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Abstract

Researchers are not consistent in their choice of input and output variables when using
two-stage data envelopment analysis (DEA) models to measure efficiency and effectiveness.
This inconsistency has resulted in the development of many different two-stage DEA models
of efficiency and effectiveness for the financial industry.

In this dissertation, I improved the statistical method from the MASc dissertation (

, ) by adding more features. These features are documented in Chapter 2 on
page 4 and page 5. This statistical method evaluates efficiency and effectiveness models in
the banking industry. It relies on the semi-strong version of the efficient market hypothesis
(EMH). The EMH is motivated by the wisdom of the crowds, discussed in Section 2.2.2.

Previously ( : ), T found that the two-stage DEA model of
( ) is not consistent with the semi-strong EMH for Indian and American banks.
In this dissertation, using my improved statistical method, I show that the two-stage DEA
model of ( ) is not consistent with the semi-strong EMH for banks
in Brazil, Canada, China, India, Japan, Mexico, South Korea and the USA from 2000-
2017. T address the question of whether a universal two-stage DEA model of efficiency and
effectiveness exists by building a variable selection framework.

This variable selection framework automatically generates two-stage DEA models of ef-
ficiency and effectiveness. To do this, it uses the improved statistical method and a genetic
search (GS) algorithm. The variable selection framework finds the best, universal, two-
stage DEA model of efficiency and effectiveness consistent with the semi-strong definition
of EMH for banks in Brazil, Canada, China, India, Japan, Mexico, South Korea and the
USA and from 2000-2017. I investigated the causal relationship between (a) the quantita-
tive measures of efficiency and effectiveness from the best two-stage DEA model generated
by the variable selection framework and (b) Tobin’s Q) ratio, a financial market-based mea-
sure of bank performance. Not only do I provide bank managers with a reasonable proxy
for measuring efficiency and effectiveness, but I also address the question of whether acting
on these input and output variables improves the performance of banks in the financial
market.

Finally, I set up an optimization problem and find an optimal path from the two-stage
DEA model of ( ) to the best two-stage DEA model found by the
variable selection framework. This optimal path provides a set of actionable items for
converting a two-stage DEA model that is not consistent with the semi-strong EMH to
one that is.
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Chapter 1

Introduction

Researchers build many models of efficiency and effectiveness for the financial industry.
These models differ in their choice of input and output variables for measuring efficiency
and effectiveness. How does one select the appropriate model to use?

In this dissertation, I present a new way to validate whether models of efficiency and
effectiveness are consistent with the semi-strong efficient market hypothesis (EMH). In
Chapter 2 and Section 2.2.4, I talk more about the semi-strong EMH. The first version of
this statistical method ( , ) was developed as part of my MASc dissertation at
the University of Waterloo. In this dissertation, I develop a second version of the statistical
method that improves the previous statistical method. This new version of the statistical
method contains newer features. These newer features are documented in Chapter 2 on
pages 4 and 5. In this dissertation, using my improved statistical method, I show that the
two-stage DEA model of ( ) is not consistent with the semi-strong
EMH for banks in Brazil, Canada, China, India, Japan, Mexico, South Korea and the
USA from 2000-2017. This begs the question of whether a universal two-stage DEA model
of efficiency and effectiveness which meets these requirements exists. This dissertation
investigates three research questions.

The first research question addressed in this Ph.D. dissertation is as follows: how does
one build a variable selection framework for finding a universal two-stage DEA
model of efficiency and effectiveness consistent with the semi-strong definition
of EMH in the financial industry for banks in Brazil, Canada, China, India,
Japan, Mexico, South Korea and the USA from 2000-20177 To answer this ques-
tion, I build a variable selection framework using three search algorithms: (a) a surrogate
search optimization (SSO), (b) a genetic search (GS) algorithm, and (c) a multi-armed



bandit algorithm (MABA). I evaluate each of the three search algorithms and select the
best for traversing the search space of efficiency and effectiveness for two-stage DEA mod-
els. I found that the GS performed the best of the three algorithms. More details on
why the GS was preferred over the SSO and the MABA are presented in Chapter 3 and
Section 3.5 of this dissertation. The search space is characterized by different combinations
of input and output variables of efficiency and effectiveness. Using the GS algorithm, the
variable selection framework traverses the search space of two-stage DEA efficiency and
effectiveness models and finds the best one according to the developed statistical method.

The second research question that this dissertation addresses is whether there is a
consistent (independent of geographic location and time-period) choice of input
and output variables for measuring efficiency and effectiveness in the financial
industry using a two-stage DEA model of efficiency and effectiveness. 1 executed the
variable selection framework on bank financial data from eight countries (Brazil, Canada,
China, India, Japan, Mexico, South Korea and the USA) from the year 2000 to 2017. I
present the resulting universal model in Section 4.4 of Chapter 4 of this dissertation. I also
present the input and output dimensions of efficiency and effectiveness frequently consistent
with the semi-strong form of EMH in Section 4.4 of Chapter 4 of this dissertation.

Finally, my third research question is how does one iteratively improve a specific
two-stage DEA model of efficiency and effectiveness which is not consistent with
the semi-strong form of EMH to a model which is consistent with the semi-
strong form of EMH? I address this by generating an optimal path from the two-stage
DEA model of ( ) that is not consistent with the semi-strong EMH
to the best two-stage DEA model as found from my variable selection framework. This is
accomplished by applying a sequence of elementary operation on the model of

( ) that then transforms it to the best model found from my variable selection
framework. An elementary operation includes three options: (1) adding a new variable to
a two-stage DEA model, (2) swapping two variables of a two-stage DEA model, and (3)
removing an existing variable of a two-stage DEA model. The optimal path contains the
least number of steps not consistent with the semi-strong version of the EMH. For example,
consider two paths. Each path consists of 7 elementary operations where the first path has
5 of the 7 elementary operations consistent with the semi-strong EMH; the second path
has 3 of the 7 elementary operations consistent with the semi-strong EMH. The first path
is preferred over the second path in my path-finding algorithm because of its lower number
of steps not consistent with the semi-strong EMH-consistent. Chapter 5 and Section 5.3.3
provides more details on the path generation algorithm. In Section 5.4 of Chapter 5, I
report the optimal path from ( ) to the best two-stage DEA model
of efficiency and effectiveness as found using my variable selection framework.



Chapter 2

A statistical method of goodness on
quantitative models for efficiency
and effectiveness

2.1 Introduction

Ever since the financial crisis of 2008, financial institutions all over the world have been
required to improve their offerings. For instance, in Canada ( , ) in 2014,
the big five banks had a flat trend in productivity over the duration of year, and there
was no improvement in their efficiency compared to the previous year. These big five
banks must become more effective and efficient in their offerings. When banks examine
their current state, they need to make difficult choices about how to allocate their limited
resources ( , ). Researchers agree that a bank should be effective (“do the
right things”) and efficient (“do the things right”); however, there is no consensus or
agreement on what these “right things” are. It is very difficult, if not impossible, to

compare studies of efficiency and effectiveness ( , ; , ), since few
studies use the same definition. This inconsistent definition of efficiency and effectiveness
has led to many different ( , : , ) approaches to

measuring efficiency and effectiveness quantitatively. Inconsistent quantitative models of
efficiency and effectiveness factor into evaluating publicly traded banks ( ,

).

Given the current state of model generation, a natural overarching research question
emerges: How can a model of banks’ efficiency and effectiveness be quantitatively validated?

3



Fortunately, for publicly traded banks, financial markets may be viewed as a measure of
the wisdom of crowds ( , ); where the measure is the stock price or another
shareholder value creation metric (SHVCM), such as the Tobin’s Q) ratio. I acknowledge
that other factors may impact a firm’s financial performance. However, if a particular firm
is deemed efficient and effective by market traders, this firm will financially outperform
another firm that is less efficient or effective. In this dissertation, I propose a method to
validate models of efficiency and effectiveness using financial market data. In particular,
the contributions of this chapter are as follows:

1. I propose a statistical method to evaluate quantitative models of efficiency and ef-
fectiveness.

Most financial institutions are publicly traded firms. Therefore, they disclose
their operating parameters in quarterly or annual financial statements. Fur-
thermore, as these firms are publicly traded, their market values are known
instantaneously at any point in time. Using the semi-strong Efficient Market
Hypothesis (EMH) (discussed in Section 2.2.4), the financial markets identify
firms that are effective, “doing the right things,” and efficient, “doing things
right.” With these high-level definitions of effectiveness and efficiency, a firm
that is “doing the right things right” is both efficient and effective—the market
values such firms higher than firms which are not efficient and effective accord-
ing to the EMH. The proposed statistical method in this research reports the
model that can best explain the correlation between SHVCM and the efficiency
and effectiveness scores. The statistical method finds the best model from a
family of models (I describe this procedure in detail in Section 2.3). The statis-
tical method estimates the quality of each model relative to the others using an
information criterion. The method infers whether the correlation of efficiency
and effectiveness in the selected model is consistent with the semi-strong EMH
by determining if it contains statistically significant parameters and a positive
correlation between the selected SHVCM and the determined effectiveness and
efficiency measures. I refer to this selected model as the best model.

I developed this method to validate models of efficiency and effectiveness as part
of my MASc work at the University of Waterloo. However, in my Ph.D., I im-
proved this method by adding new features such as: (1) Standard errors can now
also be computed as robust standard errors assuming that the error terms in the
panel data are heteroskedastic (I define heteroskedastic in the Appendix A of
this dissertation), (2) Standard errors can now also be computed as cluster stan-
dard errors assuming that the error terms in the panel data are heteroskedastic

4



and autocorreleated (I define heteroskedastic and autocorreleated in the Ap-
pendix A of this dissertation) within groups, (3) Introduction of random effects
model, (4) the Hausman test (I define Hausman test in the Appendix A of this
dissertation), (5) the Mundlak test (I define Mundlak in the Appendix A of
this dissertation) and (6) the ( ) and both

( ) and ( ) of the Fisher panel unit root techniques are employed
in this dissertation. The Hausman test is used in the statistical method to de-
termine whether to use a fixed-effects model or random-effects model when the
error terms are homoskedastic (I define homoskedastic in the Appendix A of
this dissertation). The Mundlak test is used in the statistical method to deter-
mine whether to use fixed effects or random effects when the error terms are
heteroskedastic and autocorrelated within the cross-sectional units of the panel
data.

2. I determine whether the quantitative model of efficiency and effectiveness, proposed
for the banking industry by ( ), is consistent with the semi-
strong EMH using my statistical method.

To control for firm size and equities, I use the Tobin’s Q ratio ( : ) as
discussed in Section 2.4.1 of this dissertation. In my MASc thesis ( :

) T executed the statistical method separately on a subset of all banks
in India for 2009 to 2013 and on a subset of all banks in the USA for 2007 to
2015. I determined that the two-stage DEA model of efficiency and effectiveness
proposed for the banking industry by ( ), is not consistent
with the semi-strong EMH according to my statistical method.

In this dissertation, for Brazil, Canada, China, India, Japan, Mexico, South
Korea and the USA for 2000-2017 (18 time periods), [ first averaged the input
and output dimensions of efficiency and effectiveness proposed by

( ) across all the banks based on the banks’ market capital. In
Section 2.4.1 of this chapter I describe this step in more detail. Instead of
running the statistical method separately for each of the countries as I did
previously in my MASc, I now execute my general statistical method once for
all the countries. More details about this are mentioned in Section 2.4 of this
chapter.

The intended audience for the work done in this chapter are researchers validating existing
or making new models of efficiency and effectiveness. Also, banks that like to assess whether
their current model of efficiency and effectiveness is consistent with the semi-strong version



of the EMH can use the statistical method of this chapter. In the remainder of this chapter,
I first discuss related work in Section 2.2. In Section 2.3, I present my statistical method
of goodness based on the semi-strong EMH. In Section 2.4, I present my case study and
finally in Section 2.5, I present the result of my case study followed by managerial insight.

2.2 Related work

I highlight in Section 2.2.1 that there are many quantitative models of efficiency and
effectiveness. Due to many quantitative models of efficiency and effectiveness how does
one compare one model against an another?

Section 2.2.2 highlights work by researchers that consider financial data as crowd-
sourced. In Section 2.2.3, I mention related work to my case study, and finally, in Sec-
tion 2.2.4, T highlight related work in support of the semi-strong version of the EMH.

2.2.1 The need for validating quantitative models of efficiency
and effectiveness

( ) mentions that firms and individuals agree that they would like to be highly
effective and efficient. However, there is no agreement or consensus ( ,
; , ) on how to qualitatively define efficiency and effectiveness. There are
many models of efficiency and effectiveness due to the lack of consensus on the qual-
itative definition of efficiency and effectiveness. ( ) provides a taxonomy of
different types of qualitative models (univariate, multivariate, normative, deductive) of
efficiency and effectiveness. There is minimal overlap between these models.

( ) mentions that measuring organizational effectiveness is very much researcher-
dependent. Researchers may select few variables to measure organizational effectiveness.
On other occasions, when researchers select many variables to measure effectiveness, they
may miss out on the overall context, i.e., researchers may reuse variables from one industry
sector in another sector without understanding the overall context. Some researchers have
further divided organizational effectiveness into financial measures ( ,

) such as using profitability or operational measures ( , ;
, ) such as using productivity or structural measures (
, ; , ) such as using innovation when measuring or-
ganizational effectiveness. In literature, I find the lack of consensus on the qualitative
definition of organizational efficiency and effectiveness echoed by early researchers such



as ( ; ) and also recent researchers such as
(2017).

Due to the lack of agreement on a qualitative definition, it is not surprising that there
is no consensus on quantitative models ( , : , ) of
efficiency and effectiveness. One drawback of the lack of consensus amongst quantitative
models is that one firm may be characterized as efficient and effective in one model but
not efficient or not effective in another.

( ) mentioned that achieving high efficiency and effectiveness is a global ob-
jective among firms. If a manager is interested in improving his firm, each model may lead
to different measures of efficiency or effectiveness, therefore suggesting different corrective
actions. I partially address the lack of consistency by proposing a statistical method that
determines if such models are consistent with the semi-strong EMH. When evaluating and
comparing two different quantitative models, I noticed that the selection of input and
output variables are subjective depending on the stakeholders. For instance,

( ) mention that deciding whether a variable is considered input or output in a
quantitative model of efficiency is based on the “desirability” of the variable. According to
the authors, desirable variables are considered outputs, and those deemed undesirable are
considered inputs. For example, a firm owner is more interested in running their organiza-
tion with a smaller number of employees (a less desirable, input variable when measuring
efficiency). In contrast, a branch manager may be interested in having more employees
(a more desirable, output variable when measuring efficiency). Both the stakeholders may
claim their models are correct when measuring performance.

In some cases, such as production ( , ), the input and the output variables
for measuring efficiency are well defined. However, in the financial industry, there are many
competing models ( , : , : , ;

, ) which each have their own definition of efficiency. For instance,

( ) propose two different definitions of efficiency: (1) economic efficiency and (2)
risk efficiency. Each type includes a different choice of input and output variables. They
mention that the loans provided by banks can be classified as good loans that can generate
income for the bank or bad loans that generate no income for the bank. For example
the authors mention in their paper that economic efficiency comes from the production
of good outputs, namely interest and non-interest income, while credit risk management
efficiency is related to the minimization of the non-performing loans that can be considered
as an unintended or bad output. ( ) mentions that their study is
limited by the fact that they chose only one definition (as defined by choice of input and
output variables) of efficiency when measuring the performance of Indian banks. Instead,
additional insights can be drawn by employing different models based on other input and
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output variables. ( ) proposes that researchers do not define efficiency
correctly when measuring the performance of Indian banks. For instance,

( ) defines social efficiency which is a measure of social goodness (empowering women,
for example) and proposes using the number of accounts owned by women as an output
variable when measuring the efficiency of Indian banks.

With the plethora of model types, inputs, and outputs, evaluating and comparing these
models is key. I propose a new method for comparing models of efficiency and effectiveness.
Different quantitative models of efficiency and effectiveness lead to different performance
measures, leaving a firm manager at a loss as to which model to use. My research helps
determine which model of efficiency and effectiveness is consistent with the semi-strong
EMH in a financial setting.

2.2.2 Considering financial data as crowdsourced

My statistical method uses correlation to determine how well the efficiency and the effec-
tiveness measures computed from quantitative models matches financial data. Financial
data of securities such as: stock price, market capitalization, and Tobin’s QQ ratio, is viewed
as crowdsourced measures because the price of a security is determined by the traders that
are trading at that point in time.

This idea of comparing quantitative models using correlation against crowdsourced
data that I am using in my statistical method is not new. For example,
( ) talks about validating unsupervised clustering algorithms using crowdsourced data.
The learning task (classification, clustering, or semi-supervised) is first performed using
an automated technique, akin to the quantitative models of efficiency and effectiveness
in ( ). The same task, is then executed on a smaller-scale, by humans
(crowdsourcing). The results are compared (using correlation) and the accuracy (using
root mean square error) is calculated between both the approaches.

In ( ), authors propose a method for identifying influential bloggers
in the blogosphere. They evaluate their automatic technique by comparing their results
to the crowdsourced data generated on Digg. They assume that the number of ‘diggs’,
humans have assigned to the posts submitted by influential bloggers should be higher and
based on this assumption validate their findings. ( ) mentions that Epagogix
(software to predict box-office results of Hollywood movies before release) is correlated with
the Hollywood Stock Exchange (HSX). Where HSX is an information market to predict
box-office results which provides crowdsourced data.



2.2.3 Work related to our case study

( ) ( ) use the Tobin’s Q ratio as the dependent
variable in a regression-based study to determine the financial performance of a firm, like
my work. However, unlike my work, the authors do not use their studies to validate
models. Also, ( ) use a known functional relation in their regression
while I do not know the form of that relation; therefore, I use stepwise regression to find
one. ( ) use a database of eco-efficiency values, while I use two-stage
data envelopment analysis (DEA) to determine firms’ efficiency and effectiveness scores
as suggested by ( ). I define and discuss the two-stage DEA in
Section 2.4.2 of this dissertation.

Efficiency in the banking industry is a topic already considered in the literature.

( ); ( ); ( ) study the influence of

a bank’s efficiency scores on its stock price. ( ) consider Singaporean
banks, ( ) consider European banks from five countries and

( ) consider Spanish banks. None of the these papers consider effectiveness; they only

consider efficiency. In this chapter, I am concerned with both efficiency and effectiveness.

Additionally, linear regression models are also used for predicting SHVCM.
( ); ( ); ( ) use a linear model in which a
SHVCM is a function of various bank-specific, industry-specific, and other macroeconomic
variables and DEA scores. However, the statistical method proposed in my dissertation
searches for the best model among a family of models. Using the work of
( ); ( ); ( ) as motivation for my case
study, I use a family of linear models and find the best model using stepwise regression

and the Akaike Information Criterion (AIC) ( : ).

The case study is an application of my proposed statistical method. The case study
shows that the quantitative model proposed by ( ) is not consistent
with the semi-strong EMH using market data. One may argue that the EMH should not be
used as a benchmark for quantitative models since it is a hypothesis. In the next Section,
I show that even though the EMH is a hypothesis, it is a valid benchmark for models of
efficiency and effectiveness.

2.2.4 Arguments in support of the semi-strong EMH

There are three versions of the EMH: a) weak, b) semi-strong, and c) strong form. The
weak form of the EMH claims that financial asset prices reflect all past publicly available



information of the financial asset. The semi-strong form of the EMH claims that prices
reflect all publicly available information and that prices instantly change to reflect new
public information. In a semi-strong efficient market one would expect that when new and
relevant information is made available then this new information is instantly absorbed in
the determination of the SHVCM. One would also expect that any relevant information in
the financial statements on day of disclosure will be correlated with the the SHCVM. A
bank that is efficient and effective, i.e., doing the right things right would have its efficiency
and effectiveness scores correlated with its Tobin’s Q ratio. The strong form of the EMH
additionally claims that prices instantly reflect even private, “insider,” information.

I use the semi-strong version of EMH primarily because of data availability in the public
domain and because I have no access to private or insider information. I describe the data
that T use in the case study of this paper in greater detail in Section 2.4.1. The efficient
market hypothesis is associated with the idea of a “random walk” ( , ). The idea
behind the random walk is that changes in future stock prices react to future news and
are entirely independent of present price changes. The news is unpredictable ( ,

; , ). Therefore, the resulting price changes are unpredictable
and random. ( ) mentions that the random walk theory implies that a series
of stock price changes have no memory. The history of the series cannot be used to
predict the future. This argument is supported in the correlation study by ( )
in which coefficients computed for successive price changes were nearly zero. ( )
argues that if prices are irrational and if market returns are predictable, actively managed
investment funds should easily outperform a passive index funds that buy and hold a
market portfolio. The most persuasive evidence suggesting that markets are efficient is
that professional investors do not beat the market ( , ). There is extensive
literature ( , ) that shows professional investment managers do not outperform
index funds. Recently, Warren Buffett won a $1 million dollar bet by showing a market
index fund performed better than a basket of hedge funds ( , ). ( )
mentions that, due to market efficiency, information in the public domain gets quickly
consumed, resulting in no arbitrage opportunities.

Current EMH theory is valid because it has not yet been proven false. To my knowledge,
there is no empirical case study or observation that has disproven the EMH ( , ).
Given the volume of empirical and analytical work that suggests the EMH is true or mostly
true (i.e., markets correct any inefficiencies within a short period), I would venture to say
that benchmarking quantitative efficiency and effectiveness models against the EMH is
better than simply accepting the models at face value.
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2.3 General statistical method

I now present the main contribution of this chapter: the general statistical method of
goodness for quantitative models of efficiency and effectiveness based on the semi-strong
EMH. I use the word general because the statistical method is independent of any of the
following: 1) a specific information criterion, 2) a specific family of models, and 3) specific
parameter estimation techniques. The three points mentioned above are grouped inside
the “Others” variable in the algorithm that follows. The “Others” variable is one of the
preconditions of the general statistical method. I discuss the preconditions of the general
statistical method in detail in the next subsection. The statistical method is also agnostic
to how the efficiency and the effectiveness scores are computed. In my case study in
Section 2.4, I compute the efficiency and the effectiveness scores using the two-stage DEA
model of efficiency and effectiveness, however, the efficiency and the effectiveness scores
can be computed from any other models as well.

2.3.1 Inputs

In this section, I describe the preconditions of my statistical method in greater detail. As
seen in the Algorithm 1 of this chapter, my input is categorized into three separate groups.
These three groups are: 1) Data from quantitative models, 2) Data from SHVCM, and 3)
‘Others.” In the subsections that follow, I categorize 1) and 2) as Data and 3) as auxiliary
inputs for running the general statistical method.

Data

I highlight the fact that the proposed general statistical method is agnostic to how the data
is generated. The quantitative measures of efficiency and effectiveness can be generated
via DEA or Stochastic Frontier Analysis (SFA) or some other quantitative models.

The data from the quantitative models are made up of: Xefiiciency € R*7 which
refers to the efficiency scores of N DMUs across 1 time periods; Xegectiveness € R <7
which refers to the effectiveness scores of N DMUs across T' time periods. In the case
study that follows in Section 2.4, N is 8 and refers to the 8 countries, i.e., Brazil, Canada,
China, India, Japan, Mexico, South Korea and the USA and T is 18 and refers to the
18 years in 2000-2017. Regarding the timeline of events, my general statistical method
is executed only after determining the quantitative scores of efficiency and effectiveness.
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These efficiency and effectiveness scores with their lags serve as independent variables when
regressed against the SHVCM, denoted by Ysgvewm in the Algorithm 1.

Ysuvem € RN*T consists of market-derived estimates, i.e., the value of the firm. Some
examples of SHVCM are the stock price, the market capital, or the Tobin’s Q ratio. In my
general statistical method, there is no restriction or limit on what is the selected SHVCM.
For example, in my case study, see Section 2.4, I execute my general statistical method
once by averaging out the input and output variables of efficiency and effectiveness for
banks in each of the 18 time periods for all the countries based on their market capital. I
use the Tobin’s Q ratio as my SHVCM in the case study.

Auxiliary inputs for running the general statistical method

The general statistical method requires other auxiliary inputs as part of its preconditions.
In the Algorithm 1 of this chapter, I define these auxiliary inputs as ‘Others.” I now provide
a brief description of some of these auxiliary inputs:

Calculating standard errors: I provide three options for calculating standard errors:
(1) Assuming that the idiosyncratic errors in the panel data regression are homoskedastic,
then the homoscedasticity-only standard errors are computed. (2) Assuming that the
idiosyncratic errors in the panel data regression are heteroskedastic, then robust standard
errors are calculated. (3) Assuming that the idiosyncratic errors in the panel data regression
is heteroskedastic and potentially correlated over time within a country, I compute the
heteroskedasticity-and-autocorrelation-robust (HAR) standard errors, also referred to as
clustered standard errors. For instance, in my case study, see Section 2.4, I use (3) because,
like HAR in regression with cross-sectional data, clustered standard errors are valid whether
or not there is heteroskedasticity, autocorrelation, or both ( , ).

Family of models: Is denoted by F, and is the set of models supplied by the user. There
is no restriction on this family of models. This could be a linear or a non-linear family of
models. On this family of models supplied by the user, I find the best functional model
using some criterion. For example, in the case study, I use a family of linear models.

Criterion: My general statistical method also takes in as input the criterion, i.e., a
way to determine the best model from a family of models. The criterion is an estimator
of the relative quality of statistical models for a given set of data. Given a collection of
models for the data, the criterion estimates the quality of each model, relative to each of
the other models. My statistical method is independent and not fixed to any criterion.
Some commonly used criterions are the AIC, Bayesian Information Criterion (BIC), the
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sum of square errors, R?, or the adjusted R2. For example, in the case study, I use the
AIC criterion.

Number of lags: Each measure of efficiency and effectiveness may, in turn, contain
lagged values, meaning that the current market valuation of a firm may be a function
of the previous period’s efficiency and effectiveness values. As input, I take in as input a
number that denotes the number of lags to be used for efficiency and effectiveness measures.
Line 2 of the Algorithm 1 of this chapter uses this number of lags in the creation of the
panel data. For example, in the case study, I use two lags.
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Algorithm 1 Algorithm of General Statistical Method (GSM)
Preconditions:

e Data from quantitative model: Xeficiency € RV ™7, Xeftectiveness € R <7

N is the number of DMU and T is the total number of time periods

e Data from SHVCM: Ysuveum € RANXT
N is the number of DMU and T is the total number of time periods

e Others: Standard error assumptions, Criterion, Number of lags, Family of Models
(F), Parameter estimation technique

Postconditions:

e Best Fitted Model: Coefficients of best fitted model as judged by the criterion

I: procedure GSP(Xefﬁciency7Xeﬁ'ectiveness7YSHVCMyOtheTS)

2 PanelData < reshape(Xeiciency s Xeffectiveness, Y suvem, Others)
3 BestFittedModel < ()

4 for each f € 7 do

5: ffe < fit f on PanelData using fixed-effect and Others

) LI

7

8

9

Jre < fit f on PanelData using random-effect and Others
Statistic < HausmanTestOrMundlakTest( fr.,fre)
if isNullHypothesisTrue(Statistic) then

. Fe T
10: else
11: < fre
12: if (iSFittedModelBetterUsingCriterion(J?,BestF ittedModel ,Criterion) then
13: BestFittedModel < f

14: return BestFitted M odel
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2.3.2 Algorithm

I use the stepwise linear regression algorithm ( , ) to find the
best model. The data, as defined in Section 2.3.1, of this paper is first reshaped into
panel data. This is shown in line 2 of the Algorithm 1. The panel data is in RNT*G+K),
Again, N refers to the number of decision making units (DMUs, countries in my case),
and 7T is the total number of periods/stages. The 3 indicates the three columns in the
panel data of 1) ‘Time Periods’ (refers to each time from 1,...,7T"), 2) Decision-Making
Unit (DMU) id, and 3) the dependent SHVCM. K is the number of columns that make up
the efficiency and the effectiveness and their lags. The user specifies the family of models
F. I search only within F and find the best model. For each model, f, in the family
of models, I first fit the model on the panel data using fixed-effect, f;., and then using
random-effect, ﬁe. Fixed-effect accounts for unobserved heterogeneity. The random-effect
model is a special case of fixed-effect and allows for individual effects. If the idiosyncratic
errors in the panel data regression are homoskedastic, I perform the Hausman test to
discriminate between the fixed and random-effects models. The null hypothesis of the
Hausman test is that both fixed-effect and random-effect are similar and will yield similar
coefficients. The alternative hypothesis is that the unobserved heterogeneity is fixed and
not random, and the fixed-effects model is preferred over the random-effects model on
rejection of the null hypothesis. On the other hand, if the idiosyncratic errors in the
panel are HAR, I use the Mundlak test ( , ) when deciding between fixed
or random effects. The Mundlak approach suggests estimating the following regression:
vie = o+ BXiy + vXi + i + i where X; are country specific means. A Wald joint
significance test (I define Wald joint significance test in the Appendix A of this dissertation)
on 7 is performed. The null hypothesis is set to Hy : v = 0 assuming the random effects
model ( ; ).

Stepwise regression ( , : , ) is a sys-
tematic method for adding and removing terms from a multilinear model based on their
statistical significance in a regression. The algorithm can be executed either using forward
selection or backward elimination techniques. The algorithm begins with an initial model
and then compares the explanatory power of incrementally larger (when performed using
forward selection) or smaller (when performed using backward elimination) models. At
each step, the p-value of the criterion is computed to test models with and without a po-
tential term. If a term is not currently in the model, the null hypothesis is that the term
would have a zero coefficient if added to the model. If there is sufficient evidence to reject
the null hypothesis, the term is added to the model. Conversely, if a term is currently in
the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient
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evidence to reject the null hypothesis, the term is removed from the model.

2.3.3 Outputs and relation with semi-strong EMH

The output of the general statistical model is the best model defined as BestFitted M odel
in the algorithm. This best model is chosen from a family of models, F. The coefficients of
the best-fitted model are checked for statistical significance at 5% and whether the inferred
correlations are consistent with the semi-strong EMH.

A firm that is “doing the right things right” is both efficient and effective, and according
to the EMH, the market values such firms higher than firms that are “not doing the right
things right.” Given a SHVCM, quantitative measures of efficiency and effectiveness, and
associated auxiliary inputs; my proposed method determines a statistical correlation be-
tween the quantitative measure of efficiency and effectiveness and the SHVCM. According
to the EMH, the correlation must be positive and statistically significant for the quanti-

tative measures of efficiency and effectiveness. If not, then the measures are inconsistent
with the EMH.

2.4 Case study

I now present a case study in which I test the validity of the model of efficiency and

effectiveness proposed by ( ). When proposing their model,
( ), only consider banks in India. As the authors propose the model for
India, I in my MASc ( , ) work tested ( )’s two-stage

DEA model with Indian banks and fount it to be not consistent with the semi-strong
version of the EMH. As a sanity check, I also tested the model for eight other countries
separately (Brazil, Canada, China, Japan, Mexico, Nigeria, South Korea, USA). I found
that the model is not consistent for any of the above countries. In this dissertation, I
further investigate ( )’s two-stage DEA model by combining the
banks of Brazil, Canada, China, India, Japan, Mexico, South Korea and the USA for
time period 2000-2017. For each country and for each time period, I combine all the
countries’ banks by using the available market capital data. Before discussing our case,
I first acknowledge that the actual selection of an SHVCM and the parameters to the
general statistical method should be done by an industry expert and not necessarily by
me. The domain experts can use their innate knowledge and select the appropriate values
for the general statistical method. As the sector changes, only the inputs of the statistical
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method need to change and not the method itself. In Section 2.4.3, I provide our rationale
and choice of values to the general statistical method when presenting the results of my
case study. I generate the efficiency and effectiveness measures using the two-stage DEA
( , : , ) model. T use the exact definition of efficiency and
effectiveness proposed by ( ) where two DEA models are run, one
for the first stage (efficiency is determined), and another for the second stage (effectiveness
is determined). The outputs of the first stage are inputs of the second stage. Note that
some authors use alternative definitions of a two-stage DEA model (
, ) and I highlight the differences in the two definitions of two stage

DEA in Section 2.4.2 of this paper. By using the two-stage DEA model of efficiency and
effectiveness, I am also consistent with earlier work of other researchers that have used
the two-stage DEA model of efficiency and effectiveness ( , ;

, : , ) in generating quantitative results of efficiency and
effectiveness.

