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Abstract

Recently, a new recurrent neural network (RNN) named the Legendre Memory Unit
(LMU) was proposed and shown to achieve state-of-the-art performance on several bench-
mark datasets. Here we leverage the linear time-invariant (LTI) memory component of the
LMU to construct a simplified variant that can be parallelized during training (and yet
executed as an RNN during inference), resulting in up to 200 times faster training. We
note that our efficient parallelizing scheme is general and is applicable to any deep network
whose recurrent components are LTI systems. We demonstrate the improved accuracy and
decreased parameter count of our new architecture compared to the original LMU and a
variety of published LSTM and transformer networks across seven benchmarks. For instance,
our LMU sets a new state-of-the-art result on psMNIST, and uses half the parameters while
outperforming DistilBERT and LSTM models on IMDB sentiment analysis.
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Chapter 1

Introduction

The Legendre Memory Unit (LMU) [80] is an RNN cell that is constructed by coupling an
LTI system to a nonlinear one. The LTI system, known as the Delay Network [81], is the
core component of the LMU that projects a sliding window of length θ of the input signal
onto the Legendre basis – hence the name Legendre Memory Unit. This construction, which
employs the Delay Network (DN) to act as the memory and a nonlinear recurrent layer
to compute arbitrary functions across time, has been shown to outperform LSTMs and
other RNNs on various tasks. Of special interest to us is the ability of the LMU to handle
temporal dependencies across 100,000 time-steps, which is orders of magnitude better than
the LSTM.

However, the LMU, being an RNN, processes information in an inherently sequential
manner. This prevents parallelization within training examples, and thus, it is slow to train.
This sequential nature of RNNs is one of the critical reasons for the shift towards purely
self-attention based architectures such as the transformer and its derivatives [79, 24, 14],
especially in the domain of Natural Language Processing (NLP). Parallelization makes
training such networks far more efficient on today’s commodity GPU hardware, and
thus allows them to be applied to enormous datasets – for example, the Colossal Clean
Crawled Corpus (C4) which comprises 750GB of English text [67]. Hence, such models, via
unsupervised pre-training, make it possible for us to exploit resources such as the internet,
which produces 20TB of text data each month. A feat such as this, from the training
perspective, would be unimaginable using LMU or LSTM based models.

In this thesis, we explore a simplified variant of the LMU that lends itself to parallel
training. We achieve this by pruning certain connections in the original architecture such
that recurrence exists only in the linear system. After showing that the training can be
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parallelized, we turn to the question of its effectiveness. We do so by first considering the
two synthetic tasks that the original LMU was validated on: psMNIST and Mackey-Glass.
We show that our variant exceeds the original LMU’s performance on both of these tasks,
while also establishing a new state-of-the-art result for RNNs on psMNIST. We also test
our models against LSTM models of comparable sizes on several NLP tasks. We look at
sentiment classification (IMDB), semantic similarity (QQP), and natural language inference
(SNLI), and show that our models achieve better performance while using significantly fewer
parameters (up to 650x). We then briefly investigate the transfer learning abilities of our
model by training a language model on the (unlabelled) Amazon Reviews dataset and using
that to improve the IMDB score. Here, we show that it outperforms DistilBert, a transfomer
based model, while using 50% fewer parameters. We conclude our NLP experiments by
demonstrating superior performance on language modelling (text8) and machine translation
(IWSLT’15 En-Vi). Finally, we show that these architectural modifications result in training
times that are up to 200 times faster, relative to the original LMU.

We note that while we experiment extensively with the Delay Network, our parallelization
scheme applies generally to any deep architecture whose recurrent components are LTI
systems. That is, our method is based on exploiting the general idea that linear recurrence
relations can be solved. More specifically, a linear time-invariant (LTI) system’s state update
equation can be written in a non-sequential fashion [3]. This allows for the computation of
the hidden state of an LTI system to be done in parallel, thus overcoming the fundamental
constraint that traditional RNNs suffer from. Despite this desirable property, to our
knowledge, such systems have remained underexplored. We hope that our work encourages
the design of other LTI cells, with differing properties.

Before we discuss the details of the parallel LMU, we examine some of the foundational
concepts in deep learning in the next chapter.
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Chapter 2

Foundations of Deep Learning

Arguably, the history of deep learning is a history of priors. This is the lens through which
we look at the subject in the first section of this chapter. We examine five priors (or inductive
biases) that have been central to deep learning, and then present the Legendre Memory Unit
as introducing another prior. Wherever pertinent, we take detours to introduce concepts
that are used later on in the thesis. After examining the architectural modifications that
help with generalization, in the second section, we consider the problem of how learning
actually happens in the network; we introduce the currently popular first-order methods
and then briefly discuss methods that make use of second-order information.

2.1 Priors

2.1.1 Why Priors?

We can borrow a simple example from [30] to illustrate the utility of priors. Imagine that
we are trying to learn a function where the target (ground truth) function classifies a
two-dimensional region into a checkerboard pattern; see Figure (2.1). If the only assumption
we make about the function we are trying to learn is its smoothness, that is,

f(x + ε) ≈ f(x),

learning the ground truth would require at least as many labeled training examples as there
are squares, which, in this simple case is 25. In the absence of training points in a particular
square, there would be no way for the model, at the time of inference, to correctly classify
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Figure 2.1: Target function that classifies a 2D region into a checkerboard pattern, where
the black squares belong to a certain class and the white squares belong to another class.

previously unseen data that fall into such regions. We can reduce the reliance of the model
on the availability of training data by introducing additional information, such as the fact
that the target function is periodic with a fixed period. Such a prior significantly reduces
the search space of functions we are trying to learn, and we can, in theory, identify the
ground truth using just one labeled training example.

This approach of employing additional priors on top of the smoothness assumption is
the approach that deep learning takes, except that the additional priors are general and not
tailored to one specific problem, as in this example. In the following few pages, we examine
five different priors that are at the core of deep learning: distributed representations, com-
positionality, translational equivariance, temporal equivariance and permutation invariance.
We then discuss the recently introduced recurrent neural network, the Legendre Memory
Unit [80], as introducing another (general) prior, which we call delay memory.

2.1.2 Distributed Representations

Connectionist or neural network models can be classified into two groups: those that employ
local representations and those that employ distributed representations. The former class of
models use a straightforward scheme whereby each neuron represents just one concept (or
item; see Figure (2.2; 2.3)). Hence, each neuron comes with an identifiable interpretation.
These models are thus relatively easy to design and understand. For example, consider the
simple local model described in [77] that may be used to make inferences about whether a
person is shy:

You meet Alice and learn that she likes programming, so you think she might be
a computer geek and therefore shy. On the other hand, you learn that she likes
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Figure 2.2: A simple local model. Boxes represent individual neural units and their degree
of activation represents the applicability of a concept or truth of a preposition; thin lines
represent excitatory connections; and thick lines represent inhibitory connections. Picture
obtained from [77].

parties, which suggests that she is outgoing. In forming a coherent impression of
her, you have to decide whether she is actually shy or outgoing. The network in
Figure (2.2) uses a unit to represent each trait and has one-way excitatory links
that make activation flow from the observed behaviors to the inferred traits. It
also has a symmetric inhibitory link between shy and outgoing, reflecting the
fact that it is hard to be both.

In contrast, deep learning models employ distributed representations. Here, the models
learn to represent concepts in more complex ways, and there is usually no one-to-one
correspondence between concepts and neurons. Each neuron takes part in representing
many different concepts, and many different neurons are involved in representing one
concept.

Hinton et al. [39] point out that one of the important virtues of distributed representa-
tions is the ability to generalize automatically to novel situations. Consider the example of
a (neural) language model which learns to assign probabilities to sentences, even new ones.

P(“What a piece of work is a man!”) = ?

