In this section, we consider a target
quantum state where the wavefunction coefficients in the reference basis can be complex-
valued, Ψ(σ) = Φ(σ)eiθ(σ). We continue to choose the reference basis as σ = σz. We
first need to generalize the RBM representation of the quantum state to capture a generic
complex wavefunction. To this end, we introduce an additional RBM with marginalized
distribution pµ(σ) parametrized by a new set of network weights and biases µ. We use
this to define the quantum state as:

ψλµ(σ) =
√
pλ(σ)eiφµ(σ)/2 (5.12)

where φµ(σ) = log(pµ(σ)) (Torlai et al., 2018). In this case, the reconstruction requires
a different type of measurement setting. It is easy to see that projective measurements
in the reference basis do not convey any information on the phases θ(σ), since P (σ) =
|Ψ(σ)|2 = Φ2(σ).

The general strategy to learn a phase structure is to apply a unitary transformation U
to the state |Ψ〉 before the measurements, such that the resulting measurement distribution
P ′(σ) = |Ψ′(σ)|2 of the rotated state Ψ′(σ) = 〈σ| U |Ψ〉 contains fingerprints of the phases
θ(σ) (Fig. 5.4). In general, different rotations must be independently applied to gain full
information on the phase structure. We make the assumption of a tensor product structure
of the rotations, U =

⊗N
j=1 Ûj. This is equivalent to a local change of basis from |σ〉 to

{|σb〉 = |σb11 , . . . , σ
bN
N 〉}, where the vector b identifies the local basis bj for each site j. The

target wavefunction in the new basis is given by

Ψ(σb) = 〈σb|Ψ〉 =
∑
σ

〈σb|σ〉〈σ|Ψ〉

=
∑
σ

U(σb,σ)Ψ(σ) ,
(5.13)

and the resulting measurement distribution is

Pb(σ
b) =

∣∣∣∣∑
σ

U(σb,σ)Ψ(σ)

∣∣∣∣2 . (5.14)
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Figure 5.4: Unitary rotations for two qubits. (left) Measurements on the reference basis.
(right) Measurement in the rotated basis. The unitary rotation (the Hadamard gate on
qubit σ0) is applied after state preparation and before the projective measurement.

To clarify the procedure, let us consider the simple example of a quantum state of two
qubits:

|Ψ〉 =
∑
σ0,σ1

Φσ0σ1e
iθσ0σ1 |σ0σ1〉 , (5.15)

and rotation U = Ĥ0 ⊗ Î1, where Î is the identity operator and

Ĥ =
1√
2

[
1 1
1 −1

]
(5.16)

is called the Hadamard gate. This transformation is equivalent to rotating the qubit σ0

from the reference σz0 basis the the σx0 basis. A straightforward calculation leads to the
following probability distribution of the projective measurement in the new basis |σx0 , σ1〉:

Pb(σ
x
0 , σ1) =

Φ2
0σ1

+ Φ2
1σ1

4
+

1− 2σx0
2

Φ0σ1Φ1σ1 cos(∆θ) , (5.17)

where ∆θ = θ0σ1 − θ1σ1 . Therefore, the statistics collected by measuring in this basis
implicitly contains partial information on the phases. To obtain the full phases structure,
additional transformations are required, one example being the rotation from the reference
basis to the σyj local basis, realized by the elementary gate

K̂ =
1√
2

[
1 −i
1 i

]
. (5.18)
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5.4.1 Setup

We now proceed to use QuCumber to reconstruct a complex-valued wavefunction. For
simplicity, we restrict ourselves to two qubits and consider the general case of a quantum
state with random amplitudes Φσ0σ1 and random phases θσ0σ1 . This example is available
in the online tutorial.3 We begin by importing the required packages:

from qucumber.nn_states import ComplexWaveFunction

import qucumber.utils.unitaries as unitaries

import qucumber.utils.cplx as cplx

Since we are dealing with a complex wavefunction, we load the corresponding module
ComplexWaveFunction to build the RBM quantum state ψλµ(σ). Furthermore, the follow-
ing additional utility modules are required: the utils.cplx backend for complex algebra,
and the utils.unitaries module which contains a set of elementary local rotations. By
default, the set of unitaries include local rotations to the σx and σy basis, implemented by
the Ĥ and K̂ gates respectively.

We continue by loading the data4 into QuCumber, which is done using the load_data

function of the data utility:

train_path = "qubits_train.txt"

train_bases_path = "qubits_train_bases.txt"

psi_path = "qubits_psi.txt"

bases_path = "qubits_bases.txt"

train_samples , true_psi , train_bases , bases = data.load_data(

train_path , psi_path , train_bases_path , bases_path)

As before, we may load the true target wavefunction from qubits_psi.txt, which can be
used to calculate the fidelity and KL divergence. In contrast with the positive case, we now
have measurements performed in different bases. Therefore, the training data consists of an
array of qubits projections (σb00 , σ

b1
1 ) in qubits_train_samples.txt, together with the cor-

responding bases (b0, b1) where the measurement was taken, in qubits_train_bases.txt.
Finally, QuCumber loads the set of all the bases appearing the in training dataset, stored in
qubits_bases.txt. This is required to properly configure the various elementary unitary

3The tutorial for complex wavefunctions can be found at https://qucumber.readthedocs.io/en/
stable/ examples/Tutorial2 TrainComplexWaveFunction/tutorial qubits.html

4The training dataset can be downloaded from https://github.com/PIQuIL/QuCumber/blob/master/

examples/Tutorial2 TrainComplexWaveFunction/
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rotations that need to be applied to the RBM state during the training. For this example,
we generated measurements in the following bases:

(b0, b1) = (z, z) , (x, z) , (z, x) , (y, z) , (z, y) (5.19)

Finally, before the training, we initialize the set of unitary rotations and create the RBM
state object. In the case of the provided dataset, the unitaries are the Ĥ and K̂ gates. The
required dictionary can be created with unitaries.create_dict(). By default, when
unitaries.create_dict() is called, it will contain the identity, the Ĥ gate, and the K̂
gate, with the keys Z, X, and Y, respectively. It is possible to add additional gates by
specifying them as

U = torch.tensor ([[<re_part >], [<im_part >]], dtype=torch.double)

unitary_dict = unitaries.create_dict(<unitary_name >=U)

where re_part, im_part, and unitary_name are to be specified by the user.

We then initialize the complex RBM object with

state = ComplexWaveFunction(

num_visible =2, num_hidden =2, unitary_dict=unitary_dict

)

The key difference between positive and complex wavefunction reconstruction is the re-
quirement of additional measurements in different basis. Despite this, loading the data,
initializing models, and training the RBMs are all very similar to the positive case, as we
now discuss.

5.4.2 Training

Like in the case of a positive wavefunction, for the complex case QuCumber optimizes
the network parameters to minimize the KL divergence between the data and the RBM
distribution. When measuring in multiple bases, the optimization now runs over the set of
parameters (λ,µ) and minimizes the sum of KL divergences between the data distribution
P (σb) and the RBM distribution |ψλµ(σb)|2 for each bases b appearing in the training
dataset (Torlai et al., 2018). For example, if a given training sample is measured in the
basis (x, z), QuCumber applies the appropriate unitary rotation U = Ĥ0 ⊗ Î1 to the RBM
state before collecting the gradient signal.

Similar to the case of positive wavefunction, we generate the Hilbert space (to compute
fidelity and KL divergence) and initialize the callbacks
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state.space = nn_state.generate_hilbert_space (2)

callbacks = [

MetricEvaluator(

log_every ,

{"Fidelity": ts.fidelity , "KL": ts.KL},

target_psi=true_psi ,

bases=bases ,

verbose=True ,

space=state.space ,

)

]

The training is carried out by calling the fit function of ComplexWaveFunction, given the
set of hyperparameters

state.fit(

train_samples ,

epochs =100,

pos_batch_size =10,

neg_batch_size =10,

lr=0.05,

k=5,

input_bases=train_bases ,

callbacks=callbacks ,

)

In Fig. 5.5 we show the total KL divergence and the fidelity with the true two-qubit state
during training. After successfully training a QuCumber model, we can once again compute
expectation values of physical observables, as discussed in Section 5.3.3.

5.5 Conclusion

We have introduced the open source software package QuCumber, a quantum calculator
used for many-body eigenstate reconstruction. QuCumber is capable of taking input data
representing projective measurements of a quantum wavefunction, and reconstructing the
wavefunction using a restricted Boltzmann machine (RBM). Once properly trained, Qu-
Cumber can produce a new set of measurements, sampled stochastically from the RBM.
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Figure 5.5: Training a complex RBM with QuCumber on random two-qubit data. We
show the fidelity (left), and KL divergence (right), as a function of the training epochs.

These samples, generated in the reference basis, can be used to verify the training of the
RBM against the original data set. More importantly, they can be used to calculate ex-
pectation values of many physical observables. In fact, any expectation value typically
estimated by conventional Monte Carlo methods can be implemented as an estimator in
QuCumber. Such estimators may be inaccessible in the reference basis, or they may be
difficult to implement in the setup for which the original data was obtained. This is par-
ticularly relevant for experiments, where it is easy to imagine many possible observables
that are inaccessible due to fundamental or technical challenges.

Future versions of QuCumber, as well as the next generation of quantum state recon-
struction software, may explore different generative models, such as variational autoen-
coders, generative adversarial networks, or recurrent neural networks. The techniques
described in this paper can also be extended to reconstruct mixed states, via the purifi-
cation technique described by Torlai and Melko (2018). In addition, future techniques
may include hybridization between machine learning and other well-established methods
in computational quantum many-body physics, such as variational Monte Carlo and tensor
networks (Carrasquilla et al., 2019).
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Chapter 6

The scaling of RBM learnability of
quantum states

The work presented in this chapter has been published as Sehayek et al. (2019).