2.4.1 Data

I collected data for this dissertation from Eikon. FEikon is a financial information service
from ( ) that provides company data, financial market data, news, country, and
economic data, analytics, and trading tools. From Eikon, I collected the financial banking
data of eight countries for the time period of 2000 to 2017. I used the Global Industry
Classification System Codes (GICS) when searching for banks across the eight countries.
“GICS is a collaboration between Standard & Poor’s and Morgan Stanley Capital Inter-
national. GICS codes are 8-digit codes that correspond to various business or industrial
activities, such as Oil & Gas Drilling or Wireless Telecommunication Services. GICS is
based upon a classification of economic sectors, which can be further subdivided into a hi-
erarchy of industry groups, industries, and sub-industries. In total, there are 10 economic
sectors, 23 industry groups, 59 industries, and 123 sub-industries categories, to date”.
The GCIS code for banks is 4010. For the time periods that I consider from 2000 to 2017,
Brazil contains 22 banks, India contains 28 banks, China contains 10 banks, USA contains
71 banks, Canada contains 13 banks, Mexico contains 8 banks, South Korea contains 6
banks and Japan contains 83 banks. For each country and for each bank and for each time
period, I collected 55 dimensions of financial data. 55 dimensions are the dimensions that
are common across the banks of all 8 countries and for all the time periods that I consider.
This data is used in Chapter 3 and Chapter 4, however, for this chapter, I do not use all

http://fin.ncue.edu.tw/compustat/manual/globdata/Part3d.pdf
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the 55 dimensions and instead use only 7 dimensions recommended by
(2010).

Eikon provides the option to convert all the local currency data into U.S. dollars and
adjust for inflation. The firm’s market value and its asset value used in calculating the
Tobin’s Q ratio are both collected from Eikon. In my case study, I choose the Tobin’s Q
ratio as the SHVCM. Tobins’ Q ratio is used by ( ) to proxy for
a firm value. The Tobin’s Q ratio is defined as a ratio of the market value of a firm over
the value of its assets. The Tobin’s Q) ratio allows us to compare firms of various sizes
and asset values ( , ), something share price and market value
alone do not. A high value of Tobin’s ) ratio is associated with higher efficiency of the firm
and which must result in higher financial performance of firms ( ,

). Other studies ( , : , :

, ) also use Tobin’s Q ratio as a financial measurement for firms’
performance. Some other studies ( , ) have used other SHVCM and
have found that the stock market assigns prices to shares that include all the relevant
publicly available information. Due to this, ( ) have considered the stock
price as a good proxy for a bank’s efficiency in an efficient financial market.

( ); ( ) mention that efficiency is derived from information
available in the public domain. As per the semi-strong definition of the EMH, the same
information in the public domain is also used for determining the stock price and other
financial metrics contingent on the stock price, such as the Tobin’s ) ratio. Hence I
hypothesize that there must be some correlation between the SHVCM and the banking
performance in an efficient financial market. The studies mentioned above only look at
efficiency in their regression model, and I also incorporate effectiveness. The firm’s market
value and its asset value used in calculating the Tobin’s QQ ratio are both collected from
Eikon.

Traditionally, Tobin’s Q) ratio has been used to determine whether a firm is overvalued
or undervalued ( , ). For instance, if Tobin’s Q ratio is greater
than 1, then the bank is overvalued. If Tobin’s Q ratio of a bank is less than 1 then,
the bank is undervalued. In this dissertation, I do not use Tobin’s Q ratio to identify
overvalued or undervalued banks. I use Tobin’s Q ratio to compare large and small banks
alike. Tobin’s Q ratio may be the most appropriate SHVCM to use in my study because it
controls for bank size, while other SHVCMs may depend on a bank’s size.

( ) mention that better (efficient and effective) firms create more economic value from
a given quantity of assets, i.e., better firms have a higher Tobin’s Q) ratio compared to firms
that are less efficient and less effective. ( ) also mention that Tobin’s
Q ratio is a forward-looking measure that includes the value of a firm’s future cash flows,
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which are capitalized in the market value of the firm. Table C.1 suggests that Tobin’s Q
ratios in the panel data are non-stationary (I define stationary and non-stationary time
series in the Appendix A of this dissertation) due to the presence of the unit root. In a
weak form of the EMH, any shock to stock price or Tobin’s ) ratio due to news or political
events must be transitory, resulting in a random walk process. A random walk process
is usually a non-stationary process, and the presence of unit roots establishes the weak
form of the market efficiency ( : ). Now that the weak form of the market
efficiency has been established, in this chapter, I validate whether a two-stage DEA model
of efficiency and effectiveness is consistent with the semi-strong version of the EMH. Later
in Chapter 3, I build models of efficiency and effectiveness consistent with the semi-strong
version of the EMH. The prices are end-of-day closing prices at the end of the fiscal year
when calculating the Tobin’s Q ratio. I fill any missing entries using a moving window
mean of length 3.

For every country, I then perform a weighted average based on the market capital for
that year. I repeat the process also for the Tobin’s Q ratio. I do this because the financial
market is a collection of firms that is not necessarily representative of the economy as a
whole.? Firms with a higher market capital dictate the performance of the whole financial
market. This is one reason why we see a divide and a disconnect between the economy
and the performance of the financial markets. Table 2.1 describe the dimensions of

( ) from Eikon along with the mean and standard deviation of the input
and output dimensions of efficiency and effectiveness. Table 2.1 also lists the mean and
standard deviation of Tobin’s Q) ratio.

In the Appendix B, Table B.1 and Table B.2 summarizes the mean and standard de-
viation of all the 55 dimensions from Eikon and for Brazil, Canada, China, India, Japan,
Mexico, South Korea and the USA and for time period 2000-2017. Data from these tables
is used in Chapter 4 when I consider all the 55 dimensions from Eikon in finding a uni-
versal two-stage DEA model of efficiency and effectiveness for the above countries and for
timeperiod 2000-2017.

thtps://knowledge.wharton.upenn.edu/article/why—is—the—stock—market—so—strong—when
-the-economy-is-weak/
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Table 2.1 Mean and standard deviation of input and output variables used in

( ) across Brazil, Canada, China, India, Japan, Mexico, South Korea and the
USA and for time period 2000-2017
Brazil India China USA Canada Mexico SouthKorea Japan
Total Assets, Reported (mean) 15505474539.06 | 62012169859.04 | 1214148198097.82 | 1146487076763.28 | 427797504191.02 | 38177690344.25 | 195205366056.09 | 722660173677.39
Total Assets, Reported (std dev) 45697940627.89 | 897955856811.74 309184644754.08 | 195826 9.31 1016486¢ 4.17 | 3t

56579447.02
Full-Time Employees (mean) C
Full-Time Employees (std dev)
Net Loans (mean) 6093079849.32 | 39092061228.24
Net Loans (std dev) 9710112037.08 | 3309 82.36 | 4680378382¢ 1287717915
Other Earning Assets, Total (mean) 9600252776.41 | 19903479396.11 | 32683916: 6 51216352
Other Earning Assets, Total (std dev) 8189.11 | 18043786142.34 | 230638567340.68 1447078542
Long Term Investments (mean) 2.04 545006250.21 1084638186.01 6103757
Long Term Investments (std dev) 561328155.28 860891368.27 711387543.82 4202849351.19
Non-Interest Income, Bank (mean) 1274569466.89 9125309026.85 25204158687.13
Non-Interest Income, Bank (std dev) 1490084247.83 4

€ 10610.9:
11¢ 5 8122.11
206119599977.13 | 17594101744.68 | 134042911939.01 | 310033510429.56
101336773177.33 | 5869632706.74 | 68786919973.49 | 129724106093.70
14886641786.97 | 39798792447.62 | 309393708110.21
7991447261.65 | 23425654837.08 | 151172893978.31
255840402.07 406014828.14 3343965999.38
223532462.17 229434423.04 1979301047.10
1013800753.59 8150989504.85 8349764721.25
8297582284.10 6398710242.17 2661315841.54 435705165.25 5673852135.58 3947149427.03
Interest Income, Bank (mean) 472167 46344214146.62 40338242283.90 12535104947.25 | 3237312935.84 8431821025.29 9228791349.14
Interest Income, Bank (std dev) 4269107681.16 | 3865316154.2: 34461120688.87 10702768879.96 4044809615.63 745751893.88 4580522308.79 3786322112.71
Tobin’s Q ratio (mean) 0.222678 0.203511 0.254289 0.209894 0.387389 0.402661 0.421956 0.431717
Tobin’s Q ratio (std dev) 0.155121 0.147646 0.247316 0.211861 0.312029 0.325002 0.354690 0.388474

46840207

Variable Description:

e Total Assets, Reported (measured as value of fixed asset in USA dollars)
e Full-Time Employees (measured as number of employees)
e Net Loans (measured as sum of deposits and borrowings in USA dollars)

e Other Earning Assets, Total (measured as advances/loans to general public in USA
dollars)

e Non-Interest Income, Bank (measured as income from commission and brokerage etc

in USA dollars)

e Interest Income, Bank (measured as difference between interest income and interest
expense in USA dollars)

Finally, this dissertation builds models of efficiency and effectiveness and validates these
models against the semi-strong version of the EMH. For this reason, I do not use the raw
data from Eikon and regress it against Tobin’s Q ratio.

2.4.2 Two-stage DEA model

DEA ( , ) is a nonparametric approach to evaluating the performance of a
set of peers. These peers are commonly referred to as Decision Making Units (DMUs). The
performance of a single DMU is measured across multiple input and output dimensions.
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For each DMU, DEA infers an efficiency score defined by the ratio of a weighted sum of
its output to a weighted sum of its input subject to the constraint that the ratio does not
exceed 1 for any DMU.

Some researchers ( ; : , : , :

; : ) extend
the DEA model just descrlbed to the two-stage DEA model The ﬁrst stage of the DEA
model is used in calculating the efficiency scores, and the second stage of the DEA model
is used in calculating the effectiveness scores. In a two-stage DEA model of efficiency and
effectiveness, the output dimensions of efficiency are the same as the input dimensions
of effectiveness. Figure 2.1 shows the two-stage DEA evaluation model I use in my case
study. This kind of two-stage DEA model is also commonly referred to as a simple two-
stage DEA ( , ). I will henceforth continue to refer to the simple two-stage
process DEA as two-stage DEA model of efficiency and effectiveness in this dissertation.

( ); ( ) differentiates a simple two-stage DEA from
a two-stage network DEA. In a two-stage network DEA, additional inputs could be fed
into the second stage. These additional inputs are not the output variables of the first
stage. Also, the first stage of the two-stage network DEA can produce outputs that are
not fed into the second stage. The mathematical program for such network DEA models
is presented in the research of ( ); ( ). In the variable
selection framework presented in Chapter 3, I build models of efficiency and effectiveness
using the simple two-stage DEA model. In order to use two-stage network DEA in the
variable selection framework, I will first replace the mathematical program presented in
Equations (2.1)—(2.4) with the mathematical program of two-stage network DEA presented
in ( ) ( ). Subsequently, in Chapter 4 where I find the best
two-stage simple DEA model for banks in Brazil, Canada, China, India, Japan, Mexico,
South Korea and the USA for time period of 2000-2017, I will then find a best two-stage
network DEA model. Finally, in Chapter 5, I will use the pathfinding algorithm and find
an optimal path of transforming a certain two-stage network DEA® model that is not
consistent with the semi-strong version of the EMH to the best two-stage network DEA
found from the variable selection framework.

My reasons for using ( )’s two-stage DEA model for validation
against the semi-strong version of the EMH and then later in Chapter 3 use the two-stage

3In my dissertation, I use ( )’s two-stage simple DEA model as an example of a
model that is not consistent with the semi-strong version of the EMH. If I use two-stage network DEA in
my variable selection framework, I would either need to find some existing two-stage network DEA model
that is not consistent with the semi-strong version of the EMH or build one myself.
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DEA model for building models of efficiency and effectiveness are (1) popularity of two-
stage DEA models among researchers. For instance, ( ) used a two-
stage DEA model to measure the profitability and marketability of US banks. ( )
presented a financial performance model based on a two-stage DEA model for measuring
the performance of Fortune Global 500 companies. ( ) ( )
did not refer to the first stage as efficiency and second stage as effectiveness but instead
refer to them as measuring profitability and measuring marketability. ( ) used a
two-stage DEA model for measuring the performance of the Canadian insurance industry
and ( ) used a two-stage DEA model for estimating the efficiencies
of Taiwanese non-life insurance companies. (2) ( ) explicitly refer
to their first stage in the two-stage DEA model as efficiency and the second stage as
effectiveness. Other researchers such as ( ) also use the same definition
and variables of ( )’s in their two-stage DEA model of efficiency
and effectiveness. This suggests that ( )’s choice of input and
output variables for measuring efficiency and effectiveness has some appeal among other
researchers when measuring the performance of Indian banks. In my MASc ( ,

), I already tested ( )’s two-stage DEA model of efficiency and
effectiveness separately for Indian and US banks and found it to be not consistent with
the semi-strong version of the EMH for both the countries.

For completeness, I acknowledge that there is another interpretation of the two-stage
DEA model in the literature. Other researchers ( , ; , ;
, : , : , ) define the two-stage DEA model

as one in which, in the first stage, efficiencies are calculated. In the second stage, to
examine the effect of factors that influence the efficiency of DMUs, a regression model
is estimated with the efficiency scores (computed from the first stage of DEA) as the
dependent variable. There is no effectiveness calculated in the variant of the two-stage
DEA model used by ( ); ( ). However, in this variant
of the two-stage DEA model, as identified by ( ), the regression used
in the second stage of the DEA with efficiency scores as dependent variables will result
in an incorrect data-generating model. Their concern is that linear regression in such a
model will predict efficiency scores outside the bounds of 0 and 1. The efficiency scores
are limited between the range of 0 and 1 by the DEA model. They argue that using
a Tobit model is also incorrect because a Tobit model enforces a censoring that limits
the dependent variables between 0 and 1. Meanwhile, efficiency and effectiveness scores
between 0 and 1 have no such censoring applied when calculated using DEA. However,
in my work, I am not using the DEA scores as dependent variables; instead, I use them
as independent variables. The dependent variable is some SHVCM (Tobin’s Q ratio),
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and hence my claim that the statistical model is agnostic to the underlying efficiency and
effectiveness holds in the variant of the two-stage DEA model we consider. My statistical
model uses an existing model of efficiency and effectiveness and regresses the SHVCM
on the efficiency and effectiveness scores, and infers whether they are consistent with the
semi-strong definition of the EMH.

< A two-stage performance evalution model >
Physi .
M Net-interest income
Advances >
Loanable funds Stage I EEEEE— Stage II
_— . :
(Efficiency) Investments (Effectiveness) | Net-non interest income
Labour E— >
< Stage | > | < Stage [ —»
Figure 2.1: Two-stage DEA model as defined in [Kumar and Gulati (2010) with their choice

of input and output dimensions for efficiency and effectiveness. I use the same input and
output dimensions in my case study.

1. In stage I (for efficiency), the selected inputs used for computing the efficiency scores
are:

(a) physical capital
(b) labour

(c) loanable funds
2. In stage I (for efficiency), the selected output variables are:

(a) advances

(b) investments
3. In stage II (for effectiveness), the selected input variables are:

(a) advances

(b) investments

4. In stage II (for effectiveness), the selected output variables are:
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(a) net interest income

(b) net non interest income

In stage II of effectiveness scores calculation, I use the specific effectiveness criterion
as outlined by ( ). The effectiveness criterion is a measure of the
extent to which policy objectives of an organization are achieved. In the years after 1992,
i.e., the post-reform period in India, strong competition in Indian banking forced banks
to minimize all non-essential costs while maximizing income from traditional and non-
traditional activities. ( ) point out that Indian banks are maximizing
incomes from all possible sources in the post-reforms period. This is the reason for

( ) selecting: net interest income and non-interest income as the output
variables in stage II of the performance evaluation model. Based on the above set of
variables, the DEA model on each stage is as follows:

Max ¢y (2.1)

st dprwxk — W <0 (2.2)
Zy — Zp >0 (2.3)

p>0 (2.4)

In mathematical program (2.1)—(2.4), subscript k refers to the k* DMU under evalua-
tion. The ¢y, refers to the efficiency of DMU k when referring to stage one (see Figure 2.1)
of the two-stage DEA model. The ¢, refers to the effectiveness of DMU k when referring to
stage two (see Figure 2.1) of the two-stage DEA model. The vectors z, € R! and wy, € R™
refer to the input and output for bank k. m is the number of outputs and [ is the number
of inputs. The matrix Z € R™*" contains all the input dimensions of all the DMUs. The
matrix W € R™*™ contains all the output dimensions of all the DMUs. The inequalities
on Equation (2.2) and (2.3) ensure that the input vector and output vector of DMU £ is
within or on the production frontier. I execute this linear program twice for each DMU, i.e.
1) for efficiency and then again 2) for effectiveness. The vector g € R™ is a semipositive
vector.

2.4.3 Model setup and statistical method parameter selection

I first determine the independent (Xefficiency and Xeffectiveness) and dependent variables,
Yspve for my statistical method. I use AIC to determine the appropriate lag length
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when selecting a model for my panel data. AIC requires that the number of data points
in my panel data cannot change when selecting a model. 1 first preprocessed the panel
data by including 3 lags. By including 3 lags, I lose 3 data points for each of the 8 cross
sectional units. I lose a total of 3 x 8 = 24 data points. The new panel data now consists
of 8 x 15 = 120 data points. I notice that after preprocessing the panel data to include
three lags, AIC determines the best statistical model of 1 lag. I repeat this process again
by preprocessing the panel data to include 2 lags instead of 3 lags. By including 2 lags, I
lose 2 data points for each of the 8 cross sectional units. I lose a total of 2 x 8 = 16 data
points. The new panel data now consists of 8 x 16 = 128 data points. I notice that after
preprocessing my panel data to include 2 lags, AIC determines the best statistical model
of 1 lag. I therefore use up to 2 lags when executing the statistical method, similar to the
study by ( ), and because I notice no significant difference between the 2 and 3
lag models. ( ) presents guidelines to use when selecting lag lengths. ( )
concludes that the AIC is superior to most other information criteria in determining the
correct lag length.

In my case study, I also use the AIC for the model selection criterion of model selection.
AIC is a measure of the relative quality of statistical models for a given observed set of
data. Given a family of models, AIC provides a means for model selection and balances
the goodness of fit while discouraging overfitting of data ( , ). In the case study,
I do not use R? because, by definition, R? is a statistical measure that represents the
proportion of the variance for a dependent variable that’s explained by an independent
variable or variables in a regression model. One can easily increase R? by adding more
independent variables and overfitting the model to the data. The model that solely depends
on R? will perhaps not explain or predict well for unobserved data.

With data and information criterion selected, I now turn my attention to choosing the
best model from a family of models. I use the forward selection technique of stepwise
linear regression. The forward selection technique involves starting with no variables in
the model and tests the addition of each variable using our chosen information criterion.
The starting model of the forward selection technique is set to model with no variables.
The ending model is set to linear.

Model specification is a process of determining which independent variables to include
and exclude from a statistical model. A model may be over-specified when there are too
many variables, and a model may be under-specified when there are too few variables.
In my statistical method, I use the AIC in the stepwise linear regression when balancing
goodness of fit against the complexity of the model. In Section 4.4 of Chapter 4, I test
for multicollinearity (I define multicollinearity in the Appendix A of this dissertation)
amongst the independent variables of the regression model of the best two-stage DEA

25



model of efficiency and effectiveness using the variance inflation factor. I address any
unobserved heterogeneity in the regression model using the fixed effects model. If the
covariance between the independent variables in the regression model is zero, then the
standard error of the random effects estimator is smaller than the fixed-effects model. I
use the Mundlak or the Hausman test to determine whether to use the random effects
or the fixed effects model. The Mundlak test is used when the error terms in the panel
regression model are heteroskedastic with autocorrelation. The Hausman test is used when
the error terms in the panel regression are homoscedastic. Finally, in Section 4.4, T use
the Pesaran cross-sectional dependency test to check for any cross-sectional dependence
among the cross-sectional units in the panel data. When running the statistical method,
I further assume that the error terms in the regression model are heteroskedastic with
autocorrelation rather than assume homoscedasticity. Using a regression model with the
assumption that the error terms are heteroskedastic and autocorrelated is valid because
homoskedastic errors are a special case of heteroskedastic and autocorrelated errors (
, ). In the case study, I restrict the search to linear models. I restrict
myself to linear models so that I am consistent with the work of ( )
( ); ( ); ( ). In all of these
papers, the authors use either DEA or stochastic frontier scores to measure efficiency and
regress computed scores with stock price using a linear model for different world banking
sectors. I also use a linear model, but in addition to efficiency, I also compute effectiveness.

I use a t-test when inferring whether the coefficients of efficiency and effectiveness
estimated are statistically significant or not. In Table 2.2, the model parameters are
presented with a detailed breakdown of their cluster error along with the p-value of their
estimates.

2.5 Output of statistical method

In Section 2.5.1, T talk about the statistical tests that I use for checking unit roots in
panel data. In Table 2.2 the best linear model as determined by the statistical method
for efficiency and effectiveness scores computed from ( )’s two-stage
DEA model on Brazil, Canada, China, India, Japan, Mexico, South Korea and the USA and
for time period 2000-2017 is shown. In Section 2.5.2, I present an overview of my results
and in Section 2.5.3, I provide managerial insights.
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2.5.1 Unit root in panel data

I have used ( ); ( ); ( ) statistical tests
for checking unit root in panel data. ( ) and ( ) are also
commonly referred to as the Fisher panel unit root techniques. The Fischer panel unit
root techniques are of two kind, i.e. (1) Fischer Augmented Dicky Fuller (ADF) test and
(2) Fischer Philips-Perron (PP) test. Unlike the Fischer ADF test, the Fischer PP test is
non-parametric.

Other researchers such as ( : ); ( )
have also used similar unit root finding tests on panel data in their studies. If the panel
data has unit root, then spurious regression (I define spurious regression in the Appendix A
of this dissertation) will occur due to non-stationary (I<ao, ). When interpreting the
coefficients from the regression, spurious regression leads to nonsensical results.

( ) test assume that there is a common unit root process so that p; is
identical across all the cross sections i.e., p; = p . The null hypothesis in ( )
assumes that there is a common unit root in the panel data while the alternative hypothesis
is that there is no unit root in the panel data. ( ) uses the following model

pi
when determining whether y; is stationary or not: Ay, = ay; 1+ > Bi jAYi+—j +0 X+
j=1
Mit- Xiy is the set of exogenous variables. o = p—1 and p; is the lag order for the difference
terms that is allowed to vary across the cross sections.

The Fischer ADF and Fischer PP tests allow for individual unit root processes, i.e.,
pi £ p. ( ) mention that the Fischer ADF and Fischer PP tests
combine the evidence on the unit-root hypothesis from the N unit root tests performed
on the N cross section units. In relation to finding whether unit root exists in the panel
data; these tests perform a unit-root test on each of the cross section separately, and then
combine the p-values to obtain an overall test of whether the panel data contains a unit
root. The null hypothesis is that all cross sectional unit contain a unit root. The alternative
is that at least one cross sectional unit is stationary.

I report the panel unit root test results for Tobin’s Q ratio, efficiency and effectiveness
in the Appendix C of this dissertation in Table C.1, Table C.2 and Table C.3 for
( )’s two-stage DEA model of efficiency and effectiveness. Table C.2 and
Table C.3 indicate that the efficiency and effectiveness scores calculated from
( ) are non-stationary. Table C.1 shows that Tobin’s Q ratio is non-stationary.
I take the log transformation of the efficiency and the effectiveness scores and then rerun
these statistical tests and find that the log(ef ficiency) is stationary as per the three
statistical tests, see Table C.5.
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In Table C.6, as per ( ), log(ef fectiveness) is non-stationary. However,
log(ef fectiveness) is stationary as per the Fischer ADF and Fischer PP test. However
because the majority of the three test detect log(ef fectiveness) to be stationary, I conclude
that log(ef fectiveness) is stationary. Table C.4 shows that log(Tobin@) is stationary
across all the tests.

Table 2.2 lists the output from the statistical method after validating
( )’s two-stage DEA model of efficiency and effectiveness against the semi-strong EMH.

Table 2.2 Output of the best model from the statistical method on
( )’s two-stage DEA model

N =128

n==y T =16

R? = 0229 AdjR? = —.070402

Wald F(4,7)=.596511 | p-value = .6770

Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) -.855792 707110 -1.2103 | .265
log(ef fectiveness;) -.105970 .202489 -.5233 | .617
log(ef ficiency;_1) 1.099682 .851496 1.2915 | .238
log(ef fectiveness;—1) | .050239 257883 1948 851

Standard errors robust to heteroskedasticity adjusted for 8 clusters

2.5.2 Hypothesis statement and results overview

I state my null hypothesis Hy as follows: There is no correlation of efficiency or effec-
tiveness on Tobin’s @) ratio. 1 check the validity of the Hy at significance level («), of
0.05. If the p-value is less than (or equal to) «, then the Hj is rejected for the alternative
hypothesis. If the p-value is greater than «, then the Hj is not rejected. I infer that
the quantitative model of efficiency and effectiveness of ( ) is not
consistent with the semi-strong definition of the EMH for banks in Brazil, Canada, China,
India, Japan, Mexico, South Korea and the USA and for time period of 2000-2017 due to
the coefficient on the efficiency and effectiveness value at time period ¢ not being positive
and statistically significant.

For the quantitative model of efficiency and effectiveness to be consistent with the
semi-strong definition of the EMH, the efficiency and effectiveness estimate at the time
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period t must be positive and statistically significant. In another paper of us, I infer
similar results, i.e., the quantitative model of efficiency and effectiveness of

( ) is also not consistent with the semi-strong definition of the EMH for banks
in Brazil, Canada, China, India, Japan, Mexico, South Korea and the USA and for time
period 2000-2017 when I run the the two-stage DEA model of ( )
separately for each of the 8 countries.

2.5.3 Relating results to EMH and managerial insights

I only consider linear relationships between the measure of efficiency and effectiveness and
the Tobin’s Q ratio. Using our proposed statistical method, I find the best linear model,
using AIC, and provide the coefficients on the efficiency and effectiveness scores. Suppose
the coefficients are either not statistically significant or are negative, in that case, I say
the quantitative models used to estimate the efficiency and effectiveness are not consistent
with the semi-strong definition of the EMH.

I find the model of ( ) not consistent with the semi-strong def-
inition of EMH for Brazil, Canada, China, India, Japan, Mexico, South Korea and the
USA and for time period 2000-2017. In the next chapter, Chapter 3, I build a variable
selection framework that can be used to address the research question of whether there is
a universal quantitative model of efficiency and effectiveness that works for all banks in all
geographic regions? This question is important for any firm looking to expand its services
into new geographic markets. A firm can employ the same definition of efficiency and
effectiveness in the new geographic market when such a universal definition of efficiency
and effectiveness exist.

2.6 Conclusion

The financial market identifies firms that are effective (“doing the right things”) and effi-
cient (“doing things right”). Firms that “do the right things right”, will be valued much
higher than other firms as per EMH. This chapter presents a statistical method of goodness
that finds the best model using the correlation of financial measures against the efficiency
and effectiveness scores. The statistical method may demonstrate its practicality as a tool
for analyzing financial measures and the relationship among the operational performance.
My statistical method can also be applied to other industries where firms belonging to
these industries have financial securities traded in financial markets.
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In ongoing research of mine, I utilized our general statistical method to charity orga-
nizations in Canada, with the collaboration of an industry partner. The industry partner
was interested in knowing whether the current methodology of evaluating efficiency and
effectiveness for charity organizations is correlated with improvement in charity ranking.
In the charity research project, I am using the charity ranking by MoneySense! as SHVCM
and then using the general statistical method, I find whether the efficiency and effectiveness
scores of charity organizations are correlated and statistically significant with the SHVCM.
I am using my general statistical method in the Canadian charity industry to inform the
industry partner of the appropriate dimensions for measuring efficiency and effectiveness
and whether their current methodology of measuring efficiency and effectiveness has a
statistically significant improvement on rankings.

Due to the generality of my statistical method, this approach of validating can be
applied to other markets. The exact metric to use as an SHVCM is a function of the
sector or the market. It changes from the banking industry where I used the Tobin’s Q
ratio to charity organizations where, as suggested by our industry partner, I use charity
rankings. As mentioned previously in this chapter, the selection of SHVCM is performed
by an expert of a certain domain (such as charity or banking or service industry). I see
my general statistical method used by this expert in determining which organizations in
that domain are efficient and effective. This domain expert can then select and choose
the appropriate input values for the general statistical method. As a sector matures and
changes, only the inputs of the statistical method need to change and not the method
itself.

4A sample of the 2018 ranking of charity organizations by MoneySense may be found here: https:
//www.moneysense.ca/save/financial-planning/2018-charity-100-full-1ist/.
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Chapter 3

Variable selection framework for
two-stage DEA models

3.1 Introduction

Incorrect selection of input and output variables when measuring efficiency and effective-

ness will lead to inaccurate performance estimates. ( ) provides numerous case
studies from medicine, education, and the military where incorrect input and output vari-
able choices skews performance measurement. ( ) suggested that the World

Health Organization (WHO) is using the wrong choice of variables when measuring the
health-care performance of countries; the United States is ranked 1st in healthcare spend-
ing per capita, but ranked 43rd for adult female mortality, 42nd for adult male mortality,
and 36th for life expectancy. ( ) has argued that the WHO uses variables for
ranking that are in large part outside the medical system. He believes these variables are
more influenced by lifestyle and culture choices. For instance, Americans are, on average,
more obese than citizens of other nations. America also has more smokers. Americans are
also, on average, more likely to be wounded by a gunshot. In short, many of America’s
health problems are a function of social and cultural factors beyond the medical system.

In education and at universities, is using student course evaluations with predefined
questions at the end of the term appropriate for measuring an instructor’s performance?
Probably not. Many students form a new appreciation for the value of a course and
an instructor when they are at a job, internship, or co-op. This new-found appreciation
for the course is not measured when course evaluations are conducted at the end of the
university semester. I am not aware of any university that asks students to re-evaluate
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their instructor or their course months after having completed the course. However, in
many places ( , ; , ), student course evaluations are used
to decide whether a certain assistant professor is offered tenure or not.

In addition to ( ), ( ); ( ) have considered the
efficiency and effectiveness of railway transport in different countries. ( )
mentions that the need to measure the various aspects of the performance of a transit
system has led to the development of many quantitative performance indicators. However,
depending upon the specific indicator examined, different conclusions can often be reached
regarding performance. ( ) also mentions that, before 1970, urban transit in
the U.S. was privately owned; the efficiency of these urban transit systems was measured
via economic profits and ridership. However, after 1970, most of the U.S. transit systems
were controlled by the government and heavily subsidized. ( ) points out that
the variables of efficiency and effectiveness used to measure urban transit systems prior to
1970 cannot be used to measure the efficiency and effectiveness of a modern transit system
that the government heavily subsidizes.

An article in the Harvard Business Review Magazine ( , ) mentioned a firm
that hired a gifted mathematician to evaluate the efficiency of its various divisions. Much
to the firm’s dismay, the quantitative model developed by the mathematician suggested
that none of the business units were performing efficiently. How was it possible that the
firm was generating large profits but had low efficiency? Perhaps the quantitative model of
efficiency used inappropriate input and output variables. The underlying issue with these
different fields is that there is no consensus on which input and output variables to choose
when measuring efficiency and effectiveness.

The lack of consistency in input and output variables for measuring efficiency and effec-

tiveness is also prevalent in the financial industry. For instance, ( )
measured the efficiency and effectiveness of Indian banks. Additionally,
( ) measured the efficiency but not the effectiveness of Singaporean banks. However,

both papers selected different input and output variables when measuring bank efficiency.
How does one decide what input and output variables to use when measuring efficiency
and effectiveness in the financial industry? The current state of model generation in the fi-
nancial industry lends itself to this research question: How can a model of banks’ efficiency
and effectiveness be quantitatively validated? Fortunately, for publicly traded banks, fi-
nancial markets may be viewed as a measure of the wisdom of crowds ( : ).
Financial metrics such as (1) stock price, (2) market capitalization, and (3) Tobin’s Q ratio
are considered measures of the performance of a firm in the financial markets (
) ; ) ; ) ; ) ;

, ). Tobin’s Q is the ratio of the market value of a company’s assets as measured
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by the market value of its outstanding stock and debt divided by the replacement cost
of the company’s assets (book value) ( : ; : ). Tobin’s Q ratio
also controls for firm sizes and equities. While other factors may impact a firm’s finan-
cial performance, firms deemed efficient and effective by market traders will have better
financial performance than a firm that is either inefficient or ineffective. I explored this
idea of validating quantitative models of efficiency and effectiveness in the previous chap-
ter. Driven by the need for the banking industry to be more effective and efficient as well
as the lack of consistency in input and output variables in two-stage data envelopment
analysis (DEA) models of effectiveness and efficiency, this chapter addresses the following
research question: How does one build a variable selection framework for find-
ing two-stage DEA models of efficiency and effectiveness that are consistent
with the semi-strong definition of the efficient market hypothesis (EMH) in
the financial industry?

The variable selection framework consists of two major components: (a) The statistical
method from Chapter 2 and (b) a genetic search (GS) algorithm. The variable selection
framework uses (a) and (b) for finding two-stage DEA models of efficiency and effectiveness
that are consistent with the semi-strong definition of the EMH.