Along with learning a smooth probability distribution over the training set of sentences, we
also leave it to the model to learn a distributed representation of words in the corpus. Thus,
given a sentence, the model first learns to map each word to a vector – the localist approach
would be to use a one-hot encoding of the words, where the i-th word is mapped to a vector
whose i-th component is one and the rest are zero. For simplicity, we can assume that the
model computes the sentence representation via an operation such as addition: it just sums
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Figure 2.3: Local representation (on the left) and distributed representation (on the right)
example. Image taken from [78].

all the word vectors together to come up with the sentence representation (in practice one
might use a recurrent neural network). Given such a network, Bengio et al. [7] note that
being exposed to a sentence such as “The cat is walking in the bedroom” in the training
data, the model assigns a similar probability (and rightly so) to a new, previously unseen
sentence such as “The dog is walking in the bedroom,” owing to the smoothness of the
function and the similarity of the representations of the words dog and cat that the model
learns during training. Following the same logic, one can imagine many other sentences that
the model naturally generalizes to: “A dog was running in a room,” “The cat is running in
a room,” “A dog is walking in a bedroom,” and “The dog was walking in the room.”

2.1.3 Composition of Features

The central idea that distinguishes deep learning from other machine learning approaches
is composition of features. Simple machine learning algorithms rely exclusively on the
smoothness prior,

f(x + ε) ≈ f(x),

in order to generalize well. Such an approach to generalization works reliably well in regions
neighboring labeled training data points. Thus, as long as there is enough training data
spread around regions of interest, we can expect such algorithms to work well. While this
is a reasonable expectation when we are dealing with low-dimensional data, we are faced
with the curse of dimensionality as we move to higher dimensions, which we have to do if
we are to deal with central problems in AI – for example, simple image recognition models
work with 2562 dimensional inputs. How do we deal with problems that involve working
with high dimensional inputs? The answer is to use additional priors.
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The success of feed-forwards networks can be attributed to the additional compositional
structure that we impose on the function we are trying to learn [30]. Mathematically, this
can be written as:

f(x) = σnAn ◦ σn−1An−1 ◦ . . . ◦ σ1A1x,

where σi represents a non-linearity and Ai represents an affine transformation. Initially,
motivation for this prior did not come from a theoretical argument but instead from the
following two facts: (1) neurons in our brains also have this compositional structure; and
(2) we are good at tasks such as classifying images and recognizing speech. More recent
explorations into this question [50] have revealed some deep connections between this idea
and physics. It is argued that the utility of this structure comes from the “ubiquity of
hierarchical and compositional generative processes in physics and other machine-learning
applications.”

It might be worth pointing out that while feedforward networks have the universal
approximation property, this is not unique to neural networks. Support Vector Machines
(SVMs) have also been shown to be universal approximators [37].

2.1.4 Translational Equivariance (CNNs)

When we consider another important class of deep networks, convolutional networks, we
come across other interesting priors such as translational equivariance and translational
invariance that give convolutional networks an edge over traditional feedforward methods
when dealing with image data. We can make the notions of equivariance and invariance
a bit more precise in the following way. Given a function g(x), which, say, translates the
input, a function f(x) is said to be equivariant to g if it satisfies

f(g(x)) = g(f(x)),

and we say that f is invariant to g if the following equality is satisfied

f(g(x)) = f(x).

The utility of these priors has to do with the translational symmetries of image data. For
example, consider the images of a cat in Figure (2.4). Although the pixels that represent
the cat are situated at several different places, humans can easily identify all the images
to be that of a cat. The fact that the cat is translated should have no effect on the final
classification. Therefore, we would like our image recognition model to behave similarly.
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Figure 2.4: Translated images of a cat. Image taken from lena-voita’s blog post.

That is, if it sees the leftmost image of the cat in the training set, we want it to generalize
readily to the many different translated versions of the same image.

These two desirable properties are built into the neural network architecture by means
of the convolution and pooling operations, respectively. More recent work [20] has focused
on making the convolutional layers equivariant to rotations and reflections.

2.1.5 Temporal Equivariance (RNNs)

How should we deal with problems where inputs {x1,x2, . . . ,xn} are presented in a
sequential manner to the system?1As noted in [26], the most obvious solution is to “parallelize
time” by giving it a spatial representation. That is, instead of presenting the inputs
sequentially, we buffer the input stream until we receive the complete sequence, and then
we present it all at once to the model for processing. In such cases, the first dimension of
the parallelized input vector represents the first temporal input, the second dimension the
second temporal event and so on.

{x1,x2, . . . ,xn}︸ ︷︷ ︸
sequential input

−→


x1

x2
...
xn


︸ ︷︷ ︸
Buffered

−→ Feedforward Neural Network

Elman [26] points out that such an approach of representing time, however, has a couple
of issues. First, such an approach requires us to define a priori the length of the (paral-
lelized/buffered) input vector. Having a fixed length is unnatural as it would not readily

1Here, we take xi ∈ Rd to be the input to the system at time t = i.
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allow for the processing of something as fundamental as language, where one encounters
inputs of variable lengths. Second, an approach that relies on processing the whole sequence
at once cannot readily deal with patterns that are shifted temporally. This can be illustrated
by considering a simple example. Suppose we train a feedforward network to recognize
patterns such as “111”, i.e., three ones occurring in a row. Such a network, owing to how it
processes vectors, even if it sees the following two examples in the training set,

{0, 1, 1, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 0, 0, 0, 0},

it may not generalize to recognize the same pattern in a shifted sequence such as,

{0, 0, 0, 0, 1, 1, 1, 0, 0}.

Natural language is full of such examples. A feedforward network trained to identify “when”
something happens would have trouble with sentences such as “Yesterday, I watched a
movie” and “I watched a movie yesterday.”

Motivated by the above considerations, especially in the case of processing linguistic
information, Elman [26] introduces a simple recurrent network architecture:

ht = σh(Whxt + Uhht−1 + bh), (2.1)

yt = σy(Uyht + by), (2.2)

where xt is the input and yt is the output at time t; ht is the hidden state; Wh ∈ Rh×d is
the input matrix, U ∈ Rh×h are the recurrent weights, and b ∈ Rh are the bias weights.
Recurrent Neural Networks (RNN) make use of weight sharing, where the weights W ,U
and b are shared across time-steps, and this provides RNNs with the ability to generalize
to sequence lengths not seen during training, and the statistical strength across different
sequence lengths and across different positions in time.

The same structure, however, introduces other significant issues such as vanishing and
exploding gradients. The problem of vanishing gradients in particular hinders the ability
of RNNs to learn long-term dependencies – according to Bengio el al. [9], a task displays
long-term dependencies if computation of the desired output at time t depends on input
presented at an earlier time τ � t. Long Short-Term Memory (LSTM) networks [41] were
constructed to alleviate this specific issue of capturing long-term dependencies, and since we
compare our model against various LSTM models in the next chapter, we examine LSTMs
in some detail next.
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Long Short-Term Memory

Gated RNNs, especially Long Short-Term Memory (LSTM), have found wide adoption in
practical applications. The LSTM has a long and rich history of more than two decades.
The first variant of the LSTM [41] was introduced in 1995 with only two gates, the input
and the output gate, and it also featured what is known as full gate recurrence. The
forget gate was introduced later in 1999 [28], and the peephole connections were introduced
subsequently [29].

The state update equations of an LSTM containing the forget gate and peephole
connections can be written as:

ft = σg(Wfxt + Ufht−1 + pf ◦ ct−1 + bf ), (2.3)

it = σg(Wixt + Uiht−1 + pi ◦ ct−1 + bi), (2.4)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc), (2.5)

ot = σg(Woxt + Uoht−1 + po ◦ ct + bo), (2.6)

ht = ot ◦ σh(ct), (2.7)

where xt ∈ Rd is the input at time t; ht and ct (both ∈ Rh) are the hidden and cell states;
Wi ∈ Rh×d are the input weights, Ui ∈ Rh×h are the recurrent weights, pi ∈ RN are the
peephole connections and bi ∈ Rh are the bias weights; ft, it,ot are the forget, input and
output gates respectively.

