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Abstract

It is important to have an accurate estimate of the yields and prices of fresh produce
(FP) for maintaining an effective Fresh Produce Supply Chain Management (FSCM). Since,
the FP comprises of the perishable goods, it is cumbersome to manage and keep a track
of logistics, which makes it important to have an estimate of the FP yield to have a better
management of the supply and demand. In addition, having a reliable estimate of the FP
prices helps the food company to bid the right price to the wholesalers. This prevents the
food company from bidding unreasonable price and incurring any loss. Computational tools
for forecasting yields and prices for fresh produce have been based on conventional machine
learning approaches or time series modeling. These approaches can neither effectively
capture the complex relationships between the inputs and the outputs to the models nor
can they handle large datasets. To overcome such drawbacks, Deep Learning (DL) based
approaches are proposed in this work for forecasting the yields and prices of FP. Soil and
weather parameters of counties across California are used to forecast the yields and prices
of FP like berries and apples.

Choosing the most effective input parameters for forecasting strawberry yields and
prices is investigated. The set of parameters used for this investigation are soil parameters
alone and soil parameters along with the weather parameters. For this forecasting, the
ensemble of two DL models is used namely, Convolutional Neural Networks and Long Short
Term Memory with Attention (Att-CNN-LSTM) and Convolutional LSTM with Attention
(Att-ConvLSTM). It is found that using soil and weather parameters together gives better
forecasting results than using soil or weather parameters alone. Also, various compound DL
models like Att-CNN-LSTM, Att-ConvLSTM, Temporal Convolutional Network (TCN)
and SeriesNet with Gated Recurrent Unit (SeriesNet-GRU) are tested for forecasting, to
determine the best performing DL model. It is found that the ensemble of two compound
DL models Att-CNN-LSTM and SeriesNet-GRU gives the best forecasting results with an
improvement of around 7% in the value of Aggregated Measure (AGM) than the component
compound DL models. It also outperforms the previous work done in literature with an
improvement of around 14% in the value of AGM. The effect of using soil input parameters
on yield forecasting is further studied. To study the effect of static soil parameters on
forecasting performance, the compound DL model SeriesNet with GRU is used to forecast
the annual apple yield using the static and dynamic soil parameters. The county level
annual apple yield forecast, using both static and dynamic parameters together, proves to
give promising results, it reduces the forecasting AGM by around 34% compared to the
case of excluding the static parameter and only using the dynamic parameters set. It is
also found that, on using an augmented training set to train the DL model improves the
AGM value by around 12% on testing with the non-augmented test set.
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To generalize the findings, transfer learning technique is utilized amongst the yield
forecasting models of the similar crops. To overcome the computational complexity of
retraining DL yield forecasting models for each type of FP, it is necessary to have a gener-
alization of the models’ application to similar FP with minimal retraining. Two berries are
considered in this work, California strawberries and raspberries which have similar yield,
since the two follow similar time series on the basis of a number of parameters such as
lag, seasonality and trend. The voting regressor ensemble of two compound DL models
Att-CNN-LSTM and SeriesNet with GRU is used. First, the proposed DL model is trained
using station-based soil data input mapped to the strawberry yield as output. The weights
obtained from this learning are transferred to the raspberry yield forecasting ensemble
model with minimal retraining. It is found that the transfer learning gives comparable
results to training from scratch and reduces the processing time by half.
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Chapter 1

Introduction

1.1 Problem Definition

Food wastage, or food shrinkage is a global ongoing issue with at least one third of all the
globally produced food getting wasted or lost in the supply chain every year. In Canada,
around $31 billion worth of food is wasted every year, with an average food loss of around
5% experienced by retailers in the Fresh Produce (FP) alone. The food business considers
the food wastage as a cost of doing business but in reality it is a business opportunity.
It is estimated that with every 1% reduction in food waste the revenue can be elevated
by 4% [5] and not many opportunities offer this much of benefit. The food shrinkage
can be attributed to the poor planning and mismanagement of Supply Chain. The food
supply mainly depends on the demand for FP the distribution centers are expected fulfil
the demand. However, making supply decisions are highly dependent on the unstable and
fluctuating procurement prices. The procurement prices are also driven by the anticipated
crop yields. In order to earn good revenue and avoid food shrinkage, the food companies
are required to properly time and price the food demand.

The food pricing is driven by various factors related to supply and demand. The
food supply or the yield depends mainly on the weather, type of soil, irrigation, quality
of chemicals like fertilizers and pesticides used, technology deployed for cultivation etc.
region wise and the demand is driven by the economic state of the place, the culture,
weather and environment of that area. With the alarming climate change and globalization
these factors are becoming even more uncertain. To understand the complex relationship
between supply and demand driven by numerous factors and procure the right price is a

1



cumbersome process. The FP business requires deployment of advanced technological tools
to fulfil this challenging task of procuring right price and estimating right yield of the FP.

1.2 Motivation

Efficient procurement performance is vital to the food company’s produce department
performance, and to the overall profitability of the food company and its brand image.
The category managers and buyers work together to forecast store level produce needs and
to procure the right amount of fresh produce (fruits and vegetables). Category managers
are responsible for planning sales and merchandising for the stores and work with buyers to
foresee the produce needs for the food company [105]. The fresh procurement is a process
of solicitation in which the food company makes a price bid to the distributor or wholesaler
who then makes a decision to accept or reject the offer. Having a prior knowledge and
estimate of the price which the distributors might be expecting can help the food company
to make a fair bid and avoid over payment.

The Fresh Produce Supply Chain Industry which has traditionally been a comparatively
low-tech, now the suppliers and retailers are increasingly turning towards technology to
address fresh food supply chain challenges, including waste reduction, improving inventory
management and bidding fair FP prices. Food companies believe AI’s strongest potential
to improve supply chain management is with the quality and speed of planning insights.
To ease the strenuous process of FP procurement and get a prior estimate of FP price and
yield, the food companies these days are banking on the new technological AI based tools
for FP price and yield forecasting. The FP price forecasting for a long time has been done
by estimating the future price values based on the historical price data. This process is
not very efficient since it fails to utilize various other factors governing the FP pricing.
The use of powerful ML and DL models combined with all the essential data affecting the
price, like weather data, soil data, yield data etc. to forecast the FP procurement price is
beneficial for the food company, farmers, wholesalers, distributors, retailers and consumers
and hence beneficial for the society. The food company in Canada which has a year round
revenue in billions with a revenue of $111.6 billion in 2018 [2], this industry accounts for
high volume of transactions, even a little improvement in the every FP transaction would
lead to benefits of millions of dollar every year for Canada.

The successful accomplishment of AI based tools is owed to the existence of a huge
amount of data, the efficient AI models and easier access to computational resources,
leading to the development of reliable decision tools providing with almost precise and
reliable estimates of prices and yields. Using automated AI tools in food industry can
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eliminate the inefficient methods of estimating the prices and can boost the revenues of
the food industry. It can also lead to an affordable pricing of food products for the benefit
of consumers and lead to lesser food wastage.

1.3 Scope of Work

This work focuses on the development and implementation of Deep Learning models to
accomplish the complex task of forecasting the price and yield of the FP commodities. Var-
ious models have been developed and used for forecasting price and yield using the weather
data and the soil data for training purpose. The effect of different types of soil parameters
have been studied on the yields of FP. The generalization of the models’ application to
other fresh produces have been achieved by implementing transfer learning with minimal
retraining among the similar type of FP. The crops considered for this study are strawber-
ries, raspberries and apples grown in California, United States. California is chosen since
it is the leading state producer for strawberries and raspberries in the United States [1].
As of the survey from USDA for year 2017-2019 [12] California has over 13,000 bearing
acres of apples with a yield value of around 24,000 pounds/acre throughout California’s
growing regions. A broad evaluation of these models was done using several metrics and
the best models were identified.

1.4 Objective

The objective of this work is to build and test deep learning based forecasting models to
obtain efficient procurement offer price for the bilateral transaction of the food company
and an efficient estimate of the FP yield.

To reach the main objective, the following tasks are carried out.

(a) Data collection, Data Preprocessing and Feature Selection.

(b) Choosing the most efficient effective input parameters for yield forecasting.

(c) Building DL models and training them on the collected data for forecasting the price
and yield.

(d) Choosing the best model based on model evaluation using various metrics.
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(e) Performing transfer learning amongst the forecasting models of similar crops to
achieve a generalized application.

(f) A forecasting web application combining all the work and findings in the thesis.

1.5 Thesis Organization

This thesis constitutes five chapters. The present chapter introduces and describes the
challenges faced in the process of fresh produce procurement. It also throws light on the
importance of efficient procurement of prices and how it is essential to the efficient supply
chain management. This chapter also describes the scope and objective of the work. The
Chapter 2 covers the literature and background of the problem. In Chapter 3, the proposed
solution is described includes proposed models and proposed evaluation metric. Chapter
4 provides details of the various experiments carried out such as FP yield forecasting, FP
price forecasting and oil price forecasting. Chapter 5 consists the details of the forecasting
web application developed. Finally, Chapter 6 summarizes the major findings derived from
this research work.
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Chapter 2

Background and Literature

2.1 Fresh Produce Procurement

The Fresh Produce Supply Chain Management (FSCM) is a critical process due to the high
risk of markdowns and wastage, making it highly important to estimate the demand and
replenish in accordance with the demand. The planning process for fresh produce must be
quite granular to capture any change in demand. The supply chain for fresh products must
be agile enough to adjust to the changes in demand. Owing to this instability of demand
and supply in the fresh produce market, deciding the farmers’ price is quite a crucial
task. One of the major concerns of farmers’ these days, is the uncertainty associated with
agricultural prices and markets, i.e., variations in global market conditions can lead to
abrupt fluctuations in prices of agricultural produce at a local level [29]. The inability to
decide the correct price for the FP commodity might lead to financial losses. The FP prices
are strongly affected by the FP yields determining the supply and hence the availability of
accurate yields values is also quite crucial.

Fresh produce industry typically has been a comparatively low-tech industry, but nowa-
days the suppliers and retailers are increasingly turning to technology to solve the fresh
food supply chain challenges including waste reduction, deciding correct price, determin-
ing the yield and improving the inventory management. The retailers believe in Artificial
Intelligence (AI) potential to enhance the supply chain management due to the quality and
speed of planning insights [3]. AI when combined with right data can not only improve the
management of the fresh food supply chain, but also can optimize the reduction of waste
associated with overstocking and under-stocking. It can enhance the delivered product
freshness and streamline inventory management.
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Food loss is a serious issue in the current scenario which can be avoided by having
an effective Fresh Produce Supply Chain Management. The FP loss at the retail and
consumer levels represents resources invested in food production, like the water used for
irrigation, land, labor cost, energy, agricultural chemicals like fertilizer and pesticides and
other inputs to produce the food which does not meet its intended purpose of feeding
people causing financial loss and hunger [37]. The United Nations World Food Programme
in 2020 highlights the prevalence of undernourishment in around world between 2017-2019
and states that if the current trends continue, then the number of hungry people will reach
840 million by 2030 [11]. The presence of the Covid-19 pandemic might further elevate this
number. Therefore, United Nations has included ending hunger as one of the major goals
in the 2030 Agenda for Sustainable Development to promote food security [10]. The ability
to reliably estimate the crop yields using AI forecasting models might help in overcoming
these issues. Knowing the estimates of yield can help in understanding the amount of
supply of food and hence, help in maintaining the balance and distribution of the supply
fulfilling the demands across the world, preventing hunger, and enabling a sustainable
development.

To enable the procurement professionals to negotiate the price of FP commodity, an
amalgamation of market knowledge and intelligence is highly required to provide an esti-
mate to the otherwise confidential business cost and pricing details. To improve trans-
parency, the food industry should share the data. The confidential data containing the
information on the historical procurement prices if provided by the Food Company and
used together with the free source publicly available climate data can be used to train,
validate and test the AI models and give an estimate of the price.

2.2 Time Series Modelling

A time series or time stamped data is a sequence of data recorded in successive order in a
time frame. A time series can be a record of any variable changing periodically with any
time frequency; every second, hourly, daily, weekly or yearly. Time series analysis is mainly
done to understand the underlying structure and function that is responsible for producing
the observations. Understanding the underlying mechanism enables the development of a
mathematical model for the time series which explains the data in such a way that allows for
prediction, monitoring, or control to occur [68]. The time series forecasting is widely used
in economics and business. Furthermore, monitoring of ambient conditions of an input or
output is common in science and industry while quality control is used in computer science
and communications.
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Time series analysis is not only useful for tracking how a particular variable changes
over time but also used to scrutinize the changes associated with the chosen variable
with respect to the shifts in other variables over the same time period [71]. The major
goals of time series analysis are: descriptive analysis which identifies patterns in correlated
data trends and seasonal variation, explanatory analysis which includes understanding
and modeling the data, forecasting which enables prediction of short-term trends from
previous patterns, intervention analysis which helps in analyzing how a single event changes
the time series, and quality control in which deviations of a specified size indicates a
problem. The focus of this thesis is on the time series forecasting. Time Series forecasting
is a process of predicting the future values in a time series by analyzing the historical
values and past patterns. Time Series forecasting involves analyzing the trend, seasonality,
and cyclic fluctuations in a time series then applying a suitable method for forecasting.
The very common statistical methods used for time series forecasting involve ARIMA,
exponential smoothing, VARMAX, SARIMA, . . . etc. [73, 42, 25]. These methods provide
complementary approaches to the problem. The major difference between modeling data
using statistical methods and deep learning methods is that statistical methods account for
the fact that data points taken over time have an internal structure like auto-correlation,
trend, cyclic frequency or seasonal variation which should be considered.

2.2.1 Time Series Types

There are mainly two categories of time series: univariate time series and multivariate time
series. The characteristics of each type are detailed in this section.