I evaluated the performance of three search algorithms: (a) a GS, (b) a surrogate search
optimization algorithm (SSO), and (c¢) a multi-armed bandit algorithm (MABA) when
traversing the search space of efficiency and effectiveness for the two-stage DEA models.
The search space is characterized by different combinations of input and output variables
for efficiency and effectiveness. The GS performed the best among all the search algorithms;
the results are presented in Section 3.5 of this chapter. The variable selection framework
uses the GS to traverse the search space by continuously generating a neighborhood of
potential two-stage DEA models of efficiency and effectiveness. The variable selection
framework finds the model deemed best by the statistical method from Chapter 2. The
variable selection framework for the two-stage DEA model developed as part of my Ph.D. is
a significant contribution to the literature on building two-stage DEA models of efficiency
and effectiveness as well as validating whether these models are consistent with the semi-
strong EMH. My contribution and how it differs from other work is explained further in
Section 3.2 of this dissertation. This framework is not restricted to the banking industry;
it can also be used for other industries such as services and retail.

The intended audience for the work done in this chapter are researchers building new
models of efficiency and effectiveness. Researchers from other industry sectors can also
use the variable selection framework to build models of efficiency and effectiveness. For
instance in another ongoing project of mine, I use the variable selection framework to build
models of efficiency and effectiveness for non-profit organizations. I use charity rankings
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as the SHVCM in the non-profit organization. In the remainder of this chapter, I first
discuss related work in Section 3.2. In Section 3.4, I present an overview of the three
search algorithms. In Section 3.5, I evaluate the three search algorithms and find that the
GSA performs the best.

3.2 Related work

( ); ( ) suggested that adding more variables to a
DEA model results in less discrimination power between decision-making units (DMUs).
An asymptotic analysis suggests that as the number of variables increases, the efficiency
scores for all DMUs approaches 1 and it becomes harder to discriminate between DMUs.
The recommended approach is to select as few variables as possible in a DEA model. On
the other hand, a guideline commonly applied to variable selection is that there should
be at least three times as many DMUs as variables ( , ).
These recommendations have been incorporated in the search algorithms which are further
discussed in Section 3.3.1 of this dissertation.

( ) talks about the reliable measurement of efficiency. He does not mention
effectiveness. Results can be biased when the wrong input variables are used in a DEA
model. Careful selection of an appropriate set of variables is necessary to reliably measure
efficiency. He used a simulation analysis to develop a statistical procedure that provides
guidelines for input selection for two-stage DEA models. His recommendations incorporate
the guidelines of ( ). Additionally, ( )
regressed efficiency score against the input and output variables of a DEA model. Using
this approach, they dropped the input and output variables that were not statistically
significant in their impact on the efficiency score. In this dissertation, I use the statistical
method from Chapter 2 which allows me to validate any quantitative model of efficiency
and effectiveness against the semi-strong definition of the EMH. My statistical method
serves as a fitness score in the variable selection framework built in this dissertation. The
search algorithms in the variable selection framework traverse the search space of two-stage
DEA models of efficiency and effectiveness to find a set of models that are consistent with
the semi-strong definition of the EMH. In contrast, ( )’s statistical procedure
finds those input variables in a DEA model that maximize the discrimination of DMUs. It
will be interesting to see as future work whether a model that maximizes the discrimination
of DMUs is any different from a model that is consistent with the semi-strong definition
of the EMH.

( ); ( ); ( ) run
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Monte Carlo simulations that compare the two methods. They run two simulations: (1)
principal component analysis (PCA) and (2) variable reduction based on partial covariance.
However, for this analysis, they assume some true and correct efficiency score. This true
and correct efficiency score is a DEA model of efficiency that is most often used by firm
managers; there is a general consensus on what the input and output variables must be.
Based on this true efficiency score, the researchers perform the discrimination-improving
methods and record the lowest number of variables via their variable selection framework
for which the discrimination starts to worsen. The new parsimonious model with the
lowest number of variables produced by applying the discrimination-improving methods is
then an improvement over the original model. This true and correct efficiency score is not
available in the banking sector; as mentioned previously in this dissertation, researchers
use different two-stage DEA models of efficiency and effectiveness in the banking sector.
My contribution in this Ph.D. work is to find whether such a true model exists. This
true model is found using the variable selection framework built in this dissertation. A
detailed breakdown of these results for different countries and time periods is presented in
Chapter 4 and Section 4.4.

( ) discusses another approach for selecting variables. They mention
some of the common problems in variable selection such as the selection tools, correlation
analysis, and the misclassification of variables as input or output. Their work is based on
cash value added. They use statistical tests to decide which input and output variables to
select. To evaluate efficiency, the authors consider the cash flow of DMUs in their variable
selection framework. In their method, variables are selected based on their influence on the
cash flow of the DMUs. A variable is taken as an output if it has a positive influence on a
DMU’s cash flow. Otherwise, it is used as an input. Likewise, ( )
mention three approaches to variable selection in DEA via Monte Carlo simulations. They
measure efficiency using PCA, a regression-based test, and bootstrapping. They determine
the advantages and disadvantages of each approach. Similarly, ( )
mention that researchers doing DEA modeling often find that the closeness of the number
of operational units and the number of inputs and outputs is problematic. In performance
measurement using DEA, the closeness of these two numbers could yield many efficient
units. The authors aggregate some input and output variables and iteratively reduce the
number of variables. They provide numerical examples and show that, in comparison to
the single DEA method, their approach produces the fewest efficient units. According to
them, this implies that their approach can better discriminate the performance of DMUs.

( ) uses the cash flow of DMUs as an objective criterion when evaluating
DEA models of efficiency; however, there is no mention of what objective criteria to use
when evaluating DEA models of effectiveness. In ( )i
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( ); ( ), there is an absence of objective criteria that can be
used to validate quantitative models of efficiency and effectiveness built using their variable
selection framework. My statistical method provides such an objective criterion. It tests
any quantitative model of efficiency and effectiveness against the semi-strong definition
of the EMH using the financial performance metric of a firm such as stock price, market
capitalization or Tobin’s Q ratio. In this dissertation, I built a variable selection frame-
work for two-stage DEA models of efficiency and effectiveness that finds input and output
variables consistent with the semi-strong definition of the EMH. My contribution will give
bank managers a set of input and output variables that they can act on to improve their
bank’s efficiency and effectiveness. Bank managers will also be able to compare the perfor-
mance of their bank relative to their competitors. My approach recognizes those who have
excelled and helps those who have fallen behind. Also, a bank’s shareholders can benefit
from these input and output variables because, as the bank’s efficiency and effectiveness
increases, the bank’s financial market performance will improve.

( ) developed a formal procedure for a stepwise approach to
variable selection that involves sequentially maximizing or minimizing the average change in
efficiency as variables are added or dropped from the DEA model. In addition, they discuss
how their method yields useful managerial results as well as identifying DEA models that
include variables with the largest impact on the results. In my dissertation, my objective
is not to find input and output variables of two-stage DEA models that yield the largest
change in efficiency and effectiveness scores of banks, but rather to find a two-stage DEA
model of efficiency and effectiveness that is consistent with the semi-strong version of the
EMH. If the variables that yield the largest efficiency and effectiveness scores are not
consistent with the semi-strong EMH, then how would the financial market reward firms
(via a higher Tobin’s QQ ratio) that are doing the right things (effectiveness) and are doing
things right (efficiency)?

(2007); (2003); (2010);

( ); ( ) suggested removing the highly correlated variables that
appear within the input or the output selection of DEA to reduce the total number of
variables. Others ( , : , : ,

) suggested using PCA to reduce the number of variables. These researchers found
the eigenvectors that explain 90% of the variance of the original dataset. They use these
eigenvectors as a new set of variables for measuring efficiency using the DEA model. T also
use PCA to find the eigenvectors that explain 90% of the variance in the banking dataset;
however, I find the original variables that lie on the eigenspace or are close to the eigenspace.
I use these original variables as the initial starting points of the GS algorithm in the variable
selection framework. A detailed breakdown of these results are presented in Chapter 4
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and Section 4.3.3. [ use this approach to assist my search algorithms by providing a
promising starting solution (i.e., it is close to those input and output variables that generate
eigenvectors which explain 90% of the variance). This approach of selecting starting points
using PCA is performed in addition to using the random starting point generator that I
developed which is described in Section 3.3.1 of this dissertation. The random starting
point generator provides up to 5,000 different starting points selected randomly from a
uniform distribution. However, there are two challenges in using PCA to measure efficiency
and effectiveness that have not been addressed by ( );

( ) ( ): (1) Comparing the eigenspace with the original
space, how accurate is the measurement of efficiency and effectiveness and what is the error
component? (2) When measuring efficiency and effectiveness in the eigenspace, one loses
the original set of variables. How does one use the efficiency and the effectiveness scores
computed from the eigenspace to explain this in terms of the original set of variables?

One of the goals of this Ph.D. dissertation is to provide managerial insight. This insight,
discussed in Chapter 4 and Section 4.4.6, is provided using the input and output variables
that are in the original space and not the eigenspace. I also provide insight to shareholders
of banks; this insight also uses variables in the original space rather than the eigenspace.
For these reasons, I use the variable selection framework on the original banking data
variables and restrict the use of PCA to only providing promising starting points to the
search algorithms in the variable selection framework.

( ) mention that measuring bank branch performance is a difficult task
because bank branches operate in different economic regions and serve different customers.
Further, ( ) mention that performance evaluation of bank branches, both

within a country and globally, remains an important research area. Does this mean that
there is no universal quantitative model that can measure efficiency and effectiveness? One
of the major contributions of this dissertation is that it provides an answer to whether the
quantitative models (i.e, two-stage DEA models) of efficiency and effectiveness are inde-
pendent of geographic location and time period. In my Ph.D. work, I answer this question
by traversing the search space of two-stage efficiency and effectiveness DEA models on a
subset of banks from Brazil, Canada, China, India, Japan, Mexico, South Korea, and the
U.S. and during period of 2000-2017. The detailed breakdown of these results is presented
in Chapter 4 and Section 4.4 of this dissertation. How does one choose the input and out-
put variables for measuring efficiency and effectiveness? What are the input and output
variables for measuring efficiency and effectiveness? Are the variables independent of space
and time? How is one quantitative model of efficiency and effectiveness evaluated against
some other quantitative model? These questions highlight the need for the following:
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1. A standard that can be used to compare and evaluate different models.

2. A variable selection framework that finds two-stage DEA models of efficiency and
effectiveness that are consistent with that standard.

3. A search for a universal two-stage DEA model of efficiency and effectiveness that is
independent of space (geographic location) and time (time period).

Different quantitative models of efficiency and effectiveness lead to different performance
measures, leaving a firm manager at a loss as to which to use. Stockholders of the firm are
also at a loss, as they do not know whether the model of efficiency and effectiveness used
by the firm manager improves the firm’s performance in the financial markets.

4. Is there any causal relationship between (a) efficiency and effectiveness measures
from two-stage DEA models of banks and (b) the Tobin’s Q ratio of banks?

In the previous chapter, Chapter 2, I addressed the first point from above by building
a statistical method that validates the quantitative models of efficiency and effectiveness
with the semi-strong definition of EMH. In this chapter, I address the next two points from
above that are also presented in detail in Section 3.4. Finally in Chapter 4, I address the
last point.

3.3 Variable Selection Framework

I used the GS, SSO and the MABA when traversing the search space of efficiency and
effectiveness for two-stage DEA models. The search space is characterized by different
combinations of input and output variables of efficiency and effectiveness. The search
algorithm traverses the search space of potential two-stage DEA models of efficiency and
effectiveness and finds the two-stage DEA model of efficiency and effectiveness deemed best
by the statistical method of Chapter 2. In Section 3.3.1, I first describe the formulation of
a two-stage DEA model of efficiency and effectiveness as a matrix in the search algorithm.
Later in the same section I mention some of the constraints that must be satisfied when
creating a two-stage DEA model of efficiency and effectiveness. Finally in Section 3.4,
I describe the three search algorithms of (1) GS algorithm, (2) SSO and (3) MABA in
greater detail.

38



3.3.1 Constrained satisfaction problem (CSP)

The search algorithms require an initial population of two-stage DEA models of efficiency
and effectiveness on which the search can begin. A two-stage DEA model of efficiency
and effectiveness, Model, is represented as a matrix of B3>**. The three rows of the
matrix represents: (1) efficiency input dimensions, (2) efficiency output dimensions and
effectiveness input dimensions and (3) effectiveness output dimensions. Each column in
the matrix represents a dimension from the Eikon dataset. There are 55 dimensions from
Eikon.

In the two-stage DEA model of efficiency and effectiveness that I consider in this disser-
tation the efficiency output dimensions are identical to the effectiveness input dimensions,
see Figure 2.1 for more detail. For instance if row 1 and column 5 is 1 then that indicates
that variable j belongs to the set of efficiency input vectors, if row 2 and column j is 1
then that indicates that variable j belongs to the set of efficiency output vectors and if row
3 and column j is 1 then that indicates that variable 7 belongs to the set of effectiveness
output vectors. Likewise a 0 in any row ¢ and column j indicates that the dimension j
is not present in the row 7 of the two-stage DEA model of efficiency and effectiveness.
However here are the linear constraints that must be met:

1. A variable j if it is present in the two-stage DEA model of efficiency and effectiveness
then it must occur only in one of three positions of the two-stage DEA model. The
three positions are: (1) efficiency input variables, (2) efficiency output variables and
(3) effectiveness output variables. Each column in the matrix Model represents a
variable. The sum gf the entries in each of the column of Model must be less than

or equal to 1, i.e., Y Modely; <1 Vi.
k=1

2. The sum of the entries in each row of Model must be greater than or equal to

55

2. Mathematically this is represented as »_ Model,; > 2 Vk. 1 do not wish to
i=1

reduce the production frontier of calculating efficiency and effectiveness to simple

ratios of one input and one output variable. Therefore I require that the minimum
number of efficiency input variables or efficiency output variables or effectiveness
output variables must be at least 2. In the DEA model of ( )
the number of input variable in DEA is exactly one, and the number of output
variable in DEA is also exactly one. I suspect that using one input variable and one
output variable will yield a single ratio when performing DEA analysis.

( ) has documented that single ratios do not provide reliable results due
to banks’ complex operational environment.
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3. As the number of variables in a single stage DEA increases, the discriminating power
across DMU decreases. ( ) mentions that the number of DMU
must be at least two times the number of input and output variables. The two-stage
DEA model of efficiency and effectiveness can be viewed as combining two single
stage DEA model where the output of the first single stage DEA model are the
inputs to the second single stage DEA model. Mathematically to have the number of

DMUs atleast two times the sum of efficiency input variables and efficiency output
2 55

variables is 2 x Y Y Modely; < 8. Note that k goes from 1 to 2 where the entries
k=1i=1
in row 1 represents the variables present as input of efficiency and row 2 represents

the variables present as output of effectiveness. 8 is the number of DMU or the 8

countries that we consider in this dissertation. Repeating this once more, but now
3 55

for effectiveness, 2 x > > Modely; < 8. Note that k goes from 2 to 3 where the
k=2i=1

entries in row 2 represents the variables present as input of effectiveness and row 3

represents the variables present as output of effectiveness.

4. T generate 5000 two-stage DEA model of efficiency and effectiveness using the di-
mensions from my principal component analysis (PCA) of Section 4.3.3 when ex-
ecuting the variable selection framework for Brazil, Canada, China, India, Japan,
Mexico, South Korea and the USA and for timeperiod of 2000-2017. These 5000
two-stage DEA model of efficiency and effectiveness serve as initial population size
for the GS algorithm to begin the search on. Mathematically this is represented as

3 J

Y>> > Modely,; =0 VJ & Sety., where Set,,, is the set of dimensions recommended
k=1j=1
by the PCA algorithm in Section 4.3.3.
By summing this to 0, I essentially turn off all those variables that are not recom-
mended by the PCA algorithm. If I wish to not discriminate among any of the 55
dimensions in Eikon, I can simply drop this constraint of (4).

I finally take the four constraints above and run it on IBM’s CPlex! and generate the
desired population size.

https://www.ibm.com/analytics/cplex-optimizer
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3.4 Search algorithms

In this section, I describe each of the three search algorithms in greater detail. In Sec-
tion 3.4.1, I describe the objective function that the three search algorithms minimize. I
present the genetic search algorithm in Section 3.4.2. In Section 3.4.3, I present the surro-
gate search optimization. Finally, in Section 3.4.4, I present the multi-armed bandit search
algorithm.

3.4.1 Objective function

For each two-stage DEA model of efficiency and effectiveness that the search algorithm of
the variable selection framework visits, the statistical method reports the AIC value if the
efficiency and the effectiveness of the model are consistent with the semi-strong version of
the EMH. AIC is calculated as 2k — 21In(L) where L is the likelihood of the model, and k
is the number of parameters. Lower AIC values indicate better fits, (i.e., higher likelihood
with fewer parameters). AIC is the objective function that the search algorithm minimizes.
In Chapter 2, Section 2.4.3, I explain the preference of using AIC over R2.

The objective function is non-linear. Mixed integer non-linear programming (MINLP)
solvers are appropriate to minimize this non-linear function given the constraints of Sec-
tion 3.3.1. MINLP solvers involving extended cutting plane ( ,

), Bonmin ( : ) solver which uses branch and bound, DICOPT (
, ), KNITRO ( , ) solver which also uses branch and
bound, and SCP ( , ), CPlex ( , ) either requires the func-

tion that is getting optimized is convex or the function is twice differentiable. In a convex
problem, any local solution from these solvers is guaranteed to be an optimum solution.

In a non convex problem such as involving the AIC objective function there may be
multiple local solutions neither of which are optimum. What is required then are algorithms
that are derivative free and their termination criteria is not based on some gradient or
stationary points. Also what is desired then is an algorithm that favor global optimum
solution rather than local optimum solution for a non convex problem. The genetic search,
surrogate search optimization and multi-armed bandit on the other hand are derivative
free algorithms that do not impose any constraints on the objective function.

To use AIC correctly, the number of data points in the panel cannot change. How-
ever, the inclusion or exclusion of independent variables, including lags of efficiency and
effectiveness, changes the number of data points. For instance, adding a lag variable will
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result in the loss of an entire time period across all the cross-sectional units. Comparing
two linear models in which one contains lags and the other does not contain any lags will
result in incorrect comparison.

In this dissertation, before using AIC for any comparison, I first preprocess the panel
data by including two lags of efficiency and effectiveness. More detail on this is presented in
Chapter 4 and Section 4.4.1 of this dissertation. Including two lags as part of preprocessing,
results in panel data with 16 time periods instead of the original 18 time periods. It is now
correct to use AIC when comparing linear models using the preprocessed panel data of 16
time periods that include up to a maximum of two lags of efficiency and effectiveness. As the
search algorithm traverses different two-stage DEA models of efficiency and effectiveness,
the efficiency and the effectiveness scores generated by these two-stage DEA models are
preprocessed to contain a maximum of two lags. The statistical method uses the efficiency
and the effectiveness scores of these different models, including their lags and regresses,
against a common SHVCM of Tobin’s Q ratio. The AIC score from the statistical method
is the objective function minimized by the search algorithms.

The Bayesian information criterion (BIC), like AIC, is a criterion for model selection
among a finite set of models; the model with the lowest BIC is preferred. BIC is defined
as —2In(L) + kln(n) where L is the maximized value of the likelihood function, and k is
the number of parameters estimated by the model, and n is the size of the data. Unlike
AIC, BIC heavily penalizes models that contain more parameters. The drawback of BIC is
that it may result in serious under-fitting when compared to AIC. Asymptotically, BIC is
consistent in that it will select the true model if the true model is among the set of candidate
models. The data collected in my dissertation is non-experimental observational data where
the underlying process that connects SHVCM with the efficiency and the effective measures
is not well understood. Therefore, I do not know whether the true model is present in the
family of models that I consider.? ( ); ( ) mention that when
the true model is not in the candidate models, then AIC is preferred. For these reasons, I
use the AIC as the objective function and not the BIC.

3.4.2 Genetic search (GS) algorithm

GS algorithms are adaptive metaheuristic search algorithms classified as an evolutionary
computing algorithm. They use techniques inspired by natural evolution ( ,
). Holland developed the first GS in 1975 to solve optimization problems based on

2 As mentioned previously in Chapter 1, I restrict myself to linear models to be consistent with the work
of other researchers.
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biological, genetic, and evolutionary ideas ( , ). In the algorithm, Algorithm 2,
the preconditions are as follows: (1) financial data of banks across 8 countries and 17 time
periods as per Section 2.4.1, (2) Tobin’s Q ratio data, (3) the CSP of Section 3.3.1 and (4)
the length of time to run the algorithm for. The best two-stage DEA model of efficiency
and effectiveness is returned in the postcondition of the algorithm.

Each individual (commonly referred to as a chromosome in the jargon of GS algorithms)
in the population is a two-stage DEA model of efficiency and effectiveness. These models
are generated by the CSP of Section 3.3.1 (see line 10 of Algorithm 2). The initial size of
the population depends on the nature of the problem. For instance in Section 3.5.1 when
working with 6 dimensions from Eikon, I experimented with different population number.
Population size of 30 resulted in not only the optimal AIC but by the 14th generation
the entire population had converged to the optimal solution. A larger population size
will result in increased diversity among the population but also require significantly more
computation resources per generation. With a larger population size, I observed® that
it takes more number of generations for the entire population in GS to converge to the
optimal solution. I used a similar approach later in Chapter 4 and Section 4.4 by trying
different population sizes and then selecting the initial population to 5000 when running
the GS algorithm on all 55 dimensions from Eikon.

The fitness function on line 19, calculates the population’s fitness by generating the
efficiency and the effectiveness scores of each two-stage DEA model in the population,
then checking whether the log transformation of efficiency and effectiveness scores are
stationary or not. I use the same approach as mentioned in Section 2.5.1 of Chapter 2
when checking for unit root in panel data. Suppose the log transformation of efficiency
and effectiveness scores are stationary. In this case, the statistical method of Chapter 2 is
executed. Then, it checks whether the two-stage DEA model of efficiency and effectiveness
is consistent with the semi-strong definition of the EMH and reports the AIC value.

On line 14, the selection function selects the “parent” models from which the next
generation of “offspring” models will be created. In Section 3.4.2, I use the stochastic
uniform option* for selection of parents in the GS. On line 15, crossover produces new
offspring. Crossover® selects a random point on the chromosome and exchanges parts

3] noticed this behavior when selecting first 7 or first 8 or first 9 dimensions from Eikon

4Stochastic uniform lays out a line in which each parent corresponds to a section of the line of length
proportional to its normalized fitness value. The algorithm moves along the line in steps of equal size. At
each step, the algorithm allocates a parent from the section it lands on. The first step is a uniform random
number less than the step size.

5T use the crossoverintermediate function in MATLAB to generate cross over. The usage of crossover-
intermediate is recommended when there are linear constraints.
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of the parents between them to create an offspring. The crossover fraction controls the
fraction of the population that the crossover function uses to create the next generation,
not including elite children.

( ) recommends a mutation rate of 0.001 for a population with 50 to 100
individuals. ( ) on the other hand, sets the mutation rate to
0.2 in his dissertation when running GS. ( ) mentions that a

high mutation rate ensures diversity among the population, preventing the algorithm from
getting stuck in a local optimum. Instead of fixing the mutation rate to some value that
remains constant across generations, I control the rate at which the average amount of
mutation decreases from the initial generation to the final generation. I set the mutation
rate to 0.2 in the first generation and 0.001 in the final generation. The mutation rate
decreases linearly from the first generation to the last generation. By setting a higher
mutation rate in the earlier generations, I encourage diversity in the population so that
the search does not get stuck in any local optimum. The lower mutation rate in the later
generations allows the search algorithm to converge, producing a solution.

On line 17, the top 5% of the population based on fitness value survive until the next
generation. I set the elite value to the top 5% of the population.
( ) mention that using high values for the elite count will prevent diversity, causing the
algorithm to get trapped in local minima. On the other hand, with low values for the elite
count such as the top 5% of the entire population, there is a higher likelihood of obtaining
solutions near the global optimum.

Finally as part of the post condition, the GS algorithm reports the two-stage DEA
model of efficiency and effectiveness with the lowest AIC and the most consistent with the
semi-strong version of the EMH.

44



Algorithm 2 Genetic Algorithm

Preconditions:

e Bank financial data: Data € RV*PxT

N is the number of countries and 7T is the total number of time periods and D is
the number of data dimensions.

Data from Tobin’s Q ratio: YrobinQRratio € RY*7
N is the number of countries and 7T is the total number of time periods.

CSP of Chapter 3 and Section 3.3.1: Linear equality and linear inequality constraints
]B3><D

of the form Agqx = beq and AjneqX < bineq Where x €
and A, € B™*GXD) and b, € I™*! and Ay, € B™2*G*D) and by, € Im2*!
where m; is the number of linear equality constraints and ms is the number of linear
inequality constraints.

e Time: The length of time to run the algorithm for.

Postconditions:

1:
2
3
4:
5
6
7

10:
11:

e Best Solution: Best solution found from the statistical method of Chapter 2

procedure GENETICALGORITHM(Data, YropingRatio» CS P, time)

startTime <—getCurrentTime()
bestSolution < empty
population <— empty
for each generation in co do
endTime <—getCurrentTime()
if endTime — startTime > time OR noChangelnBestSolutionAcrossNgenera-

tions(N) then

return bestSolution, functionV alues, population

if generation=0 then
startingPoints <— GenerateRandomStartingPoints(C'SP)
population <— startingPoints
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Genetic Algorithm cont...

12: functionV alues, population <FitnessFunction(Data, Y7 opingRatio, Population)
13: bestSolution <—checkWhetherBestSolutionRequiresUpdate( functionV alues)
14: newpopulation <performSelectionOnPopulation(population)

15: newpopulation <—updatePopulation WithCrossOver(newpopulation, C'SP)

16: newpopulation <—updatePopulationWithMutation(newpopulation, C'SP)

17: newpopulation <—updatePopulationWithEliteism(newpopulation, C'SP)

18: population <— newpopulation

Genetic Algorithm cont...

19: procedure FITNESSFUNCTION(Data, YrobingRatio, population)

20: for each individual in population do

21: (Xefficiencys Xef fectiveness) <— generateEfficiency AndEffectiveness(individual, Data)
29: if isNotStationary(log (Xer ficiency): 108 (Xef fectiveness)) then continue

23: aicValue < statisticalMethod (log (Xef ficiency): 108 (Xe f fectiveness) s 108(YTobinQRatio) )
24: UpdateBestSolutionInCurrentGeneration(aicV alue, individual)

25: return aicV alues, population

3.4.3 Surrogate search optimization (SSO)

The “surrogate” in surrogate search optimization is a function that approximates the fitness
function (also referred to as the objective function). The fitness function is shown in
Algorithm 3 as the function FitnessFunction. The surrogate is computationally less
expensive. For example, to search for a point that minimizes the fitness function, evaluate
the surrogate on thousands of points and take the best value as an approximation to the
minimizer of the fitness function ( , ). The preconditions and postcondition
of the algorithm are almost identical to the preconditions and postcondition of the GS of
Section 3.4.2 except that in pre conditions I do not set the time for how long to run the
SSO.

The SSO alternates between two phases: (1) the construct surrogate phase, and (2)
the search for the minimum. In the construct surrogate phase, as seen on line 3 of the
algorithm, an initial population of two-stage DEA models of efficiency and effectiveness is
generated that meets the CSP of Section 3.3.1. The fitness function is evaluated for the
entire population. The fitness function of surrogate search optimization is very similar to
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the fitness function of the GS of Section 3.4.2. The fitness function on line 7 of the algorithm
is computationally more expensive to evaluate when compared to evaluating the surrogate
function on line 12. After computing the fitness function from the initial population, a
surrogate function is created (see lines 9 and 10 of Algorithm 3) by interpolating a radial
basis function through the fitness value of the initial population.

To search for the minimum of the objective function, several thousand random points
are generated around the minimum of the surrogate function (see line 11 of Algorithm 3).
These points are then evaluated on the surrogate function; the lowest among them is called
the adaptive point (see line 12 of Algorithm 3). Then, the adaptive point is evaluated on
the fitness function. The adaptive point is checked to see whether it results in a better
solution than previously found from the population (see line 14 of Algorithm 3). When the
surrogate optimization resets (i.e., the loop in line 6 of Algorithm 3 runs again) a newer
random population is generated (see line 15). The randomness prevents the surrogate
search optimization from getting stuck in any local optimum. In Section 3.5.2, T note
that the surrogate search optimization performs significantly worse than the genetic search
algorithm. This is because the CSP of Section 3.3.1 is introduced in the fitness function of
the surrogate search optimization. This causes many individuals to be rejected; in the GS,
all individuals in the population are feasible because they are generated using the CSP in
every generation.

Finally as part of the post condition, the SSO algorithm reports the two-stage DEA
model of efficiency and effectiveness with the lowest AIC and the most consistent with the
semi-strong version of the EMH.

47



Algorithm 3 Surrogate Search Optimization
Preconditions:

e Bank financial data: Data € RV*PxT
N is the number of countries and 7T is the total number of time periods and D is
the number of data dimensions.

e Data from Tobin’s Q ratio: YobinQRratio € RN*T
N is the number of countries and 7T is the total number of time periods.

e CSP of Chapter 3 and Section 3.3.1: Linear equality and linear inequality constraints
of the form Agqx = beq and AjneqX < bineq Where x € B3xP
and A, € B™*GXD) and b, € I™*! and Ay, € B™2*G*D) and by, € Im2*!
where m; is the number of linear equality constraints and ms is the number of linear
inequality constraints.

Postconditions:

e Best Solution: Best solution found from the statistical method of Chapter 2

1: procedure SURROGATESEARCHOPTIMIZATION(Data, C'SP, YrobingRatio)

2: bestSolution < empty

3: population < GenerateRandomStartingPoints(C'SP)

4: randomPoints <GenerateRandomStartingPoints(minimumNumberOfSurrogatePoints-
size(population))

5 population <—population+randomPoints

6 for each reset Number in total NumberQO f Resets do

7 functionValues <FitnessFunction(Data, YropingRatios POpulation)

8 bestSolution <—checkWhetherBestSolutionRequiresUpdate( functionV alues)

9 surrogate Function <—createSurrogateFunction( functionV alues, population)

10: surrogate Function <—updateSurrogateFunctionWithRadialBiasFunction(
surrogate Function)
11: samplePoints <generateManySampleAroundMinimumUsingMeritFunction(bestSolution)
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Surrogate Search Optimization cont...

12: deqdaptive; fadaptive <—getMinimumOfSamplePoints(sample Points,surrogate Function)

13: functionValueO f Adaptive Point <FitnessFunction(Data, YrobinQRatios 1€Qadaptive)
surrogateFunction<—updateSurrogateFunction(deaqdaptive, functionValueO f Adaptive Point)

14: bestSolution <—checkWhetherBestSolutionRequiresUpdate( functionV alueO f Adaptive Point

15: population <GenerateRandomStartingPoints(minimumNumberOfSurrogatePoints)

16: return bestSolution

17:

18:

19: procedure FITNESSFUNCTION(C'SP, Data, YrobingRatio, POpulation)

20: for each individual in population do

21: if individuaNOTMeetsCSP (individual, C'S P) then

22: continue

23: (Xefficiencys Xef fectiveness) <— generateEfficiency AndEffectiveness(individual, Data)

24: if isNotStationary(log (X ficiency): 108 (Xef fectiveness)) then

25: continue

26: fitnessFunctionV alue < statisticalMethod(log (X7 ficiency), 108 (Xef fectiveness) > 108(YTobing Rat

27: UpdateBestSolution( fitnessFunctionV alue, individual)

28: return functionV alues, population

3.4.4 Multi-Armed Bandit algorithm (MABA)

The MABA has two distinct phases: exploration and exploitation. 1 summarize both these
stages of the algorithm below. The purpose of the exploration stage is to generate a
belief system that will help find variables of the two-stage DEA model that will likely be
consistent with the semi-strong definition of the EMH. Specifically, MABA’s belief system
keeps count of the two-stage DEA model variables that generated a consistent model with
the semi-strong definition of the EMH. Conversely, the algorithm also keeps count of the
variables that generated a model that was not consistent with the semi-strong definition
of the EMH. The belief system from the exploration stage is later used by the exploitation
stage in generating a two-stage DEA model. Using the belief system, the exploitation
stage generates two-stage DEA models such that top k frequently occurring dimensions
that results in the statistical significant model (as per the semi-strong version of the EMH)
are always present in the two-stage DEA models generated by the exploitation stage. In
addition, top z frequently occurring dimensions that results in the non-significant statistical
model (as per the semi-strong version of the EMH) are always absent in the two-stage DEA
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models generated by the exploitation stage. By setting a probability, €, the MABA can be
in the exploration stage € probability and with 1 — € probability in the exploitation stage.

Exploration

The preconditions of the exploration stage are identical to GS and SSO with the added
inclusion of a starting point on which the algorithm will initially begun. The financial
bank data and the Tobin’s Q) ratio are further explained in Section 2.4.1 of this paper. The
exploration stage first generates a neighborhood of two-stage DEA models for the given
starting solution of a certain two-stage DEA model. See line 4 of the Algorithm 4. For
each of the two-stage DEA model in the neighborhood, the efficiency and the effectiveness
measures are computed. The statistical method is then executed on the efficiency and
the effectiveness measures along with the Tobin’s Q data. The statistical method reports

back whether the efficiency and the effectiveness scores are consistent with the semi-strong
definition of the EMH along with the AIC value.

