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Abstract

Variable annuities are long-term insurance products. They have become one of the most
popular savings/investment vehicles over the past two decades due to their flexible in-
vestment options, stable long-term guarantees, and favorable tax-deferral treatment. The
popularity of variable annuities has catalyzed an extensive amount of research papers look-
ing into pricing and hedging of embedded guarantees and attempting to better understand
policyholder behavior. This thesis aims to contribute to these two strands of research.

While an ample amount of literature has covered various topics in variable annuities, two
important market trends/phenomena need further investigation: 1). the variable annuity
market has seen decreasing sales ever since the year 2013; 2). there is evident discordance
between the theoretical and empirical insurance fees and policyholder behavior. The theme
of this thesis is to address these two market phenomena by offering potential remedy or
reasonable explanation.

Chapter 3 aims to offer an appropriate potential remedy to the declining demand of the
variable annuity market. In this chapter, we propose a novel high-water mark fee structure
and examine its impact on variable annuity marketability. We apply a mean-variance
preference model to evaluate policyholder welfare from holding a variable annuity. By also
evaluating policyholder welfare from holding two alternative investments, we introduce a
quantitative measure, namely a compatible set of risk aversions, to assess the marketability
of the variable annuity under a certain fee structure. We find that the high-water mark
fee structure improves the variable annuity’s marketability compared to a constant and a
state-dependent fee structure.

Chapters 4 and 5 aim to address the aforementioned discordance by investigating the
impact of policyholders’ uncertainty in discount rates on their welfare and behavior from
holding variable annuities. In Chapter 4, we consider policyholders of a variable annuity
with guaranteed minimum death and maturity benefits whose subjective discount rates
follow a Gamma distribution. We use a constant relative risk aversion utility model to
evaluate policyholder welfare and surrender behavior from holding the variable annuity.
We also compute an insurer’s profit under given insurance fees and policyholder surrender
behavior. We find that when sharing the same expected discount rate, Gamma discounting
policyholders delay surrender behavior and value the variable annuity more than than
exponential discounting policyholders. Moreover, the insurer makes higher profit when
policyholders are Gamma discounting than when they are exponential discounting.

Chapter 5 considers policyholders of a variable annuity with guaranteed minimum with-
drawal benefit whose subjective discount rates follow a Gamma distribution. Policyholder
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welfare and withdrawal behavior are quantified by the expected present value of variable
annuity payouts. Different from the last two chapters, we deal with stochastic optimal
control problems in this chapter due to the withdrawal type guarantees. Consistent with
Chapter 4, we find that when having the same expected discount rate, Gamma discounting
policyholders withdraw less and value the variable annuity more than exponential discount-
ing policyholders.

To keep a smooth flow of the thesis, Chapter 1 presents the existing strands of lit-
erature and introduces the main motivation of this thesis. Chapter 2 presents the core
mathematical preliminaries for the latter chapters. Chapter 6 concludes this thesis and
proposes potential future research avenues.
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Chapter 1

Introduction

1.1 Background and Motivation

Variable annuities (VAs) are long-term equity-linked insurance products. In a typical VA
policy, policyholders (PHs) get access to various investment options through different sub-
accounts, and the performance of these accounts are protected from below by embedded
guarantees which normally contain some insurance features (such as death benefits). Apart
from flexible investment opportunities and stable long-term guarantees, VAs also enjoy
favorable tax-deferral treatment. Specifically, in a VA policy, taxes are only applicable
when PHs (or their beneficiaries) receive withdrawals, income payments, or death benefits.
These advantages of VAs have made them one of the most prevalent savings and investment
vehicles for investors with different motives. By the second quarter of the year 2017, the
net U.S. assets have amounted to approximately 1.98 trillion dollars (see IRI (2017) for
more details). Even in year 2020, with the detrimental impact of the COVID-19 pandemic
and low interest rate environment, VA providers still achieved nearly 100 billions in sales.

Not surprisingly, the popularity of VAs has catalyzed an extensive amount of research
papers looking into various aspects of this product. One aspect of great importance is pric-
ing and hedging of different kinds of guarantees embedded in VAs. To name a few, Milevsky
& Posner (2001) price guaranteed minimum death benefits (GMDB) in VAs, Milevsky &
Salisbury (2006) and Dai et al. (2008) investigate risk-neutral pricing for guaranteed min-
imum withdrawal benefits (GMWB) in VAs, Marshall et al. (2010) explore valuation of
guaranteed minimum income benefits (GMIB) in VAs, and Huang & Kwok (2016) deter-
mine the no-arbitrage price of guaranteed lifetime withdrawal benefits (GLWB) in VAs.
In particular, Bauer et al. (2008) establish a universal framework to price various guaran-
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tees in VAs. The most important common theme of the aforementioned research is that
they make use of the resemblance of VAs to financial derivatives and price the embedded
guarantees using risk-neutral pricing techniques, which is an improvement to deal with
the financial risk undertaken by VA providers over the traditional reserving approach in
insurance (see Boyle & Hardy (2003) for more details).