2.2.1.1 Univariate Time Series

The univariate time series is the one that consists of a single observation recorded se-
quentially over equal time intervals. Contrary to other areas of statistics the univariate
time series modelling contains lag values of itself as independent variables. These lag vari-
ables can play the role of independent variables as in multiple regression. An instance
of a univariate time series model is Autoregressive Integrated Moving Average (ARIMA)
[33]. Univariate methods include time series forecasting methods which rely on the his-
torical data to predict the future [53]. These models include naive forecasting methods,
which assume that the next observation is similar to the previous one and another basic
method which assumes that the future observation is equal to the current observation plus
a basis value. A univariate time series may possess the following characteristics like auto-
correlation, seasonality, trend and stationarity. Auto-correlation is the Pearson correlation
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of a signal with a delayed copy of itself as a function of delay. It can be defined as the
similarity between observations as a function of the time lag between them. Stationarity
is a characteristic occurring when the statistical properties do not change over time. This
type of time series has constant mean and variance which is independent of time. The
properties of a stationary time series do not depend on time. A time series with a trend
or seasonality is non-stationary. Stochastic time series can be both: stationary e.g. the
auto-regressive (AR), moving average (MA), and auto-regressive moving average (ARMA)
[101] and the non-stationary like the generalized autoregressive conditional heteroskedastic
(GARCH) and the auto-regressive integrated moving average (ARIMA) [63, 64].

2.2.1.2 Multivariate Time Series

he multivariate time series model is an extension of the univariate time series case and
involves two or more input variables. It is not only limited to the past information of
one variable but also incorporates the past of other variables as well. The multivariate
analysis constitutes several related time series being observed simultaneously over time,
instead of observing a single series as in the univariate case [93]. This analysis emerged
in quest of studying the inter-relationship amongst multiple time series variables. These
relationships are mostly examined through the consideration of the correlated structures
among the component series. A Vector Autoregression (VAR) model is a generalization
of the univariate autoregressive model for forecasting a vector of time series [26]. This
method consists of one equation per variable in the system. The right-hand side of each
equation includes a constant and lags of all of the variables in the system. Following are
the equations for a two variable (2 dimensional) VAR with one lag VAR(1):

y1,t = c1 + φ11,1y1,t−1 + φ12,1y2,t−1 + e1,t (2.1)

y2,t = c1 + φ21,1y1,t−1 + φ22,1y2,t−1 + e2,t (2.2)

where e1,t and e2,t are the white noise processes that may be contemporaneously cor-
related. The coefficient φii,L captures the influence of the Lth lag of variable yi on itself,
while the coefficient φij,L captures the influence of the Lth lag of variable yj on yi. The
multivariate time-series models involve a large number of unknown parameters which might
introduce non linearities and elevate complexity. One of the easiest solution would be ex-
tending univariate non-linear models to the multivariate analysis. It is difficult to conclude
that which is the best approach without experimentation.
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2.2.2 Components of Time Series

The value of an observation in a time series are dependent on various forces which are
known as the components of a time series. The four main categories of the components of
time series are trend, seasonal variations, cyclic variations and random variations. Out of
these seasonal and cyclic variations are the periodic changes or short-term fluctuations.

2.2.2.1 Seasonal variations

The seasonal variations are the rhythmic forces which act in a regular and periodic manner
over a span of less than a year [78]. They have a almost similar, repetitive pattern during
the period of twelve months in a year. This sort of variation is observed in a time series if
the data is recorded on hourly, daily, weekly, quarterly, or monthly basis. These variations
are mostly the outcome of some natural forces or man-made conventions. The changing
seasons and climatic conditions play a vital role in seasonal variations. For example, as crop
yield depends on seasons, during the monsoon the sale of umbrella increases and during the
summer the sale of air-conditioner increases. The man-made factors like festivals, trending
fashions, etc also effect the time series [87].

2.2.2.2 Cyclic Fluctuations

The cyclicity are components which tend to repeat themselves over a certain period of
time. They occur in a regular spasmodic manner. The variations in a time series which act
over a span of more than one year are known as the cyclic variations (seasonal variations
are within a year). This oscillatory movement has a time period of more than a year. One
complete period is a cycle. This cyclic movement is also referred to as the ‘Business Cycle’.
This cycle can be divided into four-phase cycle covering the phases of prosperity, recession,
depression, and recovery. The cyclic variation which are regular are not periodic. The rise
and the fall in any business depend upon the economic forces as well as the interaction
between them [71].

2.2.2.3 Secular Trend

The trend depicts the general nature of the data to increase or decrease during a stretch
of time. A trend is a general long-term average tendency. Moreover, it is not always
important that the increase or decrease is in the similar direction over the given period
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of time. The tendencies might increase, decrease or remain stable in different stretches of
time. Although, the overall trend of the time series should either be upward, downward,
or stable. A few examples of time series with trends are the population curve, the food
production, number of industries in a sector etc. The trend can be a general systematic
linear or nonlinear component of a time series that changes over time and does not repeat
[68].

2.2.2.4 Irregular Variations

Another factor contributing to the variation in the time series under examination are these
random and irregular factors. These variations are completely irregular or random. The
fluctuations caused by these random factors are erratic, unforeseen, uncontrollable and
unpredictable. The example of such forces are natural calamities, some sudden event in a
time frame which causes random behavior of the variable under study [123].

2.3 Data Preprocessing

2.3.1 Data Imputation

It is normal for a time series to have missing values and it is important to fill these missing
values before fitting any model for forecasting or prediction. Time series imputation is
a challenging task due to the existence of non-linear dependencies between current and
past values. Missing values imputation or interpolation is a progressive research area with
various existing methods to deal with it. The most trivial method to tackle this issue is
to discard incomplete or empty records. Common methods include the list wise deletion
(complete-case analysis)[121], removing all instances with at least one missing value as well
as the pairwise deletion (available-case analysis) which uses cases that contain some missing
data [76]. These methodologies introduce bias in the data and reduce the amount of data
fostering incorrect forecasting. Moreover, methods like linear interpolation are considered
primitive [62]. Although, this method fits a smooth curve to the given dataset and fills the
missing values using local interpolations, this method fails to take into consideration the
dependencies of features over time. Statistical methods like SARIMA, ARIMA [135, 88] are
auto-regressive and do not perform well when the time series contains consecutive missing
values.

Recurrent Neural Networks (RNN) have also been used to impute the missing values
[47, 100]. A modified version of GRU, GRU-D is proposed in [41] which imputes the
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missing values in a health care time series data. It assumes that missing value can be
represented as a combination of the last available value and the global mean. The GRU-
D model has aided in harnessing the power of the RNNs and explanation of the missing
patterns in a time series. LIME-RNN is another state of the art algorithm which uses
residual networks and graph-based temporal dependency in imputation. This model gives
a good performance on various datasets [125]. It introduces a linear memory vector called
the residual sum vector (RSV) and integrates it over previous hidden states of the RNN,
to fill the missing values.

2.3.2 Exponential Smoothing

Data smoothing is performed on a time series to remove the noise and outliers from it,
which enables important patterns to clearly standout. Data smoothing also helps in pre-
dicting trends clearly and it also helps in taking the account of seasonality. The data
smoothing models include moving average methods. Although data smoothing might help
in predicting certain trends but it also inherently leads to loss of information. There are
different methods to perform data smoothing like the randomization method which uses
random walk [127], moving average method [126] , or performing exponential smoothing
techniques [77].

Exponential smoothing assigns exponentially decreasing weights from latest to the old-
est observations. This simply means that the older the data the lesser is the weight or
importance given to that data and the newer data is assigned more weight since it is more
relevant. The smoothing parameters α denotes the weights for observations. Exponen-
tial smoothing is mostly used for short term forecasts since longer term forecasts using
exponential smoothing can be quite unreliable. The Simple exponential smoothing [81]
uses a weighted moving average which has exponentially decreasing weights. The double
exponential smoothing (Holt’s trend) [63] is suited for tackling the data that shows trends,
compared to the single procedure. The triple exponential smoothing (Multiplicative Holt-
Winters) [39] is suitable for time series with both trend and seasonality. In this thesis, the
multiplicative Holt-Winters method of exponential smoothing is used due to the existing
seasonality in the data.

2.3.3 Feature Selection

In this work, the yield and price are forecasted using the weather and soil data as input.
The problem with soil and weather data is the presence of highly correlated parameters
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which are often redundant. It is important to omit highly correlated features; this process
is known as feature selection. Feature selection involves selecting and excluding given
features without processing them [108]. There are various approaches for feature selection
like removing the parameters with high number of missing values, unfortunately this is not
preferable as it may lead to the loss of essential information. But if the features consist of
missing value beyond a specific threshold, they are preferred to be dropped. Features with
low variance can also be dropped since they do not add essential information to the model.
This can be done by using Variance Threshold which is a part of sklearn’s feature selection
module [119]. Using this method, the features with variance below a threshold or features
with similar values and zero variance can be eliminated. The correlation between features
can be determined by plotting the correlation matrix and the features which are highly
correlated, positively or negatively, can be dropped. Univariate feature selection can be
used, it works by selecting the features on the basis of some univariate statistical tests.
The sklearn’s SelectKBest [36] is used to select the top number of features to keep. It uses
statistical tests to select features having the highest correlation to the target. Recursive
feature selection can be used for eliminating the least important features. It continues
recursively until the specified number of features are chosen. Recursive elimination can be
used with any model that assigns weights to features [155]. The models like Random Forest
Classifier [107] and Random Forest Regressor [98] can be used for feature selection using
SelectFromModel [84]. Other methods include: Forward feature selection which starts
with a full feature set then greedily removes features one at a time. Backward feature
selection [103] which starts with an empty set and greedily adds or removes features one
at a time. Backward stepwise elimination which starts with a full feature set then greedily
adds or removes features one at a time. Random mutation which starts with a feature
set containing randomly selected features then adds or removes randomly selected features
one at a time and stops after a given number of iterations [108].

2.3.4 Sliding Window Method

A time series data consists of series of values which keep changing with respect to time. To
perform supervised learning using time series data, it is essential to convert this data from a
series form to a supervised form, which can be easily fed into a DL model. This is achieved
by using the sliding window method. The sliding window method is performed to use the
previous time steps to predict the future time steps. It is referred to as the lag method in
statistics [139]. The lag method is the one that offsets or lags a time series such that the
lagged values are aligned with the actual time series. The lags can be shifted by any number
of units, which simply controls the length of the backshift. Lags are very essential in any
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time series analysis due to the existence of autocorrelation, which is a tendency for the
values within a time series to be correlated with historical values of itself. Autocorrelation
helps in identifying patterns within the time series, which helps in determining seasonality,
the tendency for patterns to repeat at periodic frequencies. eriodic frequencies.

2.3.5 Dimensionality Reduction

Dimensionality Reduction is different from Feature Selection as it transforms the data un-
like the feature selection which is simple elimination of redundant features. There are var-
ious methods used for dimensionality reduction like Linear Discriminant Analysis (LDA)in
which d linear combinations of the n input features, where d < n, and the linear combina-
tions are produced to be uncorrelated to maximize class separation [82]. These discriminant
functions become the new basis for the dataset. All the numeric features in the dataset are
projected onto these linear discriminant functions moving the dataset from the n dimen-
sionality to the m dimensionality. In LDA, the maximum number of reduced dimensions is
equivalent to the number of classes minus one. The assumption behind LDA is that the tar-
get classes have a multivariate normal distribution with similar variance but different mean
for every class. Principal Component Analysis (PCA) is also widely used for the purpose
of dimensionality reduction [75, 86]. PCA is a statistical method in which the n numeric
dimensions of dataset are orthogonally transformed into a new set of n dimensions referred
to as Principal Components. The first principal component depicts the highest variability
of the data or variance. Every succeeding principal component has the constraint that it
is orthogonal, which means uncorrelated to the preceding principal components and has
the highest succeeding variance. Given a set of data on n dimensions, PCA aims to find a
linear subspace of d dimension lower than n (d < n) such that the data points lie mainly on
this linear subspace. The reduced subspace attempts to maintain most of the variability of
the data. The PCA transformation is sensitive to the scaling of original features and it is
important to normalize the data before applying PCA. Independent Component Analysis
(ICA) is also one of the commonly used dimensionality reduction techniques [51]. It has
its basis in information-theory. ICA is different from PCA as PCA looks for uncorrelated
principal components whereas ICA looks for independent components. Uncorrelated vari-
ables are those with no linear relation among them, whereas independent variables those
ones whose values don’t depend on one another and thus form independent components in
ICA. Autoencoders can also be used for dimensionality reduction. It is a neural network
in which the output units are equal to n, the number of input units [129]. It has at least
one hidden layer with d number of nodes such that d < n. They are trained using the
backpropagation algorithm and the input vector is reproduced on to the output layer. The
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n features in the data are reduced, using the output of the hidden layer, to represent the
input vector. The autoencoder consists of both an encoder from the input layer to the
hidden layer and a decoder: The encoder compresses the n dimensions of the input dataset
into d dimensional space. The decoder expands the data vector from d dimensional space
into the original n dimensional dataset. It is used to bring back the data to original value.
There are other dimensionality techniques which handle non-linear patterns in datasets like
Kernel PCA [150] which finds the principal components that are nonlinearly related to the
input space by performing PCA in the space produced by the nonlinear mapping, in the
cases where the low-dimensional latent structure is easier to discover. Approaches like Lo-
cally linear embedding (LLE) [130], Laplacian Eigen Maps [31], Metric Multidimensional
Scaling (MDS)[52], Isomap [28], Semidefinite Embedding (SDE) [148] and t-Distributed
Stochastic Neighbor Embedding (t-SNE) [141].