The belief system comprises of two matrices. The first matrix is a matrix belie fsg of
size Z3*%. This matrix keeps track of how many of the 55 dimensions and in what of
the three orientations did they occur that caused them to be statistically significant. The
second matrix is a matrix beliefygg of size Z3*5°. This matrix keeps track of how many of
the 55 dimensions and in what of the three orientations did they occur that caused them
to not be statistically significant.
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Algorithm 4 Algorithm of exploration in multi-armed bandit algorithm
Preconditions:

e Bank financial data: Data € RV*PxT
N is the number of countries and 7T is the total number of time periods and D is
the number of data dimensions.

e Data from Tobin’s Q ratio: YobinQRratio € RN*T
N is the number of countries and 7T is the total number of time periods.

e CSP of Chapter 3 and Section 3.3.1: Linear equality and linear inequality constraints
]B3><D

of the form Agqx = beq and AjneqX < bineq Where x €
and A, € B™*GXD) and b, € I™*! and Ay, € B™2*G*D) and by, € Im2*!
where m; is the number of linear equality constraints and ms is the number of linear
inequality constraints.

e Starting Solution: StartingSolution € B3*P

Postconditions:

e Belief System: Belief System that can be used later for exploitation

1. procedure EXPLORATION(Data, C'SP, StartingSolution, Y tobinQRatio)

2 Queue.enqueue(StartingSolution)

3: tabuList<—Nil

4 for each potentialStartingPointToFExplore in Queue do

5 neighborhood < GenerateNeighborhood (potentialStartingPoint ToExplore, CSP)
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Exploration cont...

for each neighbor in neighborhood A neighbor not in tabulList do
(Xef ficiencys Xef fectiveness) <— generateEfficiency AndEffectiveness(neighbor,Data)
if isNotStationary(log (Xey ficiency): 108 (Xef fectiveness)) then continue

Model StatiSticalMethOd((Xefficiency; Xeffectiveness) ) YTobinQRatio)
UpdateBeliefSystem(M odel)

Queue.enqueue(neighbor)

tabuList.enqueue(StartingSolution)

return getCurrent Belie f System()

Exploitation

The preconditions of the exploitation stage are the bank financial data, data from the
Tobin’s Q) ratio and the belief system from the exploration stage of the multi-armed bandit
algorithm.

The belief system comprises of two matrices. The first matrix is a matrix belie fsg of
size Z3*%. This matrix keeps track of how many of the 55 dimensions and in what of
the three orientations did they occur that caused them to be statistically significant. The
second matrix is a matrix beliefygg of size Z3*°. This matrix keeps track of how many of
the 55 dimensions and in what of the three orientations did they occur that caused them
to be not statistically significant.

The exploitation stage uses the belief system and generates two-stage DEA models such
that the top k variables from belie fss are always present in the two-stage DEA model.
I also use z such that top z variables from beliefyss are never in the two-stage DEA
model. T then use this two-stage DEA model and generate an entire neighborhood that
the exploitation stage of the multi-armed bandit algorithm can exploit. This makes the
exploitation happen in the vicinity of those top k variables always present and z variables
not present. In case of any dimension j that is present in the top k and the top z for the
same orientation in belie fygs and beliefsg, I take the maximum of how many times does j
occur in belie fss and belie fyss and then decide whether to use j or drop j in exploitation.
The exploitation returns back the best model if any that exists from the belief system.
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Algorithm of exploitation in multi-armed bandit algorithm
Preconditions:

e Bank financial data: Data € RV*PxT
N is the number of countries and 7T is the total number of time periods and D is
the number of data dimensions.

e Data from Tobin’s Q ratio: YobinQRratio € RN*T
N is the number of countries and 7T is the total number of time periods.

e CSP of Chapter 3 and Section 3.3.1: Linear equality and linear inequality constraints
]B3><D

of the form Agqx = beq and AjneqX < bineq Where x €
and A, € B™*GXD) and b, € I™*! and Ay, € B™2*G*D) and by, € Im2*!
where m; is the number of linear equality constraints and ms is the number of linear
inequality constraints.

e Current Belief System: Belie fSystem

o kikeZ"
Top K dimensions for exploitation to exploit by always turning them on when gen-
erating a solution.

e 2.z Zt
Top Z dimensions for exploitation to exploit by always turning them off when gen-
erating a solution.

Postconditions:

e Best Solution: Best solution found from the statistical method of Chapter 2

1: procedure EXPLOITATION(Data, Y TobinQRatio; Belie f System, k, z, C'SP)
2: solution <— FromBeliefSystemSetTopK AndTurnO f fWorstZ(BeliefSystem, k, z)
3: neighborhood < GenerateNeighborhood(solution,CSP)
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Exploitation cont...

4: for each neighbor in neighborhood do
5: (Xefficiencys Xef fectiveness) — generateEfficiency AndEffective-
ness(neighbor,Data)

if isNotStationary(log (Xer ficiency): 108 (Xef fectiveness)) then continue

Model < StatiSticalMethOd((Xefficiency7 Xeffectiveness); YTobinQRatio)
UpdateBeliefSystem (M odel)
UpdateBestSolution(M odel)

10: return getBestSolution()

3.5 Results

In this section, I present the results of executing the GS and the SSO algorithm on the
Eikon dataset from Chapter 2 and Section 2.4.1. The GS and the SSO algorithms are
preferred over the MABA because MATLAB offers support for vectorized functions and
parallel processing. The GS and the SSO usually run faster when the fitness function is
vectorized. Function vectorization implies that the search algorithm only calls the fitness
function once. However, the fitness function computes the fitness for all individuals in the
current population at once. The parallel computing toolbox in MATLAB offers support
for running the GS and the SSO in parallel. This addition significantly speeds up the
number of two-stage DEA models of efficiency and effectiveness evaluated per unit of time.
My implementation of a MABA evaluates a lower number of two-stage DEA models of
efficiency and effectiveness per unit of time compared to GS and SSO. On average, it is
about five to eight times slower. For this reason, I discard the MABA in favor of the GS
and the SSO.

3.5.1 Results of GS algorithm

I first execute the GS and the SSO by selecting the first 6 dimensions of the 55 dimensions
from Eikon. The selection of 6 dimensions yields a total of 26—5 = 90 two-stage DEA models
of efficiency and effectiveness. I enumerated across all these 90 models and found the best
two-stage DEA model of efficiency and effectiveness from these 90 models. I executed the
statistical method once each across the 90 models in order to know which is the best model.
Since there are only 90 models, it is not computationally expensive to enumerate each of
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them and find the best two-stage DEA model of efficiency and effectiveness. I find the
best two-stage DEA model of efficiency and effectiveness with an AIC of —46.5799 after
enumerating across all the 90 models. Knowing upfront what the best two-stage DEA
model of efficiency and effectiveness is, I can now determine whether the GS converges to
this model or not. I can also determine how long convergence takes if it does converge.

In Section 3.4.2 1 have mentioned how the model parameters of GS algorithm are
set. Figure 3.1 shows the result of running the GS algorithm on 6 dimensions. On the
same figure, the bottom plot shows that the best AIC of —46.5799 is achieved in the first
generation. The second plot in the same figure shows that by the 7th generation, most
of the population with 30 individuals has converged to the best two-stage DEA model
of efficiency and effectiveness. The range between the best and the worst AIC in the
population in the 7th generation is small. The first plot in the same figure shows the
average distance in the population. In the earlier generations the average distance is high
among individuals indicating high diversity. As the algorithm converges to the optimal
solution, the average distance reduces to 0 by the 14th generation. This suggests that
all the individuals in the population (i.e., all the two-stage DEA models of efficiency and
effectiveness in the population) have converged to a single model. The average value of
the AIC in the 14th generation is 46.5799; this is the same as the best AIC value. The GS
algorithm executed for 15 generations with a population size of 30. 411 two-stage DEA
models were evaluated by the GS algorithm in about 85.089 seconds.
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Figure 3.1: Genetic Algorithm run on 6 variables with population size set to 30

I then execute the GS algorithm by selecting the first 7 dimensions of the 55 dimensions
from Eikon. The selection of 7 dimensions yields a total of 27—; = 630 two-stage DEA models
of efficiency and effectiveness. Again, it is trivially easy to enumerate all the 630 two-stage
DEA models of efficiency and effectiveness and find the best model among these 630 two-
stage DEA models. The best two-stage DEA model has an AIC of —55.7257. Figure 3.2
shows the result of running the GS algorithm on 7 variables. On the same figure, the third
plot at the bottom shows that the best AIC of —55.7257 is achieved in the first generation.
The second plot in the same figure shows that by the 20th generation, the average AIC of
the entire population has decreased to —50.7297. The first plot in the same figure shows the
average distance in the population. The average distance is high in the earlier generation
(close to 3) indicating high diversity. However, the average distance decreases. By the 20th
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generation, the average distance in the population is close to zero, suggesting that most
two-stage DEA models of efficiency and effectiveness in the population have converged to
a single model. The GS algorithm executed for 20 generations, with a population size of
200. 4106 two-stage DEA models were evaluated by the GS algorithm in about 728.357
seconds.

Average Distance Between Individuals

g3 T
C .
©
@2
e
(0]
31
(0]
<>: 0 | | | | | | | | | . i
2 4 6 8 10 12 14 16 18 20
Generation
Best, Worst, and Mean Scores
0 T - T -
-20
-40
2 4 6 8 10 12 14 16 18 20
Generation
0 Best: -55.7257 Mean: -50.7297
qj) ) ) Best penalty value
§ 20 Mean penalty value
>
% 40
e .
P9S BN SRR SN TR SUNL SR SR SR SR SRR
0 2 4 6 8 10 12 14 16 18 20
Generation

Figure 3.2: Genetic Algorithm run on 7 variables with population size set to 200

I finally execute the GS algorithm by selecting the first 8 dimensions of the 55 dimen-
sions from Eikon. The selection of 8 dimensions yields a total of %2 = 2520 two-stage
DEA models of efficiency and effectiveness. Again, it is trivially easy to enumerate all the
2520 two-stage DEA models of efficiency and effectiveness and find the best model. I find
that the best two-stage DEA model contains an AIC of —55.7257. Figure 3.3 shows the

57



result of running the GS algorithm on 8 variables. On the same figure, the third plot at
the bottom shows that the best AIC of —55.7257 is achieved in the first generation. The
second plot in the same figure shows that by the 39th generation, the average AIC of the
entire population has decreased to —41.9562. The first plot in the same figure shows the
average distance in the population. The average distance is high in the earlier generation
(close to 3) indicating high diversity. However, the average distance decreases. By the 39th
generation, the average distance in the population is zero suggesting that most two-stage
DEA models of efficiency and effectiveness in the population have converged to a single
model. The GS algorithm executed for 40 generations, with a population size of 600. 24406
two-stage DEA models were evaluated by the GS algorithm in about 3874.144 seconds.
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Figure 3.3: Genetic Algorithm run on 8 variables with population size set to 600
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However, with every increase in the number of dimensions, the number of two-stage
DEA models of efficiency and effectiveness increases combinatorially. I use the empirical
evidence collected from Figures 3.1, 3.2 and 3.3 and compare the performance of the GS
algorithm with the SSO in the next section.

3.5.2 Results of SSO algorithm

I executed the GS algorithm on 6, 7, and 8 dimensions from the Eikon dataset of Chapter 2
and Section 2.4.1. I know from Section 3.5.1 that the best two-stage DEA model has an
AIC of —46.5799 when selecting the first 6 of the 55 dimensions. I repeat this process now
for SSO. I set the minimum surrogate points to 110 and the maximum number of function
evaluations to 250. The population is set to 30. The result of running the surrogate search
optimization on 6 dimensions from Eikon is shown in Figure 3.4. The best AIC value found
from running the surrogate search optimization is —46.5319, which is not the optimal value
of —46.5799.

Unlike the GS algorithm, I implemented the CSP of Section 3.3.1 into the fitness
function of the surrogate optimization. MATLAB® does not allow for any user specified
constraints in the setup of the problem for SSO. I overrode this by including the user
specific constraints in the fitness function of SSO. For any unfeasible point generated by
the algorithm, the fitness function penalizes it with a penalty of 70. The infeasible points
are shown in red in Figure 3.4.

Each two-stage DEA model of efficiency and effectiveness is represented as a matrix of
B3%5. Where 6 again is the number of dimensions selected from Eikon. There are a total
of 20 x 26 x 20 = 262144 two-stage DEA model of efficiency and effectiveness. However,
with the CSP of Section 3.3.1, only 90 of these models are feasible. The rest of the models
are infeasible. The initial population of size 30 models for SSO is generated from the CSP
of Section 3.3.1. These initial points are represented as pink points in the Figure 3.4. Due
to the penalization imposed inside the fitness function of the SSO, all the models after
the initial population are deemed as infeasible and rejected. In the worst case there is a
probability of only % for SSO to generate a feasible point. The performance of SSO
greatly suffers when compared to the GS algorithm. An inordinate amount of time may

pass before SSO evaluates a feasible point.
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Figure 3.4: Surrogate Optimization run on 6 variables with population size set to 30,
minimum surrogate points set to 200 and maximum number function evaluation set to

500.

I now increase my initial population size from 30 models to 90 models. All the 90
models are generated from the CSP of Section 3.3.1 and the result is shown in Figure 3.5.
As expected, I see the best AIC value of —46.5799. By increasing the size of the population
to 90, which now includes all the feasible models, I am not utilizing any benefits of SSO.
The algorithm has degraded into an enumeration of all the 90 feasible points.
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Figure 3.5: Surrogate Optimization run on 6 variables with population size set to 90,
minimum surrogate points set to 110 and maximum number function evaluation set to
250.

From Section 3.5.1, the best two-stage DEA model has an AIC of —55.7257 when
selecting the first 7 variables from Eikon. I repeat this process now for SSO. I set the
minimum surrogate points to 700 and the maximum number of function evaluations to
1200. The population is set to 200. As mentioned previously, each two-stage DEA model
of efficiency and effectiveness is represented as a matrix of B3*7. There are a total of
27 x 27 x 27 = 2097152 two-stage DEA model of efficiency and effectiveness. However, with
the CSP of Section 3.3.1, only 630 of these models are feasible. The rest of the models are
infeasible. The initial population of 200 models is generated from the CSP of Section 3.3.1.
The result of running the SSO on 7 dimensions from Eikon is shown in Figure 3.6. The best
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AIC value found from running the surrogate search optimization is also —55.7257. This
best model was not part of the initial population of size 200. The best model was generated
by the adaptive point represented in black color at about the 700 function evaluation in
the figure. As mentioned previously in Section 3, the adaptive point is the minimum of
the surrogate function and gets evaluated against the fitness function. As I select more
dimensions from Ekion, the algorithm will not scale well. In Figure 3.6, I am dealing
with only 7 dimensions. And with 7 dimensions, only two adaptive models were generated
where one of them resulted in the minimum AIC. However, after the reset (represented as
a vertical blue line) in the figure, all subsequent models were deemed infeasible. Due to
the penalization imposed on a model that does not satisfy the CSP by the fitness function;
the performance of SSO greatly suffers when compared to the GS algorithm. In the worst
630

case the probability of SSO generating a feasible point is 55577=-
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Figure 3.6: Surrogate Optimization run on 7 variables with population size set to 200,
minimum surrogate points set to 700 and maximum number function evaluation set to

1200.

Now SSO may work out well if the CSP of Section 3.3.1 is built into the problem
setup similar to GS algorithm. However, until then, the GS algorithm works well. I select
the GS algorithm over SSO and MABA. I use the GS algorithm as part of the variable

selection framework.

In Chapter 3, I execute the variable selection framework on my

case study. In the case study, I address the next research question whether there is a
consistent (independent of geographic location and time-period) choice of input
and output variables for measuring efficiency and effectiveness in the financial
industry using a two-stage DEA model of efficiency and effectiveness.

63



3.5.3 Results of MABA

I executed the GS algorithm and SSO on 6, 7, and 8 dimensions from the Eikon dataset of
Chapter 2 and Section 2.4.1. I repeat this process now for MABA. MABA did not converge
to the optimal solution when selecting 7 and 8 dimensions from Eikon. It did converge
to the optimal solution for 6 dimensions. Unlike the GS algorithm that converged to the
optimal solution in all three cases (i.e., For 6 variables from Eikon, 7 variables from Eikon,
and 8 variables from Eikon).

The reason for the non-convergence property of MABA is the current implementation
of the belief system. The belief system maintains a frequency counter of all dimensions
and their orientation in the two-stage DEA model that resulted in a model consistent with
the semi-strong version of the EMH. The belief system also maintains a frequency counter
of all dimensions and their orientation in the two-stage DEA model that did not result
in a model consistent with the semi-strong version of the EMH. The exploitation stage
uses the belief system and selects the top dimensions that resulted in the most two-stage
DEA models consistent with the semi-strong version of the EMH. However, when selected
together, the top dimensions don’t need to result in a better two-stage DEA model of
efficiency and effectiveness than previously found from the exploration stage. It is very
much possible that the two-stage DEA model generated by combining the top dimensions
may result in a worse model and a model that is not consistent with the semi-strong version
of the EMH.

Instead of just maintaining a counter as I currently do, what may be required for
improved performance of MABA is also to keep some context around each dimension. For
example, a context may include a set of dimensions that must be present in the two-stage
DEA model when including any of the top dimensions. In other words, conditioned on
the fact that top dimensions are selected, what other variables must be included that
will increase the likelihood of generating two-stage DEA models consistent with the semi-
strong version of the EMH? By including a context, the exploitation stage can exploit the
top dimensions that include other dimensions that increase the likelihood of generating
models consistent with the semi-strong version of the EMH. In the current implementation
of MABA, I use the top k dimensions in the exploitation stage, and because the top k
dimensions, when combined together, do not result in an improved model, the exploitation
stage does not find a better solution.

In Table 3.1, I see this observation for 7 and 8 variables from Eikon where the top
dimensions, when placed together, do not result in an improved model. And even if the
exploitation stage results in a two-stage DEA model consistent with the semi-strong version
of the EMH, it is not the optimal solution. This suggests that if I were to use MABA (at
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least the implementation that I have) across all the 55 dimensions, it is unlikely that the
algorithm will converge to the optimal solution.

Another issue is collisions of variables in the belief system that compete for the same
orientation in the two-stage DEA model. Due to collisions, I consider each of them, which
further forces the exploitation to enumerate across many more two-stage DEA models,
increasing the time it takes to run the algorithm and the number of two-stage DEA models
it must execute. A high value of k£ and z will result in a very rigid configuration of a
two-stage DEA model that may miss out on an optimal solution. In Table 3.1, I select
low values for k£ and z so that the two-stage DEA model from the exploitation stage is not
rigid and many more two-stage DEA models in the neighborhood can be explored by the
exploitation.

Table 3.1 Result of the best AIC function value from MABA

Number of Variables from Eikon | k,z | AIC value

6 2,0 | -46.5799

7 4,1 | No solution consistent with the semi-strong version of EMH found by exploitation stage
8 4,2 | No solution consistent with the semi-strong version of EMH found by exploitation stage

A better implementation of MABA will probably make the &, z, and the epsilon adaptive
rather than making them constant. If the exploitation stage does not result in an improved
model, the adaptive nature of k£ and z will allow the exploitation stage to broaden the size
of the neighborhood and exploit more models. The adaptive nature of the epsilon will
allow the algorithm to place more emphasis on exploration if the exploitation stage does
not result in an improved model. In the current implementation of MABA, a single starting
point is accepted into the exploration stage as opposed to the GS algorithm that can take
in an entire population.

For instance, as seen in Figure 3.7,7 the GS algorithm evaluated 411 two-stage DEA
models in 85 seconds when 6 variables were selected from Eikon. MABA evaluated 63 two-
stage DEA models in the same amount of time. The GS algorithm evaluated 4106 two-stage
DEA models in 728 seconds when 7 variables were selected from Eikon. MABA evaluated
380 two-stage DEA models in the same amount of time. The GS algorithm evaluated
24,406 two-stage DEA models in 3874 seconds when 8 variables were selected from Eikon.
MABA evaluated 2198 two-stage DEA models in the same amount of time. The GS
algorithm converged in all three cases to the optimal solution. The MABA algorithm did
not converge to the optimal solution when selecting 7 and 8 variables from Eikon.

I do not plot the SSO because of the large number of infeasible points that are generated. In other
words, an inordinate amount of time passes before SSO encounters a feasible point. In this figure, the
Y-axis measures the number of feasible two-stage DEA models evaluated by the search algorithms.
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Figure 3.7: Comparing the number of two-stage DEA models evaluated in MABA and GS
algorithm, for the same fixed wall-clock time (higher better).

Due to vectorized and parallel computing support in the GS, I select GS over MABA.
Another improvement could be to have a matrix of starting points accepted into the ex-
ploration stage. This could then take advantage of the code not only being vectorized but
also can execute in parallel.

3.6 Conclusions

The purpose of this chapter was to evaluate the three different search algorithms: (1)
the GS, (2) the SSO, and (3) the MABA. Based on the results of Section 3.5, the GS
performed the best. The GS converged to the best solution in all three cases. The three
cases are (1) selecting six dimensions from Eikon, (2) selecting seven dimensions from Eikon,
and (3) selecting eight dimensions from Eikon. The best solution was pre-determined by
enumerating all the two-stage DEA models of efficiency and effectiveness on the above three
cases and running them against the statistical method in Chapter 2. The GS algorithm
did not only converge to the optimal solution but most individuals in the population also
converged to the optimal solution. This can be observed in the middle plot of best, worst
and mean scores of Figures 3.1, 3.2 and 3.3. This convergence of every individual in
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the population is not observable in the SSO algorithm and the MABA. This convergence
behavior of every individual in the population is also complemented with the average
distance that decreases across generations suggesting that the two-stage DEA models are
converging to a single two-stage DEA model. For these reasons, I select the GS algorithm
and use the GS algorithm in the next Chapter 4 when finding the best universal two-
stage DEA model across 8 countries and across 18 time periods. SSO is best suited to
time-consuming objective functions; the objective function need not be smooth, but the
algorithm works best when it is continuous. However, in this dissertation, the objective
function is not smooth. In this chapter, I modified the SSO by introducing the CSP from
Section 3.3.1 into the objective function (or the fitness function of the SSO algorithm
as shown in Algorithm 3). This modification allows SSO to work with discrete input.
However, it leads to many individuals in the population being classified as infeasible. In
Chapter 4, I use the variable selection framework® from this chapter and find a universal
two-stage DEA model of efficiency and effectiveness for banks in Brazil, Canada, China,
India, Japan, Mexico, South Korea and the USA and for 2000-2017.

8Comprises of the GS algorithm and the statistical method
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Chapter 4

Building Models of efficiency and
effectiveness for the financial industry

4.1 Introduction

The statistical method in Chapter 2 validates whether a certain model of efficiency and
effectiveness is consistent with the semi-strong definition of the EMH. The variable selection
framework in Chapter 3 uses the GS algorithm and the statistical method to find the best
model of efficiency and effectiveness consistent with the semi-strong version of the EMH
in a search space of two-stage DEA models. In this chapter, I investigate the following
research question: Is there a universal two-stage DEA model of efficiency and
effectiveness that is independent of space (geographic location) and time (time
period)?

In Section 4.4, T present the universal two-stage DEA model of efficiency and effective-
ness that is consistent with the semi-strong definition of the EMH along with its input and
output variables for banks from eight countries, including Brazil, Canada, China, India,
Japan, Mexico, South Korea, and the USA for 2000-2017. The universal two-stage DEA
model of efficiency and effectiveness reported in Section 4.4 is the best-two stage DEA
model according to my variable selection framework. I also address causality, i.e., whether
changes to the efficiency and effectiveness measures from the best universal two-stage DEA
model directly cause changes to a bank’s Tobin’s Q ratio and vice versa.

In an efficient market, efficiency and effectiveness cannot cause the Tobin’s Q ratio.
Otherwise traders can exploit the cause and effect relationship for arbitrage opportunities.
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I investigate whether there is any causality between the efficiency and the effectiveness
scores computed from the best two-stage DEA model of efficiency and effectiveness and
the Tobin’s Q ratio using Toda Yamamoto’s test (TYT) ( , ). 1
present the TYT test in Section 4.3.1 of this chapter. In Section 4.4.5, using the TYT,
I check for the following causalities: (1) Does the efficiency and effectiveness Granger
cause the Tobin’s Q ratio? (2) Does the Tobin’s ) ratio Granger cause efficiency and
effectiveness? (3) Does the efficiency Granger cause the Tobin’s Q ratio when controlling
for effectiveness? (4) Does the effectiveness Granger cause Tobin’s Q ratio when controlling
for efficiency? (5) Does the Tobin’s Q) ratio Granger cause efficiency when controlling
for effectiveness? (6) Lastly, does the Tobin’s Q ratio Granger cause effectiveness when
controlling for efficiency? In Section 4.4, I find that efficiency and effectiveness from the
two-stage DEA model considered best by the variable selection framework does not Granger
cause Tobin’s Q ratio for all countries except for India.

I find that in India, efficiency Granger causes Tobin’s @ ratio when controlling for
effectiveness. I also find in India, effectiveness Granger causes Tobin’s QQ ratio when con-
trolling for efficiency. A bank in India, may not control all the input and output variables
of efficiency and effectiveness that I report in Section 4.4. For instance, a bank may only
control the input variables of efficiency or the output variables of effectiveness. My recom-
mendation from this chapter for banks in India is that a bank that only controls the input
variables of efficiency can increase its efficiency by lowering (or optimizing) its consumption
of input variables of efficiency. This will cause an effect in the Tobin’s Q ratio. My other
recommendation from this chapter for banks in India is that a bank that only controls the
output variables of effectiveness can increase its effectiveness by increasing (or optimizing)
its output variables of effectiveness. This will cause an effect in the Tobin’s Q ratio. More
details of my recommendations are provided in Section 4.4.6 of this chapter.

The input and output variables of efficiency and effectiveness that I present in Fig-
ure 4.3 of this chapter are consistent with the semi-strong definition of the EMH for banks
in countries of Brazil, Canada, China, Japan, Mexico, South Korea and the USA. A bank
in any one of these countries that is considered efficient and effective can use the same
input and output variables of efficiency and effectiveness when expanding to any one of the
above with a high degree of confidence. Besides banks opening newer locations in other
places, equity market traders can also benefit from the results of this chapter. In an inef-
ficient market (such as Indian banks as presented in Section 4.4.6 of this chapter), traders
can benefit the most by using the cause and effect relationship between efficiency and ef-
fectiveness and Tobin’s Q ratio. The cause and effect relation can be used to predict the
firm’s performance in the financial market, and traders can profit from such information.
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4.2 Related work

In Section 4.2.1, I highlight some of the differences between TYT test and the Granger
causality test and my reasons for choosing the TYT test. In Section 4.2.2, I present some
related work in testing of the semi-strong EMH.

4.2.1 Causality

Causality is a central concept in the discussion of economic laws, yet economists disagree
about its definition ( , ). The confusion about the use of causality occurs because
of its different interpretation in science and economics. Scientists can conduct controlled
experiments which generate data; however, economists cannot usually do this outside of
the laboratory setting. The data available to an economist are not generated by a con-
trolled experiment. In my dissertation, I use the word “causality” in the context proposed
by ( ), which is used frequently in the econometric literature. Granger causal-
ity for two time series X and Y is defined as “X is said to Granger cause Y if Y can
be better predicted using the histories of both X and Y than it can by using the history
of Y alone.” Causality findings have important decision implications. Understanding the
direction of causality between two variables is crucial for banks when formulating policies
that help them not only do well in financial markets but also improve the allocation of
their offerings. An efficient and effective bank will allocate resources to projects that have
strong growth prospects and pay handsomely for the bank’s investment. In this section,
I review some of the recent work on Granger causality and the TYT, I also present my
reasons for choosing the TYT when inferring causality. I present TYT in Section 4.3.1.

( ) documented the shortcomings of the Granger causality test. They
used the TY'T instead to infer the causal relationships between government spending and
tax revenues from 1960 to 1997 in Malaysia. They pointed out that the TYT can infer
causality for a nonstationary time series and for any co-integration of time series data. The
Granger causality test can be used only on stationary time series data. Similarly, in my
dissertation, I use the TYT due to the nonstationarity of Tobin’s QQ ratio time series data
and efficiency and effectiveness time series scores calculated using two-stage DEA models.

( ) documented the shortcomings of the Granger causal-
ity test. First, a two-variable Granger causality test that does not consider the effect of
other variables is subject to possible specification bias. Second, a Granger causality test
cannot handle nonstationary time series data. The recommended approach to test for
causality on nonstationary time series data is to use the TY'T. ( ) mentioned
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that a causality test is sensitive to model specification as well as the number of lags. Omit-
ted variables and the absence of other relevant variables in the causality model will lead to
incorrect results. Second, time series data are often nonstationary ( ,

). This can amplify the problem of spurious regression which occurs when one non-
stationary time series is regressed against another nonstationary time series. The results
of such a regression are not only incorrect, but also nonsensical ( , ; ,

). Spurious regression can be addressed by converting the nonstationary time series
data into a stationary time series.

( ) mention that incorrect causal relationships can be derived
from a Granger causality test if one does not know whether the time series data are sta-
tionary or nonstationary. They recommend using a Granger causality test only when the
time series data are I(0) (i.e., stationary). When the data are not I(0), but I(1), the
authors recommend performing a first-order of differences to convert the nonstationary
data into stationary data, then use a Granger causality test. Finally, if the time series
data are co-integrated, then the authors recommend using a vector error correction be-
fore performing the Granger causality test. I apply the TYT test on the efficiency and
the effectiveness scores from the best model that was found from my variable selection
framework. The variable selection framework applies the log transformation on the three
time series, Tobin’s Q ratio, efficiency, and effectiveness, then checks whether any unit root
exists on the panel data by running the statistical test of Section 2.5.1. The variable se-
lection framework rejects any model that continues to have nonstationarity after applying
the log transformation. Hence, the best-two stage DEA model as found from my variable
selection framework already contains the log transformation of Tobin’s ) ratio, efficiency,
and effectiveness as a stationary time series. The results of checking for unit root in panel
data suggests that, after the log transformation, the time series of Tobin’s Q ratio, effi-
ciency, and effectiveness are stationary. The results are mentioned in the Appendix C in

Tables C.7, C.10, C.8, C.11, C.9 and C.12.

( ) talk about the drawbacks of the f-test for Granger causality, es-
pecially when trying to find causality between two integrated time series. Instead, they
recommend using a modified Wald test statistic and TYT. This is because the asymptotic
distribution of the Wald test statistic converges to chi-square independent of whether the
time series data are stationary or nonstationary (i.e., I(0), I(1), or I(2)) or even if the time
series data are co-integrated. ( ) use the TYT for causality
in determining if direct foreign investment in a country affects its growth. Due to their
small sample size, TYT test may suffer from size distortion and low power (

, ). To address this, the authors check for the robustness of the causality test
results by recalculating the p-values obtained in the initial Wald test using a bootstrap
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test with 1,000 replications. I also bootstrap using the block bootstrap techniques pro-
posed by ( ). I describe the block bootstrap technique in
Section 4.3.2.

( ) classify the Dumitrescu—Hurlin (DH) test as a stan-
dard Granger causality test. They noted that, in a bivariate setting (i.e., a VAR model with
two variables X and Y), when one of the variables is nonstationary, a standard Granger
causality test such as DH is not valid due to the problems described in

( ); ( ). However, the work of
( ) extends the DH test to a trivariate setting by integrating the TYT ap-
proach with Granger causality. This work is important to my research because I have a
trivariate setting of efficiency, effectiveness, and Tobin’s QQ ratio. I use the same approach
recommended by ( ) when running the TYT test.

( ) use a linear and a non-linear form of the Granger causality
test to examine the relation between Dow Jones stock returns and the percentage change
in the New York Stock Exchange. They found evidence of statistically significant bidirec-
tional nonlinear causality between returns and volume. Other papers, such as

( ) ( )i ( ), include other approaches to convert-
ing nonstationary time series data into stationary data. These authors looked for panel
data causality and studied financial development and growth. My Ph.D. dissertation uses
panel data causality to see whether changing the efficiency and effectiveness from the best
two-stage DEA model of efficiency and effectiveness as found from our variable selection
framework causes a change in its Tobin’s Q ratio in financial markets.