Since numerical implementation of pricing models can be very challenging, another
strand of research focuses on developing numerical tools to facilitate the pricing of guar-
antees in VAs. For instance, Huang & Forsyth (2012) proposes a penalty method to solve
a singular control problem corresponding to the pricing of GMWB, while a Willow tree
algorithm is proposed in Dong et al. (2019) for the same guarantees. Huang & Kwok
(2016) and Shen & Weng (2020) develop regression-based Monte Carlo methods to price
GLWB and similar products. Hedging of guarantees in VAs are analyzed far less often than
pricing. We list some research papers here for interested readers. Coleman et al. (2006),
Coleman et al. (2007), and Trottier et al. (2018) apply the local risk minimization method
to hedge guarantees in VAs, and a semi-static hedging method is used in Kolkiewicz & Liu
(2012) and Bernard & Kwak (2016).

Another very important aspect is to understand PH behavior in VAs. Since guarantees
in VAs offer PHs the flexibility to access sub-accounts (through withdrawing or lapsing),
it is of significant importance for insurers to properly understand PH behavior so that
they can improve VA contract design to better manage PH behavior risk and increase
VA marketability. It is common in actuarial science literature to investigate PH behav-
ior assuming a complete market. In this setting, Dai et al. (2008) and Huang & Kwok
(2014) analyze PH withdrawal behavior for VAs with GMWB, Huang et al. (2014) and
Huang et al. (2017) determine optimal initiation of income phase for VA PHs with GLWB,
Azimzadeh & Forsyth (2015) prove the existence of a bang-bang solution for optimal PH
withdrawal behavior of VAs with GLWB, and numerical examples of a similar problem are
given in Huang & Kwok (2016). As for PH surrender behavior, MacKay et al. (2017) pro-
pose a state-dependent fee structure that can make surrender behavior sub-optimal when
applying a marketable surrender penalty, Moenig & Zhu (2018) demonstrate that a state-
dependent fee structure or a Rachet guarantee works the best to contain lapse-and-reentry
behavior, Bernard & Moenig (2019) introduce a time-dependent fee structure that reduces
insurance fees without reducing insurers’ profit through containing PH surrender behavior,
and Knoller et al. (2016) provide empirical evidence on PH surrender behavior for the
Japanese VA market. While Bauer et al. (2017) point out the main drive for PH behavior
in VAs is market friction (e.g., taxes), Moenig & Bauer (2015) examine PH withdrawal
behavior by incorporating the effect of taxes into the analysis.

In addition to the aforementioned literature, there is also a strand of research analyzing
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PH behavior using a life cycle consumption approach in a potentially incomplete market.
For example, Gao & Ulm (2012) and Gao & Ulm (2015) determine optimal allocation
between fixed and variable sub-accounts for VA PHs with GMDB, Horneff et al. (2015)
consider optimal life cycle consumption and portfolio allocations when VAs with GMWB
are available, and Steinorth & Mitchell (2015) explore how PHs should optimally withdraw
from VAs with GLWB to maximize expected utility. Although a fair amount of research
has been done to better understand PH behavior, it is safe to point out that PH behaviour
remains a complex problem given that VAs are very complicated products for PHs to
properly understand, which impedes their ability to evaluate VAs and behave accordingly
(see Brown et al. (2017)).

While most of the aforementioned literature focuses on valuation of various guarantees
for a single VA, some research papers propose novel methods to evaluate a large portfolio
of VAs. To name some representatives, Gan (2013) introduces an approach based on data
clustering and machine learning to price guarantees for a large portfolio of VAs, Gan &
Lin (2015) combine a clustering technique with a functional data analysis technique to
speed up nested simulation of a large VA portfolio, Gan & Lin (2017) propose a two-level
meta-modeling approach to calculate partial dollar Deltas of a portfolio of VAs, and Feng
et al. (2020) offer efficient simulation designs for valuation of large VA portfolios.

With existing literature covering various topics in multiple aspects of VAs, there are
two important market trends/phenomena this thesis aims to address:

(i) The VA market has been experiencing decreasing demand since year 2013;

(ii) There is evident discordance between the theoretical and empirical insurance fees
and PH behavior in the VA market.

