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Abstract

Adaptive control is an approach used to deal with systems having uncertain and/or
time-varying parameters. In this thesis, we consider the problem of designing an adaptive
controller for a discrete-time first-order plant. Recently, Shahab et.al. considered this
problem and proposed an approach which provides linear-like behaviour: exponential sta-
bility and a convolution bound on the input-output behaviour, together with robustness to
slow time-variations and unmodelled dynamics. However, asymptotic tracking of a general
reference signal was not provided.

Here, we extend the aforementioned work with the aim to achieve asymptotic tracking
while retaining linear-like closed-loop behaviour. We replace this uncertainty set with
a pair of convex sets, one for each sign of the input gain, which enables us to use two
parameter estimators – one for each convex set. We design these estimators using the
modified version of the original projection algorithm. For each estimator, there is the
corresponding one-step-ahead control law. A dynamic performance signal based switching
rule is then adopted that decides which controller should be used at each time step. It is
shown that the proposed approach preserves linear-like behaviour. In addition to that, we
also have shown asymptotic trajectory tracking for two different circumstances: when the
reference signal is asymptotically strongly persistently exciting of order two, and for a fairly
general reference signal but the plant is unstable. Numerical simulations are presented to
demonstrate the efficacy of the proposed approach.
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Chapter 1

Introduction

We begin this chapter by discussing the background of the control problem that we consider
and the motivation behind our proposed approach. Then we give the overview of our setup
and the control law adopted, followed by an outline of this thesis. In the last section, we
define some notation that is used throughout the thesis.

1.1 Background and Motivation

The notion of adaptive control is for the controller to deal with systems having uncertain
and/or time-varying parameters. The classical adaptive controller combines a linear time-
invariant (LTI) compensator together with a tuning algorithm that adjusts its parameters.
The general proofs that parameter adaptive controller could work first came around in 1980,
e.g., see [5, 23, 7, 30, 31]. Such controllers, however, are usually not robust to unmodelled
dynamics and time-variations, and do not handle disturbances well – see [32]. Furthermore,
they place strict assumptions on a priori information about the plant structure.

Due to these shortcomings, in the following two decades, a great deal of effort was made
to come up with design modifications; these include the use of deadzones, σ-modification
and signal normalization, e.g., see [16, 17, 38, 13, 11]. The approach that turned out quite
powerful is that of using projection onto a convex set of parameters, which provided desir-
able properties like bounded-noise bounded-state and tolerance to unmodelled dynamics
and/or slow time-variations – see [41, 42, 27, 40, 39, 15]. However, even in these cases,
typically neither a bounded gain on the noise nor exponential stability is proven. This is in
contrast to the desirable properties which arise in LTI controller design for an LTI plant.
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In addition to above mentioned classical approaches to adaptive control, non-classical
approaches were also developed. In [6, 20], a logic-based switching approach is used to
find out the most suitable controller among a pre-defined list of candidates. The drawback
of this approach is that the transient behaviour can be quite poor with no bounded gain
on the noise. A more sophisticated logic-based switching algorithm, labelled Supervisory
Control, emerged, which in certain circumstances provided a bounded gain on the noise
– see [24, 25, 9, 10, 26]. The use of multiple parameter estimators also surfaced around
the same time [28, 29], which argued that the proposed approach improved the transient
behaviour. Also, an approach labelled Adaptive Mixing Control was presented in [2, 3, 14],
where tolerance to noise and unmodelled dynamics was achieved by enforcing convexity as-
sumptions. Unfortunately, none of these schemes were able to show linear-like behaviour on
the closed-loop system, i.e., exponential stability and convolution bound on the exogenous
signals.

In recent papers, such as [19, 22, 21], linear-like closed-loop behaviour along with ro-
bustness to unmodelled dynamics and parameter variations is shown; the likes of these
results were not seen before. The first-order system is considered in [19] and it is assumed
that the plant parameters lie in a compact and convex set. The original projection algo-
rithm is used, to estimate the parameters, in conjunction with the one-step-ahead adaptive
controller. Asymptotic tracking, for the noiseless case, and a bound on the average size
of the tracking error, for the noisy case, is shown. A d-step ahead adaptive control law is
proposed in [22] for a minimum phase plant where the set of admissible plant parameters
need not be convex. The parameters are estimated using a modified version of the ideal
projection algorithm termed a “vigilant estimator”. The authors established a bound on
the tracking error for both the noisy and noiseless cases. In [21], with convexity assumption
on the plant parameters set being slightly weakened, the classical pole-placement adaptive
controller is employed to prove stability for non-minimum phase system.

Multiple parameter estimators approaches, yielding the desirable linear-like results, are
discussed in [34] and [37] with a relaxed convexity requirement. In these papers, the plant
parameters are instead assumed to be in a compact uncertainty set, which is then replaced
by multiple convex sets. The key idea presented in [34] – dealing with the first-order case
– is to design an estimator and the one-step-ahead controller for each of these convex
sets. A simple switching algorithm is presented which captures the prediction errors for
each estimator and chooses the estimator index, and the corresponding controller, whose
prediction error has the smallest absolute value. The authors proved linear-like closed-loop
behaviour, but a proof for asymptotic tracking remained elusive. In [35], the higher-order
non-minimum phase system is considered. Here, an estimator and the pole-placement
based control law are designed for each of the convex sets and a dynamic switching rule is

2



introduced to choose between the controllers at each time step. Not only linear-like closed-
loop behaviour but also tracking for the sum of a finite number of sinusoids of known
frequency is shown.

1.2 The Objective

The main objective of this research is to extend the work presented in [34] in a way that
provides for asymptotic tracking. Here, we consider the first-order discrete-time plant
where the sign of the input parameter b is unknown. To achieve this objective, we adopt
the following approach:

� We start with covering the compact uncertainty set of plant parameters by a pair of
convex sets, one for each sign of the input parameter b.

� Then, using the revised version of the original projection algorithm [34], we design an
estimator for each of the convex sets. Each of these estimators has the corresponding
one-step-ahead controller.

� Finally, we propose a dynamic performance signal based switching algorithm that
chooses the best suitable one-step-ahead controller for each time step; the perfor-
mance signals measure the“accuracy” of estimation over time.

In this thesis, analogous to [34], the closed-loop system is proven to have a uniform
exponential decay bound on the effect of the initial condition, and a convolution sum
bound on the effect of exogenous signals, i.e., both noise and reference. Furthermore,
robustness to a degree of time-variations and unmodelled dynamics is also shown.

To show the tracking performance of the closed-loop system in the absence of noise, we
first prove that the tracking error goes to zero if the switching rule stops switching. We
then use this result to prove asymptotic trajectory tracking for two different circumstances:

(i) when the reference signal is asymptotically strongly persistently exciting of order 2,
and

(ii) when the reference signal is fairly general but the uncertainty set that contains plant
parameters satisfies several conditions.
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We now outline the rest of the thesis. In Chapter 2, we introduce the setup, the details
of the parameter estimation algorithm, and the adaptive control law with the proposed
switching rule. Chapter 3 presents the stability results and discusses the homogeneity
property of the closed-loop system. Results related to the tracking ability of the proposed
approach are shown in Chapter 4. Numerical simulations are presented in Chapter 5 which
show the efficacy of our proposed approach. Finally, in Chapter 6, we present a summary
of our results and some future research directions.

1.3 Notation

Let R denote the set of real numbers, R+ the set of non-negative real numbers, Z the set of
integers, Z+ the set of non-negative integers, and N the set of natural numbers. The symbol
D0 denotes the open unit disc of the complex plane. Let d·e denote the ceiling function.
The Euclidean 2-norm is used for vectors and the corresponding induced norm for matrices,
and we denote the norm of a vector or matrix by ‖ · ‖. We let S(Rn×m) denote the set of
all Rn×m-valued sequences, and l∞(Rn×m) denote the subset of bounded sequences, where
we define l∞ := l∞(R). The ∞-norm of u ∈ l∞(Rn×m) equals ‖u‖∞ := supk∈Z ‖u(k)‖.
Furthermore, adjoint of a matrix is denoted as adj(·), whereas, determinant of a matrix is
denoted by det(·). Additionally, Ip denotes the identity matrix of size p. If A, B are square
matrices of the same dimension, then B ≤ A means that A−B is positive semidefinite.

If Ω ⊂ Rp is a compact set, we define ||Ω|| := supx∈Ω ||x||. If Ω ⊂ Rp is a convex and
compact set, the function ProjΩ : Rp → Ω denotes the projection onto Ω; it is well known
that ProjΩ is well defined. Lastly, the closed convex hull of Ω ⊆ Rp is denoted by conv(Ω).
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Chapter 2

The Setup

In this chapter, we present the plant and the assumptions imposed on it. We review the
revised estimation algorithm that we will be using in our proposed controller. Finally,
we introduce a dynamic performance signal based switching rule along with an adaptive
control law.

2.1 The Plant

We consider the first order linear time-invariant discrete-time plant

x(t+ 1) = a x(t) + b u(t) + n(t), x(t0) = x0, (2.1)

where x(t) ∈ R is the state variable, u(t) ∈ R is the control input, and n(t) ∈ R is the
noise (or disturbance); define

θ∗ :=

[
a
b

]
, φ(t) :=

[
x(t)
u(t)

]
,

with φ(t0) = φ0.

Assumption 2.1. The set of admissible plant parameters S is known and compact.

For practical situations, the compactness assumption imposed on the set S is reasonable
and ensures that we can prove uniform bounds and exponential decay rates on the closed-
loop behaviour. The next assumption ensures controllability.
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Assumption 2.2. For every a ∈ R,

[
a
0

]
/∈ S.

In previous works, such as [8] and [21], the set of admissible parameters was convex.
Here, we have relaxed this requirement as the set S need not be convex. The usual tactic
in this case is to replace the set with its closed convex hull. Regrettably, this trick has
not been found useful, as the set may contain uncontrollable models (i.e. b = 0) – see
[35]. The method adopted here, as presented in [34] and [35], is to replace the compact set
of admissible parameters S by a finite number of convex sets. The following proposition
illustrates that we can always obtain a cover with just two closed convex sets.

Proposition 2.1 ([34, Propositon 1]). For any compact set S ⊂
{[

a
b

]
∈ R2 : b 6= 0

}
,

there exist compact and convex sets S1 and S2 which also lie in

{[
a
b

]
∈ R2 : b 6= 0

}
such that S ⊂ S1 ∪ S2.

To each set S1, S2 from Proposition 2.1 we will assign a parameter estimator and we will
switch between estimates from time to time for use in the control law, which we discuss in
Section 2.4.

Remark 2.1. If a convex set is complicated, it may be difficult (numerically) to project

onto it. If we define ā := max

{
|a| :

[
a
b

]
∈ S

}
, b̄ := max

{
|b| :

[
a
b

]
∈ S

}
and b :=

min

{
|b| :

[
a
b

]
∈ S

}
, then Proposition 2.1 also holds with

S1 :=

{[
a
b

]
∈ R2 : a ∈ [−ā, ā], b ∈ [b, b̄]

}
and

S2 :=

{[
a
b

]
∈ R2 : a ∈ [−ā, ā], b ∈ [−b̄,−b]

}
which are rectangles.

In the light of Proposition 2.1, we consider that S ⊂ S1 ∪ S2 and that each set Si,

i ∈ {1, 2} is known, convex, compact and satisfies

[
a
0

]
/∈ Si for every a ∈ R.

6



With θ∗, we let g(θ∗) denote the index i for which θ∗ ∈ Si; since it could be that
S1 ∩ S2 6= ∅, a precise definition is

g(θ∗) = min{i : θ∗ ∈ Si}. (2.2)

To minimize notation, when there is no risk of confusion, we will drop the argument and
simply denote this index by g indicating that Sg is the “good” set because it contains the
true parameter vector. We also define the constant s̄ := max

i
{||Si||}.

2.2 Parameter Estimation

Given an estimate θ̂i of θ∗ at time t, we define the associated prediction error by

ei(t+ 1) := x(t+ 1)− φ(t)> θ̂i(t); (2.3)

this is a measure of the error in θ̂i(t). The common way to obtain a new estimate is by
solving the optimization problem

argmin
θ

{
‖θ − θ̂i(t)‖ : x(t+ 1) = φ(t)>θ

}
,

yielding the ideal projection algorithm

θ̂i(t+ 1) =

θ̂i(t), if φ(t) = 0,

θ̂i(t) +
φ(t)

φ(t)> φ(t)
ei(t+ 1), otherwise.

(2.4)

Of course, if φ(t) is close to zero, numerical problems can occur, so it is the norm in the
literature, e.g. [8], [7], to replace this by the classical algorithm; with 0 < α < 2 and
β > 0, define

θ̂i(t+ 1) = θ̂i(t) +
αφ(t)

β + φ(t)> φ(t)
ei(t+ 1). (2.5)

As discussed in [18] and[19], when the algorithm (2.5) is used all of the stability results are
asymptotic, and exponential stability and a bounded gain on the noise are never proven.
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The reason being that the gain on the update law of the estimator is small for small values
of ‖φ(t)‖. To address this issue, as proposed in [21], one way is to use the ideal projection
algorithm (2.4) together with projection onto Si. Towards this end, we set, for i ∈ {1, 2},

θ̌i(t+ 1) =

θ̂i(t), if φ(t) = 0,

θ̂i(t) +
φ(t)

φ(t)> φ(t)
ei(t+ 1), otherwise,

(2.6)

which we project onto Si:

θ̂i(t+ 1) = ProjSi

(
θ̌i(t+ 1)

)
. (2.7)

2.3 Revised Estimation Algorithm

One may be concerned that the original problem of dividing by a number close to zero,
which motivates the use of classical algorithm, remains. To deal with this issue, as presented
in [21], we follow a middle ground. A simple analysis of (2.3) reveals that

ei(t+ 1) = φ(t)>
(
θ∗ − θ̂i(t)

)
+ n(t), (2.8)

which means that

|ei(t+ 1)| ≤ 2 s̄× ||φ(t)||+ |n(t)|. (2.9)

Therefore, if

|ei(t+ 1)| > 2 s̄× ||φ(t)||,

then the update to θ̂i(t) will be greater than 2 s̄, which means that there is little information
content in ei(t + 1) – it is dominated by the disturbance. With this as motivation, and
with δ ∈ (0,∞), we replace (2.6) with

8



θ̌i(t+ 1) =

θ̂i(t) +
φ(t)

||φ(t)||2
ei(t+ 1), if

|ei(t+ 1)|
||φ(t)||

< (2 s̄ + δ),

θ̂i(t), otherwise.
(2.10)

The algorithm (2.10) assures that the update term is bounded above by 2 s̄ + δ, which
should alleviate concerns about having infinite gain. In order to write the update rule
(2.10) more concisely, we define ρδ : R2×R→ {0, 1} and ρi(t) := ρδ(φ(t), ei(t+ 1)), where

ρδ(φ(t), ei(t+ 1)) :=

{
1, if |ei(t+ 1)| < (2 s̄ + δ) ||φ(t)||,
0, otherwise.

