
 
 

Impact of Anaerobic Biofilm Formation on 
Sorption Characteristics of Powdered Activated 

Carbon 
 
 
 
 
 
 
 

by 
 
 

Griselda Raquel Rocha Díaz de León 
 
 

A thesis 
presented to the University of Waterloo 

in fulfillment of the 
thesis requirement for the degree of 

Master of Applied Science 
in 

Civil Engineering – Water 
 
 
 
 
 

Waterloo, Ontario, Canada, 2021 
 

© Griselda Raquel Rocha Díaz de León 2021



 ii 

 

AUTHOR’S DECLARATION 
 

I hereby declare that I am the sole author of this thesis. This is a true copy of the 
thesis, including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 iii 

ABSTRACT 
 
 
 

Subsurface contamination by petroleum hydrocarbons (PHCs) results from the leakage 

of petroleum products during extraction, processing or transport. It has been documented 

that activated carbon (AC) can effectively sorb organic compounds present in water. As a 

result, the use of carbon-based injectates (CBI) has gained popularity for use to treat 

groundwater impacted with PHCs in situ.  CBI relies on the dynamic equilibrium between 

sorption, desorption and biodegradation of contaminants, leading to long-term treatment.  

The aim of this study was to investigate the influence of biofilm formation on the 

sorption characteristics of PHCs to powdered activated carbon (PAC). Specifically, the 

sorption performance of PAC for toluene was evaluated before and after an anaerobic 

methanogenic toluene-degrading microbial biofilm was developed on the PAC.  Batch 

microcosm experiments were used to grow a biofilm on PAC surfaces (bio-coated PAC). The 

microbial culture used in the microcosm experiments actively degraded toluene as 

demonstrated by toluene reduction and the methane production. Confocal microscopy was 

conducted for qualitative visualization and quantitative analysis of the biofilms. The biofilm 

continually developed on the PAC surfaces and increased its mass and thickness over the 

180-day long experimental period.   

The sorption characteristics of PAC without biofilm formation (fresh PAC) were 

compared to PAC samples removed from microcosms at Day 80 and Day 180. The change 

of sorption characteristics of PAC was evaluated based on best fit Freundlich isotherm 

parameters (Kf and nf). The value of Kf was reduced from 79.8 for fresh PAC to 50.2 and 47.7 

for Day 80 and Day 180 bio-coated PAC, respectively. An increase in nf from 0.35 for fresh 

PAC to 0.42 for bio-coated PAC at Day 80 and 180 was also observed. These results show 

that the sorption performance of PAC was reduced when a microbial biofilm was developed. 

Although the biofilm growth was significant between Day 80 and Day 180, and a slight 

decrease in Kf was obtained for the bio-coated PAC at Day 180 compared to Day 80, the 

observed growth did not yield a statistically significant difference in the loss of sorption 

capacity between both time points. A simulated PAC barrier was used to demonstrate the 
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impact that biofilm formation could have on potential performance deterioration. The bio-

coated PAC barrier performance was evaluated based on the percent reduction of 

breakthrough time as a function of incoming contaminant concentration. The breakthrough 

performance was found to deteriorate with the biofilm formation, with a greater impact at 

lower incoming concentrations (e.g., 60% reduction in breakthrough time for a 

concentration of 10 µg/L).  

The results of this study revealed that the sorption performance of PAC could be 

hampered by biofilm formation leading to fouling the AC pores (by biomass production 

and/or sorption of microbial by-products) which may affect its long-term effectiveness.   
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 BACKGROUND 

 

Energy resources have been fundamental in the development of human civilizations and 

are the basic component of a country’s economic growth. It involves any type of energy that 

can be used to produce heat, electricity, or other forms of energy conversion processes 

(Rashid, 2015). Energy consumption has constantly increased throughout human history, 

and since the Industrial Revolution, fossil fuels (mainly coal, oil, and natural gas) have 

facilitated industrial expansion, and are the primary energy source in many countries (Black, 

2014; Rashid, 2015). 

 

However, fossil fuels (e.g., petroleum products) have harmed the environment, producing 

greenhouse gases, solid by-products, and accidental releases to the surface, subsurface, 

and aquatic ecosystems.  In 2018, The Conservation of Clean Air and Water in Europe 

reported 741 fuel spills from pipelines and pump stations since 1971, releasing about 80- 

000 m3 of petroleum derivatives (Balseiro-Romero et al., 2018). Petroleum spills on land can 

infiltrate to the subsurface and reach underlying aquifers giving rise to environmental 

impacts due to their toxic chemical components (e.g., petroleum hydrocarbons (PHCs)). In 

groundwater, dissolved fractions of these PHCs, such as benzene, toluene, ethylbenzene 

and xylene isomers (so-called BTEX), can be transported large distances far away from the 

source, impacting ecosystems and polluting sources of drinking water (Corapcioglu & Baehr, 

2011; Cunningham et al., 2001; Lueders, 2017; Phelps & Young, 1999). 
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Several studies have shown that exposure to BTEX compounds is toxic to animals as they 

can be absorbed through the body. Long-term exposure has shown to alter the nervous 

system, liver enzymes, blood cells and have shown to be related on the development of 

some types of cancer (Agency for Toxic Substances and Disease Registry (ATSDR), 2004; 

Aksoy, 1989; Fayemiwo et al., 2017; Onwurah et al., 2007; Snyder, 2000, 2012). Due to the 

identified health risks associated with BTEX compounds, drinking water guidelines have 

been implemented in different countries establishing maximum acceptable concentrations 

of 1 μg/L for benzene, 25-60 μg/L for toluene, 3-140 μg/L for ethylbenzene and 20-90 μg/L 

for xylenes (Health Canada (HC), 2006; NHMRC & NRMMC, 2011). 

 

Reported concentrations of BTEX in groundwater range from ~ 0.1 to 1.8 μg/L for BEX and 

<1-100 μg/L for toluene, and in contaminated groundwater it has been found up to 330, 

3500, 2000 and 1340 μg/L respectively for each BTEX compound (Fayemiwo et al., 2017; 

Leusch & Bartkow, 2010). The persistence of BTEX in groundwater represents an imminent 

hazard to drinking water sources. These compounds have been found in drinking water 

across the world (Alquwaizany et al., 2019; Goss et al., 1998; Schmidt et al., 2004; Serrano 

et al., 2007), and in some cases exceeding the maximum acceptable concentrations.  

 

With more than 80% of the total populace depending on groundwater as their source of 

drinking water, defilement of groundwater by petroleum contamination requires 

evaluation and remediation (Logeshwaran et al., 2018). Activated carbon (AC) has shown 

good performance in adsorbing aromatic compounds, rapidly decreasing dissolved phase 

contaminant concentrations in the bulk water and is commonly used in water treatment.  

 

Carbon-based injectates (CBI) is a recent technological approach for in situ treatment of 

groundwater contaminated with organic contaminants (e.g., PHCs). It is based on the 

injection of AC supplemented with different additives (i.e., nutrients, bacteria) into the 

subsurface (Harp, 2009; Lewis, 2012). The underlying conceptual model involves sorption 

of contaminants to AC due to its high adsorption capacity and enhanced biodegradation of 
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contaminants in the AC zone by allowing prolonged contact time between microbes 

(indigenous or inoculated) and contaminants. Once contaminants are biodegraded, 

sorption sites are regenerated allowing long-term treatment (Fan et al., 2017; Lewis, 2012; 

USEPA, 2018).  As a result of its increasing popularity, different commercial products have 

been developed and applied in field with claims of rapid contaminant removal and long-

term effectiveness (Fan et al., 2017).  

 

To account for the long-term performance of this technology, adsorption/biodegradation 

processes must be maintained over time. During AC aging in the field, microbial 

communities are expected to form biofilms surrounding AC particles. Therefore, it is 

hypothesized that a decrease of sorption sites may occur as AC ages. This can occur due to 

fouling of AC pores by biofilm formation and competitive sorption of microbial degradation 

byproducts or microbial metabolites. In addition, competitive adsorption between strong 

and weakly sorbed compounds may result in the desorption of contaminants from the AC 

matrix where maintenance of biodegradation becomes a critical factor. To date, 

investigations regarding the influence of microbial biofilm formation on the sorption of 

PHCs during AC aging have not been widely studied, and thus additional research is required 

on this topic.  

 

1.2 RESEARCH HYPOTHESIS 
 

The presence of biofilm formation on powdered activated carbon will negatively impact 

petroleum hydrocarbon sorption characteristics. 

 

1.3 RESEARCH OBJECTIVE 

 

The overall objective of this research is to investigate the influence of biofilm formation on 

the sorption characteristics of PHCs to powdered activated carbon (PAC) under anaerobic 

conditions.  
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1.4 RESEARCH SCOPE 

 

To generate the data to satisfy the research objective, three phases of experimentation 

were adopted.  

 

1. baseline evaluation of sorption/desorption isotherms for the selected model PHC, 

2. establish microbial biofilm on PAC, and  

3. posterior evaluation of sorption/desorption isotherms for the selected model PHC. 

 
This thesis consists of five chapters. Chapter 1 provides the motivation for this thesis, 

objective, and scope. Chapter 2 presents a literature review with the background 

knowledge that serves as a baseline for this work. Chapter 3 describes the experimental 

design and methods used during the experimental work. Chapter 4 provides the results and 

discussion from the experimental data. Finally, Chapter 5 gives a conclusion containing the 

general findings from this work as well as some recommendations. In addition, appendixes 

with protocols followed during the experimental work and supplementary material are 

provided. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 

2.1 INTRODUCTION 

 

Petroleum-based products are the main energy source in many countries (Logeshwaran et 

al., 2018). In 2019, the total world petroleum consumption was 100.75 million barrels per 

day (MMbbl)(EIA, 2020) with U.S.A., China, Japan, India, and Russia as the top 5 consumers 

(Praveen, 2013). Petroleum, including crude oil and petroleum products, are used almost in 

every sector of our lives (transportation fuels, manufacturing industry, heating, and many 

other intermediate and end-user goods) (EIA, 2019).  

 

The increase in production and consumption of petroleum has caused corresponding 

increment in pollution of soil, surface water and groundwater threatening ecosystems and 

human health (Balseiro-Romero et al., 2018; EPA, 1999; M. Yang et al., 2013). Emissions 

from the petroleum industry occur in every chain of the oil-producing process; from the 

extraction to the final user. Petroleum releases to the environment may be from routine 

activities in the oil extraction like oil well drilling operations due to improper waste 

management practices or accidental rupture of storage tanks or pipelines (Adams et al., 

2015; Duffy et al., 1980; Gong et al., 2014; Logeshwaran et al., 2018). 

 

It has been documented that most oil spills occur quite frequently on land (Vanloocke et al., 

1975) as a result of the intensive use of rail tankers to transport oil on a daily basis and the 

more than 300,000 kilometers of pipelines in use (Ivshina et al., 2015). This has generated 

the implementation of strict legislation for operation and maintenance of underground 

storage tanks; and some industry associations such as CONCAWE, have established 

technical guidelines to prevent pipeline accidents and spills (Balseiro-Romero et al., 2018).  
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Despite the improvements in the storage and transportation of petroleum products, many 

incidents regarding fuel spills have been reported. A sampling of underground fuel storage 

tanks in the United States showed that about 35% of the tanks were leaking (Joel & 

Amajuoyi, 2010; Onwurah et al., 2007). In 2018, The Conservation of Clean Air and Water 

in Europe reported 741 fuel spills from pipelines and pump stations since 1971 releasing 

about 80,000 m3 of fuel polluting around 1,200,000 m2 of land (Balseiro-Romero et al., 

2018).  

 

In 2013, a pipeline rupture in Arkansas spilled 507 m3 of crude oil, the oil reached Lake 

Conway impacting wetland vegetation, wildlife, water, and soil (Belvederesi et al., 2018). In 

2016, the Colonial Pipeline 1, which supplies up to 50% of gasoline sold on the East Coast 

of the U.S.A., spilled around 954 m3 of gasoline in Alabama (U.S.EPA, 2016). In Nigeria, 1527 

oil spill incidents were recorded between 2012 and 2015; the high frequency of spill 

incidents had posed challenges in terms of clean-up, remediation, and rehabilitation of land 

(Albert et al., 2018).   

 

An investigation of pipeline accidents by Belvederesi et al. in 2018 using data provided by 

PHMSA (Pipeline and Hazardous Material Safety Administration) found that 8.7% of 

incidents that occurred between 2010 to 2017 caused water contamination; 68% of this 

lead to surface water contamination, followed by groundwater contamination in 29% of the 

cases.  Compared to the oil spills from the break-up of platforms and super-tankers in the 

sea, the majority of oils spills that occur on land are of moderate scale (100-1000 m3), and 

remain unreported to the general population resulting in less public concern; however, they 

can cause subtle long-term ecological perturbations (Duffy et al., 1980; Ivshina et al., 2015).  

 

Oil pollution continues to be a problem around the world due to the complexity of 

petroleum composition. Petroleum is comprised of a mixture of a broad range of 

hydrocarbons, with a variety of molecular weights, solubility, volatility, and toxicity. The 
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major hydrocarbon groups found in petroleum are chain alkanes and cycloalkanes which 

constitute more than 65% of the volume of gasoline products and include isoprenoids, 

sulphur, oxygen, or nitrogen-containing polar compounds and aromatic hydrocarbons 

(Onwurah et al., 2007).  

 

 

2.2 BTEX CONTAMINANTS 

 

A group of priority contaminants frequently found in petroleum products are the so-called 

BTEX group (benzene, toluene, ethylbenzene, and xylene isomers), they fall in the category 

of the aromatic hydrocarbons group and constitute up to 20% volume fraction in gasoline 

(Balseiro-Romero et al., 2018; Do Rego & Pereira Netto, 2007; Logeshwaran et al., 2018; E. 

López et al., 2008). In addition, BTEX is extensively produced in the chemical industry, with 

a worldwide annual production of up to 10 million tons for each BTEX compound (Leusch & 

Bartkow, 2010).  

 

Benzene is used in the fabrication of nitrobenzene, cyclohexane, and ethylbenzene. It can 

be found in acetones for resins, rubbers, lubricants, and pesticides. Toluene is used in the 

production of polyurethane foam, as a solvent in paints, silicones, rubbers, and glues. In the 

fuel industry, it is used as an octane booster in gasoline blends. Ethylbenzene is used in the 

production of polymers such as polystyrene and can also be used as a solvent for paints and 

adhesives. Xylene is used as a precursor to terephthalic acid which is used in the production 

of polyethylene terephthalate plastics and polyester clothing. As with the rest of the BTEX 

compounds, it can also be found in rubbers, paints, and adhesives (Clark, 2016; Thongplang, 

2016).  

 

Because of the widespread industrial use of BTEX and its natural occurrence in petroleum, 

BTEX are ubiquitous compounds. Releases of petroleum products are one of the main 

sources of BTEX contamination in the environment, specifically in groundwater. 
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Noteworthy, the BTEX group is one of the most representative environmental contaminants 

due to its well-studied toxicity (Do Rego & Pereira Netto, 2007).  

 

 

2.2.1 BTEX IN THE ENVIRONMENT: GROUNDWATER 

 

When petroleum hydrocarbons are released into the soil, each compound will separate 

from the mixture depending on its physicochemical properties (Table 2.1). Generally, the 

oil will spread over the soil layer, and depending on the soil permeability the compounds 

will migrate downward due to gravity until exhausted to immobilization, or until it reaches 

the water table (Duffy et al., 1980; Vanloocke et al., 1975).  

 

As a result of the relatively high solubility and low molecular weight, BTEX molecules often 

partition to soil pore water, leading to increased mobility with water and are commonly 

found moving towards contaminated groundwater plumes (Balseiro-Romero et al., 2018; 

Logeshwaran et al., 2018). Despite comprising up to 20% of volume fraction in gasoline, 

BTEX accounts for at least 98% of the dissolved compounds that partition from gasoline to 

groundwater (Logeshwaran et al., 2018; Wiedemeier et al., 1996). In groundwater, BTEX 

may be attenuated by dilution, dispersion, sorption, volatilization, and biodegradation. 

Biological degradation is deemed to be a major process influencing the fate petroleum 

hydrocarbons in groundwater; however, contaminant availability, concentration, 

temperature, nutrients, and dissolved O2 influence biodegradation rates (Zamfirescu & 

Grathwohl, 2001). 

 

Table 1 lists the physical-chemical properties of each BTEX compound, some key properties 

included are molecular volume that can be used to determine the volume that each 

molecule occupies in a sorbent material; the octanol/water partition coefficient which 

estimates hydrophobicity or the tendency of a compound to partition from water to organic 

media; and the water solubility that controls BTEX concentrations in aqueous solutions. 
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Table 2.1.    Physical-chemical properties for BTEX compounds (Kershaw, 1996). 
 

Compound  Benzene Toluene Ethylbenzene m-Xylene o-Xylene p-Xylene 

Molecular 
formula 
 

C6H6 C6H5CH3 C2H5C6H5 C6H4(CH3)2 C6H4(CH3)2 C6H4(CH3)2 

Molecular 
weight 
(g/mol) 
 

78.11 92.13 106.2 106.2 106.2 106.2 

Boiling point 
(ºC) 
 

80.1 110.6 136.2 139.3 144.0 138.0 

Density (g/cm3 
@ 20ºC) 
 

0.877 0.867 0.867 0.884 0.880 0.861 

Molar Volume 
(cm3/mol) 
 

89.41 106.3 122.4 123.2 121.2 123.3 

Molecular 
volume (A3) 
 

83.95 99.98 116.21 116.00 115.97 116.00 

Water 
solubility 
(mg/L) 
 

1770 530 160 160 176 185 

Vapor 
Pressure  
(Pa @ 25ºC) 
 

12690 3800 1268 1120 882 1170 

Henry’s Law 
Constant  
(Pa m3/mol) 
 

557 647 854 700 542 760 

Octanol/water 
Partition 
Coeficient  
(log Kow) 
 

2.13 2.69 3.13 3.20 3.12 3.15 

Sorption 
Partition 
Coeficient  
(log Koc) 

1.81 2.25 2.41 2.26 2.37 2.31 
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2.2.2 BTEX IN THE ENVIRONMENT: TOXICITY 

 

BTEX toxicity and adverse health effects have been widely studied (Do Rego & Pereira Netto, 

2007). Laboratory scale experiments in animals have shown that BTEX compounds are well 

absorbed by the body and can be extensively metabolized. Human exposure over a long 

period resulted in skin and sensory irritation, and detrimental respiratory health effects 

(Mitra & Roy, 2011). In addition, BTEX can cause toxicity in the nervous system affecting the 

nerve membranes and proteins resulting in altered neurotransmitter receptor functions 

and ion transport, affecting nerve impulses and regeneration of action potentials (ATSDR, 

2004). 

 

Hematotoxicity of benzene is well known, with chronic exposure to benzene causing 

damage to the bone marrow thus decreasing the number of blood cells, which leads to 

aplastic anemia, and in severe cases to the development of leukemia (ATSDR, 2004; Aksoy, 

1989; Snyder, 2000, 2012). The carcinogenic effect of benzene is well established and is 

classified as a human carcinogen (IRIS, 2017; ATSDR, 2004; IARC, 2012; NIOSH, 2016). WHO 

international standards for drinking water proposed a health-based guideline values 

concentration < 0.01 mg/L (WHO, 2003a). 

 

Ethylbenzene is also associated with carcinogenic effects in experimental animals, thus 

classified as a possible carcinogen to humans (ATSDR, 2004; Huff et al., 2010). Kim et al. 

(2015) investigated the gene expression and genomic methylation patterns in the blood of 

workers exposed to ethylbenzene, finding that ethylbenzene exposure altered DNA 

methylation patterns in 1506 genes which demonstrated DNA damage in humans. WHO 

international standards for drinking water proposed a health-based guideline values 

concentration < 0.3 mg/L; however, the reported odor threshold in water ranges from 0.002 

to 0.13 mg/L (WHO, 2003b). 
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Toluene has not been confirmed as a human carcinogen based on insufficient or limited 

evidence in experimental animals (ATSDR, 2015; CEPA, 1992). However, studies with 

humans in various occupational settings have shown that it primarily affects the central 

nervous system causing effects such as confusion and loss of cognitive function after 

prolonged inhalation (Filley et al., 2004; Health Canada, 2006). WHO international 

standards for drinking water proposed a health-based guideline values concentration <  0.7 

mg/L; however, this value exceeds the lowest reported odor threshold of 0.02 mg/L (WHO, 

2003c). 

 

Xylenes are rapidly absorbed by inhalation and are widely metabolized in the liver (Niaz et 

al., 2015). Acute exposure to xylenes results in cardiovascular, hepatic, and neurological 

effects (CEPA, 1993). Chronic exposure has been associated with leukopenia, anemia, 

dyspnea, and with negative impacts to the central nervous system and cardiovascular 

system (Langman, 1994; Niaz et al., 2015). WHO international standards for drinking water 

proposed a health-based guideline value of 0.5 mg/L and an aesthetic value concentration 

of 0.02 mg/L based on the reported odor threshold (WHO, 2003d). 

 

 

2.3 CARBON BASED INJECTATES FOR TREATMENT OF PHCs 

 

Carbon Based Injectates (CBI) is an emerging remedial technology for the in-situ treatment 

of groundwater polluted with organic contaminants (e.g., petroleum hydrocarbons (PHCs)) 

(Fan et al., 2017; Lewis, 2012; USEPA, 2018). CBI technology is fundamentally based on 

adsorption (activated carbon, AC) and degradation processes working in conjunction. The 

adsorption/degradation processes working together are expected to be more efficient than 

conventional treatments that rely solely on just one mechanism; adsorption retards 

contaminant migration and as a result enhances degradation by extending contact times 

between contaminants and additives (e.g., bacteria) (Fan et al., 2017). 
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CBI has been defined as a slurry made of powdered or colloidal activated carbon (as the 

principal ingredient) mixed with water and chemical or biological additives to promote 

degradation (e.g., electron acceptors, bacteria, zerovalent iron, etc.), which is injected into 

the subsurface to remediate soil and groundwater impacted with PHCs (Lewis, 2012). So 

far, several commercially available AC-based products have been developed (Table 2.2) and 

applied at contaminated sites including those with leaking underground storage tanks and 

gasoline release sites (Simon, 2015; USEPA, 2018). 

 

A remediation project from the consultant company LT Environmental Inc. used BOS-200® 

to remediate impacted benzene and methyl tert-butyl ether (MTBE) groundwater at a retail 

gasoline station site in Colorado. During the injection program, 2,268 kg of CBI were 

emplaced. As a result, they obtained a decrease in benzene concentration from 1 mg/L 

before the emplacement to non-detected levels (<0.0001 mg/L) after CBI injection and an 

MTBE concentration from over 25 mg/L to 0.004 mg/L in a large portion of the defined 

plume (LTE, 2006). 

 

Another project of an active retail service station in Sacramento, California was conducted 

by BB&A Environmental in 2013 to remediate soil and groundwater impacted with gasoline-

range total petroleum hydrocarbons (TPH) and volatile organic compounds. During the 

injection program, a total of 1,846 kg of BOS-200® was injected. The results from the post-

injection soil sampling estimated a 45 to 85 % reduction in the mass of TPH (BB&A, 2015).  
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Table 2.2. Comparison of five AC-based products used for in situ applications. (from Fan et 
al., 2017). 
 