The previous two chapters introduced Restricted Boltzmann Machines (RBMs) as gen-
erative models in ML (chapter 4) and demonstrated how RBMs can be implemented for
the purpose of quantum state reconstruction (chapter 5) in physics. In this and the fol-
lowing chapter I present two reseach studies that use the QuCumber software to conduct
experiments with RBMs deployed for modeling the distribution of the transverse-field Ising
model.

As mentioned before, there are important differences between the experiments and ap-
proaches used to analyze DL systems – such as presented in chapter 3 – and the current line
of research based on RBMs. In the beginning of chapter 4, I discussed two aspects: the type
of learning and the NN model architecture. Specifically, I explained how generative mod-
eling in unsupervised learning that we are deploying and studying in these works differs
from supervised discriminative learning that underlies image classification tasks studied
chapter in 3. Furthermore, I have discussed the important architecture difference between
RBMs, which are shallow NN models, and deep NNs. Here, I would like to highlight
another crucial difference: the dataset. In our study of RBMs as generative models for
physical systems we use states of a quantum spin chain as training inputs. These spin
configurations are obtained from a numerical simulation of the transverse-field Ising model
in different coupling regimes. In contrast to the natural images used in computer vision
datasets, the spin states are less complex in their representation: Firstly, each spin state is
a one-dimensional binary sequence of +1 and −1, with its length ranging from 10 to 100
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(as we consider relatively small system sizes), whereas each natural image is a set of three
two-dimensional arrays of real numbers representing pixel values on RGB scale, with di-
mensions ranging between 28−by−28 to 1024−by−1024. Naturally, datasets with smaller
input dimension require NN models of correspondingly smaller size and repersentational
power. However, this scaling argument applies only on a coarse level; as we show in the
following two studies, the expressive power and thus the size of the NN model scales as
a function of the intrinsic dataset complexity which defines the difficulty of the learning
task. More specificially, in the case of a quantum spin model this “intrinsic complexity” is
primarily determined by the interaction regime or the quantum phase. For instance, deep
in the disordered paramagnetic phase we expect to find spin states with a relatively simple
structure because of the absence of spin-spin correlations, while at the quantum critical
point we expect the state structure to be most complex.

In general, the following two studies aim at characterizing RBM-based learning for
physical systems and investigate the capacity and the experessive power of RBMs deployed
for the task of quantum state reconstruction. In these projects, we leverage the advantage
of working with a dataset that is derived from a physical system, as it provides us with a
variety of model quality measures and thus allows us to scrutinize RBM learning a level
that is not accessible in other settings. In this way, we flip the roles of ML and physics
and use our knowledge of physical systems to gain insight into ML systems.

6.1 Abstract

Generative modeling with machine learning has provided a new perspective on the data-
driven task of reconstructing quantum states from a set of qubit measurements. As in-
creasingly large experimental quantum devices are built in laboratories, the question of how
these machine learning techniques scale with the number of qubits is becoming crucial. We
empirically study the scaling of RBMs applied to reconstruct ground-state wavefunctions
of the one-dimensional transverse-field Ising model from simulated projective-measurement
data. We define a learning criterion via a threshold on the relative error in the energy es-
timator of the machine. With this criterion, we observe that the number of RBM weights
required for accurate representation of the ground state in the most complex case – near
criticality – scales quadratically with the number of qubits. By pruning small parameters
of the trained model, we find that the number of weights can be significantly reduced while
still preserving an accurate energy expectation value. However, a systematic study of prun-
ing presented in the following chapter reveals that the fulfillment of the ROE criterion is
not sufficient to ensure that the model has retained an accurate state reconstruction.
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6.2 Motivation

Generative models are a powerful class of machine learning algorithms that seek to re-
construct an unknown probability distribution p(x) from a set of data x. After training,
generative models can be used to estimate the likelihood of new data not contained in
the original set, or to produce new data samples for various purposes. Recently, industry-
standard generative models have been repurposed by the physics community with the
goal of reconstructing a quantum wavefunction from projective measurement data. While
several generative modeling techniques are available for quantum state reconstruction,
by far the most well-studied involves restricted Boltzmann machines (RBMs) (Torlai
and Melko, 2016; Torlai et al., 2018; Chen et al., 2018; Cheng et al., 2018; Carleo et al.,
2018b; Carrasquilla et al., 2019). RBMs can be used to explicitly parametrize a probability
distribution p(x), and, through a suitable complex generalization, a quantum wavefunc-
tion (Torlai et al., 2018; Carleo and Troyer, 2017b). One main application of RBMs is the
data-driven reconstruction of experimental states, which has recently been demonstrated
for a Rydberg-atom quantum simulator (Torlai et al., 2019). These and other uses have
been covered extensively in the literature, including several recent reviews (Torlai and
Melko, 2020; Melko et al., 2019; Carleo et al., 2019).

With the steady increase in the size of experimental quantum devices, the question
of how data-driven quantum state reconstruction scales with the number of qubits is of
paramount importance. While many results have been reported for fixed finite-size re-
constructions, less work has been done in the way of scaling analyses (Czischek et al.,
2019). Particularly important is the difference in scaling complexity of approximate ma-
chine learning methods for practical reconstructions, as compared to full quantum-state
tomography that in general scales exponentially (Paris and Rehacek, 2004).

Here, we present a systematic study of the scaling of the computational resources re-
quired for accurate reconstruction of a quantum state. In particular, we focus on RBMs
used to reconstruct the ground-state wavefunction of a one-dimensional transverse-field
Ising model, which has a positive-real representation. Our training data is a set of projec-
tive measurements sampled independently from a simulated tensor-network wavefunction.
We define a learning criterion based on the accuracy of the energy estimator of the RBM.
The state reconstruction is considered successful when the relative error of the energy es-
timator is smaller than a fixed threshold. We target in particular two contributions to the
asymptotic scaling behavior in the many-qubit limit: the representational power of the
neural network, i.e., the expressivity of the parametrization of the state, and the amount
of data required to train the model, also known as the sample complexity.

In the present work, we use the QuCumber [99] software package to implement and

75



train a positive-real RBM.

6.3 Defining a scaling study

6.3.1 Physical system and RBM setup

We are interested in probing the asymptotic scaling of the computational resources re-
quired to reconstruct a quantum state using an RBM. The training set comprises projective
measurement data produced from the ground-state wavefunction of the one-dimensional
transverse-field Ising model (TFIM) defined by the Hamiltonian

H = −J
∑
〈ij〉

σzi σ
z
j − h

∑
i

σxi , (6.1)

where σx,y,z are Pauli operators, defined over N sites (or qubits), and 〈ij〉 denotes nearest-
neighbor pairs on a one-dimensional lattice with open boundary conditions. This model
is thoroughly studied in the condensed matter and quantum information literature, and
serves as a standard benchmark for many numerical methods, such as Quantum Monte
Carlo (QMC) (Sandvik, 2003; Inack et al., 2018), Tensor Networks (TNs) (Vidal, 2007), or
more recent quantum optimization algorithms (Ho and Hsieh, 2019; Ho et al., 2019; Beach
et al., 2019b). We generate training data from a density matrix renormalization group
(DMRG) simulation (Ferris and Vidal, 2012) for various values of h/J using the ITensor
library (Fishman et al., 2020). The measurements of the ground-state wavefunction are
produced in the σz basis.

The Perron-Frobenius theorem guarantees that when the Hamiltonian Eq. (6.1) has
negative off-diagonal matrix elements in the σz (computational) basis, the ground-state
wavefunction is positive-real. Thus, there is a direct mapping between the wavefunction
and a probability distribution, ψ(σ) =

√
p(σ). This allows for a significant simplification

in the RBM network structure, since complex phases or signs need not be parametrized. In
addition, the computational basis is trivially informationally complete, enabling training
from data produced only in the σz basis (Torlai et al., 2018).

6.3.2 Learning criterion

In order to quantify the resources required for the data-driven reconstruction of the ground-
state wavefunction for the TFIM, one must be able to assess when the learning is “com-
plete”. Generally, the fidelity is considered a standard measure of the closeness of two
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quantum states, such as a target state and an approximate reconstructed state. However,
in more generic situations than ours, where a TN representation of the target quantum
state may not be available, calculations of the fidelity typically scale exponentially, which
renders them intractable for even moderate numbers of qubits. An alternative method for
defining the accuracy of a reconstruction is to measure expectation values of local observ-
ables. Such expectation values can be efficiently calculated through standard estimators
from samples produced by the RBM. Importantly, these can be compared with the exact
values measured from our DMRG simulations, or through other methods such as Quantum
Monte Carlo (QMC) that do not admit an explicit representation of the ground state.

The relative error between an RBM estimator and an exact DMRG expectation value
will be referred to as the relative observable error (ROE). For the current study, we define
the learning criterion through the ROE in the expectation value of the energy, which can
be calculated from the RBM using standard Markov Chain Monte Carlo techniques. Take
Ū = 〈H〉RBM to be the average of the energy estimator calculated from n samples generated
by the RBM. Since n is finite, a statistical error exists in the estimator, quantified by the
standard deviation σ. To account for this in a relative error measure, we compute the
Gaussian confidence interval given by Ū ±C σ√

n
. The value of C = 2.576 corresponding to

99% confidence will be used throughout this study. If U = 〈H〉exact is the exact value of
the energy estimator (calculated, e.g., with DMRG), then we can upper-bound the ROE
by the larger relative error value of the confidence interval:

ε = max

∣∣∣∣U − (Ū ± Cσ√n)

U

∣∣∣∣ . (6.2)

Essentially, this means that we consider the learning to be “complete” when our desired
upper bound on the ROE is satisfied 99% of the time on our sample size. We find empiri-
cally that ε = 0.002 is a reasonable value that can be achieved by RBMs trained on TFIM
data with conventional algorithms for N ≤ 100 qubits. At smaller values (e.g., ε = 0.001)
training becomes impractical for N > 50, while for larger values we observed that the
results reported below remain qualitatively the same; thus, we choose to use ε = 0.002 in
this study.