(2.11)

Using the above notation, the estimation algorithm (2.7), (2.10) is written

θ̌i(t+ 1) = θ̂i(t) + ρi(t)
φ(t)

||φ(t)||2
ei(t+ 1), (2.12)

θ̂i(t+ 1) = ProjSi

(
θ̌i(t+ 1)

)
. (2.13)

In the case of φ(t) = 0, we adopt the understanding that 0÷ 0 := 0.

The next proposition presents a bound on φ when we turn off the update on the
estimator, i.e., when ρi(t) = 0 – which only happens when the estimator is inundated with
noise.

Proposition 2.2. For every t0 ∈ Z, t ≥ t0, x0 ∈ R, θ∗ ∈ S, θ̂i(t0) ∈ Si, i ∈
{1, 2}, n ∈ l∞ and δ ∈ (0,∞), if ρi(t) = 0, then

||φ(t)|| ≤ 1

δ
|n(t)|. (2.14)

Proof. Let t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, θ̂i(t0) ∈ Si, i ∈ {1, 2}, n ∈ l∞ and δ ∈ (0,∞) be
arbitrary. For every t ≥ t0, if ρi(t) = 0, then from (2.11) we have

|ei(t+ 1)| ≥ (2 s̄ + δ)||φ(t)||. (2.15)

9



Combining (2.9) and (2.15) yields,

2 s̄× ||φ(t)||+ |n(t)| ≥ (2 s̄ + δ)||φ(t)||,

which, rearranging, gives (2.14). �

Remark 2.2. If the disturbance n(t) = 0, then the estimation algorithm (2.11), (2.12),
(2.13) enjoys a nice scaling property. In this case, if φ(t) 6= 0 then ρi(t) = 1 and (2.12)
becomes

θ̌i(t+ 1) = θ̂i(t) +
φ(t)φ(t)>

φ(t)>φ(t)

(
θ∗ − θ̂i(t)

)
.

Thus, if φ(t) is replaced by γφ(t) with γ 6= 0, then the update θ̌(t + 1) (and its projection
θ̂(t + 1)) remains unchanged. Notice that the classical algorithm (2.5) does not enjoy this
property. This provides a clue that the estimation algorithm (2.11), (2.12), (2.13) may
provide closed-loop properties not provided by (2.5).

Define for each i ∈ {1, 2} the parameter estimation error θ̃i(t) := θ̂i(t) − θ∗. The fol-
lowing proposition lists properties of the estimation algorithm (2.11), (2.12), (2.13).

Proposition 2.3 ([35, Proposition 2]). For every t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, θ̂i(t0) ∈
Si, i ∈ {1, 2}, n ∈ l∞, when the estimation algorithm (2.11), (2.12), (2.13) is applied
to the plant (2.1), the following holds:

(a) For every estimator, we have

||θ̂i(t)− θ̂i(t0)|| ≤
t−1∑
j=t0

ρi(j)×
|ei(j + 1)|
||φ(j)||

, t > t0. (2.16)

(b) For the correct estimator, we have

||θ̃g(t)||2 ≤ ||θ̃g(t0)||2 +
t−1∑
j=t0

ρg(j)

(
−1

2

|eg(j + 1)|2

||φ(j)||2
+ 2

|n(j)|2

||φ(j)||2

)
, t > t0.

(2.17)
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Proof. Let t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, θ̂i(t0) ∈ Si, i ∈ {1, 2}, n ∈ l∞ be arbitrary. For the
estimation algorithm (2.11), (2.12), (2.13), since projection onto a convex set does not
make the parameter estimate worse; for t ≥ t0, it follows from (2.12), (2.13) that

||θ̂i(t+ 1)− θ̂i(t)|| ≤ ||θ̌i(t+ 1)− θ̂i(t)||

=

∥∥∥∥ρi(t) φ(t) ei(t+ 1)

||φ(t)||2

∥∥∥∥
= ρi(t)

||φ(t)|| |ei(t+ 1)|
||φ(t)||2

= ρi(t)
|ei(t+ 1)|
||φ(t)||

.

We conclude that (2.16) follows by iteration.

To prove (2.17), first define ˜̌θg(t) := θ̌g(t)−θ∗. When ρg(t) = 0, we have θ̂g(t+1) = θ̂g(t)
by (2.12), (2.13), which implies that

||θ̃g(t+ 1)||2 = ||θ̃g(t)||2. (2.18)

On the other hand, when ρg(t) = 1, by (2.12), (2.13) we have

˜̌θg(t+ 1) = θ̃g(t) +
φ(t)

||φ(t)||2
eg(t+ 1)

⇒ || ˜̌θg(t+ 1)||2 = ||θ̃g(t)||2 +
|eg(t+ 1)|2

||φ(t)||2
+ 2

θ̃g(t)
> φ(t) eg(t+ 1)

||φ(t)||2
. (2.19)

Combining (2.8) and (2.19) we obtain

|| ˜̌θg(t+ 1)||2 = ||θ̃g(t)||2 +
|eg(t+ 1)|2

||φ(t)||2
+ 2

(
n(t)− eg(t+ 1)

)
eg(t+ 1)

||φ(t)||2

= ||θ̃g(t)||2 −
|eg(t+ 1)|2

||φ(t)||2
+ 2

n(t) eg(t+ 1)

||φ(t)||2

≤ ||θ̃g(t)||2 −
1

2

|eg(t+ 1)|2

||φ(t)||2
+ 2

|n(t)|2

||φ(t)||2

11



(the last step uses the fact that for a, b ≥ 0, we have −a2 + 2ab ≤ −1
2
a2 + 2b2). We can

rewrite the above, again using the fact that the projection does not worsen the parameter
estimate, as

||θ̃g(t+ 1)||2 ≤ ||θ̃g(t)||2 −
1

2

|eg(t+ 1)|2

||φ(t)||2
+ 2
|n(t)|2

||φ(t)||2
. (2.20)

By combining the bound (2.20) for the case of ρg(t) = 1 with (2.18) for the case of ρg(t) = 0,
and iterating over t, we obtain (2.17) as required. �

2.4 Switching Controller

It is natural to parametrize θ̂i(t) as

θ̂i(t) =:

[
âi(t)

b̂i(t)

]
.

Let r be an exogenous reference signal that we want the plant state to track asymptotically.
We assume that the value of r is known one step ahead, i.e., r(t+1) is known at time t. If we
invoke the Certainty Equivalence Principle there is a natural choice for the one-step-ahead
adaptive control law associated with the ith estimator:

u(t) = − âi(t)
b̂i(t)

x(t) +
1

b̂i(t)
r(t+ 1), (2.21)

which enforces that r(t + 1) = φ(t)> θ̂i(t). Here, of course, we do not know which set Si
contains the true parameter θ∗.

We will define a switching signal σ : Z → {1, 2} which decides which parameter esti-
mates to use at each point in time and we set

u(t) = −
âσ(t)(t)

b̂σ(t)(t)
x(t) +

1

b̂σ(t)(t)
r(t+ 1). (2.22)

12



The tracking error ε at time t equals

ε(t) := x(t)− r(t). (2.23)

Let us analyze the relationship between the tracking error and prediction error when the
control law (2.22) is applied:

ε(t+ 1) = x(t+ 1)− r(t+ 1)

= x(t+ 1)− φ(t)> θ̂σ(t)(t)

= eσ(t)(t+ 1), t ≥ t0, (2.24)

which shows that ε at time t+ 1 is affected by the value of σ at time t.

In recent works, such as [34], the following switching rule was adopted

σ(t) = argmin
i
|ei(t)|, t > t0. (2.25)

This simple rule compares the prediction errors for each estimator and chooses the estima-
tor index whose prediction error has the smallest absolute value. Since it is memoryless,
the switching decision is based on the current values of the prediction errors. While the
simplicity of the rule (2.25) is appealing, a downside is that the proof of asymptotic tracking
using this switching algorithm remains elusive [21].

Remark 2.3. We suspect that, in general, it will not be possible to prove that the switching
algorithm of [34] can be used to prove asymptotic tracking. To see why we think this, suppose
that Si are as chosen in Remark 2.1 and b > 0, which means that S1 ∩ S2 = ∅. Suppose,
for simplicity, that the plant parameter lies in S1, and we apply the controller of [34]. The
prediction error e2 is given by

e2(t+ 1) = x(t+ 1)− φ(t)> θ̂2(t)

=
(
a− â2(t)

)
x(t) +

(
b− b̂2(t)

)
u(t).

If σ(t) = 1, then u(t) is being generated by the correct estimator θ̂1(t); it is easy to verify
that

e2(t+ 1) =

(
a− â2(t)−

â1(t)
(
b− b̂2(t)

)
b̂1(t)

)
x(t) +

b− b̂2(t)

b̂1(t)
r(t+ 1).

13



It could certainly be that r(t+ 1) is such that

e2(t+ 1) = 0,

in which case

σ(t+ 1) = 2,

unless, by luck, e1(t + 1) = 0 as well. Of course, it is conceivable that r(t) is such that
this happens an infinite number of times, in which case switching never stops. Since, in
general, we would not expect the incorrect estimator to yield tracking, we would not expect
that asymptotic tracking would occur in this case. If each time the wrong estimator is
selected, the absolute value of the tracking error jumps by at least a fixed constant, then the
lim sup of the tracking error is positive and asymptotic tracking can not be achieved; this
scenario is difficult to rule out.

Motivated by this observation, we introduce dynamic performance signals Ji, i ∈ {1, 2},
which accumulate scaled prediction error over time:

Ji(t+ 1) = λ̄ Ji(t) + ρi(t)
|ei(t+ 1)|
||φ(t)||

, Ji(t0) = 0, (2.26)

where λ̄ ∈ (0, 1). We adopt a switching rule that selects the estimator index associated to
the minimum performance signal Ji(t).

σ(t) = argmin
i

Ji(t), t > t0, σ(t0) = σ0 ∈ {1, 2}. (2.27)

In the case when J1(t) = J2(t) we (somewhat arbitrarily) select σ(t) to be 1.

Remark 2.4. When we set λ̄ = 0, our performance signal based switching rule (2.26),
(2.27) recovers (2.25) which was presented in [34].

Before discussing closed-loop stability, we first show that the simple logic in (2.26),
(2.27) yields a useful closed-loop property, which is analogous to [21, Lemma 2].
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Figure 2.1: The Block diagram of the closed-loop system; enclosed inside the dashed boxes
are the multiple estimators/controllers (blue), and the switching mechanism (red).

Lemma 2.1. Suppose that the adaptive controller consisting of the parameter esti-
mator (2.11), (2.12), (2.13), the control law (2.22), and the switching rule (2.26),
(2.27) is applied to the plant (2.1). Then, for every t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈
{1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, r, n ∈ l∞ and t > t0 we have that either

(a) Jσ(t−1)(t) ≤ Ji(t) or

(b) Jσ(t)(t+ 1) ≤ Ji(t+ 1).

Proof. Fix t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, r, n ∈ l∞ and t > t0.
Let ı̄ be the element of {1, 2} which is not i.

Suppose (b) fails to hold then, it must be that σ(t) = ı̄. From (2.27), it follows that

15



Jı̄(t) ≤ Ji(t). But σ(t− 1) ∈ {i, ı̄} and therefore Jσ(t−1)(t) ≤ Ji(t), i.e., (a) holds. �
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Chapter 3

Stability

Building upon the setup of Chapter 2, in this chapter we prove a linear-like convolution
bound on the closed-loop system along with a uniform exponential decay rate. Next, we
show that the closed-loop system enjoys the homogeneity property. In the last section, we
prove robustness of the proposed controller to time-variations and unmodelled dynamics.

3.1 Closed-Loop Stability

In the main result of this chapter, we show that the closed-loop system exhibits linear-like
behaviour.

Theorem 3.1. Suppose that the adaptive controller consisting of the parameter es-
timator (2.11), (2.12), (2.13), the control law (2.22), and the switching rule (2.26),
(2.27) is applied to the plant (2.1). For every λ̄ ∈ (0, 1) and λ ∈ (0, 1), there exists
a constant γ̄ ≥ 1 such that for every t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈
Si, i ∈ {1, 2}, r, n ∈ l∞, the closed-loop system satisfies

||φ(t)|| ≤ γ̄ λt−t0 |x0|+
t−1∑
j=t0

γ̄ λt−1−j
(
|n(j)|+ |r(j + 1)|

)
+ γ̄ |r(t+ 1)|, t ≥ t0. (3.1)

In Theorem 3.1 there is a uniform exponential decay bound on the effect of initial
condition, and a convolution sum bound on the effect of exogenous signals (noise and
reference). This result is analogous to the single uncertainty set case discussed in [19].
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Furthermore, a similar convolution bound on the closed-loop system was presented in [34]
for the memoryless switching rule (2.25).

Proof. Fix λ̄ ∈ (0, 1), λ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, i ∈ {1, 2}, θ̂i(t0) ∈
Si, n ∈ l∞, and r ∈ l∞. Define the constants

ā := max

{
|a| :

[
a
b

]
∈ S1 ∪ S2

}
, b̄ := max

{
|b| :

[
a
b

]
∈ S1 ∪ S2

}
,

f̄ := max

{∣∣∣a
b

∣∣∣ :

[
a
b

]
∈ S1 ∪ S2

}
, ḡ := max

{
1

|b|
:

[
a
b

]
∈ S1 ∪ S2

}
.