Product Physical Property Additive Target Degradation Pathway 
BOS-100® 

 
 
 

Granular 
manufactured by 
Calgon 

Impregnation of zerovalent iron Chlorinated 
solvents 

Abiotic reductive 
dechlorination 

BOS-200® 
 
 
 
 

Powdered 
manufactured by 
Calgon 

Electron acceptors, phosphorus, 
nitrogen 
nutrients, CaSO4, Facultative 
bacteria mix 

Petroleum 
hydrocarbons 

Short-term aerobic and long-
term anaerobic 
bioaugmentation 

COGAC® 
 
 
 
 

Granular or 
powdered 

Calcium peroxide, sodium 
persulfate, Nitrate occasionally 

Petroleum 
hydrocarbons and 
chlorinated 
solvents 

Chemical oxidation, aerobic 
and anaerobic biostimulation 

PlumeStop® 
 
 
 
 
 

Colloidal sized 
AC suspension 

Proprietary organic polymer, 
hydrogen or oxygen release 
compounds, bacterial strains 

Chlorinated 
solvents or 
Petroleum 
hydrocarbons 

Anaerobic biodegradation for 
chlorinated solvents or 
aerobic biodegradation for 
petroleum hydrocarbons 
(augmetation or stimulation) 

Carbon- 
Iron 

Colloidal sized 
AC suspension 

Carboxymethyl cellulose as the 
colloidal stabilizer, impregnation 
of nano zerovalent iron 

Chlorinated 
solvents 

Abiotic reductive 
dechlorination 

 

 

2.3.1 ADSORPTION BY ACTIVATED CARBON 

 

One of the fundamental processes of contaminant removal in CBI technology is the 

adsorption of contaminants by activated carbon (AC). As a broad definition, AC is an 

amorphous carbonaceous material exhibiting a high degree of porosity and a high 

interparticle surface area (Bansal & Goyal, 2005), that has been obtained by carbonization 

of raw material following thermal or chemical activation processes (Marsh & Reinoso, 

2006). Common precursors of AC are wood, coconut shells, or coal.   

During the carbonization process, noncarbon elements are eliminated and carbon atoms 

are left forming stacks of aromatic sheets arranged in irregular patterns leaving free 

interstices or pores. The pores are further cleared by the activation processes which boost 

the quantity, shape, and size of pores resulting in an extremely high surface area making 

activated carbon an excellent adsorbent (Bansal & Goyal, 2005).  
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The porous nature of AC is its principal characterization property, and according to the 

International Union of Pure and Applied Chemistry (IUPAC), pores can be classified into 

three groups, based on their pore width (Everett, 1971): 

- Macropores with a pore width larger than 0.05 μm. 

- Mesopores with a pore width between 0.05 μm to 0.002 μm. 

- Micropores with a pore width not exceeding about 0.002 μm. 

 

The high surface area of AC is mainly due to the contribution of micropores (90-95% of the 

total surface area) and in addition, it is where most of the adsorption of molecules takes 

place (e.g., benzene) due to similar volume sizes between adsorbate molecules and pores 

that allow multiple contact points between molecules and pore walls. The mesopores or 

transitional pores are <5% of the total surface area of the AC, and contribute to the 

adsorption of molecules; however, they also act as conduits that transport adsorbates to 

the micropore cavities (Bandosz, 2006; Fan et al., 2017).  Macropores generally serve as 

highways to transport molecules by intraparticle diffusion inside the AC matrix and can 

adsorb some large size organic molecules; however, they are not usually considered 

important contributors to adsorption due to their small surface area (Bansal & Goyal, 2005). 

 

During the adsorption processes, molecules or atoms are fixed on the AC surface by physical 

and/or chemical interactions between adsorbate molecules and the AC surface. Physical 

interactions such as electrostatic or dispersive forces are the dominant adsorption 

mechanisms under typical subsurface temperatures (5-10 ºC) (Fan et al., 2017; Williams & 

Gold, 1976). Additionally, the pH of the point of zero charge (pHPzc) can be used as an 

indicator of the surface charge of AC at a specific pH. The point of zero charge expresses the 

condition when the electrical charge density on a surface is zero (Song et al., 2010). In AC, 

the pH of the point of zero charge (pHPzc) depends on the properties of the functional groups 

on its surface (Song et al., 2010). The surfaces are positive below the pHPZC and negative 

above pHPZC.  
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The adsorption of aromatic compounds (e.g., BTEX) from water on AC is related to van der 

Waals interactions, this occurs by a π - π electron-donor-acceptor mechanism. This 

dispersion interaction occurs between the delocalized π-electrons in the AC surface and the 

aromatic rings of the PHCs. This process is determined by the chemical properties of the 

molecules, its molecular size, hydrophobic nature, and the particular characteristics of the 

AC (Canzano et al., 2014).  

 

To determine the applicability of the sorption process for operation, and to describe the 

fixation capacity of the sorbents (Quintelas et al., 2010) requires characterization of 

sorption equilibrium. To determine the equilibrium adsorption capacity, adsorption 

isotherms are used by performing bottle point experiments to obtain isotherms points. In 

this experiment, a set of bottles are filled with an adsorbate solution of different known 

concentrations C0 (mg/L), at a specific volume VL (L), and are amended with a defined 

adsorbent mass mA (g). The bottles are shaken until equilibrium is reached and the residual 

adsorbate concentration in the liquid phase Ce is measured. Then, the sorbed amount of 

adsorbate qe (mg/g) or equilibrium adsorption capacity can be calculated by (Worch, 2012):  

 

!! = ($" −	$!)
#!
$"

                                                                                                                             (2.1) 

 

Each equilibrium or isotherm point are plotted versus the equilibrium adsorbate residual 

concentration Ce for the solution studied. Isotherm data reflects the interactions between 

adsorbate and adsorbents. The equilibrium experimental data for AC is usually fit to the 

empirical Freundlich isotherm model and is often applied in water treatment studies. The 

Freundlich model assumes a heterogeneous surface of the adsorbent, and that the 

adsorption capacity depends on the concentration of the adsorbate in the solution under 

equilibrium conditions (Dada et al., 2012). The mathematical expression of the Freundlich 

isotherms model is (Worch, 2012): 

 

!! = (% ×	$!
&#                                                                                                                              (2.2) 
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where qe is the amount of sorbate (mg) adsorbed per unit weight of AC (g) at equilibrium 

conditions, Ce represents the residual adsorbate concentration at equilibrium, expressed in 

mg/L, Kf represents the adsorption strength where the higher the Kf value the higher 

adsorbent loading achieved, and nf is the energetic heterogeneity of the adsorbent surface. 

If nf = 1 the isotherms become linear. When nf < 1 high adsorbent loading at low 

concentrations are achieved (favorable adsorption), on the other hand, when nf > 1 

isotherms are characterized as unfavorable (Worch, 2012). In addition, the removal 

efficiency can be determined by the percentage of adsorption using (Dada et al., 2012): 

 

%	+,-./0,1 = 	
'$(	'%
'$

	× 	100                                                                                                      (2.3)  

 

Yakout & Daifullah, (2014) found that the adsorption capacity of BTEX on rice husk AC 

increased in the order X>E>T>B reflecting the decrease in solubility and increase in 

molecular weight. Compounds with low solubility have a lower affinity for water and a high 

affinity for AC. The molecular weight of p-xylene and ethylbenzene is the same, however, 

molecular configuration differs. Therefore,  the adsorption of organic compounds is 

influenced by the physicochemical properties of each individual compound, these results 

are consistent with previous studies using different AC sources (Daifullah & Girgis, 2003). 

 

Canzano et al. (2014)  studied the performance of a commercial AC for the adsorption of 

toluene, o-xylene, ethylbenzene, and naphthalene from artificial groundwater in single and 

binary systems. The goal was to determine the adsorption capacity of each compound and 

the possible adsorption interactions between compounds (toluene + naphthalene and o-

xylene + ethylbenzene). For the single compound experiments, all compounds showed a 

significant adsorption capacity on the selected AC, confirming the suitability of the use of 

AC for adsorption of PHCs in groundwater. Toluene and naphthalene showed higher 

adsorption capacities with similar values. In binary systems, a competitive effect occurred 

between toluene and naphthalene observed by the lower adsorption capacity for both 

compounds compared to that of a single-compound system because adsorption occurs on 
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the same active sites. AC adsorption sites decrease with increasing sorbed mass which 

results in the loss of adsorptive capacity of the AC (Yakout & Daifullah, 2014).  

 

Within the physical sorption mechanisms, adsorption and desorption processes are in 

dynamic equilibrium since adsorption is a reversible process. When equilibrium conditions 

shift, the adsorbed compounds desorb from the AC into the water by back diffusion (Fan et 

al., 2017; Yakout & Daifullah, 2014). In addition, adsorbed compounds can be displaced due 

to competitive sorption by more strongly adsorbing compounds (Yakout & Daifullah, 2014). 

 

Chemical interactions between the surface groups in the AC and the adsorbates are another 

type of important adsorption mechanism which is referred to as chemisorption. At the edge 

of the basal planes in the AC structure, carbon atoms are unsaturated, possessing unpaired 

electrons. At these sites, different heteroatoms can be bonded to the carbon atoms giving 

rise to surface groups. Among this later, oxygen-containing groups are the most common 

surface groups in AC. Furthermore, this influences the surface characteristics of the AC 

(polarity, acidity, electrical and chemical reactivity, etc.) and affects how the AC interacts 

with different molecules. In addition to oxygen, other surface groups can be formed with 

hydrogen, sulfur, nitrogen, and halogens (Bansal & Goyal, 2005).   

 

Several studies have shown the suitability of using AC for the treatment of PHCs in water 

due to the good performance shown by AC in adsorbing aromatic compounds (Faisal et al., 

2018; Kalmykova et al., 2014). Ayotamuno et al. (2006) examined the adsorption capacity 

of different AC materials (granular activated carbon, GAC or powdered activated carbon, 

PAC) to treat groundwater polluted with petroleum hydrocarbons. The experiments were 

conducted under laboratory conditions using groundwater samples collected from a 

polluted aquifer in Nigeria. The reported a significant decrease of dissolved total petroleum 

hydrocarbons (96% by GAC and 99.9% by PAC). 
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2.3.2 DEGRADATION PROCESSES INVOLVED IN CBI 

 

A critical process in CBI technology is the degradation of contaminants following adsorption 

by AC. This synergism leads to a higher contaminant removal than what could be expected 

from adsorption and degradation alone. Also, this allows for continued contaminant 

removal far beyond the normal AC adsorption capacity (Voice et al., 1992). 

 

Degradation coupled with adsorption using AC has been extensively studied and established 

for ex-situ water treatment (Çeçen & Aktaş, 2011; Luo et al., 2014; Riley et al., 2018). In 

addition, in situ degradation processes such as chemical oxidation and/or reduction and 

biodegradation (enhanced by biological stimulation and/or augmentation), has proven to 

be successful (Fan et al., 2017).  Consistent with the scope of this research, this review will 

focus only on biological processes.  

 

Biodegradation is defined as the transformation of compounds by living organisms through 

a series of reactions that take place as part of their metabolism (Vidali, 2001). The use of 

living organisms, primarily microorganisms has been widely applied in situ for the treatment 

of contaminated soil and groundwater (Adams et al., 2015; Bewley & Webb, 2001; Chapelle, 

1999; Chiu et al., 2017; Cunningham et al., 2001; Farhadian et al., 2008; Phelps & Young, 

1999).  

 

Bioremediation can involve two processes, bioaugmentation which requires the inoculation 

of exogenous degrading microorganisms into the subsurface to promote degradation, 

and/or biostimulation which is the addition of nutrients to enhance the metabolic activity 

of microbes (Wu et al., 2016). In CBI technology, the addition of bacterial strains capable of 

degrading target pollutants, electron acceptors and nutrients to the AC-based amendment 

products (Fan et al., 2017) integrates both biostimulation and bioaugmentation processes 

to enhance microbial biodegradation. 
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The use of AC as a support material for microbial growth has numerous advantages. The 

rough porous nature of AC with its high surface area facilitates microbial attachment and 

colonization leading the growth of significant biomass or biofilm (Simpson, 2008). In other 

words, bacteria can be immobilized and concentrated on the AC surface. At the same time, 

bacteria are protected from shear forces which result in better attachment. AC promotes 

extended contact times between adsorbed contaminants (or a carbon source for microbes) 

and growing biofilms as they feed on the rich carbon supply (Fan et al., 2017; Simpson, 

2008). AC adsorptive nature prevents shock loads (high contaminant concentration that can 

result in biotoxicity) to microbes which ensures that bacterial metabolic activity remains 

unaffected (Mason et al., 2000). Bacteria with an average size of 1 μm attach to the outer 

surface of the AC and are unable to reach the AC internal structure due to size exclusion (AC 

pore sizes range from 0.002 to 0.05 μm). As a result, biodegradation of contaminants is 

hypothesized to occur by different mechanisms.  

 

The first mechanism involves total or partial biodegradation of the organic compound 

before it reaches the microporous structure of the AC. If partial biodegradation occurs, 

smaller by-product compounds will diffuse and sorb into the micropores. In this mechanism, 

an active microbial community should be fully established so that the degradation rate 

surpasses the contaminant influx (Fan et al., 2017; Simpson, 2008).  If the concentration of 

the organic compound in the bulk water decreases, a shift in equilibrium conditions will 

occur and cause the desorption of organic compounds from inner micropores of the AC and 

back diffuse due to a reversal of the concentration gradient towards the biofilm will occur, 

allowing further contaminant degradation. This second mechanism might be dominant 

when degradation rates decrease (Fan et al., 2017; Simpson, 2008).  In the third mechanism 

it is hypothesized that exoenzymes secreted by bacteria diffuse into the inner pores of the 

AC where organic compounds are adsorbed and induce transformation, desorb and become 

accessible for degradation in the biofilm (Klimenko et al., 2002; Nath & Bhakhar, 2011). 

However, this would be a slow process due to the low diffusivity of large-sized enzymes (21-

44 A), which would only have access to the meso- and macropores (Aktaş & Çeçen, 2007; 
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Klimenko et al., 2002).  These three degradation mechanisms rely on direct contact of the 

microorganisms and the target compound so that the contaminant is readily accessible.  

 

Another mechanism which has recently been postulated is known as direct interspecies 

electron transfer (DIET) and suggests that AC as an electrically conductive material can 

provide electrical connection between degrading bacteria and methane-producing bacteria 

which can increase the rate of methanogenesis. The microorganisms capable of performing 

DIET can transfer electrons to the AC. Then, electrons will travel through the AC, until they 

reach the adsorbed target compound. As a result of this process, bacteria do not need to 

be in direct contact with the organic compound to be able to degrade it. This mechanism 

suggests that organic compounds entrapped within the micropores out of the reach of 

microorganisms, will still be bioavailable for degradation; however, further studies to 

completely address this mechanism need to be evaluated (Liu et al., 2012; Summers et al., 

2010).  

 

When assessing evidence of hydrocarbon biodegradation, different lines of evidence are 

usually used to understand ongoing treatment behavior (Wittebol & Dinkla, 2015). These 

techniques can include geochemical monitoring (e.g., electron acceptors (nitrate, iron or 

sulphate), gases (CH4, CO2), redox conditions), compound-specific monitoring of organic 

compounds and their intermediates, stable isotope probing, and in situ microcosms. These 

techniques can provide indirect evidence for the actual in situ biodegradation; however, 

the use of molecular analysis of functional genes involved in the biodegradation pathways 

can provide further direct evidence of the degradation potential (Wittebol & Dinkla, 2015). 

 

The change in redox conditions can provide evidence of biodegradation through reduction 

processes (Weelink et al., 2010). During anaerobic BTEX biodegradation, microorganisms 

depend on electron acceptors (e.g., sulphate, CO2) which are reduced, thereby decreasing 

its availability and increasing reductant concentrations (e.g., sulphide, CH4) (Wittebol & 

Dinkla, 2015). Isotopic analysis assess biodegradation, independent of concentration, and 
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is based on the principle that 12C substrates are preferentially biodegraded, thus an 

enrichment of heavy isotopes 13C supports biodegradation (Wittebol & Dinkla, 2015).  

 

Another method to monitor in situ biodegradation is to use in situ microcosms (e.g., 

BACTRAPs). In situ microcosms are useful for isotopic analyses and identification of 

microorganisms involved. These are assemblages consisting of activated carbon (well 

known to absorb BTEX) loaded with 13C labeled substrate that provides an appropriate 

surface for biofilm formation.  

 

Finally, the analysis of deoxyribonucleic acid (DNA) from aquifer samples can provide 

information on the presence of the species and functional genes involved in BTEX 

biodegradation, acquired by quantitative polymerase chain reaction (qPCR) (with previous 

knowledge of what is expected to be present). Next-generation sequencing can analyze all 

the genetic material in a sample with the possibility of showing all the genes that have been 

transcribed. Thus, known and unknown genes involved in BTEX biodegradation can be 

identified (Wittebol & Dinkla, 2015). 

 

 

2.3.3 ACTIVATED CARBON MATURING  

 

Although AC possesses a large surface area for contaminant sorption, in the course of any 

treatment, the sites available for adsorption become exhausted resulting in the loss of 

adsorption capacity (Aktaş & Çeçen, 2007). Due to this fact, one of the most important 

factors to sustain the long-term effectiveness of CBI is the regeneration of AC sorption sites. 

Bioregeneration can be understood as the process where sorbed contaminants 

desorb/degrade due to microbial activity and releasing sorption sites (Klimenko et al., 

2002). For this reason, bacteria on AC plays an essential role in the AC-

adsorption/degradation system. In bench-scale studies and wastewater treatment, it has 
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been shown that biodegradation can extend the lifetime of AC through regeneration of 

sorption sites. 

 

Desorption from activated carbon occurs due to a shift in equilibrium conditions between 

the liquid (bulk water) and solid phase (AC), and it is a prerequisite step for regeneration 

(Aktaş & Çeçen, 2007). However, some strongly sorbed compounds can experience 

irreversible adsorption or sorption hysteresis. The reversibility of adsorption is attributed 

to weak van der Waals forces. Nevertheless, interactions between adsorbed compounds 

and specific functional groups on the carbon surface can result in high energy covalent 

bonding, therefore resisting desorption (Aktaş & Çeçen, 2007; Yonge et al., 1985). Also, it 

has been observed that at lower bulk contaminant concentrations, the loading on AC is 

consequently lower, promoting interactions with high-energy adsorption sites (Putz et al., 

2005). 

 

The reversibility of adsorption or degree of hysteresis can be expressed by using (Aktaş & 

Çeçen, 2007): 

 

 4	(%) 	= 5
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	− 	16 × 100                                                                                                    (2.4) 

 

where nads and ndes are the inverses of adsorption and desorption intensities obtained from 

Freundlich isotherms. If ndes < nads a slower rate of desorption is experienced, resulting in a 

higher degree of hysteresis.  

 

The adsorption energy influencing adsorption reversibility is associated to the change in 

Gibbs free energy of adsorption (-ΔG°ads), where the higher the -ΔG°ads of a compound, the 

lower its ability to desorb from the sorbent surface (Klimenko et al., 2002). Thus the energy 

of adsorption could be used to determine which compounds might be efficiently desorbed 

and removed in the adsorption/biodegradation processes (Aktaş & Çeçen, 2007). As 

mentioned before, bioregeneration of AC is restrained by adsorption reversibility (Aktaş & 
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Çeçen, 2007; Klimenko et al., 2003; Nath & Bhakhar, 2011). As microorganisms degrade the 

absorbable compounds, a shift in equilibrium conditions is experienced resulting in 

desorption and degradation of compounds. However, loading of AC with non-desorbable 

compounds or compounds with a high degree of hysteresis prevents bioregeneration (Nath 

& Bhakhar, 2011). 

 

Klimenko et al. (2003) studied the bioregeneration of three different AC materials saturated 

with a mixture of oxyethylated alkylphenols (SAS) in static conditions. The bioregeneration 

efficiency was calculated as the ratio between equilibrium adsorption capacity (qe) of fresh 

and regenerated AC (quantity of solute adsorbed from solution per unit weight of AC 

(mg/g)) at a specific equilibrium concentration (Ce), as given by:  
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The quantification of bioregeneration efficiency should be evaluated under equilibrium 

conditions with no biodegradation occurring. Their results showed that the degree of 

regeneration due to biodegradation was only 20-23% of the value of adsorption on fresh 

AC. The low degree of AC regeneration appeared to be a result of the high degree of 

hysteresis of SAS molecules, where slow diffusion rates have been previously observed. In 

addition, adsorption occurring in the inner part of the AC was not subjected to microbial 

activity as exoenzymes and bacteria did not penetrate this portion of the AC and therefore 

did not regenerate the sorption sites. Nevertheless, as microbial biofilms began to form on 

the outer surface of AC, diffusion of contaminants from the bulk water to the inside of the 

AC may become limited as a result of an increased mass transfer resistance (Mason et al., 

2000; Rattier et al., 2012).  

 

Mason et al. (2000), evaluated the change in adsorption characteristics of PAC in a mixed 

bioreactor. In these experiments, an aerobic BTEX degrading biofilm was grown on the PAC. 

To determine the influence of biofilm attached to the PAC on the adsorption characteristics 
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of PAC, a series of isotherms were carried out using methyl-tert-butyl ether (MTBE) as a test 

compound (which was not metabolized by the bacterial mixture) and compared to fresh 

PAC. The Freundlich constants KF and n for the fresh PAC were 3.37 and 1.86 respectively, 

while for the biofilm coated PAC, KF ranged from 0.42 to 0.82 and n ranged from 1.14 to 

1.35. These results indicate that the adsorption capacity of PAC was significantly reduced in 

the presence of a biofilm. Martin et al. (2004) observed similar results and reported that 

the estimated adsorption capacity of a commercial PAC combined with activated sludge was 

smaller than that predicted by the adsorption isotherm. This decrease was considered to 

be caused by a reduction in mass transfer due to the biomass surrounding the PAC.  

 

Adsorption capacity can be considerably hampered either by the adsorption of lysed cells, 

microbial metabolites, and non-biodegradable substances or adsorption of organic matter 

that outcompete for sorption sites (Nath & Bhakhar, 2011). Zhao et al. (1999) evaluated the 

adsorption capacity of a biofilm coated GAC from an aerobic biological fluidized bed reactor 

which treated toluene contaminated water. They observed that the adsorption capacity of 

biofilm coated GAC remained <70% for the first two months, however, after six months it 

decreased to 40-57%.  They also examined the relationship between the loss in adsorption 

capacity and the biofilm thickness. Physical dislodging of biofilm by shaking and chemical 

digestion of the biofilm and sorbed proteins was performed by base wash (0.5 M NaOH). 

No direct relationship was determined for the loss of adsorption capacity and the biofilm 

thickness; however, the duration of biofilm/GAC exposure or bioactivity was thought to 

influence the loss of adsorption capacity. They suggested that the loss in the adsorptive 

capacity of GAC might have been due to the adsorption of soluble microbial metabolites 

excreted by the biofilm, which accumulated over time. Thus biological fouling (by biomass 

production and microbial metabolites) might have consequential impacts on 

bioregeneration (Leong et al., 2018a) and deteriorate CBI performance.  
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2.4 BIOFILMS IN GROUNDWATER REMEDIATION 

 

The use of microorganisms has been broadly applied in the in-situ remediation 

(bioremediation) of groundwater impacted by petroleum hydrocarbons (Adams et al., 2015; 

Bewley & Webb, 2001; Chapelle, 1999; Chiu et al., 2017; Cunningham et al., 2001; Farhadian 

et al., 2008; Phelps & Young, 1999). Biofilm enhancing remediation such as CBI, offers an 

advantage over bioremediation with planktonic microorganisms, since it provides microbes 

with a protective micro-environment and thus a better chance of adaptation and survival 

under resource limiting environments such as in groundwater (Singh et al., 2006). For this 

reason, understanding the role and development of these microbial assemblages on 

engineered substrates such as AC is important. The study of biofilm diversity, composition, 

and structure have been developed in recent decades, and the use of microscopic and 

molecular tools have facilitated the analysis of the spatial organization and phylogenetic 

composition of biofilm communities (Singh et al., 2006).  