Out of all the above mentioned architectural components, a thorough study [35] consisting
of around 5400 experimental runs has identified the output activation function, σh, and the
forget gate, ft, to be the most essential. In addition, they have found that removing the
peephole connections or adding the full gate recurrence as in the first LSTM variant did
not lead to significant changes. Hence, a more widely used variant of the LSTM is defined
as follows:

ft = σg(Wfxt + Ufht−1 + bf ), (2.8)

it = σg(Wixt + Uiht−1 + bi), (2.9)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc), (2.10)

ot = σg(Woxt + Uoht−1 + bo), (2.11)

ht = ot ◦ σh(ct). (2.12)

Even with the above simplification, the update equations of the LSTM are still relatively
cumbersome and resource intensive, and there has been a lot of work on simplifying the
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architecture, to make the inner-workings more comprehensible and to reduce the parameter
count. Most notable of the latter attempts is the GRU [17], which uses only one state and
two gates:

zt = σg(Wzxt + Uzht−1 + bz) (2.13)

rt = σg(Wrxt + Urht−1 + br) (2.14)

ĥt = σh(Whxt + Uh(rt ◦ ht−1) + bh) (2.15)

ht = (1− zt) ◦ ht−1 + zt ◦ ĥt (2.16)

Other notable attempts include the light-GRU [68], which outperforms LSTMs on ASR
tasks, and the minimal GRU [90], a single gated RNN which works as well as GRUs on a
few tasks while using fewer parameters. It is also worth mentioning the work on IRNNs
[48] which, with a single hidden state and a clever initialization strategy, i.e., without the
use of gating mechanisms, was shown to perform comparably (although using extensive
hyperparameter tuning) to LSTMs on some sequential tasks.

However, none of the simplified variants have managed to outperform the LSTM on a
wide range of tasks, and LSTMs have been the mainstay of deep learning when it comes to
dealing with sequential data, until the introduction of self-attention based architectures
such as the transformer [79], which we consider below.

2.1.6 Permutation Invariance (Transformers)

Self-attention based architectures such as the Transformer [79] have been extremely suc-
cessful in dealing with sequential data, especially in the domain of NLP [79, 66, 24]. In
addition to parallelizing training and reducing computation complexity,2 self-attention
based architectures are much better at handling long-range dependencies relative to LSTMs.
The improved capacity to handle long-range dependencies could be attributed to fact that
the self-attention mechanism, which is nothing but a weighted sum, is invariant to the
permutation of the set over which the sum is computed. This is advantageous because
the operation is blind to the order of sequence, which in turn means that, as far as the
attention mechanism is concerned, the term “long-range” has no meaning – since there is
no distinction between long-range and short-range.

More formally, the self-attention function computes, for every position, a weighted
average of the feature representations of all other positions with a weight proportional to a

2In cases where the dimension of the representation is much greater than the length of the sequence.
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similarity score between the representations [42]. Let X ∈ Rn×d denote the sequence of
n feature vectors of dimension d, and let WQ ∈ Rd×p,WK ∈ Rd×p and WVRd×p represent
the three matrices that project the input sequence. The self-attention mechanism then
executes the following computation:

Q = XWQ,

K = XWK ,

V = XWV ,

Self-attention(X) = softmax

(
QKT

√
p

)
V .

The matrices resulting from projecting the input, Q,K, and V are known as the query,
key and value matrices, respectively. It should be added that the softtmax operation is
applied row-wise to QKT .

Self-attention is closely related to the attention mechanism which operates on two
input sequences of potentially different lengths. If we take the example of neural machine
translation [4, 51], and define the source and target sentences as X ∈ Rn×d and X ′ ∈ Rn′×d,
then the attention (not self-attention) computes the following

Q = X ′WQ,

K = XWK ,

V = XWV ,

Attention(X) = softmax

(
QKT

√
p

)
V ,

where the resulting sequence would be of the form Rn′×p, instead of Rn×p. In other words,
the output sequence is of the same length as the target sentence. Notice that the only
difference in the above computation is in how we compute the query matrix Q.

It should be noted that the attention mechanism itself has been around for a while. Alex
Graves [32], in 2013, used a location based attention mechanism to help with handwriting
synthesis, which involves generating a sequence of pen trajectories as output given a
sequence of characters as input. Bahdanu [4] first employed the attention mechanism to
help with the problem of neural machine translation using an RNN based encoder-decoder
architecture. The use of attention for translation applications using RNNs was further
explored by Luong and Manning [51]. Vaswasni et al. [79] later proposed the transformer,
which completely gets rid of recurrence.
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Figure 2.5: Architecture of the Legendre Memory Unit. Image taken from [80].

2.1.7 Delay Memory (LMUs)

With the above discussion of priors, one crucial thing to notice is that the priors are very
general. There is not a lot of task specific or dataset specific information in them. For
example, convolution networks can be applied to a variety of structured data such as images,
and recurrent networks can be applied to a variety of sequential data.

In the same spirit, the newly proposed RNN named the Legendre Memory Unit (LMU)
[80] is built around a linear time-invariant (LTI) system where the matrices (A,B,C,D)
are pre-specified, i.e., they need not be learned during training. This LTI system optimally
realizes the delay operation [81], and hence, we refer to this prespecified structure as delay
memory ; see Figure (2.5). The LTI system is then coupled to a non-linear dynamical
system in which the parameters are learned as usual. As we show later, the prior of delay
memory is a very general assumption and is not tailored to any one specific dataset. It
is this structure that gives LMUs advantage over LSTMs on various synthetic tasks; for
example, on a variant of the pathological copy task – called the capacity task [80], which
involves storing and reproducing up to 100,000 continuous values – the LMU exhibits far
superior performance than the LSTM.

In this work, we compare a variant of the LMU to LSTMs and transformer based
approaches on several standard sequential tasks.
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2.2 Learning

In the previous chapter, we studied the priors that make deep learning architectures effective.
However, specifying the neural network architecture – which includes the structure that
comes from priors – only roughly identifies the search space of functions, the family of
functions we are interested in. We are still a long way from having a functional model, i.e.,
a network that does something useful. For example, in the case of a simple feedforward
network, specifying that we are looking for a function of the form

f(x) = σnAn ◦ σn−1An−1 ◦ . . . ◦ σ1A1x,

only identifies a subset of the functional space to search, those that are smooth and have
the compositional structure, leaving open infinitely many possibilities. We still have to
identify what the millions of weights that parameterize the network ought to be.

How do we specify the weights so that the network yields a desired behavior? We use
data as well as the answers expected from data to traverse the last mile; see Figure (2.6) for
an illustration. The idea is to train the model on many stimulus-response pairs to identify
the weights, instead of manually specifying the parameters of the model. The model learns
the weights, and there is little explicit programming. Surprisingly, it turns out that such an
approach – where we first pick a neural network architecture to roughly identify the space of
functions and then use data to learn the explicit final form – is very effective when it comes
to solving tasks such as speech recognition, image recognition and machine translation.

In the next section, we get into the details of how the weights are learned in a network.

2.2.1 Gradient Based Optimization

Gradient based learning has been a critical component of deep learning, so much so that
some3 have proposed rebranding deep learning, which itself is a rebranding of neural
networks, as differential programming. Gradient based methods rely on updating the
parameters of the model iteratively using first and second-order gradient information. To
do so, we start by defining an error function that quantifies how poorly the network is doing
at achieving its goals, and then follow the direction defined by a matrix-vector product
in order to minimize the error objective. More formally, given an error function, l, that

3LeCun’s post on Facebook: https://www.facebook.com/yann.lecun/posts/10155003011462143, and
Christopher Olah’s post: http://colah.github.io/posts/2015-09-NN-Types-FP/
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Figure 2.6: The image is taken from a blog post by Andrej Karpathy titled ‘Software 2.0’. In
the picture, software 1.0 refers to the classical way of programming, and software 2.0 refers
to deep learning, which according to Karpathy, “represents the beginning of a fundamental
shift in how we develop software.” The image illustrates the idea that specifying the neural
network architecture identifies the rough skeleton of the code, and gradient based learning
uses data to figure out the rest of the details.

measures the discrepancy between the output of the neural network and the ground truth,
the total error L can be written as

L(θ) =
N∑
i=1

l(fθ(xi), yi),

where N represents the number of training examples. Given such a function, the parameters
of the neural network, θ, are usually updated iteratively as

θk+1 = θk − ηF−1∇L(θk), (2.17)

where k is the iteration number, η is the step-size and F is known as the curvature matrix.
In the case of first-order methods, we set the curvature matrix, F , to the identity matrix,
which then reduces the above equation to the familiar vanilla gradient descent:

θk+1 = θk − η∇L(θk).
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It should be noted that a more general definition of the first-order methods can be given as
follows:

θk+1 = θk − Linear Combination{∇L(θ0),∇L(θ1), . . . ,∇L(θk)},

which not only takes into account the vanilla gradient descent, but also covers augmented
first-order methods such as momentum and conjugate gradient descent. In case of vanilla
gradient descent for example, we simply use the most recent gradient scaled by a constant
(step-size).