4.2.2 Work related to testing of the semi-strong EMH

( ) studied whether the Australian share market is consistent
with the semi-strong version of the EMH using the data from the 1980s. The authors set
up a linear regression where the dependent variable is the rate of return on the stock price.
The independent variables are a set of endogenous variables that may affect the rate of
return on the stock price. The authors also include the lag variables of these endogenous
variables. However, they do not include any endogenous variable at the current time period
t. On the other hand, I include efficiency and effectiveness scores computed at time period
t along with its lags when setting up the regression model in the statistical method. The
semi-strong version of the EMH states that the market instantly reacts and absorbs any new
and relevant information. I hypothesize as mentioned in Chapter 2 and Section 2.5.3 that
the efficiency and effectiveness scores computed using relevant input and output variables
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on the day when financial statements are made public will be positive and statistically
significant when regressed against the Tobin’s Q ratio. The idea is that the same relevant
information that was absorbed in the making of Tobin’s Q ratio in time period ¢ must
also be present in the efficiency and the effectiveness scores for time period t. Others such
as ( ) studied market efficiency of the bitcoin exchange rate. The
authors tested whether the bitcoin exchange rate behaves like a random-walk assuming
the semi-strong version of the EMH holds. Similar to what I do, the authors include
independent variables at time period t along with their lags when testing for semi-strong
version of the EMH. ( ) provide no rationale on their choice
of selecting the appropriate lag length. On the other hand, I use the AIC information
criterion when determining the appropriate lag length when running the correlation on
panel data and then later also use AIC when determining the lag length before running
the TYT test. The availability of data limits the author’s choice of endogenous variables.
On the other hand, the variable selection framework uses many different combinations of
input and output variable of efficiency and effectiveness from a set of 55 dimensions and
finds the two-stage DEA model of efficiency and effectiveness that is consistent with the
semi-strong version of EMH for banks in Brazil, Canada, China, India, Japan, Mexico,
South Korea and the USA and for time period 2000-2017.

( ) test whether the Nigerian stock market is consistent with
the semi-strong definition of the EMH. The authors conduct a linear regression where the
dependent variable is the market index at time period ¢t and the independent variables
include the computed index of selected securities with n lags. If any of the n lags include a
statistically significant coefficient, the authors reject the semi-strong version of the EMH.
Based on this analysis, the authors claim that the Nigerian Stock Exchange is not efficient.
Correlation in the regression output does not imply causality. It is important to run a
causality check such as the TYT test to determine whether the semi-strong version of the
EMH holds. My dissertation’s statistical method finds a model that is consistent with the
semi-strong version of the EMH. The best model that is found contains lags, see Section 4.4.
However, I do not claim that the semi-strong version of the EMH can be rejected. Instead,
I run the TYT. Only after running the TYT, I find that efficiency does Granger cause the
Tobin’s Q ratio in India. Similar result also holds when I check for whether effectiveness
Granger cause the Tobin’s Q ratio. Therefore, I conclude that at the time, the financial
market of India is inefficient. However, all other country financial markets may be said to
be efficient.

( ) examine the predictability of stock returns in the Athens Stock
Exchange from 1993 to 2006 using accounting information. The authors use panel data
analysis to conclude that certain financial ratios contain significant information for pre-
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dicting the cross-section of stock returns. The authors set up a linear regression where
the dependent variable is the stock price for a firm ¢ at time period ¢. The independent
variables include a set of endogenous variables that have no lags, and the stock price for
the firm at time period ¢t — 1. In my dissertation, instead of fixing the lag length to 1,
the statistical method and the TYT test use AIC to determine the appropriate lag length.
The statistical method traverses a family of models, finding the best model consistent with
the semi-strong version of the EMH rather than fixing some linear model as

( ) have done. However, the authors check for unit roots in their panel data but do
not check for any cross-sectional dependency between firms trading in the Athens Stock
Exchange. As a sanity check, I also run the cross-sectional dependency check (see Sec-
tion 4.4) on the best two-stage DEA model of efficiency and effectiveness found from the
variable selection framework.

( ) use co-integration testing and causality testing when infer-
ring whether stock exchanges in European Monetary Union countries are consistent with
the semi-strong definition of the EMH. The authors use the fact that if two time series,
X and Y, are cointegrated, there must exist Granger causality either from X to Y, or

from Y to X, or both. Like ( ), ( ) use
co-integration analysis and causality when checking whether Namibia’s Foreign Exchange
Market is consistent with the semi-strong version of the EMH. ( ) uses

co-integration testing to determine whether Sri Lanka’s foreign exchange market is consis-
tent with the semi-strong version of the EMH. In my dissertation, the variable selection
framework performs a log transformation on the data. Then, it checks whether efficiency
and effectiveness are stationary. If the log transformation of efficiency and effectiveness is
non-stationary, then the variable selection framework rejects that two-stage DEA model of
efficiency and effectiveness. This implies that the best two-stage DEA model of efficiency
and effectiveness from my variable selection framework always contains a stationary series.
Therefore, I perform no co-integration. Instead, I use the TYT test to check whether ei-
ther efficiency or effectiveness Granger causes the Tobin’s QQ ratio when controlling for the
other. (2014); (2008); (2004)
check for unit roots in their panel data by using the same statistical test that I use in
Chapter 2 and Section 2.5.1. Based on the results of their co-integration analysis,

( ) claim that the stock exchanges in European Monetary Union countries
are not efficient. ( ) finds that the Sri Lanka’s foreign exchange mar-
ket is not consistent with the semi-strong version of the EMH. However,

( ) claim there is evidence of semi-strong form market efficiency in Namibia’s
foreign exchange market.
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4.3 Methodology

In Section 4.3.1, I present the TYT in a tri-variate setting. In Section 4.3.1, I also present
the algorithm for executing TY'T of tri-variate setting in a panel data. In Section 4.3.2, I
describe the block bootstrapping technique. In Section 4.3.3, I demonstrate how principal
component analysis (PCA) is used in generating the initial population size for running the
GS algorithm from the previous chapter.

4.3.1 TYT test in tri-variate setting

After the variable selection framework from Chapter 3 finds the best two-stage DEA model
of efficiency and effectiveness, I then run the TYT test. I run the TYT test using the ef-
ficiency and the effectiveness scores computed from the best two-stage DEA model and
Tobin’s Q ratio in determining any cause and effect relationship among them. The sta-
tistical method of Chapter 2 finds the linear model that best describes the correlation
between the dependent variable of Tobin’s ) ratio and the independent variables of effi-
ciency, effectiveness, and their lags.

The result from the statistical method determines whether the efficiency and effective-
ness measures of a model are consistent with the semi-strong version of the EMH. The
correlation result of the statistical method does not imply causality. The TYT test can
determine whether there is any causal relationship involving Tobin’s Q ratio and the effi-
ciency and the effectiveness. In an efficient market, one does not expect to find any causal
relationship between efficiency and effectiveness, causing Tobin’s Q) ratio. However, in an
inefficient market, arbitrage opportunities may exist where traders can use the causal re-
lationship for financial gains. In Section 4.4, I present the results of the TYT test and
identify the market of India as inefficient.

Using TYT, I perform a causal analysis in panel data on the following six research
questions:

1. Does efficiency and effectiveness Granger cause Tobin’s ( ratio?
2. Does efficiency Granger cause Tobin’s Q ratio when controlling for effectiveness?
3. Does effectiveness Granger cause Tobin’s () ratio when controlling for efficiency?

4. Does Tobin’s () ratio Granger cause efficiency when controlling for effectiveness?
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5. Does Tobin’s Q ratio Granger cause effectiveness when controlling for efficiency?

6. Does Tobin’s Q ratio Granger cause efficiency and effectiveness?

The regression setup of Equation (4.1) is used for determining whether efficiency and
effectiveness Granger cause Tobin’s QQ ratio. The subscript @ refers to country ¢ and ¢ refers
to time period t. This regression setup is executed N times where N is the total number
of countries.

m+k m+k
log(TobinQ; ) = o + Z B log(TobinQ;—;) + Z Bajlog(E f ficiency; ;)
j=1 j=1
m-+k
+ Z Bs.ijlog(Ef fectiveness; ;) + pizr  (4.1)
j=1

The null hypothesis, Hy is stated as efficiency and effectiveness does not Granger cause

Tobin’s @) ratio. Equivalently, 82,1 = Ba2i2 = B2i3 = ... = Baim = 0 and B3;1 =
B3i2 = P3i3=... = PB3sm = 0fori=1,...,N. The alternative hypothesis, H; then is
stated as efficiency or effectiveness Granger cause Tobin’s () ratio. Equivalently, fs,1 =
62’2"2 = 52’1'73 = ... = /6277j,m = 0 for i = ]_,. . .,Ng and 52,,"1 7é Oor...or 62,z',m 7é 0 for

i=Ny+1,...,N. Nyis unknown where Ny € [0, N — 1], and 83,1 = f3:2 = 3,3 = ... =

Bsim=0fori=1,...,Nsand 5,1 #0or ... or B3, #0for i = N3+ 1,...,N. N3 is

unknown and N3 € [0, N —1]. If Ny, = 0 and N3 = 0 there is causality for all countries

in the panel. N3 < N and Ny < N. The Equation (4.1) above has a total of m + k lag

variables. m is calculated using an information criteria. I use AIC ( :
) when calculating m. k is calculated using the maximal order of integration (

, 2012).

In Algorithm 5, from line 6 to 12, I describe how k is calculated. k is the maximal
order of integration which refers to the maximum number of differencing that must be
applied for converting non stationary series in panel data to stationary. m on line 18 and
19 is calculated as the maximum of lageountry- (AGcountry is the optimal lag length of the
VAR model from line 15 for each of the country. lagcountry is determined using AIC. If any
serial correlation exist on lagcountry (see line 17) then lageountry is increased until the serial
correlation is removed. In Section 4.4.5, I present the results of lageountry, & and m. On
line 22, I setup the VAR model of Equation (4.1) with its corresponding null hypothesis
when addressing research question (1) as mentioned in the top of this section. Later in
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this section, I develop the VAR model for research question (2) and its corresponding
hypothesis. I then estimate on line 25 to 29 the average Wald statistic (W), Z, Z and the
corresponding pvalues of Z and Z.

M=

W;
( ) mention that W, where W = * ~— 1s asymptotically
well behaved and can be used to detect causality at panel level. W; is the ith country’s
Wald statistic calculated from line 23 of the algorithm. Using W, two test statistics of
Z and Z are computed (see line 26 and 27 of the algorithm). Z follows the standard
normal distribution when 7' — oo and then N — 0o. Z works well for a fixed T' dimension
where 7' > 54 3(k +m) and also follows the standard normal distribution when N — oc.
( ) presents how to calculate Z and Z in a bi-variate setting
and ( ) presents how to calculate Z and Z in a tri-variate
setting. If Z and Z are greater than the critical values, then the null hypothesis is rejected
in favor of the alternative hypothesis.

I show the hypothesis setup for research question (2) next, however a similar setup can
be performed for research questions (3), (4) and (5). In Section 4.4.5, I use the results of
(4) and (5) to estimate the result of (6). The regression setup, as shown in Equation (4.1)
is also used for whether efficiency Granger causes Tobin’s ) ratio when controlling for
effectiveness. The null hypothesis, Hy is efficiency does not Granger cause Tobin’s Q) ratio
when controlling for effectiveness. Equivalently, B2;1 = B2i2 = Baiz = ... = Poim = 0
for i« = 1,...,N. The alternative hypothesis, H; then is efficiency does Granger cause
Tobin’s @) ratio when controlling for effectiveness. Equivalently, 82,1 = B2 = P23 =
co.=Poim=0fori=1,...,Nyand 82,1 #0or ... or B, #0fori=N; +1,...,N.
N; € [0, N — 1] is unknown.

On line 22 of the Algorithm 5, T setup the VAR model of Equation (4.1) with the
corresponding null hypothesis when addressing research question (2).
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Algorithm 5 Algorithm for Toda-Yamamoto Causality Test Procedure in Panel Data
Preconditions:

e Panel data:  Panel data of  log(TobinQ;,.), log(Ef ficiency;;)  and
log(Ef fectiveness; ;)
where 1 <7< 8and 1<t <18.
8 represents the number of countries and 18 represents the number of time periods.

Postconditions:

e Wald score, Test statistic and pValues: Wald, Z, Z, pValuegz, pValue;

1. procedure PERFORMTY T(panelData)

2: X, Xeopy — getTobinQ(panel Data)

3 Y.Yeo0py < getEfficiency(panel Data)

4: 2,2 copy +— getEffectiveness(panel Data)

o: ke 0

6 while true do

7 if isStationary(Xopy) N isStationary(Yeoy,) A isStationary(Z.op,) then
8
9

break
: ke k+1
10: Xeopy ¢PperformDifferencinglfNonStationary (X op,)
11: Yopy <—performDifferencinglfNonStationary (Y., )
12: Zopy <—performDifferencinglfNonStationary(Z.qp,)

13: m<+< 0
14: for each country in {Brazil, Canada, China, India, Japan, Mexico, SouthKorea,USA}
do

15: Veountry <— setupVarModelForCountryWithLags(X, Y, Z, country, 4)

16: lageountry < runVarAndFindBestLagLength(lageountry, AIC)

17: lageountry < checkForSerialCorrelationAndIncreaseLaglfNeccessary (lageountry)
18: if m < lageountry then

19: m < lagcountry

20: Wald< 0
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PERFORMTYT CONT...

21: for each country in {Brazil, Canada, China, India, Japan, Mexico, SouthKorea,USA}

do
22: Veountry <— setupVarModelForCountryWithLags(X, Y, Z, country, m + k)
23: waldeoyntry < runVarAndEstimateWald (veountry)
24: Wald < Wald + wald ountry
25:  Wald + Wald

numberO fCountries

26: Z + estimateZBarFromWald(Wald)
27: 7 < estimateZTildeFromWald(Wald)

28: pValuey < estimatePValue(Z)

29:  pValuey, estimatePValue(Z)
30: Return Wald, Z, Z, pValuez, pValue;

4.3.2 Block bootstrap

Due to cross-sectional dependency that may exist in panel data,

( ); ( ) recommends using a block bootstrap approach. I
will present the block bootstrapped approach for whether efficiency Granger cause
Tobin’s Q ratio when controlling for effectiveness. A similar setup can be created
for other scenarios.

1. Run the TYT test and compute the Z and Z for Equation (4.1).

2. Under the null hypothesis that efficiency does not Granger cause Tobin’s @ ratio
when controlling for effectiveness, for Equation (4.1), a1 = Poio = Poiz = ... =
B2,i k+m = 0 for all 7. The following model is then estimated:

k+m k+m

log(T'obinQ; ) = di+z Bl,i,j log(Tobz'nQ@t,j)—i—Z Bg,i’j log(Ef fectiveness; ;)4

j=1 j=1

and the residuals are collected in the matrix /i where fi € RT=(k+m)xN

3. A matrix p* is built where p* € RT'=(k+m)xN 1y resampling blocks of rows of matrix
it. Each row j in the matrix p* contains the residual of all countries for time period j.
Resampling blocks of row will preserve any temporal dependency that may be present
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among the countries. In a non block bootstrap approach, temporal dependency or
correlation among countries is not accounted for.

4. Generate a random draw of (log(TobinQ;)*,. .., log(TobinQy m)*) where (log(TobinQ)* =
(log(Tobin@y4)*, log(TobinQay)*, . .., log(Tobin@Qn+)*) by randomly selecting a block
of k + m consecutive time periods with replacement ( , :

, 1987).

k+m
5. Construct the resampled series of log(T'obinQ;,;) = d; + »_ B, log(TobinQ;, ;) +
j=1
k+m R
B35 log(Ef fectiveness;;_;)+pi;,. The &’s and §’s are used from Equation (4.2).
=1

J

k+m k+m
6. Fit the model of log(TobinQ;,) = a;+ Y Bulog(TobinQ;, ;)+ > Baijlog(Ef ficiency; ;)
j=1 Jj=1
k+m _ ~
+ > Bsilog(Ef fectiveness; —;) + pi+ and compute 7% and Z°.
j=1

7. Repeat steps 3 to 6, 10,000 times.

8. Compute the pvalues and critical values of Z and Z of step (1) based on the distri-
bution of Z% and Z° where b = 1, ..., 10, 000.

4.3.3 Principal Component Analysis (PCA)

The data that we collected from Eikon as mentioned previously in Chapter 2 and Sec-
tion 2.4.1 is of size RV*P*T where N is the total number of banks across the eight coun-
tries, D is the number of dimensions, and 7' is the number of time periods. N is 241, D is
55 and T is 18. As mentioned in section 2.4.1, I average out the data based on the market
capitalization in each country for all banks and for each time period. The result is a new
dataset of size R®*%*18 The purpose of using PCA is to find promising starting points for
executing the GS algorithm in the variable selection framework. A starting point referred
to as sp where sp € B3>, in the GS algorithm is a two-stage DEA model of efficiency and
effectiveness. The 3 indicates the three different sets of variables in the two-stage DEA
model, i.e., (1) input variable of efficiency, (2) output variable of efficiency, and (3) output
variable of effectiveness. Note that the output efficiency variables are identical to the input
effectiveness variables in the two-stage DEA model. The B indicates that the matrix of
size 3 X 55 is a matrix of boolean values. A boolean value of 1 in row 1 and column j
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indicates that the variable j is part of the efficiency input variables. A boolean value of
1 in row 3 and column k indicates that the variable k is part of the effectiveness output
variables.

A promising starting point is a point in a region of dimensions where the dimensions

are closely aligned with the eigenvectors of the dataset’s covariance. The eigenvectors of
the covariance of the dataset are calculated on line 6 of the algorithm as shown on page 81.
I then filter out (see line 7) those eigenvectors that cumulatively capture 90% of the total
variance of the dataset. Here is the algorithm:

PCA algorithm

Postconditions:

e Promising Dimensions € Z*"
where p is the number of promising dimensions.

1: procedure PERFORMPCA

2:
3:

10:

bankData<— LoadEikonDataForAllBanksAndForAllCountries()
marketCapitalDataForBanks<—  LoadMarketCapitalDataFor AllBanksAndForAll-

Countries()

countryData<— AverageOutData(bankData,marketCapitalDataForBanks)

cov4+— FindCovariance(countryData)

(eigenvectors,eigenvalue)+ GetEigenvectorsAndEigenValues(cov)
(eigenvectors,eigenvalue)=Filter(eigenvectors,eigenvalue)
dotProductResult=Identity(55,55)7 X eigenvectors
topDimensionsAcrossEachEigenvector=GetMax(dotProductResult,7)

Promising Dimensions <— PerformUnionOnColumns(topDimensionsAcrossEachEigenvector)

Line 7, filters out 7 eigenvectors that captures 90% of the total variance of the Eikon

dataset.
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Table 4.1 % of variance captured by each of the 7 eigenvectors

Eigenvector % of total variance captured
(ST 38%

€6 16.93%

€5 1185%

(S¥] 838%

es 6.21%

€2 5.58%

e 3.06%

Total Variance Captured: 90%

Each of the 7 eigenvectors is an orthonormal vector and is in the coordinate system
of the basis vectors from the Eikon dataset. The basis vectors of the Eikon dataset is
the standard basis. Each eigenvector (e;) contains coordinates in the standard basis i.e,
e; € R and i € {1,2,3,4,5,6,7}. The standard basis is the set of 55 dimensions from
the Eikon dataset. Due to this, the dot product (see line 8 of the algorithm) of each of the
basis vectors from the Eikon dataset against the eigenvectors will result in a dot product
between —1 to 1. In Appendix E, Table E.1 lists the results of the 7 largest dot product
of the dimensions from Eikon across each of the 7 eigenvectors of the covariance of the
dataset. In Appendix E, Table E.2 lists the actual dimension number corresponding with
each of the dot product results of Table E.1. Each of the dimension numbers varies from
1 to 55, representing one of the 55 dimensions from the Eikon dataset.

Table E.2 highlights the dimensions from FEikon that are similar to each of the eigen-
vectors or dimensions that are pointing in the direction of the largest variance. I now take
the union of the columns of Table E.2 i.e.,

PD ={1,2,3,4,5,6,7,9,10,16,17,18,19,20,21,22,25,26,27,28,29,30,31,32,33,34,35,37,38,39,
41,42,43,46,47,48,49,50,52,53,54,55}

where PD is the set of promising dimensions. Line 10 of the algorithm generates PD.
PD is now used in the constrained satisfaction problem of Chapter 3 and Section 3.3.1 in
generating starting points for the GS algorithm of the variable selection framework. The
PCA algorithm used in the panel data cannot distinguish between time and cross-section-
specific variances in the variables.
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4.4 Results

In Section 4.4.1, I mention the lag length selection criteria in the statistical method for
panel data regression. In Section 4.4.2, I present the results of the variable selection
framework on banks in Brazil, Canada, China, India, Japan, Mexico, South Korea, and
the USA from 2000 to 2017. In Section 4.4.6, I provide discussion and managerial insights
about my results.

4.4.1 Lag length selection criteria in the statistical method

As mentioned in Chapter 3 and Section 3.4.1, to use AIC, the number of data points in
the panel data must remain constant when comparing a statistical model containing lags
against a model containing no lags. The panel data is first preprocessed by removing K,
time periods. K., is a positive integer representing the number of maximum lags that
the panel data contains ( : ).

First, I set K4 = 2, resulting in a panel data of size 8 x (18 — 2). 8 refers to the
number of countries, and 18 refers to the total number of time periods that I consider in
my panel data. I run the statistical method for 10,000 randomly chosen two-stage DEA
models of efficiency and effectiveness. I find 310 that are statistically significant, meaning
they are consistent with the semi-strong EMH. Out of these, 53 have no lags, 75 have lags
of 1, and 182 have lags of 2. Out of the 310 models, the model with the lowest AIC score
contains 1 lag. When K,,,, = 3, i.e., the new panel data is now of size 8 x (18 — 3), I
run the statistical method for the same 10,000 two-stage DEA models of efficiency and
effectiveness. I find that 242 are statistically significant. Out of these, 32 have no lags,
126 have lags of 1, and 84 have lags of 2. 1 find no statistically significant models with
lags of 3. Out of these 242 models, the model with the lowest AIC score contain no lag.
Based on these results and on losing an extra 8 data points when setting to K. = 3, 1
decide to set K., = 2 in the statistical method when running the GS algorithm of the
variable selection framework. This also makes it consistent with the 2 lags that was set in
Chapter 2 when validating ( )’s two-stage DEA model of efficiency
and effectiveness against the semi-strong version of the EMH.

4.4.2 Results from the variable selection framework

I executed the GS algorithm of the variable selection framework 30 different times. On
each of these 30 runs, an initial population of 5000 points was set. Each individual in the
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population is a certain two-stage DEA model of efficiency and effectiveness. From these
5000 starting points, about 50% were generated in the neighborhood of the dimensions
suggested from PCA (see section 4.3.3) using the constrained satisfaction problem from
Chapter 3 and section 3.3.1. The other 50% were randomly generated using a uniform
distribution. Each of the 30 runs, ran for a total of 10 days or when the number of consec-
utive generations without any improvement reached 500 which ever came first. On average,
each run explored about 15,200,000 two-stage DEA models. The statistical method from
Chapter 2 reported the best AIC score of —61.9107 across all the 30 runs. The output of
the statistical method is shown in table 4.2.

Table 4.2 Output from the statistical method on the best two-stage DEA model of effi-
ciency and effectiveness from variable selection framework

N =128 AIC=-61.9107
n==3 T =16
R? = 11160 AdjR? = .02736

Wald F(4,7)=9.296765

p-value = .0062

Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) .356226 .090470 3.9375 | .006
log(ef fectiveness;) .388642 .082897 4.6882 | .002
log(ef ficiency; 1) -. 437795 133423 -3.2813 | .013
log(ef ficiency;_») 228851 121640 1.8814 | .102

Standard errors robust to heteroskedasticity adjusted for 8 clusters

The corresponding two-stage DEA model is shown in figure 4.1.
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Figure 4.1: Best two-stage DEA model from the variable selection framework.

The average AIC from all the 30 different runs is —47.4718. The best two-stage DEA
model on 14 of the 30 runs always contains the variables of ‘total assets,” ‘number of
employees’ and ‘non-interest income.” 8 of the 14 runs always contain the variables of
‘total assets’ and ‘number of employees’ as input variables of efficiency and ‘non-interest
income’ as output variables of effectiveness.

I decided to enumerate all the two-stage DEA models such that ‘total assets’ and
‘number of employees’” always occur together either as input variables of efficiency or output
variables of efficiency, or output variables of effectiveness. In addition, the variable of ‘Non-
interest income’ is always present in the two-stage DEA model. The reason for doing this
is to check if there is a better two-stage DEA model by fixing the above variables in the
two-stage DEA model than what the variable selection framework found. One may think
of the enumeration as a process of performing a localized search around the best-two-stage
DEA model of efficiency and effectiveness found from the variable selection framework.
There are a total of 55 dimensions in the Eikon dataset. The enumeration yields a total of
6 x (512) X (521) = 397800 two-stage DEA models of efficiency and effectiveness. There are 6
different ways (also referred to as permutations in Figure 4.2) to arrange ‘total assets’ and
‘number of employees’ always occurring together and ‘non-interest income’ in the two-stage
DEA model. The result from our enumeration is summarized in Figure 4.2.
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Figure 4.2: Distribution of two-stage DEA model consistent with semi-strong EMH after
performing enumeration across all the 6 different permutations

A total of 1592 two-stage DEA models of efficiency and effectiveness were consistent
with the semi-strong EMH from the 397,800 models enumerated. Figure 4.2 displays the
distribution of these 1592 models across the 6 different permutations. In Appendix F,
in Figure F.1, Figure F.2, Figure F.3, Figure F.4, Figure F.5 and Figure F.6; I list the
orientation of the variables ‘total assets’, ‘full time employees’ and ‘non-interest income’ in
the two-stage DEA model of efficiency and effectiveness across the 6 different permutations.
After enumerating 397,800 two-stage DEA models of efficiency and effectiveness, a better
two-stage DEA model of efficiency and effectiveness resulted than the model found by the
variable selection framework. This new two-stage DEA model is presented in Figure 4.3.
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Figure 4.3: Best two-stage DEA model after enumeration.

The statistical test of finding unit root in panel data infers that the log transformation
of Tobin ) ratio; and the log transformation of the efficiency and the log transformation
of effectiveness computed from the two-stage DEA model of Figure 4.3 are stationary. In
Table C.7, Table C.8 and Table C.9 of Appendix C, I report the results of checking for
unit roots without the log transformation. After applying the log transformation I report
the results in Table C.10, Table C.11 and Table C.12 of Appendix C. I talk more about
the statistical test of finding unit root in panel data in Chapter 2 and Section 2.5.1 of this
dissertation. Table 4.3 presents the result of the statistical method on the two-stage DEA
model of efficiency and effectiveness of Figure 4.3.

Table 4.3 Output from the statistical method on the best two-stage DEA model of effi-
ciency and effectiveness from running the enumeration.

N =128 AIC=-63.1407

n==§ T =16

R? = 11594 AdjR? = 03211

Wald F(4,7)=18.146207 | p-value = .0008

Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) 588653 242731 2.4251 | .046
log(ef fectiveness;) 465596 169885 2.7406 | .029
log(ef fectiveness;_1) -.727668 111479 -6.5274 | .000
log(ef ficiency;_o) -.744820 426930 -1.7446 | .125

Standard errors robust to heteroskedasticity adjusted for 8 clusters
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4.4.3 Variance inflation factor (VIF)

I calculate VIF for each of the independent variable and check whether any multicollinearity
exist among the independent variables listed in Table 4.3. A VIF of 1 represents no
multicollinearity. A VIF greater than 1 represents multicollinearity. VIFs represent the
factor by which the correlations amongst the predictors inflate the variance. For example,
a VIF of 5 indicates that multicollinearity inflates the variance by a factor of 5 compared
to a model with no multicollinearity. Because no formal cutoff value or method exists to
determine when a VIF is too large, typical suggestions for acceptable range of VIF is less
than 10 ( , ). Values greater than 10 suggest severe multicollinearity.
Others have taken conservative approach and suggested values must be less than 5 to be
said to have no multicollinearity in practice ( , : , ). The
VIF for the independent variables of Table 4.4 are less than 5.

Table 4.4 VIF for independent variables of Table 4.3
Variable VIF
log(ef ficiency;) 2.4587
log(ef fectiveness;) 2.6441
log(ef fectiveness; 1) | 3.3665
log(ef ficiency;_o) 3.6521

4.4.4 Cross section dependency

Due to banks’ inter-connectedness among the eight countries, we believe that there may
be a high degree of cross-section dependency among the error terms. Cross-sectional de-
pendence in the errors may arise because of common shocks or when the estimated models
present spatial dependence in the disturbances ( , ). Not accounting for
cross-sectional dependence will result in inefficient estimators, and we may draw incorrect
inferences from it.

[ use ( )’s cross-sectional dependence test and check for any cross-sectional
dependence among the error terms. This test is executed on the statistical model of
Table 4.3. The null hypothesis of the ( ) assumes that there is no cross-

sectional dependence. The Pesaran test statistic calculated is -.1616 for a p-value of .4358.
The null hypothesis that there is no cross-sectional dependency is not rejected.
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4.4.5 Toda Yamamoto causality test (TYT) results

I now check whether the best two-stage DEA model of Figure 4.3 exhibits any causality. I
use the TYT and check for causality in the following scenarios:

1. Does efficiency and effectiveness Granger cause Tobin’s () ratio?

2. Does efficiency Granger cause Tobin’s () ratio while controlling for effectiveness?
3. Does effectiveness Granger cause Tobin’s () ratio while controlling for efficiency?
4. Does Tobin’s Q ratio Granger cause efficiency while controlling for effectiveness?
5. Does Tobin’s Q ratio Granger cause effectiveness while controlling for efficiency?

6. Does Tobin’s Q ratio Granger cause efficiency and effectiveness?

From Table C.10, Table C.11 and Table C.12 of Appendix C, I know that the log trans-
formation of Tobin’s Q ratio, log transformation of efficiency and the log transformation
of effectiveness are stationary series of 1(0). To determine the appropriate lag length for
our panel data, I use the same approach as suggested by ( ).
I first create a VAR model of lag length 4 on log(ef ficiency), log(ef fectiveness) and
log(tobin@Q) for each of the 8 countries. A VAR model of lag length 4 contains a maximum
of 4 lags. For each of the VAR models, I use the AIC criterion to determine the ideal lag
length, where the ideal lag length can vary from 1 to 4.

I then check whether the lag length selected by AIC has any serial correlation on it. I
use the Rao F-test version of the Lagrange multiplier (LM) statistic when testing for serial
correlation. The Rao F-test version of the LM statistic augments the Edgeworth Likelihood
Ratio (LR) form of the test, and ( ) mentioned that it performs
best among the many variants they consider. The null hypothesis for the Rao F-test is
that there is no serial correlation at the lag length & where k is the optimal lag length
found from AIC. If the null hypothesis is rejected in favor of the alternative hypothesis, I
increase the lag length until there is no serial correlation.

Tables D.1, D.2, D.3, D.4, D.5, D.6, D.7 and D.8 in Appendix D presents the results of
the optimal lag length from AIC for the 8 countries along with the serial correlation test
on the optimal lag length. For Brazil, from Table D.1 the optimal lag length with no serial
correlation is 1. For India, from Table D.2 the optimal lag length with no serial correlation
is 1. For China, from Table D.3 the optimal lag length with no serial correlation is 3. For
the USA from Table D.4 the optimal lag length with no serial correlation is 2. Notice that
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I increased the lag length as determined from AIC by 1. This is because there is a serial
correlation on lag length of 1 and no serial correlation on lag length of 2. For Canada
from Table D.5 the optimal lag length with no serial correlation is 2. For Mexico, from
Table D.6 the optimal lag length with no serial correlation is 2. For South Korea, from
Table D.7 the optimal lag length with no serial correlation is 3. For Japan, from Table D.8
the optimal lag length with no serial correlation is 2. I select the lag length of 3, which is
the maximum across all 8 cross-sectional time series. Similar to

( ) I then select m to 3 in Equation (4.1) when running the TYT on panel data. k is
set to 0 in Equation (4.1) because after the log transformations, all the three-time series
are stationary and of I(0). Before I present the TYT tests for all the six scenarios and
their results, I formally state the hypothesis for each of the six scenarios.

1. Does efficiency and effectiveness Granger cause Tobin’s Q ratio?

H, is stated as, In the given panel data, efficiency and effectiveness does not
Granger cause Tobin’s Q) ratio for all countries.

H, is stated as, In the given panel data, efficiency or effectiveness Granger cause
Tobin’s Q) ratio for atleast one country.
2. Does efficiency Granger cause Tobin’s Q ratio when controlling for effectiveness?

Hy is stated as, In the given panel data, the efficiency does not Granger cause
Tobin’s () ratio for all countries when controlling for effectiveness.

H, is stated as, In the given panel data, the efficiency Granger causes Tobin’s @)
ratio for at least one country when controlling for effectiveness.
3. Does effectiveness Granger cause Tobin’s () ratio when controlling for efficiency?

H, is stated as, In the given panel data, the effectiveness does not Granger cause
Tobin’s Q) ratio for all countries when controlling for efficiency.

H, is stated as, In the given panel data, the effectiveness Granger causes Tobin’s
Q) ratio for at least one country when controlling for efficiency.
4. Does Tobin’s Q ratio Granger cause efficiency when controlling for effectiveness?