 

 

2.4.1 MICROBIAL BIOFILMS 

 

Microbial biofilms are among the first life forms on Earth (Trevors, 2011). Fossil evidence of 

biofilms in rocks date back to 3.5 billion years ago (Westall et al., 2003). IUPAC has defined 

biofilms as: 

 

“Aggregates of microorganisms in which cells that are frequently embedded within a self-

produced matrix of extracellular polymeric substance adhere to each other and/or to a 

surface. “ (Ahmad & Husain, 2017) 

 

Biofilms are present in different aquatic environments such as lake sediments, river beds, 

sea beds, in suspended particles in rivers, lakes, sea, and aquifers (Besemer, 2015; Sabbagh, 

2013) and any other surface exposed to adequate moisture (Sutherland, 2001). 
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Furthermore, microbial biofilms are responsible for many of the biogeochemical processes 

occurring in aquatic environments (Griebler & Lueders, 2009; Weaver et al., 2015; Wilhartitz 

et al., 2009). These microbial communities are known to be the dominant mode of microbial 

life. They can comprise of single species or multi-species communities, with the later most 

commonly found in natural environments (Lueders, 2017).  

 

Biofilms are comprised primarily of microbial cells and extracellular polymeric substances 

(EPS) (Carrel et al., 2018). Water accounts for up to 97% of biofilm composition and can be 

found within the capsules of microbial cells or as a solvent within the EPS (Sutherland, 

2001). EPS accounts for 50-90% of the total organic carbon of biofilms, thus considered the 

primary matrix component of the biofilm (Donlan, 2002). Only 2-15% of total organic carbon 

represents cellular material (Sutherland, 2001).  

 

EPS is a remarkable component of biofilm composition. It is primarily comprised of 

polysaccharides, proteins, and eDNA (Zhang et al., 2015). EPS provides biofilm structure and 

its physical properties are highly dependent on the solutes dissolved on it (Sutherland, 

2001). It serves as a protective barrier against changes in extracellular environmental 

conditions (pH-shift, contaminant shock loads, desiccation and shear forces) and allows 

complex network interactions (Capozzi et al., 2019a; Carrel et al., 2018; Fröls et al., 2012; 

Zhang et al., 2015). Additionally, it increases the residence time of the microbial 

communities which promotes the metabolism of dissolved substances (Besemer, 2015).  

 

The sessile lifestyle of biofilms has numerous advantages over their planktonic counterpart 

especially in carbon and nutrient-poor environments (Lueders, 2017; Wilhartitz et al., 2009). 

EPS has shown to be essential for microbial communication.  This chemical communication 

mechanism is known as Quorum sensing. Quorum sensing regulates cellular functions such 

as nutrient acquisition and exchange, cell-cell signaling compounds, horizontal gene 

transfer, and secondary metabolite production (Renner & Weibel, 2011). As well it 



 27 

facilitates interactions of microorganisms with their bio-physicochemical environment 

(Capozzi et al., 2019; Fröls et al., 2012; Zhang et al., 2015).  

 

The arrangement and specific composition of biofilms depend on intrinsic processes such 

as cell division, environmental factors such as pH, temperature, oxygen, nutrients or shear 

forces, as well as the microbial type and diversity (Purevdorj et al., 2002; Stoodley et al., 

1999; Sutherland, 2001). The diversity of biofilms will determine the metabolic performance 

of the communities and the ecosystem services they provide (Besemer, 2015). In aquatic 

systems (lake sediments, river beds, sea beds, in suspended particles in rivers, lakes, sea 

and groundwater, as well as treatment plants) biofilms are considered to provide important 

services, since they contribute to the biogeochemical cycling of nutrients and the removal 

of anthropogenic contaminants from water (Characklis & Wilderer, 1989; Weaver et al., 

2015). 

 

 

2.4.2 BIOFILM DEVELOPMENT 

 

Biofilm development occurs through different stages including substrate colonization, 

maturation, maintenance, and dissolution (Toole et al., 2000). These stages have been 

described by Renner & Weibel (2011) and illustrated in Figure 2.1. In the initial stage, cells 

are transported from the bulk water to a distance of several microns above the surface 

(McClaine & Ford, 2002). At this point, bacteria are attracted to the surfaces by electrostatic 

repulsion or attraction interactions (van de Waal forces) and hydrophobic interactions (by 

extracellular organelles) (Renner & Weibel, 2011). At this stage, the attachment is 

reversible. 

 

In the second stage, irreversible attachment occurs where microbial cells form 

microcolonies and secrete EPS that enhance the irreversible adhesion to substrates and act 

as a “glue”. Then, cells replicate and accumulate embedding into the EPS, which serves as a 
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physical barrier protecting them from the extracellular environment (Renner & Weibel, 

2011). The EPS also serves as a medium where bacteria can communicate with each other 

by Quorum sensing (Donlan, 2002). In the fourth stage, the community grows in multiple 

layers, the EPS accumulates, and microbial colonies mature into a biofilm. A mature biofilm 

is characterized by the complete embedment of microbial cells forming tridimensional 

structures. In the final stage, cell propagation takes place where some cells detach from the 

biofilm and disperse into the bulk liquid providing the opportunity to be re-adsorbed and 

colonize new surfaces to form biofilms. This process also serves as a regulator of community 

dynamics (Renner & Weibel, 2011).  

 

 
 

Figure 2.1. Conceptual model of biofilm formation as a developmental process. (1) Initial 
attachment of planktonic cells adhering to a surface. (2) Cells aggregate to form 

microcolonies and production of EPS starts, and attachment becomes irreversible. (3) 
Development of biofilm leading to a mature biofilm forming multi-layered clusters. (4) 3D 

growth and complete maturation of biofilm. (5) Cell release or dispersion. 
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2.4.3 PHYSICOCHEMICAL PROPERTIES THAT INFLUENCE ADHESION TO SURFACES 

 

In bioremediation, a portion of the injected bacteria will be transported through the 

subsurface with the groundwater flow, while another portion will attach to soil or AC 

particles to develop biofilms (McClaine & Ford, 2002). The initial attachment to surfaces 

occurs by the transport of cells from the bulk liquid to close proximity of several microns 

above the surface (McClaine & Ford, 2002). In addition, some microbes are capable of 

chemotaxis (movement of organisms in response to a chemical gradient or nutrient, 

promoting bacteria to find optimum conditions for growth and survival), which allows 

microbial degraders to move toward the contaminants (Singh et al., 2006), such as those 

sorbed to soil or AC. This mechanism is an advantageous behavior for bacteria, especially in 

nutrient-limited environments such as groundwater. 

 

Once the bacteria are close to the surface microscopic transport takes place. Bacteria are 

attracted to the surfaces by electrostatic repulsion or attraction interactions and van der 

Waal forces (McClaine & Ford, 2002; Renner & Weibel, 2011). Most bacteria possess a net 

negative charge, thus are attracted principally to positively charged surfaces (Renner & 

Weibel, 2011). This is an important implication in AC based amendments as a positive 

surface charge in AC will promote bacterial adhesion.  Electrostatic repulsion forces can be 

overcome by the use of extracellular organelles, such as flagella, pili, curli, and fimbriae 

(Renner & Weibel, 2011). These organelles present hydrophobic moieties that enhance 

surface attachment with hydrophobic surfaces containing electrolytes and macromolecules 

(Donlan, 2002; Renner & Weibel, 2011). The hydrophobic interactions tend to increase with 

the increasing nonpolar nature of both cells and surfaces (Donlan, 2002).  

 

Additionally, surface topography plays an important role in bacterial attachment. The 

surface roughness at the nanoscale enhances the adhesion of bacteria during the first 

stages of colonization, providing further surface area for attachment (Renner & Weibel, 

2011). Also, surface roughness protects bacteria from shear forces occurring in 
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environments where fluids are flowing (Renner & Weibel, 2011; Simpson, 2008).  Chemical 

properties of surfaces are also important for regulating the attachment of bacteria. The 

“conditioning layer” as described by Renner & Weibel, consists of an adsorbed layer of 

molecules (e.g,. proteins, ions, and macromolecules) on the surface of materials that vary 

with particular environmental conditions (e.g,. pH and temperature). Humic acids are one 

of the main components of the conditioning layer in nutrient-poor environments. Ions such 

as Mg2+ and Ca2+ could reduce electrostatic repulsion forces between the negative surface 

of bacteria and substrates (Renner & Weibel, 2011). 

 

 

2.4.4 BIOFILMS IN GROUNDWATER ENVIRONMENT 

 

Groundwater systems are characterized by being oligotrophic; limited oxygen 

replenishment, low availability of organic carbon and nutrients, lack of light, and low 

temperatures (Griebler & Lueders, 2009). Therefore, microbial diversity in groundwater is 

generally comprised of heterotrophic organisms well adapted to nutrient-poor and 

oligotrophic environments, and lithoautotrophs which oxidize inorganic electron donors 

and fix CO2 (Griebler & Lueders, 2009).  

 

Microbial biomass in groundwater systems are frequently found attached to surfaces (e.g., 

sediment particles) forming thin biofilms (Griebler & Lueders, 2009; Weaver et al., 2015). 

Microbial biofilms are advantageous, especially in oligotrophic environments compared to 

their planktonic counterparts. The reason is that macromolecules and organic compounds 

tend to accumulate on surfaces (Griebler et al., 2002), leading to better access to nutrients 

and carbon sources which can be concentrated and retained into the biofilm, providing 

long-lasting energy sources to microorganisms (Griebler & Lueders, 2009; Singh et al., 

2006). In addition, biofilm-forming microorganisms can form synergistic communities, 

performing combined processes that planktonic cells cannot (Griebler & Lueders, 2009). 

The diversity in biofilm communities has been observed to be absent or diverge from the 



 31 

ones found in the aqueous phase (planktonic counterpart) (Rickard et al., 2004; Wilhartitz 

et al., 2009). 

 

Bacterial biomass present in groundwater vary between 102 to 106 cells per cm3 of 

groundwater and between 104 to 108 cells cm3 of sediment (Griebler & Lueders, 2009). From 

these estimates, planktonic bacteria contribute only to 0.01 to 10% of the total biomass 

(Griebler et al., 2002). Similar observations were made in laboratory microcosm studies 

(Griebler et al., 2002). The ratio between planktonic and attached microbes in groundwater 

is mostly dependent on nutrient availability, dissolved organic carbon, sediment particle 

size, and groundwater velocity (Griebler & Lueders, 2009).  

 

Slow groundwater velocities of few meters per day and low shear rates are characteristic of 

groundwater environments. But changes in flow conditions might occur in zones of high 

hydraulic conductivity. Microbial biofilm diversity, structure, and surface adhesion has 

shown to be flow-dependent (Donlan, 2002; Karwautz, 2015). It has been observed that 

shear forces have the potential of affecting the microbial diversity of biofilms (Rickard et al., 

2004). At low velocities associated with lower shear stress, multispecies communities are 

more diverse compared to those growing in the presence of high shear forces or fluid 

velocities (Rickard et al., 2004). Also, in higher velocity regimes is expected that more cells 

would come into contact with surfaces, compared to lower velocity regimes (Donlan, 2002). 

Under laminar flow conditions, biofilm structure consist of roughly circular-shaped 

microcolonies (Stoodley et al., 1999). Changes in biofilm morphology will directly impact 

the biofilm porosity and thickness, which will affect the transfer of solutes from the bulk 

liquid into and through the biofilm (Karwautz, 2015; Stoodley et al., 1999). 

 

Another factor impacting biofilm development and structure, is the availability of carbon 

sources, nutrients, and electron donors and acceptors that are essential for microbial 

growth (Donlan, 2002; Griebler & Lueders, 2009). Groundwater systems which are often 

oligotrophic, extensive EPS production is not common due to the high energy needed for 
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its production. However, EPS production could be enhanced when energy sources become 

available (Karwautz, 2015). In this type of nutrient and carbon-limited systems mixed 

substrate uptake is common (Karwautz, 2015).  Table 2.3 provides a summary of the 

properties influencing cell attachment to surfaces and biofilm formation. 

 

In biofilms, synergistic microbial communities performing combined processes, facilitate 

the degradation of recalcitrant compounds (Griebler & Lueders, 2009; Karwautz, 2015). This 

synergism allows the uptake of diverse carbon sources, which otherwise could not be 

utilized by planktonic cells, and indeed could exert toxic effects (Capozzi et al., 2019a; Carrel 

et al., 2018; Fröls et al., 2012; Karwautz, 2015; Singh et al., 2006; Zhang et al., 2015).  

 

 

Table 2.3. Properties influencing cell attachment and biofilm formation (Modified from 
Donlan, 2002). 
 

Properties of the substratum Properties of the bulk liquid Properties of the cells 

Texture or roughness Flow velocity Cell surface 

hydrophobicity 

Hydrophobicity pH Extracellular organelles 

Conditioning film Temperature EPS 

 Nutrients  
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2.4.5 ROLE OF BIOFILMS IN CONTAMINANT DEGRADATION AND IMPLICATIONS FOR CBI 

 

The biodegradation of PHCs in groundwater systems relies largely on anaerobic processes 

(Farhadian et al., 2008; Lueders, 2017) since these systems are oxygen limited. The 

increased organic carbon input by contamination, results in a rapid depletion of any 

available oxygen (Johnson et al., 2003; Lueders, 2017). Microbial transformation of 

aromatic compounds under sulfate-reducing, methanogenic and denitrifying conditions 

had shown to occur naturally in groundwater systems (Alegbeleye et al., 2017; Johnson et 

al., 2003; Logeshwaran et al., 2018).  Furthermore, aromatic compounds (e.g., BTEX) are 

thermodynamically favorable electron donors (Table 2.4) for microbial growth (Weelink et 

al., 2010). 

 

 

Table 2.4. Thermodynamics of toluene oxidation under anaerobic conditions. (Modified 
from Lueders, 2017) 
 

Electron acceptor 
(oxidised/reduced) 

Stoichiometry ΔG° 
[kJ (mol C7H8)−1] 

NO3−/N2 5 C7H8 + 36 NO3− + H+ → 35 HCO3− + 18 N2 + 3 H2O −3555 kJ 

   

Fe(OH)3/FeCO3 C7H8 + 36 Fe(OH)3 + 29 HCO3− + 29 H+ → 36 FeCO3 + 87 

H2O 

−1497 kJ 

   

SO42− /HS− (complete) 2 C7H8 + 9 SO42− + 6 H2O → 14 HCO3− + 9 HS− + 5 H+ −203 kJ 

SO42− /HS− 
(incomplete) 

2 C7H8 + 3 SO42− +6 H2O → 6 CH3COO− + 2 HCO3- + 3 HS− 

+ 5 H+ 

−61 kJ 

   

CO2/CH4 (sum) 2 C7H8 + 15 H2O → 9 CH4 + 5 HCO3- + 5 H+ −130 kJ 

Fermenter 2 C7H8 + 18 H2O → 6 CH3COO− + 2 HCO3- + 8 H+ + 12 H2 +166 kJ 

Hydrogenotroph 12 H2 + 3 HCO3- + 3 H+ → 3 CH4 + 9 H2O −203 kJ 

Acetotroph 6 CH3COO− + 6 H2O → 6 CH4 + 6 HCO3- −93 kJ 

 

 

Under methanogenic conditions, degradation of PHCs requires syntrophic associations 

between fermentative bacteria and methanogens (Archaea). In the first step, fermenters 

transform hydrocarbons into acetate, formate, and/or H2. This first step is 
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thermodynamically unfavorable under standard conditions. However, it becomes favorable 

when methanogens consume these products and transform them to CH4 and CO2, through 

hydrogenotrophic and acetoclastic methanogenesis. Hydrogenotrophs use H2 as an 

electron donor and reduce CO2 to CH4. Acetotrophs break acetate to form CH4 and CO2. 

(Toth, 2017). 

 

In the degradation of toluene and xylene isomers, the first step is the addition of the methyl 

group of toluene to fumarate to form benzylsuccinate by the enzyme benzylsuccinate 

synthase (bssABC) (Lueders, 2017; Washer & Edwards, 2007; Weelink et al., 2010; Wittebol 

& Dinkla, 2015). This enzyme is present in fermenting bacteria as well as nitrate-, iron-, and 

sulphate- reducing bacteria (Wittebol & Dinkla, 2015). Benzylsuccinate is then activated to 

benzylsuccinyl-CoA by a succinyl-CoA-dependent CoA-transferase (bbsEF), which is then 

converted to succinyl-CoA and benzoyl-CoA (Lueders, 2017; Weelink et al., 2010). Benzoyl-

CoA has been recognized as the central intermediate in the anaerobic biodegradation of 

many aromatic compounds (Lueders, 2017; Weelink et al., 2010). Then, benzoyl-CoA 

reductase (bcrCABD) initiates the degradation of benzoyl-CoA (Weelink et al., 2010). The 

first step of ring reduction can be conducted by an ATP-dependent class I benzoyl-CoA 

reductase (BcrA-D) (facultative anaerobes) or an ATP-independent class II benzoyl-CoA 

reductase (strict anaerobes and fermenters) (Lueders, 2017). Then, ring cleavage by 6-

oxocyclohex-1-ene-1-carbonyl-CoA hydrolase (BamA) is followed by β-oxidation-like 

reactions to acetyl-CoA for assimilation or complete oxidation to CO2 (Lueders, 2017). 

 

 

Implications for CBI 

 

Microbes in biofilms require macronutrients (e.g. nitrogen and phosphorus), micronutrients 

(e.g., Ca2+, Mg2+, Na+, K+, S2-), electron acceptors, and optimal environmental conditions 

(e.g., pH, temperature). The uptake of nutrients and other carbon source molecules by 

microorganisms occurs through the cell walls and membranes. The cell wall is hydrophobic 
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in nature and consists of a lipid bilayer and membrane proteins which provide a protective 

barrier to cells.  This membrane is selectively permeable to molecules (e.g., ions, nutrients, 

and also to some contaminants) since it has pores of <4 nm and water and dissolved 

molecules with molecular weights <100 Da can permeate to the inside of the cells 

(Whitacre, 2010).  

 

Small, hydrophobic, weakly polar compounds such as alcohols, fatty acids, BTEX compounds 

(e.g., benzene), can penetrate the lipid phase of the cell membrane. Thus, a concentration 

gradient between the inside/outside of the cell (through pores and water channels) is one 

of the main driving forces for contaminant uptake. Consequently, this concentration 

gradient is highly dependent upon the local availability of the contaminant (Singh et al., 

2006).  The bioavailability of the contaminants to the microbial degraders depends on the 

degree on which the contaminants are sorbed into substrates or dissolved in water 

(Alegbeleye et al., 2017; Canzano et al., 2014). As mentioned previously, BTEX compounds 

have relatively high solubility and are partitioned into soil pore water, leading to increased 

mobility with water (Balseiro-Romero et al., 2018; Logeshwaran et al., 2018). In CBI, the use 

of AC for PHCs impacted groundwater treatment will decrease dissolved contaminant 

concentrations in the bulk liquid due to uptake by the AC (Ayotamuno et al., 2006).  

Nevertheless, groundwater flow and chemiotaxis allow microbial degraders to move 

toward the contaminants sorbed to the AC. Once microbes are brought into close contact 

with AC, surface interaction processes occur between the cells and the AC, thus biofilm 

formation mechanisms are initiated. This initial attachment to surfaces occurs due to 

electrostatic charges, van der Waal forces, and hydrophobic interactions (Renner & Weibel, 

2011).  

 

A mentioned before, most bacteria possess a net negative charge, thus are attracted 

principally to positively charged surfaces (Renner & Weibel, 2011). In a study made by  Liu, 

(2017) characterization of PAC (WPC®, Calgon Carbon) properties was undertaken. The 

pHPZC value of this PAC was 10.1, indicating that its surface would be positively charged 
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below a pH of 10. As a result, adsorption of bacteria to WPC® PAC could be enhanced by 

electrostatic charges. Also, it has been observed that microbial activity is dramatically 

increased upon adsorption to AC (Simpson, 2008).  One hypothesis for this is that upon 

biofilm attachment to the AC surface, bacteria undergo physiological modifications that 

promote activation of certain genes. Another hypothesis is that biofilm components (e.g., 

EPS) increase the local concentration of nutrients, enzymes, and carbon sources and 

protects them from environmental changes, maintaining a relatively consistent micro-

environment (Simpson, 2008).  

 

In biofilm coated AC (granular) reactors, it was observed that the biofilms completely 

colonized the AC surface. Also, the biofilm thickness was heterogeneous within the same 

AC particles with the presence of cell-free spaces. These open channels connected the 

outside environment (bulk liquid) with the deeper inner layers of the biofilm. Thus, it can 

be speculated that this type of arrangement might facilitate the transport of substrates 

deeper into the matrix (Massol-Deya et al., 1995).  

 

 

2.4.6 METHODS TO DETECT BIOFILMS  

 

The knowledge of biofilm function, composition, and architecture have become relevant, 

due to its role in industrial processes, environment and human diseases (Drago et al., 2016). 

Various techniques have been developed to examine biofilms produced in different 

substrates (Drago et al., 2016). When using rough, porous materials such as AC particles, it 

is of particular interest to acquire more information about biofilm development, biomass 

accumulation, biofilm morphology, etc. (Caizán-Juanarena et al., 2019).  

 

Biofilm morphology and spatial distribution studies are generally based on microscopic 

techniques. Visualization of structures in 2D planes can be undertaken by staining 

techniques and light microscopy. 3D visualization can be performed by scanning electron 
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microscopy (SEM) and confocal scanning laser microscopy (CLSM) (Wilson et al., 2017).  

Biomass accumulation measurements can be performed by determination of total dry or 

wet mass, the total number of cells (e.g., flow cytometry) or heterotrophic plate count (HPC) 

(Caizán-Juanarena et al., 2019; Waller et al., 2018). Table 2.5 provides a summary of 

commonly used techniques for the analysis of biofilms. 

 

 

Table 2.5. Commonly used techniques for biofilm detection (Azeredo et al., 2017; Singh & 
Gaur, 2019; Singh et al., 2006; Wilson et al., 2017).  
 

Type of analysis Techniques Application 

Physical methods Dry or wet weight, 

Electrochemical impedance 

spectroscopy 

Biomass estimation 

Nuclear magnetic resonance, X-

ray tomography 

Biofilm thickness 

Plate count (colony 

forming units, 

CFUs) 

Heterotrophic plate count Quantification of live culturable organisms 

Flow-based cell 

counting 

Flow cytometry, Coulter 

counter 

Cell quantification 

Microscopy Light microscopy 

 

Morphological observation, cell 

quantification 

Confocal laser scanning 

microscopy 

Morphological observation, cell, EPS 

components, biomass (biovolume), 

thickness quantification, spatial 

organization 3D reconstruction 

Scanning electron microscopy Morphological observation, spatial 

organization 

Fluorescence in situ 

hybridization (FISH) 

Phylogenetic identification, spatial 

organization of communities, metabolic 

activity 

Molecular qPCR Cell quantification, taxonomy 
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2.4.6.1 QUALITATIVE CHARACTERIZATION TECHNIQUES 

 

Qualitative characterization of biofilms can include the observation of the physiological 

biofilm surface, morphology, spatial organization, evaluation of the surface roughness, and 

interaction of the biofilm with the environment (Wilson et al., 2017).  