With this learning criterion, we analyze the scaling behavior of the RBM by controlling
two variables: the number of model parameters per qubit and the number of training mea-
surements M , i.e., the sample complexity. However, we note that, as typical in machine
learning studies, many other variables exist that are related to network architecture, learn-
ing rates, batch size, etc. – referred to as hyper-parameters. We set these hyper-parameters
consistently for all values of h/J and all system sizes N .
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6.4 Results

We present numerical results for the scaling of computational resources for reconstruction
of the TFIM ground-state wavefunction for several values of h/J . In order to systematically
investigate scaling, we control variables of interest in separate experiments as described in
the following sections.

6.4.1 Scaling of the model parameters

To begin, we are interested in the minimal number of RBM parameters per qubit required
to faithfully reproduce the ground-state energy. We parametrize this with the scaling of
the size of the hidden layer, Nh. We consider the critical point, corresponding to h/J = 1,
as well as the ferromagnetic and paramagnetic phases. For each value of N , we produce
large numbers of projective measurements of σz values using the DMRG simulation of the
TFIM. Then, assuming that effectively the number of available training samples M →∞,
we increase the number of hidden units Nh until the learning criterion is satisfied for each
value of N .

Our procedure is illustrated in Figure 6.1 for a fixed system size of N = 50. In the
main plot, corresponding to h/J = 1, we observe that the specified learning criterion
ε = 0.002 can not be achieved for Nh < 25. The minimum number of parameters required
to accurately represent the ground-state wavefunction is thus Nh = 25. The inset illustrates
the dependence ofNh on field values near h/J = 1, where the quantum wavefunction is most
entangled. One would expect that in the limit N →∞ the number of parameters required
to accurately parametrize the wavefunction would be maximal at h/J = 1. Curiously,
we find that this peak occurs around h/J ≈ 0.8, slightly on the ferromagnetic side from
the critical point. We hypothesize that this feature might be tied to the magnetization of
the underlying dataset used for training, which was produced by our DMRG simulations
in ITensor. For the maximum bond dimension that we employ (2000), the expected Z2

symmetry is not realized below certain values of the transverse field strength h when the
number of qubits is large. Furthermore, a similar phenomenon has been observed previously
in studies of the relative energy in diffusion Monte Carlo (Inack et al., 2018) and a recent
variational imaginary time ansatz (Beach et al., 2019b). It would be an interesting topic
of future study.

The result of repeating the above procedure for various numbers of qubits N is illus-
trated in Figure 6.2. For values of h/J deep within the ferromagnetic or the paramagnetic
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Figure 6.1: The procedure used to determine the RBM expressiveness required to represent
the TFIM wavefunction at h/J = 1 with N = 50 qubits. The number of hidden units Nh

is increased until the desired ε is achieved. The inset illustrates the number of hidden
units required for convergence to ε ≤ 0.002 for different values of h/J near criticality. The
position of the peak is discussed in the main text.

phase, the required minimum number of hidden units scales as Nh ∼ O(1) in the asymp-
totic limit of large N . This reflects the informational simplicity of the dataset close to the
ferromagnetic or paramagnetic limits. Near h/J ≈ 1, the scaling is clearly linear, Nh ∼ N ,
meaning that the leading-order scaling of the number of parameters is O(N2), as each
additional hidden unit quadratically scales the number of elements in the weight matrix
W . Due to the presence of the bias terms in the RBM energy function (Eq. 4.1), we would
also expect a sub-leading term that scales proportionally to N ; however, as noted in the
Appendix, for data sets with an underlying Z2 symmetry, these bias terms do not represent
independent parameters for the purpose of wavefunction reconstruction. Finally, we note
that for larger ROE thresholds ε > 0.002 the prefactors and slopes are different, but the
asymptotic scaling of the number of hidden units still remains linear near criticality.
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Figure 6.2: Minimum number of hidden units Nh required for ε ≤ 0.002 for various values
of h/J . Straight lines are fits to the data.
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Comparison to MPS

We draw a brief comparison between the above results and naive expectations for the
scaling of the number of parameters in the simplest TN representation of a one-dimensional
wavefunction – the matrix product state (MPS). We refer the reader to recent reviews on
the topic, e.g., Orús (2014, 2019). For a finite-size MPS with N matrices, the simplest
estimate for the number of parameters required to store a wavefunction is O(Nχ2), where
χ is the bond dimension. The bond dimension required for good representation accuracy
depends on the amount of entanglement in the system. In the presence of a bipartition,
the entanglement entropy S is upper-bounded by the logarithm of the rank of the reduced
density matrix. For an MPS, every bond that lies on the bipartition therefore gives an
entropy contribution of at most log(χ), leading to the scaling rule of χ ∼ exp(S). For
the one-dimensional TFIM, we expect S ∼ O(1) in the ordered phases, and S ∼ log(N)
at the quantum critical point. This yields a naive scaling of O(N) in the ordered case,
and O(N3) at the critical point. We note that our RBM scaling is more consistent with a
translationally-invariant MPS encoding, where these asymptotic scaling complexities are
both reduced by a factor of N . This reduction is expected in long one-dimensional chains,
where tensors sufficiently far from the edges are typically identical.

6.4.2 Scaling of sample complexity

Above, we studied the minimum number of RBM parameters required to find an accurate
ground-state energy, assuming access to an infinite amount of training data. We now
determine the minimal sample complexity required to accurately train this number of
parameters. We focus on h/J = 1, and fix the ratio α = Nh/N for several values near
1/2. Then, repeating the procedure from the last section, we increment the number of
training examples M by 2500 until the ROE learning criterion ε ≤ 0.002 on the RBM
energy estimator is achieved. This procedure is repeated for a number of different initial
weight configurations, and the results are averaged. The resulting scaling of the sample
complexity is shown in Figure 6.3.

The results suggest that for Nh/N near 1/2, the sample complexity scales linearly in
the number of qubits. Combining the asymptotic scaling results from the previous two
sections, Nh ∼ N and M ∼ N , suggest that the number of samples per parameter required
to train a minimally-expressive machine scales as N/N2 ∼ 1/N . In other words, the
relative “data cost” required to train a new weight parameter decreases with an increasing
number of qubits. A linear scaling of the sample complexity was also observed in a recent
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Figure 6.3: The minimum number of training examples M required for ε ≤ 0.002 for the
TFIM at the critical point h/J = 1 for different ratios of the number of hidden to visible
units α = Nh/N .

generative modeling scheme based on positive operator-valued measurements (Carrasquilla
et al., 2019).

We remark that a sample complexity linear in N is consistent with observations on the
PAC-learnability of quantum states. Aaronson (2007) argues that, if one is only concerned
about learning a state well enough to predict the outcomes of most measurements drawn
from it, the exponential cost usually associated with full state tomography is reduced to
a linear scaling in N . This is what we find in Figure 6.3. Indeed, a characteristic of
the Aaronson learning theorem is the assumption that the training samples are drawn
independently from the probability distribution. This is exactly the setting that we employ
in training the RBM in the present work. Hence it is reasonable to expect the theorem to
apply.
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Figure 6.4: Weight magnitudes, sorted in descending order from left to right, for various
transverse field values and N = 60. Converged RBM models from the parameter study
shown in Figure 6.2 are used here.

6.4.3 Reducing the number of model parameters post-training

Further insight on the RBM result can be obtained by examining the distribution of the
absolute weight values |Wij| in a typical trained model. Figure 6.4 shows the magnitude of
each individual weight, sorted in decreasing order from left to right, on a logarithmic scale.
Near criticality, the largest contribution is given by the first 10− 20% of weights; then the
weight values decrease exponentially in magnitude, eventually falling off even more rapidly.

In the previous section, we found that the minimal number of hidden units required to
satisfy our chosen ROE scales approximately as Nh ≈ 1

2
N near the TFIM quantum critical

point. Implicit in this result is the RBM optimization procedure used to train the ma-
chine: a stochastic gradient descent that minimizes the KL-divergence (Torlai and Melko,
2020). Since it is not obvious that the scaling behavior is independent of this optimization
procedure, it is fair to ask the question: Is it possible to find more efficient representations
– with fewer model parameters – by modifying the learning protocol? Indeed, it is known
that the required number of model parameters is intertwined with the specifics of the train-
ing procedure. In particular, it has been found that the over-parametrization inherent to
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N 10 20 30 40
original 50 200 420 760
pruned 20 50 79 119

Table 6.1: The number of weights required to achieve ε ≤ 0.002 at the critical point
h/J = 1. Results for the “original” RBM are taken from Figure 6.2.

deep neural networks can ease and accelerate their optimization by (stochastic) gradient
descent (Lopez-Paz and Sagun, 2018; Livni et al., 2014; Arora et al., 2018; Allen-Zhu et al.,
2018; Sankararaman et al., 2019).

Figure 6.4 offers a clue that the RBM parametrization may not be optimal (i.e., mini-
mal) for the final trained wavefunction by demonstrating that the distribution of the weight
magnitudes in a trained model is very non-uniform: 10 to 20% of the weights have values
that are orders of magnitude larger than the rest. Recent machine learning literature has
studied the relative importance of these smaller weights with a procedure called pruning.
Following the ideas of Han et al. (2015a) and Mocanu et al. (2016), we define a pruning
procedure for our scaling study in the following steps:

1. Start from the original, converged trained model (e.g., Figure 6.4, with Nh = 1
2
N for

h/J = 1).

2. Set a threshold δ for the weight magnitudes. If a given |Wij| < δ, set Wij = 0, and
freeze it for the following steps.