2.3.6 Gramian Angular Field Imaging

The researchers proposed a novel framework for encoding time series as images after being
inspired by the huge success of DL in computer vision [147]. The time series are en-
coded into various forms of images like the Gramian Angular Summation Fields (GASF),
Gramian Angular Difference Fields (GADF) and Markov Transition Fields (MTF). Con-
verting time series into images helps in using the computer vision algorithms on the data.
Using Gramian Angular Fields for time series forecasting has given very promising results
[147, 74, 30]. The Gramian Angular Field (GAF) represents the time series in a polar
coordinate system instead of representing in a Cartesian coordinate system. In a Gramian
matrix every element is the cosine of the summation of angles. Suppose there is a time
series X = x1, ..., xn for some n values, all the values are rescaled between [-1,1] or [0,1].
The rescaled time series X̃ can be represented in polar coordinates by encoding the value
as the angular cosine and the time stamp as the radius using the following mathematical
equation:

{
φ = arcross(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

r = ti
N
, ti ∈ N

where, ti is the time stamp, N is a constant factor to regularize the polar coordinate
system, which is a novel way to understand time series. Visually, as the time increases
the values in the time series warp among different angular points on the spanning circles
similar to water rippling. The equation above is bijective since cos(φ) is monotonic when
φ ∈ [0, π]. For every unique time series the proposed map produces unique result in the
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polar coordinate system with a unique inverse map. The polar coordinates also preserve
the temporal relations unlike the Cartesian coordinate.

Figure 2.1: The Proposed Encoding Map of Gramian Angular Fields [147]

After rescaling and transforming the time series into polar coordinates, the angular per-
spective can be exploited by considering the trigonometric sum and difference between
every point to find the temporal correlation within different time intervals. The GASF
and GADF can be defined as follows:

GASF = [cos(φi + φj)] = X̃
′
.X̃ −

√
I − X̃2′ .

√
I − X̃2 (2.3)

GADF = [sin(φi − φj)] =
√
I − X̃2′ .X̃

′ − X̃.
√
I − X̃2 (2.4)

where, I is the identity matrix and post transformation of the time series into the polar
coordinate system the time series at each time step is take as a 1-D metric space. The
pipeline for GAFs generation is shown in Figure 2.1. The figure depicts a sequence of the
rescaled time series of ’Fish’ dataset. The time series is transformed into a polar coordinate
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system and GASF/GADF is calculated. The size of the GAFs is sometimes large because
the size of matrix becomes nxn when the size of time series sequence is n and to deaql with
it the Piecewise Aggregation Approximation (PAA) [91] is used to smooth the time series,
this process doesn’t affect the trend and preserves it.

2.4 Deep Learning Models

Deep Learning is a subset of Artificial Intelligence which imitates the functioning of the
human brain by processing the data and creating patterns for making future decisions
accordingly like detecting objects in images, recognizing speech, translating languages,
and making decisions [94, 49]. Deep learning has networks which do unsupervised learning
from unstructured or unlabeled data. Deep Learning, also referred to as deep structured
learning or differential programming, can be used to help detect fraud or money laundering.
Deep learning has evolved with the digital era where a huge amount of data in every
possible form, from all across the globe, became readily available. This data is referred
to as big data and is derived from sources like social media, internet search engines, e-
commerce platforms, and online cinemas. Big data is easily accessible and can be shared
across cloud computing platforms. In its crude form, big data is unstructured hence it is
beyond human comprehension to directly deduce results or extract relevant information
from it. Here comes the role of AI tools and its subsets like Deep Learning and Machine
Learning which have the potential to unravel the immense information hidden in the big
data. Representation learning is a set of methods that allows a machine to be fed with raw
data and to automatically discover the representations needed for detection or classification
[67, 32]. There are numerous types of deep learning networks which are used these days
like the Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Deep
Belief Networks (DBN), and Artificial Neural Networks (ANNs) which have been applied
to numerous fields on the basis of application and specialty of each network.

2.4.1 Recurrent Neural Network (RNN)

The RNNs are similar to traditional time series models as they are both able to model time
dependent relationships in the data. Every node in a given layer in RNN is connected with
a directed, one-way, connection to every other node in the next successive layer. Every node
has a time varying activation function and each connection has a modifiable real-valued
weight. Nodes are categorized as either input nodes which receive data from outside the
network, the output nodes which yield the results, or hidden nodes which modify the data

16



from the input layer to the output layer. The nodes with recurrent edges receive input
from the current data value (xt) and also from ht−1 which is the hidden node value in the
network’s previous state at time t. The Figure 2.2 shows the rolled structure of RNN.

Figure 2.2: Structure of RNN

The output ŷt is transferred to hidden node at ht at time t. This means that the input xt−1

at time t− 1 influences the output ŷt at time t and later by way of recurrent connections
[99]. The following equations represent the workflow of RNNs:

ht = σ(Whxxt +Whhht−1 + bh) (2.5)

ŷt = softmax(Wyhxt + by) (2.6)

σ is the sigmoid function, Whx are weights between the input and the hidden layer and
Whh are weights between the hidden layer and itself at adjacent time step. The vectors bh
and by are bias parameters which help neural networks to learn the offset. The output ŷt
is the predicted value of the sequence.

2.4.2 Long Short Term Memory (LSTM)

The Long Short Term Memory are developed mainly developed to handle the problem of
vanishing gradients in the Recurrent Neural Networks [143]. LSTMs are quite similar to
RNNs with hidden layers except that each node in the network is replaced by a memory
cell. The memory cells ensure that the gradient passes across many time steps without
vanishing or exploding by having certain nodes with self-connected recurrent edge of a
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fixed weight one. The LSTMs mainly have 3 gates, the input gate, forget gate and output
gate [66]. A typical structure of an LSTM is shown in Figure 2.3

Figure 2.3: Structure of LSTM

The input gate discovers which values from the input should be used to modify the
memory. Sigmoid activation function transforms the values to be in range 0 to 1 and tanh
function gives weights between -1 and 1 to the input values depending on their level of
importance. The working of input can be defined in following equations:

it = σ(Wi[ht−1, xt] + bi) (2.7)

C ‘
t = tanh(Wc[ht−1, xt] + bc) (2.8)

where, b is the bias, W are the weights, the cell state at time stamp t is C ‘
t and ht−1 is

the hidden state of the previous LSTM block at time stamp t− 1. The forget gate (ft) are
used to eliminate the contents in the internal state of LSTM and were introduced by were
introduced by Gers et al. [65]. This gate takes in both the current input and values from
the previous hidden state.

ft = σ(Wf [ht−1, xt] + bf ) (2.9)

The output gate produces the output value ot which is ultimately used to produce ht by
the memory cell by multiplying ot with the value of the internal states The internal state
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must be first run through a tanh activation function, since it provides the output of each
cell which has the same dynamic range as an ordinary tanh hidden unit. This is contrary
to the other neural network which use rectified linear units (RELU), which are easier to
train and have a greater dynamic range.

Ot = σ(Wo[ht−1, xt] + bo) (2.10)

Ct = ft ∗ Ct−1 + it ∗ C
′

t (2.11)

ht = Ot ∗ tanh (Ct) (2.12)

where, Ct is the hidden state of the cell at time t.

2.4.3 Gated Recurrent Unit (GRU)

GRU is a modified version of the RNNs and are designed to solve the problem of vanishing
gradients which is encountered by the RNNs [48] & [55]. GRUs and LSTMs are similar [61]
since both of them are designed to overcome the short term memory issues faced by RNNs
and in many scenarios give equally good results; the only difference is that the GRUs use
hidden states instead of using the cell state or memory for transferring the information.
To solve the problem of vanishing gradients, GRU uses two gates, a reset gate and an
update gate, which are the two vectors responsible for deciding what information needs
to be passed on to the output. These gates can be trained to keep information from the
long past through time without removing it or eliminating information which is irrelevant
to the prediction. The function of the update gate is quite similar to the forget gate and
input gates of LSTM, whereas the reset gate decides how much past information needs
to be forgotten. Owing to the fewer tensor operations, the GRUs are faster than LSTMs.
Figure 2.4 shows the structure of the GRU.

On the other hand, LSTMs can easily perform unbounded counting which helps in
generalizing far beyond the training set, while the GRUs cannot therefore it is proven that
LSTMs are strictly stronger than GRUs [149]. The mathematical representation of GRU
is as follows:

zt = σg(Wzxt + Uzht−1 + bz) (2.13)

rt = σg(Wrxt + Urht−1 + br) (2.14)

ht = zt � ht−1 + (1− zt)� tanh(Whxt + Uh(rt � ht−1) + bh) (2.15)
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Figure 2.4: Structure of GRU

Where xt is the input vector, zt is the update gate vector, rt is the reset gate and ht
is the output vector vector. σg is the element-wise sigmoid activation function applied
individually to every element of the vector and W, U are parameter matrices and b is a
parameter vector and � is the Hadamard product. The sigmoid and tanh functions here
are performed individually on all the elements of the vectors therefore the outputs of the
equations are also vectors.

2.4.4 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) or ConvNet are widely applied to image recognition
and analysis. CNNs use shared weights and translation invariance, therefore they are also
referred to as shift invariant or space invariant networks. If every pixel in an image is moved
the same number of times in the same direction, the image would still retains its original
property and is recognized as the same thing this is known as Translation invariance. For a
time series data this implies that the patterns in sequence would be recognized irrespective
of where in the sequence these patterns appear [14]. CNNs are used in a variety of tasks like
the recommender systems [140], image detection [145], natural language processing [50],
time series modelling [137],.. etc. The CNNs are simply the artificial neural networks, that
in at least one of their layers, use convolution in place of general matrix multiplication [67].
CNNs have an inputlayer, an output layer, as well as several hidden layers. The hidden
layers of a CNN consist of convolutional layers which convolve with a dot product. CNNs
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tackle overfitting in the fully connected networks by using the method of weight sharing
and this is how CNNs provide a regularized version of fully connected networks [20]. The
CNNs most commonly use the ReLU activation function. They also have other layers like
pooling layers, fully connected layers and normalization layers. The Figure 2.5 represents
the architecture of the CNN.

Input
48x48

Feature Maps
44X44

Feature Maps
22x22

Feature Maps
18x18

Feature Maps
9x9

Convolution ConvolutionMax-poolingMax-pooling Max-pooling
Classification 

Outputs

Feature-Extraction

Figure 2.5: Architercture of Convolutional Neural Network [23]

The convolutional layer has convolutional kernels defined by a width and height, input
and output channels, convolution filter depth which is equal to the depth of the input
feature map. For the time series, the kernel is passed over the one dimensional input
sequences created using a sliding window. The sliding window converts a time series
to a supervised learning problem. The input sequence shape is converted to a tensor
(number of sample sequence) x (length of each sample sequence) x (1) x (1). On performing
convolution, the sequence becomes a feature map with dimensions (number of sample
sequences) x (length of feature map ) x (height of feature map (1)) x (channels of feature
map (1)). It is to be noted that this is a 1D convolution. The filter applies a generic
nonlinear transformation on the time series and the output is another modified time series.
The same weights in convolution filter are used across all time steps which makes CNN
learn weights that are invariant across time unlike in ANNs. The pooling layers can be
local pooling layers or global pooling layers and are used for the purpose of dimensionality
reduction. It is done by combining several outputs to create a single output. The global
pooling acts on all the neurons of the convolutional layer whereas the local pooling combines
small clusters. The pooling can also be max pooling or average pooling which output the
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maximum value or average value of the cluster respectively.

2.4.5 Convolutional LSTM (ConvLSTM)

Convolutional LSTMs (ConvLSTMs) are created to combine the plus points of both the
LSTMs which is to tackle the temporal relationship and CNNs which is to tackle the
spatial relationship. The ConvLSTM can tackle the spatiotemporal relationships in any
data [133]. The spatial relationships in any time series data refers to the patterns that
exist based on the location of one data point relative to other points whereas, the temporal
relationships are patterns represented by a function of the sequential time based order of the
data points. The ConvLSTMs model the spatio-temporal structures by encoding the spatial
information into tensors and overcoming the limitation of the vector-variate representations
as encountered in the LSTMs, where no track is kept of the spatial information isn’t kept
track of [146]. The inputs x1, .., xt, cell outputs c1, .., ct, the hidden states h1, .., ht and
gates it, ft, gt, ot are the 3- D tensors in RpXmXn, where p dimension depicts the number of
measurements or feature maps and ’m x n’ depicts the spatial dimension; see Figure 2.6

Figure 2.6: A ConvLSTM Cell [7]

In this research work, to tackle the time series data the first dimension ’p’ is the number of
input samples, the second dimension ’m’ is the sequence length of each input sample and
the third dimension ’n’ is taken as 1. We can visualize the inputs as the vectors standing
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on the spatial grid. The ConvLSTM helps in finding the future state of certain cells in
the m x n grid by utilizing the inputs and past states of the neighbours of the current
point. This is done by using convolution operators in the state-to-state and input-to-state
transitions. ConvLSTM follows the encoder-decoder recurrent neural network architecture
as proposed in [136] and it is also used in video prediction in [114] The mathematical
equations representing the working of ConvLSTM are as follows:

gt = tanh (Wxg ∗ xt +Whg ∗ ht−1 + bg) (2.16)

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci � ct−1 + bi) (2.17)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 +Wcf � ct−1 + bf ) (2.18)

ct = ft � ct−1 + it � gt (2.19)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco � ct + bo) (2.20)

ht = ot � tanh (ct (2.21)

The ConvLSTM cell with a larger transitional kernel captures faster motions whereas
ConvLSTM with smaller kernel captures slower motions [133]. In above equations, ∗ is
the convolution operator, σ is the element-wise sigmoid activation function and � is the
Hadamard product. The use of the input gate vector it, forget gate vector ft, output gate
vector ot, and input-modulation gate vector gt controls information flow across the memory
cell vector ct. Thus, preventing the problem of vanishing gradients by getting trapped in
the memotry. The sigmoid and tanh activations also work upon the components of vectors
individually.