 

Scanning Electron Microscopy (SEM) is one of the most frequently used techniques to assess 

qualitative characteristics of biofilms due to the high resolution it offers (Asahi et al., 2015; 

Gomes & Mergulhão, 2017). In principle, basic SEM methods require samples of biofilm to 

be fixed with glutaraldehyde and/or osmium tetroxide, dehydrated in ethanol, alcohol or 

acetone series, critical-point dried, mounted on an SEM stub, sputter-coated with heavy 

metals, typically gold or palladium to increase their electrical conductivity, and imaged at 

an appropriate voltage (Kaláb et al., 2008). SEM can provide resolutions of 1 nm 

(magnifications up to 1,000,000x) (Henini, 2000), thus enabling to study bacteria in great 

detail. One of the main limitations of conventional SEM is the need to fix, dehydrate, and 

metalize the samples before observation. Biofilms are highly hydrated structures 

(Sutherland, 2001), thus dehydration might alter the morphology. As an example, when EPS 

is investigated by this technique, it often appears as fibers connecting bacteria (Vuotto & 

Donelli, 2014). 

 

 

2.4.6.2 QUANTITATIVE CHARACTERIZATION TECHNIQUES 

 

Quantification of the bacterial population embedded in a biofilm is one of the most acquired 

measurements. Direct quantification methods rely on the observation and enumeration of 

the desired parameter such as the number of cells. It can be performed using automated 

cell counting such as flow cytometry, or imaging using microscopy. In contrast, indirect 

methods rely on the measurement of some quantifiable biofilm property, such as colony-

forming units (CFUs). Most of these methods require detachment, homogenization, and 
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dispersion of the biofilm in a liquid medium prior to analysis (Wilson et al., 2017), which can 

add experimental uncertainty. 

 

From the indirect methods, CFU methods such as HPC are one of the most commonly used 

in microbiology for the determination of the number of viable cells (Allen et al., 2004; 

Reasoner, 2004; Sartory, 2004). It is based on the resuspension of the biofilm in a solution 

using serial dilutions. The dilutions are membrane filtered or plated and placed under 

specific nutrient agar growing mediums. Then, the samples are incubated for a particular 

length of time and temperature. Finally, the bacterial colonies are enumerated and 

reported as CFU/mL (Allen et al., 2004; Health Canada, 2012). However, significant errors 

can be introduced with this method in quantifying cells forming biofilms. This method just 

allows quantifying viable and culturable organisms, excluding death biomass and organisms 

that are difficult to culture in laboratory conditions (González-Rivas et al., 2018; Waller et 

al., 2018). 

 

For direct measurements, flow-based cell counting is an automated way to count biofilm 

cells with flow cytometry as a commonly used technique (Cerca et al., 2011; Kerstens et al., 

2015). These methods involve cells to flow through narrow apertures which are measured 

as they pass. A laser is used to detect the cells via scattering, absorbance, or fluorescence 

measurements. It has the advantage of being fast, simple, and accurate. In addition, it can 

provide information on cell dimension, surface properties, metabolic activity, and state of 

the cells by coupling it with fluorescent stains (Wilson et al., 2017).  However, it requires 

the homogenization and suspension of the biofilm in liquid cultures. 

 

Cell counting and biofilm characterization can be performed by using microscopy 

techniques. Light microscopy can be used to visualize biofilms in 2D planes. Immature 

biofilms attached to translucent surfaces can be stained and visualized. However, mature 

biofilms that are characterized by their 3D structure, require the suspension and 

homogenization into a liquid medium. After resuspension, cells can be visualized and 
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manually counted using chamber counting slides.  This microscope slides feature a 2D grid 

on the bottom, to help to count in each grid and determine the cell density of the 

suspension. The average count from several grids can be used to calculate the number of 

cells on a known volume of liquid (Wilson et al., 2017). 

 

Fluorescent microscopy can improve the information acquired by conventional light 

microscopy by exciting fluorescent molecules of particular components on biofilms. 

Fluorescent dyes known as fluorophores are molecules which absorb and emit light when 

incorporated in the biological structure (Wilson et al., 2017). Fluorescent microscopes are 

equipped with high-intensity lamps (e.g., argon lamps) and fluorescent filters which allow 

specific bands of excitation and emission light to interact with the sample and the observer.  

 

Confocal laser scanning microscopy (CLSM) is one of the most sensitive assays to study 

biofilms (Drago et al., 2016). It is a specialized form of microscopy capable of producing 

high-resolution images of 3D biofilms. The 3D visualization is possible as the area of focus 

of the sample is scanned in layers to produce 2D slices at successive depths. These slices are 

then assembled to produce a final 3D image. With CLSM it is possible to observe biofilms 

attached to opaque surfaces such as sediment grains, metals, and AC particles (Doll et al., 

2016; Waller et al., 2018). In addition, CLSM allows the observation of undisturbed, fully 

hydrated biofilms, and thus eliminates experimental variables associated with cell 

detachment (required with other techniques)(Drago et al., 2016).  

 

When CLSM is combined with a range of fluorescent stains, images of various cellular and 

extracellular biofilm components (e.g., live and dead cells, proteins, EPS) can be obtained 

(Garny et al., 2010; González-Machado et al., 2018). Therefore, it is possible to assess 

qualitative (organization, distribution, morphology, etc.) and quantitative (cell biomass, 

biofilm thickness, etc.) biofilm information. 
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As a first approach for CLSM biofilm imaging, fluorescent stains are used to label specific 

components of biofilms.  Many commercial fluorescent stains are available in a variety of 

emission colors (green, red, orange, and violet) which allow the analysis of multiple 

components simultaneously (Wilson et al., 2017). In Table 2.6, a summary of commonly 

used stains is provided. Highly selective nucleic acid stains such as SYBR-green and SYTO®9 

can be used to label microbial cells in a population. In addition, SYTO®9 can be coupled with 

propidium iodide (PI) to discriminate between live and dead cells (SYTO9 target all cells and 

PI only targets cells with damaged membranes, reducing SYTO®9 fluorescence when both 

present) (Drago et al., 2016; Powell et al., 2018). Lectins are used to visualize EPS as they 

preferentially bind to polysaccharides, a major part of the EPS (Donlan, 2002; Garny et al., 

2010). Lectins are capable to bind to carbohydrates without altering their structures (Zhang 

et al., 2015). The most frequently used lectin is Concanavalin A (Con A), binding to mannose 

and glucose residues (α-D-glucose and α-D-mannose) (Powell et al., 2018; Zhang et al., 

2015). 

 

 

Table 2.6. Commonly used fluorescent stains (fluorophores) to target specific biofilm 
components. 
 

Fluorophore Biofilm binding location Reference 

SYBR-GREEN Nucleic acids (Capozzi et al., 2019a; Zhang et al., 2015) 

SYTO ® 9 Nucleic acids (Artyushkova et al., 2016; Doll et al., 2016; 

Drago et al., 2016; (Banagan et al., 2010; 

Marchal et al., 2011; Powell et al., 2018; 

Waller et al., 2018; Zhang et al., 2015)  

Propidium Iodide Nucleic acids of damaged cells (Artyushkova et al., 2016; Doll et al., 2016; 

Drago et al., 2016) 

Concanavalin A 

Alexa Fluor 633 

Polysaccharides (α-D-glucose 

and α-D-mannose) 

(Banagan et al., 2010; Garny et al., 2010; 

Marchal et al., 2011; Powell et al., 2018) 

TOTO-1 Extracellular DNA (Powell et al., 2018) 

SYPRO® Protein content (Powell et al., 2018; Zhang et al., 2015) 
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2.4.7 ANALYSIS OF BIOFILM CONFOCAL IMAGES 

 

Biofilm digital image acquisition using confocal microscopes allows the user to characterize 

quantitatively and qualitatively desired parameters of biofilm samples. Currently, there are 

numerous software packages available that allow data analysis and image processing of 

confocal image stacks to make 2D or 3D representations. Imaris®, ImageJ + COMSTAT, and 

Daime are popular software packages (Azeredo et al., 2017).  

 

Within the image acquisition of confocal images, slices (called image stacks) of images are 

recorded at successive focal planes within the Z coordinate (different heights). Each 

fluorophore is captured in a single channel; thus, each image stack is represented by one 

image per channel used (Azeredo et al., 2017). To obtain a 3D representation of a biofilm, 

several image stacks should be acquired and reconstructed, resulting in an image with X, Y 

and Z coordinates. The digitalized images acquired by the microscope are represented as 

pixels with a certain fluorescent signal. Each pixel in the image represents a certain area at 

the µm scale. For quantitative analysis, the first step is the to stablish a threshold in which 

all values below the threshold are considered noise (Azeredo et al., 2017). For thresholding, 

the images in grey scale format are transformed to binary scale, where p(i, j) = 0 or 1. A pixel 

with a p(i, j) = 1 is considered background (void), while a pixel with a p(i, j) = 0 is considered 

a cluster (e.g., bacteria, EPS, PAC)(Lewandowski et al., 1999). Thresholding is a subjective 

process where the user attempts to represent a distinction between the void space and the 

biomass (X. Yang et al., 2000). However, automatic thresholding methods have been 

developed to allow the user to remove the bias caused by manual thresholding. A popular 

method is Otsu’s method. This algorithm determines the thresholds in the images that 

minimizes the intra-class intensity variance. 

 

Various parameters can be used to quantitatively describe biofilms (e.g., biovolume, 

biomass, biofilm thickness, roughness coefficient) (Azeredo et al., 2017). Biomass 

(μm3/μm2) is the amount of biologic material on a given sample. This is an expression of 
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how much of the image stack is covered by a biofilm (pixels). Thickness (μm) is the distance 

at which biofilm clusters rise from the surface. Usually, biofilms colonizing on surface are 

not homogeneous. Thus, thickness distribution, local thickness, and average can be 

obtained to correctly describe a biofilm growing on a rough surface. Average thickness is 

also used to calculate other biofilm parameters, such as the fractal dimension. 

 

As mentioned previously, biofilms are heterogeneous structures, thus the fractal dimension 

or roughness coefficient helps to describe the degree of uniformity of the biofilms. The 

higher the roughness coefficient, the more heterogeneous the biofilm is (Yang et al., 2000). 

The determination of these parameters allows for information related to the stage of 

biofilm development, composition, and architecture to be assembled. 
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CHAPTER 3 

MATERIALS AND METHODS 
 

 

This chapter describes the materials and methods used to characterize an anaerobic biofilm 

growing on powdered activated carbon (PAC) and determine its influence on the sorption 

of an organic compound to the PAC. Toluene was used as the model PHC in this work. The 

experimental design was divided into three phases. 

 

In Phase 1 the baseline sorption characteristics of toluene to a commercial PAC was 

evaluated by collecting sorption/desorption isotherm data. The primary objective of this 

phase was to investigate the sorption properties of a model PHC to fresh PAC in an aqueous 

matrix and to generate baseline performance data to be compared to an aged PAC (with a 

biofilm attached - Phase 3). Adsorption in the liquid phase is influenced by factors such as 

pH, temperature, properties of the adsorbate such as its solubility in the solvent, 

concentration, the chemical composition of the solvent and the properties of the adsorbent 

(Canzano et al., 2014; Hindarso et al., 2001; Yakout & Daifullah, 2014). The bottle-point 

method was used to investigate the equilibrium sorption capacity of aqueous phase toluene 

(initial concentration 1 to 30 mg/L) to fresh PAC at pH 7. Aqueous and solid phase (PAC) 

analytical data were collected. 

 

In Phase 2 an anaerobic toluene degrading biofilm attached to PAC in bench-scale 

microcosms was established. The objective of this phase was to assess the colonization and 

growth of a toluene degrading enrichment culture on PAC under anaerobic conditions to 

obtain a final product state (bio-coated PAC) that could be used in the Phase 3 sorption 

experiments.  An established microbial culture was used to explore the role that a biofilm 

could potentially have on the sorption of PHCs to PAC used in CBI systems. Thus, several 

conditions were required including: (1) an anaerobic culture since oxygen is often depleted 
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in PHC impacted systems, (2) the culture had to be capable to readily metabolize toluene 

with degradation rates known to be relatively fast, and (3) the culture could be used in 

bioaugmentation efforts. The microbial activity in these microcosms systems was 

monitored by gas production (CO2 and CH4) and toluene depletion. The microbial 

community attached to the PAC was examined by Confocal Laser Scanning Microscopy 

(CLSM). To quantify specific parameters of biofilm growth and to perform 3D 

reconstructions of PAC particles, images from the bio-coated PAC were processed using the 

FIJI software coupled with COMSTAT. 

 

In Phase 3 the sorption characteristics of toluene to the biofilm-coated PAC was evaluated 

by collecting sorption isotherm data. The objective of this phase was to assess the impact 

of a biofilm attached to PAC on the sorption characteristics of toluene, and compare these 

data to those collected in Phase 1 using fresh PAC. Batch sorption experiments were 

performed using biofilm-coated PAC samples obtained from the microcosm experiment at 

two time points (Day 80 and Day 180). 

 

 

3.1 MATERIALS 

 

The sorbent material used in all the experimental work was a coconut-based PAC product 

(WPC®, < 325 US mesh) obtained from Calgon Carbon Corporation (Pittsburg, PA, USA). 

Toluene was analytical grade from Sigma-Aldrich (San Luis, MO, USA) with purity >99%.  

High purity water used for all solutions was obtained from a Millipore Milli-Q® water 

system.  

 

An artificial groundwater (AGW) solution (Table 3.1) was used in the experiments (see 

Appendix 1 for a detailed recipe for the AGW modified from Middeldorp et al. (1998)). For 

all tests, the pH of the AGW was maintained at 7. The AGW prepared for these microcosms 

experiments used ferrous sulfide (FeS) as a reducing agent. FeS forms a black precipitate 
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that settles, and therefore only the AGW supernatant was used as the liquid medium for 

these microcosms. 

 

 

Table 3.1. Chemicals used for the AGW solution. 
 

Salt solution dNH4Cl, eMgCl2, eMnCl2 4H2O, dNaCl, dCaCl2, 

cNa2HPO4 2H2O, cKH2PO4, bNa2SO4, eNaHCO3. 

Trace mineral stock solution eH3BO3, aZnCl2, aNiCl2 - 6H2O, eMnCl2 - 4H2O, aCuCl2 

- 2H2O, eCoCl2 - 6H2O, aNa2SeO3, eAl2(SO4)3 - 16H2O, 

eH2SO4. 

Amorphous ferrous sulfide solution e(NH4)2Fe (SO4)2 - 6H2O, eNa2S - 9H2O 

Redox indicator stock solution eC12H7NO4 

Phosphate buffer stock solution eKH2PO4, 
cK2HPO4 

a Alfa Aesar (Ward Hill, MA, USA) 

b Anachemia Canada Inc. (Motreal, Canada) 

c Fisher scientific (Hampton, NH, USA) 

d Merck KGaA (Darmstadt, Germany) 

e Sigma-Aldrich (San Luis, MO, USA) 

 

 

The cell culture used in this work was a methanogenic toluene-degrading enrichment 

culture (DGG-T), maintained by the University of Toronto and described by Edwards & 

Grbic-Galic (1994), Ficker et al. (1999), and Washer & Edwards (2007). The DGG-T culture is 

a well-established methanogenic mixed culture that was enriched from creosote-

contaminated aquifer sediments and has been maintained on toluene as the sole carbon 

source and electron donor for three decades. This consortium is composed of bacterial 

(hydrolytic fermentative bacteria and syntrophic acetogenic bacteria) and archaeal species 

(methanogenic archaea) (Ficker et al., 1999). Originally the culture was maintained in an 

anaerobic mineral salt medium reduced with ferrous sulfide (FeS).  
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Crimp top Mininert® valves obtained from Sigma-Aldrich (San Luis, MO, USA) were used to 

cap the microcosms and to allow repeated sampling. Dichloromethane (DCM) was obtained 

from Sigma-Aldrich (San Luis, MO, USA) and contained internal standards (m-fluorotoluene 

and 2-fluorobiphenyl (25 mg/L), Sigma-Aldrich; San Luis, MO, USA). For the staining 

procedure, fluorescent stains SYTO®9 (InvitrogenTM; Carlsbad, CA, USA) and Concanavalin 

A, Alexa Fluor 633TM Conjugate (InvitrogenTM; Carlsbad, CA, USA) were obtained from 

Thermo-Fisher Scientific (Waltham, MA, USA).  

 

 

3.2 METHODS 

 

This section provides a description of the experimental design of the isotherm and 

microcosms experiments, and the general sample preparation and handling involved in 

each experimental phase. Analyses were conducted in triplicate bottles. While each 

experimental phase is detailed below, detailed protocols are contained in Appendix 1.  

 

 

3.2.1 SORPTION/DESORPTION EXPERIMENTS 

 

Sorption isotherms and single-step desorption experiments were evaluated by using the 

bottle point method and 160 mL serum bottles (Wheaton® borosilicate glass, DWK life 

Sciences; Millville, NJ, USA). For the experimental set-up (Figure 3.1), each bottle was 

amended with 10 mg (dry weight, dw) of PAC. A toluene stock solution (30 mg/L) was 

prepared by adding the required amount of pure toluene (250 µL) to the AGW in a 4 L glass 

vessel (Kimax ™, Fisher Scientific; Hampton, NH, USA) with no headspace. The vessel was 

sealed with a Teflon® covered septa and stirred for 24 hrs. To generate data for a sorption 

isotherm of toluene to PAC, seven initial concentrations of toluene (from 1 to 30 mg/L) were 

prepared in a 2 L glass conical separatory funnel (Pyrex® borosilicate glass, Sigma-Aldrich; 

San Luis, MO, USA) by diluting the toluene stock solution with fresh AGW. Aliquots from 
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each initial concentration were then dispensed into a 160 mL serum bottle contained the 

PAC. Each bottle was filled without headspace and sealed using Teflon® lined silicone septa 

and crimped with aluminum seals. Control bottles with the same initial concentration but 

without PAC were also constructed. Triplicates bottles for each initial toluene concentration 

were assembled.  

 

 

 
Figure 3.1. Isotherm experimental set-up, (a) shows the 4 L vessel with toluene stock 
solution and (b) shows the 160 mL control and PAC bottles used in the bottle point 

experiments.  
 

 

The bottles were shaken on a platform shaker for 24 hrs. Previous sorption studies for the 

PAC and toluene system showed that equilibration time occurred within 1 hr. (Marrocco et 

al., 2019). Following agitation, the bottles were left undisturbed for 24 hrs so that the PAC 

could settle. For the sorption experiment bottles, both the aqueous and solid phase were 

sampled. For aqueous phase sampling, a 19 mL aliquot was removed using a 20 mL glass 

syringe (Gastight® PTFE luer lock, Hamilton Co.; Reno, CA, USA), placed in a 20 mL glass vial 

(a) (b) 
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(KIMBLE® borosilicate glass, DWK life Sciences; Millville, NJ, USA) and extracted by aqueous 

phase solvent extraction. For solid phase sampling, the remaining aqueous phase was 

discarded, and solid phase solvent extraction was directly performed on the remaining PAC 

in the bottle. Following extraction, the DCM was analyzed to estimate the residual toluene 

concentration in the aqueous phase, and the mass sorbed to the PAC. 

 

For the single-step desorption experiments, after the first 48 hrs. which was assumed to be 

equilibrium, the aqueous phase was removed and discarded leaving the just the PAC. The 

bottles were refilled without headspace using fresh AGW solution, sealed using Teflon® 

lined silicone septa and crimped with aluminum seals. The bottles were shaken on a 

platform shaker for 24 hrs. Following agitation, the bottles were left undisturbed for 24 hr. 

so that PAC could settle. Then, the aqueous and solid phases were sampled, extracted and 

analyzed in the same fashion as in the sorption experiments.   

 

 

3.2.2 MICROCOSM EXPERIMENT 

 

The microcosm experiment (Phase 2) was designed with the objective to develop a biofilm 

attached to the PAC (bio-coated PAC) reflective of an aged CBI system. The microcosms 

were constructed using 22 mL glass serum bottles (Wheaton® borosilicate glass, DWK Life 

Sciences; Millville, NJ, USA) and sealed with Mininert® valves to allow for repeated 

sampling. A total of 83 microcosms were constructed (see Table 3.2). For the active 

treatment (AT) series (for the biofilm-PAC system, 69 microcosms), each bottle was filled 

with 9 mL of AGW supernatant, 1 mL of culture, 10 mg (dw) PAC, and 1 μL neat toluene.  

The killed PAC controls (KP) were assembled in a similar fashion as the active treatment but 

with autoclaved culture (30 min at 121ºC for three consecutive days) to account for abiotic 

degradation (3 microcosms). Starved control microcosms (SC) were constructed similar to 

the active treatment microcosms but without the addition of toluene to account for 

background methane production (3 microcosms). Active controls microcosms (AC) (for a 
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planktonic cell system, 3 microcosms) were filled with 9 mL of the AGW supernatant, 1 mL 

of culture and 1 μL neat toluene. Finally, the killed control microcosms (KC) were assembled 

similar to the active controls but with autoclaved culture (30 min at 121ºC for three 

consecutive days) to account for abiotic degradation (3 microcosms). Resazurin control 

microcosms (2 microcosms) were constructed with the redox indicator (resazurin) added to 

the AGW supernatant and without PAC to visually monitor for oxygen presence in the 

microcosm systems. The reason for including a redox indicator in these separate 

microcosms was to ensure that the AGW was anaerobic and to quickly visualize (resazurin 

changes from clear to pink when oxygen is present) any oxygen input that could occur to 

the microcosms during the experiment.  Note that the anaerobic chamber has oxygen input 

when bringing materials inside. Also, PAC was not added in these bottles since in previous 

experiments (data not shown) it was observed that resazurin sorbed to the PAC, so any 

change in color due to oxygen input would not have been observed. A representative image 

of a microcosm from each series is shown in Figure 3.1(a). 

 

Prior to microcosm construction, all glassware items were washed with Extran® 300 

detergent (Merck KgaA; Darmstadt, Germany), rinsed with deionized (DI) water and 

autoclaved prior to use. Non-autoclavable items were washed with detergent, rinsed with 

DI water and disinfected with 70% ethanol solution prior to use. All materials were stored 

in an anaerobic chamber (COY Laboratory Products Inc.; Grass Lake, MI, USA) for a week to 

remove residual oxygen (Figure 3.1(b)). The construction, incubation and sampling of the 

microcosms was performed inside the anaerobic chamber to ensure that anaerobic 

conditions were maintained. The microcosms were stored at room temperature in a semi-

inverted position in the dark (covered with foil), and undisturbed (gently shaken once every 

two weeks). Three microcosms (3) from each series; active treatment, active control, killed 

PAC control, killed control and starved control were repeatedly sampled (Day 1, 14, 28, 30, 

47, 62, 78, 82, 111, 114, 126, 140, 150 and 175) to monitor toluene degradation and gas 

production (CH4 and CO2). 
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Figure 3.2. (a) Representative microcosm bottle for each system inside the anaerobic 

chamber and (b) anaerobic chamber used.  
 

 

Prior each sampling event, the Mininert valve was wiped with an alcohol wipe. To assess 

microbial activity, a 1 mL aliquot of the microcosm gas phase (headspace) was removed 

using a 10 mL glass syringe (Micro-Mate®, Popper & Sons Inc.; New Hyde Park, NY, USA) to 

which a two-way stop valve was added and analyzed for CO2 and CH4. A 200 μL aliquot of 

the aqueous phase was removed using a 1 mL glass syringe (Gastight®, Hamilton 

Corporation; Reno, CA, USA) and analyzed for the concentration of toluene. Based on the 

concentration of toluene observed, additional spikes of neat toluene (0.77 ± 0.29 µL) were 

added to sustain microbial growth.  
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Table 3.2. Microcosm experimental design. 
 