3. Fine-tune the pruned model by running several more training iterations until the
desired accuracy (as defined by the ROE learning criterion) is restored.

4. Repeat steps 2-4, pruning additional weights until the model fails to fulfill the learning
criterion.

We choose the pruning threshold such that 40% of the non-zero weights are pruned in the
first iteration, and 5% of the non-zero weights in each following iteration. Note also that
in this procedure we do not prune biases.

We apply weight pruning to our trained RBM focusing on the critical point of the
TFIM, and find that a significant reduction in the number of RBM parameters required to
correctly capture the critical TFIM ground-state energy can be achieved for all system sizes.
The results for several small numbers of qubits are presented in Table 6.1. We interpret this
to mean that the standard training of an RBM with contrastive divergence benefits from
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an over-parameterization, employing more weights than is strictly required for accurate
expression of the TFIM wavefunction in order to make the optimization more navigable.
We note that in some rare cases, pruning a very small number of weights seriously alters
the ROE, highlighting that some paths through the optimization landscape may depend on
weight parameters that are not redundant. For this reason, rigorous uncertainty intervals
on our results are difficult to estimate at present.

The success of the pruning procedure opens up the possibility of systematically search-
ing for a change in scaling behavior. This analysis was conducted in a separate study and
is presented in the next chapter.

6.5 Summary

We have empirically studied the scaling of computational resources required for the ac-
curate reconstruction of positive-real wavefunctions using generative modeling with an
RBM. We obtained scaling results by examining the energy estimator calculated from an
RBM after training on simulated projective-measurement data for the ground state of a
one-dimensional TFIM with open boundary conditions.

We have found that deep within the ferromagnetic and paramagnetic phases, the num-
ber of RBM parameters required for accurate representation of the ground state is O(1).
As the transverse field is varied to approach the quantum critical point between these two
phases, the state becomes more challenging to reconstruct, as expected due to long-range
quantum correlations that arise there. At the critical point, we observe that under standard
RBM training procedures the number of parameters grows quadratically in the number of
qubits, O(N2). The minimum number of measurements required to train this number of
parameters scales linearly with the number of qubits, O(N). Interestingly, we find that the
number of parameters required for an accurate reconstruction – with the accuracy measure
based on the energy ROE – can be significantly reduced post-training by pruning small
weights and fine-tuning the RBM by a small number of additional training iterations.

6.6 Discussion

In the current study, an RBM reconstruction of the ground-state wavefunction was defined
to be “accurate” when the relative error between the RBM estimator and the exact energy
value was below a fixed threshold. Thus, our scaling results are subject to the caveat
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that they could change if other criteria were to be considered, such as the convergence of
fidelity or correlation functions. We dedicate a separate study to this question, which is
presented in the next chapter. In the present case, convergence of the relative error in the
energy produces several interesting results: First, for a standard optimization procedure
with contrastive divergence, the number of weights required for accurate reconstruction is
at best constant (deep in the ferromagnetic/paramagnetic phases). At worst, this scaling
is quadratic; this occurs near the quantum critical point between the two phases. It is
interesting to note that such scaling is consistent with that expected from a translationally-
invariant matrix product state encoding. In addition, the minimum number of samples
required to converge the energy at the critical point is observed to scale linearly with the
number of qubits. This is consistent with a theorem by Aaronson (2007) that predicts a
linear scaling in a similar setting for PAC-learning.

Further, we present evidence that the number of parameters required to represent the
ground state is drastically affected by the RBM learning procedure. By employing a
pruning technique that sets small weights to zero, then fine-tuning the remaining model
parameters through additional training, we observe a very significant reduction in the
number of parameters required to accurately reproduce the energy. However, we have
not examined how other observables are affected by pruning, and thus not verified that
the reconstruction remains faithful. We address this shortcoming with a thorough study
presented in the next chapter.

Indeed, numerous recent results have highlighted the benefit that overparametrization
provides for optimizing deep learning models (Allen-Zhu et al., 2018; Sankararaman et al.,
2019; Lopez-Paz and Sagun, 2018). In this work, we have discovered that RBMs trained on
simulated measurement data for positive-real wavefunctions may as well be aided by over-
parametrization – beyond what is needed for the theoretical representation of the quantum
state – as a means of assisting the standard optimization procedure of minimizing the KL
divergence via contrastive divergence. The question of how to systematically mitigate this
overparametrization while still maintaining the ease of optimization is an active area of
research (Frankle and Carbin, 2018; Zhou et al., 2019; Lee et al., 2018b), one whose suc-
cesses will be of great use for more efficiently representing and studying quantum systems.
A principled pruning approach could provide a systematic way of searching for the mini-
mal model expressivity required for a given quantum state. It would then be interesting to
compare the obtained results to theoretical expectations for the representational capacity
of RBMs required for quantum ground-state wavefunctions (Chen et al., 2018; Gao and
Duan, 2017b; Glasser et al., 2018b).

It is natural to wonder what the scaling of computational resources is for reconstructing
quantum states that are not real or positive. To this end, the present results point towards

86



a rich field of similar scaling studies that should be pursued on a variety of quantum many-
body models in the future. The question of scaling is also especially pertinent for state-
of-the-art experiments, such as fermionic quantum simulators (Mazurenko et al., 2017),
wavefunctions generated by quantum dynamics (Lanyon et al., 2017; Keesling et al., 2018),
or quantum chemistry calculations with superconducting circuits (Kandala et al., 2017).
In contrast to positive wavefunctions, the reconstruction for a general quantum state, with
a suitably modified RBM, demands training data from an extended set of measurement
bases. The ability to theoretically identify the minimal set, and how the size of this set
scales with the number of qubits, will ultimately determine the feasibility of integrating
this type of machine learning technology into such near-term quantum devices.

In conclusion, we have proposed a systematic procedure to evaluate the scaling of re-
sources for reconstructing positive-real wavefunctions with RBMs. A tighter threshold in
the reconstructed energy accuracy, or improved neural-network parametrization of non-
positive states, will likely require a more powerful breed of generative model. Recurrent
neural networks, transformers, and other autoregressive models are currently being consid-
ered in this context. In light of the fact that current intermediate-scale quantum devices
are already capable of producing training data on tens and even hundreds of qubits, we
expect these and similar scaling studies will be pursued in earnest in the near future.
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Chapter 7

Pruning the RBM

In the previous chapter we studied how a Restricted Boltzmann Machine (RBM) employed
as a generative model for the task of quantum state reconstruction scales with the number
of qubits. Preliminary results obtained in that study indicated that the quadratic scaling
between the number of qubits and the number of weights in the RBM changes to linear when
magnitude-based pruning is applied post training. In this follow-up study we investigate
the effects of pruning in detail. We find that while pruned models still fulfill the energy ROE
criterion, many of their other properties deteriorate significantly. Our results highlight the
fact that model size reduction through weight pruning does not come for free, and stress
the importance of monitoring all accessible model properties if applying pruning.

7.1 Motivation

Pruning is a common technique employed in machine learning (ML) with the goal of
reducing the overall number of parameters in a neural network (NN). The fact that pruning
can substantially reduce the the number of weights without degrading the performance of
a NN has been known since the early days of ML (Reed, 1993), but the real explosion
of interest in this technique happened only in recent years when deep NNs (DNNs) were
scaled up to handle large datasets and industrial applications. DNNs – particularly the ones
that perform best – require enormous amounts of computation and memory, and thus the
matter of compressing them became of immediate concern. The most successful approach is
iterative magnitude-based pruning post training, which eliminates the smallest weights from
a trained NN stepwise and allows the remaining parameters to adjust by doing a couple
training iterations after each pruning step (Thimm and Fiesler, 1995; Ström, 1997; Han
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et al., 2016). This method can substantially reduce the computational cost of inference
and enable deployment of NN-based applications in resource-constrained environments,
such as mobile devices (Han et al., 2015b; Yang et al., 2017; Sze et al., 2017). However,
pruning post training means that the NN still has to be trained at its full size. A variety of
newer works propose pruning based on alternative criteria (Lee et al., 2018b; Evci et al.,
2019; Wang et al., 2020), but to date there is no successful approach to pruning before
training (Frankle et al., 2020). Moreover, the principles of why pruning works in general
are not understood and it is unclear what determines a successful sparsity pattern for
a given NN. For the most recent review of the current state of pruning research in ML
see Blalock et al. (2020).

As all fields involving “big data”, physics would benefit from more efficient DNNs. In
particular in quantum many-body physics, we are ultimately interested in modeling large
physical systems, and the anticipated power of ML techniques lies in their ability to handle
system sizes that conventional numerical methods can not. One of the most important
applications requiring NNs with as few parameters as possible is the reconstruction of a
quantum many-body state from data. In the simplest case of a quantum state prepared on
a number of qubits, the task involves learning the probability distribution underlying a set
of projective measurements given by the Born rule. This is most immediately accomplished
by a generative model, whose parameters are trained to maximize the likelihood that it
accurately represents the data distribution. In chapter 5 we discussed this task and the
implementation of a generative model based on a Restricted Boltzmann Machine.

Perhaps more importantly, physics also has the potential to advance the theoretical un-
derstanding of pruning and sparsity in NNs. The main advantage is that physics problems
offer a practical test bed for ML methods like no other dataset, because they are well-
characterized: For instance, for the quantum state reconstruction problem we can describe
the entire state space, generate input data, and we know the characteristics of the proba-
bility distribution. This knowledge opens up more ways to evaluate the learning procedure
and results, and thus to obtain insights into the processes of RBM-learning and pruning.
Additionally, we can leverage our expertise from other computational methods, such as
for example Tensor Network techniques used for quantum state representation which have
proven scaling and compression limits (Chen et al., 2018).