2.4.6 Temporal Convolutional Networks(TCN)

Usually, the sequence modeling is dealt with using recurrent networks but the recent work
indicates that the convolutional networks can outperform the recurrent networks on vari-
ous DL problems like machine translation, audio synthesis,...etc. It is concluded that the
convolutional neural networks must be regarded as the starting point for any sequence
modelling task and the common association between sequence modelling and recurrent
networks should be reconsidered. A generic network of Temporal Convolutional Network
is used to represent the convolutional networks. This architecture is derived from the recent
research and is kept simple; it combines the advantages of modern convolutional architec-
tures. When compared to the canonical recurrent architectures, like GRUs and LSTMs, the
TCNs outperform them across sequence of modelling tasks [27]. The recurrent networks
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have the memory retention characteristics, and the TCNs exhibit substantially longer mem-
ory and are suitable for capturing longer history [97]. The distinct characteristics of TCNs
are that the convolutions are causal ensuring that there is no information leakage from
future to past also it can take any past sequence of a given length and map it to future
sequence of same length like the RNNs. The TCNs help to build long effective history
sizes using a very deep networks augmented with residual layers and dilated convolutions.
Moreover, the TCN is much simpler than WaveNet [113] as it has no skip connections
across layers, conditioning, context stacking, or gated activations.

Sequence Modelling As the name suggests sequence modelling helps in modelling an
input sequence xo, ..., xt and predicts an output sequence yo, ..., yt for every time sequence
t. To predict the output yt for some time t, the key constraint is that all the previously
observed values of inputs xo, ..., xt are used. Formally, a sequence modeling network is any
function f : X T+1 −→ YT+1 that produces the following mapping:

ŷo, ..., ŷT = f(xo, ..., xT ) (2.22)

The Equation 2.22 satisfies the causal constraint which shows that the current output
values do not depend on future values. TThe sequence modelling follows the autoregressive
prediction in which the future is predicted based on the past by shifting the target output
to the input shifted by one time step.

Causal Convolutions TCNs are based mainly on two principles: First, the network
produces an output sequence with the same length as the input sequence. Second, there is
no leakage from the future into the past. In order to achieve the first principle, the TCN
uses a 1D fully convolutional network architecture (FCN) [131],in which every hidden layer
has same length as the input layer; to maintain the same length, zero padding is added
with length of one minus the kernel size . For the second principle, TCN uses causal
convolutions, where an output at time t is convolved only with elements from time t and
elements in the previous layer. Thus, TCN comprises of 1D FCN and causal convolutions.
One of the disadvantages of this network is that to achieve a long effective history an
extremely deep network is needed along with large filters which were not feasible initially.

Dilated Convolutions A basic causal convolution can look back at past values with
size linear in the depth of the network thus, making it challenging to apply the causal
convolution on sequence tasks requiring longer history. This can be dealt with employing
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Figure 2.7: Dilated Causal Convolution [27]

the dilated convolutions which enable a large receptive field [113, 158]. Figure 2.7 represents
a dilated causal convolution which has dilation factors d = 1, 2, 4 and filter size k = 3. The
entire input sequence is captured by the receptive field. Thus, for a 1-D sequence input
x ∈ Rn and filter f : 0, ...,−1 −→ R . The dilated convolution operation ’F’ on element ’s’
can be represented mathematically as follows:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i).xs−d.i (2.23)

Where k is the filter size, d is the dilation factor and s-d.i captures the direction of the
past. Thus, dilation introduces a constant time step between two adjacent filters.
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Figure 2.8: Residual Block [27]

Residual Connections [69] A residual block contains a series of transformations the
output of which is added to the input of the block. Let F be the transformation and x be
the input then the output is represented as in Equation 2.24.

o = Activation(x+ F(x)) (2.24)

This allows the network to learn the modifications to find the mapping instead of
the entire transformation, which has proved to benefit the deep learning networks. The
TCN’s receptive field depends on the depth of the network and filter size and dilation
factor, the stabilization of the deeper networks becomes essential. Figure 2.8 shows a TCN
residual block, 1x1 convolution is added when residual input and output have different
dimensions.The residual block consists of two layers of dilated causal convolution and non
linearity to tackle which ReLU activation is used. In addition, spatial dropout is added
after the dilated convolutions for regularization. In TCN the input and output can have
different widths unlike the ResNet where the input is added to the output of the residual
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Figure 2.9: An Example of Residual Connection. [27]

function. To ensure different input output width, an additional 1x1 convolution is used
to have tensors of same shape for element wise addition. Figure 2.9 shows an example of
residual connection in a TCN where the blue lines represent filters in the residual function
and the green lines are for identity mappings.

2.4.7 SeriesNet

The conventional time series forecasting models are not competent to adequately extract
the essential sequence of data features and often give results with poor accuracy. To tackle
this issue a novel forecasting architecture of SeriesNet is introduced in [132].

Typically, SeriesNet consists of two networks, an LSTM network and a dilated causal
convolution network. The LSTM network aims to learn integrated features and to reduce
dimensionality of multi-conditional data. The dilated convolution handles the loss of res-
olution or coverage due to the down-sampling operation in image semantic segmentation
[156, 44, 45]. The multi-scale contextual information is aggregated systematically using
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Figure 2.10: The Architecture of SeriesNet [132].

the dilated convolutions which improves the accuracy of image recognition. The causal
convolution [113] ensures that the convolution kernel of CNN performs the convolution
operations in exact time sequence and that the convolution kernel can only read the current
and historical information. This approach helps in giving a higher predictive accuracy as
compared to the other models that use fixed time intervals since the combined result
obtained from both networks help the models to learn multilevel and multi-range features
from time se-ries data. Moreover, this model uses batch normalization as well as residual
learning to improve the overall generalization. The architecture of the network is illustrated
in Figure 2.10. In this work, the LSTM network of the SeriesNet in [132] is replaced by a
GRU network with two layers of GRU and an attention module in between.
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2.4.8 Attention Mechanism

The self attention module approaches the different positions of a single sequence and then
finds the representation of the encountered sequence. It enables the deep learning model
to focus on the important details of the input and reject the unnecessary information.
The attention layer is applied to the top of every unit of the sequence and it uses the
additive attention in the applied model. The attention function maps a set of key-value
pairs and query to an output. The keys, values, queries and outputs are all considered
as vectors [142]. A feed forward network is utilized by additive attention to calculate the
compatibility function [159]. The equations below show the working:

ht,t′ = tanh (xTt Wt + xTt′Wx + bt) (2.25)

et,t′ = σ(Waht,t′ + ba) (2.26)

at = softmax(et) (2.27)

lt =
∑
t′

at,t′xt′ (2.28)

where σ is the element wise sigmoid function and Wx and Wt are the weight matrices
corresponding to xTt and xTt′ . The Wa is the weight matrix corresponding to the non-linear
combination of Wx and Wt, bt and ba are the bias vectors [142]. Equation (2.28) depicts
how the attention value lt is calculated. To find the value of attention, the probability
distribution at and compatibility score et,t′ should be found first. The compatibility score
is calculated using the hidden representation ht,t′ of xTt and xTt′ . Introducing the attention
layer is proven to be very useful since it improves the performance of the deep learning
models. The addition of the attention layer improves the performance in problems such as
yield prediction of fresh produce, natural language processing, and healthcare interactions
[54, 38, 159, 142]. The attention layer is used in the proposed model, it is added after
the 1-D convolutional layer after dilated convolution operations and also between the two
layers in the GRU network.

2.5 Performance Metrics

It is highly essential to choose the correct performance metric to evaluate the Deep Learning
models. The metrics influence how the performance of machine learning algorithms is
measured and their comparison. The metrics which are most commonly used are the Mean
Squared Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE)
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[21, 80, 124] . R2 [22] is used to measure the degree of correlation between the predicted
and actual values.

2.5.1 Mean Squared Error (MSE)

The Mean Squared Error is one of the most commonly used metrics and it works by taking
the average of the squared differences between actual and predicted values; taking the
square difference highly penalizes large errors. This metric takes the square difference and
therefore, it highly penalizes large errors. This metric is preferred mainly because it is
differentiable and hence it can be optimized. The only disadvantage of MSE is that it is
not robust to outliers [80]. Mathematically, it is defined as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.29)

where, yi is the actual value whereas, ŷi is the predicted value and n is the sample size.

2.5.2 Root Mean Squared Error (RMSE)

RMSE is square root of the average squared difference between the actual and predicted
values. The square root brings the squared error back to the scale of the target. RMSE is
a better option when large errors are not desirable. It is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.30)

where, yi is the actual value whereas, ŷi is the predicted value and n is the sample size.

2.5.3 Mean Absolute Error (MAE)

The Mean Absolute Error calculates the absolute difference between the actual and pre-
dicted values and then calculates the average difference or error. In some cases, MAE is
preferred over MSE or RMSE since it is robust towards the outliers. The only disadvantage
of MAE is that it is non- differentiable [152]. It is given as follows:
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MAE =
1

n

n∑
i=1

|yi − ŷi| (2.31)

where n is the total number of observations, yi is the true value for observation i, and ŷi
is the predicted value at observation i.

2.5.4 Coefficient of Determination (R2)

The R-Squared coefficient, or the coefficient of determination, represents the percentage
of the variance in the dependent variable that is explained by the independent variable.
Mathematically, it is defined as:

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(2.32)

where yi is the true value for observation i, ŷi is the predicted value at observation i, and
ȳ is the mean value of the observations. Also,

∑
(yi − ŷi)2 is the residual sum of squares

and
∑

(yi− ȳ)2 is the total sum of squares. MAE and MSE give absolute values which may
not intuitively depict how well a model performs. R2 is a statistical term which is used to
describe the portion of the variance in the dependent variable that can be predicted using
the independent variable. It helps in measuring how well observed outcomes are replicated
by the model, based on the proportion of total variation of outcomes explained by the
model [60, 57]. R2 is used to measure the goodness of fit of a model for any linear least
square regression model which has an intercept, the value of R2 ideally lies between 0 and 1
[95]. However, sometimes negative values can occur depending on the exact mathematical
definition of R2 being used and the type of model being fitted. Occurrence of negative
value means that the mean of the data set fits the dependent variables better than the
values provided by the model which signifies a complete lack of fit. This occurs when an
unsuitable model is picked to solve a particular regression problem. The best results occur
when the predicted values by the model are the same as the actual values which yields an R2

of 1. A constant value model which derives no information about the independent variables
and predicts the mean will always result in an R2 of 0. When a model performs well the
variation in the data is properly captured and the residual sum of squares obtained is low
and R2 value close to 1 is attained. However, if the variation in the data is not properly
captured by the model, then the residual sum of squares will be high and a value of R2

will be closer to zero. The drawbacks of R2 are: as the number of explanatory variables
increase, its value increases. It does not account for collinearity. It does not tell if enough
data points are used.
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2.5.5 Aggregated Measure (AGM)

The AGM incorporates the information captured by the metrics like RMSE, MAE and
R2 into a single metric to simplify the process of choosing the best performing model
[102, 110]. AGM is negatively oriented which means that lower scores demonstrate better
performance; it is mathematically defined in (2.33).

AGM =
RMSE +MAE

2
× (1−R2) (2.33)

2.6 Related Study

Crop yield forecasting is an essential task for making decisions related to crop management,
future market, and crop pricing at both regional and country levels. There are various
image based methods in precision agriculture which are adopted for apple yield forecasting
like in [24], the apple yield is estimated by obtaining the images of the individual apple
trees using unmanned aerial vehicle (UAV) and then a Convolutional Neural Network is
trained to detect the count of apples on the orthomosaic built from images taken by UAV.
In [43], the images of the Gala trees are captured from an orchard near Bonn, Germany
and then the apple yield is forecasted by performing the image analysis and using the tree
canopy features as input to the Artificial Neural Networks (ANNs). These methods are
very different from the proposed forecasting method where there is no need to access the
apple orchards and capture images of the trees. Using the weather and soil parameters,
the apple yield can be forecasted for a wider area since there is no need for visiting each
individual orchard to obtain images.

Previously, multiple methods have been used for yield forecasting like the method of
Partial Least Squares (PLS) and ANN as used in [120]. It is concluded that they are good
for short and long term crop price forecasting. The strawberry yield forecast is evaluated
using the predictive principal component regression with a single layer neural network
and generic random forest (RF) in [104] & [118]. In [40], they use the Bayesian Network
approach to predict the corn yield for the 99 counties in Iowa. On the other hand, nondeep
Machine Learning (ML) models such as ANNs are used in [90, 89, 56] for forecasting as
well as simple DL ones like the Long Short Term Memory Networks (LSTM) in [85] &
[72]. In [102], the strawberry yields and prices are predicted using various DL compound
models like ConvLSTM, CNN-LSTM, CNN-LSTM-GRU with attention layer along with
DL ensemble models. The models are trained using the dynamic weather parameters. The
DL models are recommended over the nondeep ML and non-ML models for forecasting. In
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[117], counter-propagation artificial neural networks (CP-ANN) and Supervised Kohonen
Networks (SKNs) are used to predict the wheat yields after being trained using a found
input set of influential soil quality parameters obtained from advanced sensing techniques
like soil spectroscopy. In [58], Neural Networks and statistical methods are used for site
specific yield prediction while the soil quality parameters are used as input. In this work,
the static soil quality parameters as well as the dynamic ones are used to forecast the apple
yield. Deep learning imputation techniques in [128] & [110] are used to fill the missing
values encountered in the utilized time series. In addition, transfer learning applications
are well established within the deep learning literature. In the fresh produce field, the
authors of [144] successfully transferred the learning of a forecasting model trained on
annual yield data based in Argentina to another model built for annual yield forecasting
in Brazil. They discuss the possibility of extending their transfer learning application to
cover other crops as well.

2.7 Chapter Summary

This chapter starts with a Fresh Produce Procurement process section covering the chal-
lenges which are currently faced in Fresh Produce Supply Chain Management. This is
followed by a Time Series Modelling section which starts by discussing the types of time
series, multivariate or univariate, then the components of any time series, like trend, sea-
sonal variations, cyclic variations and random variations. The Data Preprocessing section
includes methods and work done in Data Imputation, Feature Selection, conversion of
time series to supervised learning form and finally dimensionality reduction techniques.
Then the state-of-the-art deep learning models which are used in literature for forecasting
purposes are descried. The Evaluation metrics section lists metrics commonly used in lit-
erature along with the pros and cons of each. Finally, the Related Work section covers the
work done in the field of forecasting.