Series PAC Toluene No. microcosm 

Active treatment (AT) amended amended 691 

Active control (AC) - amended 3 

Killed PAC control (KP) amended amended 3 

Killed control (KC) - amended 3 

Starved control (SC) amended - 3 
1 AT microcosms breakdown: 
3 sampled repeatedly for toluene and CH4/CO2 
12 sampled for PAC solvent extraction 
15 used for 80-Day bio-coated PAC isotherm 
21 used for 180-Day bio-coated PAC isotherm 
12 used to examine biofilm formation at time points 50, 80, 140 and 180 
3 used for cell density enumeration 
3 left for additional sampling 

 

 

The pH, oxidation-reduction potential (ORP) and dissolved oxygen (DO) were measured in 

the AGW prior to microcosm setup, as well as in aliquots of the microcosm supernatant at 

various time points (Day 50, 80, 140 and 180). A 2 mL aliquot of the aqueous phase from 

the microcosms was removed using a 3 mL glass syringe (Gastight®, Hamilton Corporation; 

Reno, CA, USA) and transferred to a 5 mL plastic vial for analysis. pH was measured using 

an Oakton pH 50S pH meter (Oakton Instruments; Vernon Hills, IL, USA). ORP was measured 

using an Orion™ Star A325 meter (Thermo Scientific; Waltham, MA, USA). DO was measured 

using an Orion™ 5Star- 083005MD DO probe (Thermo Scientific; Waltham, MA, USA).  

 

The presence, growth and organization of a biofilm on PAC was examined by CLSM at 

various time points (Day 50, 80, 140 and 180). The PAC from a AT microcosm was 

transferred to a 2 mL plastic microcentrifuge tube (Eppendorf®; Hamburg, Germany) and 

washed with a 150 mM NaCl solution (washing solution). After washing, the sample was 

stained with a 30 μM of fluorescent dye SYTO®9 for 30 min in the dark. The residual stain 

was washed with the washing solution before a 200 mg/mL solution of Concanavalin A, 

Alexa Fluor 633TM Conjugate was added and incubated in the dark for additional 30 min. 
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Then the residual stain was removed with the washing solution and the samples were 

mounted on microscope slides and examined under a confocal microscope (LSM 700, Carl 

Zeiss; Oberkochen, Germany) the same day. A representative image of the confocal 

microscope is shown in Figure 3.3. 

 

Samples of fresh PAC without microbial culture contact were stained in the same fashion as 

the active treatment microcosms to detect any signal coming from PAC-stain interactions. 

Samples of fresh PAC without stain or microbial culture interaction were used to determine 

if PAC alone had autofluorescence, and to determine and differentiate true biomass from 

any fluorescent signal coming from PAC.  

 

 

 
Figure 3.3. LSM 700 confocal microscope using for scanning PAC samples. 

 

 

SYTO®9 is a highly selective nucleic acid stain and it was used to label microbial cells. 

Concanavalin A (Con A) is a lectin that binds to polysaccharides (α-D-glucose and α-D-

mannose) and it was used to label the EPS (see Appendix 1a for a detailed description on 

the steps followed to stain the PAC samples). The use of different dyes allowed for the 

different components of the biofilm (cells and EPS) to be observed.  

 



 54 

The biomass density from the bio-coated PAC was determined by a manual cell counting 

method. First, the biofilm was detached from the PAC with a method modified from Saccani 

et al. (2014) (refer to Appendix 1 for details), then 1 mL of the homogenized sample (after 

detachment) was stained with SYTO®9 to a final concentration of 15 µM in a 2 mL plastic 

microcentrifuge tube (Eppendorf®; Hamburg, Germany) in the dark for 30 minutes. Then, 

the sample was centrifuged (5417R-Centrifuge, Eppendorf®; Hamburg, Germany) at 6000 x 

g for 30 min to obtain a cell pellet. The supernatant was discarded, and the cell pellet was 

resuspended in 100 μL of a 150 mM NaCl solution. Then, 10 μL of the sample was placed on 

a microscope slide. The samples were observed under the CLMS, and single images were 

acquired from five different random positions per sample. Cells were counted using the 

automated cell counter available in the FIJI software, and the average cell count was used 

to estimate the total cells. Values are reported as the number of cells per gram of PAC. 

 

 

3.2.3 BIO-COATED PAC SORPTION EXPERIMENTS  

 

The “bio-coated PAC” from the active treatment microcosms was used to perform sorption 

experiments for Phase 3. Before its use, the microcosms were starved for a couple of weeks 

to decrease the system toluene concentration. The remaining mass of toluene sorbed on 

PAC was determined. Sorption experiments using the bio-coated PAC were performed on 

Day 80 and Day 180.  For the Day 80 isotherm, five initial toluene concentrations (from 1 to 

30 mg/L) were prepared by diluting the toluene stock solution in fresh AGW solution, while 

for the Day 180 isotherm seven initial toluene concentrations were (from 1 to 30 mg/L) 

used.  

 

Adsorption isotherms were evaluated (by bottle point experiments in 160 mL serum 

bottles), sampled and analyzed in a similar fashion as in Phase 1 (Figure 3.4). However, the 

bio-coated PAC from each of the selected active treatment microcosms (10 mg PAC, dw) 

was transferred into different serum bottles before filling the bottles with different initial 



 55 

toluene concentration solutions.  As in Phase 1, control bottles with the same initial toluene 

concentration but without bio-coated PAC were constructed. Triplicates bottles for each 

initial toluene concentration were assembled. The aqueous and solid phase was sampled 

after 48 hrs. which was assumed to be equilibrium. The residual toluene concentration in 

the aqueous phase and the mass sorbed to the bio-coated PAC were determined.  

 

 

 
Figure 3.4. Isotherm experimental set-up, 160 mL serum bottles on a platform shaker. 
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3.3 ANALYSES  
 

3.3.1 TOLUENE 

 

3.3.1.1 AQUEOUS PHASE 

 

The aliquot collected from the batch sorption bottle was transferred to a 20 mL glass vial 

while the aliquot collected from the microcosm bottle was transferred into a 2 mL glass 

autosampler vial (Agilent; Santa Clara, CA, USA) (Figure 3.5). The vials were preloaded with 

1 mL of dichloromethane containing internal standards (m-fluorotoluene and 2-

fluorobiphenyl (25 mg/L)) and capped with Teflon® lined silicone septa and plastic screw 

caps.  

 

 

 
Figure 3.5. Vials (2 mL and 20 mL) used for the aqueous phase extractions, and the 160 mL 

serum bottle used in bottle point experiments. 
 

 

The vials were placed in a horizontal position on a platform shaker, and then agitated at 250 

rpm for 15 mins. Then the vials were inverted in a vertical position, and the water-solvent 

phases were allowed to separate for 20 mins.  For the sorption experiment samples, the 

bottom phase (the extract) corresponding to dichloromethane phase was removed with a 

1 mL glass syringe (Gastight® LTN, Hamilton Corporation; Reno, CA, USA) and transferred 

into 2 mL glass autosampler vials. For the microcosms experiment samples, the top phase 

2 mL  20 mL  160 mL  
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(water) was removed and discarded leaving just the dichloromethane phase in the vial. 

Analysis of the dichloromethane was performed by gas chromatography (GC-FID). 

 

 

3.3.1.2 SOLID PHASE 

 

To extract the mass of toluene sorbed to the PAC, 1 mL of dichloromethane containing 

internal standards (m-fluorotoluene and 2-fluorobiphenyl (25 mg/L)) was added to the 

bottles in which the PAC sample was left (after removing the aqueous phase from the 

bottle), then the bottles were sealed using Teflon® lined silicone septa and aluminum seals. 

The bottles were placed vertically on a platform shaker and agitated at 25 rpm for 2 hrs.  

Following shaking, the bottles were allowed to equilibrate for 24 hrs. before the 

dichloromethane phase (~0.7 mL) (Figure 3.6) was recovered using a 1 mL glass syringe 

(Gastight® LTN, Hamilton Corporation; Reno, CA, USA) and placed in a 2 mL autosampler 

vial.  Analysis of the dichloromethane was performed by GC-FID. 

 
 

 
Figure 3.6. Dichloromethane phase after solid phase extraction in a 160 mL serum bottle. 

 
 

Dichloromethane phase 
after PAC extraction 
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3.3.2 GC-FID ANALYSES 

 

A 3 μL aliquot of dichloromethane sample from extractions was injected into a GC equipped 

with a FID (GC-7890A, Agilent; Santa Clara, CA, USA). A glass DB5 capillary column (0.25 mm 

diameter x 30 m length, with a stationary phase film 0.25 μm thick) was used. The GC was 

run in spitless mode (purge on 0.5 min, purge off 10 min), with a column flow rate of 1 

mL/min using helium as the carrier gas. The chromatographic conditions were: 275 ºC in 

the injection port, the temperature programming was an initial of 35ºC for 0.5 min, then a 

heating rate of 15ºC/min until a final temperature of 300ºC maintained for 2 min. The 

method detection limit (MDL) based on an extraction ratio (sample: dichloromethane) 0.2:1 

mL is 285 μg/L and 5 μg/L based on a 19:1 mL extraction ratio.  

 

 

3.3.2 GAS ANALYSES 

 

Gas samples collected from the microcosm headspace were manually injected into a 

Greenhouse and Atmospheric Gas Analyzer (GC-2014, Shimadzu; Kyoto, Japan). The 

injection port was set at 100ºC, the column temperature was set at 80ºC and the FID 

detector at 250ºC, with an equilibration time of 0.5 min. The approximate retention time 

was 4.9 min for CH4 and 7.6 min for CO2. The method detection limit (MDL) for CH4 was 0.38 

mg/L and for CO2 was 17.15 mg/L. 

 

 

3.2.5 IMAGE ACQUISITION – CLSM 

 

Images of fluorescently labeled samples were acquired using a LSM 700 (Carl Zeiss, 

Oberkochen, Germany) with a 63x 1.4 Numerical Aperture (NA) objective lens. The laser 

lines used for the excitation of the fluorophores were 488 and 633 nm, with a laser intensity 

of 2.0%. Images were recorded at an excitation/emission wavelength of 488/498 nm for 
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SYTO®9 and was assigned the colour green, and 633/647 nm for Con A and was assigned 

the colour red. The PAC was visualized using transmitted light. Images were acquired using 

the three channels simultaneously in separate tracks to avoid signal overlap. Image 

resolution was 1028 X 1028 pixels. Images were acquired at five different random locations 

per sample and never twice from the same area to prevent negative effects of the laser on 

the biofilm sample. Z-stacking imaging method (in which multiple images are taken at 

different focal distances to provide a composite image) was used to capture images over 

the visible top half of the particles by vertical sectioning through the biofilm with z-step 

increments of 0.5 μm. The microscope settings were constant for all images acquired to 

reduce bias. Table 3.3 summarizes the parameters used to acquire all images. 

 

 

Table 3.3. Microscope settings for image acquisition. 
 

Fluorophore 4Ex/Em 

wavelength 

Filter Laser line 

(nm) 

Beam 

splitter 

Target 

SYTO®9 488/498 nm 1BP 488 3MBS Cells 

Con A, Alexa Fluor 633 TM 

Conjugate 

633/647 nm 2LP 633 3MBS EPS 

1BP: Band Pass 
2LP: Long Pass 
3MBS: Mean beam splitter 
4Ex/Em: Excitation/Emission 

 

 

3.2.6 IMAGE ANALYSIS – FIJI (ImageJ) 

 

The images obtained were analyzed using FIJI software (ImageJ, Wayne Rasband National 

Institutes of Health) with the COMSTAT plug-in. First, all the images acquired were 

processed using a median filter to remove salt and pepper noise by applying a despeckle 

function. Next, each image was converted to grey scale in tagged image file format (TIFF) 

using the Bio-Format exporter function in ImageJ. Then, the images were uploaded to the 

COMSTAT plugin. COMSTAT processed each image by implementing a binary system based 
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on setting a threshold value on the pixel intensity of the images using the Otsu’s method 

(automated image thresholding). The parameters selected for analysis were biovolume, 

biomass, thickness, and roughness coefficient.  

 

The biovolume is the volume of the biofilm components given in µm3. To estimate the 

biovolume, the number of biofilm pixels (given by COMSTAT) in the image was multiplied 

by the voxel size (given by COMSTAT) as given by  

 

;0,<,=>?8 = 	∑;0,A0=?	.0B8=C ∗ <,B8=	C0E8                                                                              (3.1) 

 

A voxel is the 3-D analog of a pixel and is related to the pixel size (length and width) and 

slice thickness (vertical sectioning of the biofilm, thickness). Biovolume can be used to 

estimate the cell density of the biofilm based on average cell measurements. 

 

Biomass is a standardized measurement used to compare the amount of any living material 

covering different substrates or locations.  For image analysis it is given in units of volume 

per unit surface area (μm3/μm2). Biomass is an estimation of the amount of biofilm 

formation attached to the PAC as defined by  

 

;0,?:CC =
+,-.-/0$!

./
0
/

                                                                                                                   (3.2) 

 

where PAC surface area was estimated using the measured the circumference of the 

particle (C).  

 

The thickness (average thickness) is an indicative of the general architecture of the biofilm 

and was calculated by COMSTAT using  

 

Fℎ0HI18CC = 	
∑.2/0!	(4,5!/6)
∑ 4,5!/6	8"                                                                                                          (3.3) 
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Where value (pixels) is the pixel height multiplied by the number of slices in the column 

counted as biomass. In the binary image the algorithm looks from the top to the bottom of 

the image stack and locates the highest point above each pixel in the bottom layer 

containing biomass. The number pixels counted as biomass in the same column are 

multiplied by the height of the slice. All the values obtained from above calculations are 

stored. Then the average of the heights of all pixel columns is calculated. It ignores pores 

and voids inside the biofilm.  

 

The roughness coefficient provides a measure of how much the thickness of the biofilm 

varies with respect of its average and is a measure of heterogeneity, the smaller the value, 

the greater uniformity of the biofilm.  The roughness coefficient was estimated by 

COMSTAT using  

 

J,>9ℎ18CC = 	
9

&(12,(×;<,=>&!66	
		∑ C.,/C	[0]	B	(/ℎ0HI18CC	[0] − /ℎ0HI18CC)6/,=!6

,?9               (3.4) 

 

Where nspots is the total number of spots found with biomass, thickness refers to the average 

thickness from Equation 3.3, spots [i] contains the spots found on slice i, thickness [i] contain 

the thickness defined by slice i.  

 

To obtain 3D impressions of the structures of interest, the maximum intensity Z-projection 

function in ImageJ was used. This function applies a mathematical algorithm to remove the 

out of focus information, so that sharper images can be produced. To obtain 3D 

reconstructions from the image stacks, the 3D volume viewer plugin was used. First, the 

image stacks (8-bit) were transformed to RGB stacks and then uploaded to the 3D volume 

viewer plugin as a volume with a 3D-(xyz)-space. The viewing angle of the images was 

adjusted to rotate and visualize the particles from different angles. By capturing several 

images from different angle views, it was possible to create rotating animations of the 

particles. 
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3.2.7 DATA AND STATISTICAL ANALYSIS 

 

For the statistical analysis of the experimental data the OriginPro® software version 2021 

(Origin-Lab Corporation; Northampton, MA, USA) was used. 

 

Sorption experimental data were fit to the Freundlich model using IsoFit (Mattot, 2007).  

The Kf and nf model parameter values, standard errors and 95% confidence intervals were 

determined. 

 

Microcosm experimental data (e.g., toluene and methane) from the AC, KC and KP 

microcosms was corrected for sampling loses at each sampling time point (see Appendix 2 

for list of steps used), then toluene degradation and methane production was evaluated.  In 

the AT microcosms the methane produced was used as a proxy for methanogenic toluene 

biodegradation by 

 

C7H8 + 7.102 H2O + 0.072 NH4
+ → 2.318 HCO3

- + 4.32 CH4 +2.39 H+ + 0.072 C5H7O2N       (3.5) 

 

to determine the mass of toluene degraded. 

 

The mass of toluene in the AT microcosm system was estimated by 

 

Ms = M’sp - Md                                                                                                                                 (3.6) 

 

where Ms is the mass of toluene in the system (at that current time point) in mg, M’sp is the 

mass of toluene (mg) in the system in the previous sampling point (after correcting from 

sampling losses) and Md is the mass of toluene degraded over that time interval (from 

previous sampling point to the current time point). The mass of toluene sorbed to the PAC 

(MPAC) was then estimated based by mass balance as given by 

Ms = Mw + Mg + MPAC                                                                                                                                                                                  (3.7) 
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where Ms in the mass of toluene in the system in mg, Mw is the mass of toluene in the 

aqueous phase, Mg is the mass of toluene in the gas phase and MPAC is the mass of toluene 

sorbed to PAC in mg.  

 

The mass sorbed to PAC was also estimated from  

 

M@A' = ?@A'(%$B
&#                                                                                                                       (3.8) 

 

where MPAC is the mass of toluene sorbed to PAC (mg), mPAC is the mass of PAC (dw) in g, Kf 

and nf are the Freundlich parameters and Cw is the concentration of toluene in the aqueous 

phase (mg/L). The Freundlich parameters obtained from the model best fit for in Fresh PAC 

and bio-coated PAC at Day 80 and 180 were used.  

At four time points (Day 62, 78, 149 and 175), PAC solid phase solvent extraction was 

performed to determine the mass sorbed to PAC (observed). 

 

The concentration of toluene sorbed to PAC is given by 

$@A' =
C3".
$3".

                                                                                                                                   (3.9) 

 

Where CPAC is the concentration of toluene sorbed to PAC in mg/g, mPAC is the mass of PAC 

(dw) in g, and MPAC is the mass of toluene sorbed to PAC (mg). 

 

The quantitative biofilm experimental data were analyzed statistically using the non-

parametric two-tailed Mann-Whitney-U-test to compare two independent groups of data. 

The significance level was set at p = 0.05 (95% confidence level) to determine whether there 

were significant differences in the parameters (biovolume, biomass, thickness, and 

roughness) analyzed at different time points of biofilm growth.  
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CHAPTER 4 

RESULTS AND DISCUSSION 
 

 

As described in Chapter 3, this research was conducted in three sequential phases. Figure 

4.1 shows the 180-day experimental timeline including the sampling and characterization 

events performed during the course of this research. 

 

 

 
Figure 4.1. Experimental research timeline. The microcosm set-up was selected as Day 0.  

 

 

4.1 BATCH SORPTION EXPERIMENTS WITH FRESH PAC 

 

It has been demonstrated that the Freundlich isotherm represents the adsorption of 

aqueous PHCs to PAC, and is given by:  

 

!! = (%$!
&#                                                                                                                                   (4.1) 
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where qe is the equilibrium mass of sorbate per gram of sorbent (mg/g), Kf ((mg/g)(L/mg)n) 

and nf (dimensionless) are the Freundlich parameters indicating sorption capacity and 

intensity respectively, and Ce is the equilibrium aqueous phase sorbate concentration in 

mg/L. The Freundlich model assumes a heterogeneous surface of the sorbent material, 

where the adsorption capacity is strongly influenced by the concentration of the adsorbate 

in the solution under equilibrium conditions (Canzano et al., 2014; Dada et al., 2012). The 

Freundlich parameter (Kf) is indicative of sorption capacity, and compounds with Kf values 

> 10 (mg/g)(L/mg)n can be considered to be well removed by AC (Summers et al., 2010). 

 

Figure 4.2 represents the sorption isotherm data for toluene on fresh PAC. The data show 

that the adsorption capacity steepens rapidly at low concentrations indicating readily 

abundant and accessible sorption sites on the PAC surfaces. However, as the toluene 

concentration increases, the isotherm becomes asymptotic indicating that available 

sorption sites are saturated by the increased number of adsorbate molecules.  

 

The adsorption equilibrium data generated in the bottle-point experiments were fit to the 

Freundlich model using IsoFit (Mattot, 2007). The estimated model parameters along with 

their 95% confidence intervals (CI) are listed in Table 4.1. The Kf value obtained (79.8 

(mg/g)(L/mg)0.35) indicates a good affinity of PAC for toluene. This is not surprising given the 

hydrophobicity of toluene (log Kow 2.69) and its molecular configuration, as well as the high 

surface area of the WPC ® PAC (89% of the pore volume are micropores (Liu, 2017)). The 

Freundlich exponent nf represents the adsorption intensity, and indicates how favorable 

the adsorption process is with values of nf < 1 denoting favorable adsorption (Bandosz, 

2006). In addition, a lower nf value indicates greater sorption capacity at low aqueous 

concentrations as noted above. The nf value obtained (0.35) indicates that sorption of 

toluene to fresh PAC was favorable. The detailed data from the experiments (aqueous and 

solid phase concentrations) can be found on Appendix 2. A mass balance analysis using the 

aqueous and solid phase concentrations indicated that < 3% of the toluene mass was 
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unaccounted. This suggest that the generated model parameters are reliable for use in 

Phase 3. 

 

Table 4.1. Freundlich sorption model parameters and 95% confidence interval (CI) for 
toluene/PAC system. 
 

 

 

 

 

 

 

A similar observation was reported by Zhao et al. (1999) who evaluated the adsorption 

characteristics of toluene to fresh GAC and obtained a Kf of 79.3 ± 3.3 and nf of 0.37 ± 0.03. 

Voice et al. (1992) obtained a Kf value of 83 and nf value of 0.44 for toluene sorption to fresh 

GAC. Chatzopoulos et al. (1993) determined a Kf of 88.5 and nf of 0.27 for equilibrium 

toluene concentrations between 0.7 and 50 mg/L on PAC.  

 

To investigate the reversibility of the adsorption process, single step desorption 

experiments were conducted as discussed in Chapter 3. These desorption data (Figure 4.2) 

lie slightly above the adsorption data indicating that a fraction of the toluene (68.75 ± 8%) 

was not desorbed. The toluene mass balance error was < 11%. For reversible adsorption, 

the sorption and desorption data sets should be statistically similar, indicating similar 

retention irrespective of the pathway (González-Machado et al., 2018). Hysteresis can occur 

for a number reasons including: (1) when molecules experience high energy bonding to the 

carbon surface functional groups (Aktaş & Çeçen, 2007; Klimenko et al., 2002; Yonge et al., 

1985); (2) due to presence of molecular oxygen on the AC surface which interacts with 

functional groups of the adsorbate (e.g. methyl groups) and can result in oxidation reactions 

promoting irreversible adsorption (Aktaş & Çeçen, 2007; De Jonge et al., 1996; 

Vinitnantharat et al., 2001); and (3) due to the high surface area of WPC®PAC that allows 

Parameter Value CI 

Kf 
[(mg/g)(L/mg)n] 

79.8 67.3 – 92.2 

nf 0.35 0.29 – 0.42 

R2 0.98 
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multiple contact points between molecules and pore walls, resulting in entrapment of the 

molecules within the carbon matrix and consequently the blocking of the diffusion network 

(Aktaş & Çeçen, 2007; Bandosz, 2006; Bansal & Goyal, 2005; Fan et al., 2017; Yakout & 

Daifullah, 2014; Yonge et al., 1985).  

 

 

Figure 4.2. Sorption ( ) and desorption ( ) equilibrium data for toluene on fresh PAC. The 
symbols are the actual data points, while the solid line represents the least-squares fit for 
Eq (4.1). The connected sorption-desorption data are indicated by A-A’, B-B’, C-C’, D-D’, E-

E’, F-F’, and G-G’. Error bars represent the standard deviation of triplicate bottles. 
 

 

Yakout & Daifullah (2014) reported that about 67% of toluene remained sorbed to AC 

prepared from rice husk following desorption. This suggests strong adsorption of aromatic 

compounds to AC. In contrast, a study using PAC F300® observed that the extent of 

hysteresis of toluene was small (5%) suggesting that the adsorption of toluene was highly 

reversible (Chatzopoulos et al., 1993). 
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4.2 MICROCOSMS EXPERIMENTS 

 

4.2.1 TOLUENE AND METHANE BEHAVIOR 

 

Toluene and methane mass determined over the 180-day long experimental period are 

displayed in Figure 4.3. Figure 4.3(a) represents the “active” microcosms that were 

amended with the live culture, and Figure 4.3(b) represents the “killed” or control 

microcosms that were amended with autoclaved culture. 