If we take F to be the Hessian, then we end up with what is known as the Newton’s
method, and if we set F to be the Fisher Information matrix, we obtain the method of the
natural gradient [54]; in a later section, we briefly examine these two methods.

How do we go about finding derivatives of the loss function? We present four choices
here, of differing strengths and weaknesses, with a focus on computing the first derivatives.

Manual Differentiation While computing derivatives by hand is exact, it is also time-
consuming and error prone. Having to spend a considerable amount of time analytically
solving for derivatives also disincentivises architectural modifications, which is not ideal.

Numerical Differentiation Numerical differentiation can be implemented by computing
the difference of a function evaluated at two different points. For a function f : R→ R, we
have

df

dθ
≈ f(θ + h)− f(θ)

h
.

An advantage of this method is that it is simple to understand and easy to implement.

Symbolic Differentiation Symbolic differentiation4 takes in a closed-form expression,
and based on the rules of differentiation, manipulates the input to produce the output
expression. For example, given the expression f(x) = x cos(x)+3, a symbolic differentiation

4Packages like Theano, Mathematica and Maple implement symbolic differentiation.
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engine would make use of the following subset of the finite set of differentiation rules

dc

dx
= 0, c is a constant, (2.18)

d(uv)

dx
= u

dv

dx
+ v

du

dx
, (2.19)

d cosx

dx
= − sinx, (2.20)

to output the derivative df
dx

= cosx− x sinx. While numerical differentiation provides the
derivative at a single point, symbolic differentiation provides a formula for every point in
the domain of the function.

Automatic Differentiation Automatic differentiation (AD) relies on dividing the ex-
pression of interest into elementary operations and then using the chain rule to compute
the derivatives. Automatic differentiation (AD) comes in two flavors: forward mode and
reverse mode. For a function f : Rn → Rm, forward mode is more suitable when n� m
and reverse mode is far more efficient when n� m. The computation here is exact, only
constrained by machine precision.

In deep learning, we need to compute the gradient of the loss function L(θ), and this
function is usually of the form L : Rn → R. This puts numerical differentiation at a
disadvantage because it needs to perform O(n) evaluations to compute the gradient, and n
often tends to be in millions – it should be noted that while this method only computes
an approximation to the derivative that is dependent on both the step-size h and the
round-off error, the noise resiliency of neural networks makes this a minor issue [6]. While
symbolic differentiation comes with several advantages, one of the major issues with this
technique however is that it results in what is known as exponential swell, where the output
expressions get exponentially larger than the expression whose derivative they represent [6].
Given the form of the loss function, reverse mode AD can efficiently and exactly compute
the derivatives, and this is the preferred method for computing the derivatives in deep
learning. The widely used backpropagation algorithm is a specific instance of reverse mode
AD.

2.2.2 Second-Order Methods

In this section we consider methods where, instead of using F = I in equation (2.17), we
set it equal to the Hessian or the Fisher Information matrix. The latter two approaches are
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examples of second-order methods. One way to motivate the exploration of second-order
methods is by looking at the lower and upper bounds of first-order methods.

To achieve L(θ) − L(θ∗) ≤ ε, with θ∗ being the optimal parameters, the number of
gradient update iterations k satisfies:

1. (Worst-case) lower bound for 1st-order methods: k ∈ Ω
(√

κ log 1
ε

)
,

2. Upper bound for gradient descent: k ∈ O
(
κ log 1

ε

)
,

3. Upper bound for Nesterov’s momentum: k ∈ O
(√

κ log 1
ε

)
,

where κ is, loosely speaking, the ratio of the maximum curvature and minimum curvature.
This quantity tends to be very large for loss functions of neural networks. We see from
above that Nesterov’s momentum methods are, theoretically speaking, as good as it gets
with first-order methods. Thus, in a sense, there cannot be any more major algorithmic
improvements if we restrict ourselves to first-order methods, and this motivates the use of
second-order methods.

Newton’s Method

The Hessian of a function f(θ) where f : Rn → R is defined as

H =



∂2f

∂θ2
1

∂2f

∂θ1 ∂θ2

· · · ∂2f

∂θ1 ∂θn

∂2f

∂θ2 ∂θ1

∂2f

∂θ2
2

· · · ∂2f

∂θ2 ∂θn
...

...
. . .

...

∂2f

∂θn ∂θ1

∂2f

∂θn ∂θ2

· · · ∂2f

∂θ2
n


,

or equivalently, using index notation, we can write

[H ]i,j =
∂2f

∂θi ∂θj
.
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Setting F = H in equation (2.17), we end up with the following:

θk+1 = θk − ηH−1∇L(θk). (2.21)

This is what is know as the Newton’s method. Although, in theory, it can converge faster
than first-order methods, in practice, it comes with two issues, especially when it comes
to optimizing neural networks. They have to do with (1) the non-convexity of the neural
network loss functions; and (2) the large number of parameters that neural networks employ
in order to solve problems.

First, Newton’s method does not distinguish between minima, maxima and saddle points
of the loss function – it just looks for stationary points. In other words, at every iteration,
it first constructs a local second-order Taylor approximation of the underlying loss function,
and proceeds to maximize or minimize this approximation. Thus, Newton’s method can
result in updates where the L(θk+1) > L(θk). Hence, it cannot be applied directly to the
problem of non-convex optimization.

Second, as the number of parameters increases, the Hessian becomes expensive to
compute, difficult to store, and very expensive to invert. For example, say we have a model
with a million parameters, H then contains 1012 entries, which, assuming 4 bytes per entry,
we would need about 4TB of memory to store the matrix. Additionally, matrix inversion
has a computational complexity of O(n3), which is very problematic when n is in the order
of millions, which is usually the case when dealing with deep networks.

Fortunately, the first issue, Newton’s method being attracted to saddle points and
maxima, is relatively easy to deal with. One popular way of circumventing the issue is
through second-order regularization, i.e., using (H + αI)−1 in the update equation; this is
done to make the negative eigenvalues of the Hessian positive, or at least less negative [22].

The second issue, however, is not so trivial to solve, and there are many ways of
attacking the problem. One popular approach, known as the conjuagte Newton method,
deals with the issue by iteratively solving for H−1∇L, instead of explicitly computing the
Hessian, inverting and then computing the matrix-vector product. In other words, instead
of explicitly solving for the stationary point of the following second-order expansion,

L(θ + d) ≈ L(θ) +∇L(θ)Td+
1

2
dTH(θ)d, (2.22)

which, of course, is given by d∗ = −H(θ)−1∇L(θ), we minimize the equation (2.22)
iteratively using conjugate gradients.

Next, we focus on a method known as Kronecker-factored Approximate Curvature [54]
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that uses a block matrix approximation of the curvature matrix to alleviate the storage
and computational burden.

Kronecker-factored Approximate Curvature (K-FAC)

Given a neural network that defines a conditional probability density function f(y|x, θ),
the fisher information matrix I is defined as:[

I(θ)
]
i,j

= −E

[
∂2

∂θi ∂θj
log f(y|x, θ)

]
,

= E

[(
∂

∂θi
log f(y|x, θ)

)(
∂

∂θj
log f(y|x, θ)

)]
,

where the expectation is taken with respect to the function f(y|x, θ) and the empirical
training distribution. The K-FAC method [54] makes use of such a matrix in place of the
Hessian to make the parameter updates.

This method hinges on three key ideas:

1. Using the Fisher matrix instead of the Hessian. The Fisher seems to provide a
more global picture of the underlying function, that is, a second-order Taylor expan-
sion that employs the Fisher gives a better approximation of the global structure,
whereas the second-order expansion that uses the Hessian results in the optimal local
approximation, which may not be desirable.