Hy is stated as, In the given panel data, Tobin’s ) ratio does not Granger cause
efficiency for all countries when controlling for effectiveness.

H, is stated as, In the given panel data, Tobin’s () ratio Granger causes efficiency
for at least one country when controlling for effectiveness.
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5. Does Tobin’s Q ratio Granger cause effectiveness when controlling for efficiency?

H, is stated as, In the given panel data, Tobin’s ) ratio does not Granger cause
effectiveness for all countries when controlling for efficiency.

H, is stated as, In the given panel data, Tobin’s () ratio Granger causes effective-
ness for at least one country when controlling for efficiency.

6. Does Tobin’s Q ratio Granger cause efficiency and effectiveness?

H, is stated as, In the given panel data, Tobin’s ) ratio does not Granger cause
efficiency and effectiveness for all countries.

H, is stated as, In the given panel data, Tobin’s () ratio Granger causes efficiency
or effectiveness for atleast one country.

For each of the above four cases; I calculate two different test statistic of Z and Z.

( ); ( ) have mentioned that Z referred to as
standardized test statistic follows a normal distribution when 7" — oo and then N — oc.
Z is referred to as the approximate standardized statistic and is used for a fixed time T
dimension such that 7" > 5 + 3(k + m). ( ) used Monte Carlo
simulations and found that even for a small panel where N is small, and T is small, Z ex-
hibits good finite sample properties. I calculate the two p values, one using Z and another
using Z.

Econometric models are used to formulate policy recommendations, and inaccurate
conclusions may be harmful ( , ). Due to large trading among banks across
different countries, I suspect that there may be cross-dependence among the countries.

( ) recommends a block bootstrap procedure to compute boot-
strapped critical values and then to use these bootstrapped critical values for determining
whether Z and Z are statistically significant. Hence, in addition to calculating p values
based on asymptotic critical values of standard normal distribution, I also calculate the
bootstrapped critical values for determining whether Z and Z are statistically significant
in the bootstrapped critical values. I use the block bootstrapping approach for (3), (4),
(5) and (6). I bootstrap 10,000 samples and then calculate critical values at 1%, 5%,
and 10% level. T use the same approach to bootstrapping as implemented and suggested

by (2019).

Some researchers such as ( ); ( );
( 7) report only Z for relatively small panel data. To be consistent with them, I also
use Z when providing managerial insights and discussion in Section 4.4.6.
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Does efficiency and effectiveness Granger cause Tobin’s Q ratio?

Using the hypothesis development of Equation (4.1) from Section 4.3.1 and stated again
in the first of the six scenarios on top of this section, I first find the p value and decide
whether to reject the null hypothesis Hy (i.e., p value is less than 0.05) in favour of the
alternative hypothesis H;. My result is summarized in Table 4.5. Based on asymptotic
critical values of standard normal distribution, Z is statistically significant at 1%. Z is
not statistically significant at 10%. Using Z, I can reject the null hypothesis in favor of
the alternative hypothesis, i.e, that efficiency or effectiveness does Granger cause Tobin’s
Q ratio for at least 1 country.

However I cannot reject the null hypothesis when checking Z against the asymptotic
critical values and against the bootstrapped critical values at 10%. T also cannot reject the
null hypothesis when checking Z against the bootstrapped critical values at 10%.

Table 4.5 Does efficiency and effectiveness Granger cause Tobin’s () ratio.
Extra lag k = 0

Lag order m = 3

Size T =18 Size N =8

W statistic = 3.8965

Z statistic = 3.1057  pvalue = 0.0019

7 statistic (standardized for fixed T value) = -0.0732

pvalue = 0.9417

1% 5 % 10 %
Bootstrapped critical values for 7 79.0739 | 49.8877 | 39.8806
Bootstrapped critical values for Z -0.0046 | 0.7509 | 1.2072
Cross Unit Identifier | Wald statistics | pvalue
Brazil 3.7780 0.2865
India 13.5731 0.0035
China 3.5549 0.3137
USA 0.1680 0.9826
Canada 3.2435 0.3556
Mexico 3.2344 0.3569
South Korea 3.0356 0.3862
Japan 0.5848 0.8999

At the country level, India exhibits causality at o = 1%.
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Does efficiency Granger cause Tobin’s QQ ratio when controlling for effective-
?
ness’

Using the hypothesis development from Section 4.3.1 and stated again in the second of the
six scenarios on top of this section, I first find the p value and decide whether to reject the
null hypothesis Hy (i.e., p value is less than 0.05) in favour of the alternative hypothesis
Hy. My result is summarized in Table 4.6. Based on asymptotic critical values of standard
normal distribution, Z is statistically significant at 1%. Using Z, I can reject the null
hypothesis in favor of the alternative hypothesis i.e, that efficiency does Granger cause
Tobin’s QQ ratio when controlling for effectiveness for at least 1 country.

However I cannot reject the null hypothesis when checking Z against the asymptotic
critical values and against the bootstrapped critical values at 10%. T also cannot reject the
null hypothesis when checking Z against the bootstrapped critical values at 10%.

Table 4.6 Does efficiency Granger cause Tobin’s () ratio when controlling for effectiveness?
Extra lag k = 0

Lag order m = 3

Size T =18 Size N =8

W statistic = 4.1688

7 statistic = 4.0488  pvalue = 0.0001

7 statistic (standardized for fixed T value) = 0.1193  pvalue = 0.9050

1% 5 % 10 %
Bootstrapped critical values for 7 46.8200 | 27.8605 | 21.8951
Bootstrapped critical values for Z 8.8500 | 4.9799 | 3.7622
Cross Unit Identifier | Wald statistics | pvalue
Brazil 4.5555 0.2074
India 7.9170 0.0478
China 6.6980 0.0822
USA 0.2641 0.9666
Canada 5.8946 0.1169
Mexico 3.2660 0.3524
South Korea 0.9476 0.8139
Japan 3.8074 0.2830

At the country level, India and exhibits causality at o = 5%
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Does effectiveness Granger cause Tobin’s Q ratio when controlling for effi-
ciency?

Using the hypothesis development from Section 4.3.1 and stated again in the third of the
six scenarios on top of this section, I first find the p value and decide whether to reject the
null hypothesis Hy (i.e., p value is less than 0.05) in favour of the alternative hypothesis
H,. My result is summarized in Table 4.7. Based on asymptotic critical values of standard
normal distribution, Z is statistically significant at 1%. Using Z, I can reject the null
hypothesis in favor of the alternative hypothesis i.e, that effectiveness does Granger cause
Tobin’s Q ratio when controlling for efficiency for at least 1 country.

However I cannot reject the null hypothesis when checking Z against the asymptotic
critical values and against the bootstrapped critical values at 10%. T also cannot reject the
null hypothesis when checking Z against the bootstrapped critical values at 10%.

Table 4.7 Does effectiveness Granger cause Tobin’s Q ratio when controlling for efficiency?
Extra lag k = 0

Lag order m = 3

Size T =18 Size N =8

W statistic = 3.9645

Z statistic = 3.3413  pvalue = 0.0008

Z statistic (standardized for fixed T value) = -0.0251

pvalue = 0.9800

1% 5 % 10 %
Bootstrapped critical values 7 123.5686 | 74.8559 | 59.7948
Bootstrapped critical values Z 1.4718 2.4488 | 3.0215
Cross Unit Identifier | Wald statistics | pvalue
Brazil 2.2671 0.5189
India 13.6892 0.0034
China 6.9761 0.0727
USA 0.1798 0.9808
Canada 1.4733 0.6885
Mexico 2.4509 0.4842
South Korea 3.1061 0.3756
Japan 1.5739 0.6653

At the country level India exhibits causality at o = 5%.

94




Does Tobin’s Q ratio Granger cause efficiency when controlling for effective-
l?
ness’

Using the hypothesis development from Section 4.3.1 and stated again in the fourth of
the six scenarios on top of this section, I first find the p value and decide whether to
reject the null hypothesis Hy (i.e., p value is less than 0.05) in favour of the alternative
hypothesis H;. My result is summarized in Table 4.8. Based on asymptotic critical values
of standard normal distribution, Z and Z are statistically significant at 1%. I can reject
the null hypothesis in favor of the alternative hypothesis i.e, that Tobin’s ) ratio does
Granger cause efficiency when controlling for effectiveness at least for 1 country. Also
using the bootstrapped critical value of Z and Z at the 10% level, the null hypothesis can
be rejected.

Table 4.8 Does Tobin’s Q ratio Granger cause efficiency when controlling for effectiveness?
Extra lag k = 0

Lag order m = 3

Size T =18 Size N =38

W statistic = 10.8896

Z statistic = 27.3304  pvalue = 0.0000
Z (standardized for fixed T value) = 4.8717  pvalue = 0.0000

1% 5 % 10 %
Bootstrapped critical values Z 49.1897 | 28.6704 | 21.8668
Bootstrapped critical values 7 9.3337 | 5.1452 | 3.7564
Cross Unit Identifier | Wald statistics | pvalue
Brazil 2.9288 0.4027
India 4.1245 0.2483
China 5.8622 0.1185
USA 4.9292 0.1771
Canada 40.6029 0.0000
Mexico 25.8129 0.0000
South Korea 2.0569 0.5607
Japan 0.7995 0.8496

At the country level, Canada and Mexico exhibit causality at o = 1%.

95




Does Tobin’s Q ratio Granger cause effectiveness when controlling for effi-
ciency?

Using the hypothesis development from Section 4.3.1 and stated again in fifth of the six
scenarios on top of this section, I first find the p value and decide whether to reject the
null hypothesis Hy (i.e., p value is less than 0.05) in favour of the alternative hypothesis
Hy. My result is summarized in Table 4.9. Based on asymptotic critical values of standard
normal distribution, Z is statistically significant at 1%. Using Z, I can reject the null
hypothesis in favor of the alternative hypothesis i.e, that Tobin’s Q) ratio does Granger
cause effectiveness when controlling for efficiency for at least 1 country.

However I cannot reject the null hypothesis when checking Z against the asymptotic
critical values and against the bootstrapped critical values at 10%. T also cannot reject the
null hypothesis when checking Z against the bootstrapped critical values at 10%.

Table 4.9 Does Tobin’s QQ ratio Granger cause effectiveness when controlling for efficiency?
Extra lag k = 0

Lag order m = 3

Size T =18 Size N =8

W statistic = 3.9399

7 statistic = 3.2558

pvalue = 0.0011

7 statistic (standardized for fixed T value) = -0.0425

pvalue = 0.9661

1% 5% 10%

Bootstrapped critical values 7 46.6626 | 26.1181 | 19.1528

Bootstrapped critical values 7 -1.4392 | -1.0202 | -0.7772
Cross Unit Identifier | Wald statistics | pvalue
Brazil 1.1978 0.7535
India 3.1957 0.3624
China 10.3911 0.0155
USA 6.1891 0.1028
Canada 0.7364 0.8646
Mexico 4.8688 0.1817
South Korea 2.6653 0.4462
Japan 2.2750 0.5173

At the country level China exhibits causality at o = 5%.
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Does Tobin’s Q ratio Granger cause efficiency and effectiveness?

I can use the results of Does Tobin’s Q) ratio Granger cause efficiency when controlling for
effectiveness on page 95 and the results of Does Tobin’s Q) ratio Granger cause effectiveness
when controlling for efficiency on page 96 for answering whether Tobin’s () ratio Granger
cause efficiency and effectiveness.

The null hypothesis is stated as, Tobin’s @) ratio does not Granger cause efficiency or
effectiveness. Alternatively, this is the same as Tobin’s () ratio does not Granger cause
efficiency when controlling for effectiveness or Tobin’s @) ratio does not Granger cause
effectiveness when controlling for efficiency. From page 95, atleast based on Z’s asymp-
totic value, the null hypothesis of Tobin’s @) ratio does not Granger cause efficiency when
controlling for effectiveness was rejected. From page 96, atleast based on Z’s asymptotic
value, the null hypothesis of Tobin’s Q) ratio does not Granger cause effectiveness when
controlling for efficiency was rejected. Therefore based on the Z’s asymptotic value the
null hypothesis of Tobin’s @ ratio does not Granger cause efficiency or effectiveness is
rejected.

4.4.6 Discussion of results

The results of the statistical method shown in Table 4.3 suggest that the market val-
ues banks that exhibit continuous improvement in efficiency and effectiveness from year
to year. For instance, in Table 4.3, the coefficient for log(ef ficiency,) is .588653, and
log(ef fectiveness,) is .465596. Both of these are statistically significant. A 1% increase in
the efficiency at time ¢ results in an increase of .588653% of Tobin’s Q ratio. A 1% increase
in the effectiveness at time period ¢ results in an increase of .465596% of Tobin’s Q ratio.
However, the coefficient for log(ef fectiveness, 1) is .727668 and is statistically significant.
The market values those banks that compensate for the decrease in the Tobin’s ) ratio
caused by the negative coefficient on the lagged variable, efficiency. The net effect on the
Tobin’s Q ratio is (.588653 + .465596) — .727668 = .326581.

In Figure 4.3, the input and output variables of efficiency and effectiveness indicate what
is best aligned with the semi-strong version of the EMH. However, knowing what these
variables of efficiency and effectiveness are not enough, it is necessary for banks to use this
new information to optimize their input and output variables of efficiency and effectiveness
so their performance exhibits continuous improvement in efficiency and effectiveness from
year to year.

( ); ( ); ( ) mention that only

97



a handful of banks in a country capture a large market value by capital. For instance, 6
major Canadian banks comprise over 70% of the market value, by capital, of the Canadian
banking sector ( , ). In the U.S., there are about 20 banks that capture
over 90% of the market value by capital. In the data I used from Eikon, this same trend
applies for banks in Brazil, China, India, South Korea, Japan, and Mexico, where only a
few banks control over 70% of the market value by capital. ( ) explains that a
handful of banks controlling the entire banking market is known as a Pareto distribution.

In this dissertation, as mentioned previously, I average the data collected from Eikon
for each country’s bank across all time periods based on the market value by capital of the
bank. The input and output dimensions of efficiency and effectiveness in Figure 4.3 are
representative of this small group of banks that dominate the banking market. The rewards
arising from efficiency and effectiveness increase as their performance improves, creating
a high degree of specialization and conferring an ever-growing market power on the most
efficient competitors ( , ). Due to economies of scale, the larger banks continue
to get more efficient and effective while the smaller banks may suffer. For instance, in
Figure 4.3, one of the output variables of efficiency or the input variables of effectiveness
is ‘Property/Plant/Equipment, Total’ (PPE).

PPE includes any of a company’s long-term, fixed assets. PPE assets are tangible,
identifiable, and expected to generate an economic return for the company for a period
of more than one year.! PPE includes machinery, equipment, vehicles, buildings, land,
office equipment, and furnishings, among other things. A larger bank can increase its
effectiveness manifold with every 1 unit increase in PPE due to economies of scale; a
smaller bank struggles to accomplish this. Axos Bank,? in the U.S., had the smallest PPE
in the data I collected from Eikon for 2017 at $21,454,000. JPMorgan Chase® had the
largest PPE in that data at $1.4934e+10. This is about 696 times larger. In 2017, JP
Morgan captured about 21.39% of the market by capital and Axos Bank captured 0.0631%
of the market by capital.

Also, due to economies of scale, some of the bigger banks benefit from selling products
at a lower price than those offered by the smaller firms, allowing them to attract and
serve more customers. This increases their “non-interest income.” Non-interest income is
derived primarily from fees, including deposit and transaction fees, insufficient funds fees,
annual fees, monthly account service charges, inactivity fees, check and deposit slip fees,
and so on. Credit card issuers also charge penalty fees such as late fees and over-limit fees.

'https://corporatefinanceinstitute.com/resources/knowledge/accounting/ppe-property-pl
ant-equipment/

?https://www.axosbank. com

3https://www. jpmorganchase.com
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Banks charge fees that generate non-interest income as a way of increasing revenue and to
ensure liquidity in the event of increased default rates. ‘Non-interest income’ is one of the
output variables of effectiveness shown in Figure 4.3.

How do smaller banks fare in this environment? ( ) presents a case study of
the U.S. waste management industry. There were once many smaller waste management
companies (garbage collectors) across the country; each had anything from one to several
trucks serving customers across a particular route. The profitability of these smaller waste
management companies was found to be normally distributed. However, Wayne Huizenga,
the founder of Waste Management (WM), realized that if he acquired several routes in
a region, then he would have greater purchasing power with truck manufacturers, thus
resulting in cheaper trucks. Additionally, a single maintenance facility located in a city
hub was far more efficient than several smaller maintenance facilities around a city. This
pursuit of greater efficiency by Wayne Huizenga resulted in WM acquiring many smaller
waste management companies. ( ) illustrates that this resulted in a Pareto dis-
tribution; WM generates more profit in comparison to other waste management companies
across the country. A similar Pareto distribution exists in the banking market. As larger
banks pursue greater efficiency and effectiveness, they acquire or merge will smaller banks,
strengthening the Pareto distribution.

A study by George Mason University ( : ) found that from 2000
to 2014, the number of small banks in the U.S. decreased by 28%. During the financial
crisis of 2008, JPMorgan, Bank of America, Wells Fargo, and Citigroup all acquired weaker
competitors that had been overexposed to subprime mortgages. Washington Mutual, Bear
Stearns, Countrywide Financial, Merrill Lynch, and Wachovia were all acquired by these
larger banks during this time ( , ).

( ) used ‘net interest income’ as an output dimension of effective-
ness in their two-stage DEA model of efficiency and effectiveness. Figure 4.3, illustrates
how I use ‘net interest income after loan loss provision’ as an output dimension of ef-
fectiveness. ‘Net interest income after loan loss provision’ is calculated as ‘net interest
income’ minus ‘loan loss provisions,” where ‘loan loss provisions’ is a buffer that the bank
sets aside for any loans that may default. The financial crisis of 2007-2008 resulted in
many banks worldwide setting aside such a buffer for loans that may default. Once again,
during the COVID-19 pandemic, banks increased their loan loss provisions ( ,

; , ). Net income that already subtracts loan loss provision is a better
indicator of income because it accounts for loans that may default. A model of efficiency
and effectiveness that optimizes income without loan loss provisions does not hold well in
a financial crisis.

99



Any bank would like to know whether efficiency and effectiveness affects its Tobin’s Q
ratio. However, the correlation results from my statistical method do not imply causation.
Table 4.3 cannot be used to develop any causal interpretation of efficiency or effectiveness
on the Tobin’s Q ratio. ( ) mentioned that, in an efficient market, efficiency
and effectiveness or its lags cannot affect the SHVCM. Otherwise, arbitrage opportunities
exist that will cause traders to use historical information to predict the future Tobin’s Q
ratio. I use the TYT causal test for inferring cause and effect relationships. In Table 4.5,
the null hypothesis that efficiency and effectiveness does not Granger cause the Tobin’s
Q ratio is rejected for only India. This suggest that the banking market in India is not
efficient. As India is the only country where efficiency or effectiveness Granger causes
Tobin’s Q ratio, this further strengthens my claim that the two-stage DEA model shown
in Figure 4.3 is consistent with the semi-strong definition of the EMH for other countries.

Efficiency and the effectiveness are computed using the two-stage DEA model of con-
stant return to scale (CRS). This is consistent with ( )’s model.
Efficiency and effectiveness computed using the input minimization or the output maxi-
mization technique of DEA with CRS will result in identical results (Ray, ). Therefore,
a bank can increase its efficiency by lowering its consumption of efficiency input variables.
Additionally, a bank can increase its effectiveness by increasing its generation of effective-
ness output variables. Some banks may control both the input variables of efficiency and
the output variables of effectiveness. Others may only have control over the input variables
of efficiency or only the output variables of effectiveness. For this reason, I investigate (1)
whether efficiency Granger causes the Tobin’s Q) ratio when controlling for effectiveness and
(2) whether effectiveness Granger causes the Tobin’s @) ratio when controlling for efficiency.

In Table 4.6, using the Z, efficiency Granger causes the Tobin’s Q ratio when controlling
for effectiveness. At the country level, Table 4.6 indicates that banks in India can expect
efficiency to Granger cause the Tobin’s ) ratio when controlling for effectiveness. If banks
in India control the input variables of efficiency, i.e., ‘total assets’ and ‘full time employees,’
then they can optimize their efficiency; they can expect a corresponding effect on their
Tobin’s Q ratio.

In Table 4.7, based on the asymptotic critical values of Z, the null hypothesis is rejected
in favor of the alternative hypothesis, i.e., effectiveness Granger causes the Tobin’s Q ratio
when controlling for efficiency. At the country level, banks in India exhibit causality and
can expect effectiveness to Granger cause the Tobin’s Q ratio when controlling for efficiency.
If banks in India control the output variables of effectiveness, i.e., ‘non-interest income’ and
‘net interest income after loan loss provisions,” then they can optimize their effectiveness
and expect an effect on their Tobin’s Q) ratio. In the next paragraph, I provide supporting
evidence of other researchers finding the equity market in India to be inefficient.
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( ) study the efficiency of Bombay’s Stock Exchange (BSE).
They analyze five popular stock indices, finding that the BSE is inefficient, allowing traders
to make excessive returns. The authors provide strong evidence in favor of the inefficient
form of the BSE for the years 2005 to 2015. They further suggest that the inefficiency of
the Indian stock market could be because the stock market is not well regulated, or may
be corrupt. For instance, there may be insider trading, fraud, false statements, or trading
abuses occurring within this market.

In Table 4.8 and Table 4.9, I perform reverse causality. In Table 4.8, I check whether the
Tobin’s Q ratio Granger causes efficiency when controlling for effectiveness. In Table 4.9,
I check whether the Tobin’s QQ ratio Granger causes effectiveness when controlling for effi-
ciency. In Table 4.8, the null hypothesis is rejected in favor of the alternative hypothesis
based on the asymptotic critical value of Z and Z ; the Tobin’s Q ratio Granger causes
efficiency when controlling for effectiveness. At the country level, Canada and Mexico
exhibit causality. In Table 4.9, the null hypothesis is rejected in favor of the alternative
hypothesis based on the asymptotic critical value of Z; the Tobin’s Q ratio Granger causes
effectiveness when controlling for efficiency. At the country level, China exhibits causal-
ity. ( ) mentions that good headlines tend to be followed by more good
headlines in the news. Also, bad headlines tend to be followed by further bad headlines.
The stock price, the price of an asset, or the Tobin’s ) ratio in an equity market factors
in news or information in its price determination. For instance, if the Tobin’s Q ratio for
banks in these countries for ¢ is higher than the previous time ¢t — x, then the anticipation
of future increase in the efficiency or effectiveness is priced into the current Tobin’s Q ra-
tio. This suggests that the Tobin’s QQ ratio Granger causes effectiveness when controlling
for efficiency and that the Tobin’s Q ratio Granger causes efficiency when controlling for
effectiveness.

4.5 Future work

My statistical method uses a linear family of models to find a relationship between the
dependent variable, the Tobin’s ) ratio, and the independent variables, efficiency, effec-
tiveness, and their lags. ( ); ( ) have also used linear
models when regressing efficiency on the stock price. Before including non-linear models,
one must understand how to interpret the economic significance of the coefficients from the
model. ( ) mentions that exploring non-linear models is crucial for studying
the economy’s input and output relationships. However, he does not provide any fur-
ther insight into which non-linear models to consider and how to interpret their economic
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significance.

In another paper of mine,* I am studying the cause and effect of Glassdoor ratings on
stock price, market capital, and the Tobin Q) ratio of U.S. banks. I find that the intangible
assets like employee satisfaction (I proxy this via Glassdoor rating of the firm) significantly
affect stock price, market capital, and the Tobin’s ) ratio of some banks. These intangible
assets are not captured in banking statements and therefore not considered when building
two-stage DEA models. In the future, I would like to explore these additional intangible
assets when finding models of efficiency and effectiveness. In this dissertation, I considered
banks in Brazil, Canada, China, India, Japan, Mexico, South Korea, and the USA from
2000 to 2017. However, some of these countries only have annual rather than quarterly
data in Eikon. The motivation for this research is finding a single two-stage DEA model
of efficiency and effectiveness that works for banks in most countries and for most time
periods. However, Eikon only contains annual data for banks in countries outside North
America. In the future, I would like to rerun my variable selection framework on banks
from the USA and Canada only because quarterly data is available for these banks from
CompuStat.®

In this dissertation, I use the CRS model of two-stage DEA of efficiency and effec-
tiveness. This is the same model used by ( ). 1 use this same
model because in this dissertation, I first validate ( )’s model as
not consistent with the semi-strong version of the EMH. I then use the variable selection
framework and find a better two-stage DEA model consistent with the semi-strong ver-
sion of the EMH for banks in Brazil, Canada, China, India, Japan, Mexico, South Korea
and the USA and for time period 2000-2017. Finally in Chapter 5, I provide an optimal
path of transforming ( )’s model into the model recommended by
my variable selection framework. Others such as ( ) have also used
the CRS model in the two-stage DEA model for measuring efficiency to non-life insurance
companies in Taiwan. As future work, what are the input and output variables of efficiency
and effectiveness with the variable return to scale model? How are these input and output
variables different from the CRS model?

4T am collaborating with Dr. Dimitrov and Dr. Duimering. We plan to submit this paper to some
journal by June 2021
5https://wrds—www.wharton.upenn.edu
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4.6 Conclusions

In this chapter, I used the variable selection framework of the previous chapter to find
a universal two-stage DEA model of efficiency and effectiveness that works for banks in
Brazil, Canada, China, India, Japan, Mexico, South Korea, and the USA for 2000 to 2017.
I find that the best two-stage DEA model of efficiency and effectiveness contains (1) total
assets and (2) full-time employees as efficiency input variables. Additionally, it contains
(1) property/plant/equipment and (2) long-term debt as output variables of efficiency or
input variables of effectiveness as ell as (1) non-interest income and (2) net interest income
after loan loss provisions as output variables of effectiveness.

As mentioned in Section 4.4.6, the banking market is a Pareto distribution in which a
handful of banks in all countries control over 90% of the market value by capital. The result
of Table 4.3 suggests that the market values of those banks exhibit continuous improvement
in efficiency and effectiveness from year to year. This is because the net cumulative effect
of a 1% increase in the efficiency and effectiveness at time period t and effectiveness at
time period ¢t — 1 leads to a .3265% increase in the Tobin’s Q ratio. The input and output
variables of efficiency and effectiveness from the variable selection framework are more
appropriate for these larger banks.

However, correlation does not imply causation. After finding the best two-stage DEA
model, I performed the TYT test for causation on six different questions: (1) Does efficiency
and effectiveness Granger cause the Tobin’s Q ratio? (2) Does the Tobin’s Q ratio Granger
cause efficiency and effectiveness? (3) Does efficiency Granger cause the Tobin’s Q) ratio
when controlling for effectiveness? (4) Does effectiveness Granger cause the Tobin’s Q
ratio when controlling for efficiency? (5) Does the Tobin’s Q ratio cause efficiency when
controlling for effectiveness? (6) Does the Tobin’s Q ratio Granger cause effectiveness
when controlling for efficiency? I find that in India, efficiency Granger causes Tobin’s Q)
ratio when controlling for effectiveness. I also find in India, effectiveness Granger causes
Tobin’s Q ratio when controlling for efficiency. A bank in India may not control all the
input and output variables of efficiency and effectiveness that I report in Section 4.4. For
instance a bank may only control the input variables of efficiency or the output variables
of effectiveness. My recommendation from this chapter for banks in India is that a bank
that only controls the input variables of efficiency can increase its efficiency by lowering
(or optimizing) its consumption of input variables of efficiency. This will cause an effect in
the Tobin’s Q ratio. My other recommendation from this chapter for banks in India is that
a bank that only controls the output variables of effectiveness can increase its effectiveness
by increasing (or optimizing) its output variables of effectiveness. This will cause an effect
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in the Tobin’s Q ratio. More details of my recommendations are provided in Section 4.4.6
of this chapter.
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Chapter 5

Building an optimal path for
transforming a two-stage DEA model
not consistent with semi-strong EMH
to one that is

5.1 Introduction

Due to intense competition for scarce resources, many domestic and international firms are
searching for more efficient and effective ways of managing their operations. As measured
by efficiency and effectiveness, every firm wants to achieve high performance. Firms strive
to be highly efficient (i.e., doing things right) and highly effective (i.e., doing the right
things). What is also desirable is that any improvement in efficiency or effectiveness leads
to higher shareholder equity. This is because financial markets can be viewed as a measure
of the wisdom of crowds ( : ). The measure could be the stock price or some
other shareholder value creation metric (SHVCM), such as Tobin’s Q ratio. Although
other factors may impact a firm’s SHVCM, if a firm is deemed efficient and effective by
market traders, it tends to perform financially better than firms that are either inefficient
or ineffective, or both.

For most firms, though, an improvement in performance does not lead to an increase
in shareholder equity. For instance, ( ), in their article in the Harvard
Business Review, report that from 1987 to 1990, a certain NYSE electronics company
improved its quality and on-time delivery. Its defect rate dropped from 500 parts per
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million to 50, and on-time delivery improved from 70% to 96%. However, these performance
improvements did not result in an increase in shareholder value, since its stock price fell
to a third of its July 1987 value. The operational improvements the company had made
in performance were real. However, these did not correlate with any change in its stock
price.

Associating a firm’s performance with its stock price or some other SHVCM has other
benefits as well. In the Economist ( , ), Hermann Stern, the CEO of Ober-
matt, said that earnings growth and shareholder return should determine how much a
CEO should be paid. Remunerating a CEO and managers based solely on their firm’s per-
formance is flawed and incorrect. In another article in the Economist ( , ),
Alan Dunn, an instructor at Caltech, describes a 2-day seminar titled “Measuring Business
Performance: Aligning Strategy, Metrics, and Rewards.” In this seminar, Mr. Dunn gives
recommendations and advice on measuring performance using dimensions such as cash flow
instead of profit, because these are better correlated with shareholder equity.

Perhaps, then, the NYSE firm mentioned above was using the wrong dimensions for
measuring its performance. Often, firms use dimensions for measuring performance that
are biased or constrained by managers’ prior views of what drives performance ( ,

). Managers make assumptions about the relation between performance, customer
loyalty, and profitability, even when these presumed links have not been tested. In a
study ( : ), as also noted by ( ), only 21% of managers
had tested the dimensions of performance, and many of those who had tested them found
that their assumed dimensions of performance were incorrect. Such incorrect dimensions of
performance lead to very little or no significant impact on SHVCM. Instead, perhaps, the
NYSE firm should first learn how to change its existing model of measuring performance
using newer measures that are consistent with its stock price.

( ) identified two dimensions of management change. The first is the
scope of the change, i.e., whether the change is radical or incremental. The second dimen-
sion is the pace of the change measured across time, i.e., whether the change is rapid or
gradual. ( ) defines radical change as replacing the status quo with a new
order, which may result in serious disruption to structures, processes, operations, knowl-
edge, and morale. Jobs are altered or eliminated, skills are gained or lost, the information
flow is redefined and rerouted, processes are transformed and created, responsibilities are
transferred, and power bases are undermined. On the other hand, in incremental change,
established structures, processes, and knowledge are extended and augmented. Incremen-
tal change is not as disruptive as radical change. ( ) note that resistance
to change is natural. An organization can introduce radical change gradually or rapidly. If
done gradually, the radical change will be accepted more readily with little to no resistance.
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For example, ( ) discusses an organization that introduced radical change
by implementing new software. The radical change consisted of using new programming
languages and new software development methodologies.

( ) recommend implementing radical change gradually, as this
allows more time to be allocated for trial and error, and thus, the intended objectives
are more likely to be fulfilled. ( ) mentions that if rapid change is introduced
quickly, the results can be disastrous because the organization, especially the employees,
may not have enough time to adapt to the changes.

I hypothesize that a set of incremental changes that transform the two-stage DEA
model of ( ) into a model consistent with the semi-strong version
of EMH will be more readily adopted. Instead of telling a bank about the best two-stage
DEA model of efficiency and effectiveness, it would be more meaningful for the bank to
know what path of incremental changes will transform its current model of measuring
efficiency and effectiveness into the best model. Implementing the changes incrementally
would allow a bank to optimize and act on the dimensions one at a time, leading to little
resistance, unlike a rapid and large-scale overhaul of its model in which it would have to
change multiple dimensions, thus leading to widespread disruption. The intended audience
for the work done in this chapter is a bank hesitant to adopt a big radical change. A bank
can instead adopt incremental changes as suggested in the optimal path. The incremental
change promises to yield immediate improvement, incentivizing the bank to adopt further
changes on the path. I address the following research questions in this chapter:

1. How should I define incremental change in the context of a two-stage DEA model of
efficiency and effectiveness?

Incremental change in this chapter is defined as applying a single elementary
operation on a two-stage DEA model of efficiency and effectiveness. I define three
elementary operations: (1) the addition of a dimension, (2) the removal of a dimen-
sion, and (3) swapping two dimensions. Given a candidate two-stage DEA model
of efficiency and effectiveness, one can generate a neighborhood of two-stage DEA
models of efficiency and effectiveness in which each model in the neighborhood is
separated by one incremental change from the candidate model. Not all elementary
operations are consistent with the semi-strong EMH.