First we establish some general bounds to be used throughout the proof. Setting c1 :=
(1 + f̄) and c2 := ḡ, from the control law in (2.22) we obtain the general bound

||φ(t)|| ≤ c1|x(t)|+ c2|r(t+ 1)| ; (3.2)

if we define c3 := max{ā+ b̄f̄ , b̄ḡ}, then from the plant equation (2.1) we obtain the crude
bound

|x(t+ 1)| ≤ c3|x(t)|+ c3|r(t+ 1)|+ |n(t)|. (3.3)

At this point we divide the proof into two cases; the easier case in which there is no noise
followed by the harder case in which there is noise. As in [33], a separate analysis for the
less general noise-free case is included to help the reader’s understanding.

Case 1: n(t) = 0 for all t ≥ t0.

First, we will analyze the behaviour for two consecutive time instants and then we will
consider the whole time horizon. From Proposition 2.3 we have that

||θ̃g(t)||2 ≤ ||θ̃g(t0)||2 − 1

2

t−1∑
j=t0

ρg(j)
|eg(j + 1)|2

||φ(j)||2
, t > t0.

Using the fact ||θ̃g(t0)|| ≤ 2||Sg||, the above implies

t−1∑
j=t0

ρg(j)
|eg(j + 1)|2

||φ(j)||2
≤ 2||θ̃g(t0)||2 ≤ 8||Sg||2 ≤ 8 s̄2, t > t0. (3.4)
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The bound (3.4) shows that the input to (2.26) with i = g is square summable. Applying
Parseval’s theorem for discrete-time systems to (2.26), noting that λ̄ < 1, we have

∞∑
t=t0

J2
g (t) ≤ 8 s̄2

(1− λ̄)2
=: c̄4. (3.5)

Before proceeding further, define c4 := max{1, c̄4}.

Claim 3.1. For every t > t0 and i ∈ {1, 2}, one of the following bounds hold

(i) |ε(t)| ≤ ||φ(t− 1)|| |Ji(t)|, or

(ii) |ε(t+ 1)| ≤ ||φ(t)|| |Ji(t+ 1)|.

Proof of Claim 3.1. Fix t > t0 and i ∈ {1, 2}. Motivated by the result in Lemma 2.1 we
split the proof of the claim into two cases.

Case 1: Jσ(t−1)(t) ≤ Ji(t).

In this case, from (2.26), we have

λ̄ Jσ(t−1)(t− 1) + ρσ(t−1)(t− 1)
|eσ(t−1)(t)|
||φ(t− 1)||

≤ λ̄ Ji(t− 1) + ρi(t− 1)
|ei(t)|

||φ(t− 1)||
. (3.6)

On the one hand, if either ρσ(t−1)(t − 1) = 0 or ρi(t − 1) = 0, then from Proposition
2.2, we have ||φ(t− 1)|| = 0, which implies that x(t− 1) = u(t− 1) = 0, so that x(t) = 0.
From the formula for u(t− 1) in (2.22), we see that r(t) = 0 as well, so that ε(t) = 0 and
(i) holds.

On the other hand, if ρσ(t−1)(t− 1) = ρi(t− 1) = 1, then using (3.6), we have

|eσ(t−1)(t)|
||φ(t− 1)||

≤ λ̄ Ji(t− 1) +
|ei(t)|

||φ(t− 1)||
⇒ |eσ(t−1)(t)| ≤ |ei(t)|+ λ̄ Ji(t− 1)||φ(t− 1)||.
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Using the relation (2.24) between the tracking error and the estimation error, we can
rewrite the above as

|ε(t)| ≤ |ei(t)|+ λ̄ Ji(t− 1)||φ(t− 1)||

= ||φ(t− 1)||
[
λ̄ Ji(t− 1) +

|ei(t)|
||φ(t− 1)||

]
= ||φ(t− 1)|| |Ji(t)|

which shows that (i) holds.

Case 2: Jσ(t)(t+ 1) ≤ Ji(t+ 1).

In this case, from (2.26), we have

λ̄ Jσ(t)(t) + ρσ(t)(t)
|eσ(t)(t+ 1)|
||φ(t)||

≤ λ̄ Ji(t) + ρi(t)
|ei(t+ 1)|
||φ(t)||

. (3.7)

On the one hand, if either ρσ(t)(t) = 0 or ρi(t) = 0, then from Proposition 2.2, we have
that ||φ(t)|| = 0, which implies that x(t) = u(t) = 0, so that x(t + 1) = 0. From the
formula for u(t) in (2.22), we see that r(t + 1) = 0 as well, so that ε(t + 1) = 0 and (ii)
holds.

On the other hand, if ρσ(t)(t) = ρi(t) = 1, then using (3.7), we have

|eσ(t)(t+ 1)|
||φ(t)||

≤ λ̄ Ji(t) +
|ei(t+ 1)|
||φ(t)||

⇒ |eσ(t)(t+ 1)| ≤ |ei(t+ 1)|+ λ̄ Ji(t)||φ(t)||.

Using (2.24), we can rewrite the above as

|ε(t+ 1)| ≤ |ei(t+ 1)|+ λ̄ Ji(t)||φ(t)||

= ||φ(t)||
[
λ̄ Ji(t) +

|ei(t+ 1)|
||φ(t)||

]
= ||φ(t)|| |Ji(t+ 1)|

which shows that (ii) holds. �

20



Applying Claim 3.1 with i = g and using the general bound (3.2) on φ, we have

|ε(t)| ≤
(
c1|x(t− 1)|+ c2|r(t)|

)
Jg(t)

or

|ε(t+ 1)| ≤
(
c1|x(t)|+ c2|r(t+ 1)|

)
Jg(t+ 1), t > t0.

Since t > t0 is arbitrary in the above bounds, it follows that for every j ∈ Z+ we have
either

|ε(t0 + 2j + 1)| ≤
(
c1|x(t0 + 2j)|+ c2|r(t0 + 2j + 1)|

)
Jg(t0 + 2j + 1)

or

|ε(t0 + 2j + 2)| ≤
(
c1|x(t0 + 2j + 1)|+ c2|r(t0 + 2j + 2)|

)
Jg(t0 + 2j + 2).

For k ≥ t0, we define αk := Jg(k + 1) (note that from (3.5), αk ≤
√
c4) and we define

ᾱt0+2j := max{αt0+2j, αt0+2j+1}. Using the definition (2.23) of the tracking error, we can
conclude that either

|x(t0 + 2j + 1)| ≤ c1 ᾱt0+2j|x(t0 + 2j)|+ (c2

√
c4 + 1) |r(t0 + 2j + 1)|

or

|x(t0 + 2j + 2)| ≤ c1 ᾱt0+2j|x(t0 + 2j + 1)|+ (c2

√
c4 + 1) |r(t0 + 2j + 2)|.

Combining this with the crude bound (3.3) and defining c5 := max{1, c1c3} and c6 :=
1 + 2c3 + c1 c3 c4

1/2 + c2 c4
1/2 + c2 c3 c4

1/2, we see that in either case,

|x(t0 + 2j + 2)| ≤ c5ᾱt0+2j|x(t0 + 2j)|+ c6

(
|r(t0 + 2j + 1)|+ |r(t0 + 2j + 2)|

)
, j ∈ Z+.

(3.8)

Before examining the behaviour across the whole time horizon, we prove a claim.

Claim 3.2. There exists a constant c7 > 1 so that the following bound holds:

p−1∏
j=q

c5ᾱt0+2j ≤ c7λ
2(p−q), 0 ≤ q < p. (3.9)
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Proof of Claim 3.2. Fix p, q ∈ Z+ such that p > q ≥ 0. We begin by utilizing the inequal-
ity between arithmetic and geometric means [4]:

p−1∏
j=q

ᾱt0+2j ≤

[
1

p− q

p−1∑
j=p

ᾱ2
t0+2j

] p−q
2

≤
[

c4

p− q

] p−q
2

. (3.10)

Now define λ1 :=
λ2

c5

and k̄ :=

⌈
c4

λ1
2

⌉
from which it follows that

c4

k̄
≤ λ1

2,

so it is easy to see that [(c4

k

) 1
2

]k
≤ λ1

k, k ≥ k̄. (3.11)

Since
c4

k
decreases as k ≥ 1 increases, if we define

c7 :=
c4

k̄
2

λ1
k̄
,

then

(c4

k

) k
2 ≤ c7λ1

k, k = 1, 2, . . . , k̄,

as well. If we combine the above with (3.11), then from (3.10) we conclude that

p−1∏
j=q

ᾱt0+2j ≤ c7λ1
p−q, 0 ≤ q < p.
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Then by the definition of λ1,

p−1∏
j=q

c5ᾱt0+2j ≤ c7λ1
p−qc5

p−q

= c7λ
2(p−q), 0 ≤ q < p.

�

Now we solve the difference inequality (3.8) recursively and apply the bound (3.9) to
obtain

|x(t0 + 2j)| ≤ c7λ
2j|x0|+

j−1∑
l=0

c7 c6λ
2(j−l−1)

(
|r(t0 + 2l + 1)|+ |r(t0 + 2l + 2)|

)
, j ∈ Z+,

which simplifies to

|x(t0 + 2j)| ≤ c7λ
2j|x0|+

2j−1∑
l=0

c7c6

λ
λ2j−l−1|r(t0 + l + 1)|, j ∈ Z+. (3.12)

We can use (3.3) to obtain a bound for the remaining time instants. So it follows that
there exists a constant γ̄1 := 1

λ2 max{c7, c3, c7c3, c6c7c3, c7c6} so that

|x(t)| ≤ γ̄1λ
t−t0|x0|+

t−1∑
j=t0

γ̄1λ
t−j−1|r(j + 1)|, t ≥ t0. (3.13)

Case 2: n(t) 6= 0 for some t ≥ t0.

To complete the proof we analyze the case when there is noise entering the system; this is
more complicated since ||θ̃g(t)||2 is no longer monotonically decreasing. Following [19] and
[21], we partition the timeline into two parts: one in which the noise n is small compared
to φ and the other where it is not. Before proceeding, we define

ν :=

[
λ1(1− λ̄)√

32

]2
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and, motivated by the noise-free case,

λ1 :=
λ2

c5

.

Let us now define two sets in relation to size of the noise n:

Sgood =

{
t ≥ t0 : φ(t) 6= 0 and

|n(t)|2

||φ(t)||2
< ν

}
,

Sbad =

{
t ≥ t0 : φ(t) = 0 or

|n(t)|2

||φ(t)||2
≥ ν

}
;

the idea is that on Sgood the disturbance is small relative to φ so the closed-loop system
acts like the noise-free case, at least if ν is small enough.

Now we partition the time index {t ∈ Z : t ≥ t0} into intervals which oscillate between
Sgood and Sbad. We can clearly define a (possible infinite) sequence of intervals of the form
[kl, kl+1), l ∈ Z+ which satisfy:

(i) without loss of generality, k0 = t0 serves as the initial instant of the first interval;

(ii) [kl, kl+1) either belongs to Sgood or Sbad; and

(iii) if kl+1 6=∞ and [kl, kl+1) belongs to Sgood, then [kl+1, kl+2) belongs to Sbad and vice
versa.

We divide this part of the proof into two sub-cases.

Sub-Case 2.1: [kl, kl+1) is a subset of Sbad.

Let j ∈ [kl, kl+1) be arbitrary. So we have that φ(j) = 0 or that |n(j)|2
||φ(j)||2 ≥ ν. In either case,

when ρg(j) = 1, we have ||φ(j)|| ≤ 1√
ν
|n(j)|. But, when ρg(j) = 0, from Proposition 2.2

we have ||φ(j)|| ≤ 1
δ
|n(j)|. If we define

c8 := max

{
1√
ν
,
1

δ

}
and utilize the definition of φ(j) we have

|x(j)| ≤ c8|n(j)|.
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Also, from the plant’s dynamics (2.1) we obtain

|x(t)| ≤
(

(ā+ b̄)c8 + 1
)
|n(t− 1)|, t ∈ [kl + 1, kl+1].

Define c9 :=
(

(ā+ b̄)c8 + 1
)

to conclude that

|x(t)| ≤

{
c8|n(t)|, t = kl,

c9|n(t− 1)|, t ∈ [kl + 1, kl+1].
(3.14)

Sub-Case 2.2: [kl, kl+1) is a subset of Sgood.

From Proposition 2.3, equation (2.17), we have

||θ̃g(k̄)||2 ≤ ||θ̃g(k)||2 +
k̄−1∑
j=k

ρg(j)

(
−1

2

|eg(j + 1)|2

||φ(j)||2
+ 2

|n(j)|2

||φ(j)||2

)
, kl ≤ k < k̄ ≤ kl+1,

(3.15)

which can be rearranged to obtain

k̄−1∑
j=k

ρg(j)
|eg(j + 1)|2

||φ(j)||2
≤ 2||θ̃g(k)||2 + 4

k̄−1∑
j=k

ρg(j)
|n(j)|2

||φ(j)||2

≤ 8 s̄2 + 4 ν (k̄ − k), k̄ > k ≥ t0. (3.16)

Using the bound (3.16) and applying Parseval’s theorem for discrete-time systems to (2.26),
noting that λ̄ < 1, we have

k̄−1∑
j=k

J2
g (j) ≤ 2

(1− λ̄2)
J2
g (k) +

2

(1− λ̄)2
[8 s̄2 + 4 (k̄ − k) ν], k̄ > k ≥ t0. (3.17)

Since δ ∈ (0,∞), the input to (2.26) is bounded and we get

Jg(j) ≤
1

(1− λ̄)
(2 s̄ + δ), j ≥ t0. (3.18)

Combining (3.17) and (3.18), we conclude that

k̄−1∑
j=k

J2
g (j) ≤ 2

(1− λ̄)2

[
(2 s̄ + δ)2

(1− λ̄2)
+ 8 s̄2 + 4 (k̄ − k) ν

]
, k̄ > k ≥ t0. (3.19)
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Letting αj := Jg(j), we can rewrite (3.19) as

k̄−1∑
j=k

α2
j ≤

2

(1− λ̄)2

[
(2 s̄ + δ)2

(1− λ̄2)
+ 8 s̄2 + 4 (k̄ − k) ν

]
, k̄ > k ≥ t0.

If we define ᾱkl+2j := max{αkl+2j, αkl+2j+1}, then the above implies

p−1∑
j=q

ᾱ2
kl+2j ≤

2

(1− λ̄)2

[
(2 s̄ + δ)2

(1− λ̄2)
+ 8 s̄2 + 8 (p− q) ν

]
, kl ≤ kl + 2q < kl + 2p ≤ kl+1.