This research work aims to achieve the following which has not been tackled in any of
the discussed works of literature:

(a) Advanced deep learning models which have mostly been used for natural language
processing or image video analysis are modified to work with the time series problem
being solved in this thesis.

(b) Despite using either the dynamic parameters or the static soil quality parameters,
none of the reviewed approaches analyze or gauge the effect of adding the static
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parameters to the dynamic ones on forecasting performance when both parameter
types are concurrently used.

(c) The commonly used methods for yield prediction are survey based which is a stereo-
typical method of sending enumerators in field visits to important production areas.
This is a cumbersome process compared to just using the station-based data of soil
or weather parameters to forecast the yield.

(d) The method of transfer learning is used to transfer and share the learning amongst
similar crops. Despite the deployment of Transfer Learning in many fields, not much
is found on its application in the domain of crop yield/price prediction.
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Chapter 3

Proposed Solution

Various aspects need to be tackled to solve the problem of Fresh Produce forecasting. The
proposed solution to deal with this problem comprises two stages:

• Data collection and preprocessing: sources for the right input data needed for the
modelling purpose are found. The missing values should be handled correctly, this is
critical because right imputation methods must be selected else complete elimination
of missing values can add bias to the forecasting model. The correct lag time for
each considered FP is decided.

• Forecasting models and model tuning: Various forecasting models are developed,
these are compound DL models. The optimal parameters are chosen using hyper-
parameter tuning.

Further details of the two stages are discussed in this section.

3.1 Datasets and Preprocessing

Various Datasets are used in this research work to forecast the Fresh Produce yield and
price. These datasets include soil, weather, FP price and FP yield data.
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3.1.1 California Weather Data

The California weather data is obtained from California Irrigation Management Informa-
tion System (CIMIS) [4]. TThis weather data consists of the thirteen weather parameters:
the daily value of evapotranspiration rate (ETo), precipitation, solar radiation, dew point,
air temperature, vapor pressure, relative humidity, wind speed, and soil temp parameters.
This data is available at the county level and can be obtained for every county in California.

3.1.2 California County Level Soil Quality Static Data

The static soil parameters vary per county but are constant within each county. The static
soil parameters are collected from the United States Department of Agriculture: Web Soil
Survey (USDA-WSS) [9]. The USDA site has a detailed record for each county and the
soil quality parameters are available at the map unit level for every county.

Table 3.1: Details of Static Soil Parameters
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The values for the map unit comprising of the farmlands are averaged to get the soil quality
values per county. 15 soil quality parameters are considered including: root zone available
water (rootznaws), drought vulnerability (droughty), Soil Organic Carbon Stock (SOC),
sand content, silt content, clay content, organic matter, bulk density, calcium carbonate,
water PH, linear extensibility percent, slope, cation exchange capacity, sodium adsorption
ratio and electrical conductivity. The details of these parameters are given in Table 3.1.

3.1.3 California County Level Soil Dynamic Data

The dynamic parameters varying on daily and monthly basis within each county are col-
lected from the National Oceanic and Atmospheric Administration website [17] and The
National Drought Mitigation Center; Drought Risk Atlas [8] respectively.

Table 3.2: Details of Dynamic Soil Parameters

There are various parameters related to the soil which affect the yields and prices of fresh
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produce namely: soil moisture, soil temperature, solar radiation, surface temperature,
PDSI (Palmer Drought Severity Index), Palmer Z-Index [16, 18],... etc. The details of
these parameters are give in Table 3.2. These monthly parameters remain same for all the
counties within a Crop Reporting District.

3.1.4 Daily Berry Yield and Price Data

The berries used for this research are the strawberries and raspberries. The berry yield
and farm-gate price data is extracted from the California Strawberry Commission website
[15]. Both the daily and weekly values for price and yield are available on this website.
There are a few missing records with missing yield or price data that are entirely dismissed
without interpolation in few experiments for the sake of comparison, otherwise, for all
other experiments, the daily values are imputed using advanced deep learning imputation
techniques. Figure 3.1, Figure 3.2 and Figure 3.3 show the strawberry yields, raspberry
yields and strawberry prices respectively after imputing their missing values.

Figure 3.1: Imputed Strawberry Yields
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Figure 3.2: Imputed Raspberry Yields

Figure 3.3: Imputed Strawberry Prices
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3.1.5 Yearly California County Level Apple Yield Data

The yearly apple yield data is collected from the United States Department of Agriculture,
National Agricultural Statistics Survey (USDA-NASS) [13]. This data is collected for 15
counties across 6 Crop Reporting Districts (CRD) in California. The six CRDs are North
Coast, Central Coast, Sacramento Valley, San Joaquin Valley, Sierra Nevada and Southern
California. Figure 3.4 shows highlights the selected 15 counties across 6 CRDs.

Figure 3.4: Selected 15 Counties in 6 Crop Reporting Districts

3.1.6 Bidirectional Imputation

The method of Bi-directional imputation is used to impute the missing values in the soil
data. This method is a primitive method of filling the missing values in a time series
dataset inspired by the Last Observation Carried Forward (LOCF) and Next Observation
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Carried Backwards (NOCB) methods [134]. This method first considers the frequency of
the data values , whether yearly, monthly, ... etc. Whenever a missing value is encountered,
the value occurring in a similar month in the preceding year is used, or carried forward,
to impute the encountered missing value. If that last value is missing, then the value of
the following year at the same point of time is used, or carried backward, to impute the
encountered missing value in the currently considered year.

3.1.7 Data Augmentation

Since the yield data is annual, the number of resulting records is low and hence the need
for data augmentation to increase the number of records used for training the DL model
which should enhance the forecasting results. From the USDA site, the apple yield data
of 37 years, from 1982 to 2018, is extracted for 15 counties, out of which the first 33
years data is used for training and the last 4 years data is used for testing. This splitting
takes place before any preprocessing of the data and all the experiments performed with
or without augmentation are tested using this non-augmented test dataset comprised of
the annual yield values of 15 counties for the last four years from 2015 to 2018. Hence,
the total number of available training samples is low; 495 which is 33 x 15. The data
augmentation is performed by finding all possible combinations of two counties un-ordered
tuples within the same CRD and averaging each pair input and output values to create a
new data point [59]. This increases the sample size up to 19008 samples. The augmentation
method, followed to generate new samples, is sound since the PDSI value remains the same
within a CRD and the other parameters are simply averaged values for the county. Hence,
those newly generated points can be used to represent the missing farmland data points
[85]; averaging two data points resembles data interpolation for a hypothetical farmland
or county in the CRD whose data is missing or unavailable.

3.1.8 Feature Selection and Dimensionality Reduction

Choosing the most influential parameters is a major challenge due to the high correlation
amongst those parameters. Hence, the Random Forest feature selection method in Python
with scikit-learn [119] is used for the purpose of feature selection. A lag of the past 20
weeks, i.e., 140 days of soil parameters values is found to affect the yields forecasting
and prices values 5 weeks ahead. After normalizing the data, the Principal Component
Analysis (PCA) [19] is applied and the first n components with the maximum proportion
of variance (around 95%) are chosen to train and test the forecasting model along with the
corresponding yields or prices output.
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3.2 Deep Learning Models

This section describes the details of the deep learning models which are used for various
forecasting experiments conducted in this thesis. The deep learning models are chosen for
forecasting since, they outperform the conventional machine learning models. Moreover,
the deep learning models help in capturing the complex relationship between the input
soil and weather parameters and the output yield and price values. The statistical and
machine learning models are unable to capture such complex relations. Another reason
of using deep learning models lies in their ability to handle large datasets. The input
data used for forecasting is huge and contains lots of input parameters. The deep learning
models effectively process huge input data to establish complex relationship between the
input and output. In this work, mainly the compound deep learning models are used.

3.2.1 Compound Deep Learning Models

This section describes the compound deep learning models used for the experiments per-
formed in the thesis. The compound deep learning models are a combination of two or
more deep learning models. The compound deep learning models experimentally perform
better than using individual component deep learning models [111]. Using combinations
of CNNs and RNNs help in capturing the complex temporal and spatial information in
the data. This section discusses the structure and design of the following compound deep
learning models used for experiments:

• SeriesNet with GRU and Attention: This compound model consists of SeriesNet
comprised of dilated causal convolutional network, GRU which is modified version of
RNNs and Attention layer.

• Att-CNN-LSTM: This model contains combinations of convolutional and LSTM lay-
ers with Attention layer.

• TCN on Time Series Encoded as Images: This model used the deep learning model
TCN on the encoded images of the times series using Gramian Angular Field.

3.2.1.1 SeriesNet with GRU and Attention

The conventional architecture of SeriesNet consists of mainly two networks. One network is
of dilated causal convolutional network and the other can be one from a variety of networks
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Figure 3.5: SeriesNet with GRU and Attention

mostly similar to the RNNs, like LSTMs, GRUs, . . . etc. In the proposed model, the
distinguishing factor is the added attention layer which highly enhances the forecasting
accuracy. The first network of the dilated causal convolutional network contains seven
layers of dilated convolutional operations and a 1D convolution layer. 32 filters are used in
the dilated convolutional operation and the dilation rate is increased by 2 times for each
layer. The output of the 1D convolutional layer is passed through the attention layer which
is then flattened and fed to a single neuron dense layer. In the second network, GRU is used
together with the dilated causal convolution. The introduced GRU is a two-layer network
where in between an attention module is added. The output at the end is flattened and
fed to a single neuron dense layer. The outputs from both networks are concatenated and
passed through ReLU activation function. Adam [92] is used as an optimizer and the Mean
Squared Error loss function is used. The architecture of the model can be summarized in
Fig 3.5. Instead of using the LSTM as proposed in the SeriesNet model in [132], the GRU
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network is used. The number of layers in the network can be altered as per the requirement.

3.2.1.2 Att-CNN-LSTM

This compound model consists of convolutional layers, LSTM layers and attention layer,
starting with four layers of 1-dimensional Convolutional layers with 100 filters, kernel size
of 3, padding causal, 1 stride and activation function Relu. This is followed by three
LSTM layers, each containing 100 units and Relu activation function. This is followed by
a self-attention layer having sigmoid activation function. Then there are four dense layers
128, 64, 32, 16 and 1 neurons in the networks. The loss function used is MSE and Adam
optimizer. Figure 3.6 represents the architecture of the network.

Figure 3.6: Architecture of CNN-LSTM with Attention

3.2.1.3 TCN on Time Series Encoded as Images

In this approach, the input to the Temporal Convolutional Network is the time series
encoded into images using the Gramian Angular Fields as discussed in Section 2.3.6 as
inputs. The encoding using Gramian Angular Field preserves the temporal dependency
through the r coordinate and the whole encoding is bijective which also proves to be helpful
[6]. The time increases as the position is moved from top-left to bottom-right and thus the
time dimension is encoded into the geometry of the matrix. This is how the Gram Matrix
helps in preserving the temporal dependency. Figure 3.7 represents the process of encoding
time series into a Gramian image. Figure 3.8 represents the images obtained when a row
of soil parameters is encoded into images using GAF, here summation image is obtained
from GASF and difference image is obtained from GADF.
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Figure 3.7: Steps for Conversion Encoding Time Series into Image[6].

Figure 3.8: Encoded Soil Parameters into Image

TCNs can be preferred over the GRUs and LSTMs since, they have longer memory as
compared to RNNs of same length [70, 96]. The convolutional layers promote parallelism,
they have flexible receptive size and have stable gradients. The model used in this work
has 6 residual blocks 64 filters with a kernel size of 2, with the dilations [1, 2, 4, 8, 16, 32],
relu activation and causal padding are used. Figure 3.9 represents a stack of dilated causal
convolutional layers.

45



INPUT

OUTPUT,
DILATION = 8

HIDDEN LAYER,
DILATION = 4

HIDDEN LAYER,
DILATION = 2

HIDDEN LAYER,
DILATION = 1

Figure 3.9: Visualization of a Stack of Dilated Causal Convolutional Layers with Filter
Size 2 and Dilation [1,2,4,8].

3.2.2 Ensemble Learning

In the field of machine learning, ensemble techniques utilize a combination of multiple
learning algorithms to obtain better forecasting performance than could be obtained from
any of the individual learning algorithms alone [122, 160]. A machine learning ensemble
consists of only a concrete finite set of alternative models, but typically allows for much
more flexible structure to exist among those alternatives. Ensemble learning is a method
using which multiple models are strategically generated and the results from them are
combined to solve a computational problem [115]. Ensemble learning is primarily used to
improve the performance of a model, such as classification, prediction, function approxi-
mation models, or reduce the likelihood of an unwanted selection of a poor one. Moreover,
ensemble learning can be applied to assigning confidence to the decision made by the model,
selecting optimal features, data fusion, incremental learning, non-stationary learning, and
error-correcting. The two ensemble techniques considered are:

(a) Stacking Ensemble (SE): Stacking or stacked generalization involves training a
learning algorithm to combine the predictions of several other learning algorithms.
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The first step is to train all of the other algorithms using the available data, then a
combiner algorithm is trained to make a final prediction using all the predictions of
the other algorithms as additional inputs. In practice, a logistic regression model is
often used as the combiner for classification and linear regression is used for regres-
sion. Stacking typically yields performance better than any single one of the trained
models [109]. It has been successfully used on both supervised learning tasks [34].

Figure 3.10: Voting Regressor Ensemble for SeriesNet and Att-CNN-LSTM

(b) Voting Regressor Ensemble (VR): This ensemble technique is a simple but very
effective one. For classification problems, it works by selecting the majority vote
after every individual algorithm makes a forecast (hard voting) or averages the fore-
cast probabilities of all the algorithms and picks the class with the highest average
probability (soft voting). In regression problems, it works similar to soft voting by
averaging the forecasts of the individual algorithms to come up with a final forecast
[138, 112]. Since, the problems tackled in this thesis is a regression problems, the
voting regressor ensemble of Series-Net and Att-CNN-LSTM takes the output fore-
cast from each model and then ensembles it as shown in Figure 3.10. This helps in
adding the learning of both the models in one final forecast value and thus helps in
better forecast.