Specifically, for the first trend of the VA market, “investors are surrendering policies
faster than new money is coming into the market” (see Bernard & Moenig (2019) for the
source). In year 2020, with the impact of the COVID-19 pandemic and years of low interest
rate environment, VAs with traditional living and death benefits are very expensive and
providers are shifting away from these business lines. In fact, the major driver for VA sales
in year 2020 is registered index-linked annuities (RILAs), a hybrid of fixed-indexed and
variable annuities. Although it remains relevant to investigate RILAs, we focus on VAs
with traditional living and death benefits in this thesis.

To address the declining demand, Bernard & Moenig (2019) introduce a time-dependent
fee structure to improve the prevalent constant fee structure. The new fee structure is
shown to reduce the high insurance fees while keeping VAs profitable for insurers. As
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alluded to above, MacKay et al. (2017) directly tackle surrender behavior by making it
sub-optimal via a state-dependent fee structure. Although each aforementioned paper
focuses on improving one aspect of the constant fee structure’s deficiencies, little is known
about the impact that the corresponding newly proposed fee structures may have on PH
welfare. By merely focusing on the risk management implications of the proposed fee
structures from an insurer’s perspective, the analysis fails to fully address the issue of
declining demand. Therefore, the first objective of this thesis is to contribute to
this line of research by proposing a novel high-water mark (HWM) fee structure
and investigating its impact on VA marketability. By focusing on PH welfare from
holding VAs under the HWM fee structure, we hope to better address the decreasing
demand in the VA market.

As for the second market phenomenon, it is well-documented that there is evident dis-
connect between theoretical and empirical insurance fees and PH behavior. More specif-
ically, PHs exercise embedded options (e.g. withdrawal option) in VAs less often than
risk-neutral pricing approaches suggest and market prices for VAs are lower than these
approaches indicate. In fact, Milevsky & Salisbury (2006) points out that market fees for
GMWB are significantly less than the ones obtained from a risk-neutral pricing approach.
The seminal work of Moenig & Bauer (2015) demonstrates that this discordance/disconnect
can be explained by “the very friction that arguably explains the rapid expansion of the
VA market: taxes”. The second objective of this thesis is to offer an alternative
explanation to the discordance: time inconsistency in PHs’ time preferences.
By considering PHs whose subjective discount rates follow a Gamma distribution, we hope
to also explain the discordance.

Another motivation for the second objective is that there is substantial evidence that
individuals’ time preferences are time-inconsistent (i.e., non-constant discount rates), espe-
cially in the long run. Time inconsistency in time preference has been widely observed for
a group of decision makers when valuing long-term investment. For instance, the seminal
work of Weitzman (2001) attempts to address the “perennial dilemma of what discount
rate to use”. The author conducts a survey from 2000 economists, including 52 Nobel
Laureates, and the result shows an evidently dispersed discount rate distribution. Similar
results can also be found in Frederick et al. (2002) and Falk et al. (2015). Apart from
group heterogeneity in time preferences, individuals’ uncertainty about what discount rate
to use has also been observed. For example, Grenadier & Wang (2007) believe that indi-
viduals are “more prone to time-inconsistent behavior than firms”. Consistent with this,
Laibson (1997), Brocas & Carrillo (2004), and DellaVigna & Malmendier (2004) have all
considered time-inconsistent individuals. In particular, DellaVigna & Malmendier (2004)
consider time-inconsistent individuals but time-consistent firms.
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Since VAs are typical long-term insurance products with investment features, we incor-
porate PHs’ time preferences into the analysis, and aim to investigate the impact of PHs’
time-inconsistent time preferences on their welfare from holding VAs and the impact on
insurers’ profit.

1.2 Structure of the Thesis

With the aforementioned motivation, this thesis is a collection of three research projects.
The remainder of this thesis is organized as follows. Chapter 2 presents the core mathemat-
ical preliminaries for the latter chapters. Chapter 3 proposes a novel HWM fee structure
and investigates its impact on the marketability of VAs. Chapters 4 and 5 analyze the
impact of Gamma discounting on PH welfare and insurer profit for VAs with GMDB and
guaranteed minimum maturity benefit (GMMB) and on PH welfare for VAs with GMWB,
respectively. Potential future research avenues are discussed in Chapter 6. Specific method-
ology and main results of each research project are summarized in the following.

Chapter 3 proposes a novel HWM fee structure and examines its impact on VA mar-
ketability. We first obtain the fair insurance fees under the HWM fee structure using
risk-neutral pricing approach. To evaluate a PH’s welfare from holding a VA with GMDB
and GMMB, we set up a mean-variance (MV) preference model with state-dependent risk
aversion and solve a time-inconsistent optimal stopping problem. We overcome the intri-
cacy stemming from the random time horizon and high dimension, and derive a system
of extended Hamilton-Jacobi-Bellman (EHJB) equations corresponding to the problem.
Furthermore, numerically solving the system of EHJB equations using standard finite dif-
ference methods is extremely challenging due to the complex form of the system and a
time-consuming iterative procedure. We circumvent the complications by proposing a nu-
merical algorithm based on Wang & Forsyth (2011) and further prove that a solution of the
algorithm is a solution of the system. By also determining the PH’s welfare from holding
two alternative investments, a risk-free bond and a pure fund, we introduce a quantitative
measure, namely a compatible set of risk aversions, to assess VA marketability under a
certain fee structure.