(3.20)

Now define the constant

c10 :=

√
2

(1− λ̄)2

[
(2 s̄ + δ)2

(1− λ̄2)
+ 8 s̄2 + 8 ν

]
.

If we now analyze the closed-loop system as in the noise-free case, we end up with a
version of (3.8) with the noise now included. Let c11 := 1+2c3+c2c3c10+c1c3c10+c1c10+c2c10

so that

|x(kl + 2j + 2)| ≤ c5ᾱkl+2j|x(kl + 2j)|+ c11

(
|r(kl + 2j + 1)|+ |r(kl + 2j + 2)|

+ |n(kl + 2j)|+ |n(kl + 2j + 1)|
)
, j ∈ Z+ s.t. kl + 2j + 1 < kl+1.

(3.21)

Claim 3.3. There exists a constant c12 > 1 so that the following bound holds:
p−1∏
j=q

c5ᾱkl+2j ≤ c12λ
2(p−q), kl ≤ kl + 2q < kl + 2p ≤ kl+1. (3.22)

Proof of Claim 3.3. Fix p, q ∈ Z+ such that kl ≤ kl + 2q < kl + 2p ≤ kl+1. Using a similar
analysis to that in Claim 3.2, apply the inequality of arithmetic and geometric means [4];
from (3.20) and incorporating the definition of ν, we get

p−1∏
j=q

ᾱkl+2j ≤

[
1

(p− q)

p−1∑
j=q

ᾱ2
kl+2j

] p−q
2

≤
[

2 (2 s̄ + δ)2

(p− q)(1 + λ̄)(1− λ̄)3
+

16 s̄2

(p− q)(1− λ̄)2
+

16 ν

(1− λ̄2)

] p−q
2

=

[
2 (2 s̄ + δ)2

(p− q)(1 + λ̄)(1− λ̄)3
+

16 s̄2

(p− q)(1− λ̄)2
+
λ1

2

2

] p−q
2

. (3.23)
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Let us define

k̄ :=

⌈
16s̄2

λ1
2

2
(1− λ̄)2

+
2(2 s̄ + δ)2

λ1
2

2
(1 + λ̄)(1− λ̄)3

⌉
.

Then we have

k̄ ≥ 16s̄2

λ1
2

2
(1− λ̄)2

+
2(2 s̄ + δ)2

λ1
2

2
(1 + λ̄)(1− λ̄)3

,

which can be rearranged as

λ1
2

2
≥ 16s̄2

k̄(1− λ̄)2
+

2(2 s̄ + δ)2

k̄(1 + λ̄)(1− λ̄)3
,

which means that

λ1
k ≥

(
16s̄2

k(1− λ̄)2
+

2(2 s̄ + δ)2

k(1 + λ̄)(1− λ̄)3
+
λ1

2

2

) k
2

, k ≥ k̄.

Then in a similar manner to that of Claim 3.2, if we define

c12 :=

(
16s̄2

(1− λ̄)2
+

2(2 s̄ + δ)2

(1 + λ̄)(1− λ̄)3
+ 1

) k̄
2

;

it is easy to see that from (3.23), we get

p−1∏
j=q

ᾱkl+2j ≤ c12λ1
p−q, kl ≤ kl + 2q < kl + 2p ≤ kl+1.

Then by the definition of λ1, we obtain

p−1∏
j=q

c5ᾱkl+2j ≤ c12λ1
p−qc5

p−q.

= c12λ
2(p−q), kl ≤ kl + 2q < kl + 2p ≤ kl+1.

�
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Before proceeding, observe from the definition of ᾱkl+2j, that if kl+1 − kl is an odd
number, then we would solve (3.21) and obtain a bound which is valid on t = kl, . . . , kl+1−1
and not on t = kl+1; when kl+1−kl is an even number, we would be able to obtain a bound
on t = kl, . . . , kl+1. So in any case, we now proceed to solve (3.21) iteratively and apply
the bound in (3.22). Using a similar analysis to that of Case 1 and defining

γ̄2 :=
1

λ2
max{c12, c3, c12c3, c11c12c3, c12c11},

we obtain

|x(t)| ≤ γ̄2λ
t−kl |x(kl)|+

t−1∑
j=kl

γ̄2λ
t−j−1

(
|r(j + 1)|+ |n(j)|

)
, t ∈ [kl, kl+1). (3.24)

Note that (3.24) does not apply for t = kl+1; so to conclude Sub-Case 2.2, define

γ̄3 := c3 max
{

1,
γ̄2

λ

}
,

and utilizing (3.3) to obtain a bound accounting for the extra step yields

|x(t)| ≤ γ̄3λ
t−kl |x(kl)|+

t−1∑
j=kl

γ̄3λ
t−j−1

(
|r(j + 1)|+ |n(j)|

)
, t ∈ [kl, kl+1]. (3.25)

Finally, we will combine the results of Sub-Case 2.1 and Sub-Case 2.2 to find a general
bound on x. Before proceeding, define

γ̄4 := max{γ̄3, c9, γ̄3c9}.

Claim 3.4. The following bound holds:

|x(t)| ≤ γ̄4λ
t−t0|x0|+

t−1∑
j=t0

γ̄4λ
t−j−1

(
|r(j + 1)|+ |n(j)|

)
, t ≥ t0. (3.26)

Proof of Claim 3.4. If [k0, kl) = [t0, kl) ⊂ Sgood, then (3.26) is true for t ∈ [k0, kl] by (3.25).
If [k0, kl) ⊂ Sbad, then from (3.14) we have

|x(j)| ≤

{
|x(k0)| = |x0|, j = k0,

c9|n(j − 1)|, j = k0 + 1, k0 + 2, . . . , kl,
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which means that (3.26) holds for t ∈ [k0, kl] for this case as well.

We now proceed by induction: suppose that (3.26) is true for t ∈ [k0, kl]; we need to
prove that it is true for t ∈ (kl, kl+1]. If [kl, kl+1) ⊂ Sbad, then from (3.14) we see that

|x(j)| ≤ c9|n(j − 1)|, j = kl + 1, kl + 2, . . . , kl+1,

so (3.26) clearly holds on (kl, kl+1]. On the other hand, if [kl, kl+1) ⊂ Sgood, then kl − 1 ∈
Sbad; from (3.14) we have

|x(kl)| ≤ c9|n(kl − 1)|.

Using (3.25) to analyze the behaviour on t ∈ [kl, kl+1], we have

|x(t)| ≤ γ̄3λ
t−kl |x(kl)|+

t−1∑
j=kl

γ̄3λ
t−j−1

(
|r(j + 1)|+ |n(j)|

)
≤ c9γ̄3λ

t−kl |n(kl − 1)|+
t−1∑
j=kl

γ̄3λ
t−j−1

(
|r(j + 1)|+ |n(j)|

)
≤

t−1∑
j=kl−1

γ̄4λ
t−j−1

(
|r(j + 1)|+ |n(j)|

)
,

which implies that (3.26) holds. �

At this point we have bounds on x for both cases with noise and without. To combine
the bounds (3.13) and (3.26), define

γ̄5 := max{γ̄1, γ̄4}.

Then the overall bound is given by

|x(t)| ≤ γ̄5λ
t−t0|x0|+

t−1∑
j=t0

γ̄5λ
t−j−1

(
|r(j + 1)|+ |n(j)|

)
, t ≥ t0. (3.27)

To conclude the proof of Theorem 3.1, we need a bound on u: using (2.22) we obtain

|u(t)| ≤ f̄ |x(t)|+ ḡ|r(t+ 1)|, t ≥ t0;
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so by substituting (3.27) into the above, we get

|u(t)| ≤ f̄ γ̄5λ
t−t0|x0|+

t−1∑
j=t0

f̄ γ̄5λ
t−j−1|n(j)|+

t∑
j=t0

(
f̄ γ̄5

λ
+ ḡ

)
λt−j|r(j + 1)|, t ≥ t0.

(3.28)

By combining (3.27) and (3.28), and defining

γ̄ := max

{
γ̄5, f̄ γ̄5,

f̄ γ̄5

λ
+ ḡ

}
,

we conclude the proof. �

Next, building on the observation in Remark 2.2, we show that the closed-loop system
enjoys the homogeneity property [21]. Towards this end, with γ ∈ R, γ 6= 0, let the scaled
system state xγ evolve according to

xγ(t+ 1) = a xγ(t) + b uγ(t) + γ n(t), xγ(t0) = γ x0. (3.29)

From (2.12), (2.13), with θ̂γi (t0) ∈ Si, i ∈ {1, 2}, we have

θ̌γi (t+ 1) := θ̂γi (t) + ρi(t)
φγ(t)

||φγ(t)||2
(
φγ(t)>(θ∗ − θ̂γi (t)) + γ n(t)

)
, (3.30)

θ̂γi (t+ 1) := ProjSi
{
θ̌γi (t+ 1)

}
, (3.31)

where the scaled quantity φγ is defined as

φγ(t) :=

[
xγ(t)
uγ(t)

]
,

with

θ̂γσ(t)(t) =:

[
âγσ(t)(t)

b̂γσ(t)(t)

]
and control input uγ given by

uγ(t) =
1

b̂γσ(t)(t)

(
γ r(t+ 1)− âγσ(t)(t)x

γ(t)
)
. (3.32)
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Proposition 3.1. Suppose t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂γi (t0) = θ̂i(t0) ∈
Si, i ∈ {1, 2}, r, n ∈ l∞, and γ ∈ R, γ 6= 0. If the combination of initial condition,
reference, and noise (φ0, r, n) yields system response φ(t) for (2.1),(2.11), (2.12),
(2.13), (2.22), (2.26), and (2.27), and the combination (γ φ0, γ r, γ n) yields system
response φγ for (2.26), (2.27), (2.11), (3.29), (3.30), (3.31) and (3.32), then for
every t ≥ t0

φγ(t) = γ φ(t); (3.33)

and

θ̂γi (t) = θ̂i(t). (3.34)

Proof. Let t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, r, n ∈ l∞, γ ∈ R, γ 6= 0 be arbitrary and fix σ0 ∈
{1, 2}, θ̂γi (t0) = θ̂i(t0) ∈ Si, i ∈ {1, 2} . We proceed by induction.

For the base case, at time step t0, from (2.8) and (2.12)

θ̌i(t0 + 1) = θ̂i(t0) + ρi(t0)
φ(t0)

||φ(t0)||2
(
φ(t0)>(θ∗ − θ̂i(t0)) + n(t0)

)
, (3.35)

and from (3.30), we get

θ̌γi (t0 + 1) = θ̂γi (t0) + ρi(t0)
φ(t0)

||φ(t0)||2
(
φ(t0)>(θ∗ − θ̂γi (t0)) + n(t0)

)
.

Using the fact that θ̂γi (t0) = θ̂i(t0), the above implies

θ̌γi (t0 + 1) = θ̌i(t0 + 1),

which implies that

θ̂γi (t0 + 1) = θ̂i(t0 + 1),
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as required.

Now, from (3.32), we have

uγ(t0) =
γ

b̂γσ(t0)(t0)

(
r(t0 + 1)− âγσ(t0)(t0)x(t0)

)
,

and so using the fact that θ̂γi (t0) = θ̂i(t0), we get uγ(t0) = γ u(t0). From (3.29) we have

xγ(t0 + 1) = a γ x(t0) + b uγ(t0) + γ n(t0),

which gives xγ(t0 + 1) = γ x(t0 + 1). As a result, again using (3.32) and the previously
established fact that θ̂γi (t0 +1) = θ̂i(t0 +1), we conclude that uγ(t0 +1) = γ u(t0 +1) which
shows that

φγ(t0 + 1) = γ φ(t0 + 1),

as required.

For the induction step, assume that for some t > t0, t ∈ Z, it is true that

θ̂γi (t) = θ̂i(t), (3.36)

φγ(t) = γ φ(t). (3.37)

From (3.30), we obtain

θ̌γi (t+ 1) = θ̂γi (t) + ρi(t)
φ(t)

||φ(t)||2
(
φ(t)>(θ∗ − θ̂γi (t)) + n(t)

)
.

Using the induction hypotheses (3.36) and (3.37), we get

θ̌γi (t+ 1) = θ̌i(t+ 1),

which, implies that

θ̂γi (t+ 1) = θ̂i(t+ 1),

as required.
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Now, from (3.32), we get

uγ(t) =
γ

b̂γσ(t)(t)

(
r(t+ 1)− âγσ(t)(t)x(t)

)
,

which, using the induction hypotheses (3.36) and (3.37), gives

uγ(t) = γ u(t).

From (3.29)

xγ(t+ 1) = a γ x(t) + b uγ(t) + γ n(t),

which yields

xγ(t+ 1) = γ x(t+ 1).

Finally, again using (3.32) and the previously established fact that θ̂γi (t + 1) = θ̂i(t + 1),
we conclude that uγ(t+ 1) = γ u(t+ 1) so that

φγ(t+ 1) = γ φ(t+ 1).

as required. �

3.2 Tolerance to Time-Variations and Unmodelled Dy-

namics

In this section, we will show that the convolution bound and exponential stability proven
in Theorem 3.1 guarantees robustness to a degree of time-variations and unmodelled dy-
namics. The proof of this claim uses a general result from [36] applied to our specific setup.
In order to summarize the results from [36], we introduce a multi-input multi-output plant
with finite memory and some noise (disturbance) n(t) ∈ Rr. To this end, with an input
u(t) ∈ Rm, an output x(t) ∈ Rr, a modeling parameter of

θ∗ ∈ S̃ ⊂ Rp×r,
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and a vector of input-output data of the form

φ(t) =



x(t)
x(t− 1)

...
x(t− ny + 1)

u(t)
u(t− 1)

...
u(t− nu + 1)


∈ Rny ·r+nu·m ,

the nominal plant is given by

x(t+ 1) = θ∗> f
(
φ(t)

)
+ n(t), t ≥ t0, φ(t0) = φ0 ; (3.38)

where f : Rny ·r+nu·m → Rp has a bounded gain and S̃ is a bounded set. We represent this
system by the pair (f, S̃).