3.3 Hyperparameter Tuning and deciding FP Lag

Tuning the hyperparameters for a deep learning model is an essential part of modelling.
The first step for tuning is to set the right learning rate, which is the size of the step which
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the algorithm follows as it discovers the global minimum [154, 157]. Selecting a very large
value for learning rate might oscillate the model from one local minimum to the other and
if the learning rate is too low then the convergence to the global minimum will take a lot of
time. Hence, it is necessary to find an optimal learning rate to form a generalizable model
which fits well to the data. Overfitting is a situation when the data has high variance and
the model tends to memorize the data pattern, the model fits well over the train data but
doesn’t perform well for unseen test data because it is not generalizable. When the dataset
is too small with high variance, the overfitting causes the model to be too complex with very
low bias. The problem of overfitting can be dealt with using regularization. Conversely,
in the case of underfitting, the opposite of overfitting, the model is unable to fit the data
well, it neither fits the training nor the test set, i.e., not generalizable. Thus, the ideal case
is to find hyper-parameters with which the model neither underfits nor overfits the data
and be generalizable. To find these best parameters the following steps are taken:

(a) While training the model, the callbacks has been used in which model checkpoint
is added. This checkpoint tracks the weights corresponding to the best validation
loss, i.e., least error. The patience, which is the number of tracking epochs with
increasing loss, is set to 30 to avoid overfitting which is commonly encountered due
to high number of epochs.

(b) To determine the optimal learning rate, layers in model, optimizer choice, the loss
function and regularization parameter the method of hit and trial is used, which is
having multiple manual iteration till the best set is discovered.

The lag for the strawberry as well as raspberry is chosen to be 20 weeks which is equal to
140 days. The lag value depicts how many past values are auto correlated with the present
value. 140 days lag depicts that the present value to be forecasted, e.g., price or yield,
depends on the past 140 values of the weather and soil parameters.

3.4 Chapter Summary

The deployed datasets, preprocessing, proposed models, and tuning are the four main
topics covered in this chapter.

(a) The datasets used in this work are described: the California weather data along
with the dynamic and static soil data. The yield and price data for strawberry and
raspberry along with the apple yearly yield data.
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(b) The preprocessing methods are explained, like the feature selection, data augmenta-
tion and dimensionality reduction.

(c) The details of the proposed models are provided: the proposed compound deep
Learning models which are as solution for the problem.

(d) A process is provided for hyper-parameter tuning and deciding the correct FP lag.
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Chapter 4

Experiments and Analysis

The Chapter 3 covers the solution proposed to forecast the yield and price of fresh pro-
duce, with the details of the input data, output data and the models used. This chapter
describes details on the various experiments conducted in this thesis using the models
and the datasets described in the previous chapter. The experiments are divided into the
following four sections:

1. Soil and Weather Parameters’ Effect on Yield Forecasting: The experiments
under this section are performed to find the best set of input parameters for accurate
yield forecasting.

2. Soil and Weather Parameters’ Effect on Price Forecasting: The experiments
under this section are performed to find the best set of input parameters for precise
price forecasting.

3. Finding the best performing Deep Learning Model for Price and Yield
Forecasting: Two experiments are performed in this section to find the best per-
forming compound DL model for yield and price forecasting with soil moisture and
temperature as the input parameters.

4. Soil Parameters’ Effect on Yield Forecasting: The experiments under this
section are performed to find the effect of using different types of soil parameters like
the dynamic and static soil parameters on yield forecasting across varied counties in
California and to find the best performing models.

5. Transfer Learning for Yield Forecasting: The experiments under this section are
performed to analyse how effective is transfer learning amongst the crops of similar
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nature. The transfer learning reduces the computational complexity incurred while
retraining the models.

4.1 Soil and Weather Parameters’ Effect on Yield Fore-

casting

In this section experiments are conducted to forecast the strawberry yield using the soil and
weather parameters. Three experiments are conducted in which soil parameters, soil and
weather parameters together and just soil moisture and temperature, are used to forecast
the strawberry yield. The proposed deep learning model for forecasting strawberry yields
and prices is tested in Santa Barbara county, California. The main objective behind these
experiments is to determine the best set of parameters and best deep learning model
required to forecast strawberry yield. The experiments discussed in Section 4.1.1 and 4.1.2
are performed to determine which set of parameters give better yield forecasting results..

For the datasets, the dynamic soil data as discussed in Section 3.1.3 is used while the
weather data consisting of the thirteen weather parameters which are the daily value of
evapotranspiration rate (ETo), precipitation, solar radiation, dew point, air temperature,
vapor pressure, relative humidity, wind speed, and soil temp parameters is used as discussed
in Section 3.1.1, and the yield data in Section 3.1.4 is used as labels.In this experiment set,
only one county, which is Santa Barbara in California, is considered therefore the static
soil parameters are omitted since they are constant per county. A lag of the past 20 weeks,
i.e., 140 days, for all considered parameters is found to affect the yields forecasting values
5 weeks ahead [102]. For the preprocessing needed, first the data is normalized using the
Principal Component Analysis [19]and then the parameters with maximum proportion of
variance are chosen to train and test the forecasting model along with the corresponding
yields or prices output. For a few experiments, particularly the one using the TCN model,
the data is further transformed using Gramian Angular field. The total number of samples
is 2,812 from year 2011 to 2019 out of which 80% are used for training and 20% for testing.
The description of experiments is in the following subsections.

4.1.1 Yield Forecasting Using Soil Parameters

In this experiment the soil parameters alone are used to forecast the yield and the results are
reported based on all deployed performance measures for 5 weeks ahead. The dynamic soil
data described in Chapter 3 is used in this experiment. The soil data is first preprocessed,
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the preprocessing steps include first creating a window of 20 weeks of data to predict the
yield 35 days ahead and hence the prediction is for 5 weeks ahead. Thus, each single
parameter had value for 140 days (20x7days), which naturally resulted into a lot of input
parameters and thus high dimensionality. To select the best parameters and reduce the
dimensionality of the data, the Principal Component Analysis is applied and the parameters
accounting to 90% variance in the data are chosen.

Figure 4.1: Results of Yield Forecasting Using Soil Parameters

The preprocessed data is then fed into two models Att-CNN-LSTM and Att-Conv-LSTM.
Finally, the stacking ensemble and voting regressor are used to ensemble the results from
these two models. Figure 4.1 presents the results of these models, with the stacking en-
semble performing the best with the least forecasting errors. Figure 4.2 shows the final
forecasted values for days between 17-12-2017 and 03-07-2019.
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Figure 4.2: Actual vs Forecasted Yields Using Soil Parameters

4.1.2 Yield Forecasting Using Soil and Weather Parameters

In this experiment, the weather parameters are used along with the soil parameters to
forecast the yield. The thirteen weather parameters described in Chapter 3 along with
the dynamic soil parameters are used to train the two compound models Att-CNN-LSTM
and Att-ConvLSTM. The test set is then used for forecasting and the obtained results are
shown in Figure 4.3. It is observed that overall, the soil and weather parameters together
perform better than using just the soil parameters. The outputs from both compound
models are ensembled using the voting regressor and the stacking ensemble; results of both
ensembles are depicted in Figure 4.3. It is observed that the stacking ensemble performs
better than the voting regressor. Figure 4.4 shows the final forecasted values for days
between 17-12-2017 and 03-07-2019.
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Figure 4.3: Results of Yield Forecasting Using Soil and Weather Parameters

Figure 4.4: Actual vs Forecasted Yields Using Soil and Weather Parameters
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4.1.3 Inferences and Conclusion

Following conclusions are drawn from the experiments conducted in the Section 4.1:

• It is inferred that better results are obtained when using both soil and weather pa-
rameters discussed in Section 4.1.1 than using the soil parameters alone as discussed
in Section 4.1.2 or weather parameters alone as in [111].

• It is also observed that the stacking ensemble of the component deep learning models
Att-ConvLSTM and Att-CNN-LSTM gives the best yield forecasting results for both
experiments in Section 4.1.1 and 4.1.2.

4.2 Soil and Weather Parameters’ Effect on Price Fore-

casting

Having an estimate of the prices of the fresh produce commodities helps food companies
to bid a fair price to the distributors. To forecast an FP price close to the actual, deep
Learning models should be trained using an effective set of parameters that affect the price.
In this section, experiments are conducted to forecast the strawberry price using varying
soil and weather parameter sets to discover the most effective parameters. Two experiments
are conducted to forecast the strawberry price for Santa Barbara County of California; In
the first, the soil parameters are used alone. In the second, weather parameters are added
to the soil ones.

The dynamic soil data as discussed in Section 3.1.3, the weather data as discussed in
Section 3.1.1 and the price data as discussed in Section 3.1.4. The data preprocessing for
the inputs is done as described in Section 4.1. Following experiments have been conducted
to forecast the strawberry yield using the soil and weather parameters.

4.2.1 Price Forecasting Using Soil Parameters

In this experiment the soil parameters alone are used to forecast the price and the results are
reported based on all deployed performance measures for 5 weeks ahead. The dynamic soil
data described in Chapter 3 are used in this experiment. The soil data is first preprocessed,
the preprocessing steps include first creating a window of 20 weeks of data to predict the
yield 35 days ahead, hence the prediction is for 5 weeks ahead yield. Thus, each single

55



parameter has values for 140 days, 20 weeks x 7days, which naturally results into a lot of
input parameters and thus high dimensionality. To pick the best parameters and to reduce
the dimensionality of the data Principal Component Analysis is applied and the parameters
accounting to 90% variance in the data are chosen. The price is also preprocessed using the
exponential smoothing [79] to smooth out any spikes. The exponential smoothing is mostly
used for data which has seasonality. Since, the price data had seasonality exponential
smoothing is used.

Figure 4.5: Results of Price Forecasting Using Soil and Weather Parameters
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Figure 4.6: Actual vs Forecasted Prices Using Soil Parameters

The preprocessed data is then fed into two models Att-CNN-LSTM and Att-Conv-
LSTM and then finally stacking ensemble and Voting Regressor are used to ensemble
the results from these two models. As shown in the results in Figure 4.5, the Stacking
Ensemble is the best performing with the least forecasting errors. Figure 4.6 shows the
final forecasted values for days between 17-12-2017 and 03-07-2019.

4.2.2 Price Forecasting Using Soil and Weather Parameters

In this experiment the weather parameters are used again along with the soil parameters
to forecast the price. The thirteen weather parameters described in Chapter 3 along with
the dynamic soil parameters are fed into the two compound models Att-CNN-LSTM and
Att-ConvLSTM to give the results shown in Figure 4.7. It is observed that, overall, the
soil and weather parameters together perform better than just using the soil parameters
as inputs to the model. The voting regressor ensemble and stacking ensemble is performed
on the outputs from both the compound models and it is observed that Stacking Ensemble
performs better than Voting Regressor. Figure 4.8 below shows the final forecasted values
for days between 17-12-2017 and 03-07-2019. The soil and weather parameters together
perform better than using the soil parameters alone.
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Figure 4.7: Results of Price Forecasting Using Soil and Weather Parameters

Figure 4.8: Actual vs Forecasted Price Using Soil and Weather Parameters
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4.2.3 Inferences and Conclusion

• It is inferred that better results are obtained on using both soil and weather param-
eters discussed in Section 4.2.1 than using the soil parameters alone as discussed in
4.2.2 or weather parameters alone as in [111] for forecasting the price values.

• The stacking ensemble of the component deep learning models Att-ConvLSTM and
Att-CNN-LSTM gives the best price forecasting results for both experiments in Sec-
tion 4.2.1 and 4.2.2.

4.3 Finding the Best Performing Deep Learning Model

for Price and Yield Forecasting

There are two experiments described in this section, both experiment use soil moisture and
temperature parameters as inputs; the first experiment is strawberry yield forecasting and
the second is strawberry price forecasting. These experiments are performed to find the
best performing DL model for forecasting price and yield.

Various models are used in both the experiments to find the best possible forecasting
results. The compound models used for experimentation are Att-CNN-LSTM, TCN, Att-
ConvLSTM, SeriesNet with GRU, all these models are trained using the soil moisture
and temperature data as input and the corresponding yield as output. There exists a
lot of correlation amongst the soil and weather parameters therefore, choosing the most
influential parameters is a major challenge. The Random Forest feature selection method
in Python with scikit-learn is used and the soil moisture and temperature are selected
accordingly as the most effective parameters. Another reason for using soil moisture and
temperature is that these parameters can easily be extracted using the satellite imagery.
Thus, out of the entire set of parameters only soil moisture and temperature is used as
inputs to the models. For the TCNs, the time series input data is first transformed into
encoded images using the Gramian Angular Fields and then inputted into the TCNs.

4.3.1 Yield Forecasting Using Soil Moisture and Temperature
Parameters

This experiment is performed to find the best performing model for yield forecasting. The
output yield from the compound DL models is ensembled using the voting regressor to
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find the best combination. It is found that the forecasted value of yield obtained from the
voting regressor ensemble of SeriesNet-GRU and Att-CNN-LSTM models gives the best
forecasting results.

Table 4.1: Evaluation Metric Values for all the Models Used for Yield Forecasting Using
Soil Moisture and Temperature

Based on the experiment results listed in Table 4.1 , it is evident that the ensemble of
the two compound models, SeriesNet-GRU and Att-CNN-LSTM, gives better results than
each of the two individual models as well as literature results found in [111]. The possible
reason behind the ensemble performing better lies in the fact that the ensemble captures
the trends predicted by the component models. So, if one model fails to capture some
trend the other might and the ensemble gives the value which is a combination of output
from the component models.