7.2 Introduction

Due to their foundations in the Ising model of statistical mechanics, RBMs have become
familiar to condensed matter and quantum information physicists. In quantum physics,
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(a) before pruning (b) after pruning

Figure 7.1: Graphs of a trained RBM before and after pruning. Lines represent weights,
line thickness corresponds to weight magnitude, and color indicates the sign (red for +,
blue for −).

RBMs have been used for both data-driven state reconstruction, and as a variational ansatz
where parameters are optimized with knowledge of the Hamiltonian. The combination of
high representational capacity and a proven training heuristic makes RBMs compelling can-
didates for data-driven wavefunction reconstructions. The full connectivity of the RBM
provides an upper bound on the entanglement that it can represent in a physical wavefunc-
tion. This upper bound – corresponding to the “volume law” – is sufficiently expressive
to capture the entanglement behavior of any known class of quantum many-body states.
However, ground states of local Hamiltonians are expected to obey sub-volume-law scal-
ing, which raises the question whether RBMs with sparser connectivity can be found, and
would lead to more efficient reconstruction schemes.

The idea of pruning comes naturally when we examine the weights in a trained RBM.
Consider Figure 7.1a which shows the graph of a fully trained RBM used to reconstruct
the state of a 10-qubit TFIM. It is apparent that only a small number of weights have large
magnitudes, and all other weights are much smaller in comparison. This suggests that the
small-magnitude weights might be not significant, and can thus be set to zero (pruned)
without affecting model performance. Figure 7.1b shows the RBM after pruning, which
still performs adequately according to some metrics. However, as we show in detail in the
following, pruning affects various model qualities in different proportions.

We have touched upon this subject in the previous chapter, which focused primarily on
the scaling of RBM model size and dataset size with the number of qubits in the 1d TFIM
model. As our main focus was RBM training, we used energy ROE as the sole criterion for
model evaluation, which will turn out to be an insufficient metric in case of pruning. In the
study presented here, we train RBMs on data for various system sizes and transverse field
strengths h/J , and subsequently apply pruning. In addition to the standard loss function,
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the KL divergence, we examine the effect of pruning on physical properties, namely the
fidelity, energy, order parameter and 2-point correlation function.

7.3 Methods

Our setup is the same as in the scaling study presented in chapter 6: The physical system
is the ground state of the one-dimensional transverse-field Ising model (TFIM) described
by the Hamiltonian

H = −J
∑
〈ij〉

σzi σ
z
j − h

∑
i

σxi , (7.1)

where σx,y,z are Pauli operators, defined over N sites (or qubits), and 〈ij〉 denotes nearest-
neighbor pairs on a one-dimensional lattice with open boundary conditions. The RBMs
are implemented with QuCumber and trained on projective measurement data generated
with DMRG simulations (Ferris and Vidal, 2012; Fishman et al., 2020) for various system
sizes and transverse field strengths h/J . We train the RBM in two distinct regimes: In
the disordered paramagnetic (PM) phase with h/J > 1, and at the quantum critical point
(QCP) where h/J = 1.

In general, for a fixed number of visible units N , the expressivity of the RBM is modified
by varying the number of hidden units Nh, which is usually treated as a hyper-parameter
and fixed at the beginning of training. Based on previous study (Sehayek et al., 2019), we
use the ratio Nh = N/2 in current experiments.

We use iterative magnitude-based pruning and fine-tuning, meaning that weights are
removed in steps, and the model is trained for several more epochs after each pruning step.
The fine-tuning allows the remaining weights to adjust their values in order to compensate
for the pruned weights. Starting from the trained model, we remove 40% of all weights in
the first pruning step, and 5% of the remaining weights in all subsequent steps. We chose
these parameters after testing a few schedules and finding that these moderate rates allow
to obtain functioning RBMs with the least number of weights. Importantly, note that we
prune only the weights, not the biases. We refer to the trained RBM before pruning as
“dense” (as opposed to “sparse” after pruning).

The objective of the training procedure is the minimization of the KL divergence be-
tween the target distribution q estimated from the dataset, and the RBM distribution pλ:

DKL(q‖pλ) =
∑
σ

q(σ) ln
q(σ)

pλ(σ)
. (7.2)
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In general, we cannot expect to reach a KL divergence of zero, yet because the KL is
not calibrated and unbounded from above, any target threshold we set for the KL would
be arbitrary. Therefore, in addition to the KL divergence, we introduce error measures for
various physical observables and train the RBM for a fixed number of epochs ensuring that
all measured errors have fully equilibrated. Measurements are made every 100 training
epochs.

The KL divergence measures the discrepancy between the RBM-learned and the target
distribution. Similarly, the fidelity measures the agreement between the reconstructed state
and the exact wavefunction. For pure states,

F (ψλ,Ψ) = |〈ψλ|Ψ〉|2 . (7.3)

Two characteristic observables for spin systems are the energy E = 〈H〉 and the magneti-
zation along the z-axis, defined as

m = M/N =
N∑
i

σzi , (7.4)

which serves as the order parameter. Since the training data are simulated configurations
of a finite-size system, the Z2 (spin-inversion) symmetry of the Hamiltonian is not broken in
the ordered phase. Consequently, positive and negative contributions to 〈m〉 would cancel
out. We therefore compute both 〈m〉 and the Z2-invariant quantity 〈|m|〉. As described in
chapter 6, we measure the relative observable error (ROE) for the energy and the absolute
magnetization, defined as

ROE = max

∣∣∣∣ODMRG − ŌRBM

ODMRG

∣∣∣∣ , (7.5)

where ODMRG is the DMRG expectation value, and ŌRBM is the RBM estimator with a
statistical error correction calculated as ŌRBM = 〈O〉RBM± cω/

√
n, where n is the number

of samples, ω is the standard deviation, and c = 2.576 is a constant corresponding to 99%
confidence interval. We shall use the short forms eROE and mROE for energy and mag-
netization ROE respectively. For more details on ROE, see equation 6.2 in chapter 6. The
two-point correlation function is another important observable, in particular the functional
form of its decay with increasing spin distance is a distinctive feature of a physical phase:
We expect algebraic decay at the QCP, and exponential in the PM phase. We compute

C(di,j) = 〈σzi σzj 〉 − 〈σzi 〉〈σzj 〉, (7.6)
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where dij is the distance between the sites i and j. To summarize the deviation between
the two-point correlation function computed on spin configurations sampled from the RBM
and the one computed on training data in a single scalar quantity, we use the mean squared
error

CMSE =
N∑
j=ī

C(dī,j) , (7.7)

where ī = N/2 is the lattice midpoint, and the sum extends over all spin distances from
0 to N/2, as we are working with open boundary conditions. All expectation values
are computed on 1e5 configurations drawn from a trained RBM (the same number of
configurations as in the training set).

7.4 Results

We present the main results for a system of size N = 18, because this is the maximal
size for which the computation of KL divergence and state fidelity is feasible. For larger
systems, we compute only the eROE, mROE and the 2-point correlation functions, and
find no qualitative difference to the smaller system.

Figure 7.2 demonstrates how various quantities that measure model quality evolve in
the course of training and pruning. While convergence to the equilibrated value occurs
within the first 500 training epochs for all observables, their degradation in response to
pruning varies and is strongly dependent on the physical regime: RBM trained to model
TFIM at the QCP takes damage already after a few pruning iterations, when the number
of weights is reduced to about 50%. In contrast, the model for the PM regime does not
show increase in any of the error measures until about 75% of weights have been removed.

The order parameter is the most pruning-sensitive observable. At the QCP, mROE
increases from the first pruning iteration on, indicating that pruning has immediate effect
on the order and, by extension, on the correlations between the spins. We take a closer
look at the magnetization in Figure 7.3: The training set has 〈m〉 ≈ 0 and 〈|m|〉 ≈ 0.5,
indicating the presence of (some) order and Z2 symmetry in the sample, and the histogram
of m for the individual configurations shows a double-peak structure with maxima at
m ± 0.75, but also a significant proportion at m = 0. The sample set drawn from the
trained dense RBM resembles the properties of the training set closely. However, in the
course of pruning, the double-peak structure morphs into an increasingly pronounced single
peak at m = 0, with Z2 symmetry preserved.
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Figure 7.2: The behavior of various model quality measures during training and iterative
pruning of an RBM trained at the quantum critical point at h/J = 1.0 (left), or in the
paramagnetic regime at h/J = 2.0 (right). Vertical lines indicate pruning steps, labeled
on the top x-axis. Secondary y-axis on the right shows the percentage of nonzero weights
remaining in the RBM at every pruning iteration. Top: KL divergence of the learned RBM
distribution and the quantum state fidelity (shown as 1-F). Middle: The relative observable
error in energy and absolute magnetization (mROE scaled by factor 0.1). Bottom: The
mean squared error of the spin-spin correlation function.
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Figure 7.3: Magnetization expectation values 〈m〉 and 〈|m|〉 (left) and histogram of m
values for each configuration in the sample (right) at the QCP. The numbers on the x-axis
in the left plot and in the legend on the right plot indicate pruning iterations, where 0
stands for the trained dense RBM.

Similarly, in Figure 7.4 we show that pruning progressively destroys correlations be-
tween spins, changing the functional form of the two-point correlation function (CF) from
algebraic to exponential decay. These results align with our intuition that the physical
system is most complex at the QCP, where the correlation length spans the entire system
and the configurations have some order. We therefore expect that more parameters are
required to model a system at the QCP. In contrast, no long-range correlations exist in the
disordered PM phase, thus the model can be simpler, and many weights in the RBM are
redundant.