The general results in [36] considered a general dynamic controller with its state parti-
tioned into two parts:

� z(t) ∈ Rl1 and

� θ̂(t) ∈ Rl2 ,

an exogenous signal w(t) ∈ Rr, and with equations of the form

z(t+ 1) = g1

(
z(t), θ̂(t), φ(t), w(t), t, t0

)
, z(t0) = z0 (3.39)

θ̂(t+ 1) = g2

(
z(t), θ̂(t), φ(t), w(t), t, t0

)
, θ̂(t0) = θ̂0 (3.40)

u(t) = h
(
z(t), θ̂(t), φ(t− 1), x(t), w(t), t, t0

)
. (3.41)

With Ω ⊂ Rl2 a bounded set, in [36] it is assumed that

g2 : Rl1 × Ω× Rny ·r+nu·m × Rr × Z× Z −→ Ω ,

i.e., if θ̂(t) ∈ Ω, then θ̂(t+ 1) ∈ Ω.

We now define the exponential stability and convolution bound property.
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Definition 3.1. We say that the controller (3.39)-(3.41) provides exponential sta-

bility and a convolution bound for
(
f, S̃) with gain c ≥ 1 and decay rate λ ∈ (0, 1) if,

for every θ∗ ∈ S̃, t0 ∈ Z, φ0 ∈ Rny ·r+nu·m, z0 ∈ Rl1 , θ̂0 ∈ Ω ⊂ Rl2, and n, w ∈ S(Rr),
when the controller (3.39)-(3.41) is applied to (3.38), the following holds:∥∥∥∥[φ(t)
z(t)

]∥∥∥∥ ≤ cλt−τ
∥∥∥∥[φ(τ)
z(τ)

]∥∥∥∥+
t−1∑
j=τ

cλt−j−1
(
‖w(j)‖+ ‖n(j)‖

)
+ c ‖w(t)‖, t ≥ τ ≥ t0.

(3.42)

Next, consider a plant with possibly time-varying parameter θ∗(t) ∈ S̃ ⊂ Rp×r:

x(t+ 1) = θ∗(t)> f
(
φ(t)

)
+ n(t), φ(t0) = φ0. (3.43)

Using the standard time-variation model commonly adopted in adaptive control setting
– see [12] – with c0 ≥ 0 and ε > 0, let s(S̃, c0, ε) denote the subset of l∞(Rp×r) whose
elements θ∗ satisfy the following

� θ∗(t) ∈ S̃ for every t ∈ Z,

� and

t2−1∑
t=t1

||θ∗(t+ 1)− θ∗(t)|| ≤ c0 + ε (t2 − t1), t2 > t1, t1 ∈ Z.

The above time-variations cover both slow time variations and/or occasional jumps. We
represent the time-varying system by the pair (f, s(S̃, c0, ε)). Definition 3.1 extends in a
natural way to handle time-variations.

35



Definition 3.2. We say that the controller (3.39)-(3.41) provides exponential sta-
bility and a convolution bound for

(
f, s(S̃, c0, ε)

)
with gain c ≥ 1 and decay rate λ ∈

(0, 1) if, for every θ∗ ∈ s(S̃, c0, ε), t0 ∈ Z, φ0 ∈ Rny ·r+nu·m, z0 ∈ Rl1 , θ̂0 ∈ Ω ⊂ Rl2,
and n, w ∈ S(Rr), when the controller (3.39)-(3.41) is applied to (3.38), the following
holds:∥∥∥∥[φ(t)
z(t)

]∥∥∥∥ ≤ cλt−τ
∥∥∥∥[φ(τ)
z(τ)

]∥∥∥∥+
t−1∑
j=τ

cλt−j−1
(
‖w(j)‖+ ‖n(j)‖

)
+ c ‖w(t)‖, t ≥ τ ≥ t0.

(3.44)

The following theorem shows that if the controller (3.39)-(3.41) provides exponential
stability and a convolution bound for the plant (3.38), then the same will be true for the
time-varying plant (3.43), as long as ε is small enough.

Theorem 3.2 ([36, Theorem 1]). Suppose that the controller (3.39)-(3.41) provides
exponential stability and a convolution bound for (f, S̃) with gain c ≥ 1 and decay
rate λ ∈ (0, 1). Then for every λ1 ∈ (λ, 1) and c0 > 0, there exist c1 ≥ c and ε > 0
so that the controller (3.39)-(3.41) provides exponential stability and a convolution
bound for

(
f, s(S̃, c0, ε)

)
with gain c1 and decay rate λ1.

We now consider the time-varying plant (3.43) with unmodelled dynamics d∆(t) ∈ Rr:

x(t+ 1) = θ∗(t)> f
(
φ(t)

)
+ n(t) + d∆(t), φ(t0) = φ0. (3.45)

We also adopt a common model of unmodelled dynamics; with g : Rny ·r+nu·m → R a map
with a bounded gain, β ∈ (0, 1) and µ > 0, we consider

m(t+ 1) = β m(t) + β
∣∣g(φ(t)

)∣∣, m(t0) = m0 (3.46)∥∥d∆(t)
∥∥ ≤ µm(t) + µ

∣∣g(φ(t)
)∣∣, t ≥ t0. (3.47)

It turns out that the model (3.46), (3.47) encapsulates classical additive, multiplicative
and uncertainty in a coprime factorization – see [21] for detailed discussion.
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The following result proves that if the controller (3.39)-(3.41) provides exponential
stability and a convolution bound for the plant (3.43) with s(S̃, c0, ε), then the closed-loop
system enjoys a degree of tolerance to unmodelled dynamics.

Theorem 3.3 ([36, Theorem 2]). Suppose that the controller (3.39)-(3.41) provides
exponential stability and a convolution bound for

(
f, s(S̃, c0, ε)

)
with a gain c1 and

decay rate λ1 ∈ (0, 1). Then for every β ∈ (0, 1) and λ2 ∈
(

max{λ1, β}, 1
)
, there

exist µ̄ > 0 and c2 > 0 so that for every θ∗ ∈ s(S̃, c0, ε), µ ∈ (0, µ̄), t0 ∈ Z, φ0 ∈
Rny ·r+nu·m, z0 ∈ Rl1 , θ̂0 ∈ Ω ⊂ Rl2 and n, w ∈ S(Rr), when the controller (3.39)-
(3.41) is applied to the plant (3.45) with d∆ satisfying (3.46)-(3.47), the following
holds:∥∥∥∥∥∥
φ(t)
z(t)
m(t)

∥∥∥∥∥∥ ≤ c2 λ2
t−t0

∥∥∥∥∥∥
φ0

z0

m0

∥∥∥∥∥∥+
t−1∑
j=t0

c2 λ2
t−j−1

(
‖w(j)‖+ ‖n(j)‖

)
+ c2 ||w(t)||, t ≥ t0.

Finally, we now show that the adaptive controller (2.22),(2.26) and (2.27), presented in
Chapter 2, fits into the paradigm of the controller (3.39)-(3.41) and that our closed-loop
system enjoys the aforementioned tolerance to time-variations and unmodelled dynamics.

Lemma 3.1. The adaptive controller consisting of the parameter estimator (2.11),
(2.12), (2.13), the control law (2.22), and the switching rule (2.26), (2.27) provides
exponential stability and a convolution bound for (I2,S) with gain γ ≥ 1 and decay
rate λ ∈ (0, 1).

Proof. We start by showing that our adaptive controller is an instance of the general control
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law (3.39)-(3.41). To do so we make the following identifications:

Ω := S1 × S2 × {1, 2} ×

[
0,

2 s̄ + δ

1− λ̄

]
×

[
0,

2 s̄ + δ

1− λ̄

]
,

z(t) := ∅ ,

θ̂(t) :=


θ̂1(t)

θ̂2(t)
σ(t)
J1(t)
J2(t)

 ,

w(t) := r(t+ 1) ,

and also identify the control law (3.41) with (2.22). With these identifications, we must

show that if θ̂(t) ∈ Ω, then θ̂(t+ 1) ∈ Ω. It suffices to prove that if Ji(t) ∈
[
0, 2 s̄+δ

1−λ̄

]
, then

Ji(t+ 1) ∈
[
0, 2 s̄+δ

1−λ̄

]
.

Suppose that for some i ∈ {1, 2} and t ∈ Z, Ji(t) ∈
[
0, 2 s̄+δ

1−λ̄

]
. Then from (2.26) we

have that

Ji(t+ 1) = λ̄ Ji(t) + ρi(t)
|ei(t+ 1)|
||φ(t)||

≤ λ̄
2 s̄ + δ

1− λ̄
+ 2 s̄ + δ (by definition (2.11) of ρi)

= λ̄
2 s̄ + δ

1− λ̄
+

(2 s̄ + δ) (1− λ̄)

1− λ̄

=
2 s̄ + δ

1− λ̄
.

Therefore Ji(t+1) ∈
[
0, 2 s̄+δ

1−λ̄

]
as required. Since i was arbitrary, this shows that θ̂(t+1) ∈ Ω

as claimed. The result now follows from Theorem 3.1. �

We now consider the plant (2.1) subject to parameter variations θ∗(t) ∈ S and with
unmodelled dynamics d∆(t) ∈ R:

x(t+ 1) = φ(t)> θ∗(t) + n(t) + d∆(t), φ(t0) = φ0. (3.48)
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with d∆ satisfying (3.46)-(3.47). By Lemma 3.1, Theorem 3.2 and Theorem 3.3, we con-
clude that the adaptive controller (3.39)-(3.41) provides exponential stability and a convo-
lution bound for (3.48), i.e., our approach is robust.
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Chapter 4

Tracking Problem

We now move from the stability problem to the much harder tracking problem. We remind
the reader that with θ∗ ∈ S, we let g(θ∗) denote the index i ∈ {1, 2} for which θ∗ ∈ Si, see
(2.2) for a precise definition. To minimize notation, when there is no risk of confusion, we
will drop the argument and simply denote this index by g. Throughout this chapter we
consider tracking when the noise is zero.

4.1 Preliminary Results

In this section we present three results which provide a building block for two key theorems.
We start with a result on the performance signal and the prediction error for the correct
estimator.

Proposition 4.1. Suppose that the adaptive controller consisting of the parameter
estimator (2.11), (2.12), (2.13), the control law (2.22), and the switching rule (2.26),
(2.27) is applied to the plant (2.1). For every λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈
{1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, and r ∈ l∞, if n = 0, then the following limits hold:

lim
t→∞

Jg(t+ 1) = 0, (4.1)

lim
t→∞

eg(t+ 1) = 0. (4.2)
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Proof. Fix λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, and
r ∈ l∞, and set n = 0. By Proposition 2.3 and equation (2.17) we have that

||θ̃g(t)||2 ≤ ||θ̃g(t0)||2 − 1

2

t−1∑
j=t0

ρg(j)
|eg(j + 1)|2

||φ(j)||2
.

Using the fact ||θ̃g(t0)|| ≤ 2||Sg||, the above implies that

t−1∑
j=t0

ρg(j)
|eg(j + 1)|2

||φ(j)||2
≤ 2||θ̃g(t0)||2 ≤ 8||Sg||2 ≤ 8 s̄2, t > t0. (4.3)

Using the bound (4.3) and applying Parseval’s theorem for discrete-time systems to the
difference equation for Jg(t) given in (2.26), we have

∞∑
j=t0

J2
g (j + 1) ≤ 8 s̄2

(1− λ̄)2
,

from which we conclude that

lim
j→∞

Jg(j + 1) = 0.

For integers j ≥ t0, define

aj :=

{
|eg(j+1)|
||φ(j)|| , if ρg(j) = 1

0, otherwise.
(4.4)

From (4.3), it follows that aj → 0 as j →∞. When ρg(j) = 1, from (4.4) we have

|eg(j + 1)| = aj ||φ(j)||. (4.5)

On the other hand, when ρg(j) = 0, by Proposition 2.2 we see that ||φ(j)|| = 0, which is
equivalent to x(j) = u(j) = 0; from (2.8), we see that eg(j + 1) = 0, which means that
(4.5) holds in this case as well. From Theorem 3.1 we have that φ is bounded, from which
we deduce that

lim
j→∞

eg(j + 1) = 0.

�
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Before proceeding further, we define the index b by

b := {1, 2} \ {g}.

We now present a useful proposition for the case when limt→∞ Jb(t) = 0.

Proposition 4.2. Suppose that the adaptive controller consisting of the parameter
estimator (2.11), (2.12), (2.13), the control law (2.22), and the switching rule (2.26),
(2.27) is applied to the plant (2.1). For every λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈
{1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, and r ∈ l∞, if n = 0 and lim

t→∞
Jb(t) = 0, then

lim
t→∞

ε(t) = 0. (4.6)

Proof. Fix λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, and
r ∈ l∞. Suppose that n = 0 and that lim

t→∞
Jb(t) = 0. For t ≥ t0, define

at :=

{
|eb(t+1)|
||φ(t)|| , if ρb(t) = 1

0, otherwise.
(4.7)

From (2.26), we have
Jb(t+ 1) = λ̄ Jb(t) + at.

Since lim
t→∞

Jb(t) = 0, it follows that at → 0 as t→∞. When ρb(t) = 1, we have

|eb(t+ 1)| = at ||φ(t)||. (4.8)

On the other hand, when ρb(t) = 0, by Proposition 2.2 we see that ||φ(t)|| = 0, which is
equivalent to x(t) = u(t) = 0; from (2.8), we see that eb(t + 1) = 0 as well, which means
that (4.8) holds in this case as well. From Theorem 3.1 we have that φ is bounded, from
which we deduce that

lim
t→∞

eb(t+ 1) = 0.

From (2.24), for every t ≥ t0, either

ε(t+ 1) = eg(t+ 1)
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or

ε(t+ 1) = eb(t+ 1).

Since from Proposition 4.1, we already know that eg(t + 1) → 0 as t → ∞, we conclude
that

lim
t→∞

ε(t) = 0.

�

We now prove that the tracking error ε goes to zero if switching stops.

Proposition 4.3. Suppose that the adaptive controller consisting of the parameter
estimator (2.11), (2.12), (2.13), the control law (2.22), and the switching rule (2.26),
(2.27) is applied to the plant (2.1). For every λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈
{1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, and r ∈ l∞, if n = 0 and the switching signal σ stops
switching, then

lim
t→∞

ε(t) = 0. (4.9)

Proof. Fix λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, and
r ∈ l∞.

Case 1: σ(t) stops at g.