2. Approximating the Fisher as a block diagonal matrix, which is much easier (com-
putationally) to invert. The inverse of a block diagonal matrix can be evaluated by
inverting the blocks individually as shown below:

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An


−1

=


A−1

1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 · · · A−1

n

 .
3. Exploiting a property of Kronecker products to make the matrix inversion even

simpler. Writing each of the block diagonal entries as a Kronecker product of two
smaller matrices, the inverse of the block matrix can be computed by inverting the
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(smaller) matrices involved in the product. For example,

(A⊗B)−1 = A−1 ⊗B−1.

In the absence of residual connections, which tend to significantly smooth the loss
landscape, they show that their method leads to better generalization relative to first-order
methods such as Adam and momentum-based methods.

2.3 Discussion

In this chapter, we have tried to highlight the importance of inductive biases in deep
learning. In the process, we examined five priors that make core deep learning algorithms
effective. Additionally, we have examined LSTMs, one of the popular gated RNNs, and
transformers, models that rely completely on the attention mechanism. We also attributed
LMU’s effectiveness over LSTMs and other RNNs to the additional innate structure (pre-
specified LTI system) that it comes with. We then considered the question of learning in
deep networks, and briefly examined first-order methods, regular second-order methods and
the associated challenges of computing, storing and inverting large matrices, and finally we
looked at the K-FAC method, which offers a way around the aforementioned problems.
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Chapter 3

Parallelizing Legendre Memory Unit

Our model is directly inspired by the success of self-attention. Self-attention based architec-
tures have come to replace RNN based approaches for problems such as language modelling,
machine translation, and a slew of other NLP tasks [66, 67]. Three properties that make
self-attention desirable over RNNs are: (1) it is better at handling the challenging problem
of long-range dependencies; (2) it is purely feedforward; and (3) when the sequence length is
smaller than the dimension of representation, which is not uncommon in NLP applications,
self-attention is computationally cheaper than an RNN.

Of these three desirable properties, our model inherits the first one from the original
LMU, and satisfies properties (2) and (3) by construction. Additionally, the capability to
run our model in a recurrent manner during inference can be advantageous in situations
where there are memory constraints or where low-latency is critical.

3.1 Background and LMU Variants

In this section we start by introducing the delay problem and show how a delay is optimally
realized by the DN, an LTI system. We then introduce the LMU which employs a single-
input DN coupled to a nonlinear dynamical system to process sequential data. Finally, we
introduce our model, which is obtained by simplifying the original architecture. We show
how this simplification allows for training to be parallelized (often reducing the computation
complexity), while also retaining the ability to handle long range dependencies of the
original formulation.
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3.1.1 Delay Network

Ideal Delay

A system is said be an ideal delay system if it takes in an input, u(t), and outputs a function,
y(t), which is the delayed version of the input. Mathematically, this can be described in
the following manner:

y(t) = D[u(t)] =

{
0 t < θ

u(t− θ) t ≥ θ
, (3.1)

where D is the ideal delay operator and θ ∈ R is the length of the delay. There are two
things of note here: (1) the ideal delay system is linear, i.e., for any two functions, f(t) and
g(t), and any a, b ∈ R, it respects the following equation:

D[af(t) + bg(t)] = aD[f(t)] + bD[g(t)]; (3.2)

and (2) although this problem looks deceptively simple, in fact it takes a system with infinite
memory to take in a continuous stream of input (with unspecified frequency content), store
it for θ seconds and then reproduce the entire input without error.

These two considerations tell us that the optimal system that implements delay must
be linear and that even the most optimal physical implementation can only approximately
realize the delay.

Approximating Delay

If we are interested in constructing a dynamical system that implements delay, thanks to
the linearity constraint, we can narrow our search space from the general system of ODEs
of the form

ṁ = f(m, u), (3.3)

y = g(m, u), (3.4)
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where m and u represent the state of the system and a scalar input respectively, to just
finding the four matrices (A,B,C,D) that define an LTI system:

ṁ = Am + Bu, (3.5)

y = Cm + Du. (3.6)

Following the derivation of the Delay Network in [81], we start by considering the transfer
function of the delay system, which for a Single-Input-Single-Output (SISO) system is
defined as:

G(s) =
y(s)

u(s)
= e−θs, (3.7)

where y(s) and u(s) are found by taking the Laplace transform of the input and output
functions in time. As expected, this defines an infinite dimensional transfer function,
capturing the intuitive difficulty of constructing a continuous delay.

The transfer function can be converted to a finite, causal state space realization if and
only if it can be written as a proper1 ratio of finite dimensional polynomials in s [13].
G(s), however, is irrational, i.e., it cannot be written as a proper, finite dimensional ratio.
Therefore, making an approximation is necessary.

We can achieve an optimal convergence rate (in the least-square error sense) for rational
approximants by means of Padé approximants [61]. Choosing the order of the numerator
to be one less than the order of the denominator and accounting for numerical issues in the
state-space realization (see [81] for details), gives the following canonical realization:

Ai,j =
(2i+ 1)

θ

{
−1 i < j

(−1)i−j+1 i ≥ j
, (3.8)

Bi =
(2i+ 1)(−1)i

θ
, (3.9)

Ci = (−1)i
i∑
l=0

(
i

l

)(
i+ l

j

)
(−1)l, (3.10)

D = 0, i, j ∈ [0, d− 1], (3.11)

where we refer to d as the order of the system. The LTI system (A,B,C,D) is what is
known as a Delay Network (DN). The order of the system, d, and the delay length, θ are
the main hyperparameters to choose when using a DN. Higher order systems require more

1A ratio a(s)
b(s) is said be proper if the order of the numerator does not exceed the order of the denominator.
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resources, but provide a more accurate emulation of the ideal delay. Because we have used
Padé approximants, each order is optimal for that dimension of state vector m.

Legendre Polynomials

Suppose we construct a system using the (A,B,C,D) matrices defined above, and provide
it with an input signal, u(t). Given the state mt, we can use C to decode u(t − θ) to a
degree of accuracy determined by the order of our system, i.e.,

u(t− θ) ≈ CTmt. (3.12)

Intuitively, given mt, it seems possible to decode not only u(t− θ) but also u(t− θ′) ∀ 0 ≤
θ′ ≤ θ. This can be done using a slightly modified C for a given θ′:

u(t− θ′) ≈ C(θ′)Tmt, (3.13)

where

Ci(θ
′) = (−1)i

i∑
l=0

(
i

l

)(
i+ l

j

)(
−θ
′

θ

)l
, 0 ≤ θ′ ≤ θ, (3.14)

and C(θ′ = θ) corresponds to the C defined in equation (3.10). Interestingly, the functions
in (3.14) turn out to be the shifted Legendre polynomials.

3.1.2 Legendre Memory Unit

The LMU is obtained by coupling a single-input delay network to a nonlinear dynamical
system. The DN orthogonalizes the input signal across a sliding window of length θ, whereas
the nonlinear system relies on this memory to compute arbitrary functions across time.
The state update equations that define the LMU are given below:

ut = eTxxt + eThht−1 + eTmmt−1, (3.15)

mt = Āmt−1 + B̄ut, (3.16)

ht = f(Wxxt + Whht−1 + Wmmt), (3.17)

where Ā and B̄ are the discretized versions2 of A and B. These matrices are usually
frozen during training, although they need not be. The input to the LTI system, u(t), is

2Using zero-order hold and dt = 1, exact discretization gives Ā = eA and B̄ = A−1(eA − I)B.
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computed by projecting the input to the RNN cell, xt ∈ Rdx , the hidden state, ht ∈ Rdh ,
and the memory state, mt ∈ Rd, onto their respective encoding weights (ex, eh, and em).
The memory state, hidden state and the input to the cell are then combined using the
weight matrices (Wx,Wh, and Wm) and passed through the nonlinearity, f . The encoding
vectors and the kernel matrices are learned during training.