Comparing the PH’s welfare from holding the VA under the HWM fee structure with
those under a constant and a state-dependent fee structure, we find that the HWM fee
structure improves VA marketability in the following two aspects. First, the HWM fee
structure makes the VA preferable to the alternative investment options for a broader
range of policyholders. Second, when the VA is preferred over the alternative investment
options, the HWM fee structure produces the highest welfare for the PH.
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Chapter 4 considers PHs whose subjective discount rates follow a Gamma distribution.
The analysis is based on a similar VA with the constant fee structure as in Chapter 3. We
determine the impact of Gamma discounting on PHs’ surrender behavior and welfare from
holding the VA as well as on an insurer’s profit. To investigate PHs’ welfare and surrender
behavior, we use a constant relative risk aversion utility function. Since PHs’ subjective
discount rates follow a Gamma distribution, the corresponding discount function is no
longer exponential and consequently incurs a time-inconsistent optimal stopping problem
with a random horizon. Similar to Chapter 3, we adopt the game theoretic framework
proposed by Björk & Murgoci (2010) to derive a system of EHJB equations. Numerically
solving this system of equations, we obtain PHs’ welfare and the corresponding surrender
behavior. Under PHs’ surrender behavior, we determine the insurer’s profit quantified by
total fees collected deducting the VA payout.

Our results show that, when PHs share the same expected discount rate, Gamma dis-
counting PHs delay surrender and value the VA policy more than exponential discounting
PHs. And, the more uncertain they are with respect to the discount rate, the more they
will value the VA policy and the less likely they will surrender the policy. Moreover, the
insurer makes higher profit when PHs are Gamma discounting than when they are ex-
ponential discounting, and the insurer’s profit increases as PH discount rate uncertainty
increases.

In Chapter 5, we go a step further from Chapter 4 and consider risk-neutral PHs of a
VA with GMWB whose subject discount rates follow a Gamma distribution. Different from
the last two chapters, we formulate the risk-neutral pricing of the VA within a singular
stochastic optimal control framework as in Dai et al. (2008). The fair fee of the VA
policy is numerically determined via the penalty method in Huang & Forsyth (2012).
We set up a time-inconsistent stochastic optimal control model to determine risk-neutral
PHs’ withdrawal behavior and welfare from holding the VA. Again, we derive a system
of EHJB equations and propose an efficient algorithm to numerically solve the system so
that the time-consuming iterative procedure to attain an equilibrium withdrawal strategy
in standard finite difference methods can be avoided.

Consistent with those in Chapter 4, our results show that, when having the same
expected discount rate, Gamma discounting PHs withdraw less and value the VA policy
more than exponential discounting PHs. And, the higher discount rate variance PHs have,
the less they withdraw and the more they will value the VA policy. Our findings in Chapters
4 and 5 indicate that, in addition to the effect of taxes, Gamma discounting can offer an
alternative explanation to the phenomenon that PHs exercise embedded options in VAs
less frequently and market prices for VAs are lower than risk-neutral pricing approaches
suggest.
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Finally, it is important to mention that Chapters 3-5 are written independently of one
another, as each chapter contains the main material of a research paper. While efforts
have been made to keep the notation consistent throughout this thesis, some inconsistency
may remain. Hence, we invite readers to treat each chapter independently in terms of its
notation.
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Chapter 2

Mathematical Preliminaries

2.1 Itô’s Formula and Stochastic Differential Equa-

tions

Consider a stochastic process X = {Xt}t≥0 which is defined on a filtered probability space(
Ω,F , {Ft}t≥0 ,P

)
satisfying the usual conditions. The state space of the process X is

assumed to be R throughout this chapter.

We first state the famous Itô’s formula which is defined on semimartingales, the most
general class of stochastic processes.

Definition 1. (Semimartingale) A càdlàg adapted process X is a semimartingale if it
admits the following decomposition:

Xt = X0 +Mt + At,

where X0 is finite and F0-measurable, M is a càdlàg local martingale, A is an adapted
process with finite variation, and M0 = A0 = 0.