4.3.2 Price Forecasting Using Soil Moisture and Temperature
Parameters

This experiment is performed to find the best performing model for price forecasting.
Various compound DL models are used for forecasting and the forecasting results from
all possible combinations of models are ensembled to find that the ensembled forecasting
values of Att-CNN-LSTM and SeriesNet-GRU outperform the other models.
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Table 4.2: Evaluation Metric Values for all the Models Used for Price Forecasting Using
Soil Moisture and Temperature

Table 4.2 contains the result of the experiment, we can clearly see that the Ensemble
of the two compound models gives better result than the two individual models. It also
outperforms the literature results found in [111]. The final forecasted value of price are the
ensemble values from two models Att-CNN-LSTM and SeriesNet. The Voting Regressor
is used for this purpose.

4.3.3 Inferences and Conclusion

• For the experiment in Section 4.3.1 it is observed that the yield value obtained using
the Voting Regressor on the results of the two compound models SeriesNet-GRU and
Att-CNN-LSTM is better that obtained by each of the individual models

• The AGM of the ensemble is 7% less than the best performing component model.
The AGM value obtained in Section 4.3.1 experiment shows a 17% improvement than
the AGM value obtained using the literature methods proposed in [111].

• For experiment in Section 4.3.2 it is observed that the price value obtained using the
Voting Regressor on the results of the two compound models SeriesNet-GRU and
Att-CNN-LSTM is better than the individual component compound model.
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• A 25% improvement in AGM value is observed as compared to the best performing
compound model. In Experiment in Section 4.3.2 a 14% improvement in AGM value
is observed as compared to using the methods proposed in literature in [111].

4.4 Soil Parameters’ Effect on Yield Forecasting

The main objective of the set of experiments in this section is to study the effect of
considering the static soil parameters in addition to the dynamic ones on the performance
of yield forecasting. To analyze the effect of using these static soil quality parameters,
constant per county, with the frequently changing dynamic ones, four experiments are
conducted in this section for forecasting apple yield; two with only dynamic parameters
and two with both dynamic and static.

For the deployed dataset and preprocessing, the dynamic and static soil parameters are
used as inputs for training the proposed DL model with the corresponding yearly apple
yield specific to each county as the output. This data is collected for 15 counties in 6
Crop Reporting Districts as shown in Figure 3.4. The yearly apple yield data is collected
from the United States Department of Agriculture, National Agricultural Statistics Survey
(USDA-NASS) [13]. In total, 30 input parameters are considered including 15 static and
15 dynamic parameters. There is a total of 30 input variables to the proposed model: 15
static and 15 dynamic. Unfortunately, these variables are found to be highly correlated
while the best scenario for training the DL model is to have input parameters that are least
correlated with each other yet highly correlated with the output. Hence, to find this type of
parameters, the random forest feature selection method in Python with scikit-learn [119] is
used beside calculating the parameters’ correlation and eliminating those parameters that
are highly correlated. Based on these two methods the most effective eight parameters are
selected; 4 dynamic parameters, which are solar radiation, soil temperature, soil moisture
and PDSI, and four static parameters, which are the root zone available water (rootznaws),
drought vulnerability (droughty), bulk density and organic matter. The apples in California
are harvested around October, they grow during the summer season and ripen around the
fall season [106]]. Hence, the growing period of apples is from May to October; 6 months
or 184 days. The input to the utilized model is the daily value of all the parameters for a
specific county within those six months per year. The output is the apple yield value for
the corresponding county for that year. The static parameters remain constant everyday
per county while the dynamic parameters vary daily or monthly per county over the six
months. PDSI is a monthly varying parameter, hence, to have daily records the same value
is repeated 30 or 31 times depending on the number of days in each month. Whereas the
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same values of the static parameters are repeated 184 times since they remain constant
within 6 months. Therefore, the input to the model is in the form of a 3-D tensor equivalent
to (8 x 184 x sample count); where (8 x 184) is the number of parameters or columns while
sample count is the number of samples or rows in the data set [85]. Thus, there is a need for
the dimensionality reduction of the dataset due to the high number of input parameters, 8
x 184 =1472 parameters. After normalizing the dataset, the Principal Component Analysis
(PCA) [19] is used and the parameters contributing to maximum proportion of variance
are chosen to train and test the model as input along with the corresponding apple yield
output.

Figure 4.9: Chart for Experiment Using Static and Dynamic Parameters with Data Aug-
mentation.

Four datasets are used as input, one per experiment, along with their corresponding yearly
apple yield as output to train and test the forecasting DL model; SeriesNet with GRU and
Attention. The four data sets have different shapes; two have the dynamic parameters with
and without augmentation and the other two have both dynamic and static soil parameters
with and without augmentation. Since only the annual yield values are forecasted, data
augmentation is necessary for increasing the sample space to obtain better training results.
The proposed model is trained for 200 epochs using each of the four data sets; Adam is the
optimizer with a learning rate of 0.001 and the mean squared error is the loss function. The
testing is conducted using 4 years of counties yield data; from year 2015 to 2018. Finally,
the forecasting performance is measured for each of these data sets. Figure 4.9 shows the
chart of the fourth experiment with the winning performance, based on the results listed
in Table 4.3, in which the augmented dynamic and static parameters are used. Following
experiments are performed to study the Soil Parameters’ Effect on Yield Forecasting
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4.4.1 Forecasting Yield Using Dynamic Parameters

In this experiment, the four selected dynamic parameters, solar radiation, soil temperature,
soil moisture and PDSI across 184 days, are first fed into the PCA model for dimensionality
reduction. The resulting first 47 parameters, with the maximum proportion of variance,
are used for training the DL forecasting model along with the corresponding yield. Thus,
the input shape of the training set is (495, 47).

4.4.2 Forecasting Yield Using Dynamic and Static parameters

In this experiment, all the eight selected parameters, both dynamic as well as static,
including solar radiation, soil temperature, soil moisture, PDSI, rootznaws, droughty, bulk
density and organic matter across 184 days are used. After the dimensionality reduction
using PCA, the first 30 parameters with the maximum proportion of variance are used for
training; the input shape of the training set is (495, 30).

4.4.3 Forecasting Yield Using Augmented Dynamic parameters

In this experiment, the samples after augmentation are used along with the four selected
dynamic parameters across 184 days. This data is fed into the PCA model and the first
40 parameters with the maximum proportion of variance are utilized in the DL model
training; the input shape of the training set is (19008, 40).

4.4.4 Forecasting Yield Using Augmented Dynamic and Static
Parameters

The samples after augmentation are used along with the eight selected dynamic and static
parameters across 184 days. This data is fed into the PCA model and the first 24 param-
eters with the highest proportion of variance are used for training the model; the input
shape of the training set is (19008, 24).
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Table 4.3: Evaluation Metric Values for all the Four Experiments

4.4.5 Inferences and Conclusion

• Table 4.3 shows the numeric values of the different evaluation metrics, MAE, RMSE,
R2 score and AGM, for all the four conducted experiments. Table 4.3 results, with
both augmented and nonaugmented datasets, show that adding the static soil pa-
rameters to the dataset reduces the forecasting AGM by around 34% compared to
the case of excluding the static parameters; only using the dynamic parameters set.

• On the other hand, using the augmented training set to train the DL model improves
the AGM value by 12% when tested with the nonaugmented test set as input.

• In addition, it is visually evident from Figure 4.10 that the forecasted yield curve fits
better to the actual yield curve in the experiments using both static and dynamic
soil parameters.

• It can also be seen that the forecasted values after augmentation become closer to the
actual ones. From the obtained visual and tabular results, it is deduced that consider-
ing the static and dynamic parameters together enhances the forecasting performance
over the case of solely relying on the dynamic ones while using augmentation further
improves the obtained forecasts.
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Figure 4.10: Four forecasted yield sets by the DL Model versus the actual yield values with
nonaugmented test sets as input. The DL Model is trained in each of the four cases by
a different training input set: (a) The Nonaugmented Dynamic Soil Parameters. (b) The
Augmented Dynamic Soil Parameters. (c) The Nonaugmented Dynamic and Static Soil
Parameters. (d) The Augmented Dynamic and Static Soil Parameters.

4.5 Transfer Learning for Yield Forecasting

To overcome the computational complexity of re training deep learning yield forecasting
models for each type of fresh produce, it is necessary to have a generalization of the models’
application to similar FP which is investigated in the set of experiments presented in this
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section. This generalization can be done by transferring the learning among similar FP with
minimal retraining. Hence, it is decided to use Transfer Learning (TL) amongst berries
which are similar in nature. First, the proposed DL model is trained using station-based
data as inputs mapped to the strawberry yield as output. The weights obtained from this
learning are transferred to the raspberry yield forecasting model since raspberry and straw-
berry yields are similar and are both planted in California. The proposed station-based
ensemble model, ATT-CNN-LSTM-SeriesNet Ens, is an ensemble of two models: Series-
Net with Gated Recurrent Unit (GRU) and Convolutional Neural Network LSTM with
Attention layer (Att-CNN-LSTM); trained and tested using station-based data as input
and the corresponding strawberry yields as output. The weights obtained are transferred
to the raspberry yield forecasting ensemble model with minimal retraining.

Station Input Data

Training Att-CNN-
LSTM on

Strawberry data

Training 
SeriesNet on

Strawberry data

Forecasting Raspberry by
TL using the pre-trained

weights of SeriesNet

Forecasting Raspberry by
TL using the pre-trained

weights of Att-CNN-LSTM

Station based Raspberry
Yield : Voting Regressor

Ensemble

Output

Figure 4.11: Block Diagram of the Proposed Solution

For the deployed dataset and preprocessing, the station based soil data is obtained
from the website of the National Oceanic and Atmospheric Administration [17], whereas
the yield data for the strawberries and the raspberries is obtained from the website of the
California Strawberry Commission [9]. Two input parameters are used for forecasting; soil
moisture and soil temperature. The daily varying soil moisture and temperature values
are considered for 140 days, which adds up to 2 parameters x 140 days = 280 input
parameters. The preprocessing is performed as discussed in Section 4.1. After performing
normalization of the input values and applying the Principal Component Analysis (PCA)
[19] for dimensionality reduction, it is found that the first 36 parameters give the maximum
proportion of variance. Therefore, these 36 input parameters are used for testing and
training the station based models along with their corresponding yield values as output.

The preprocessed strawberry yield data is inputted into two compound DL models: Att-
CNN-LSTM and SeriesNet with GRU. The weights of these two component models are
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then saved to perform the transfer learning to the raspberry yield forecasting DL models.
Figure 4.11 shows the experimental setup.

Figure 4.12: Plot for Strawberry and Raspberry Yields

From Figure 4.12, it can be seen that despite the fact that the strawberry yields are
much more than raspberry yield, they still follow almost similar seasonality. Moreover,
there are eight peaks for both strawberry and raspberry yields in a period of eight years.
Similarity is decided based on having similar lag, similar seasonality, similar trend,... etc,
[83] in their yield values across the time.

4.5.1 Using Pretrained Model with No Learning

In this experiment, the weights obtained for the DL models SeriesNet GRU and Att-CNN-
LSTM by training them using the strawberry data are directly used as is to predict the
raspberry yield without any retraining. Figure 4.13 represents the forecasted raspberry
yield versus the original strawberry yield. Since, the weights are trained using the straw-
berry yield and strawberry yield is higher than the raspberry yield thus, the model predicts
the raspberry yield value much greater than the actual raspberry yield value. Although
the transfer learning follows the seasonality in the time series, it cannot predict the peaks,
range, of yield
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Figure 4.13: Actual vs Forecasted Raspberry Yield Using Pretrained Model on Strawberry
Data with No Learning.

4.5.2 Using Pretrained Model with Minimal Learning

In this experiment, the weights obtained for the DL models, SeriesNet GRU and Att-CNN-
LSTM, by training them on the strawberry data are used to predict the raspberry yield with
some minimal retraining. For the transfer learning to the raspberry yield forecasting model,
the base models Att-CNN-LSTM and SeriesNet with GRU are loaded with the pre-trained
weights obtained from training them with the station-based input soil data along with the
corresponding strawberry yield output. For the feature extraction from the raspberry yield
data in transfer learning, additional dense layers with ReLU activation function are added
atop the base models. The base models loaded with the pre-trained weights are frozen and
only the added dense layers on the top are trained using the raspberry yield data. Finally,
two sets of raspberry yield forecasts are obtained from the transfer learning performed using
the two base models Att-CNN-LSTM and SeriesNet with GRU. The resulting forecasts are
then combined using a voting regressor ensemble to give the final raspberry forecasted yield
from the station-based soil data.
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Figure 4.14: Actual vs. Forecasted Raspberry Yield Using Pretrained Model on Strawberry
Data with Minimal Learning.

Figure 4.14 represents the predicted raspberry yield vs the original raspberry yield. Here
the predicted yield closely follows the actual yield value.

4.5.3 Training Without any Pretrained Models

In this experiment, the DL models, SeriesNet GRU and Att-CNN-LSTM, are trained on the
raspberry data from scratch without any transfer learning. The output from the DL models
is then ensembled to give a final forecasted raspberry yield value. Figure 4.15 represents
the predicted raspberry yield vs the original raspberry yield. The model performs well,
and predicted yield follows actual yield.
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Figure 4.15: Actual vs Forecasted Raspberry Yield Without TL.

4.5.4 Inferences and Conclusion

Table 4.4 shows the results obtained on conducting various experiments to forecast the
raspberry yield using TL. The following conclusions can be drawn from Table 4.4.

• The generalization of the deep learning forecasting models to forecast yields of other
similar crops is investigated to promote the reusability of the pre-trained models and
save the computational cost.

• The station-based data is used to train the ATT- CNN-LSTM-SeriesNet Ens model
with strawberry yields as the output. The learning from these models is then trans-
ferred to the raspberry yield forecasting model and the final forecasted raspberry
yield is obtained by assembling the raspberry yield forecasted values obtained from
both mentioned models.
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Table 4.4: Results of Using Att-CNN-LSTM-SeriesNet Ens to Forecast Raspberry Yield
With and Without TL

• It is found that using TL with the voting regressor reduces the processing time by
50% compared to the case of training it without TL. This proves that using transfer
learning across similar crops is more efficient than performing complete retraining
especially with large-scale datasets.