2. What path or actionable items must a firm take to transform from an existing model
of efficiency and effectiveness that is inconsistent with the semi-strong definition of
the EMH to a model that is consistent with the semi-strong definition of the EMH?
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A path is defined as a set of elementary operations between the existing model,
which is not consistent with the semi-strong EMH, to a model that is.
( )’s two-stage DEA model of efficiency and effectiveness is not consistent
with the semi-strong version of the EMH, as already seen in the results of Chapter 2
and Section 2.5.2. On the other hand, the two-stage DEA model of efficiency and
effectiveness, from my variable selection framework in Chapter 4, is. In Section 5.3.4
of this chapter, I present an algorithm for generating an optimal path from
( )’s model to the model in my variable selection framework. Later
in Section 5.4, I present the result of the optimal path. The optimal path is defined
as the shortest path with the least number of elementary operations that are not
consistent with the semi-strong EMH. For example, consider two shortest paths with
a length of 7. Each path has 7 elementary operations. In the first path, 5 of the 7
elementary operations are consistent with the semi-strong EMH. In the second path,
3 of the 7 elementary operations are consistent with the semi-strong EMH. Thus, the
first path is preferred over the second path in our path-finding algorithm because it
has more elementary operations consistent with the semi-strong EMH.

In the remainder of this chapter, I first discuss related work in Section 5.2. In Sec-
tion 5.3, I present the algorithms of (1) for generating a neighborhood using elementary
operations and (2) for finding the optimal path. In Section 5.4, I present the results of this
chapter, and finally, in Section 5.5, I state my conclusions.

5.2 Related work

Like ( ), ( ) distinguish between radical change
and incremental change. ( ) refer to radical change as strategic
change and incremental change as evolutionary change. The latter introduces small changes
that improve the present situation while keeping the general framework more or less consis-
tent. This idea of incremental or evolutionary change is also echoed by others (
, : , : , ). In contrast,
strategic change is revolutionary and more transformational ( ,
; : ). ( ) further mention that resis-
tance to change is generally higher for strategic than for evolutionary change.

Researchers agree that radical change is vastly different from incremental change. How-
ever, how does one quantitatively separate radical change from incremental change? In this
dissertation, I define incremental change as applying a single elementary operation to a
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two-stage DEA model of efficiency and effectiveness. Radical change consists of applying
more than one such instance of incremental change to a two-stage DEA model of efficiency
and effectiveness. The best two-stage DEA model of efficiency and effectiveness as shown

in Figure 4.3 is 7 incremental steps away from ( )’s two-stage DEA
model as seen in Figure 2.1. 3 addition of new variables and 4 removal of old variables
are required for changing ( )’s two-stage DEA model into the best

two-stage DEA model. This change is then classified as a radical change. The radical
change or the optimal path that I present in Section 5.4 is given as an optimal path of
7 incremental steps. My search algorithm finds an optimal path of 7 elementary opera-
tions, out of which 5 are consistent with the semi-strong EMH. Other paths of length 7
have less than 5 elementary operations consistent with the semi-strong EMH. As a sanity
check, I also checked all two-stage DEA models that are at most two elementary steps away
from ( )’s model, and none of these are consistent with semi-strong
EMH. This suggests no path of length greater than seven contains at most two incremental
steps not consistent with the semi-strong EMH.

( ) mention that when an organization undergoes incremental
change, there is little to no resistance. By breaking radical change into a series of incre-
mental changes, I hypothesize that each incremental change in the optimal path is well
received by banks that want to gravitate towards a model of efficiency and effectiveness
consistent with the semi-strong definition of EMH. As mentioned previously, I define three
elementary operations: (1) the addition of a dimension, (2) the removal of a dimension,
and (3) swapping two dimensions. The motivation for defining three elementary operations
is that ( ) mention that a parsimonious model is desirable since the
discriminating power of DEA decreases as the number of dimensions increases. 1 do not
explore other operations, such as adding more than one variable or removing more than one
variable at a time. A parsimonious DEA model is desirable since it has as many input and
output variables as needed but as few as possible ( , ;

Y )'

Others ( , : , : ,

, : , : , ) in the literature have

talked about variable selection in DEA. The variable selection framework proposed by
these authors is designed to improve efficiency or introduce more discrimination. For in-
stance, ( ) developed an efficiency contribution measure (ECM) for a single
dimension. The approach recommended by the authors is first to compute the efficiency
by including the dimension of interest and then comparing the overall efficiency with an-
other DEA for which the dimension of interest is absent. A statistical test is used to infer
whether to include or reject the dimension of interest. ( ) set up a regression

I
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where the dependent variable is the efficiency computed from DEA, and the independent
variables are candidate variables for input into or output from DEA. The coefficients of the
regressors from the regression, i.e., whether the coefficient is positive for an input variable
and negative for an output variable, are used in deciding which of the candidate variables
to select for two-stage DEA. ( ) use bootstrapping and outline a
statistical procedure on how best to find relevant input and output variables.

( ) use a variable-reduction approach that removes variables containing
minimum information, which is defined via a partial correlation. The removal of correlated
variables can have a significant impact on the efficiency computed from DEA.

( ) present a stepwise approach to variable selection that involves se-
quentially maximizing (or minimizing) the average change in the efficiency as variables are
added to or dropped from the DEA model. ( ) built 14 DEA models for
measuring bank efficiency in Latvia. These 14 DEA models use different combinations of
input and output variables. The authors performed the two-sample Kolmogorov—Smirnov
test to identify which of these 14 models are substantially different from the others. The
authors then provide general recommendations on variable selection for DEA in the Lat-
vian banking sector. ( ) observed a paradox in the tourism industry. Due
to increased competition in the industry, ( ) expected that productivity
would have increased. However, this was not the case. Most likely, the lack of productivity
was because incorrect variables were used to measure performance. The authors present
a stepwise approach for selecting variables for measuring performance consistent with the
increase in competition in the tourism industry. Others, such as ( );

( ) ( ), present different techniques for evaluating performance in
the airline industry using DEA. These authors also present guidelines on how to remove
undesirable output variables from DEA. For instance, ( ) first select inputs
and outputs based on a literature survey. For each output, the most significant inputs are
selected using a stepwise backward variable regression analysis. The authors then use a so-
cial network analysis to identify which output variables for which efficient airline companies
are leaders and role models in terms of input variables selected by the stepwise regression
analysis. The authors provide a methodology for finding input and output variables best
suited to the airline industry.

In this dissertation, I use my variable selection framework of Chapter 3 to find a two-
stage DEA model of efficiency and effectiveness for banks in Brazil, Canada, China, India,
Japan, Mexico, South Korea and the USA for 2000-2017. Furthermore, each dimension and
its orientation (whether as an input of efficiency, an output of efficiency, or an output of
effectiveness) within the two-stage DEA model is validated against the semi-strong version
of EMH using the statistical method presented in Chapter 2. The above researchers do not
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recommend what incremental changes an airline or a bank must make to transform from
its current model of measuring efficiency to the model suggested by them. This is what I
do in this chapter. I present an optimal path, which consists of incremental changes that
transform a model not consistent with semi-strong EMH to one that is.

5.3 Methodology

In Section 5.3.1, I describe the elementary operations in more detail. In Section 5.3.2,
I outline the algorithm which generates a neighborhood of two-stage DEA models of ef-
ficiency and effectiveness using these elementary operations. In Section 5.3.3, I present
the algorithm for finding the optimal path from a two-stage DEA model of efficiency and
effectiveness not consistent with the semi-strong EMH to one that is.

5.3.1 Elementary operations

Three elementary operations can be performed on a certain two-stage DEA model (D)
of efficiency and effectiveness:

1. Add variable

The add variable operation adds a new variable, N, to D,y resulting in three
new two-stage DEA models of efficiency and effectiveness. N, is chosen from the
Eikon dataset such that N, € ' — Dy ,s where E is the set of all variables from the
Eikon dataset and D5 is the set of all variables from the two-stage DEA model of
efficiency and effectiveness D .

In the add variable operation, three new two-stage DEA models of efficiency and
effectiveness are created by (1) adding N, either as an input variable of efficiency,
(2) as an output variable of efficiency, or (3) as output variable of effectiveness.

2. Remove variable

The remove variable operation removes an existing variable from D,y. The
variable selected for removal (R,) is chosen from Dgys. Doaws is the set of all
variables from the two-stage DEA model of efficiency and effectiveness, D,4. The
removal of R, from D, ,s will result in one new two-stage DEA model of efficiency
and effectiveness.
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3. Swap variable

The swap variable operation does not add any new variables from E to Dq s Or
removes any variables from D,;q,s. However, the swap variable operation selects two
variables (S; € Dyjq; and Sj € D,yq ;) where i € {1,2,3} and j € {1,2,3} and ¢ # j.
¢ and 7 indicates whether the variable, S belongs in the set of input variables of
efficiency, or the output variables of efficiency or the output variables of effectiveness.
Dyiq; is the set of all variables from the two-stage DEA model of efficiency and
effectiveness that belongs in orientation 7. A two-stage DEA model of efficiency and
effectiveness has three orientations. When i = 1, D,;4; refers to the set of efficiency
input variables. When ¢ = 2, D,4, refers to the efficiency output or effectiveness
input variables. When i = 3, D,q; refers to the effectiveness output variables. A
swap operation results in a new two-stage DEA model of efficiency and effectiveness
where variables S;; and S ; swap their variables.

5.3.2 Neighborhood generation algorithm

Using the elementary operations from Section 5.3.1, I will now describe how to generate a
neighborhood of two-stage DEA models of efficiency and effectiveness around

( )’s model. I refer to ( )’s model in this section as an
example. However, the algorithm can generate the neighborhood around any two-stage
DEA model of efficiency and effectiveness.

The two-stage DEA model from ( ) is called Modelygc where
Modelggc € B3*?°. 55 is the number of columns which is the total number of dimensions
from Eikon. 3 is the number of rows, representing the three different orientations of the
two-stage DEA model. Row one refers to the input efficiency variables, row two refers to
output efficiency variables or the effectiveness input variables, and row three represents
output effectiveness variables. Each entry in the matrix is a binary number, i.e., B. For
example, the value 1 in row 3, column 5 indicates that the dimension j from Eikon is present
as an output variable of effectiveness in the two-stage DEA model. Any zero-vector column
j in Modelkg indicates the absence of dimension j in the two-stage DEA model.

The neighborhood generation algorithm returns a neighborhood of two-stage DEA mod-
els around ( )’s model using the elementary operations. In the post-
condition of Algorithm 6, Neighborhood is returned where Neighborhood € B3N and
N is the size of the neighborhood. The algorithm has three distinct stages; there is one
stage for each of the three different elementary operations.
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1. In the first stage, from line 3 to line 7 of Algorithm 6, I build the linear equality
constraints of the form Ax = b for the addition elementary operation. The linear
equality constraints are set such that the existing variables in Modelgg e remain
fixed. However, the sum of variables selected from the set, £ — Modelkgc s, Wwhere
E is the set of all dimensions from Eikon, and Modelkg.q s is the set of all variables
from ( )’s two-stage DEA model must be equal to 1 to reflect
the addition of a new variable in Modelkg. 1 also set the inequality constraints for
addition such that all the rows of column j in Modelkgc must sum to at most 1
where 1 < j < 55. Suppose variable j is present in the model. In that case, it can
occur in only one of the three orientations of the model. In other words, a variable
cannot occur as both input and as output. The three different orientations in the
two-stage DEA are the (1) the input variable of efficiency, (2) the output variable of
efficiency and (3) the output variable of effectiveness.

2. In the second stage, from line 8 to line 12 of the algorithm, I build the linear equality
constraints of the form Az = b for the removal elementary operation. The sum of vari-
ables selected from the set, E—Model kg vs, Where E is the set of all dimensions from
Eikon and Modelkgc s is the set of all variables from ( )’s
model is equal to 0. This prevents any dimension not already present in Model g vs
from being considered. In addition, I also set the equality constraints such that any
one variable can be removed from all the variables in the set Modelkgc vs-

3. In the third stage, from line 14 to line 20 of the algorithm, I build the linear equality
constraints of the form Ax = b for the swap elementary operation. The sum of
variables selected from the set, £ — Modelkgc s, Where E is the set of all dimensions
from Eikon, and Modelkgc s is the set of all variables from
( )’s model is equal to 0. I also set the equality and the inequality constraints
such that for every two variables in Modelkgq s, @ swap is permissible as long as
the two variables are in two different orientations in Modelgg.q.

For each stage in the algorithm, I use IBM CPlex! to generate the neighborhood based on
the equality and the linear inequality constraints.

https://www.ibm.com/analytics/cplex-optimizer
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Algorithm 6 Neighborhood Generation Algorithm
Preconditions:

e Two-Stage DEA model of (2010): Modelggq € B35
where the number of columns, 55, is the number of dimensions and the number of
rows, 3, represents the three different positions of the two-stage DEA model, i.e.,
row one represents input efficiency variables, row two represents output efficiency
variables, and row three represents output effectiveness variables.

Postconditions:

e Solution: Neighborhood € B3*5*N
where N is the size of the Neighborhood.

1: procedure GENERATENEIGHBORHOOD (M odelkgc)

2 Neighborhood<— empty

3: Acq addition < setAEqualityLinearConstraintsOfAddition(M odel k)

4: beq,addition < setbEqualityLinearConstraintsOfAddition(M odel k)

5 Ajneq.addition < setAInEqualityLinearConstraintsOfAddition (M odel k)

6 bineq.addition <— setbInEqualityLinearConstraintsOfAddition(M odel k)

7 neighborhoodFromAddition %runcpleX(Aeq,addition7beq,addition;Aineq,addition;bineq,addition)

Neighborhood Generation of removal of one variable

8: Aeqremoval <— setAEqualityLinearConstraintsOfRemoval(Model kg )

9: begremoval < setbEqualityLinearConstraintsOfRemoval(Model k)

10: Ainegremoval < setAlnEqualityLinearConstraintsOfRemoval( M odel k)

11 Dinegremoval <— setbInEqualityLinearConstraintsOfRemoval( M odel g

12: neighborhood F'romRemoval <—runCplex(Aey removatseq.removats Aineq.removalsDineq.removat)
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Neighborhood Generation of swap of one variable

13: Acq swap < setAEqualityLinearConstraintsOfSwap (M odel k)

14: beg swap < setbEqualityLinearConstraintsOfSwap (M odelkg.¢)

15: Aineq swap < setAlnEqualityLinearConstraintsOfSwap (M odelk¢.¢)

16 Dineq.swap <— setbInEqualityLinearConstraintsOfSwap (M odelkg.c)

17: neighborhood F'romSwap <—runCplex(Aeq swap:Deq.swaps Aineq.swapsDineq.swap)

18: Neighborhood < mneighborhoodFromAddition U neighborhood F'romRemoval U
neighborhood FromSwap

19: return Neighborhood

5.3.3 Path finding algorithm

The path finding algorithm finds all paths from ( ) to the target two-
stage DEA model. The target two-stage DEA model in Algorithm 7 is the best two-stage
DEA model from Chapter 4; it was found by executing the variable selection framework on
banks from Brazil, Canada, China, India, Japan, Mexico, South Korea, and the USA from
2000-2017. Steps, another precondition in the algorithm, refers to the maximum number
of elementary operations each path from ( )’s model to the target
two-stage DEA model can contain. I set the Steps to seven? when running the algorithm.
7 is the least number of steps required to move from Modelkgc to Modeligrget, i.€., there
are 4 removal of old variables and 3 addition of new variables required on Modelkg for
transforming it to Model;qget-

The path finding algorithm returns all paths referred to as Paths € I5%Ps*N and
DEAModels € B3*5°*StepsxN ip the algorithm. When the algorithm is first called, M odels;q
on line 1 is set to Modelkgg. On line 8, the path finding algorithm generates a neigh-
borhood of two-stage DEA models of efficiency and effectiveness using Algorithm 6 for
Modelqr. For each of the neighbors in the neighborhood, if an intermediate path from
the neighbor to Modeliqrger exists, then an attempt is made to determine what elemen-
tary operation connects Modelgg to the neighbor which then completes the path from
Modelggc to Modelygrger (see line 14 to 17 of the algorithm). This is a recursive algo-
rithm. For each step along the path from Modelkgc to Modeliyyger, the algorithm tracks

?because there are no two-stage DEA model that is consistent with semi-strong that is at most two

steps away from ( )’s model. This implies that any path from
( )’s model to the best model will have atleast two steps that are not consistent with the semi-strong
EMH.
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the two-stage DEA models of efficiency and effectiveness (referred to as DEAModels in
Algorithm 7).

116



Algorithm 7 Path Finding Algorithm
Preconditions:

e Two-Stage DEA model of (2010): Modelggq € B35

e Two-Stage DEA target model Model;yger € B**°°

e Steps: Maximum number of steps for each path.

Postconditions:

e Solution: Paths € 19P**N and DEAModels € B3*55xStepsxN
where NN is the number of paths found.

1: procedure GENERATEPATHS(M odelgqri, M odel qrger,steps)
2 if Modelgsqry = Modeligrger then

3 paths=padZerosOfLength(steps)

4 deaModelsOnPaths=padZerosOfLength(steps)

5: else if steps=0

6: return NO_PATH,NO_DEA

7 else

8 neighborhood < GenerateNeighborhood(M odelgq,t)

9: completePaths<— Nil

10: DEAModels+ Nil

11: for each neighbor in neighborhood do
12: intermediatePaths,intermediateDEAModels <— GeneratePaths(neighbor, M odel;qyget ,steps-
1)

13: for each partialValidPath in intermediatePaths do

14: completePath <—generateCompletePathBy AddingValidElementaryOperation(
partialValidPath,neighbor)

15: DEAModel «generateCompleteDEAInPaths(
neighbor,get DEA (partial ValidPath,intermediate DEAModels))

16: completePaths<—completePaths+completePath

17: DEAModels«~DEAModels+DEAModel

18: return completePaths, DEAModels
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5.3.4 Optimization and finding the best path

Given all the paths from Modelkgc to Modelyger from the path finding algorithm, Algo-
rithm 7, I now find the optimal path from all the available paths using the Algorithm 8.
To find the optimal path, all paths are first generated on line 2 of the Algorithm 8. Each
path consists of a set of elementary operations. For each elementary operation, the resul-
tant two-stage DEA model of efficiency and effectiveness is represented as dea on line 6 of
Algorithm 8. The efficiency and effectiveness are generated on line 7. Next, the statistical
method is run on line 8. On line 9, if the resultant two-stage DEA model of efficiency and
effectiveness is consistent with the semi-strong version of the EMH, then that elementary
operation is saved. On line 12 and line 13, the algorithm gets all paths with the least
number of steps not consistent with the EMH. From these paths, the algorithm returns
the set of path with the least number of steps. If the total number of such paths is one
(see line 14) then the path is an optimal path. However, if there are multiple paths, then I
compute the average AIC along all the elementary operations; the optimal path is the one
with the lowest average AIC.
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Algorithm 8 Find Best Path Algorithm

Preconditions:

e Two-Stage DEA model of (2010): Modelggq € B35

e Two-Stage DEA target model Model;yger € B**°°

e Steps: Maximum number of steps to run for each path before termination.

Postconditions:

e Solution: Path € I%%P% and DEAM odel € B3*55xSteps
where NV is the number of paths found.

1: procedure FINDBESTPATH

2 paths,deas <— GeneratePaths(M odel kg, Modeliqrget,steps=T)

3 pathNumber < 0

4 for each path in paths do

5: stepNumber < 0

6: for each dea in deas do

7 efficiency,effectiveness «— calculateDEAScores(data,dea)

8 aic,isConsistent WithEMH <« statisticalMethod(
efficiency,effectiveness,tobinQ)

9: results <— populate(stepNumber,pathNumber,aic,isConsistent WithEMH)
10: stepNumber <— stepNumber+-1

11: pathNumber < pathNumber+1

12: solutions <— getPathsWithLeastNumberOfStepsNotConsistent WithEMH (results)
13: solutions < getShortestPath(solutions)

14: if len(solutions)=1 then

15: best_path <« solutions|0]

16: return solutions|0]

17:

best_path=compute_average_aic_for_paths_and_return_best(solutions)
18:
19: return best_path
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5.4 Results and discussions

Using Algorithm 6, I found that there is no two-stage DEA model of efficiency and effective-
ness that is two elementary operations away from Modelkg . This suggests that any path
from Modelggc to Modeligrger Will have at least two steps that are not consistent with the
semi-strong definition of the EMH. Model;q;4e Tefers to the two-stage DEA model shown
in Figure 4.3. Model;yget is 7 elementary operations away from M odel kg, ; three variables
are added (setyqrger — setkg) and four variables variables are removed (setgga — Setiarget)
where setkg refers to the set of variables present in Modelxgc and setiqrger refers to the
set of variables present in Model;qyget-

The goal is to find the shortest path from Modelxg.c to Model,rger that contains the
greatest number of steps that are consistent with the semi-strong definition of the EMH. I
use Algorithm 7 and find all paths from Modelxgc to Modeliqrger that consists of 7 steps.
In the generation of intermediate two-stage DEA in a single path, I modify the constraint
number (3) in Chapter 3 and Section 3.3.1 to allow the inclusion of an extra variable. I
also modify the constraint (2) in the same section for the sum of the entries in each row
of the matrix Model in Section 3.3.1 can be greater than or equal to 1. These couple
of modifications are required in order to generate the intermediate two-stage DEA. From
Algorithm 8, the optimal path contains 5 elementary operations consistent with the semi-
strong version of the EMH. This path recommends the following elementary operations
from Modelkgc to Modelygyges:

1. Perform remowal of variable ‘net loans’ from efficiency input.
2. Perform addition of variable ‘long term debt’ to efficiency output.
3. Perform removal of variable ‘long term investments’ from efficiency output.

4. Perform addition of variable ‘net interest income after loan loss provision’ to effec-
tiveness output.

5. Perform removal of variable ‘net interest income’ from effectiveness output.
6. Perform addition of variable ‘property/plant/equipment’ to efficiency output.

7. Perform remowal of variable ‘other earning assets’ from efficiency output.

Steps (3), (4), (5), (6) and (7) result in two-stage DEA models of efficiency and effectiveness
that are consistent with the semi-strong version of the EMH. The output from the statistical
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method for each of these steps is presented in Table 5.1, Table 5.2, Table 5.3, Table 5.4,

and Table 5.5.

Table 5.1 Output from the statistical method after performing step 3

N=128 AIC = —47.0056
n=_ T=16
R? =.04000 Adj R?* = —.05104

Wald F(4,7)=7.907539

p-value = .0098

Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) 906199 .388465 2.3328 | 0.052
log(ef fectiveness;) 413602 120883 3.4215 | .011
log(ef fectiveness;_1) | -1.044003 216526 -4.8216 | .002
log(ef ficiency;_o) -1.058600 736042 -1.4382 | .194
Standard errors robust to heteroskedasticity adjusted for 8 clusters

Table 5.2 Output from the statistical method after performing step 4
N=128 AIC = —48.2813
n==§ T=16
R? = .05501 AdjR? = —.03461
Wald F(4,7)=6.585157 | p-value = .0160
Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) 899877 299534 3.0043 | .020
log(ef fectiveness;) 375271 093054 4.0328 | .005
log(ef fectiveness;_1) | -.585199 174111 -3.3611 | .012
log(ef ficiency;_») -1.131958 728598 -1.5536 | .164

Standard errors robust to heteroskedasticity adjusted for 8 clusters
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Table 5.3 Output from the statistical method after performing step 5

N=128 AIC=-50.8363
n=_8 T=16
R? = .06438 AdjR* = —.02435

Wald F(4,7)=5.783737

p-value = .0223

Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) 1.198015 .398183 3.0087 | .020
log(ef fectiveness;) 388275 095883 4.0495 | .005
log(ef fectiveness;_1) | -.598528 184370 -3.2463 | .014
log(ef ficiency;_») -1.331313 654118 -2.0353 | .081
Standard errors robust to heteroskedasticity adjusted for 8 clusters

Table 5.4 Output from the statistical method after performing step 6
N=128 AIC = —55.5372
n==8 T=16
R? = .08287 AdjR? = —.00410
Wald F(4,7)=9.245219 | p-value = .0063
Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) 905135 247911 3.6511 | .008
log(ef fectiveness;) 490411 .094993 5.1626 | .001
log(ef fectiveness;_1) | -.684544 162889 -4.2025 | .004
log(ef ficiency;—s) -.579604 398737 -1.4536 | .189

Standard errors robust to heteroskedasticity adjusted for 8 clusters
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Table 5.5 Output from the statistical method after performing step 7, resulting in the
same two-stage DEA model of Table 4.3

N =128 AIC=-63.1407
n=_ T =16
R? = 11594 AdjR? = .03211

Wald F(4,7)=18.146207 | p-value = .0008

Variable Coefficient Cluster Standard Error | t-stat | p-value
log(ef ficiency;) 588653 242731 2.4251 | .046
log(ef fectiveness;) 465596 .169885 2.7406 | .029
log(ef fectiveness; 1) -.727668 111479 -6.5274 | .000
log(ef ficiency;_o) -.744820 426930 -1.7446 | .125

Standard errors robust to heteroskedasticity adjusted for 8 clusters

One can view Model;4rger as a radical change from Modelkg due to the 7 elementary
operations that separate the two models. ( ) observe that changes in
organizations arise from the need to become more efficient and effective. Recommending
that banks use Model;qrqe¢ Without a clear path to move from their current model to
Modeligrger may be met with resistance. In this section, I provide an optimum set of
recommendations or incremental changes that transform Modelggc to Modeligrger.

( ) interviewed managers of banks in 14 countries. They learned that, for any
change to be effective, there must be consistent measurement and monitoring of whether
the new change is improving efficiency and effectiveness. By providing an optimal path
of incremental changes, banks can measure whether adding a new variable of efficiency or
effectiveness leads to improvement. Each incremental change in the optimal path is a single
elementary operation, giving banks the option to monitor and measure each incremental
change before moving onto the next change in the optimal path. Bank management requires
time to not only understand why these new metrics are required but also time to understand
how these metrics lead to improvement in the Tobin’s Q) ratio.

( ) mentions that when a radical change is broken down into small incremen-
tal changes, it is easier to manage. Small changes have a greater probability of success;
any disruptions are more easily addressed. ( ) notes that when a change is
introduced in a step-by-step fashion, stakeholders have more confidence about adopting
the change.

Some banks, for instance, may only control the input variables of efficiency or the
output variables of effectiveness. Banks can use their innate knowledge of what variables
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they control best, perhaps combining two or more incremental steps in the optimal path
into a single step. The goal is to reach Model;qrget-

5.5 Conclusions

In conclusion, my optimal path of recommendation from the previous section aligns with
( )’s roadmap to change. ( ) outlines the following steps for man-
aging change successfully:

1. Diagnosis: Why is change needed?

Model kg is not consistent with the semi-strong definition of the EMH. On the
other hand, Model;srger is consistent with the semi-strong definition of the EMH.
Table 5.5 suggests that a 1% increase in efficiency and a 1% increase in effectiveness
are correlated with an increase in the Tobin’s Q) ratio.

2. Design: What sort of change is called for?

Change management literature has noted resistance to change which is perceived
as radical. However, making changes incremental reduces this resistance. I define
radical change and incremental change in Section 5.2 of this chapter. 1 provide
a path of incremental change from Modelxgc to Modeliy,ger containing the least
number of elementary operations. Furthermore, the path that I recommend contains

the greatest number of steps that are consistent with the semi-strong definition of
the EMH.

3. Delivery: How can change best be implemented?

The change can best be implemented by performing the elementary operations
mentioned in Section 5.4 that will transform Modelxgc to Modeliqayget-

4. Evaluation: How can the impact of the change be assessed and measured?

Five of the seven steps in the path that I recommend are consistent with the
semi-strong definition of the EMH. Each of these five steps result in incremental
changes to input and output variables of efficiency and effectiveness, resulting in
improved models. The efficiency and effectiveness measures in these newer models
are correlated with Tobin’s QQ ratio. Each step is an improvement, resulting in a
model that better captures the performance of the market. Finally, the last step of
the path results in Model;qrgee. As per Chapter 4 and Section 4.4 of this dissertation,
Modeligrger 1s the best model according to my statistical method.

124



Chapter 6

Conclusion

In this thesis, I enhanced my statistical method from my M.ASc by adding new features
to it. These new features are documented in Chapter 2. The statistical method validates
whether a quantitative model of efficiency and effectiveness is consistent with the semi-
strong definition of the EMH. I find that the two-stage DEA model of efficiency and
effectiveness proposed by ( ) is not consistent with the semi-strong
definition of the EMH.

In Chapter 3, I study how one can find a quantitative model of efficiency and effec-
tiveness consistent with the semi-strong version of the EMH. I use the same definition of
a two-stage DEA model of efficiency and effectiveness as ( ). The
search space of the two-stage DEA model of efficiency and effectiveness is characterized by
different combinations of input and output variables of efficiency and effectiveness. Using
the GS algorithm, the variable selection framework traverses the search space of models and
finds the best one according to my statistical method. I evaluate three search algorithms:
GS, SSO, and the MABA. I find that the GS algorithm performs best.

The proposed variable selection framework in Chapter 4 of this dissertation can be
used by managers when defining organizational goals and key performance indicators for
the bank. The key performance indicators found from the variable selection framework
will be aligned with how the market evaluates the bank. The actions that the bank
then takes on the key performance indicators may result in happier shareholders. This
is because the market will reward improvement in its efficiency and effectiveness with
higher market evaluations. I use the variable selection framework to find the best universal
two-stage DEA model of efficiency and effectiveness for banks in Brazil, Canada, China,
India, Japan, Mexico, South Korea, and the USA and for 2000-2017. I also run the TYT
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test to check whether any cause and effect relationship exists between the efficiency and
the effectiveness scores computed from the best universal two-stage DEA model and the
Tobin’s Q ratio. I find that efficiency and effectiveness do not Granger-cause the Tobin’s
Q ratio for all countries except for India. In an efficient market, efficiency and effectiveness
and their lags cannot affect the Tobin’s ) ratio. However, for banks in India, I find that
(1) efficiency Granger-causes the Tobin’s Q) ratio when controlling for effectiveness and (2)
effectiveness Granger-causes the Tobin’s QQ ratio when controlling for efficiency. I provide
recommendations in Chapter 4, Section 4.4, on how banks can use this to their benefit.
The intended audience for the work done in this chapter are banks planning to open in
other locations. Suppose the exact definition of efficiency and effectiveness exists between
two locations. In that case, banks can safely open new branches in the second location and
use the definition of efficiency and effectiveness from the first location. In an inefficient
market, traders can benefit the most by using the cause and effect relationship between
efficiency and effectiveness and Tobin’s Q) ratio. The cause and effect relation can be used
to predict the firm’s performance in the financial market, and traders can profit from such
information.

In Chapter 5, I provide an optimal path to transform ( )’s two-
stage DEA model into the best two-stage DEA model found from my variable selection
framework. I hypothesize that a set of incremental changes that transform

( )’s model into a model consistent with the semi-strong version of EMH will
be quickly adopted by banks. Instead of telling a bank about the best two-stage DEA
model of efficiency and effectiveness, it is more meaningful for the bank to know what
path of incremental changes will transform its current model of measuring efficiency and
effectiveness into the best model. Implementing changes incrementally allows the bank to
optimize one dimension at a time, leading to little resistance to change, unlike a rapid,
large-scale overhaul of its model which would lead to widespread disruption within the

bank.
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Appendix A

Glossary of terms and definitions

1. Hausman test:

Is used in panel data to decide between fixed effects estimators and random effects
estimator. Assume the following panel data regression model, y; s = a+BX; 141+
where X, are the independent variables, p; is the unobserved heterogeneity. The
error terms 7);, are assumed to be homoskedastic.

In the null hypothesis, the covariance between the unobserved heterogeneity and the
independent variables is zero. Under the null hypothesis, the Hausman test statistic is

calculated as W = Var((glf 5)16‘?5 )(QBRE) where W follows a chi-squared distribution with

1 degree of freedom. Brg 1s the fixed effects estimator of the panel regression model
and Srg is the random effects estimator of the panel regression model (
, Chapter 14).

Y

2. Heteroskedastic:

In time series, heteroskedastic refers to a condition in which the variance of the
error term, in a regression model varies with time ( , , Chapter

5).

3. Heteroskedastic with auto correlation:

Heteroskedasticity with autocorrelation consistent (HAC) refers to the condition
where the error terms are assumed to be heteroskedastic. There is also a correlation
among the error terms of the cross-sectional units in the panel data (

, , Chapter 5).
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. Homoskedastic:

In time series, homoskedastic refers to a condition in which the variance of the
error term in a regression model is constant (i.e., not a function of time) (
, , Chapter 5).

. Multicollinearity:

Multicollinearity is the occurrence of high intercorrelations among two or more
independent variables in a regression model ( , , Chapter 6).

. Mundlak test:

Is used in panel data to decide between fixed effects estimators and random effects
estimator. The error terms in the panel data are assumed to be heteroskedastic.