Note the effect of system size: In larger models, a larger percentage of weights has
to be pruned in order to induce the same degree of damage to the CF. The reason for
why larger RBMs seem more robust can be understood with the following combinatorial
argument: An RBM with N visible and N/2 hidden units is a bipartite graph with 3N/2
nodes in total. The minimal number of edges required to keep such graph connected is
one less than nodes. For system sizes of 18, 50 or 100 spins (as shown in Figure 7.4) this
number is 26, 74 or 149, corresponding to 16%, 6% or 3% of the total number of weights
respectively. This means that at a given percentage of weights remaining, the graph of
the smaller RBM is more likely to be disconnected than the graph of the larger RBM. In
Figure 7.4, the numbers in the legend indicate pruning iterations, and each corresponds
to a percentage of weights remaining in the RBM. Thus, for larger RBM, more pruning
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iterations are required in order to achieve the same disconnectedness in the graph.

Finally, we examine the correlation between the KL divergence and the physical ob-
servables, in particular the error measures eROE, mROE and the mean squared error of
the 2-point correlation function CMSE. Figure 7.5 shows that the correlation with KL is
different for each of these measures, and that it varies strongly depending on the stage of
training or pruning. Specifically, KL is more sensitive to pruning than eROE, while mROE
and CMSE are much more sensitive than KL. Each of these accuracy measures captures a
different relevant property of the system and thus a thorough evaluation of model quality
has to include all of them.

7.5 Discussion

We have observed that the effect of pruning varies drastically depending on the interaction
regime in the physical system: For RBMs trained to represent the quantum system in
the paramagnetic state up to 50% of weights can be pruned without a significant loss
of accuracy in the physical properties of the reconstructed state. In contrast, for RBMs
trained on data at the quantum critical point, even a relatively small amount of pruning
can have adverse effects on the model accuracy. This result is intuitive, as we know that
the state of the physical system is most complex at the QCP, while the disordered PM
phase is characterized by absence of spin-spin correlations. Therefore, we expect that the
probability distribution that corresponds to the PM phase can be encoded in a simpler
function, and thus many weights in the dense RBM are redundant. This result may have
consequences beyond quantum critical systems, as much of the data from the natural world
used to train neural networks in industry displays signatures of power-law decay.

Furthermore, our experiments have demonstrated that pruning has disparate effects
on various model quality measures. Specifically, we have found that among all physical
observables energy is least sensitive to pruning. More precisely, a pruned RBM can generate
samples that have a reasonably accurate energy, while spin order and correlations show
strong deviations from the ground truth. Thus, in our learning task, energy can not serve
as a measure for model quality when pruning is applied. In general, our result demonstrates
that it is important to monitor all relevant model quality measures instead of relying on a
single observable. This is rather easy to accomplish when modeling a physical system, as the
relevant physical observables are well-defined, but much harder for non-physical learning
tasks, such as classification of natural images, where apart from the empirical test error
no other measure of model quality is readily available. The danger is that pruning, while
keeping the standard test accuracy intact, might be introducing unnoticed instabilities into
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the model that might be exploited by adversaries, or lead to biased outputs. Indeed, in ML
context it is known that pruning significantly reduces robustness to image corruptions and
adversarial attacks1 (Xiao et al., 2018; Guo et al., 2019). Furthermore, it was found that
model performance is disproportionally impacted for classes of images that are generally
more challenging to learn, which presents a concern for the fairness of AI algorithms.

We hope that our study will spark more research along the same lines, exploring the
properties of NN-based ML models with the goal of making them a more understandable
and principled tool for both scientific and industrial applications.

1An “adversarial attack” is an input image that was deliberately modified by introducing a small, typ-
ically unnoticeable variation, which causes a well-trained NN-based image classifier to make unreasonably
wrong predictions.
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Chapter 8

Discussion and Conclusion

In this thesis, I have presented several works that contribute towards building a better
understanding of DL and explore the intersection between DL and quantum many-body
physics. In one of these works, we have studied the role of layer width and parameter count,
which is central for modern DL architectures, and exploited the relationship between NNs
and Gaussian Processes to conduct a theoretical analysis in the limit of infinite width. In
another line of work, we focused on generative modeling with a shallow NN architecture
– the RBM – and studied its learning performance for physical systems. Based on the
task of quantum state reconstruction, we have systematically analyzed the scaling of RBM
learning and quantitatively characterized the relationships between elements of the learning
model and the physical system. This investigation also included an analysis of pruning –
a highly relevant technique for model compression in modern DL – which revealed a clear
dependence of the attainable degree of pruning on the complexity of the data, and a strong
disparity between various model quality measures in their sensitivity towards pruning.

My choice of research questions has been driven by the desire to understand DL on a
more fundamental level, with the ultimate goal of making it a more principled and reliable
tool, in particular for applications in science. As I described in chapters 1 and 2, DL is an
immensely powerful novel technique that has proven successful in practice, with the caveat
that the associated approaches and design principles for DL systems are not theoretically
grounded. The lack of a theoretical foundation, the multitude of unexplained phenomena
and the often counterintuitive combination of properties exhibited by DL systems demand
caution in deployment of DL in critical settings.

The experience I gained in working on these projects has illuminated several aspects of
DL that are of paramount importance for future progress. Perhaps the most fundamental of
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them is the role of data. Despite the fact that DL is an inherently data-driven technique,
the role of data remains understudied in current DL research. In the introduction chapter 1
I have mentioned the challenges associated with the empirical datasets used in DL: They
are typically automatically collected from the Internet and their enormous size makes
curation by human reviewers prohibitively expensive. As a result, datasets can harbor
undetected abnormalities, such as mislabeled or ambiguous instances, or instances that by
human judgment are not attributable to any of the given labels.

Apart from the issues related to dataset characterization, there are several more pro-
found difficulties that could not be resolved even with unlimited human supervision. Specif-
ically, consider the field of computer vision: DL systems excel at image recognition tasks,
yet at the same time their performance can be dramatically affected by slight modifications
of the input image – a feature exploited by “adversarial attacks”, as I mentioned in the
previous chapter 7.5. Another major concern is the “fairness” of DL systems, as it has
been noted that their performance in classification tasks can be non-uniform among image
classes, i.e., DL systems can be biased. The central unresolved question in this context is
whether the root cause of such bias lies in the training data alone or can be induced by
DL algorithms as well. Considering that DL systems for image recognition are deployed in
a variety of fields including autonomous driving, medical diagnostics and law enforcement,
this brittleness and possible bias constitute serious potential threats.

Moreover, accounting for the dataset in the characterization of a learning system is
key to DL theory. The discussion of the current state of DL theory and the associated
challenges in section 2.1 mentions one of the critical failures of classical statistical learning
theory when applied to DL: Its theory of generalization fully disregards the properties of
the dataset. Meanwhile, empirical results in modern DL, but also our pruning study of
“shallow” learning with RBMs in chapter 7, clearly demonstrate the necessity of including
the dataset into consideration when designing learning systems or analyzing their behavior.

The biggest obstacle in understanding the role of data in DL is the lack of suitable
well-defined metrics for the characterization of typical empirical datasets. In theory, we
think of any kind of data as being drawn from some generating distribution. The challenge
in practice is to define a distribution underlying images of objects – or subjects, such as
people or cats. Is there a well-defined “cat distribution”, and how does it differ from a “dog
distribution”? The current state of research does not offer a definitive practical answer. It
is evident that many important aspects of DL systems crucially depend on data. In order
to make them accessible to investigations, we need to dedicate research efforts to data itself
and identify both the relevant properties and appropriate analysis methods.

One viable way to address these data-related challenges is to study DL in application
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to physics problems. The advantage of learning tasks related to physical systems is the
availability of datasets and the associated metrics that characterize them. In particular
the datasets obtained from quantum many-body systems are typically high-dimensional
and complex, yet controlled. Specifically, I am referring to datasets that are obtained by
sampling from simulated quantum systems, such as the transverse-field Ising model that
was used in several research projects presented in this thesis. In such cases, we derive useful
information about the data-generating distribution from the Hamiltonian that describes
the physical system. Furthermore, our knowledge of the physical system and its behavior
provides additional ways to test the validity of predictions obtained with a DL tool. For
instance, in the RBM pruning project presented in chapter 7, we use a number of physical
observables as metrics for model quality and find that they can be more sensitive indicators
than the standard measure for model accuracy.

Another topic that deserves attention is the general approach to DL theory and how
theoretical physics can be useful in this endeavor. As discussed in chapter 2, a rigorous
theoretical treatment of DL systems is limited by their inherent complexity. Most impact-
ful have been targeted experimental studies that reveal specific phenomena and analyze
their causal relationships with certain elements of a DL system. However, such empiri-
cal investigations uncover inter-dependencies, but typically do not explain the underlying
cause. Therefore, I suggest that the next step should be to supplement such analyzes with
a theoretical investigation of a suitable toy model. This is one of the fundamental research
principles in theoretical physics, and while finding a toy model that captures the effect of
interest is a nontrivial task in itself, it is arguably indispensable for developing a precise
characterization of any phenomenon. The analysis of limiting cases, as discussed in sec-
tion 2.1.1, is another standard approach used in theoretical physics that is tremendously
useful when attempting to understand the behavior of a system. For instance, the approach
applied in the study presented in chapter 3 was developed with these guiding principles in
mind: We combined systematic experiments on standard DL systems, which allowed to iso-
late a specific phenomenon in practice, with a theoretical analysis of a possible underlying
cause in a suitable toy-NN model.

The shortcoming of the majority of all theoretical DL studies is that the proposed
treatment applies to either strongly simplified or very specific settings, and therefore re-
mains detached from practical DL. The development of more realistic toy models of both
deep NNs and training data is therefore crucial for progress in DL theory. Similarly, the
takeaway from works that focus on analogies between physics or other fields and DL is
that it is imperative to judiciously evaluate the validity and value of imported ideas in DL
context, bearing in mind that the primary purpose of DL is applications.