In this case, there exists a t̄ ≥ t0 so that

σ(t) = g, t ≥ t̄.

Hence, (2.24) implies that

ε(t+ 1) = eg(t+ 1), t ≥ t̄. (4.10)

From Proposition 4.1, we conclude that ε(t)→ 0 as t→∞.
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Case 2: σ(t) stops at b.

In this case, there exists a t̄ ≥ t0 so that

σ(t) = b, t ≥ t̄.

This, in turn, implies that

Jb(t) ≤ Jg(t), t ≥ t̄. (4.11)

In this case, (2.24) implies that

ε(t+ 1) = eb(t+ 1), t ≥ t̄. (4.12)

Now define

at :=

{
|eb(t+1)|
||φ(t)|| , if ρb(t) = 1

0, otherwise.
(4.13)

From Proposition 4.1, we know that Jg(t+1)→ 0 as t→∞. Combining (4.11) and (4.13),
we have that

Jb(t+ 1) = λ̄ Jb(t) + at ≤ Jg(t+ 1), t ≥ t̄,

which can only be true if at → 0 as t → ∞. Now we need to relate at to ε(t + 1). If
ρb(t) = 1, then using (4.12), we have

|ε(t+ 1)| = at ||φ(t)||. (4.14)

On the other hand, if ρb(t) = 0, then from Proposition 2.2, we see that ||φ(t)|| = 0, which
is equivalent to x(t) = u(t) = 0, so that x(t + 1) = 0; from the formula for u(t) in (2.22),
we see that r(t + 1) = 0 as well, so that ε(t + 1) = 0. This shows that regardless of the
value of ρb(t), the expression (4.14) holds. From Theorem 3.1 we have that φ is bounded,
so we conclude that ε(t)→ 0 as t→∞. �

While all of our simulations indicate that, in the absence of noise, switching stops and
asymptotic tracking ensues, we have been unable to prove it. In the following two sections
we will prove that this is the case in two circumstances.
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4.2 Tracking With a Persistence of Excitation As-

sumption

To prove asymptotic convergence of tracking error, we will impose an assumption on the
nature of the reference signal. A common concept used in the adaptive control literature
is that of a persistently exciting signal, e.g., see [1] and [8]. In that work this concept is
used to guarantee that a single estimator converges to the correct parameter. Here we will
use this in a different way: to prove that if S1 and S2 are disjoint, then switching will stop
and tracking will occur, we start with a classical definition, e.g., see [8].

Definition 4.1. r ∈ l∞ is strongly persistently exciting (SPE) of order p if there
exists an n ∈ N, c1 > 0, c2 > 0 such that

c1 I ≤
k+n∑
t=k

 r(t)
...

r(t+ p− 1)

 [r(t) · · · r(t+ p− 1)
]
≤ c2 I, k ∈ Z.

Remark 4.1. If p = 2, then from Definition 4.1, we have

k+n∑
t=k

[
r(t)

r(t+ 1)

] [
r(t) r(t+ 1)

]
=

[
r(k) · · · r(k + n)

r(k + 1) · · · r(k + n+ 1)

]  r(k) r(k + 1)
...

...
r(k + n) r(k + n+ 1)

 .
In our situation we will need r to be sufficiently exciting in the limit. This brings us to

a non-standard definition:

Definition 4.2. r ∈ l∞ is asymptotically strongly persistently exciting (ASPE) of
order p if there exists an n ∈ N, c1 > 0, c2 > 0 and T > t0 such that

c1 I ≤
k+n∑
t=k

 r(t)
...

r(t+ p− 1)

 [r(t) · · · r(t+ p− 1)
]
≤ c2 I, k ≥ T .
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Now we prove asymptotic trajectory tracking for the case when the reference signal
r ∈ l∞ is asymptotically strongly persistently exciting (ASPE) of order 2.

Theorem 4.1. Assume that S1 ∩ S2 = ∅ and suppose that the adaptive controller
consisting of the parameter estimator (2.11), (2.12), (2.13), the control law (2.22),
and the switching rule (2.26), (2.27) is applied to the plant (2.1). For every λ̄ ∈
(0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, and θ̂i(t0) ∈ Si, i ∈ {1, 2}, if n = 0 and
r ∈ l∞ is ASPE of order 2, then

lim
t→∞

ε(t) = 0.

Proof. Fix t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, r ∈ l∞ and
λ̄ ∈ (0, 1). Assume that n = 0 and that r ∈ l∞ is ASPE of order 2. Before proceeding, we
define two sets of times according to the estimator chosen by the switching signal σ:

Sgood = {t ≥ t0 : σ(t) = g}
Sbad = {t ≥ t0 : σ(t) = b}.

Clearly {t ∈ Z : t ≥ t0} = Sgood ∪ Sbad.

Now we partition the time index {j ∈ Z : j ≥ t0} into intervals which oscillate between
Sgood and Sbad. We can clearly define a (possibly infinite) sequence of intervals of the form
[kl, kl+1), l ∈ Z+, which satisfy:

(i) without loss of generality, k0 = t0 serves as the initial instant of the first interval;

(ii) [kl, kl+1) either belongs to Sgood or Sbad; and

(iii) if kl+1 6=∞ and [kl, kl+1) belongs to Sgood, then [kl+1, kl+2) belongs to Sbad and vice
versa.

Since n = 0 and r is asymptotically strongly persistently exciting of order 2, for the case
when Jb(t)→ 0 as t→∞, by Proposition 4.2 we have that limt→∞ ε(t) = 0. So for the rest
of the proof we suppose that this is not the case, i.e., we have lim supt→∞ |Jb(t+1)| > 0. We
will show that eventually we will end up in Sgood and switching stops, so we can conclude
from Proposition 4.3 that limt→∞ ε(t) = 0.
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To proceed, suppose that we do not stop switching. Next, define

δ̄ := min

{
1

2
,

1

2
lim sup
t→∞

ρb(t)
|eb(t+ 1)|
||φ(t)||

}
;

since we have assumed that lim supt→∞ |Jb(t+1)| > 0, it must be that δ̄ > 0 as well. Since r
is assumed to be ASPE of order 2, we know that there exist m ∈ N, c̄1 > 0, c̄2 > 0, T0 > t0,
such that

c̄1 I2 ≤
t+m∑
t=t

[
r(t)

r(t+ 1)

] [
r(t) r(t+ 1)

]
≤ c̄2 I2, t ≥ T0, (4.15)

so fix such quantities. Now, from Proposition 4.1, for each n ≥ 2, we can define Tn ≥ T0,
such that

Jg(t+ 1) ≤ δ̄2n, t ≥ Tn (4.16)

|eg(t+ 1)| ≤ δ̄2n, t ≥ Tn ; (4.17)

without loss of generality Tn+1 > Tn for n ≥ 2. From the definition of δ̄, we know that

1

2
lim sup
t→∞

ρb(t)
|eb(t+ 1)|
||φ(t)||

≥ δ̄,

which means that there exists a tn ≥ Tn so that

ρb(tn)
|eb(tn + 1)|
||φ(tn)||

≥ δ̄; (4.18)

this, in turn, implies that

Jb(tn + 1) ≥ δ̄

as well. Since Tn is defined so that both (4.16) and (4.17) holds, this means that

Jg(tn + 1) ≤ δ̄2n < δ̄,

so σ(tn + 1) = g. Since we have assumed that we switch forever, there exists a t̄n > tn + 1
so that

σ(t) = g, t ∈ [tn + 1, t̄n),

but
σ(t̄n) = b,
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i.e., [tn + 1, t̄n) ⊂ Sgood. But in order to switch from Sgood to Sbad at t = t̄n, we need

Jb(t̄n) ≤ Jg(t̄n) ≤ δ̄2n ;

this means that at some time t ∈ (tn + 1, t̄n], we have

ρb(t− 1)
|eb(t)|

||φ(t− 1)||
≤ δ̄2n.

Indeed, if we combine this with (4.18) we see that there must exist a k ∈ [tn+1, t̄n) so that

ρb(t− 1)
|eb(t)|

||φ(t− 1)||
≤ δ̄n, t ∈ (k, t̄n) ; (4.19)

let tn denote the smallest such k. This implies, in particular, that

Jb(tn) ≥ ρb(tn − 1)
|eb(tn)|

||φ(tn − 1)||
≥ δ̄n. (4.20)

Claim 4.1. t̄n − tn is large if n is large, in the sense that

t̄n − tn ≥ n
ln δ̄

ln λ̄
. (4.21)

Proof of Claim 4.1. With [tn + 1, t̄n) ⊂ Sgood, to switch from Sgood to Sbad at t = t̄n, we
need

Jb(t̄n) ≤ Jg(t̄n) ≤ δ̄2n.

But from (4.20)
Jb(tn) ≥ δ̄n ,

so by solving (2.26) recursively, we have

Jb(t̄n) ≥ λ̄(t̄n−tn) δ̄n.

So we need to have

λ̄(t̄n−tn)δ̄n ≤ δ̄2n

⇔ λ̄(t̄n−tn) ≤ δ̄n

⇔ (t̄n − tn) ln λ̄ ≤ n ln δ̄

Since λ̄ ∈ (0, 1), we have

t̄n − tn ≥ n
ln δ̄

ln λ̄
> 0.

�
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Now choose N ≥ 2 satisfying

N
ln δ̄

ln λ̄
> m+ 1,

and restrict n ≥ N . To proceed, we now analyze eb; from (2.8), we have

eb(t+ 1) = φ(t)>
(
θ∗ − θ̂b(t)

)
.

If we define θ̃b(t) := θ̂b(t)− θ∗, then the above can be rewritten as

eb(t+ 1) = −φ(t)> θ̃b(t). (4.22)

We will now analyze the above equation to prove that we will obtain a contradiction to
the claim that the scaled version of eb(t) will be small on the interval [tn + 1, tn +m+ 1],
at least if n is large enough. The key to proving this are two insights:

(i) θ̃b(t) will be moving very slowly on this interval, and

(ii) φ(t) will be approximately equal to a scaled version of

[
r(t)

r(t+ 1)

]
on this interval.

To proceed, we first examine φ(t) in detail. Using (2.1) and (2.23), we have

φ(t) =

[
r(t)

1
b

(
r(t+ 1)− a r(t)

)]
+

[
ε(t)

1
b

(
ε(t+ 1)− a ε(t)

)]
;

define

r̄(t) :=

[
r(t)

r(t+ 1)

]
,

ε̄(t) :=

[
ε(t)

ε(t+ 1)

]
,

Ā :=

[
1 0
−a
b

1
b

]
,

so the above can be rewritten as

φ(t) = Ā r̄(t) + Ā ε̄(t). (4.23)
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Substituting (4.23) into (4.22), we obtain

eb(t+ 1) = −r̄(t)> Ā> θ̃b(t)− ε̄(t)> Ā> θ̃b(t)
⇒ eb(t+ 1) + ε̄(t)> Ā> θ̃b(t) = −r̄(t)> Ā> θ̃b(t). (4.24)

From Proposition 2.3 and equation (4.19) with k = tn, we have that

||θ̂b(t)− θ̂b(t− 1)|| ≤ δ̄n, t ∈ [tn + 1, t̄n).

So

||θ̃b(t)− θ̃b(tn + 1)|| ≤ m δ̄n, t ∈ [tn + 1, tn +m+ 1]. (4.25)

Now rewrite equation (4.24) as

−
(
eb(t+ 1) + ε̄(t)> Ā> θ̃b(t) + r̄(t)> Ā>

(
θ̃b(t)− θ̃b(tn + 1)

))
︸ ︷︷ ︸

=: ν(t)

= r̄(t)> Ā> θ̃b(tn + 1).

(4.26)

Now we will obtain a bound on ν(t). First of all from (4.19) with k = tn, observe that

ρb(t)
|eb(t+ 1)|
||φ(t)||

≤ δ̄n, t ∈ [tn + 1, tn +m+ 1] ;

on this interval, if φ(t) 6= 0, then

|eb(t+ 1)| ≤ δ̄n ||φ(t)||, (4.27)

but if φ(t) = 0 then eb(t+ 1) = 0 as well, so (4.27) is also true. Hence,

|eb(t+ 1)| ≤ δ̄n sup
j≥t0
||φ(j)||, t ∈ [tn + 1, tn +m+ 1].

Second of all, observe that

||ε̄(t)|| =
√
|ε(t)|2 + |ε(t+ 1)|2

=
√
|eg(t)|2 + |eg(t+ 1)|2

=
√
δ̄4n + δ̄4n

≤ 2 δ̄2n, t ∈ [tn + 1, tn +m+ 1].
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Since θ̂b(·) ∈ Sb, we see that

|ε̄(t)> Ā> θ̃b(t)| ≤ 4 ||Ā>|| s̄ δ̄n, t ∈ [tn + 1, tn +m+ 1].

Last of all, using (4.25) we see that∣∣r̄(t)> Ā> (θ̃b(t)− θ̃b(tn + 1)
)∣∣ ≤ 2 ||r||∞ ||Ā>||m δ̄n, t ∈ [tn + 1, tn +m+ 1].

We conclude that

|ν(t)| ≤
(

sup
j≥t0
||φ(j)||+ 4 ||Ā>|| s̄ + 2m ||r||∞ ||Ā>||

)
︸ ︷︷ ︸

=:d

δ̄n, t ∈ [tn + 1, tn +m+ 1]. (4.28)

Now let us examine equation (4.26) in detail on the interval [tn + 1, tn + m + 1]. To
proceed, we define

ν̄(tn + 1) :=


ν(tn + 1)
ν(tn + 2)

...
ν(tn +m+ 1)


and

Ψ(tn) :=


r(tn + 1) r(tn + 2)
r(tn + 2) r(tn + 3)

...
...

r(tn +m+ 1) r(tn +m+ 2)

 ;

from (4.28) it immediately follows that

||ν̄(tn + 1)|| ≤ (m+ 1) d δ̄n, n ≥ N. (4.29)

If we incorporate these variables into (4.26), we obtain

ν̄(tn + 1) = Ψ(tn) Ā> θ̃b(t̄n).