 

All microcosms (except for the SC) were spiked with 7.66 ± 0.3 µmoles/bottle of toluene on 

Day 0. Variations in mass in the sterile controls are presumed to be related to sampling 

inconsistencies. In general, the KP microcosms showed minor decreases in toluene, while 

toluene mass in the KC microcosms was observed to decrease consistently (Figure 4.3b). 

The KC system is characterized by an aqueous and gas phase, and due to the high volatile 

nature of toluene (dimensionless Henry’s constant of ~0.27) mass partitioned from the 

aqueous phase to the gas phase and was potentially lost during sampling events or by gas 

leakage through the Mininert valve. In contrast, the KP system is characterized by three 

phases, an aqueous, gas and solid (PAC) phase and in this case, toluene was partitioned to 

a greater extent in the PAC due to the sorption characteristics of PAC for toluene. As a result, 

the aqueous and gas phase concentrations were less, and thus mass losses due to sampling 

or gas leakage were lower compared to the KC microcosms. 

 

In both sterile controls (KC and KP), little to no methane was produced (0.003 ± 0.001 

µmoles) over the course of the experiment (Figure 4.4). The amended culture in these 

microcosms was autoclaved for three consecutive days, thus no biological activity was 

expected. In the starved control (SC), some methane was produced (3.87 ± 1.7 µmoles) and 

was observed to evolve from Day 0 (Figure 4.3) presumably due to culture decay as no 

toluene was present. 
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Toluene degradation was monitored, and microcosms were re-spiked with toluene as 

required (indicted by the gap in toluene profiles) (Figure 4.3). Between Day 0 and Day 30 a 

slight toluene loss was observed in the active microcosms (AT: 1.11 ± 0.34 µmoles, AC: 2.01 

± 0.64 µmoles) with similar degradation rates, AT (0.04 ± 0.01 µmoles/ day) and AC (0.07 ± 

0.02 µmoles/ day). Over the first 30 days, the AT microcosms produced 4.80 ± 1.50 µmoles 

of methane and the AC microcosms produced 5.88 ± 2.77 µmoles of methane. 

Methanogenesis was the degradation pathway occurring in the active microcosms, as 

methane was detected immediately following experimental setup.  

 

On Day 30, all microcosms (except for the SC) were re-spiked, increasing toluene mass to 

10.89 ± 0.79 µmoles/bottle. Biodegradation was evident from this re-spike onwards, as 

observed by the decrease of toluene and increase of methane. On Day 78, toluene was 

completely degraded in the AC microcosms (below MDL), whereas in the AT microcosms 

toluene was not completely degraded (4.37 ± 1.23 µmoles of toluene/bottle remaining) in 

the system. Between Day 30 and Day 78 degradation rates were 0.12 ± 0.03 µmoles/ day 

and 0.12 ± 0.04 µmoles/ day in AC and AT microcosms, respectively.  

 

On Day 82, toluene was re-spiked in the AC and AT microcosms increasing toluene mass to 

8.56 ± 0.70 µmoles/bottle and 13.09 ± 1.24 µmoles/bottle, respectively. By Day 111 toluene 

was completely degraded (below MDL) in the AC microcosms, whereas in the AT 

microcosms 6.73 ± 1.44 µmoles/bottle remained in the system.  By Day 111, 20.28 ± 1.3 

µmoles of toluene were degraded in the AC microcosms and 14.19 ± 1.44 µmoles were 

degraded in the AT microcosms (Figure 4.4). Between Day 82 and Day 111, degradation 

rates of 0.29 ± 0.02 µmoles/ day and 0.22 ± 0.09 µmoles/ day were estimated for the AC 

and AT microcosms, respectively.   
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Figure 4.3. Toluene mass (solid lines) and methane production (dashed lines) over the 180-day microcosm period. (a) active 
microcosms: active treatment (AT, active culture + toluene + PAC, red ( ), toluene mass estimated by Equation 3.6 using 

stoichiometric ratio of methane produced); active control (AC, active culture + toluene, blue ( )); starved control (SC, active culture + 
PAC, grey ( )). (b) sterile or killed controls: killed control (KC, killed culture + toluene, blue ( )); killed PAC control (KP, killed culture + 

PAC + toluene, red ( )).  Error bars represent the standard deviation of measurements from triplicate bottles. A gap in toluene 
profiles indicates a re-spike episode. 
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On Day 114, toluene was re-spiked in the AT and AC microcosm increasing the mass to 13.23 

± 1.44 µmoles/bottle and 6.37 ± 0.82 µmoles/bottle, respectively. By Day 140, most of the 

toluene was degraded in the AC microcosms (0.41 ± 0.4 µmoles/bottle remaining). In the 

AT microcosms, toluene mass was ~ 8.68 ± 4.06 µmoles/bottle. Between Day 114 and Day 

140 estimated degradation rates were 0.23 ± 0.05 µmoles/day for the AC microcosms and 

0.13 ± 0.10 µmoles/day for the AT microcosms.  

 

On Day 150 the active microcosms (AT and AC) were re-spiked increasing toluene mass to 

7.03 ± 6.71 µmoles/bottle in the AT microcosms, and 2.21 ± 0.27 µmoles/bottle in the AC 

microcosms. By Day 175 all toluene was degraded in the AC microcosms (below MDL), and 

in the AT microcosms between 8 to 10 µmoles toluene remained in the system. Between 

Day 150 and Day 175 estimated degradation rates were 0.09 ± 0.01 µmoles/day in the AC 

microcosms and 0.02 ± 0.13 µmoles/ day in the AT microcosms. By Day 175, 121.38 ± 20.48 

µmoles of methane were produced in the AC microcosms, and 110.15± 39.17 µmoles of 

methane were produced in the AT microcosms. Over the duration of this microcosm 

experiment, 28.42 ± 0.26 µmoles/bottle of toluene were degraded in the AC microcosms 

and 24.55 ± 10.03 µmoles/bottle of toluene were degraded in the AT microcosms based on 

methane production (Figure 4.4).   
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Figure 4.4. Cumulative toluene mass lost and cumulative methane evolved over the 180-
day period of the microcosm experiments amended with toluene. Active microcosms: 

active treatment (AT, active culture + toluene + PAC, red ( ), toluene mass estimated by 
Equation 3.6 using stoichiometric ratio of methane produced); active control (AC, active 
culture + toluene, blue ( )); sterile or killed controls: killed control (KC, killed culture + 
toluene, green ( )); killed PAC control (KP, killed culture + PAC + toluene, orange ( )).  
Error bars represent the standard deviation of measurements from triplicate bottles. 

 

 

In general, average toluene degradation rates were higher in the AC microcosms compared 

with the AT microcosms for all degradation cycles (Table 4.2). However, overall rates are 

statistically similar for both systems. In the AC microcosms, a greater fraction of toluene 

mass was in the aqueous phase and thus readily bioavailable for microbial oxidation. In 
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solid phase (PAC).  Since the microorganism size > PAC micropore size, biodegradation 

should occur external to the PAC matrix and after desorption/diffusion from the micropores 

(Fan et al., 2017). Thus, the rate of biodegradation of toluene in the AT systems should have 

been governed by the rate of desorption from PAC.  

 

 

Table 4.2. Summary of estimated toluene degradation rates for each time interval in the AC 

and AT microcosms. 

 AC AT 
Time interval Rate S.D. Rate S.D. 

days µmoles/ day µmoles/ day 
1 - 28 0.07 0.02 0.04 0.01 
30 -78 0.12 0.03 0.12 0.04 

82 - 111 0.29 0.02 0.22 0.09 
114 - 140 0.23 0.05 0.13 0.10 
150 - 175 0.09 0.01 0.02 0.13 
Overall 0.15 0.02 0.14 0.05 

 

 

Bioregeneration of AC is constrained by adsorption reversibility (Aktaş & Çeçen, 2007; 

Klimenko et al., 2003; Nath & Bhakhar, 2011). In the AT microcosms, toluene was 

successfully desorbed from PAC as these microcosms had an active toluene degrading 

microbiota. The sorption, desorption and degradation of sorbates on PAC amended systems 

in the presence of active microbial degraders is a result of physical, chemical and biological 

reactions (Mason et al., 2000). As microorganisms degrade the dissolved toluene, a shift in 

equilibrium conditions is experienced causing the sorbates (e.g., toluene) to desorb and 

diffuse from within the PAC particles to areas where biodegradation takes place (Fan et al., 

2017; Nath & Bhakhar, 2011; Simpson, 2008). 
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Figure 4.5.  Mass (left Y-axis) and concentration (right Y-axis) of toluene sorbed to PAC 
over the 180-day period in the AT microcosms: MPAC and CPAC were estimated by Equation 
3.7 and 3.9, respectively (black ( )); MPAC and CPAC observed from PAC extraction (green (

)); MPAC and CPAC estimated by Equation 3.8 and 3.9, respectively, using the Freundlich 
model parameters obtained from the fresh PAC isotherm best fit and aqueous phase 

toluene concentration (red ( )). Error bars represent the standard deviation of 
measurements/estimates from triplicate bottles. A gap in toluene profiles indicates a re-

spike episode. 
 

 

Figure 4.5 shows the mass of toluene sorbed to the PAC as estimated from the mass balance 

Equation 3.7, along with PAC extraction data from Day 62, 78, 149 and 180 as indicated by 

the different symbols. In addition, Figure 4.5 shows the estimated mass of toluene sorbed 

to PAC obtained from Equation 3.8 using the Freundlich parameters for fresh PAC (Kf = 79.8; 

nf = 0.35). At the beginning of the experiment, the estimated mass of toluene sorbed to the 

PAC was 0.69 ± 0.003 mg (= 63.91 ± 0.3 mg /g PAC) from mass balance and 1.69 ± 0.03 mg 

(= 165.17 ± 1.96 mg/g PAC) using the Freundlich equation. After the second re-spike (Day 

30), the estimated sorbed mass increased to 0.87 ± 0.09 mg (= 84.62 ± 9.07 mg/g) from 
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mass balance, while the estimate using the Freundlich equation increased to 1.98 ± 0.29 mg 

(= 193.79 ± 26.94 mg/g). Near the middle of the experiment (Day 78), data from PAC 

extraction showed that the toluene mass sorbed to the PAC decreased to 0.20 ± 0.05 mg (= 

20.22 ± 5.2 mg toluene/g PAC), whereas when estimated from the Freundlich equation the 

mass was 0.67 ± 0.12 mg (=65.44 ± 12.16 mg/g).  After three re-spiking events, the 

estimated mass of toluene sorbed to the PAC increased to 1.20 ± 0.14 mg (= 117.23 ± 14.74 

mg/g) from mass balance considerations and 1.99 ± 0.32 mg (194.56 ± 28.96 mg/g) from 

the Freundlich equation.  At the end of the experiment (Day 180) the PAC extraction showed 

that the toluene mass decreased to 0.05 ± 0.007 mg (= 5.5 ± 0.7 mg/g). At the same time 

point (Day 180) the estimated mass sorbed to PAC using the Freundlich equation was 0.52 

± 0.01 mg of toluene (= 51.40 mg/g). These results show that the mass of toluene sorbed to 

PAC predicted by the Freundlich model (using fresh PAC parameters) greatly overestimated 

the observed results from PAC extractions. Nevertheless, it is clear that toluene desorbed 

from PAC as a result of the decrease in aqueous phase concentration due to microbial 

biodegradation.  

 

The assembled data set demonstrates: (1) that toluene readily desorbs from PAC when an 

active microbiota is present and (2) is subsequently degraded. As previously mentioned, the 

decrease in toluene concentration in the aqueous phase generated a shift in equilibrium 

conditions causing desorption from the PAC making toluene bioavailable for the microbial 

degraders. Also, sorption sites can be recovered due to the reversible sorption process 

allowing further sorption of the adsorbate (Zhao et al., 1999). This reflects the positive 

impact of microorganisms in regenerating PAC. 

 

 

 

 

 

 



 76 

4.2.1.1 pH, DO AND ORP 
 

pH, DO and ORP were measured at Day 0, 50, 80, 140 and 180 (refer to Appendix 1). The pH 

at Day 0 was 7.05 ± 0.02 (optimal growth pH for cells) and decreased to 6.59 ± 0.15 by Day 

180. This minor decrease is likely a result of the anaerobic degradation of toluene which 

produces hydrogen ions, and the increases in CO2 in the system.  

 

The ORP at Day 0 was -237.8 ± 27.2 mV, reflecting the suitability of using FeS as a reducing 

agent. By Day 180, the ORP decreased to -286.95 ± 7.5 mV, the decrease in ORP is attributed 

to the increase in methanogenic microbial activity which is characterized by a highly 

reduced environment.  

 

The DO concentration Day 0 was 0.03 ± 0.02 mg/L as confirmed by the clear colour in the 

resazurin microcosm bottles. DO was maintained at similar low concentrations during the 

experiment, except at Day 180 where concentrations increased to 0.12 ± 0.02 mg/L likely 

due to a poor probe calibration rather than an actual increase in DO. The microcosms 

bottles were stored in the anaerobic chamber supplied with N2/H2/CO2 and with a palladium 

catalyst which scavenges oxygen molecules. Although there was potential for some oxygen 

contamination, especially when material was introduced to the anaerobic chamber, the 

oxygen levels were always allowed to decrease to non-detect before sampling was 

conducting. 
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4.2.2 BIOFILM CHARACTERIZATION 
 

The presence, growth and organization of the PAC biofilm was examined by CLSM. Two 

negative controls were imaged to determine the autofluorescence of the PAC and/or the 

PAC-stain interactions so that actual biomass was observed on the bio-coated PAC samples 

and to understand background noise.  The autofluorescence of fresh PAC without microbial 

culture contact and stain were imaged and no signal was detected indicating that fresh PAC 

had no autofluorescence. To determine PAC-stain interactions that could produce 

fluorescence, fresh PAC samples were stained with SYTO9 dye and imaged. No signal was 

detected consistent with previous findings that SYTO9 dye displays a low intrinsic 

fluorescence in cell-free systems and fluorescence can only be observed upon binding with 

DNA (Wlodkowic et al., 2008).  

 

 

4.2.2.1 QUALITATIVE CHARACTERIZATION 
 

Microbial interaction with AC is primarily influenced by the surface charge since the 

microbial cell walls have a negative charge. Based on the pHPZC, the WPC® PAC would be 

positively charged in a system with a pH < 10 (Liu, 2017), and thus electrostatic adsorption 

should be promoted. A few different cell morphologies were observed attached to the PAC. 

This included rod-like cells which were predominant with a length of 1.5 ± 0.8 μm; thin rod 

cells with a length of 0.7 ± 0.1 μm; and sometimes chains of rod-like cells with a length of 

3-10 μm (see Figures 4.6 to 4.15). The 3-D reconstructions of the particles allow for 

visualization of biofilm attachment to the PAC.  

 

By Day 50 the microbial attachment observed on the PAC surfaces were a few individual 

cells randomly dispersed (Figures 4.7 and 4.8). This type of spotty aggregation represents a 

transitional state that precedes the formation of a structured biofilm (Bogino et al., 2013). 

During the early stage of PAC colonization (Day 80) some cells formed clusters on the 

surface of the PAC (Figures 4.9 and 4.10). These microcolonies were observed particularly 
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on particles > 10 μm, presumably due to a larger contact surface area between the cells and 

the PAC which enabled a higher degree of attachment and stability. 

 

By Day 140 (Figures 4.11 and 4.12), an increase of the number of cells and cell clusters 

attached to the PAC surfaces, compared to Day 80, was observed indicating that the 

microbes were to attaching to each other. On Day 180 (Figures 4.13 to 4.15), two types of 

growth were observed: (1) a monolayer of cells completely covering the particles, and (2) a 

discontinuous multilayer of cells. In addition, thicker cell colonies were observed to have 

developed on the PAC. This increased coverage and thickness (Figures 4.13 to 4.16) is a 

result of more surface area contact between the cells and the PAC. Eventually, continual 

microbial growth would likely have resulted in entire coverage of the PAC particles (Massol-

Deya et al., 1995) 

 

Although EPS was not observed to be the prevalent biofilm component, the images clearly 

show that a biofilm was formed on PAC.  The biofilms formed by the DGG-T culture were 

observed to be characterized by a slow growth in both cells and EPS. Biofilm formation 

varies by microbial species, some are characterized by rapid growth and extensive EPS 

production such as P. aeruginosa, while others are deficient in certain proteins that play an 

important role in biofilm formation (D. López et al., 2010).  

 

As described above, cell attachment and biofilm formation on PAC was observed to be 

heterogeneous with high variability between PAC particles likely related to surface 

irregularity. Song et al. (2010) and Zhao et al. (1999) reported a similar type of biofilm on 

AC where a non-uniform biofilm was characterized by localized concentrations of bacteria.  

Van Der Mei et al. (2008) studied the adhesion of bacteria to AC particles, specifically a 

positively charged coconut-based carbon from Calgon Carbon (similar to the one used in 

this study) sieved to a particle size of 25-50 μm. They found highly variable cell adhesion 

between single particles (n = 10).  
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Figure 4.5 shows microscopic images from the mixed methanogenic culture biofilm 

detached from the PAC at Day 180.  Based on these images the cell concentration was 

estimated to be 7.02 ± 0.87 x1010 cells/g PAC.  Reaume et al. (2014) observed cell 

concentrations of 4.0 x 1010 cells/g GAC in a packed bed biofilter used for treating municipal 

water. Capozzi et al. (2019) grew an anaerobic biofilm on different carbonaceous materials 

and after 159 days of biofilm growth reported a cell concentration of 1.2 x 109 and 1.5 x 

1010 cells/g of AC and bone char respectively. Massol-Deya et al. (1995) reported bacterial 

concentrations ranging from 109 to 1011 cells/g AC, and Combarros et al. (2014) indicated 

values between 2.8 x 1010 to 7.5x1010 cells/g of AC. Thus, the cell concentration estimated 

in this work is consistent with values reported by others for AC systems. 

 

 

       

Figure 4.6. Mixed methanogenic toluene degrading culture cells from detached biofilms 

stained with SYTO 9 for cell density enumeration. Scale bar denotes 20 μm. 

 

 



 80 

 
Figure 4.7. Maximum intensity projection CLSM images of biofilms on the surface of PAC 

particles at Day 50. Cells labeled with SYTO9 stain (green) and EPS labeled with Con A 
(red), PAC surface (black). The scale bar denotes 5 μm. 

 

 
Figure 4.8. Constructed CLSM three-dimensional image of biofilm on surface of a PAC 

particle at Day 50. 
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Figure 4.9. Maximum intensity projection CLSM images of biofilms on surfaces of PAC 
particles at Day 80. Cells labeled with SYTO9 stain (green) and EPS labeled with Con A 

(red), PAC surface (black). The scale bar denotes 5 μm. 
 

 
Figure 4.10. Constructed CLSM three-dimensional image of biofilm on surface of a PAC 

particle at Day 80. 
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Figure 4.11. Maximum intensity projection CLSM images of biofilms on surfaces of PAC 
particles at Day 140. Cells labeled with SYTO9 stain (green) and EPS labeled with Con A 

(red), PAC surface (black). The scale bar denotes 5 μm. 
 

 
Figure 4.12. Constructed CLSM three-dimensional image of biofilm on the surface of a PAC 

particle at Day 140. 
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Figure 4.13. Maximum intensity projection CLSM images of biofilms on the surface of PAC 

particles at Day 180. Cells labeled with SYTO9 stain (green) and EPS labeled with Con A 
(red), PAC surface (black). The scale bar denotes 5 μm. 

 

 
Figure 4.14. Constructed CLSM three-dimensional images of biofilm on the surface of a 

PAC particle at Day 180. 
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Figure 4.15. Constructed CLSM three-dimensional image of biofilm on the surface of a PAC 

particle at Day 180.  
 

 
Figure 4.16. Orthogonal view of biofilm formation at Day 180 showing biofilm thickness. 

Scale bar denotes 10 μm.   
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4.2.2.2 QUANTITATIVE CHARACTERIZATION 
 

A detailed descriptive statistic of the biofilm parameters (Table A2.4), and the p-values 

obtained between time points tested (Table A2.5) can be found in Appendix 2. 

 
Biovolume 

 

Biovolume is the volume of the biofilm components (either cells or EPS) attached to the PAC 

surfaces and can be used to estimate the number of cells based on average cell dimensions. 

Cell and EPS biovolume was highly variable between PAC particles (n = 50) at all 

characterization time points and in general increased over the 180-day experimental period 

for both components (Figure 4.17(a,b)).  There was a statistically significant difference (p < 

0.05) in cell biovolume between all sampling points indicating substantial cell growth over 

time. This is supported by the visual observation of PAC particles at Day 50 and Day 180 (see 

Figures 4.7 and 4.13) where an increase in the number of cells attached to the PAC is 

evident. The EPS biovolume showed a statistically significant increase (p < 0.05) between 

Day 50 and Day 80, and between Day 80 and Day 140, but not between Day 140 and Day 

180 (p > 0.05). However, when comparing EPS production between Day 80 and Day 180, a 

statistically significant difference in biovolume was determined. 

 

 
Figure 4.17. Biovolume of (a) cells ( ) and (b) EPS ( ) of the anaerobic toluene degrading 

culture biofilm at different time points (n = 50).  
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Biomass 

Biomass is the amount of biological material per unit area of PAC (µm3/µm2).  It is an 

estimation of the amount of biofilm formation attached to the PAC surface and is useful 

when comparing the amount of living material covering different substrates. As observed 

on Day 50 (Figure 4.18) the average cell biomass was 0.11 µm3/µm2 (0.02 (lower quartile, 

Q1) to 0.17 µm3/µm2 (upper quartile, Q3), with a range of 0.15 µm3/µm2 covered by the 

interquartile range (IQR)), and average EPS biomass was 0.09 µm3/µm2 and ranged from 

0.008 (Q1) to 0.15 µm3/µm2 (Q3), with an IQR of 0.146 µm3/µm2. From the CLSM images, 

at this time point, only a few cells were observed randomly attached to the PAC. There was 

no statistically significant difference between the biofilm components.   

 

 

 
Figure 4.18.  Biomass of the anaerobic toluene degrading culture biofilm components 

(cells ( ), green; EPS, ( ) red) on PAC (( ) grey) at different time points. Error bars 
represent ± one standard deviation, (n = 50). 
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0.15 µm3/µm2 (Q3), IQR of 0.10 µm3/µm2). A visual inspection of the particles showed some 

microcolonies forming by Day 80 which resulted in the increase of biofilm biomass. Between 

Day 80 and Day 180, a statistically significant increase in cell biomass was also determined. 

The cell biomass at Day 180 increased to an average of 0.29 µm3/µm2 (0.64 (Q1) to 0.36 

µm3/µm2 (Q3)). For the EPS component, the biomass increased to an average of 0.21 

µm3/µm2 (0.06 (Q1) to 0.25 µm3/µm2 (Q3)). A statistically significant increase in biomass 

was determined between Day 50 and Day 180. The high variability of biomass attachment 

could be attributed to the irregular surface of AC particles, as well as the variation in sizes 

between PAC particles. Larger contact surface area between the cells and the PAC will 

enable a higher degree of attachment and stability which will promote the biomass growth 

on those surfaces.  