Theorem 1. (Itô’s Formula) Let X = {Xt}t≥0 be a semimartingale with state space R and
f be a C2 function on R. Then f(X) is also a semimartingale, and

f(Xt) = f(X0) +

∫ t

0+
f ′(Xs−)dXs +

1

2

∫ t

0+
f ′′(Xs−)d[X,X]cs

+
∑

0<s≤t

{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs} , (2.1)
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where f ′ (f ′′ resp.) is the first (second resp.) order derivative of f with respect to X, [X,X]c

is the continuous part of the quadratic variation process of X, and ∆Xt = Xt −Xt−.

Note that Itô’s formula (2.1) is applied in the following chapters to prove verification
theorems and derive partial differential equations.

We present the solution of a stochastic differential equation (SDE) and formulation
of some stochastic optimization problems for the rest of this chapter. Note that these
optimization problems are based on a one-dimensional diffusion process driven by a one-
dimensional Brownian motion. Interested readers are referred to Fleming & Soner (2006)
and Øksendal & Sulem (2007) for stochastic optimization problems on more general pro-
cesses.

Given deterministic functions b and σ that are progressively measurable and are from
[0, T ]× Ω× R to R, we consider the following SDE:

dXt = bt(Xt)dt+ σt(Xt)dWt, t ∈ [0, T ], (2.2)

where {Wt}t≥0 is a one-dimensional Brownian motion with respect to {Ft}t≥0. We present
the definition of a strong solution of Eq. (2.2) (see Touzi (2012) Definition 2.1 on page 5)
in the following.

Definition 2. (Strong Solution of an SDE) A strong solution of SDE (2.2) is a progres-

sively measurable process X such that
∫ T

0
(|bt(Xt)|+ |σt(Xt)|2) dt <∞, a.s., and

Xt = X0 +

∫ t

0

bs(Xs)ds+

∫ t

0

σs(Xs)dWs, t ∈ [0, T ].

A sufficient condition for the existence and uniqueness of a strong solution of SDE (2.2)
is given in the following (see Touzi (2012) Theorem 2.2 on page 6).

Theorem 2. Let X0 be a random variable that is independent of W such that E [|X0|2] <
∞. Assume that the processes b·(0) and σ·(0) are in H2 and that for some K > 0,

|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y|, for all t ∈ [0, T ], x, y ∈ R,

where H2 denotes the collection of all progressively measurable processes ψ with finite di-

mension such that E
[∫ T

0
|ψt|2

]
< ∞. Then, for all T > 0, there exists a unique strong

solution of SDE (2.2) in H2. Moreover,

E
[
sup
t≤T
|Xt|2

]
≤ C(1 + E|X0|2)eCT ,

for some constant C=C(T,K) depending on T and K.
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2.2 Feynman-Kac Formula

For SDE (2.2), we introduce the the infinitesimal generator of the diffusion process (2.2)
in the following:

(Ltψ)(x) = bt(x)ψ′(x) +
1

2
σ2
t (x)ψ′′(x), for all t ∈ [0, T ], ψ ∈ C2(R).

We consider the Cauchy linear parabolic partial differential equation (PDE):{
νt(t, x) + (Ltν)(t, x) + f(t, x)− r(t, x) = 0, (t, x) ∈ [0, T )× R,
ν(T, x) = g(x), x ∈ R,

(2.3)

where ν ∈ C1,2([0, T ) × R), g is a given function from R to R, and r and f are functions
from R to R where r is further assumed to be non-negative. We present a simple version
of the Feynman-Kac representation theorem in the following.

Theorem 3. (Feynman-Kac Representation Theorem) Let ν be a C1,2([0, T )×R) solution
of Cauchy PDE (2.3). Then, ν admits the following representation

ν(t, x) = E
[∫ T

t

e−
∫ s
t r(u,X

t,x
u )duf(s,X t,x

s )ds+ e−
∫ T
t r(s,Xt,x

s )dsg(X t,x
T )

]
, for all (t, x) ∈ [0, T ]×R,

where X t,x
s for t ≤ s ≤ T indicates process X is with initial state Xt = x.

Note that the Feynman-Kac Representation Theorem is applied in Chapter 4 to derive
the PDE corresponding to the profit of an insurer.

2.3 Stochastic Control Problems

A controlled diffusion process X = {Xt}t≥0 can be described by the following SDE:

dXt = bt(Xt, αt)dt+ σt(Xt, αt)dWt, 0 ≤ t ≤ T, (2.4)

where T > 0 is a fixed finite horizon, α = {αt}t≥0 is the progressively measurable control
process valued in A ⊂ R, and b and σ are progressively measurable functions from [0, T ]×
R× A to R. We assume that the functions b and σ satisfy the following two conditions
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(i) |bt(x, a)− bt(y, a)|+ |σt(x, a)− σt(y, a)| ≤ C|x− y| for ∀x, y ∈ R and ∀a ∈ A, where
C is a uniform constant that is independent of x, y, and a;

(ii) the set A of controls α is restricted to

A =

{
α : E

[∫ T

0

|bt(0, αt)|2 + |σt(0, αt)|2dt
]
<∞

}
;

to ensure that the SDE (2.4) has a unique strong solution. For the rest of this section,
we denote this solution by {X t,x

s }s∈[t,T ] to indicate process X is at state x ∈ R at time
t ∈ [0, T ].