3.1.3 Our Model

In this paper, we propose a modified LMU architecture by making two changes to the
equations defined above. First, we remove certain connections in (3.15) and (3.17), namely
(eTh , e

T
m) and (Wh); this is done to aid parallelization. The following simple ablation study

done on the psMNIST dataset sheds some light on the effect of pruning these connections.
We tested the performance of the original LMU under five (self-explanatory) conditions:
No eh; No em; No Wh; No Wm; and no activation function f . We see from Table (3.1)
that removing the recurrent connections (eh,Wh) is beneficial, and although there is utility
to having em, it unfortunately hinders parallelization.

Table 3.1: Effect of removing the recurrent connections in the LMU, measured on psMNIST

Model Accuracy

LMU (original) 97.15
LMU (no eh) 97.27
LMU (no em) 96.82
LMU (no Wh) 97.42
LMU (no Wm) 20.10
LMU (no f) 89.81

Second, instead of projecting the input to the RNN cell, xt down to a scalar as in (3.15),
we implement a general affine transformation followed by an element-wise nonlinearity; the
original architecture is better suited for dealing with 1D or low-dimensional inputs, and
this is a straightforward generalization of the encoding equation for higher dimensional
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inputs. Additionally, adding a bias term to equation (3.17), we end up with the following:

ut = f1(Uxxt + bu), (3.18)

mt = Āmt−1 + B̄ut, (3.19)

ot = f2(Wmmt + Wxxt + bo). (3.20)

Note that equations (3.18) and (3.20) are equivalent to having time-distributed dense layers
before and after equation (3.19). In general, we expect our model to be modified and used
in combination with other feed-forward layers, including self-attention. For example, we
found a gated architecture [74] where equation (3.18) is modified to

ut = f1(Wuxt + bu) · g + xt · (1− g) ,

to work well for the addition problem (results not shown). The gate is defined as g =
σ(Wgxt + bg), i.e., a sigmoid-activated affine transformation where the bias is initialized to
-1.

Additionally, now that the input to the LTI system in this case is a vector, ut ∈ R1×du ,
we have that mt ∈ Rd·du , and equation (3.16) can be thought of as implementing the
following:

mt = reshape(Ā reshape(mt−1, (d, du)) + B̄ut, d · du). (3.21)

Parallel Training

One of the motivations for the above mentioned architectural changes is that the model
now has only one recurrent connection: mt’s dependence on itself from the past in equation
(3.19). But because this is an LTI system, standard control theory [3] gives us a non-iterative
way of evaluating this equation as shown below3

mt =
t∑

j=1

Āt−jB̄uj. (3.22)

3Restricting ourselves to 1D input for the purposes of illustration.
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Table 3.2: Complexity per layer and minimum number of sequential operations of various
architectures. n is the sequence length, dx is the input dimension, d is the order, and k is
the size of the kernel. First three rows are as reported in [79].

Layer Type Complexity Sequential Ops

RNN O(n · d2
x)

√

Convolution O(k · n · d2
x) ×

Attention O(n2 · dx) ×
DN (3.19) O(n · d2 · dx)

√

DN (3.24) O(n2 · d · dx) ×
DN (3.25) O(n · d · dx) ×
DN (3.26) O(n · log n · d · dx) ×

Defining H =
[
Ā0B̄ ĀB̄ . . .

]
∈ Rd×n and

U =


u1 u2 u3 . . . un

u1 u2 . . . un−1

u1 . . . un−2

. . .
...
u1

 ∈ Rn×n, (3.23)

the above convolution equation can alternatively be written as a matrix multiplication:

m1:n = HU , (3.24)

where n is the sequence length. Given that H is the impulse response of the LTI system, in
practice we compute H by feeding in an impulse to the RNN version of the DN (equation
(3.19)). Note that in our method the Ā and B̄ matrices are frozen during training, so the
impulse response need only be computed once. In case of multi-dimensional inputs, we
would repeat the above computation several times, once for each dimension of the input. It
is also evident from the structure of the U matrix that although this reformulation turns
the DN into a feedforward layer, it still respects causality. In other words, the state mt

depends only on the inputs seen until that point of time, i.e., ui : i ≤ t.
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Complexity

With the new formulation, we immediately see that it is computationally (i.e., in terms of
the number of operations) advantageous in situations where we only need the final state
(return_sequences=False in Keras terminology). Instead of using (3.19) to explicitly
simulate the first n − 1 steps in-order to compute the state at the time-step n, we can
instead just compute

mn = HU:n, (3.25)

thus reducing the complexity of computing the final state, mn, from O(n · d2 · dx) to
O(n · d · dx), where n is the sequence length, d is the order, and dx is the dimension of the
input. We show in Section (3.2.6) that using this implementation results in up to 200x
speedup.

The more general computation (3.24), although parallelizable, results in a complexity
of O(n2 · d · dx). This can be made more efficient by employing the convolution theorem
which gives us an equivalent way of evaluating the convolution in the Fourier space as4

m1:n = F−1{F{H} · F{U:n}}. (3.26)

Thanks to the fast Fourier transform, the above operation has a complexity of O(n · log2 n ·
d · dx). These, other algorithms, and their complexities are reported in Table (3.2).

It was argued in [79] that a self-attention layer is cheaper than an RNN when the
representation dimension of the input, dx, is much greater than the length of the sequence,
n, which is seen in NLP applications. For example, standard word or sub-word based
machine translation systems work with sequence lengths of about 100 and representation
dimension ranging from 300 to 512. The same argument holds for the DN layer too, since
we have found the inequality log2 n · d� dx to hold in all our word-based NLP experiments
– this excludes text8, which works at the level of characters [58]. More specifically, we use
d ≤ 4 for our word-based models.

Recurrent Inference

Machine learning algorithms are usually optimized for training rather than deployment
[21], and because of that models need to be modified, sometimes non-trivially, to be more

4Assuming a padded Fourier transform across the appropriate axis and automatic broadcasting when
computing element-wise multiplication. See LMUFFT code for details.
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suitable for inference. For example, one of the metrics that is crucial for applications such
as online Automatic Speech Recognition (ASR) is low latency. Transformers have shown
faster training times and better performance than RNNs on ASR, but since they employ
(global) self-attention, which requires the entire input to begin processing, they are not
natural fits for such a task [84]. Look-ahead [88] and chunk-based [57] approaches are
usually used to alter the architecture of self-attention for such purposes. While our model
can be trained in parallel, because of the equivalence of equations (3.19) and (3.26), it can
also be run in an iterative manner during inference, and hence can process data in an online
or streaming fashion during inference.

3.2 Experiments

In the following experiments we compare our model against the LMU, LSTMs and trans-
formers. With these experiments, we focus on benchmarking rather than establishing new
state-of-the-art results. Hence, we constrain ourselves to train all the models, with the
exception of text8, using the Adam optimizer [43] with all the default parameter settings,
which we believe attests to the ease with which our model can be trained. For text8, we
found it helpful to reduce the learning rate by a factor of 10 halfway into training. Although
unusual, we use the default optimization settings even when transfer learning.

With models we compare against, we use results found in published work, even when
they make use of more sophisticated architectures, learning schedules or regularization
schemes.

In the original LMU paper, the authors consider the capacity task [80] (a variant of the
pathological copy task) which involves storing and reproducing up to 100,000 continuous
values. We need not do so here because they employ just the delay layer without nonlinear
dynamics in order to deal with this problem, which makes their architecture essentially the
same as ours. In other words, our model also exhibits the same performance on this task,
which is orders of magnitude better than the LSTM (in terms of MSE).

3.2.1 psMNIST

The permuted sequential MNIST (psMNIST) dataset was introduced by [48] to test the
ability of RNNs to model complex long term dependencies. psMNIST, as the name suggests,
is constructed by permuting and then flattening the (28 × 28) MNIST images. The
permutation is chosen randomly and is fixed for the duration of the task, and in order to
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Table 3.3: psMNIST results. The first three rows are from [80], and the fourth row is from
[36].

Model Accuracy

LSTM 89.86
NRU 95.38
LMU 97.15
HiPPO-LegS 98.3
Our Model 98.49

stay consistent, we use the same permutation as [15] and [80]. The resulting dataset is of
the form (samples, 784, 1), which is fed into a recurrent network sequentially, one pixel at
a time. We use the standard 50k/10k/10k split.