Because of the condition on r given in (4.15), it is easy to see that Ψ(tn)>Ψ(tn) is invertible
for tn ≥ T0, so this equation has a unique solution for θ̃b(t̄n):

Ψ(tn)> ν̄(tn + 1) =
(
Ψ(tn)>Ψ(tn)

)
Ā> θ̃b(t̄n)

⇒ θ̃b(t̄n) =
(
Ā>
)−1 (

Ψ(tn)>Ψ(tn)
)−1

Ψ(tn)> ν̄(tn + 1). (4.30)

To proceed, we need a bound on the size of
(
Ψ(tn)>Ψ(tn)

)−1
.
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Claim 4.2. ∥∥∥(Ψ(tn)>Ψ(tn)
)−1
∥∥∥ ≤ 1

c̄1

, n ≥ N.

Proof of Claim 4.2. From (4.15), it follows that

smallest eigenvalue of
(
Ψ(tn)>Ψ(tn)

)
≥ c̄1. (4.31)

Hence, the largest eigenvalue of
(
Ψ(tn)>Ψ(tn)

)−1
is at most

1

c̄1

. Hence,

∥∥∥(Ψ(tn)>Ψ(tn)
)−1
∥∥∥ ≤ 1

c̄1

.

�

If we now take the norm of both sides of (4.30) and use the bound on ν̄(tn + 1) given

in (4.29) together with Claim 4.2, and use the fact that
∥∥Ψ(tn)

∥∥ =
∥∥Ψ(tn)>Ψ(tn)

∥∥ 1
2 ≤ c̄

1
2
2 ,

we see that

||θ̃b(t̄n)|| ≤
∥∥(Ā>)−1∥∥× 1

c̄1

× c̄
1
2
2 × (m+ 1) d δ̄n, n ≥ N. (4.32)

But θ̃b(t̄n) = θ̂b(t̄n)− θ∗, with θ̂b(t̄n) ∈ Sb and θ∗ ∈ Sg. Since Sg ∩Sb = ∅ and both Sg and
Sb are compact, there is a gap between them, i.e.,

inf{‖x− y‖ : x ∈ Sb and y ∈ Sg} > 0.

This means that for n ≥ N sufficiently large, inequality (4.32) can not be true which is a
contradiction to the hypothesis that switching does not stop. We conclude that switching
does stop; so by Proposition 4.3 we have limt→∞ ε(t) = 0. �
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4.3 Tracking for a Fairly General Reference Signal

To prove tracking of a fairly general reference signal, we make several assumptions on the
plant model. To proceed, we first define

a1 := min{a ∈ R :

[
a
b

]
∈ S1 for some b ∈ R},

a2 := min{a ∈ R :

[
a
b

]
∈ S2 for some b ∈ R},

b1 := min{b ∈ R :

[
a
b

]
∈ S1 for some a ∈ R},

b̄1 := max{b ∈ R :

[
a
b

]
∈ S1 for some a ∈ R},

b2 := min{b ∈ R :

[
a
b

]
∈ S2 for some a ∈ R},

b̄2 := max{b ∈ R :

[
a
b

]
∈ S2 for some a ∈ R}.

Here we will assume that all admissible models are unstable with a positive pole location,
and that the sign of the b term for the sets are opposite. That is, we would like to impose

Assumption 4.1.

(i) a1 > 1

(ii) a2 > 1

(iii) Either

b1 > 0 and b̄2 < 0

or

b̄1 < 0 and b̄2 > 0.

If Assumption 4.1 holds, we define
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a := min
{
a1, a2

}
and

b :=

{
min

{
b1,−b̄2

}
, if b1 > 0,

min
{
− b̄1, b2

}
, if b1 < 0.

Hence, a provides a lower bound on the a variable, and b provides a lower bound on the
magnitude of the b variable.

Now we present the main result of this section.

Theorem 4.2. Suppose that Assumption 4.1 holds and the adaptive controller con-
sisting of the parameter estimator (2.11), (2.12), (2.13), the control law (2.22),
and the switching rule (2.26), (2.27) is applied to the plant (2.1). For every
λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, and r ∈ l∞, if
n = 0 and lim inf

t→∞
|r(t)| > 0, then switching stops and

lim
t→∞

ε(t) = 0.

Proof. Fix λ̄ ∈ (0, 1), t0 ∈ Z, x0 ∈ R, θ∗ ∈ S, σ0 ∈ {1, 2}, θ̂i(t0) ∈ Si, i ∈ {1, 2}, n = 0,
and r ∈ l∞ so that lim inft→∞ |r(t)| > 0. Before proceeding, we define two sets of times
according to the estimator chosen by the switching signal σ:

Sgood = {t ≥ t0 : σ(t) = g}
Sbad = {t ≥ t0 : σ(t) = b}.

Clearly {t ∈ Z : t ≥ t0} = Sgood ∪ Sbad.

Now we partition the time index {j ∈ Z : j ≥ t0} into intervals which oscillate between
Sgood and Sbad. We can clearly define a (possible infinite) sequence of intervals of the form
[kl, kl+1), l ∈ Z+ which satisfy:

(i) without loss of generality, k0 = t0 serves as the initial instant of the first interval;

54



(ii) [kl, kl+1) either belongs to Sgood or Sbad; and

(iii) if kl+1 6=∞ and [kl, kl+1) belongs to Sgood, then [kl+1, kl+2) belongs to Sbad and vice
versa.

Since n = 0 and r ∈ l∞, for the case when Jb(t) → 0 as t → ∞, by Proposition 4.2
we have that limt→∞ ε(t) = 0. So for the rest of the proof we suppose that this is not the
case, i.e., we have lim supt→∞ |Jb(t + 1)| > 0. We will prove that switching stops, so we
can conclude from Proposition 4.3 that limt→∞ ε(t) = 0.

To proceed, suppose that we do not stop switching. The goal is to obtain a difference
equation for r(t) which is driven by the prediction error eb(t) and the tracking error ε(t).
We first analyze the prediction error eb(t). For each t ≥ t0 from (2.3) we have

eb(t+ 1) = x(t+ 1)− φ(t)> θ̂b(t),

which can be rewritten as

x(t+ 1) = eb(t+ 1) + φ(t)> θ̂b(t)

= âb(t)x(t) + b̂b(t)u(t) + eb(t+ 1).

So

ε(t+ 1) + r(t+ 1) = âb(t)x(t) + b̂b(t)u(t) + eb(t+ 1).

From (2.23), we have

ε(t+ 1) + r(t+ 1) = âb(t)
(
x(t)− r(t) + r(t)

)
+ b̂b(t)u(t) + eb(t+ 1)

⇒ r(t+ 1) = âb(t)r(t) + b̂b(t)u(t) + âb(t)ε(t) + eb(t+ 1)− ε(t+ 1)︸ ︷︷ ︸
=:ν1(t)

. (4.33)

We would like to get rid of the u(t) term; to proceed, we rewrite the plant model (2.1) as

ε(t+ 1) + r(t+ 1) = a
(
ε(t) + r(t)

)
+ b u(t),

or equivalently

r(t+ 1) = a r(t) + b u(t) + a ε(t)− ε(t+ 1)︸ ︷︷ ︸
=:ν2(t)

;
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if we solve for u(t) we obtain

u(t) =
1

b

(
r(t+ 1)− a r(t)− ν2(t)

)
. (4.34)

Now we substitute the formula for u(t) given in (4.34) into the update equation for r(t)
given in (4.33):

r(t+ 1) = âb(t)r(t) +
b̂b(t)

b

(
r(t+ 1)− a r(t)− ν2(t)

)
+ ν1(t)

=

(
âb(t)−

a

b
b̂b(t)

)
r(t) +

b̂b(t)

b
r(t+ 1) + ν1(t)− b̂b(t)

b
ν2(t) ;

if we define

ν3(t) := ν1(t)− b̂b(t)

b
ν2(t) ,

then the above becomes(
1− b̂b(t)

b︸ ︷︷ ︸
<0

)
r(t+ 1) =

(
âb(t)−

a

b
b̂b(t)

)
r(t) + ν3(t).

Since 1− b̂b(t)

b
> 1, it is invertible. Therefore, the above can be rewritten as

r(t+ 1) =
b

b− b̂b(t)

(
âb(t)−

a

b
b̂b(t)

)
r(t) +

b

b− b̂b(t)
ν3(t) ; (4.35)

define

ν4(t) :=
b

b− b̂b(t)
ν3(t)

and

acl(t) :=
b âb(t)− a b̂b(t)

b− b̂b(t)
.

It follows that

acl(t) =
b

b− b̂b(t)︸ ︷︷ ︸
=:α(t)

âb(t) + a

(
−b̂b(t)
b− b̂b(t)︸ ︷︷ ︸

=:β(t)

)
(4.36)

56



Claim 4.3. α(t) ∈ (0, 1) for t ≥ t0.

Proof of Claim 4.3 . If b < 0, then b̂g(t) < 0 and b̂b(t) > 0, so it is clear that

α(t) =
b

b− b̂b(t)
∈ (0, 1).

On the other hand, if b > 0, then b̂g(t) > 0 and b̂b(t) < 0, so it is clear that

α(t) =
b

b− b̂b(t)
∈ (0, 1).

�

Now observe that

α(t) + β(t) =
b− b̂b(t)
b− b̂b(t)

= 1,

which means that

β(t) = 1− α(t).

From Claim 4.3, this means that β(t) ∈ (0, 1) as well. Hence, acl(t) is a convex combination
of âb(t) and a. Since

âb(t) ≥ a

and
a ≥ a,

it follows that

acl(t) ≥ a > 1 (4.37)

as well. Hence, the update equation (4.35) for r(t+1) is unstable and driven by a weighted
sum of eb(t) and ε(t). More specifically, we can conclude that

r(t+ 1) ≥ a r(t) + ν4(t), t ≥ t0. (4.38)
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To understand the behaviour of the above inequality, we need to examine ν4(t) in more
detail:

ν4(t) =
b

b− b̂b(t)

(
âb(t)ε(t) + eb(t+ 1)− ε(t+ 1)− b̂b(t)

b

(
a ε(t)− ε(t+ 1)

))
=

b

b− b̂b(t)

(
âb(t)ε(t) + eb(t+ 1)− ε(t+ 1)

)
+

b̂b(t)

b− b̂b(t)

(
ε(t+ 1)− a ε(t)

)
= −ε(t+ 1) +

(
âb(t) b− a b̂b(t)

b− b̂b(t)

)
ε(t) +

(
b

b− b̂b(t)

)
eb(t+ 1).

Given that

|b− b̂b(t)| ≥ 2 b

and

[
a
b

]
,

[
âb(t)

b̂b(t)

]
, and

[
âg(t)

b̂g(t)

]
lie in the compact set S1∪S2, we conclude that there exists

a constant c̄ so that regardless of the values of âb(t), b̂b(t), a, and b, we have

|ν4(t)| ≤ c̄
(
|ε(t)|+ |ε(t+ 1)|+ |eb(t+ 1)|

)
, t ≥ t0. (4.39)

Now we turn to analyzing the performance signals. Since lim supt→∞ Jb(t + 1) > 0 by
hypothesis, from (2.26) it follows that

lim sup
t→∞

ρb(t)
|eb(t+ 1)|
||φ(t)||

> 0.

Now define

δ̄ := min

{
1

2
,

1

2
lim sup
t→∞

ρb(t)
|eb(t+ 1)|
||φ(t)||

,
1

2
lim inf
t→∞

|r(t)|
}
> 0

and
T1 := min{t ≥ t0 : |r(j)| ≥ δ̄ for j ≥ t}.

We would like to examine (4.38) when eg(t + 1) and Jg(t + 1) are small. Since both tend
to zero by Proposition 4.1, for each n ≥ 2 we can define Tn ≥ T1 such that

Jg(t+ 1) < δ̄2n, t ≥ Tn (4.40)

|eg(t+ 1)| < δ̄2n, t ≥ Tn ; (4.41)
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without loss of generality Tn+1 > Tn for n ≥ 2. From the definition of δ̄, we know that

1

2
lim sup
t→∞

ρb(t)
|eb(t+ 1)|
||φ(t)||

≥ δ̄;

this means that there exists a tn ≥ Tn so that

ρb(tn)
|eb(tn + 1)|
||φ(tn)||

≥ δ̄, (4.42)

which implies that

Jb(tn + 1) ≥ δ̄

as well. Since Tn is defined so that both (4.40) and (4.41) holds, this means that

Jg(tn + 1) < δ̄2n < δ̄ ≤ Jb(tn + 1),

so σ(tn + 1) = g. Since we have assumed that we switch forever, there exists a t̄n > tn + 2
so that

σ(t) = g, t ∈ [tn + 1, t̄n),

and
σ(t̄n) = b ;

this means that, [tn + 1, t̄n) ⊂ Sgood. But in order to switch from Sgood to Sbad, we need

Jb(t̄n) ≤ Jg(t̄n) < δ̄2n ;

this means that at some time t ∈ (tn + 1, t̄n], we have

ρb(t− 1)
|eb(t)|

||φ(t− 1)||
≤ δ̄n.

From (4.42), it follows that there must be a minimum time t̃n ∈ [tn + 1, t̄n), such that

ρb(t− 1)
|eb(t)|

||φ(t− 1)||
< δ̄n, t ∈ (t̃n, t̄n) ; (4.43)

this means, in particular, that

Jb(t̃n) ≥ ρb(t̃n − 1)
|eb(t̃n)|

||φ(t̃n − 1)||
≥ δ̄n. (4.44)
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Claim 4.4. t̄n − t̃n satisfies

t̄n − t̃n ≥ n
ln δ̄

ln λ̄
. (4.45)

Proof of Claim 4.4. To switch from Sgood to Sbad at t = t̄n, we need

Jb(t̄n) ≤ Jg(t̄n) ≤ δ̄2n.

If we solve the (2.26) with an initial condition of (4.44), we see that

Jb(t̄n) ≥ λ̄(t̄n−t̃n) δ̄n.

So we need to have

λ̄(t̄n−t̃n)δ̄n ≤ δ̄2n

⇔ λ̄(t̄n−t̃n) ≤ δ̄n

⇔ (t̄n − t̃n) ln λ̄ ≤ n ln δ̄

Since λ̄ ∈ (0, 1), we have

t̄n − t̃n ≥ n
ln δ̄

ln λ̄
> 0.

�

Claim 4.5. There exists n1 ≥ 2 such that

|r(t̄n − 1)| >
(
a+ 1

2

)t̄n−t̃n−2

δ̄, n ≥ n1.