A final point regarding progress in DL theory: The current diversity of approaches

102



generates a multitude of disparate results. A necessary next step therefore is the consol-
idation of the accumulating knowledge that would aid the crystallization of a theory. In
physics, the interplay of experiments and theory has been the driving force for concep-
tual advances. Thus, I believe that a thoughtful combination of theoretical analysis and
controlled experiments targeted to a particular phenomenon in DL is the way forward.

Overall, it is fair to say that the current state of DL theory research – physics-inspired
or otherwise – is at its exploration stage. As all beginnings, this is an exciting state to be
in, and it offers plenty of opportunities for those willing to contribute.
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Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

François Chollet et al. Keras. https://keras.io, 2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cambridge Univer-
sity Press, 2001. ISBN 9780521773072. URL https://books.google.ca/books?id=

0RZQtAEACAAJ.

108

http://dx.doi.org/10.1038/ncomms5308
http://dx.doi.org/10.1038/nphys4035
http://dx.doi.org/10.1038/nphys4035
http://dx.doi.org/10.1103/RevModPhys.91.045002
https://www.tensorflow.org/
https://keras.io
https://books.google.ca/books?id=0RZQtAEACAAJ
https://books.google.ca/books?id=0RZQtAEACAAJ


Daniel Amit, Hanoch Gutfreund, and Haim Sompolinsky. Spin-glass models of neural
networks. 32, 09 1985. doi: 10.1103/PhysRevA.32.1007.

Timothy L. H. Watkin, Albrecht Rau, and Michael Biehl. The statistical mechanics of
learning a rule. Rev. Mod. Phys., 65:499–556, Apr 1993. doi: 10.1103/RevModPhys.65.
499. URL https://link.aps.org/doi/10.1103/RevModPhys.65.499.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The loss surfaces of multilayer networks, 2015.

Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: thresholds and al-
gorithms. Advances in Physics, 65(5):453–552, Aug 2016. ISSN 1460-6976. doi: 10.1080/
00018732.2016.1211393. URL http://dx.doi.org/10.1080/00018732.2016.1211393.
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Grégoire Montavon, Geneviève B Orr, and Klaus-Robert Müller, editors, Neural Net-
works: Tricks of the Trade: Second Edition, pages 599–619. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8 32.
URL https://doi.org/10.1007/978-3-642-35289-8{_}32http://link.springer.

com/10.1007/978-3-642-35289-8{_}32.

116

https://scipost.org/10.21468/SciPostPhys.7.1.009
http://dl.acm.org/citation.cfm?id=104279.104290
http://dl.acm.org/citation.cfm?id=104279.104290
http://dx.doi.org/10.1162/neco.2008.04-07-510
http://dx.doi.org/10.1162/neco.2008.04-07-510
http://hdl.handle.net/10012/14196
https://doi.org/10.1007/978-3-642-35289-8{_}32 http://link.springer.com/10.1007/978-3-642-35289-8{_}32
https://doi.org/10.1007/978-3-642-35289-8{_}32 http://link.springer.com/10.1007/978-3-642-35289-8{_}32


T. Tieleman. Training restricted boltzmann machines using approximations to the likeli-
hood gradient. In Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, pages 1064–1071, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
205-4. doi: 10.1145/1390156.1390290. URL http://doi.acm.org/10.1145/1390156.

1390290.

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink,
Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets. Nature, 549:242–246, September 2017.
ISSN 1476-4687. URL https://www.nature.com/articles/nature23879.

Nikolaj Moll, Panagiotis Barkoutsos, Lev S. Bishop, Jerry M. Chow, Andrew Cross,
Daniel J. Egger, Stefan Filipp, Andreas Fuhrer, Jay M. Gambetta, Marc Ganzhorn,
Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian Salis, John
Smolin, Ivano Tavernelli, and Kristan Temme. Quantum optimization using variational
algorithms on near-term quantum devices. Quantum Sci. Technol., 3:030503, 2018. ISSN
2058-9565. URL http://stacks.iop.org/2058-9565/3/i=3/a=030503.

Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran,
Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner,
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Matthew B. Hastings, Iván González, Ann B. Kallin, and Roger G. Melko. Measuring renyi
entanglement entropy in quantum monte carlo simulations. Phys. Rev. Lett., 104:157201,
Apr 2010. URL https://link.aps.org/doi/10.1103/PhysRevLett.104.157201.

Dan Sehayek, Anna Golubeva, Michael S. Albergo, Bohdan Kulchytskyy, Giacomo Torlai,
and Roger G. Melko. Learnability scaling of quantum states: Restricted boltzmann
machines. Phys. Rev. B, 100:195125, Nov 2019. doi: 10.1103/PhysRevB.100.195125.
URL https://link.aps.org/doi/10.1103/PhysRevB.100.195125.

Song Cheng, Jing Chen, and Lei Wang. Information perspective to probabilistic modeling:
Boltzmann machines versus born machines. Entropy, 20(8), 2018. ISSN 1099-4300. doi:
10.3390/e20080583. URL https://www.mdpi.com/1099-4300/20/8/583.

119

https://link.aps.org/doi/10.1103/PhysRevX.8.011006
https://link.aps.org/doi/10.1103/PhysRevX.8.011006
http://arxiv.org/abs/1809.09632
http://dx.doi.org/10.1103/PhysRevB.97.085104
http://dx.doi.org/10.1103/PhysRevB.97.085104
https://link.aps.org/doi/10.1103/PhysRevB.96.205152
https://link.aps.org/doi/10.1103/PhysRevB.96.205152
http://arxiv.org/abs/1807.03910
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050651
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050651
https://link.aps.org/doi/10.1103/PhysRevLett.104.157201
https://link.aps.org/doi/10.1103/PhysRevB.100.195125
https://www.mdpi.com/1099-4300/20/8/583


Giuseppe Carleo, Yusuke Nomura, and Masatoshi Imada. Constructing exact representa-
tions of quantum many-body systems with deep neural networks. Nature Communica-
tions, 9(1):5322, 2018b. doi: 10.1038/s41467-018-07520-3. URL https://doi.org/10.

1038/s41467-018-07520-3.

Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with
artificial neural networks. Science, 355(6325):602–606, 2017b. ISSN 0036-8075. doi:
10.1126/science.aag2302. URL http://science.sciencemag.org/content/355/6325/

602.

Giacomo Torlai, Brian Timar, Evert P.L. van Nieuwenburg, Harry Levine, Ahmed Omran,
Alexander Keesling, Hannes Bernien, Markus Greiner, Vladan Vuletić, Mikhail D. Lukin,
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B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand,
A. S. Buyskikh, A. J. Daley, M. Cramer, M. B. Plenio, R. Blatt, and C. F. Roos.
Efficient tomography of a quantum many-body system. Nature Physics, 13(12):1158–
1162, sep 2017. ISSN 1745-2473. doi: 10.1038/nphys4244. URL http://www.nature.

com/doifinder/10.1038/nphys4244.

Alexander Keesling, Ahmed Omran, Harry Levine, Hannes Bernien, Hannes Pichler, Soon-
won Choi, Rhine Samajdar, Sylvain Schwartz, Pietro Silvi, Subir Sachdev, Peter Zoller,

122

http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
https://doi.org/10.1007/s10994-016-5570-z
https://doi.org/10.1038/s41467-017-00705-2
https://link.aps.org/doi/10.1103/PhysRevX.8.011006
https://link.aps.org/doi/10.1103/PhysRevX.8.011006
https://doi.org/10.1038/nature22362
http://www.nature.com/doifinder/10.1038/nphys4244
http://www.nature.com/doifinder/10.1038/nphys4244


Manuel Endres, Markus Greiner, Vladan Vuletic, and Mikhail D. Lukin. Probing
quantum critical dynamics on a programmable Rydberg simulator. sep 2018. URL
http://arxiv.org/abs/1809.05540.

R. Reed. Pruning algorithms – a survey. IEEE Transactions on Neural Networks, 4(5):
740–747, 1993. doi: 10.1109/72.248452.

Georg Thimm and Emile Fiesler. Evaluating pruning methods. In National Chiao-Tung
University, page 2, 1995.

Nikko Ström. Sparse connection and pruning in large dynamic artificial neural networks.
In Fifth European Conference on Speech Communication and Technology, 1997.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, 2016.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connec-
tions for efficient neural networks, 2015b.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional
neural networks using energy-aware pruning, 2017.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing of deep
neural networks: A tutorial and survey, 2017.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is
the state of neural network pruning?, 2020.

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially
transformed adversarial examples, 2018.

Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. Sparse dnns with improved
adversarial robustness, 2019.

123

http://arxiv.org/abs/1809.05540


APPENDICES

124



Appendix A

Experimental details

In this section we provide experimental details and additional information about the figures
in chapter 3.

A general description of the datasets used in this work can be found in the documen-
tation of the pytorch package torchvision.

A.1 ImageNet data set

ImageNet data preprocessing: In order to decrease the size of the data set and be
able to download it to cloud instances with limited storage, we resized all images in the
data set by keeping their proportions fixed and setting their smallest dimension to 256.
This procedure reduces the accuracy of ResNet models by about 1-2%.

Transformations for ImageNet: We apply standard transformations used for training
on ImageNet:

• RandomResizedCrop(size=224, scale=(0.2, 1.0)) on the training set.

• Resize(256, transforms.CenterCrop(224)) on the test set.
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A.2 ResNet-18 model

In all experiments, we use a standard PyTorch implementation of the ResNet-18 model.
We set the number of weights in the model by changing the number of output channels in
the first convolutional layer (referred to as the model width), while leaving the width ratios
between the first convolutional layer and the subsequent four blocks of the ResNet-18 at
their default values 1 : 2 : 4 : 8. We do not include the weights in the BatchNorm layers
into the total weight count, and we do not sparsify these layers.

A.3 Figures and experiments

Figures 3.1 and 3.6a: All models are trained using SGD with momentum=0.9, Cross-
Entropy loss, and initial learning rate 0.1. The learning rate value and schedule were tuned
for the smallest baseline model. We do not apply early stopping, and we report the best
achieved test accuracy.