Architecture As was pointed out in [80], in order to facilitate fair comparison, RNN
models being tested on this task should not have access to more than 282 = 784 internal
variables. Keeping that in mind, and in order to make direct comparisons to the original
LMU model, we consider a model with d = 468 dimensions for memory. We set the
dimension of the output state to 346 and use θ = 784. Our model uses 165k parameters,
the same as all the models reported in Table (3.3), except for the original LMU model,
which uses 102k parameters, and the HiPPO-LegS model, which is reported to use 512
hidden dimensions (number of parameters is unknown).

Results & Discussion Test scores of various models on this dataset are reported in
Table (3.3). Our model not only surpasses the LSTM model, but also beats the current
state-of-the result of 98.3% set by HiPPO-LegS [36] recently. Thus, our model sets a new
state-of-the art result for RNNs of 98.49% on psMNIST. It is interesting that our model,
despite being simpler than the original LMU, outperforms it on this dataset. This suggests
that the main advantage of the LMU over past models is the quality of its temporal memory,
implemented by the DN.

3.2.2 Mackey-Glass

Mackey-Glass equations are a set of two nonlinear differential equations that were originally
developed to model the quantity of mature cells in the blood [53]. The second of these
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Table 3.4: Mackey-Glass results.

Model NRMSE

LSTM 0.059
LMU 0.049
Hybrid 0.045
Our Model 0.044

equations is interesting because it can result in chaotic attractors and is used to construct
the dataset at hand. This is a time-series prediction task where we need to predict 15
time-steps into the future.

Architecture [81] compare three architectures on this dataset. The first one uses 4 layers
of LSTMs (h = 28), the second one replaces LSTMs with LMUs (d = 4, θ = 4), and the final
one replaces the first and third layers in the first model with LMUs. We use a relatively
simple architecture where we combine our model (single layer) with an additional dense
layer. We use d = 40, θ = 50, and 1 and 140 units in the input and output layers, with the
additional dense layer containing 80 units. We did not try other variations. All the models
contain about 18k parameters and are run for 500 epochs.

Results & Discussion NRMSE scores on the test set are presented in Table (3.4). We
see that our model outperforms the other three models in accuracy and training time. In
the original paper [81] hypothesize that the superior performance of the hybrid model is
due to the presence of gates, but given that our model lacks gating mechanisms, we think
that it might have to do with the LMU model being misparametrized.

3.2.3 Sentiment, Semantics and Inference

In this section, we explore the supervised and semi-supervised capabilities of our model.
More specifically, we first look at the tasks of sentiment analysis (IMDB), semantic similarity
(QQP) and natural language inference (SNLI), and then improve upon the IMDB score
using a language model pre-trained on the (unlabelled) Amazon Reviews dataset [59].
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Supervised

IMDB The IMDB dataset [52] is a standard sentiment classification task containing a
collection of 50k highly polar reviews, with the training and testing sets containing 25k
reviews each. We use the standard pre-processed dataset available from the Keras website,5

consider a vocabulary of 20k words, and set the maximum sequence length to 500 words.

QQP For Quora Question Pairs (QQP),6 given a pair of sentences, the task is to identify
whether the two sentences are semantically similar. In this case, we experiment on two
train/dev/test splits: 390k/8k/8k like in [73], and 280k/80k/40k like in [72]. We use a
vocabulary of 20k words and truncate the sentences to be less than 25 words.

SNLI The Stanford Natural Language Inference7 was released to serve as a benchmark
for evaluating machine learning systems on the task of natural language inference. Given a
premise, the task is to determine whether a hypothesis is true (entailment), false (contra-
diction), or independent (neutral). We use the standard 550k/10k/10k split, consider a
vocabulary of 20k words, and set the maximum sequence length to 25 words.

Architecture In our experiments, confusingly, we found the use of the DN, without
any nonlinearities, to work well. Therefore, we construct parameter efficient models that
employ just the DN layer, with d = 1 and θ = maxlen. We use 300D Glove embeddings
(840B Common Crawl; [62]) for all our models. For the IMDB task, which is a single
sentence task, we encode the sentence and pass the encoded vector to the final classification
layer. For two-sentence tasks, QQP and SNLI, we encode the two sentences to produce two
vectors, and then pass the vector obtained by concatenating the two vectors, their absolute
difference, and their element-wise product to the final classification layer. We compare our
models against the LSTM models described in [36] for IMDB, both [73] and [72] for QQP,
and [11] for SNLI. They all use at least an order of magnitude more parameters than our
models.

Results & Discussion We present the results from the three experiments in Table (3.5).
As we can see, our simple models based on the DN alone do indeed outperform the LSTM

5https://keras.io/api/datasets/imdb/.
6https://www.kaggle.com/c/quora-question-pairs
7Dataset and published results are available at https://nlp.stanford.edu/projects/snli/.
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Table 3.5: IMDB, QQP and SNLI results. IMDB result is from [36], QQP results are from
[73] and [72] respectively, and SNLI is from [11].

LSTM Our Model

Param. Acc. Param. Acc.

IMDB 50k 87.29 301 89.10
QQP -/800k 82.58/81.4 1201 86.95/85.36
SNLI 220k 77.6 3.6k 78.85

models. It is also noteworthy that our models use significantly fewer parameters than the
LSTM models: 160x on IMDB, 650x on QQP and 60x on SNLI.

Semi-Supervised

Amazon Reviews NLP over the past couple of years has been dominated by transfer
learning approaches, where language models pre-trained on large corpora are used to
initialize general purpose fine-tuning architectures to help with various downstream tasks.
We therefore consider using a pre-trained language model on the Amazon Reviews dataset8

to improve the previously achieved score on IMDB. Here, we make direct comparisons to
the LSTM model described in [65]. While they use the entire dataset (82 million reviews)
for pre-training and train their model for a month on 4 GPUs, due to resource constraints,
we use less than 5% (3.7 million reviews) and train our model for about 12 hours on a
single GPU. We use a vocabulary of 30k words.

Architecture We have found the repeating block architecture, where each block is
composed of our model, a few highway layers [74], and a dense layer, when used with skip
connections to work well (see Figure (3.1)). Since the inputs, dx, are high dimensional, using
a large θ, which would have to be accompanied by a large order d to maintain resolution,
would result in vectors that are dx · d dimensional, which is not desirable. Therefore, we
instead work with smaller θ (and hence smaller d) and use several repeating blocks to take
long-term dependencies into account. This is similar to how convolutional networks are
used: small kernel sizes but many convolutional layers. If θi is the setting we use with

8https://jmcauley.ucsd.edu/data/amazon/
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Table 3.6: IMDB results with pre-training. First row is from [65], and the second row is
from [69].

Model # parameters (Millions) Accuracy

LSTM 75 92.88
DistilBERT 66 92.82
Our Model 34 93.20

the DN in the ith block, then the effective delay, θe =
∑

i θi. In this specific case, we have
θi = 6 ∀ i, and θe = 30. Thus, the model has access to the past 30 tokens when making a
prediction. In terms of the fine-tuning performance, like [63], we found that using deep
representations, i.e., a linear combination of representations from all the blocks, to be better
than using just the output of the top block. For fine-tuning, we compute a weighted sum of
the outputs from the language model, and use that to classify a given review as expressing
a positive or negative sentiment. Even during fine-tuning, we use the Adam optimizer with
all the default settings. We did not experiment with smaller learning rates or other learning
schedules.

Results & Discussion Results for this experiment are presented in Table (3.6). Despite
using a much smaller pre-training dataset, training for just 12 hours, and using less than
50% of the parameters, our model outperforms the LSTM model described in [65]. We
also include a self-attention based model, DistilBert [69], for comparison; it must be
noted however that DistilBert was trained on a more general yet much larger dataset
(concatenation of English WikiPedia and Toronto Book Corpus).

3.2.4 Language Modelling

text 8 We evaluate our model on character level language modelling using the text8
dataset9. It contains 100MB of clean text from Wikipedia and has an alphabet size of 27.
As is standard, we use the first 90MB as the training set, the next 5MB as the validation
set and the final 5MB as the test set. Following [58] and [89], we set the sequence length to
180.