Proof of Claim 4.5. From (4.41) and (4.43), we have

|eg(t)| = |ε(t)| < δ̄2n, t ∈ (t̃n, t̄n) (4.46)

ρb(t− 1)
|eb(t)|

||φ(t− 1)||
< δ̄n, t ∈ (t̃n, t̄n);

Since ρb(t− 1) = 0 implies that eb(t) = 0 and φ(t− 1) = 0, this means that

|eb(t)| ≤ δ̄n ||φ(t− 1)||, t ∈ (t̃n, t̄n).
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From Theorem 3.1, we know that φ is bounded, so

|eb(t)| ≤ δ̄n sup
j≥t0
||φ(j)||, t ∈ (t̃n, t̄n). (4.47)

Combining (4.38), (4.39), (4.46) and (4.47), the above implies that

|r(t+ 1)| ≥ a |r(t)| − |ν4(t)|
> a |r(t)| − c̄(2 δ̄2n + δ̄n sup

j≥t0
||φ(j)||), t ∈ (t̃n, t̄n − 1).

Now choose n1 ≥ 2 such that

c̄(2 δ̄2n + δ̄n sup
j≥t0
||φ(j)||) ≤ 1

2
(a− 1)δ̄, n ≥ n1 ≥ 2.

So for n ≥ n1

|r(t+ 1)| ≥ a |r(t)| − 1

2
(a− 1)δ̄

=

(
a+ 1

2

)
|r(t)|+

(
a− 1

2

)
|r(t)| −

(
a− 1

2

)
δ̄, t ∈ (t̃n, t̄n − 1) .

Using the definition of T1, we see that(
a− 1

2

)
|r(t)| −

(
a− 1

2

)
δ̄ ≥ 0, t ≥ T1,

so we have

|r(t+ 1)| ≥
(
a+ 1

2

)
|r(t)|, t ∈ (t̃n, t̄n − 1).

Since |r(t̃n + 1)| ≥ δ̄, solving this recursively yields

|r(t̄n − 1)| ≥
(
a+ 1

2

)t̄n−t̃n−2

δ̄, n ≥ n1 ≥ 2 .

�

61



If we combine Claim 4.4 and Claim 4.5, we see that

|r(t̄n − 1)| >
(
a+ 1

2

)n1
ln δ̄
ln λ̄
−2

δ̄, n ≥ n1.

This means that
lim sup
t→∞

|r(t)| =∞,

which contradicts the fact that r is bounded. Hence, we deduce that switching signal σ
does indeed stop switching, so from Proposition 4.3 we have limt→∞ ε(t) = 0. �
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Chapter 5

Numerical Simulations

In this chapter we present a couple of simulation scenarios to illustrate the efficacy of the
proposed controller with parameter estimator (2.11), (2.12), (2.13), and performance signal
based switching rule (2.26), (2.27) combined with adaptive control law (2.22).

5.1 Simulation Parameters

Throughout this chapter we consider the time-varying plant

x(t+ 1) = a(t)x(t) + b(t)u(t) + n(t) (5.1)

with θ∗(t) =
[
a(t) b(t)

]>
in the uncertainty set

S =

{[
a
b

]
∈ R2 : a ∈ [1, 5], b ∈ [1, 5] ∪ [−5,−1]

}
.

The sets S1 and S2 of Proposition 2.1 are taken to be

S1 =

{[
a
b

]
∈ R2 : a ∈ [1, 5], b ∈ [1, 5]

}
, S2 =

{[
a
b

]
∈ R2 : a ∈ [1, 5], b ∈ [−5,−1]

}
.

We present two simulation scenarios and in each scenario we consider two cases. In the
first case, referred to as the “continuous parameter” case, the plant parameters are

a(t) = 3 + 2 sin(0.03 t)

b(t) = −3− 2 cos(0.05 t).
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In the continuous parameter case θ∗(t) lies in S2 and sweeps the entire parameter range.

The second case, referred to as the “discontinuous parameter” case, the plant parame-
ters are

a(t) = 3 + 2 sin(0.03 t)

b(t) =
(
− 3− 2 cos(0.05 t)

)
· sign

(
sin

(
t π

1000

))
.

In the discontinuous parameter case θ∗(t) jumps between sets S1 and S2 every 1000 times
steps.

For every simulation, we take δ = 0.1 in (2.11) and the plant and the controller are

initialized as follows: t0 = 0, φ(0) =
[
1 1

]>
, θ̂1(0) =

[
1 1

]>
, θ̂2(0) =

[
1 −1

]>
, ρ1(0) =

ρ2(0) = 0, σ(0) = 1, J1(0) = J2(0) = 0. We simulate all scenarios for 10000 time steps.
With a slight abuse of notation, the 2-norm of a discrete-time signal x obtained through
simulation is denoted

‖x‖2 :=

√√√√10000∑
t=0

|x(t)|2.

5.2 Scenario 1: Tracking

In this scenario, we set the noise n to zero and take the reference signal to be

r(t) = sin(ω t), ω ∈ {1, 2, . . . , 100}. (5.2)

For each frequency ω, we compute the tracking gain W1(ω) defined as

W1(ω) :=
‖ε‖2

‖r‖2

.

Table 5.1 illustrates the average and range of the tracking gain W1 for different values of
λ̄. On one hand, in the continuous parameter case, we observe that both the mean and the
maximum value of W1(ω) increases as λ̄ decreases. On the other hand, in discontinuous
parameter case, the mean of W1(ω) significantly decreases as λ̄ decreases.

Table 5.2 shows the mean and the standard deviation of the number of switches over
the range of ω for different values of λ̄. From this table we notice that both the mean
and the standard deviation increase as the value of λ̄ decreases in both the continuous
and discontinuous parameter cases. We also deduce that the proposed performance signal
based adaptive controller outperforms the one presented in [34], i.e., when λ̄ = 0.
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Table 5.1: Mean and range of tracking gain W1(ω) when n = 0 and r is time-varying

λ̄
continuous parameter discontinuous parameter

Mean Range Mean Range

0.9 0.49 [0.24, 1.33] 1.13× 105 [305, 1.53× 106]

0.8 0.48 [0.24, 1.22] 343.6 [7.12, 2039]

0.7 0.5 [0.24, 1.53] 52 [3.57, 155]

0.6 0.49 [0.24, 1.45] 31.09 [1.13, 145]

0.5 0.49 [0.25, 1.47] 16.89 [1.11, 138]

0.4 0.50 [0.25, 1.29] 5.27 [0.53, 15.19]

0.3 0.64 [0.25, 4.80] 4.70 [0.49, 10.84]

0.2 0.78 [0.27, 4.81] 4.54 [0.65, 10.94]

0.1 1.07 [0.31, 5.29] 4.56 [0.74, 10.25]

0 1.55 [0.38, 5.33] 4.50 [0.69, 16.26]

5.3 Scenario 2: Noise Gain

In this scenario, we set the reference signal to zero and take the noise as

n(t) =
1

50
sin(ω t), ω ∈ {1, 2, . . . , 100}. (5.3)

For each frequency ω we compute the noise gain W2(ω) defined as

W2(ω) :=
‖x‖2

‖n‖2

.

Table 5.3 illustrates the mean and the range of the noise gain W2 over ω for different values
of λ̄. We observe that the mean of the gain W2 gets considerably smaller as λ̄ decreases
in the continuous parameter case. For the discontinuous parameter case, we again observe
that the mean of the noise gain W2 gets significantly smaller (by more than a factor of 103)
for smaller values of λ̄.
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Table 5.2: Number of switches when n = 0 and r is time-varying

λ̄
# switches # switches

with continuous parameter with discontinuous parameter

Mean Standard
deviation

Mean Standard
deviation

0.9 1.18 1.45 10.56 1.77

0.8 2.66 11.70 12.12 11.43

0.7 3.68 18.15 13.76 18.78

0.6 4.90 23.85 14.68 24.20

0.5 7.06 28.13 17.04 28.11

0.4 11.88 33.67 22.58 34.26

0.3 21.19 42.79 31.95 42.94

0.2 38.37 52.67 49.07 52.44

0.1 87.89 64.99 98.53 64.37

0 312 145 322 144

To draw comparisons between the mean and the standard deviation of the number
of switches over the range of ω, and different values of λ̄, we move to Table 5.4, which
shows that both the mean and the standard deviation of the number of switches increases
drastically as λ̄ decreases, in both the continuous and discontinuous parameter cases.

5.4 Representative Examples

On the one hand, from Table 5.1 we observed that in the continuous parameter case the
mean of W1 gradually increases with a decrease in the value of λ̄. In the discontinuous
parameter case, however, the mean of W1 sharply decreases as λ̄ decreases. On the other
hand, from Table 5.3, we clearly see that in both the continuous and discontinuous pa-
rameter cases, the mean of W2 considerably decreases as λ̄ decreases. Therefore, we argue
that λ̄ = 0.3 provides nice trade-off between small tracking gain (W1) and small noise gain
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Table 5.3: Mean and range of noise gain W2(ω) when n is time-varying and r = 0

λ̄
continuous parameter discontinuous parameter

Mean Range Mean Range

0.9 829 [12.37, 1.64×104] 5.95× 104 [426, 3.30× 106]

0.8 1090 [12.37, 9229] 1445 [43.02, 1.05× 104]

0.7 765 [12.37, 9229] 970 [21.98, 9628]

0.6 232 [13.41, 1480] 291 [18.43, 1910]

0.5 183 [15.2, 1274] 232 [17.37, 2079]

0.4 101 [19.84, 606] 118.3 [21.82, 622]

0.3 46.45 [18.78, 337] 61.44 [19.17, 217]

0.2 34.03 [18.21, 131] 41.77 [17.67, 131]

0.1 28.92 [17.10, 71.65] 33.90 [17.53, 74]

0 26.49 [17.44, 59.81] 31.64 [16.67, 118]

(W2) in both the continuous and discontinuous parameter cases.

To illustrate this observation, we simulate with λ̄ = 0.3, ω = 1 for r as given in (5.2) and
ω = 10 for n as given in (5.3). Representative figures for Scenario 1 are shown in Figures
5.1 and 5.2, which show the performance of our proposed adaptive controller for λ̄ = 0.3
against that of presented in [34], i.e., λ̄ = 0, for both the continuous and discontinuous
case, respectively. It is clear that our performance signal based adaptive controller has
smaller spikes and significantly fewer number of switches than [34] for both the continuous
and discontinuous parameter cases. Figure 5.3 shows the actual and estimated parameters
and the performance signals J1 and J2 for the continuous case and discontinuous parameter
cases. For Scenario 2, the proposed performance signal based switching algorithm with λ̄ =
0.3 produces bigger spikes than simple switching rule in [34] for both the continuous (Figure
5.4) and discontinuous (Figure 5.5) parameter cases. Figure 5.6 compares the actual and
estimated parameters along with performance signals J1 and J2 for the continuous and
discontinuous parameter cases.
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Table 5.4: Number of switches when n is time-varying and r = 0

λ̄
# switches # switches

with continuous parameter with discontinuous parameter

Mean Standard
deviation

Mean Standard
deviation

0.9 20.26 7.84 30.3 7.66

0.8 32.88 15.40 43.28 15.27

0.7 179 99.51 187 96.94

0.6 543 166 549 164

0.5 1401 257 1401 253

0.4 2069 388 2067 385

0.3 2320 407 2323 398

0.2 2497 420 2496 416

0.1 2639 425 2643 417

0 2904 389 2842 400
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Figure 5.1: Plots for continuous parameter, time-varying reference and no noise. Column
(a) shows our proposed algorithm whereas column (b) shows the one presented in [34].
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Figure 5.2: Plots for discontinuous parameter, time-varying reference and no noise. Column
(a) shows our proposed algorithm whereas column (b) shows the one presented in [34].
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Figure 5.3: Plots for time-varying reference and no noise with λ̄ = 0.3. Column (a) shows
the continuous parameter case whereas column (b) shows the discontinuous parameter
case.
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Figure 5.4: Plot for continuous parameter, time-varying noise and no reference. Column
(a) shows our proposed algorithm whereas column (b) shows the one presented in [34].

70



0 2000 4000 6000 8000 10000

-40

-20

0

20

0 2000 4000 6000 8000 10000

-60

-40

-20

0

20

0 2000 4000 6000 8000 10000
-40

-20

0

0 2000 4000 6000 8000 10000

0

50

100

Figure 5.5: Plots for discontinuous parameter, time-varying noise and no reference. Column
(a) shows our proposed algorithm whereas column (b) shows the one presented in [34].

Figure 5.6: Plots for time-varying noise and no reference with λ̄ = 0.3. Column (a) shows
the continuous parameter case whereas column (b) shows the discontinuous parameter
case.
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Chapter 6

Summary and Future Work

In this chapter we summarize the approach presented here and the results it yielded.
Furthermore, we provide some future directions of research inside the domain of our thesis.

6.1 Summary of the Results

In this thesis, we have extended the work presented in [34] to show that the asymptotic
trajectory tracking is achievable. The system in consideration is the first-order discrete-
time plant, with an unknown sign of the input gain b. The proposed approach can be
explained in the following way. Firstly, we cover the compact set of admissible plant
parameters with a pair of convex sets. Next, we design two estimators (one for each
convex set) using the modified version of the original projection algorithm; here, each
estimator has the corresponding one-step-ahead controller. Finally, we choose the best
suitable controller using a performance signal based switching rule at every time step.

Our proposed scheme has shown to have very desirable linear-like properties like ex-
ponential stability and convolution bounds on both the noise and the reference signal.
Furthermore, in the presence of slow time-variations and unmodelled dynamics, the closed-
loop system retains this desired behaviour. We also have examined the tracking ability
of our proposed algorithm in the absence of noise and have proved asymptotic trajectory
tracking for asymptotically strongly persistently exciting of order 2 reference signals, as
well as for a fairly general reference signal with an unstable plant.
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6.2 Future Work

We list some future avenues of exploration with regard to the work presented in this thesis.

� A natural extension of this work is to extend the proposed approach to a higher-order
system.

� We would also like to prove asymptotic trajectory tracking for a general reference
signal for both stable and unstable plants.

� In this research we have covered the set of plant parameters with the union of two
convex sets, and therefore have two estimators. One possible extension is to cover
the uncertainty set with more than two convex sets while retaining the linear-like
behaviour and tracking ability of the closed-loop system.
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