The objective function is defined as

J(t, x, a) = E
[∫ T

t

f(s,X t,x
s , αs)ds+ g(X t,x

T )

]
, (2.5)

where f is a function from [0, T ]×R×A to R and g is a function from R to R. To ensure
that J(t, x, a) <∞, we further assume

(i) a quadratic growth condition, |g(x)| ≤ C(1 + |x|2) for ∀x ∈ R and a constant C
independent of x;

(ii) the set of controls {αt}t≥0 is restricted to

A(t, x) =

{
α ∈ A : E

[∫ T

t

|f(s,X t,x
s , αs)|ds

]
<∞

}
,

for (t, x) ∈ [0, T ]× R.

The value function associated with Eq. (2.5) is

v(t, x) = sup
α∈A(t,x)

J(t, x, α), (2.6)

and
α̂ = arg max

α∈A(t,x)
J(t, x, α) (2.7)

is called an optimal control. Note that a control process α in the form of αs = a(s,X t,x
s ) for

some measurable function a from [0, T ]×R to A is called a Markovian (feedback) control.
We are only interested in Markovian controls in this thesis.
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Theorem 4. (HJB Equation) Suppose the functions b, σ, f , and g are uniformly contin-
uous, and the value function V ∈ C1,2([0, T ] × R). Then, the value function V solves the
Hamilton-Jacobi-Bellman (HJB) equation:{

−Vt −H(t, x, Vx, Vxx) = 0, (t, x) ∈ [0, T )× R,
V (T, x) = g(x), x ∈ R,

where, for (t, x, p.M) ∈ [0, T ]× R× R× R,

H(t, x, p,M) = sup
a∈A

{
b(t, x, a)p+

1

2
σ2(t, x, a)M + f(t, x, a)

}
.

H is called the Hamiltonian of the control problem.

Interested readers are referred to Touzi (2012) (Propositions 3.4 and 3.5, and Theorem
3.6) for formal statements and derivation. Note that a singular control framework where
the Hamiltonian H = ∞ is applied to establish the pricing value function for variable
annuities with guaranteed minimum withdrawal benefits in Chapter 5.

2.4 Optimal Stopping Problems

For a finite horizon T > 0, we denote by T[t,T ] the collection of all stopping times τ valued
in [t, T ]. We assume that a stochastic process X = {Xt}t≥0 is defined by SDE (2.2) and
the functions b and σ satisfy the conditions in Theorem 2 such that the SDE has a unique
strong solution.

Let g be a continuous function from R to R and assume that

E

[
sup
t∈[0,T ]

|g(Xt)|

]
<∞. (2.8)

Under condition (2.8), the objective function

J(t, x, τ) = E[g(X t,x
τ )],

is well defined for all (t, x) ∈ [0, T ] × R. Again, X t,x
s indicates that the process X is at

state x ∈ R at time t ∈ [0, T ]. The optimal stopping problem is defined by

V (t, x) = sup
τ∈T[t,T ]

J(t, x, τ), (t, x) ∈ [0, T ]× R. (2.9)
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A stopping time τ̂ is called an optimal stopping rule if V (t, x) = J(t, x, τ̂). The set

S = {(t, x) : V (t, x) = g(x)} (2.10)

is called the optimal stopping region, and its complement Sc is called the continuation
region.

Theorem 5. (Variational Inequality) Assume that the value function V ∈ C1,2([0, T ]×R)
and let g : R → R be continuous. Then value function V solves the following variational
inequality:

min {−Vt − LV, V − g} = 0. (2.11)

A formal proof can be found in Touzi (2012) (see Theorem 4.5). Note that an optimal
stopping framework is applied to solve for fair insurance fees of variable annuities in Chapter
3 and Chapter 4.
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Chapter 3

High-Water Mark Fee Structure in
Variable Annuities

3.1 Introduction

As alluded to in Chapter 1, flexible investment options, favorable tax-deferral treatment,
and stable long-term guarantees have made variable annuities (VAs) one of the most preva-
lent investment vehicles over the last two decades. In a typical VA contract, a policyholder
(PH) pays a lump sum initial premium to an insurer who invests the sum into a basket of
preassigned mutual funds (often referred to as the policy fund) by setting up an investment
account to track the performance of the policy fund. Payouts under the VA contract are
often subject to some minimum guarantees which kick in when the performance of the pol-
icy fund is poor. To fund these guarantees, the insurer periodically depletes the investment
account by charging insurance fees. The PH is also given the option to surrender the VA
contract before maturity, subject to some predetermined surrender penalty. In light of the
above, a standard VA contract with minimum guaranteed payouts offers the PH protection
against bearish market conditions while allowing the PH to gain (financially) from bullish
market movements.