The Mundlak approach suggests estimating the following regression: y;; = a+ X +
vX; + i +ni where X; are country specific means. A Wald joint significance test on
~v is performed where the null hypothesis is set to Hy : v = 0 (i.e., the random-effects
model holds under the null hypothesis) ( , ).

. Spurious regression:

When two non-stationary time series data are regressed against each other, spu-
rious regression may occur ( , ). For example, consider a village’s ice cream
sales. The sales might be very high when the rate of buying air conditioners in the
city is highest. To claim that ice cream sales cause purchasing of air conditioners, or
vice versa would imply a spurious relationship between the two.

. Stationary series:.

A stationary time series is one whose statistical properties such as mean and
variance are constant over time.

A non-stationary time series, on the other hand, may have its mean or the variance
as a function of time ( , , Chapter 11).

Wald test:

The Wald test works by testing the null hypothesis that a set of parameters
is equal to some value. The null hypothesis is that the two coefficients of interest
are simultaneously equal to zero. If the test fails to reject the null hypothesis, this
suggests that removing the variables from the model will not substantially harm
the fit of that model. More details of the Wald test, including its formula and
mathematical derivation, are presented in (Fox, , Chapter 9). The Wald test
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essentially tests how far the estimated parameters are from zero. Wald test can be
used to test multiple parameters simultaneously.
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Appendix B

Summary of Eikon data

In this chapter we present a summary of the data used in the case study in Section 2.4.
Due to size, tables are presented on individual pages, starting with the next page.
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Table B.1 Mean of the 55 dimensions from Eikon across Brazil, Canada, China, India,
Japan, Mexico, South Korea and the USA and for time period 2000-2017. All prices are
in US dollars

Brazil India China USA Canada Mexico SouthKorea Japan
Total Assets 15505474539.06 | 62012169859.04 | 1214148198097.82 | 1146487076763.28 | 427797504191.02 | 38177690344.25 | 195205366056.09 | 722660173677.39
Full-Time Employees 12497.31 39569.07 230843.83 163295.07 49269.37 20052.42 10610.93 27949.66
Net Loans 6093079849.32 39092061228.24 618984979926.54 468402075538.06 206119599977.13 | 17594101744.68 | 134042911939.01 | 310033510429.56
Other Earning Assets 9600252776.41 19903479396.11 326839162227.61 512163524583.44 191991912819.32 | 14886641786.97 3979879244762 309393708110.21
Long Term Investments 1023912 04 545006250.21 1084638186.01 6103757354.64 1607687247.50 255840402.07 406014828.14 3343965999.38
Non-Interest Income, Bank 986392973.70 1274569466.89 9125309026.85 25204158687.13 7154864912.90 1013800753.59 8150989504.85 8349764721.25
Interest Income, Bank 2006406781.49 4721677224.51 4033824 90 12535104947.25 3237312 8431821025.29 .
Net Income Incl Extra Before Distributions 258914647.57 452436652.33 9663672665.93 3375374043.51 677279°
Income Avail to Cmn Shareholders Excl Extra 257376358.03 451696954.49 13201118376.81 8924673478.24 3316723344.28 650929283.36 1175324536.94 15752794¢
Income Avail to Cmn Shareholders Incl Extra 257414058.59 451590457.03 13201118376.81 8992063832.15 3246958490.89 677279522.40 1142224692.70 157527949
Basic Weighted Average Shares 526973128.85 1688820496.65 192773471960.18 2857931732.34 888124169.48 341125224.48 4116131537.14
Basic EPS Excluding Extraordinary Items 12.87 0.29 0.08 4.97 4.20
Basic EPS Including Extraordinary Items 12.87 0.29 0.08 5.28 4.20
Diluted Net Income 257414058.59 451554529.11 88809.09 9000441521.70 677292403.82 1595620692.50
Diluted Weighted Average Shares 527905780.75 1693123504.53 193644891168.76 2906466878.20 896872225.14 4669267261.91 4425932596.85
Diluted EPS Excluding Extraordinary ITtems 12.87 0.29 0.07 4.89 3.67 0.22 4.10
Diluted EPS Including Extraordinary Items 12.87 0.29 0.07 5.19 3.65 0.22 4.10
Net Income Before Extraordinary ITtems 258876947.02 452543149.79 13238539974.23 9596282312.02 3415890356.82 650929283.36 1200415197.76 1637260822.88
Other Expense -754499270.71 -1005864279.35 -10419478026.69 -14837903714.50 -4016549020.96 -1079810264.07 -3281161805.14 -9890575079.87
Non-Interest Expense, Bank -1177726410.75 | -1732614147.60 -14590406123.98 -32609971306.92 -8794683067.25 -1416113123.09 -9408405938.29 -10643663737.59
Net Income Before Taxes 343963062.88 613367380.10 17417312615.30 13445810164.42 4306143801.21 815669043.16 1623424386.80 2849655671.86
Provision for Income Taxes 76572113.29 159476850.01 3772928364.05 900790005.04 171821700.89 371067325.56 953471197.84
Net Income After Taxes 266664978.32 455266876.39 9672881800.37 3434957723.38 643847342.27 1297025086.58 189618447402
Other Revenue 116320949.93 189684991.31 806219183.38 2543168682.44 864165801.74 94558429.24 1241479731.06 3042995239.78
Non-Interest Income, Bank 7 1274569466.89 9125309026.85 25204158687.13 7154864912.90 1013800753.59 8150989504.85 8349764721.25

6776532108.54 1645123574.46 4021060153.92 6127576012.33

Net Interest Income 1666854016.42 27452819110.90 2679793892

Loan Loss Provision 625950724.85 4570610115.78 5946316136.12 783661363.98 429900117.85 760351496.29 1008121277.21
Net Interest Income After Loan Loss Provision 537359561.93 1042107630.81 22882409712.43 20851622784.20 5992870744.56 1215223 61 3311594267.40 5143554688.20
Interest Income, Bank 2006406781.49 4721677224.51 46344214146.62 40338242283.90 12535104947.25 3237312935.84 8431821025.29 9228791349.14

2729553759.77 16345863545.55 5655964104.56 4265413473.03 1417306981.20 24592113;
4184789795.02 974442271.90 238104923.83 25044861.06 98623693.37
17748969805.72 55279.22 23948086.86 202846805.09 320450176.01

Interest on Deposit 632374833
Tnterest on Deposits
Other Interest Income

.01 1461460973.13
7996546.28

Interest & Fees on Loans 10953819 29464752079.62 26469810271.01 9349477712.01 31 77401.18 7038885879.96 6010917551.60
Interest And Dividends on T Secs T4187851¢ 1275980037.47 9974439156.70 5575144946.34 2410031861.08 351307820.72 901142622.87 2014917094.29
Fed Funds Sold/Scty Prchd Under Resale Agrmnt 5995309145.10 0.00 807488479.38 2827140580.76 918542590 19239315¢ 0.00 343604194.14
Total Equity 1705358805.56 4081674047.28 75854929285.59 107074903187.69 23093862063.67 4298601062.21 1440843004 29295913910.09
Total Liabilities And Shareholders Equity 15505474534.28 | 62012169859.32 | 1214148198099.03 | 1146487076762.43 | 427797505488.16 | 38177690342.24 | 19632312531 722660168320.66
Total Common Shares Outstanding 508496364.74 1729550732.85 195029329472.40 2900470880.90 892487955.05 4672767259.40 349705100.75 4207338389.92
ined ings (A d Deficit) 639371546.90 2759024989.07 40705074466.78 61275236644.86 13301470776.97 2102037019.02 6051004119.99 13243090178.13
Common Stock, Total 1079119209.28 99201227.96 25962868092.24 9389660414.18 7113148446.81 1603369349.73 6622440509.10
Common Stock Other 1079119209.28 99201227.96 25962868092.24 9389660414.18 7113148446.81 1603369349.73 6622440509.10
Other Liabilities, Total 3146619445.58 3896130240.64 26629624333.56 104665786060.00 52347429202.83 2718941705.44 1513380214490 52615044871.10
Total Liabilities 13800115728.71 | 57930495812.03 | 1138293268813.44 | 1039411418364.37 | 404703643424.49 | 33879089280.04 | 180797074264.88 | 693364254410.57
Total Long Term Debt 1299648794.16 5527591369.01 19788693575.82 139159405956.99 9759217476.42 1677249680.41 22811954778.33 42487912219.28
Total Debt 4853147813.23 6497131841.28 33919976701.61 281666187684.73 4884785965375 8391356216.88 44789126500.97 146446878798.06
Long Term Debt 1628706774.10 5645044482.08 21076413547.99 139279841826.61 9736040552.32 1928173409.49 30623978197.85 42721623006.38
Total Deposits 6803064593.29 52865418852.33 | 1055689319265.49 607573972952.36 285915957443.91 | 19328408591.49 | 114031076311.23 | 462514260191.51
Other Assets 1170506376.33 2223682786.47 31129870850, 83552106140.02 13876816288.51 254961.37 767232618733
Other Assets, Total 1274625934.45 2647515779.07 37458248730.71 93130247678.94 14499955385.96 792168523.10 7890152152.37 23288977827.12

Total Assets, Reported 1550547453 62012169859.04 | 1214148198097.82 | 1146487076763.28 | 427797504191.02 | 38177690344.25 | 195205366056.09 | 722660173677.39
Property /Plant /Equipment Total - Net 11721906 450389756.45 11872538162.64 6298705758.94 1697676505.55 433157160.24 1954390573.23 5844408484.30
Net Loans 6093079849.3!

2 39092061228.24 618984979926.54 468402075538.06 206119599977.13 | 17594101744.68 | 134042911939.01 | 310033510429.56

Other Earning Assets, Total 9600252776.41 19903479396.11 326839162227.61 512163524583.44 191991912819.32 | 14886641786.97 39798792447.62 309393708110.21
Total Investment Securities 5457409107.30 15145750760.21 236986822993.20 170572301601.99 61425409992.46 4945632230.23 27462403228.02 181552026316.12
Cash & Due From Banks 1550451856.84 6154019124.86 213446220473.92 27884796481.67 520131831 4360737455.94 9654996766.43 67796267209.04
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Table B.2 Standard Deviation of the 55 dimensions from Eikon across Brazil, Canada,
China, India, Japan, Mexico, South Korea and the USA and for time period 2000-2017.
All prices are in US dollars

Brazil India China USA Canada Mexico SouthKorea Japan
Total Assets 39402282173.75 | 45697940627.89 | 897955856811.74 | 309184644754.08 | 195826731259.31 | 13976732058.00 | 101648697034.17 | 355656579447.02
Full-Time Employees 16608.82 15728.59 107803.02 25715.49 11923.02 7372.15 8122.11 13005.50
Net Loans 9710112037.08 33092344482.36 | 468037 96.31 | 128771791565.37 | 101336773177.33 5869632706.74 68786919973.49 129724106093.70
Other Earning Assets, Total 265 58189.11 | 18043786142.34 | 230638567340.68 | 144707854265.46 84268313435.42 7991447261.65 23425654837.08 151172893978.31
Long Term I 561328155.28 860891368.27 711387543.82 4202849351.19 964234526.92 223532462.17 229434423.04 1979301047.10
Non-Interest Income, Bank 2342834193.42 1490084247.83 829758228410 6398710242.17 2661315841.54 435705165.25 5673852135.58 3947149427.03
Interest Income, Bank 4269107681.16 3865316154.22 34461120688.87 10702768879.96 4044809615.63 745751893.88 4580522308.79 3786322112.71
Net Income Incl Extra Before Distributions 596156773.39 344434059.95 10933792627.91 4220129460.40 1837161763.95 242330108.33 719028271.88 2564012078.17
Income Avail to Cmn Shareholders Excl Extra 596152728.63 343519756.34 10888330139.02 4425288194.13 1787183117.00 243146884.36 707016659.26 2559303439.34

Income Avail to Cmn Shareholders Incl Extra 596161848.23 343595855.79 10888330139.02 4254477496.21 1755997155.59 242330108.33 647313108.28 2559303439.34
Basic Weighted Average Shares 1051574544.77 864220789.56 81481011471.33 991214853.70 168446351.04 745903000.42 77862689.76 1927683649.14
Basic EPS Excluding Extraordinary Items 77.71 0.18 0.06 4.64 1.57 0.21 1.65 11.75
Basic EPS Including Extraordinary Items 77.71 0.18 0.06 4.91 1.57 0.21 1.65 11.75
Diluted Net Income 596161848.23 343559649.80 10847422892.07 4260363525.90 1807184292.43 242321230.03 709081088.26 2565517755.60
Diluted Weighted Average Shares 1054646724.34 869173443.54 81879501864.76 1010058701.45 168607454.29 745088777.83 70600420.01 1943401581.12
Diluted EPS Excluding Extraordinary Items 77.71 0.18 0.06 4.57 1.56 0.21 5 11.72
Diluted EPS Including Extraordinary Items 7771 0.18 0.06 4.82 1.56 0.21 1.68 11.72
Net Income Before Extraordinary Items 596148072.25 344357871.13 10933792627.91 4428737643.27 1823828904.73 243146884.36 661550298.14 2564012078.17
Other Expense 1847879288.28 1111305456.48 6531731200.82 3755804437.83 1478188829.69 366023238.58 2411096620.99 4164265954.63
Non-Interest Expense, Bank 2766042243.67 1767209933.23 10534778433.68 8133648271.80 3109036026.67 447681979.98 6087387229.58 4425054160.69
Net Income Before Taxes 815084647.95 472216060.56 13987221822.32 6275480474.98 2186502732.90 327108931.90 899469403.14 3145175575.15
Provision for Income Taxes 216978996.77 135426575.02 300287 97 1983169883.46 440889172.52 95480890.69 234891154.61 601225870.73
Net Income After Taxes 601202744.63 347756658.50 11021162924.70 4451161388.26 1809099400.01 250037517.18 763584884.93 2664987998.02
Other Revenue 186339664.24 163780406.29 6757361 3 1652815 29 357482114.38 77420287.46 1794289874.69 1436851468.82
Non-Interest Income, Bank 2342834193.42 1490084247.83 829758228410 6398710242.17 2661315841.54 435705165.25 5673852135.58 3947149427.03
Net Interest Income 1978926683.17 1411197236.49 19679680462.08 6533620528.58 2974050467.31 530084287.17 1894994897.37 2314701609.35
Loan Loss Provision 731219412.94 945612805.01 3801557952.06 5640442545.69 361089180.30 290232263.56 417257823.33 1170626638.26
Net Interest Income After Loan Loss Provision 1254191950.22 678979334.17 16551723932.52 6816572220.39 2711749926.52 306629063.45 1830857597.38 2432128430.71
Interest Income, Bank 4269107681.16 3865316154.22 34461120688.87 10702768879.96 4044809615.63 745751893.88 4580522308.79 3786322112.71
Interest on Deposit 892656370.32 2228057081.43 12097248269.35 4527703499.88 1749534056.43 688494324.34 1227122826.25 1021376628.87
Interest on Deposits 1763373717.01 68872955.66 3668056265.87 774740378.06 161746800.77 3132 54110915.71 210006528.41
Other Interest Income 993914123.05 106512578.01 227! 19116.75 2017730163.10 22251237.19 127330610.18 963010697.87 338267475.82
Interest & Fees on Loans 1801392992.95 2692202815.88 20330384728.43 5749191941.54 3296758075.67 787430851.00 3741262823.81 235975905787
Interest And Dividends on Investment Secs 1172334425.63 1005129995.10 8390279573.64 1837431005.11 815664836.56 222444888.60 348298581.62 815191673.74
Fed Funds Sold/Scty Prchd Under Resale Agrmnt 2121186715.32 0.00 918266178.12 2405071104.59 657936063.59 38860984.24 0.00 328828349.17
Total Equity 4137921676.37 3576512675.51 73034585529.21 40294852131.77 12562108861.18 1617899367.25 8521058299.88 17796661162.19
Total Liabilities And Shareholders Equity 39402282175.55 | 45697940627.61 | 897955856811.88 | 309184644756.28 | 195826731543.44 13976732055.40 | 103862456170.20 | 355656580111.54
Total Common Shares Outstanding 1033787036.86 884827005.39 83456510976.34 960350990.25 168792756.51 749435016.19 75327169.53 1969449958.90
Retained Earnings (Accumulated Deficit) 1478737085.01 2228335795.72 56162312568.32 22794954936.28 6598942779.89 1544889514.35 5082148393.07 10958755687.76
Common Stock, Total 2753268914.84 18499936.01 13390726/ 67 9044491318.47 758651272.66 521782890.28 361149214.32 57501561.72
Common Stock Other 2753268914.84 18499936.01 13390726632.67 9044491318.47 3758651272.66 521782890.28 361149214.32 3357501561.72
Other Liabilities, Total 9378271079.62 3424361761.92 22389866759.70 27778863162.95 23296156268.40 3116780693.41 11701387259.86 27620914108.64

Total Liabilities 35270937675.27 | 42264269743.19 | 826650608269.17 | 271686846356.56 | 183417757306.38 | 12495710414.63 93206087416.00 338780524984.37

Total Long Term Debt 3231727226.13 5981765941.48 24252043031.59 46123300863.05 3983507435.08 1874759690.95 24883476056.47 28979776829..

Total Debt 12392575959.84 7134432928.69 39437849573.75 80769077950.27 23734764758.25 5372912450.86 18834128039.74 75284051515.39
Long Term Debt 3269828431.82 5978604670.24 23980912893.77 45933037233.13 3992518936.93 18557660783.79 28877674590.39
Total Deposits 12739084962.17 | 42787899449.25 | 752861470508.05 | 212419544524.53 | 134456496856.40 4492939300.38 62390328403.24 223478501598.99
Other Assets 2171878594.39 2777642972 24793910350.33 20582889920.37 7554086462.53 591360287.59 378861 02 3424043287.48
Other Assets, Total 2180729694.34 3234440150.77 27545741188.99 24345761304.30 7733945641.57 638237067.20 3873039989.75 13377369009.84
Total Assets, Reported 39402282173.75 | 45697940627.89 | 897955856811.74 | 309184644754.08 | 195826731259.31 | 13976732058.00 | 101648697034.17 | 355656579447.02
Property /Plant /Equipment Total - Net 267587828.56 347854041.06 7589573008.50 1613916392.72 493055233.10 97578975.36 750542688.19 2343509502.63
Net Loans 9710112037.08 33092344482.36 | 468037838296.31 | 128771791565.37 | 101336773177.33 5869632706.74 68786919973.49 129724106093.70
Other Earning Assets 26343958189.11 1804378614; 230638567340.68 | 144707854265.46 84268313435.42 7991447261.65 23425654837.08 151172893978.31
Total Investment Securities 19602137939.07 | 12313161085.74 166193239669.33 64963091566.19 33963196558.83 3025141981.16 731287039.48 90409741430.80
Cash & Due From Banks 4235760568.59 4432926882.02 178817946454.79 8140203739.57 2997920471.35 1140023768.17 5453646065.93 90550896249.97

151



Appendix C

Results of unit root tests

Table C.1 Panel Unit Root Test on TobinQ ratio from two-stage DEA model of

(2010)

Method Statistics Prob
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t * 3.26524 0.9995

Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 3.41664 0.9996
square
PP - Fisher Chi- 2.80616 0.9999
square

Automatic lag length selection based on AIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
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Table C.2 Panel Unit Root Test on Efficiency calculated from two-stage DEA model

of ( )

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * 1.27029 0.8980
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 18.9884 0.1654
square

PP - Fisher Chi- 28.3023 .0130
square

Automatic lag length selection based on AIC: 0 to 3
Newey-West automatic bandwidth selection and Bartlett kernel

Table C.3 Panel Unit Root Test on Effectiveness calculated from two-stage DEA model

of (2010)

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * 1.29154 9017
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 10.6231 0.7154
square

PP - Fisher Chi- 21.0399 0.1006
square

Automatic lag length selection based on AIC: 1 to 3
Newey-West automatic bandwidth selection and Bartlett kernel

153



Table C.4 Panel Unit Root Test on log(Tobin@) from two-stage DEA model of
(2010)

Method Statistics Prob
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t * -4.40771 0.0000

Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 34.6376 0.0045
square
PP - Fisher Chi- 35.9576 0.0029
square

Automatic lag length selection based on AIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel

Table C.5 Panel Unit Root Test on log(Ef ficiency) calculated from two-stage DEA
model of ( )

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * -3.98417 0.0000
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 49.9638 0.0000
square

PP - Fisher Chi- 95.9901 0.0000
square

Automatic lag length selection based on AIC: 0 to 3
Newey-West automatic bandwidth selection and Bartlett kernel
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Table C.6 Panel Unit Root Test on log(FE f fectiveness) calculated from two-stage DEA
model of ( )

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * 39032 0.6519
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 38.6487 0.0004
square

PP - Fisher Chi- 233.819 0.0000
square

Automatic lag length selection based on AIC: 1 to 3
Newey-West automatic bandwidth selection and Bartlett kernel

Table C.7 Panel Unit Root Test on Tobin@Q ratio from the best two-stage DEA model of

Figure 4.3
Method Statistics Prob
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t * 3.26524 0.9995

Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 3.41664 0.9996
square
PP - Fisher Chi- 2.80616 0.9999
square

Automatic lag length selection based on AIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
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Table C.8 Panel Unit Root Test on Efficiency calculated from the best two-stage DEA
model of Figure 4.3

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * -2.88257 0.0020
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 27.9765 0.0318
square

PP - Fisher Chi- 72.0144 0.0000
square

Automatic lag length selection based on AIC: 0 to 3
Newey-West automatic bandwidth selection and Bartlett kernel

Table C.9 Panel Unit Root Test on Effectiveness calculated from the best two-stage DEA
model of Figure 4.3

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * -2.17594 0.0148
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 16.5236 0.4171
square

PP - Fisher Chi- 37.6946 0.0017
square

Automatic lag length selection based on AIC: 1 to 3
Newey-West automatic bandwidth selection and Bartlett kernel
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Table C.10 Panel Unit Root Test on log(Tobin@) for the best two-stage DEA model of
Figure 4.3

Method Statistics Prob
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t * -4.40771 0.0000

Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 34.6376 0.0045
square
PP - Fisher Chi- 35.9576 0.0029
square

Automatic lag length selection based on AIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel

Table C.11 Panel Unit Root Test on log(E f ficiency) calculated from the best two-stage
DEA model of Figure 4.3

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * -2.62626 0.0043
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 26.2957 0.0500
square

PP - Fisher Chi- 86.1522 0.0000
square

Automatic lag length selection based on AIC: 0 to 3
Newey-West automatic bandwidth selection and Bartlett kernel
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Table C.12 Panel Unit Root Test on log(E f fectiveness) calculated from the best two-
stage DEA model of Figure 4.3

Method Statistics Prob
Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t * -4.94845 0.0000
Null: Unit root (assumes individual unit root process)

ADF - Fisher Chi- 58.1560 0.0000
square

PP - Fisher Chi- 95.3418 0.0000
square

Automatic lag length selection based on AIC: 1 to 3
Newey-West automatic bandwidth selection and Bartlett kernel
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Appendix D

Results of lag length selection

Table D.1 Lag length selection for Brazil

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY)log(TOBINQ)
Exogenous variables: C

Lag LogL LR FPE AIC SC HQ

0 -86.24351 NA™ 14.04544 11.15544  11.30030™ 11.16286
1 -75.01009  16.85014  10.96936*  10.87626* 11.45570 10.90593*
2 -70.04715  5.583300  21.26519 11.38089 12.39492 11.43282

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 7.642302 9 0.5706 0.845680 (9,9.9) 0.5947
2 9.074484 9 0.4304 1.065222 (9,9.9) 0.4583
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Table D.2 Lag length selection for India

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY)log(TOBINQ)

Exogenous variables: C

Lag LogL LR FPE AIC SC HQ

0 -79.22326 NA* 5.840202°  10.27791*  10.42277% _ 10.28533"
1 -71.38759  11.75351  6.974732 10.42345 11.00289 10.45312
2 -65.15270  7.014246  11.53361 10.76909 11.78311 10.82101

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 5.768273 9 0.7629 0.591697 (9,9.9) 0.7784
2 7.032899 9 0.6337 0.759157 (9,9.9) 0.6554

Table D.3 Lag length selection for China

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY)log(TOBINQ)

Exogenous variables: C

Lag LogL LR FPE AIC SC HQ
0 -66.31602 NA 2.073213 9.242136 9.383746 9.240628
1 -51.14030 22.25772 0.946208 8.418707 8.985147 8.412674
2 -34.20198 18.06754 0.399092 7.360265 8.351535 7.349705
3 0.200682 22.93511* 0.024427* 3.973242* 5.389343* 3.958158*

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 21.88068 9 0.0093 4.533797 (9,9.9) 0.0139
2 15.44141 9 0.0795 2.383014 (9,9.9) 0.0972
3 8.918947 9 0.4448 1.040226 (9,9.9) 0.4724

160



Table D.4 Lag length selection for USA

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY)log(TOBINQ)
Exogenous variables: C

Lag LogL LR FPE AIC SC HQ
0 ~75.10589 NA 3.490675 0.763237 9.908097 9.770655
1 -60.43861  22.00093*  1.774771*  9.054826*  9.634267*  9.084498*
2 -56.43771  4.501008 3.880219 9.679714 10.69374 9.731640

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 21.88011 9 0.0093 4.533555 (9,9.9) 0.0139
2 6.732022 9 0.6650 0.717869 (9,9.9) 0.6854

Table D.5 Lag length selection for Canada

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY)log(TOBINQ)
Exogenous variables: C

Lag LogL LR FPE AIC SC HQ
0 -63.03741 NA 1.339038 8.804988 8.946598 8.803480
1 -42.94137 29.47420* 0.317117 7.325516 7.891956* 7.319482
2 -31.81612 11.86693 0.290347* 7.042150* 8.033420 7.031591*
3 -23.00502 5.874069 0.539031 7.067336 8.483436 7.052251

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 5.656932 9 0.7737 0.577697 (9,9.9) 0.7886
2 9.934932 9 0.3558 1.208870 (9,9.9) 0.3844
3 10.97829 9 0.2772 1.395909 (9,9.9) 0.3054
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Table D.6 Lag length selection for Mexico

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY)log(TOBINQ)
Exogenous variables: C

Lag LogL LR FPE AIC SC HQ

0 ~68.58709 NA 2.806415 9.544945 9.686555 9.543436
1 -50.56684  26.42969 0.876556 8.342246 8.908686 8.336212
2 -31.74117  20.08072* 0.287460  5.373415* 8.023426 7.021596
3 -10.30061 14.29370  0.099073* 7.032155  6.789515*  5.358330*

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 14.02848 9 0.1213 2.034261 (9,9.9) 0.1430
2 2.780536 9 0.9724 0.253594 (9,9.9) 0.9745
3 15.97452 9 0.0674 2.524469 (9,9.9) 0.0837

Table D.7 Lag length selection for South Korea

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY )log(TOBINQ)
Exogenous variables: C

Lag LogL LR FPE AIC SC HQ
0 -59.91043 NA® 0.882515 8.388057 8.529667 8.386549
1 -49.77938 14.85887 0.789189™ 8.237251 8.803691 8.231217
2 -40.32553 10.08411 0.902947 8.176737 9.168008 8.166178
3 -29.13299 7.461695 1.220281 7.884398* 9.300499 7.869314*

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 4.755562 9 0.8551 0.468547 (9,9.9) 0.8652
2 11.05579 9 0.2719 1.410391 (9,9.9) 0.3000
3 10.88894 9 0.2834 1.379314 (9,9.9) 0.3116
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Table D.8 Lag length selection for Japan

VAR Lag Order Selection Criteria
Endogenous variables: log(EFFECTIVENESS)log(EFFICIENCY)log(TOBINQ)
Exogenous variables: C

Lag LogL LR FPE AIC SC HQ
0 58.45532 NA® 0.726880" 8.104043  8.335653" 8.192535
1 -51.30736  10.48368  0.967521 8.440982 9.007422 8.434948
2 -41.47622  10.48656  1.052674 8.330162 0.321432  7.809636*
3 -28.68540  8.527210  1.149587  7.824720* 9.240820 8.319603

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

VAR Residual Serial Correlation LM Tests

Lag LRE™ stat df Prob. Rao F-stat df Prob.
1 6.193624 9 0.7204 0.646265 (9,9.9) 0.7381
2 8.412644 9 0.4932 0.960845 (9,9.9) 0.5197
3 21.06323 9 0.0124 4.200134 (9,9.9) 0.0180

163



Appendix E

PCA results

Table E.1 Dot product results of the top 7 dimensions from Eikon across each of the 7
eigenvectors of the covariance of the dataset

e e es ey es € er
0.43 [ 0.35 [ 0.28 | 0.36 | 0.32 | 0.34 | 0.30
0.35 1031 10.25]0.321]0.28 |0.32]0.29
0.34 [ 0.31 | 0.22 | 0.30 | 0.28 | 0.30 | 0.28
0.33 | 0.31]0.22 | 0.28 | 0.27 | 0.29 | 0.27
0.28 1 0.30 | 0.21 | 0.26 | 0.26 | 0.29 | 0.27
0.27 1 0.28 1 0.20 | 0.21 | 0.24 | 0.28 | 0.25
0.2510.2710.20 | 0.19 | 0.24 | 0.27 | 0.25

Table E.2 Top 7 dimensions from Eikon whose dot product is the largest across each of
the eigenvectors of the covariance of the dataset

€1 | €y | €3 | €4 | €5 | € | €7
251521 |16 |46 |29
26 54| 2 |17 | 47 | 30
27153 | 3 | 18] 52| 31
28 14119 | 19|50 |32
37 155|110 | 20|48 |33
38 | 42 |46 | 21 | 53 | 34
39 (43 4 | 2249 |35

Tk W NI+~ O
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Appendix F

Summary of six permutations of
two-stage DEA model

Non-Interest Income, Bank

Some dimension 2.

Total Assets.
Effectiveness

Efficiency
Some dimension 1. s di ion 3
ome dimension

Full Time Employees.

Stage
1
Stage

Figure F.1: In permutation 1, ‘Total Assets’ and ‘Full time Employees’ always occur as
input variables of efficiency. ‘Non Interest Income, Bank’ always occurs as output variable
of efficiency. ‘Some dimension 1’, ‘Some dimension 2’ and ‘Some dimension 3’ are three

other variables chosen from the remaining 52 dimensions.
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Some dimension 2
Total Assets. Non-Interest Income, Bank-

Effectiveness

Efficiency
Some dimension 1. s di ion 3.
ome dimension

Full Time Employees.

Stage
Stage

Figure F.2: In permutation 2, ‘Total Assets’ and ‘Full time Employees’ always occur as
input variables of efficiency. ‘Non Interest Income, Bank’ always occurs as output variable
of effectiveness. ‘Some dimension 1’, ‘Some dimension 2’ and ‘Some dimension 3’ are three

other variables chosen from the remaining 52 dimensions.

Total Assets:
S i ion 2

Effectiveness
Full Time Employees——p-| o

-Non-Interest Income, Bank_|

Efficiency

——Some dimension 1—p-/

Stage
2 9

Figure F.3: In permutation 3, ‘Total Assets’ and ‘Full time Employees’ always occur as
output variables of efficiency. ‘Non Interest Income, Bank’ always occurs as input variable
of efficiency. ‘Some dimension 1’, ‘Some dimension 2’ and ‘Some dimension 3’ are three

other variables chosen from the remaining 52 dimensions.
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Total Assets:.
J L Non-Interest Income, Bank-

Effectiveness
Full Time Employees——p| o,

——Some dimension 2__, |
Efficiency

——Some dimension 1—p-|

Stage
1 <
Stage
2 <

Figure F.4: In permutation 4, ‘Total Assets’ and ‘Full time Employees’ always occur as
output variables of efficiency. ‘Non Interest Income, Bank’ always occurs as output variable
of effectiveness. ‘Some dimension 1’, ‘Some dimension 2’ and ‘Some dimension 3’ are three

other variables chosen from the remaining 52 dimensions.

Some dimension 2
Non-Interest Income, Bank, Total Assets.
Efficiency Effectiveness
Some dimension 3. )
Full Time Employees

Some dimension 1

Stage
1
Stage

Figure F.5: In permutation 5, ‘Total Assets’ and ‘Full time Employees’ always occur as
output variables of effectiveness. ‘Non Interest Income, Bank’ always occurs as output
variable of efficiency. ‘Some dimension 1’, ‘Some dimension 2’ and ‘Some dimension 3’ are

three other variables chosen from the remaining 52 dimensions.
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Some dimension 2.

Efficiency

Some dimension 1.

Stage

Non-Interest Income, Bank

Some dimension 3.

Total Assets.

Effectiveness
Full Time Employees

Stage

Figure F.6: In permutation 6, ‘Total Assets’ and ‘Full time Employees’ always occur as
output variables of effectiveness. ‘Non Interest Income, Bank’ always occurs as output
variable of efficiency. ‘Some dimension 1’, ‘Some dimension 2’ and ‘Some dimension 3’ are

three other variables chosen from the remaining 52 dimensions.
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