 

 

Thickness 

Biofilm thickness is especially important for biofilms growing on materials where sorption 

is used for contaminant removal. Thicker biofilms may decrease the sorption kinetics due 

to increased diffusional resistance. Figure 4.19 shows that the average cell thickness 

remained relatively constant on Day 50, Day 80 and Day 140 (4.49 ± 1.4 μm, 4.26 ±1.3 μm, 

and 4.2 ± 2.6 μm respectively) and no statistically significant difference was determined 

between any of those time points. However, a statistically significant increase in cell 

thickness was determined at Day 180 with an average thickness of 7.39 ± 3.9 μm. These 

observations are consistent with Capozzi et al. (2019) who observed that a constant cell 

thickness (4.4 ± 0.56 μm) remained over 159 days for an anaerobic dehalorespiring biofilm 

growing on AC.  
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Figure 4.19. Biofilm thickness of the anaerobic toluene degrading culture components 

(cells ( ), green; EPS, ( ) red) on PAC at different time points. Error bars represent ± one 
standard deviation, (n = 50). 

 

 

The EPS thickness was not statistically significantly different between Day 50 (3.64 ± 0.9 μm) 

and Day 80 (3.26 ± 1.5 μm), while the increase between Day 80 and 140 (5.85 ± 1.9 μm) was 

statistically different. The EPS thickness was not statistically different between Day 140 and 

Day 180 (6.41 ± 3.4 μm) meaning that between those time points the thickness did not 

increase significantly. However, the EPS thickness was statistically different between Day 

50 and Day 180, which means that over the length of the experiment, the EPS accumulated 

gradually resulting in a significant increase in thickness.  

Biofilm thickness is a result of environmental conditions, such as, flow, nutrient availability 

and temperature, as well as developmental age of the biofilm.  As a biofilm ages, it is 

expected that an accumulation of biofilm components that will result in an increase in 

thickness. These results are consistent with the observations on the CLSM images where 

multi-layers of cells were observed on some PAC particles at Day 180.   
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Roughness  

Biofilm roughness describes the degree of uniformity of the developed biofilm. It provides 

information on biomass structure and architecture to complement the characterization of 

the biofilm. A roughness coefficient of zero indicates a uniform biofilm, and the greater the 

roughness coefficient the more heterogeneous the biofilm (González-Machado et al., 2018). 

The biofilm roughness was similar throughout the experiment (Figure 4.20) with a high 

roughness coefficient observed (~1.6). Although comparing the cell roughness between Day 

50 and Day 180, a statistically significant difference was determined (p < 0.05).  

 

 

 

Figure 4.20. Roughness of the anaerobic toluene degrading culture biofilm components 
(cells ( ), green; EPS, ( ) red) on PAC at different time points. Error bars represent ± one 

standard deviation, (n = 50). 
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difference between the various time points. Although the EPS biovolume and thickness 

increased over time, due to the interwoven nature of the EPS, its formation is expected to 

be uneven. These results are consistent with the visual observation of CLSM images where 

a high degree of variability in attachment was observed on the PAC surfaces. Over time, if 

a greater accumulation of cells and EPS was achieved, perhaps a smoother layer would have 

been obtained on PAC surface.  
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4.3 EFFECT OF BIOMASS ON ADSORPTION  
 

To investigate the influence of a biofilm attached to PAC on the sorption of toluene, biofilm 

coated PAC samples were obtained from the microcosm experiments at two time points. A 

series of batch sorption experiments were performed on Day 80 and Day 180. The sorption 

characteristics of fresh PAC and the one of bio-coated PAC were compared to gain insight 

into the possible loss of adsorption capacity due to PAC ageing.  

 

The mass of sorbed toluene associated with the bio-coated PAC was determined prior to 

conducting the sorption experiments. As observed in Figure 4.5, the mass of toluene sorbed 

to the PAC was 20.22 ± 5.2 mg/g on Day 80, and 5.69 ± 0.7 mg/g on Day 180.  As a result of 

this initial mass sorbed, the data generated from the point-bottle experiments required 

modification as given by  

 

!′!" #!$%&!	#$%'#&$
(                                                                                                                          (4.2) 

 

where q’e is the adjusted equilibrium mass of sorbate per gram of sorbent (mg/g), C0 is the 

initial aqueous phase sorbate concentration in mg/L, Ce is the equilibrium aqueous phase 

sorbate concentration in mg/L, q0PAC is the initial mass of sorbate on the PAC, V is the volume 

of the aqueous phase in liters (L) and m is the mass of PAC in grams (g). The adsorption 

equilibrium data generated in the bottle-point experiments were fit to the Freundlich model 

using IsoFit (Mattot, 2007). The estimated model parameters and 95% confidence intervals 

(CI) are listed in Table 4.3. A paired t-test was applied to the experimental data showing 

that bio-coated PAC was significantly successful in removing toluene from the contaminated 

solution (p < 0.05). 

 
The adsorption isotherms of fresh PAC and of bio-coated PAC at Day 80 and Day 180 were 

compared. An F-test was used to compare the dataset obtained from the model best fit 

(fresh PAC vs Day 80 bio-coated PAC, fresh PAC vs Day 180 bio-coated PAC). At both time 

points, the bio-coated PACs showed a statistically significant difference in adsorption (p < 
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0.05) relative to the fresh PAC (Figure 4.21). The Kf value decreased from 79.8 (fresh PAC) 

to 50.7 at Day 80 and to 47.7 at Day 180.  Values of nf increased to 0.42 at both time points. 

The results indicate a decrease in sorptive capacity of both bio-coated PACs when compared 

to the fresh PAC. 

With a similar nf value, the adsorption capacity for toluene was reduced from Day 80 to Day 

180; however, an F-test (Day 80 bio-coated PAC vs Day 180 bio-coated PAC) showed no 

there was no statistical difference (p > 0.05). In addition, an examination of the 95% 

confidence intervals for Kf and nf at both time points indicates that they are not statistically 

different.  

 

Biological fouling arises from the proliferation of biomass and microbial by-products on AC 

surfaces. This causes blocking of AC pores that may limit the mass transfer of the sorbate 

to the AC matrix, as well as competition with the sorbate for available sorption sites, leading 

to a deterioration of adsorption performance (Hutchinson & Robinson, 1990; Leong et al., 

2018b; Yakout & Daifullah, 2014). Reports on other biofilm coated AC systems observed 

sorptive properties to deteriorate during biofilm formation/bioregeneration, and was 

attributed to the adsorption of lysed cells or the adsorption of microbial metabolites, and 

therefore complete recovery of the adsorption capacity was not achieved (Aktaş & Çeçen, 

2007).  
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Figure 4.21. Sorption isotherms for toluene on fresh PAC (black ( )), and bio-coated PAC 
at Day 80 (red ( )), and Day 180 (blue ( )). The symbols are the data points, while the 

solid line represents the least-squares fit. Error bars represent the standard deviation of 
triplicate bottles. 

 

 

Table 4.3. Adsorption isotherm parameters for PAC at different time points of biofilm 
formation. Confidence intervals (CI) set at 95%. 
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Similar results were found by Zhao et al. (1999) who evaluated the change in adsorption 

parameters on a bio-coated GAC grown on a fluidized bed reactor system for toluene 

contaminated water. The Kf value obtained for fresh GAC was 79.3 and the nf value was 

0.37. The Kf values decreased and nf values slightly increased during the experimental 

period. At Day 77 and Day 187 the Kf decreased to 46.3 and 37.7 and nf increased to 0.42 

and 0.51 respectively. 

 

Mason et al. (2000) evaluated the change in adsorption characteristics of PAC in a mixed 

bioreactor. In these experiments, an aerobic BTEX degrading biofilm was grown on the PAC. 

To determine the influence of a biofilm attached to the PAC on the change of sorption 

characteristics, a series of isotherms were carried out using methyl-tert-butyl ether (MTBE). 

The Freundlich parameters Kf and nf for the fresh PAC were 3.37 and 1.86 respectively, while 

for the bio-coated PAC, Kf ranged from 0.42 to 0.82 and nf ranged from 1.14 to 1.35. These 

results indicate that the adsorption capacity of PAC was significantly reduced due to biofilm 

presence.  

 

Zhao et al. (1999) observed that the capacity of GAC for toluene during the first 60 days of 

biofilm-GAC exposure decreased by 70% of the initial value at 3 and 10 mg/L, and then 

decreased to around 52 and 57% for 3 and 10 mg/L respectively after 200 days. 

Furthermore, they did not find a direct relationship between the amount of biomass 

attached to GAC or the thickness of the biofilm with the decreased adsorptive capacity. 

However, the duration of biofilm/GAC exposure (bioactivity) was considered to have 

influenced the loss of adsorption capacity. They suggested that the loss of GAC sorption 

capacity might have been due to the adsorption of soluble microbial metabolites (microbial 

by-products) excreted by the biofilm, which accumulated over time. Song et al. (2010) 

investigated the impact of biofilm formation on 2-NSA adsorption to GAC. Adsorption 

capacity decreased to 91% after 35 days of biofilm growth, however, variations in biofilm 

thickness and surface coverage (80%) had no effect on the change of adsorption capacity 

which remained at 90%. 
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In this study, on Day 80 the biomass present on the PAC was 0.22 ± 0.3 µm3/µm2 cells and 

0.13 ± 0.1 µm3/µm2 EPS, and the average cellular thickness was 4.26 ±1.3 µm and the 

average EPS thickness was 3.26 ± 1.5 µm. At Day 180, the average biomass was 0.3 ± 0.2 

µm3/µm2 cells and 0.21 ± 0.2 µm3/µm2 EPS, and the average thickness was 7.39 ± 3.9 μm 

for cells and 6.41 ± 3.3 μm for EPS. The biofilm development was significantly greater (p < 

0.05) at Day 180 than at Day 80. The Kf value indicates a slight loss in adsorption capacity 

from Day 80 to Day 180, however, the differences are not statistically significant (p > 0.05). 

Still, this slight decrease in Kf at Day 180 might be influenced by the increase in biofilm 

attached to PAC resulting from the increased time for bioactivity. From the data obtained, 

the change in sorption characteristic of the PAC for toluene over an extended period of 

biofilm formation appears to be a result of biological fouling (by biomass production and/or 

sorption of microbial metabolites).  

 

Combarros et al. (2014) observed that after a biofilm was developed on GAC surfaces, the 

GAC was not able to adsorb the test compound (salicylic acid) because the biomass likely 

plugged the active sites or the GAC was saturated with components of the synthetic water 

during biofilm formation. Similar results were observed by Klimenko et al. (2003) where the 

adsorption capacity of bio-coated AC decreased to 20% of the value of sorption on fresh AC 

and the extent of regeneration did not depend on the type of AC used. 

 

Treatment using PAC amendments generates an immediate reduction of contaminants in 

groundwater due to rapid adsorption of dissolved-phase sorbates (Fan et al., 2017). After 

adsorption, microbes degrade the dissolved-phase contaminants in the neighborhood of 

the PAC, and a shift in equilibrium conditions in which desorption of contaminants and 

regeneration of PAC sorption sites occur. These steps create a dynamic equilibrium where 

continuous sorption and degradation of contaminants will provide long-term groundwater 

treatment (Fan et al., 2017; Klimenko et al., 2003; Simpson, 2008). As such, the potential 

longevity of CBI is one of the major benefits of this technology (Fan et al., 2017). However, 

as observed in this research, one of the factors that may affect the long-term effectiveness 
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of PAC barriers is the fouling of PAC sorption sites due to bioactivity (biofilm formation 

and/or competitive sorption of microbial by-products generated during the process of 

biofilm formation), which might disrupt the synergistic interplay between the sorption-

desorption-degradation processes. Even when the contaminant (i.e., toluene) was 

desorbed from PAC and degraded by the microbes, PAC sorption capacity was reduced as a 

result of biofilm growth.  

 

To explore the impact that biofilm formation may have on the performance of a PAC barrier, 

a simple and conservative approach was adopted. Following placement of a PAC barrier to 

cut-off a plume, sorption of contaminants will take place and, after a sufficient time has 

passed, equilibrium will be reached, and breakthrough will occur if biodegradation is 

ignored. Figure 4.22 shows a schematic of an ideal PAC barrier with a plume entering from 

the left and a “treated” plume exiting on the right.  The time to barrier saturation or 

breakthrough can be estimated from (refer to Appendix 2 details) 
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                                                                                                    (4.3) 

 

where tsat is the time to barrier saturation in days, ø is the soil porosity, ρb is the soil bulk 

density in g/m3, Cwin is the aqueous contaminant concentration entering the barrier in g/m3, 

Kf and nf are the Freundlich parameters, fPAC is the fraction of PAC in the barrier, q is the 

groundwater specific flux in m/day, V is the volume of the PAC barrier in m3 and A is the 

cross-sectional area perpendicular to the direction of flow in m2.  If biodegradation occurs 

following placement of the PAC barrier, a biofilm will develop over time on the surface of 

PAC as demonstrated in this research, and PAC sorption sites will be blocked and the rate 

of mass transfer into the PAC will decrease (Hutchinson & Robinson, 1990). Once a biofilm 

has sufficiently developed, and assuming that biodegradation rates are less than 

equilibrium sorption kinetics and the mass loading to the barrier, the contaminant 

residence time in the PAC barrier would be insufficient for significant biodegradation to 

occur. As a result, sorption equilibrium will be obtained subject to the biofilm impacted 
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sorption conditions and breakthrough will occur. Of interest is the percent reduction in tsat 

of a bio-coated PAC once the above conditions have been established.  

 

 

Figure 4.22. Schematic of the simulated PAC barrier. 

 

 

Figure 4.23 illustrates the percent reduction in tsat for a bio-coated PAC as a function of the 

aqueous concentration entering the barrier relative to a fresh PAC using the system 

parameters shown on Figure 4.22. The tsat for the fresh PAC was calculated using the 

Freundlich parameters obtained from the best fit isotherm (Table 4.3). Similarly, the tsat for 

the bio-coated PAC was calculated using the Freundlich parameters obtained from the 

isotherm best fit for the Day-180 PAC (Table 4.3) with “time zero” assumed to be the time 

when biofilm had been sufficiently developed. The percent reduction in tsat of the bio-

coated PAC was then estimated by comparing it to tsat of the fresh PAC.  This simple analyses 
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ignores: (1) the time interval between PAC placement and sufficient biofilm development 

to occur, (2) mass loss due to biodegradation, and (3) the enhanced biodegradation rate of 

the mature biofilm.  

 

As expected, the time to breakthrough of the PAC barrier deteriorated with biofilm 

formation with a greater impact at lower concentrations. However, the reduction in tsat 

estimated here does not necessarily imply a long-term degradation in treatment since 

biodegradation mechanisms are expected to be fully established. The long-term dominant 

contaminant removal mechanism is expected to be biodegradation, and a minor loss of 

sorption capacity should not be detrimental. Thus, complete PAC regeneration would not 

be required to sustain barrier treatment. Unfortunately, field data to support this 

conceptual model are not yet available. 

 

 

Figure 4.23. Percent reduction in the breakthrough time (tsat) of a bio-coated PAC 
compared to breakthrough time (tsat) for a fresh PAC as a function of entering 

concentration (Cwin). 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 
 
5.1 CONCLUSIONS 

 

The change in PAC sorption characteristics for toluene was evaluated using batch sorption 

experiments following 180-days of biofilm formation. Baseline sorption performance on 

fresh PAC indicated its effectiveness to remove dissolved toluene present in artificial 

groundwater. The reversibility of the adsorption process was evaluated using a series of 

one-step desorption experiments. Results showed hysteretic behavior between adsorption 

and desorption as a fraction of toluene remained sorbed under equilibrium conditions. 

 

Batch microcosms experiments were used to grow an anaerobic toluene degrading biofilm 

on PAC to obtain “bio-coated” PAC. CLSM was employed to evaluate the presence, growth 

and organization of the biofilm formation on the PAC. Cells were randomly dispersed on 

PAC surfaces by Day 50, and as the biofilm developed a marked increase in cell attachment 

was observed. The biofilm formation was heterogeneous across all PAC particles scanned. 

Two types of cell and EPS growth were observed: in some cases, a monolayer of cells 

completely covered the particles, while in other cases, a discontinuous multilayer of cells 

was formed. To estimate biofilm growth over time, quantitative characterization biofilm 

parameters (biovolume, biomass, thickness, and roughness) was determined. The findings 

demonstrated a consistent growth of biofilm on the PAC that was characteristically 

heterogeneous with high variability between PAC particles.  

 

Data collected from the microcosm experiments also served to evaluate the simultaneous 

sorption, desorption and biodegradation of toluene in the presence of active microbial 

degraders. Initially, the majority of toluene mass added was quickly partitioned to the PAC 
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which decreased the toluene concentration in the aqueous phase. The active toluene 

degrading microbiota decreased the aqueous toluene concentration and promoted 

desorption of toluene from PAC. Desorption from the PAC followed by biodegradation 

maintained low aqueous concentrations of toluene. This behavior reflects the synergistic 

effect of microorganisms and the adsorptive capacity of PAC to maintain dissolved 

concentrations at lower levels. 

 

Desorption of toluene should have contributed to the recovery of the sorption capacity of 

PAC; however, a biofilm was formed, and a loss of sorption capacity was observed. The 

change in PAC sorption characteristics was investigated with samples of the “bio-coated” 

PAC at two time points of biofilm formation (Day 80 and Day 180). The noted decrease of 

adsorption capacity over time appears to be a result of a combination of blocking of the 

PAC pores with biomass, and the sorption of microbial decay products and metabolites. 

 

This research clearly illustrated that PAC is an efficient growth surface for microbes to form 

biofilms. Since PAC sorption capacity is reduced in the presence of biofilms and a reduction 

in the system breakthrough performance is expected, especially at lower concentrations, 

the long-term effectiveness of CBI systems for the treatment of PHC plumes will be 

impacted. The changing sorption characteristics of the PAC will alter the synergistic 

interplay between sorption, desorption and biodegradation. At the moment, the role that 

biofilm formation plays in CBI system performance in situ is limited, and the results from 

this research offer a glimpse into the impact of biofilm formation on sorption, albeit a 

bench-scale study. Until our understanding matures, the underlying mechanisms occurring 

in a CBI barrier for PHC treatment will remain unclear. 
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5.2 RECOMMENDATIONS 

 

This research focused on evaluating the impact of biofilm formation on PAC sorption 

characteristics for PHCs (e.g., toluene) under controlled bench scale conditions using a well-

studied enrichment culture.  Under these ideal conditions it was observed that PAC sorption 

capacity was reduced after biofilm growth. However, the change in sorption capacity of PAC 

amendments in situ after prolonged exposure to native microbiota and natural organic 

matter (NOM) is unknown.  

 

Although groundwater tends to have low NOM concentrations, its presence will further 

impact the PAC sorption capacity to PHCs by blocking external pores and competing for 

sorption sites. Native microbiota is more likely to outcompete the laboratory enrichment 

cultures (characterized by its slow growth) for attachment to PAC surfaces and grow 

extensive biofilms.  It is speculated that these two factors would cause the sorption capacity 

of PAC to quickly diminish, thus further impacting the long-term effectiveness of CBI 

systems. 

 

To assess biofilm growth on PAC by native microbiota, core samples should be extracted 

from operational CBI barriers and subjected to CLSM biofilm characterization methods to 

assess growth under natural conditions. Furthermore, sorption experiments using field-

aged PAC sediments, and fresh PAC amended sediments should be conducted. These results 

would aid in our understanding of the impact of biofilms and other competing sorbates on 

changes in the of performance of PAC systems in situ.  

 

In addition, microbial characterization (molecular biology markers) would be useful to 

compare the community structure between PAC zones (treatment zones) and untreated 

zones, to determine if PAC contributes to the enrichment of PHCs degraders in the 

treatment zone. The presence of a larger biomass of microbial degraders in the treatment 

zone is essential for the long-term functioning of a CBI system. As demonstrated in this 
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research, the sorption capacity is reduced in the presence of a biofilm, thus active microbial 

PHCs degraders in PAC biofilms should be present in larger proportion to compensate for 

the decrease in PAC sorption performance for a successful treatment of PHCs using a CBI 

system.  
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APPENDIX 

 

APPENDIX 1 PROTOCOLS 

 

 

In this section, it can be found the detailed steps followed for sample handling as well as 

recipes of the solutions used in the experimental work. 

 

ARTIFICIAL GROUNDWATER RECIPE 
 
Recipe for 1 L of AGW in Milli-Q® water, modified from (Middeldorp et al., 1998). 
 

• Salt solution: autoclave-sterilized 
- 0.05 g/L NH4Cl (53.49 g/mol, 0.93 mM) 
- 0.01 g/L MgCl2 (203.31 g/mol, 0.05 mM) 
- 0.0019 g/L MnCl2 4H2O (197.91 g/mol, 0.0096 mM)  
- 0.007 g/L NaCl (58.44 g/mol, 0.12 mM)  
- 0.15 g/L CaCl2 (147.02 g/mol, 1 mM) 
- 0.0620 g/L Na2HPO4•2H2O (141.96 g/mol, 0.43 mM) 
- 0.0204 g/L KH2PO4 (136.09 g/mol, 0.14 mM) 
- 0.009 g/L Na2SO4 (142.0 g/mol, 0.06 mM) 
- 0.86 g/L NaHCO3 (86.01 g/mol, 1 M).  

Measure pH, should be around 7. 
 
Add the following solutions inside the anaerobic chamber to salt solution after 
autoclaved and cooled. 
 

 
• 2 mL of trace mineral stock solution: autoclave-sterilized 
- 0.3 g/L of H3BO3 
- 0.1 g/L of ZnCl2 
- 0.75 g/L of NiCl2 - 6H2O 
- 1.0 g/L of MnCl2 - 4H2O 
- 0.1 g/L of CuCl2 - 2H2O 
- 1.5 g/L of CoCl2 - 6H2O 
- 0.02 g/L of Na2SeO3 
- 0.1 g/L of Al2(SO4)3 - 16H2O 
- 1 mL of H2SO4  
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• 3 mL of amorphous ferrous sulfide stock solution: autoclave-sterilized 
- 39.2 g/L of (NH4)2Fe (SO4)2 - 6H2O 
- 24.0 g/L of Na2S - 9H2O  

Washed three times with deionized water to remove free sulfide. 
         

• 1 mL of redox indicator stock solution (for controls only): 
- 1 g/L of resazurin 

 
• 10 mL of Phosphate buffer stock solution: autoclave-sterilized 
- 27.2 g/L KH2PO4 
- 34.8 g/L K2HPO4  

 
Mix salts from the salt solution recipe with MilliQ water (985 mL solution). Cap the bottle 

with a foam bung and autoclave at 121ºC for 40 minutes to remove oxygen and sterilize. 

Transfer the bottle to a bucket with ice while sparging N2 gas (low pressure) through a sterile 

filter for 30 minutes. Once cooled cap tightly and bring to the anaerobic chamber. 

Add 2 mL of anaerobic trace mineral solution and 3 mL of amorphous ferrous sulfide 

solution and 10 mL of phosphate buffer solution. Add 1 mL of redox indicator solution (for 

AGW used in controls only). Mix well and let stand in the anaerobic chamber for a week. 

 
 
ARTIFICIAL GROUNDWATER SALT SOLUTION RECIPE 
 
Recipe for 1 L of AGW salt solution in Milli-Q® water.  
 

- 0.05 g/L NH4Cl (53.49 g/mol, 0.93 mM) 
- 0.01 g/L MgCl2 (203.31 g/mol, 0.05 mM) 
- 0.0019 g/L MnCl2 4H2O (197.91 g/mol, 0.0096 mM)  
- 0.007 g/L NaCl (58.44 g/mol, 0.12 mM)  
- 0.15 g/L CaCl2 (147.02 g/mol, 1 mM) 
- 0.0620 g/L Na2HPO4•2H2O (141.96 g/mol, 0.43 mM) 
- 0.0204 g/L KH2PO4 (136.09 g/mol, 0.14 mM) 
- 0.009 g/L Na2SO4 (142.0 g/mol, 0.06 mM) 
- 0.86 g/L NaHCO3 (86.01 g/mol, 1 M).  