For ImageNet, we use weight decay 1e-4, cosine learning rate schedule, and train for
150 epochs. Because of the computational cost of ImageNet experiments, we did not repeat
each run multiple times. We have checked for two data points that the variance in training
and test accuracy for different random seeds is smaller than 0.1%.

For other data sets, we use weight decay 5e-4, train for 300 epochs, and the initial
learning rate 0.1 is decayed at epochs 50, 120 and 200 with gamma=0.1. The reported
results are averages over 3 runs with different random seeds.

In Figure 3.1, the baseline model has width 64 (1e7 weights) for ImageNet, and 18 (9e5
weights) for the other data sets.

In Figure 3.6a, we consider baseline models with base widths [8, 12, 18, 40, 64], corre-
sponding to a total of [1.8e5, 4.0e5, 9.0e5, 4.4e6, 1.1e7] weights respectively.

Figure 3.5: All networks are MLPs with one hidden layer, a total of 3970 weights (base
width is 5), and either (a) ReLU or (b) Linear activation function. The networks are
parametrized according to the standard PyTorch implementation (weights and biases are
randomly initialized from the uniform distribution). We train these models on MNIST for
a fixed number of 300 epochs (ensuring convergence), with SGD optimizer, no momentum,
Cross-Entropy loss, with a constant learning rate 0.1 and mini-batch size 100.
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For ReLU, highest test accuracy (marked by white stars in the plot) is 96.3%, and is
achieved by models with connectivity 0.06 (width 80) or 0.03 (width 160). For Linear, it
is 92.7%, achieved at connectivity 0.13 (width 40). The color scheme is centered at the test
accuracy value attained by the baseline model (approximately 90% in both cases), and its
upper limit is set to the respective highest achieved value. Empty (white) cells correspond
to invalid combinations of connectivity values. Note that the range on the horizontal axis
is not equally spaced.

Figure 3.8: The MLP has one hidden layer, no biases, ReLU activation function, and
NTK-style parametrization. It is trained on a subset of 2048 samples from the MNIST
training set and tested on the full MNIST test set. The input is normalized with pixel
mean and standard deviation as (image - mean)/stdev. We train for 300 epochs with
vanilla SGD using Cross-Entropy loss and batch size 256. The learning rate was tuned
separately for each width. The reported numbers are averages over 10 random seeds.

The number of weights in dense models is (784+10)·width, while all sparse models have
the same number of weights as the smallest dense model (width 8): 6352. The empirical
approximation of the infinite-width kernel is computed on a dense MLP with width 104 at
initialization.
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Appendix B

Additional figures for ResNet-18
experiments

In this section we show additional plots for ResNet-18 experiments.
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Figure B.1: Same data as in Figure 3.6a, but with error bars.
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Figure B.2: Same data as in Figure 3.6a, but plotted as a function of network connectivity
instead of width. Best test accuracy obtained by ResNet-18 models of different width
(number of output channels of the first convolutional layer) and size (total number of
weights, values indicated by marker color and shown in the legend). The rightmost data
point of each color (filled circle) corresponds to the dense baseline model (connectivity 1),
all other data points (crosses) correspond to its wider and sparser variants. For smaller
models (up to 9.0e+5 weights), the performance peaks at similar connectivity values.
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Figure B.3: Training accuracy from the same experiments as in Figures 3.6a and B.2.
Larger models attain 100% training accuracy. For smaller models, the training accuracy
shows a similar behavior as the test accuracy: It increases up to a certain connectivity and
then deteriorates when the connectivity decreases further.
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Appendix C

Model parametrization

Model parametrization includes two aspects: the forward pass, and the parameter initial-
ization.

In standard parametrization, initial weight values for the `-th layer are drawn inde-
pendently from a normal distribution, W

(`)
ij ∼ N (0, σ2

` ), with mean zero and standard

deviation σ` = 1/
√
fan in, where fan in is the number of incoming connections per unit.

In dense models with fully-connected layers, fan in corresponds to the number of units in
the preceding layer, n`−1, and is the same for all n` units in layer `. This initialization is
also called LeCun initialization.

When we apply random static sparsity to such a model, the number of incoming con-
nections per unit in layer ` can be less than n`−1. We account for the sparse connectivity
by setting the standard deviation to the average number of connections per unit, i.e.
σ = 1/

√
p ∗ fan in, where p is the connectivity.

In NTK-style parametrization, weights are initialized from a standard normal, W
(`)
ij ∼

N (0, 1), while 1/
√
fan in is included as a prefactor in the forward pass (i.e., it multiplies

the output of the given layer – see (3.1) for reference). For sparse models, we adjust the
standard deviation in the normal distribution to be σ = 1/

√
p, but leave the forward-pass

prefactor unchanged.
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Appendix D

Sparsity distribution algorithm

The following code implements our algorithm for distributing sparsity over model layers.
Figure 3.4 illustrates the procedure.

def get_ntf(num_to_freeze_tot, num_W, tensor_dims, lnames_sorted):

""" Distribute the total number of weights to freeze over model layers.

Parameters

num_to_freeze_tot (int) - total number of weights to freeze.

num_W (dict) - layer names (keys) and number of weights in layer (vals).

tensor_dims (dict) - layer names (keys) and the dimensions of layer tensor

(vals).↪→

lnames_sorted (list of str) - layer names, sorted by magnitude in descending

order.↪→

Returns

num_to_freeze (list of int) - number of weights to freeze per layer, order

corresponding to lnames_sorted.↪→

"""

num_layers = len(lnames_sorted)

num_to_freeze = np.zeros(num_layers, dtype=int) # init

# list of num. weights in layer, in sorted order (largest first)

num_W_sorted_list = [num_W[lname] for lname in lnames_sorted]

# compute num. weights differences between layers

num_W_diffs = np.diff(num_W_sorted_list)

num_W_diffs = [abs(d) for d in num_W_diffs]
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# auxiliary vector for the following dot product to compute the bins

aux_vect = np.arange( 1,len(num_W_diffs)+1 )

# the bins of the staggered sparsification: array of max. num. of weights that can be

frozen within the given layer before the next-smaller layer gets involved into

sparsification

↪→

↪→

ntf_lims = [np.dot(aux_vect[:k], num_W_diffs[:k]) for k in range(1,num_layers)]

# find in which bin num_to_freeze_tot falls - this gives the number of layers to

sparsify↪→

lim_val, lim_ind = find_ge(ntf_lims, num_to_freeze_tot)

num_layers_to_sparsify = lim_ind+1

# base fill: chunks of num. weights that are frozen in each involved layer until all

involved layers have equal num. weights remaining↪→

base_fill = [sum(num_W_diffs[lind:lim_ind]) for lind in range(lim_ind)]

base_fill.append(0)

# the rest is distributed evenly over all layers involved

rest_tot = num_to_freeze_tot-sum(base_fill)

rest = int(np.floor(rest_tot/num_layers_to_sparsify))

num_to_freeze[:num_layers_to_sparsify] = np.array(base_fill)+rest

# first layer gets the few additional frozen weights when rest_tot is not evenly

divisible by num_layers_to_sparsify↪→

rest_mismatch = rest_tot - rest*num_layers_to_sparsify

num_to_freeze[0]+= rest_mismatch

assert sum(num_to_freeze)==num_to_freeze_tot

return num_to_freeze
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Appendix E

Sparsity distribution in convolutional
layers

The weight tensor of a convolutional layer has 4 dimensions: input, output, kernel width,
kernel height. As discussed in section 3.4.3, when reducing network connectivity, we remove
weights randomly across all dimensions of a weight tensor. A reasonable alternative for
convolutional layers is to remove weights in the input and output dimensions only, leaving
the kernels themselves unchanged. We test this approach on ResNet-18 and find that it
leads to very similar results in general. Specifically for smaller models, removing weights
along all tensor dimensions results in better performance. For the smallest networks (base
widths 8 and 12) and small connectivity, we observed a gap up to 3% in test accuracy
on both CIFAR data sets. Figure E.1 shows results for on CIFAR-100, where the effect
is more pronounced, for models with base widths 8, 12 and 18 (1.8e5, 4.0e5 and 9.0e5
weights, respectively). Each experiment was repeated for 10 random seeds.
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Figure E.1: Test accuracy achieved by ResNet-18 models on CIFAR-100, comparing per-
formance of sparse wide models of different size (number of weights indicated by color and
printed in the legend) given sparsity distribution in the convolutional layers along all layer
dimensions (filled circle) versus along input/output dimensions only (cross).
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Appendix F

Sparsity distribution in ResNet-18

On a coarse level, the ResNet-18 architecture is as follows: one convolutional layer, followed
by four modules, followed by one fully-connected layer; each module comprises two blocks,
and each block contains two convolutional layers. The number of output channels in the
first convolutional layer is the same for the first module, and the ratio of output channel
numbers in the subsequent modules is 1 : 2 : 4 : 8 – we do not change this ratio in our
experiments. When building a family of ResNet-18 models, we vary the number of output
channels of the first convolutional layer, and refer to this as the width of the model, while
the widths of all subsequent layers are set according to the mentioned ratio.

When reducing the connectivity of a ResNet-18 model, we remove weights from each
layer according to layer size. More precisely, we first remove weights from the layer with
the largest number of weights until it reaches the size of the next-smaller layer. We then
proceed with removing weights from these two layers equally, and continue this procedure
until the targeted total number of weights in the network is achieved.

Figures F.1 shows layer-wise sparsity distribution in ResNet-18 with 1.8e5 weights and
various widths as an example.
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Figure F.1: Layer-wise sparsity distribution in ResNet-18 of various widths with 1.8e5
weights, for the CIFAR-100 dataset.
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