9http://mattmahoney.net/dc/textdata.
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Figure 3.1: Illustration of the language model used for pre-training on the Amazon Reviews
dataset. Although the actual model uses five blocks (combination of DN, Dense and
Highway), we only show two blocks in the above figure.

Architecture This architecture is similar to the language model used in the above section,
except for the use of deep representations; we simply work with the output from the top
block.10 For text8, minor changes were made to adapt the model to deal with longer
sequences, which is a consequence of modelling at the level of characters, and to parameter
match it to the LSTM model in [89], which uses around 3.2 million weights. We employ
three blocks in this case and use all three DNs with the setting θ = 15.

Results & Discussion We report the scores in bits per character in Table (3.7). We see
that our model performs better than the LSTM model of similar size. Two observations
regarding model optimization are: 1) we noticed that the training loss plateaus around
the twelfth epoch, so we found it helpful it to decrease the learning rate by a factor of 10
around then (this is the only dataset for which we alter the optimization parameters); 2)
despite that, the training slows down after a few more epochs, and we stop the optimization
after 20 epochs; we believe that a more carefully designed learning schedule might be able

10We did not test the use of deep representations in this context.
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to help with faster convergence. We also observed that using a self-attention layer, which
takes into account the whole sequence and not just the previous 45 tokens, after the final
block helps with generalization; this perhaps points to the fact that the model needs a
context that is longer than 45 tokens in order to make predictions.

3.2.5 Translation

IWSLT’15 En-Vi IWSLT’15 English to Vietnamese11 is a medium-resource language
translation task containing 133k sentence pairs. Following [51], we do not perform any
pre-processing other than replacing words that occur less frequently than 5 by the <unk>

token, which leaves us with vocabulary sizes of 17k and 7.7k for English and Vietnamese,
respectively. We use the TED tst2012 as the validation set and TED tst2013 as the test
set. We use 300D representation for source and target embeddings.

Architecture For translation, we use a standard encoder-decoder architecture inspired
by the Amazon reviews language model, and we also employ an attention layer to help with
translation. Our model’s about the same size as the 24 million LSTM model described in
[51]. Due to time constraints, the architecture and hyperparamters for this problem were
relatively underexplored.

Results & Discussion Case sensitive BLEU scores are reported in Table (3.7). Our
model brings in an improvement of 2.5 BLEU over the LSTM model. When tested on
lower-cased text (without altering the training procedure), we obtained a higher score
of 26.2 BLEU. One major limiting factor of this analysis is that we use a small, fixed
vocabulary (17k and 7.7k words), with no way of dealing with out-of-vocabulary words. For
future work, we intend to experiment with an open-vocabulary encoding scheme such as
byte pair encoding [71].

3.2.6 Training Time

Here we explore the effect of parallelization on training time. We refer to architectures that
implement the DN using equation (3.19) as the LTI version and the ones that use either
(3.25) or (3.26), depending on whether return_sequences is false or true, as the parallel
version.

11https://nlp.stanford.edu/projects/nmt/
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Table 3.7: Language modelling and translation results. text8 score (reported in bpc) is from
[89], and IWSLT score (reported in BLEU) is from [51]. a(case sensitive), b(case insensitive).

Model text8 IWSLT’15

LSTM 1.65 23.3
Our Model 1.61 25.9a/26.7b

Results are presented in Figure (3.2). On the left, we compare the speedup we obtain by
going from the original LMU to our model, in both LTI and parallel forms, on psMNIST and
Mackey-Glass. We first notice that switching from the LMU to the LTI version results in
non-trivial gains. This is solely due to the reduction in the number of recurrent connections.
On top of this, switching to the parallel version, owing to long sequences (784 and 5000) and,
in the case of psMNIST, a reduction in the computational burden, results in substantial
improvements in training times of 220x and 64x respectively.12

On the right of Figure (3.2), we demonstrate how varying the sequence length of the
inputs affects the time it takes to complete one epoch. We see that the LTI version exhibits
a linear growth whereas the parallel one is nearly constant over this scale.

3.3 Discussion

With the intention of alleviating the long standing problem of speeding up RNN training,
we introduce a variant of the LMU architecture that can process data in a feedforward
or sequential fashion. When implemented as a feedforward layer, it can utilize parallel
processing hardware such as GPUs and thus is suitable for large scale applications, and
when run as an RNN, it is useful in applications where the amount of available memory is a
limitation. We also briefly consider the question of computational complexity of our model,
and argue for its suitability to large scale applications in the domain of NLP, a direction
we will pursue in the future.

While our model has shown competitive performance on several tasks, there is, however,
room for improvement. More specifically, although in theory the depth of our model used for

12The parallel version of our model is also 34x faster than a parameter-matched cudaLSTM on psMNIST.
Additionally, We note that for Mackey-Glass we use a (parameter matched) one layer LMU model instead
of the 4 layer model used in [80]; the difference with respect to the original architecture is more drastic,
with our model (parallel) being about 200x faster.
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Figure 3.2: (left) The plot shows the speedup we obtain from switching from the LMU to
the LTI (in orange) and parallel implementation (in blue) of our model. (right) This show
the effect of increasing the sequence length on the LTI and parallel versions of our model.
All results were measured using a single GTX 1080.

modelling language is decoupled from its “receptive field”, that is not the case in practice.
As we have discussed previously, we use our model like a standard CNN model: we use small
theta but make the model very deep to increase the receptive field. With this approach,
our model would have to be very deep if it is to capture long term dependencies, especially
when the text sequences are much longer that what was explored in this work – in NLP, it
is quite common to use text sequences longer than 1024 tokens. The major issue with such
models is that training deep models is non-trivial and comes with a number of issues, the
least of them being the model’s memory footprint.
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Chapter 4

Future Work

While we have used our network on various datasets, the evidence we have presented might
be incomplete when it comes to large scale experiments. However, given the encouraging
performance of our model on the task of semi-supervised sentiment analysis, where it
outperformed LSTM and transformer based models using 50% fewer weights, it will be
interesting to see if this parameter efficiency is preserved in general. More specifically, it
will be interesting to pre-train the model on a large unlabelled corpus such as C4 [67],
and test its performance on benchmarks such as GLUE [83] and SuperGLUE [82]. GLUE,
for example, consists of a diverse set of NLP classification tasks, and the leaderboard1

conveniently keeps track of the performance of various models on these tasks.

For all our experiments, barring text8, we restrict ourselves to use the Adam optimizer
with all the default settings. While we did this to narrow the space of hyper-parameters,
given the importance and sensitivity of networks to optimization parameters, it would be
beneficial to experiment thoroughly with Adam and other popular optimizers. Experiments
with second-order optimization methods such as K-FAC would also be very interesting. It
would be valuable to compare the effectiveness of such methods on our variant of the LMU
and also the original LMU. We think that the original LMU would benefit more from using
second-order methods.

On a more general (and obscure) note, we believe in the utility of research focusing on
discovering new priors, those that will help us tackle more complex AI tasks. In the case
of language acquisition for example, even before infants learn their first word, Yang [86]
points out that they are faced with a couple of non-trivial problems:

1https://gluebenchmark.com/leaderboard
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But before we talk of language learning we, or rather, the baby, must be clear
just what counts as language. Language does not come in neat packets, ready
for the child to digest and absorb. Every moment of a baby’s life is a wild
cocktail party, where the sound of language is embedded within the ambient
acoustics that constantly bombard her eardrums. The first step in learning a
language is to find it, and to find it, the baby must block out the noise.

Second, unlike the words on this page, which are separable by spaces and
punctuation, we—do—not—pause—between—words—in—speech. When we
study the acoustic details of speech we see that most words bump into one
another, without any delineable boundaries in between[...] To learn words,
children have to find them in the continuous stream of speech.

These issues, of course, do not translate into real word worries for children,2 and the
answers seem to do with the linguistic assumptions that children come equipped with.
Please refer to [86] and [70] for more details. Research into the addition of such priors to
artificial learning systems could be fruitful.

2For example, children, even at the age of five days old, can not only distinguish linguistic and non-
linguistic information, but also can differentiate between languages that do not fall into the same prosodic
group (such as French and English).
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