Measure pH, should be around 7. 
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TOLUENE STOCK SOLUTION 
 
Recipe for 4.5 L of toluene amended – AGW salt solution. 
 

1. Place 4.5 L of AGW salt solution in a dispensing bottle with a Teflon coated magnetic 
stirrer. 

2. Place the bottle on top of the stirrer at speed 8. 
3. Add 250 μL of neat toluene and cap immediately, securing the cap with tape, this 

volume gives a final concentration of ~ 30 mg/L. 
4. Leave for at least 12 h to allow toluene to dissolve completely. 

 
 
TOLUENE SERIAL DILUTIONS 
 
The next table summarize the ratio between toluene stock solution and fresh AGW salt 

solution needed to obtain the seven initial concentrations used for the sorption/desorption 

experiments. 

 
 

Concentration 
(mg/L) 

Toluene stock solution 
(mL) 

Fresh AGW salt solution 
(mL) 

1 40 1160 
5 200 1000 

10 400 800 
15 600 600 
20 800 400 
25 1000 200 
30 1200 0 
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BATCH SORPTION/DESORPTION EXPERIMENT PROTOCOL 
 

1. Fill six 160 mL serum bottles containing 10 mg PAC and three 160 mL serum bottles 

without PAC (controls) per initial concentration without headspace and crimp with 

aluminum seal- Teflon silicon septa.  

2. Transfer to a platform shaker and agitate at 100 rpm for 24 h. 

3. Stop agitation. 

4. Leave undisturbed for 24 h to allow the PAC to precipitate from the aqueous phase. 

 

Sorption Assay and Controls (12-14) 

5. Perform aqueous phase extraction for each sample. 

6. Remove the remaining aqueous phase from the sorption assay bottles leaving the 

PAC inside. 

7. Perform PAC sorbent extraction as in for each sorption assay bottle. 

 

Desorption Assay (15-23) 

8. Remove the aqueous phase from the bottles leaving the PAC inside. 

9. Fill with fresh AGW salt solution and seal tightly. 

10. Transfer to a platform shaker and agitate at 100 rpm for 24 h. 

11. Stop agitation. 

12. Leave undisturbed for 24 h to allow the PAC and the aqueous phase to separate. 

13. Perform aqueous phase extraction for each sample. 

14. Remove the remaining aqueous phase from the desorption assay bottles leaving the 

PAC inside. 

15. Perform PAC sorbent extraction for each desorption assay bottle. 

16. Transfer dichloromethane phase to 2 mL autosampler vials. 

17. Having all extracted samples analyze in the GC-FID. 
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STAINING PROTOCOL 
 
Dilutions for PAC-biofilm staining 

 

SYTO 9 

i. Store stock solution in single-use aliquots (3 μL) at -20 ºC. Avoid refreezing and thawing, 

store protected from light. 

ii. For staining PAC samples prepare a 30 μM dilution using the 5 mM SYTO9 stock solution 

as provided by the manufactured (3 μL in 500 μL filter sterilized saline solution). Use 2 mL 

plastic Eppendorf tubes (diluted stain adheres to glass).   

 

Concanavalin A, Alexa Fluor 633 (ConA) 

i. Prepare a 5 mg/mL stock solution in 0.1 M sodium bicarbonate solution using filter 

sterilized water (pH 8.3), as suggested by the manufacturer. Add 1 mL of NaHCO3 (0.1 M) to 

the lot. 

iii. Store stock solution in single-use aliquots (8 μL) at -20 ºC. Avoid refreezing and thawing, 

store protected from light. 

ii. For staining PAC samples prepare a 200 μg/mL dilution from ConA stock solution (8 μL of 

stock in 200 μL filter sterilized saline solution). 

 

*Before diluting freeze stock solutions, allow solution to warm to room temperature. 

 

Staining of PAC-biofilms 

 

1. Remove half volume of aqueous phase from microcosms. 

2. Gently swirl the remaining water plus PAC. 

3. Take an aliquot of 1 mL and place it in plastic Eppendorf tubes. 

4. Allow PAC to precipitate. 

5. Remove the aqueous phase avoiding carry over of PAC. 
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6. Gently add 1 mL of filter sterilized saline solution (150 mM NaCl), allow the water to run 

down the tube walls to avoid strong “vortex” effect, as it might detach adhered cells. 

7. Cap the tube and perform slow rotatory movements for a gentle mixing. 

8. Leave undisturbed for 10 minutes as PAC precipitate. 

9. Remove the aqueous phase avoiding carry over of PAC. 

10. Add 500 μL of 30 μM SYTO9 solution (allow the water to run down the tube walls to 

avoid strong “vortex” effect). 

11. Cap tube and store undisturbed in the dark. 

12. Every 5 minutes gently rotate the tube to allow stain to mix with PAC. 

13. After 30 min remove aqueous phase. 

14. Gently add 1 mL of filter sterilized saline solution (150 mM NaCl), as in step 6. 

15. Repeat steps 7,8 and 9. 

16. Add 200 μL of a 200 μg/mL ConA solution. 

17. Cap tube and store undisturbed in the dark. 

18. Every 5 minutes gently rotate the tube to allow stain to mix with PAC. 

19. After 30 min remove aqueous phase. 

20. Gently add 1 mL of filter sterilized saline solution (150 mM NaCl), as in step 6. 

21. Repeat steps 7,8 and 9. 

22. Mount sample and observe in the microscope same day. 
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BIOFILM DETACHMENT PROTOCOL 
 

1. Microcosms will be centrifuged (6000 x g, 10 min), and then the aqueous phase will 

be removed.  

2. The PAC will be washed using 10 mL of sterile 1X phosphate-buffered saline solution 

(PBS) added to the microcosms and gently agitating to suspend loosely adhered cells 

from the biofilm.  

3. Microcosms will be allowed to sit and PAC to settle. 

4. Then 9 mL of the aqueous phase will be removed, and Steps 2 to 4 will be performed 

and additional four times.  

5. The remaining 1 mL (+ PAC) will be transferred to a 2 mL centrifuge.  

6. The tube will be continuously vortexed for 30 sec at full speed.  

7. The sample will be sonicated at low energy (170 W, 35 kHz) for 4 min and at the end 

of the sonication cycle, the bulk liquid will be transferred to a clean 2 mL centrifuge 

tube (bulk liquid-centrifuge tube),  

8. The PAC- centrifuge tube will be refilled with 1 mL PBS, and Steps 7 and will be 

performed an additional four times.  

9. The bulk liquid-centrifuge tube will be centrifuged (6000 x g, 15 min); the 

supernatant will be discarded, and the cell pellet will be resuspended in 1 mL 

washing solution and homogenized in the vortex for 15 seconds.   
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APPENDIX 2 SUPPLEMENTARY MATERIAL 
 
 
 
Table A2.1. Isotherm experimental data 

Fresh PAC - Sorption  
C0  Ce SD V  m  qe  SD MPAC SD 

mg/L mg/L mg/L L g mg/g mg/g mg mg 
0.876 0.038 0.007 0.160 0.010 13.415 0.107 0.127 0.003 
5.185 0.812 0.075 0.160 0.010 69.270 1.191 0.686 0.028 

10.380 2.977 0.046 0.160 0.010 116.120 0.721 1.189 0.034 
15.510 5.584 0.132 0.160 0.010 158.816 2.114 1.491 0.050 
20.571 9.164 0.499 0.160 0.010 184.356 8.065 1.815 0.059 
25.610 12.917 0.309 0.160 0.010 201.083 4.894 1.941 0.054 
30.788 17.649 0.380 0.160 0.010 208.143 6.022 1.962 0.084 

Fresh PAC - Desorption  
C0  Ce SD V  m  qe  SD MPAC SD 

mg/L mg/L mg/L L g mg/g mg/g mg mg 
0.876 0.000 0.000 0.160 0.010 12.444 0.293 0.089 0.009 
5.185 0.410 0.028 0.160 0.010 62.064 2.380 0.574 0.006 

10.380 1.341 0.031 0.160 0.010 98.475 3.856 0.855 0.007 
15.510 2.138 0.035 0.160 0.010 119.111 5.045 1.052 0.042 
20.571 2.718 0.220 0.160 0.010 136.600 2.707 1.165 0.077 
25.610 3.359 0.114 0.160 0.010 137.532 3.476 1.215 0.030 
30.788 3.523 0.102 0.160 0.010 141.292 6.940 1.227 0.016 

80-Day bio-coated PAC - Sorption 
C0  Ce SD V  m  qe  SD MPAC SD 

mg/L mg/L mg/L L g mg/g mg/g mg mg 
0.848 0.221 0.063 0.160 0.010 29.505 0.780 0.003 0.067 
4.424 1.853 0.373 0.160 0.010 60.199 6.691 0.535 0.013 
9.874 4.673 0.202 0.160 0.010 101.751 3.470 1.030 0.059 

19.399 11.896 0.924 0.160 0.010 137.512 14.489 1.401 0.198 
29.577 19.499 0.357 0.160 0.010 178.473 4.100 1.876 0.083 

180-Day bio-coated PAC - Sorption 
C0 Ce SD V m qe SD MPAC SD 

mg/L mg/L mg/L L g mg/g mg/g mg mg 
1.135 0.208 0.023 0.160 0.0102 20.192 0.665 0.234 0.038 
5.270 2.173 0.119 0.160 0.0101 54.717 2.346 0.559 0.017 

10.336 4.606 0.342 0.160 0.0103 94.856 5.843 1.091 0.072 
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14.073 6.822 0.072 0.160 0.0102 119.322 2.088 1.295 0.039 
19.748 10.982 0.037 0.160 0.0103 142.146 5.196 1.545 0.105 
23.091 14.367 1.047 0.160 0.0101 144.328 6.400 1.642 0.136 
33.629 17.960 0.395 0.160 0.0102 154.958 14.050 1.576 0.147 

 
 
 
Table A2.2. Cumulative toluene loss and methane production  

Active Cumulative AT Cumulative AC 
Time Toluene SD Methane  SD Toluene SD Methane SD 

days μmoles μmoles μmoles μmoles μmoles μmoles μmoles μmoles 
1 0.021 0.027 0.090 0.117 0.000 0.000 0.111 0.109 

14 0.715 0.499 3.087 2.158 0.703 0.540 2.087 2.111 
28 1.113 0.347 4.807 1.500 2.011 0.646 5.884 2.776 
47 2.142 0.563 9.254 2.434 5.782 0.556 10.463 4.396 
62 4.524 0.691 19.542 2.985 10.996 0.248 26.402 5.444 
78 7.848 1.239 33.903 5.351 11.752 0.683 28.379 8.396 

111 14.197 1.443 61.331 6.233 20.276 1.298 61.139 12.682 
126 - - - - 22.283 1.121 62.729 8.393 
140 18.752 4.065 81.006 17.560 26.243 0.319 74.042 12.415 
150 24.114 6.711 104.173 28.993 28.418 0.258 112.225 12.415 
175 25.497 9.068 110.148 39.174 28.418 0.258 121.380 20.484 

 
Sterile Cumulative KP Cumulative KC 

Time Toluene SD Methane  SD Toluene SD Methane SD 

days μmoles μmoles μmoles μmoles μmoles μmoles μmoles μmoles 
1 0.000 0.000 0.003 0.001 0.000 0.000 0.004 0.002 

14 0.012 0.011 0.003 0.001 0.316 0.345 0.003 0.001 
28 0.667 0.494 0.003 0.001 1.201 0.966 0.003 0.001 
47 1.343 0.447 0.004 0.002 4.279 1.876 0.004 0.002 
62 1.677 0.289 0.002 0.000 5.083 1.362 0.002 0.000 
78 3.187 1.552 0.003 0.001 4.208 1.701 0.003 0.001 

111 0.951 0.845 0.004 0.000 7.049 1.904 0.004 0.002 
114 1.535 1.083 - - 7.827 2.053 - - 
150 0.620 1.325 0.006 0.001 8.995 1.665 0.006 0.002 
175 1.206 1.288 0.008 0.002 8.755 1.487 0.005 0.002 
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Table A2.3. Microcosms physicochemical parameters 

Day pH SD ORP (mV) SD DO (mg/L) SD 
0 7.055 0.021 -237.800 27.294 0.030 0.014 

50 6.897 0.076 -208.267 6.473 0.030 0.010 
80 6.810 0.085 -197.933 18.799 0.527 0.012 

140 6.597 0.153 -280.900 5.524 0.020 0.000 
175 6.500 * -286.950 7.566 0.120 0.028 

 
 
 
Table A2.4. Biofilm parameters: descriptive statistics 

Thickness 
(μm) 

Day N  Mean SD Minimum Q1 Median Q3 Maximum 

Cells 50 50 4.495 1.426 1.999 3.497 4.197 5.274 9.319 
EPS 50 50 3.645 0.894 0.702 3.002 3.665 4.081 5.840 
Cells 80 50 4.267 1.308 1.607 3.360 4.298 5.202 6.812 
EPS 80 50 3.269 1.467 0.903 1.932 3.467 4.430 6.031 
Cells 140 50 4.269 2.637 1.095 2.158 3.145 6.480 9.513 
EPS 140 50 5.854 1.882 2.081 4.721 5.621 7.016 11.185 
Cells 180 50 7.391 3.901 2.508 4.055 6.346 9.850 18.723 
EPS 180 50 6.411 3.417 1.118 4.073 5.521 7.875 19.500 
Biovolume 
(μm3) 

Day N  Mean SD Minimum Q1 Median Q3 Maximum 

Cells 50 50 15.554 17.256 0.204 2.848 5.657 25.305 59.670 
EPS 50 50 22.829 59.220 0.050 2.066 3.987 19.969 389.438 
Cells 80 50 28.822 34.898 1.756 6.672 12.578 31.510 140.130 
EPS 80 50 25.473 32.631 1.695 5.711 15.092 28.271 176.638 
Cells 140 50 43.152 31.463 1.399 15.109 40.287 59.942 147.179 
EPS 140 50 41.862 40.308 0.788 11.421 31.589 65.093 214.001 
Cells 180 50 99.453 129.820 6.166 43.413 59.248 116.412 811.364 
EPS 180 50 88.965 154.662 0.433 12.745 32.751 71.565 762.213 
Rougness 
(-) 

Day N  Mean SD Minimum Q1 Median Q3 Maximum 

Cells 50 50 1.765 0.266 0.832 1.676 1.871 1.946 1.992 
EPS 50 50 1.664 0.568 0.167 1.308 1.826 1.968 4.095 
Cells 80 50 1.566 0.366 0.711 1.243 1.719 1.879 1.994 
EPS 80 50 1.579 0.271 1.088 1.306 1.621 1.829 1.969 
Cells 140 50 1.782 0.137 1.471 1.676 1.796 1.889 1.997 
EPS 140 50 1.635 0.222 1.011 1.528 1.647 1.817 1.933 
Cells 180 50 1.637 0.195 0.838 1.571 1.668 1.760 1.946 
EPS 180 50 1.600 0.323 0.679 1.486 1.710 1.855 1.974 
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Biomass 
(μm3/μm2) 

Day N  Mean SD Minimum Q1 Median Q3 Maximum 

Cells 50 50 0.108 0.133 0.003 0.018 0.054 0.168 0.725 
EPS 50 50 0.097 0.012 0.000 0.008 0.042 0.154 0.467 
Cells 80 50 0.215 0.283 0.006 0.040 0.122 0.257 0.748 
EPS 80 50 0.130 0.133 0.017 0.051 0.100 0.154 0.768 
Cells 140 50 0.213 0.136 0.023 0.105 0.189 0.286 0.558 
EPS 140 50 0.222 0.245 0.010 0.075 0.134 0.248 0.745 
Cells 180 50 0.291 0.231 0.064 0.128 0.237 0.364 0.997 
EPS 180 50 0.212 0.277 0.012 0.057 0.109 0.247 0.794 
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Table A2.5. Biofilm parameters: p- values 

Biovolume (μm3) 
Days Cells Significance EPS Significance 
50-80 0.00578 + 0.00231 + 
50-140 5.26E-08 + 1.64E-06 + 
50-180 8.88E-16 + 1.20E-07 + 
80-140 0.00187 + 0.00472 + 
80-180 3.00E-09 + 0.00108 + 
140-180 3.71E-04 + 0.56527 - 

Thickness (μm) 
Days Cells Significance EPS Significance 
50-80 0.86511 - 0.31981 - 
50-140 0.0758 + 6.08E-11 + 
50-180 3.02E-05 + 6.63E-09 + 
80-140 0.27207 - 3.38E-11 + 
80-180 4.50E-06 + 4.47E-09 + 
140-180 4.20E-06 + 0.94117 - 

Roughness (-) 
Days Cells Significance EPS Significance 
50-80 0.00246 + 0.34269 - 
50-140 0.68905 - 0.7383 - 
50-180 0.00759 + 0.49242 - 
80-140 2.26E-04 + 0.26159 - 
80-180 0.22663 - 0.72149 - 
140-180 4.98E-05 - 0.53174 - 

Biomass (μm3/ μm2) 
Days Cells Significance EPS Significance 
50-80 0.01131 + 5.96832E-5 + 
50-140 2.81074E-6 + 4.66732E-7 + 
50-180 3.52778E-9 + 7.78252E-6 + 
80-140 0.065 - 0.02622 - 
80-180 0.00183 + 0.42356 - 
140-180 0.10921 - 0.24099 - 

 
(+) indicates significant difference. 
(-) indicates not significant difference. 
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Table A2.6. Freundlich Parameter and fit statistics. 

PAC type Freundlich 
Parameter 

Value Standard 
Error 

Reduced 
Chi-sqr 

R2 Residual 
Sum of 
Squares 

Fresh PAC Kf 79.8 6.34 112.24 0.98 561.21 
nf 0.35 0.03 

80-day PAC Kf 50.1 3.58 32.60 0.99 97.81 
nf 0.42 0.02 

180- day PAC Kf 47.7 5.83 94.65 0.96 94.65 
nf 0.42 0.05 

 
 
Table A2.7. Freundlich model parameter comparison between PACs - F-test. 

PAC type comparison F Numer.DF Denom.DF Prob > F 
Fresh PAC – 80-day PAC 30.47 2 8 1.81E-4 
Fresh PAC -180-day PAC 37.50 2 10 2.25E-5 
80-day PAC -180-Day PAC 0.46 2 8 0.64 

 
 
 
 

FORMULAS 
 

Mass (mg) 
Volume (L) 
Concentration (mg/L) 
Molecular weight (toluene) = MW = 92.14 
Henry’s constant (toluene) = H = 0.21 @20ºC  
 
 

%&''	&!)*+)'	,*-+.*	'&/01234 = 	%4 	= 54 × 74 
 
 

/&''	.*/+8*9	&!)*+)' = 	%54 =	54 × 754 
 
 

%&''	&!)*+)'	&-#*.	'&/01234 = 	%′4 = %4 −%54 
 
 

%&''	4&'	,*-+.*	'&/01234 = 	%6 =	56 × 76	 
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/&''	.*/+8*9	4&' = %56	 = 56 × 756 
 
 

%&''	4&'	&-#*.	'&/01234 = %76 = %6 −	%5	6 
 
 

%&''	';'#*/	,*-+.*	'&/01234 = %)	 =	54 × (74 + > × 76) 
 
 

.*/+8*9	/&''	';'#*/ = %5	) = %54 +%56 
 
 

%&''	';'#*/	&-#*.	'&/01234 = 	%7) = %) −%5	) 
 
 

@!)*+)'	8+1)/*	&-#*.	'&/01234 = 	7′4 
 
 

A&'	8+1)/*	&-#*.	'&/01234 = 	7′6 
 
 

@!)*+)'	B+3B*3#.&#2+3	&-#*.	'&/01234 = 		 5′4 =	
%′)

7′	6 × > + 7′4	 
 
 

A&'	B+3B*3#.&#2+3	&-#*.	'&/01234 = 5′6 =	5′4 × 	> 
 
 
 

C/+1*'	&!)*+)' = C/+1*'4 =	
5′4
%D × (7′4 × 1000000) 

 
 

C/+1*'	4&' = C/+1*'6 =	
5′6
%D ×	(776 × 	1000000) 

 
 

C/+1*'	';'#*/ = 	C/+1*'/,+##1* = 	 %
7)

%D × 1000000 

 
 
Steps: 
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1. From the aqueous concentration before sampling, estimate the mass aqueous 
before sampling. 	

%&''	&!)*+)'	,*-+.*	'&/01234 = 	%4 	= 54 × 74 
 

2. Estimate the aqueous mass removed based on the aqueous concentration before 
sampling and volume of sample removed. 

 
/&''	.*/+8*9	&!)*+)' = 	%54 =	54 × 754 

 
3. Subtract the aqueous mass removed from the aqueous mass before sampling to 

get the mass after sampling. 
 

%&''	&!)*+)'	&-#*.	'&/01234 = 	%′4 = %4 −%54 
 

4. Estimate the concentration before sampling from the aqueous concentration 
before sampling and Henry’s constant. 
 

A&'	B+3B*3#.&#2+3	,*-+.*	'&/01234 = 56 =	54 × 	> 
 

5. Estimate the gas mass before sampling 
 

%&''	4&'	,*-+.*	'&/01234 = 	%6 =	56 × 76 
 

6. Estimate the gas mass removed based on the concentration and volume of gas 
sample removed. 

/&''	.*/+8*9	4&' = %56	 = 56 × 756 
7. Subtract the gas mass removed from the gas mass before sampling to get the gas 

mass after sampling. 
%&''	4&'	&-#*.	'&/01234 = %76 = %6 −	%5	6 

 
8. Estimate the mass in the system (bottle) before sampling using the concentration 

and volume before sampling and Henry’s constant. 
 

%&''	';'#*/	,*-+.*	'&/01234 = %)	 =	54 × (74 + > × 76) 
 

9. Estimate the mass removed in the system by adding the mass removed in the 
aqueous and gas phase. 
 

.*/+8*9	/&''	';'#*/ = %5	) = %54 +%56 
 

10. Estimate the mass in the system after sampling by subtracting the mass removed 
from the mass before sampling. 
 

%&''	';'#*/	&-#*.	'&/01234 = 	%7) = %) −%5	) 
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11. Estimate the aqueous concentration after equilibrium (after sampling) using the 

mass in the system and volume after sampling and the Henry’s constant. 
 

@!)*+)'	B+3B*3#.&#2+3	&-#*.	'&/01234 = 		 5′4 =	
%′)

7′	6 × > + 7′4	 
 

12. Estimate the gas concentration after equilibrium (after sampling) using the 
aqueous concentration after equilibrium and Henry’s constant. 
 

A&'	B+3B*3#.&#2+3	&-#*.	'&/01234 = 5′6 =	5′4 × 	> 
 
 
 
 

PAC barrier model 
 
 
The total mass at saturation estimated by, 
 
%8 = (H54 + I154

9* 	J:-;3#)7 
 
The contaminant mass loading to the barrier estimated by, 
 
%<9 = !	@	54<9 = !	(1)(1)54<9 
 
To estimate the time to barrier saturation the equation was derived as follow:  
 

	#)*+ = KH +	I154
9*,-J:-;3#
! L M 

 

= N1 +	I154
9*'=J:	-;3#O (

M
! H⁄ ) 

 
 

= [H54 +	I154
9*J:	-;3#]7

!	54<9@  

 
where,  
 tsat is the time to barrier saturation in days,  
ø is the soil porosity,  
ρb is the soil bulk density in g/m3,  
Cwin is the aqueous contaminant concentration entering the barrier in g/m3,  
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Kf and nf are the Freundlich parameters obtained from the isotherms,  
fPAC is the fraction of PAC in the barrier,  
q is the groundwater specific flux in m/day,  
V is the volume of the PAC barrier in m3, 
A is the cross-sectional area in m2, 

L is the length of the barrier in m. 