• The AGM value obtained from TL with minimal retraining is comparable to the
AGM value obtained without performing TL. The AGM value obtained by no TL is
just around 5% less than the AGM value obtained by TL with minimal retraining.

4.6 Chapter Summary

Four sets of experiments are conducted in this chapter:

• The first experiment deals with the forecasting of strawberry yield for Santa Bar-
bara, California using various soil and weather parameters. The sub-experiments of
this particular experiment are yield forecasting using the dynamic soil parameters
alone, then yield forecasting using the dynamic soil and weather parameters and
finally yield forecasting using soil moisture and temperature. The first two experi-
ments are conducted to find the best set of parameters and it is found that soil and
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weather parameters together give better forecasting results than using the soil or
weather parameters alone. The third experiment is performed to find the best per-
forming model and it found that the voting regressor ensemble of Att-CNN-LSTM
and SeriesNet-GRU gives the best forecasting results.

• The second experiment deals with the strawberry price forecasting for Santa Bar-
bara, California. The sub-experiments include price forecasting using the dynamic
soil parameters, forecasting using soil and weather parameters and finally strawberry
price forecasting using soil moisture and soil temperature. The first and second ex-
periment are conducted to find the best set of input parameters to forecast the prices
and it is found that soil and weather parameters together give the best forecasting
results. The third experiment is conducted to find the best performing DL model
using the soil moisture and temperature as inputs to all the models.

• The third experiment set explores how using the different types of soil parameters
affect the yield forecasting. Annual apple yield is forecasted using two different types
of soil parameters, static and dynamic, across 15 counties in California. It is con-
cluded that using the static and dynamic parameters together give better forecasting
results.

• The fourth experiment set evaluates using transfer learning for yield forecasting for
sake of generalization. This TL is conducted amongst similar types of berries, mainly
raspberry and strawberry. Similarity is decided based on having similar lag, similar
seasonality, similar trend,... etc, [83] in their yield values across the time. It is found
that transfer learning gives results comparable to the forecasting results obtained
when training from scratch while reducing the processing time .
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Chapter 5

Forecasting Web Application

The work done in the thesis revolves around building deep learning models for forecasting
the yield and prices of fresh produce. The work also aims to extend the learning to
similar FP by performing transfer learning to avoid training from scratch. To enable
the end-users to benefit from such models and facilitate end-to-end deployment of these
models, a versatile fresh produce Time Series Forecasting web application is developed for
forecasting price and yield of any fresh produce across any region by using the soil and
weather parameters of that area as inputs to the DL models, using Angular CLI for the
client side development and Flask framework at the back-end.

The purpose of the web application is to enable clients to use state-of-the-art deep
learning models for forecasting the yield and price values of any desired fresh produce and
in any region. This web application by default offers the clients options to choose from
strawberries and raspberries for forecasting the price and yield of strawberry and just yield
for raspberry. For counties it offers Santa Maria and Oxnard in California. If the client
wants to have forecast for some other FP, then an option to upload the yield/price values
will pop up. Similarly, if the user wants prediction for some other region which is not in
drop down menu, then the user needs to upload the soil temperature and soil moisture data
file for that region. If the user selects from the existing options of the FP and counties no
retraining is needed, the pre-trained model is used for forecasting the results. In addition,
if the FP whose forecast is needed is similar to an already available fresh produce then the
training from scratch is not required and Transfer learning is performed.

The models are updated using latest weather, soil and FP price/yield data for the
available counties. In the backend the latest soil and weather data for Santa Maria and
Oxnard is downloaded automatically and after the period of lag which is 20 weeks in our

74



case (for all berries), the model is is retrained using this new data. The user needs to
provide the yield/price files for counties other than Santa Maria and if the crop is other
than strawberry. The user also needs to provide the soil moisture and temperature data
if the county is other than Oxnard or Santa Maria. Figure 5.1, Figure 5.2 and Figure 5.3
are screenshots of the developed web application on forecasting. Figure 5.1 depicts the
home page of the application. Figure 5.2 depicts the forecasting web-page in which the
user needs to enter the following details related to the forecast:

• Forecast Type: For this option the user needs to choose either Price option for
price forecast or Yield option if the yield forecast is needed .

• Horizon: This option is a drop-down menu where the users need to choose how far
ahead is the needed forecast: 1 day ahead, one week ahead, or two, three, four, five
weeks ahead. 6 different sets of models are trained for different horizons. For each
model the inputs are mapped to the output for the horizon ahead.

• Fresh Produce: In this menu, the user needs to select which fresh produce they
are interested in, the available options are strawberry. If the user intends to find the
forecast for some other FP then the user must upload the yield or price data file for
that FP.

• County: In this menu the user needs to choose the county for which they looking
for forecasts, the available options being Santa Maria. If the user wants to forecast
for some other county, then a file containing soil moisture and temperature of that
place needs to be uploaded.

• Start Date: This option is to select the starting date of the range of dates for
forecast.

• End Date: This option lets the user select the ending date of the range for forecast.

If the forecast is just required for a specific date, then start date and end date should
be the same. On clicking the save button the details are transferred to the backend where
the forecasting using deep learning models is executed and the forecast values as well as
their chart are displayed as shown in Figure 5.3. The generated chart depicts the y-axis
forecasted yield/price for any date on the x-axis. The unit for price value is USD and for
the yield is pounds/acre. The chart gives the client a clear view of the future trends.
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Figure 5.1: The Home-Page of the Application

5.1 Forecasting Strawberry Yield and Price

The deep learning models used for forecasting the strawberry yield and price are the
ensemble of two compound DL models: Att-CNN-LSTM and SeriesNet with GRU. The
application does not require any input from the user if the fresh produce or the county
already exist in the list. The application takes in the input from the user when the county
or the FP is not in the drop-down menu. The user needs to upload the price or yield
values of the FP if the FP is not in the list. If the county is not in the list, the user
needs to upload the weather/soil parameter data of that specific county. After obtaining
these files, similarity is checked and if the uploaded data is similar to the studied one then
transfer learning is performed and forecasts are provided. If the data is not similar to any
of the studied FPs and counties then data-preprocessing is conducted in the backend to the
inputted files, a lag is calculated and finally retraining is recommended with a suggested
lag. On the other hand, if the user chooses from the available options, then no training
is performed and the forecast is made using the pre-trained model for the desired dates.
Figure 5.2 and 5.3 depict the results when the user fills the options which are available in
the form already i.e. Strawberry as the fresh produce and Santa Maria as the county. The
Download Forecasted Value Button helps in downloading the forecasted values.
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Figure 5.2: Sample of Filled Fields for Yield Forecasting

Figure 5.3: The Forecasted Yield Values as per Selected Options
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5.2 Forecasting Yield and Price for Similar or Dissim-

ilar FP.

For the scenario when the user wants the forecast for the counties provided in the dropdown
list; Santa Maria but the fresh produce is outside the list then the user must upload the
file with labels of yield or price for that fresh produce depending on the required forecast
type. After obtaining the labels, the first step is to check similarity between the uploaded
labels and the already existing fresh produce in the list. The similarity between two FP is
checked, if two FP are of similar nature then there is no need of retraining the model with
the new uploaded files rather transfer learning is used with little fine tuning and this saves
time and leads to efficient forecasting. Figure 5.4 shows that when the user selects other
FP and county is Santa Maria, the user is asked to upload the file of the fresh produce.
After, selecting all the fields in form and submitting them, similarity is checked between
the uploaded FP file and strawberry, if the two FP are similar then the user is prompted
with percentage of similarity and transfer learning is performed in backend. Finally, the
graph of the forecasted values is displayed as shown in Figure 5.5.

Figure 5.4: Sample of Filled Fields for Yield Forecasting when FP is not in List and is
Similar
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Figure 5.5: Forecasted Yield as per Selected Options when FP is not in List and is Similar

When the uploaded FP is not similar to strawberry, the user is prompted with the per-
centage similarity and ”Retraining is recommended” is displayed, as shown in Figure 5.6.

Figure 5.6: The Application Output when the Uploaded FP is Dissimilar
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5.3 Forecasting Yield and Price for Similar or Dissim-

ilar FP and county

For the scenario, when the user wants the forecast for the county which is not in the
list. The user is asked to upload the .csv file with the soil moisture, soil temperature
conditions and the FP yield/price values of that county as shown in Figure 5.7. If both
the soil parameters and the label; yield/price time series are similar to that of Santa Maria
and strawberry transfer learning is performed. Figure 5.8 shows the information about
the percentage similarity of the uploaded time series; the features, soil moisture and soil
temperature and the yield with the existing time series available in backend. A graph of the
forecasted values is also displayed, which can be downloaded by clicking on the download
button.

Figure 5.7: Sample of Filled Fields for Yield Forecasting when both FP and County are
not in List and are Similar to Available FP and County Data
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Figure 5.8: The Forecasted Yield Values as per Selected Options when both FP and
County are not from List and are Similar to Available FP and County Data

Explanation of the flow-chart. Figure 5.9 depicts the flowchart of the application.

• The flowchart shows that application starts with the home page which has option for
forecasting on selecting which the user is directed to a form.

• This form needs the user to enter forecast type, horizon, time period, fresh produce
and county.

• If the FP and county are in the menu then the forecast is displayed immediately.

• If FP or county are not in list, then it is checked whether or not the FP is in list. If
FP is in list then control moves to next step, if it is not in list then the user must
upload the historical price/yield file for FP and then it moves to next step.

• The next step is to check if the county is in the list or not. If the county is in list
then control moves to next step, if it is not then the user is supposed to upload the
file for soil moisture and temperature data of that county as well as the file historical
price/yield of that county and then move to next step.
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• After obtaining the files for county and FP, similarity check is performed. If the
uploaded files are similar to the studied one then transfer learning is performed and
forecast is displayed.

• If the uploaded files are not similar to the studied one then the lag is calculated and
retraining is recommended.

5.4 Chapter Summary

This chapter explains the working of the application which is designed to forecast FP
yield or price using the proposed models. The main points covered in this chapter can be
summarized as follows:

• The chapter begins by stressing the need for the web application and lists the infor-
mation the client needs to provide or feed into the application to get the forecasts.

• Snippets of the web application are provided, including the home page, web form
needed to be filled and results page.

• The application flow-chart is provided to show the application input, execution paths
based on the forecasting requests made by the user and the corresponding output.

• The chapter covers how transfer learning is performed when two time series are similar
and hence reducing computational complexity required for forecasting in Section 5.3.

• The methodology used for forecasting is elaborated in Section 5.1.
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Chapter 6

Conclusion and Future Work

The main objective of this work is to build state-of-the-art deep learning models for fore-
casting the yield and price for Fresh Produce. Most of the work which done in literature
revolves around other agri-produce yield modelling and not much is done to tackle the
perishable fresh produce items like the ones tack led in this work; strawberries, raspberries
and apples. The models built in this work are capable enough to capture the information
from the soil and weather data to forecast the yield and price values of the fresh produce.
The deep learning models efficiently capture the trends in the data and precisely forecast
the yield/price values. This thesis mainly explores the soil data and how it effects the yield
and price forecasting, it analyses the effect of considering static and dynamic soil parame-
ters on yield and price forecasting across various counties in California. The station based
data is captured by installing the sensors in the fields which is a cumbersome process. This
work uses the station-based soil and weather data for counties to forecast the yield/price
of Fresh Produce.

The fresh produce selected for forecasting in this work are mainly the ones which have
very short shelf life and come under the category of perishable goods. This thesis also
proposes transfer learning amongst the crops which have a similar kind of yield and price
time series for a particular region. It is found that transfer learning for similar fresh
produce like strawberries and raspberries gives quite good results which is comparable to
the results obtained by training the models from scratch. This work proposes state-of-the-
art DL models which take as input the soil and weather data for forecasting which is quite a
cost effective method to forecast the yield compared to the primitive survey-based method
where surveyors are sent on the fields to find the estimate of yield for census purpose.
In addition, literature suggests methods where drones have been installed in the fields to
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capture and estimate the apple yield using the pictures captured by them. The proposed
method is quite effortless as compared to these primitive approaches.

Detailed experiments are carried out using various compound DL models Att-CNN-
LSTM, SeriesNet with GRU and Attention, as well as TCNs on four major application
areas: strawberry yield modelling using various soil and weather parameters as discussed
in Section 4.1 where it is concluded that soil and weather parameters together give better
results than using soil or weather parameters alone. Strawberry price modelling using soil
and weather parameters as discussed in Section 4.2 where it is again found that using
weather and soil parameters together gives better results compared to using individual
parameters. Analysis of the effect of considering static and dynamic soil parameters on
apple yield forecasting as discussed in Section 4.4 where it is concluded that using the
static and dynamic soil parameters together gives better results than using the dynamic
parameters alone. Generalization to other FPs, transfer learning for yield forecasting is
discussed in Section 4.5 where it is concluded that transfer learning for fresh produce
with similar time series gives comparable results to training from scratch and reduces the
computational complexity incurred during the process of training the deep learning models.

The potential future work which can be done to take this work forward can be summa-
rized as follows:

• Considering other external factors affecting the fresh produce yield like irrigation,
fertilizers and pesticides added.

• The work done in this thesis considers the counties in California, United States. The
possible future work should be to extend this work to other places as well.

• The experiment conducted to test transfer learning amongst similar crops considered
berries. This work can be extended to other similar kind of fresh produce as well.

• Clusters of similar types of fresh produce can be identified and transfer learning
amongst similar clusters can be used for forecasting without training from scratch
promoting re-usability and reducing the computational complexity as well.

• Forecasting the farm-gate prices as a function of yield should be considered to be
able to transfer the forecasted yield into price.

• This work uses the station-based data provided by the official agricultural websites
of the United States. The station-based data might not be available for all the areas
around the world and therefore, a more reliable source of data should be considered
like the satellite-imagery.
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