Nevertheless, even with the seemingly great advantages to PHs, the VA market has ex-
perienced dwindling sales over the past half decade (see Bernard & Moenig (2019)). Many
reasons have been evoked to explain this trend, most notably unfavorable fee structures
associated with VA products. Therefore, the sluggish market highlights the importance of
fee structure design for VAs.
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The most prevalent fee structure for VAs is the so-called constant fee structure which
periodically levies a fixed percentage of the investment account as insurance fees. This
time-invariant and state-invariant fee structure suffers from a number of drawbacks, which
served as the main catalyst for a number of researchers to look into alternative (and possibly
more favorable) fee structures in VAs. For instance, to deal with the high insurance fees,
Bernard & Moenig (2019) proposes a time-dependent fee structure where the insurance fee
decreases after a certain time threshold. This fee structure is shown to reduce insurance
fees while keeping the VA contract profitable to insurers. To manage the volatility risk,
Cui et al. (2017) considers a VIX-linked fee structure in a Heston-type stochastic volatility
setting. It is demonstrated that, compared to the constant fee structure, the VIX-linked fee
structure lowers the sensitivity of insurers’ liabilities to market volatility. To contain the
surrender risk, Bernard et al. (2014) introduces a state-dependent fee structure that charges
a constant fee only when the value of the investment account is below a certain threshold.
MacKay et al. (2017) later shows that, in a complete market, the state-dependent fee
structure can render surrender behavior fully sub-optimal by imposing a certain marketable
surrender penalty. Moreover, Moenig & Zhu (2018) finds that the state-dependent fee
structure offers the best potential remedy for lapse-and-reentry in VAs.

Although each aforementioned paper focuses on improving one aspect of the constant
fee structure’s deficiencies (e.g., reducing high insurance fees, lowering the volatility risk,
or discouraging PH surrender behavior, etc.), little is known about the impact that the
corresponding newly proposed fee structures may have on PH welfare. Examining the im-
pact of fee design on the welfare effects of holding a VA helps determine whether fee design
can improve VA marketability in comparison to alternative investments, and possibly ad-
dress the issue of dwindling sales in the VA market. However, by merely focusing on risk
management implications of the proposed fee structures from the insurer’s perspective, the
analysis fails to fully address the issue of declining demand.

In light of the above, the goal of this chapter is twofold. First, we propose a VA with
a novel high-water mark fee structure and evaluate the welfare effects of holding the VA.
This high-water mark (HWM) fee structure1 is assumed to have a blend of features, from
a state-dependent constant fee to a pure HWM fee. More specifically, in addition to a
constant fee charged when the investment account is below a certain threshold, the HWM
fee structure is designed to also apply an HWM fee on the increase in the record highs
of the investment account above the threshold. This fee structure can be considered as a

1The HWM fee structure is frequently applied in the hedge fund industry where a Two-and-Twenty
fee scheme (2% constant fee for assets under management and 20% HWM fee for newly created HWM) is
widely accepted. The impact of the HWM fee on investors and fund managers in the hedge fund has been
well documented; see e.g. Guasoni & Ob lój (2016) and references therein.
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generalization of both the constant and the state-dependent fee structures, and it will be
shown to reduce the uncertainty of the VA payout.

Second, we introduce a quantitative measure, namely a compatible set of risk aversions,
to assess the marketability of a VA under a certain fee structure. For the fee structure, the
compatible set is defined as a collection of risk aversions where, for any level of risk aversion
within this set, the PH’s welfare of holding the VA is higher than that of holding either of
two alternative investments, namely a risk-free bond and a pure fund. The compatible set
offers a benchmark to compare the impact of different fee structures on VA marketability.
By definition, a wider compatible set indicates better marketability of the corresponding
fee structure as it makes the VA preferable to the alternative investment options for a
broader range of PHs. We also conduct sensitivity analysis on compatible sets under
various parameter settings to investigate VA marketability under different fee structures
in various market conditions.

By comparing the compatible sets and the welfare effects of holding the VA under the
HWM fee structure with those under the constant and the state-dependent fee structures,
we find that the HWM fee structure improves VA marketability in the following two aspects.
First, the HWM fee structure generates the widest compatible set under various parameter
settings. Second, when the VA is preferred over the alternative investment options, the
HWM fee structure produces the highest welfare for the PH.

As for the analysis, we first adopt the risk-neutral pricing approach to determine the
fair insurance fees2 for the VA with the HWM fee structure. This is the conventional
approach to price VAs in the literature; see for example Milevsky & Salisbury (2001),
Milevsky & Salisbury (2006), Bauer et al. (2008), Dai et al. (2008), Huang & Kwok (2016),
and references therein. Within the risk-neutral pricing framework, the insurer assumes
that the PH aims to maximize the expected present value (EPV) of the VA’s future cash
payouts. Corresponding to insurers’ worst-case liabilities, this assumption has important
risk management implications as it renders that insurers can, at least in theory, hedge
every possible cash outflow with no risk.

Next, from the PH’s perspective, we carry out the welfare effects of holding the VA
contract under the HWM fee structure. We carry a comparative analysis by also considering
PH welfare under the constant and the state-dependent fee structures. In a complete and
frictionless market, it is opportune for PHs to maximize the EPV of the VA’s future
payouts (see Bauer et al. (2017) for more details). However, for PHs, the life insurance
market is neither complete nor frictionless, and they might deviate from maximizing future

2The fair fee is also called the break-even fee. It is the fee that equates the expected present value of
PHs’ future cash payouts to their initial premiums.
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payouts. Therefore, we evaluate PH welfare by a mean-variance (MV) preference model in
a potentially incomplete market. More specifically, the PH is assumed to maximize their
welfare quantified by a MV objective function.

The MV preference model has been widely used in tackling investment optimization
problems (e.g. Zhou & Li (2000), Basak & Chabakauri (2010), and Björk et al. (2014)),
ever since the seminal work by Markowitz (1952). In this chapter, we adopt this model
for the following three reasons. First, as alluded to above, one merit of the HWM fee
structure is that its inherent design reduces the uncertainty of the VA payout, while the
MV preference model is explicit in assessing PH aversion against the variance of the VA
payout. Second, the MV preference model has been often applied as a benchmark to assess
long-term intertemporal investments (see, e.g. Miller & Whitman (1970), Cochrane (2014),
and Munk (2020)). The present work is therefore consistent with this line of thought as
VAs are typically long-term investments. Last, compared to a utility maximization model,
the risk aversion coefficient in the MV preference model is simpler to gauge (see Dai et al.
(2020) for more details).

To evaluate the welfare effects of holding a VA under the HWM fee structure, we
resort to solving an MV optimal stopping problem. Adopting the game theoretic frame-
work proposed in Björk & Murgoci (2010), we overcome the intricacy stemming from the
random time horizon and high dimension, and derive a system of extended Hamilton-
Jacobi-Bellman (EHJB) equations corresponding to the problem. Furthermore, numeri-
cally solving the system of EHJB equations using standard finite difference methods is
extremely challenging due to the complex form of the system and a time-consuming it-
eration procedure. We circumvent the complications by proposing a numerical algorithm
based on Wang & Forsyth (2011) and further prove that a solution of the algorithm is a
solution of the system.

The main contributions of this chapter are summarized in the following four points.
First, we propose a VA with a novel HWM fee structure and evaluate PH welfare with the
VA. Second, we introduce an innovative quantitative measure to assess the impact of fee
structure on VA marketability. Third, we derive a system of EHJB equations corresponding
to an MV optimal stopping problem with two state variables over a random time horizon.
Last, we propose a numerical algorithm to solve the system of EHJB equations and establish
the connection between the algorithm and the system.

The remainder of this chapter is organized as follows. Section 3.2 formally introduces
the VA with an HWM fee structure along with its risk-neutral pricing framework. Nu-
merical examples of fair insurance fees under the HWM fee structure are also presented.
For comparative purposes, we present the corresponding results for the constant and the
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state-dependent fee structures. Section 3.3 sets up an MV preference model to quantify
the welfare effects of holding the VA with the HWM fee structure. Furthermore, the
concept of compatible sets is introduced to measure the impact of a fee structure on the
VA’s marketability. A comparative analysis of the compatible sets of VAs with HWM,
constant, and state-dependent fee structures is then conducted under various parameter
settings. For completeness, we compare the PH’s optimal surrender behavior for VAs with
the aforementioned three fee structures. Section 3.4 concludes. A verification theorem of
the system of EHJB equations corresponding to the MV optimal stopping problem, the
algorithm, and proofs are relegated to Appendix A.

3.2 Valuation of Fair Fees

In this section, we give a detailed description of the VA policy under consideration and
formulate its risk-neutral pricing model within a continuous-time stochastic optimal stop-
ping framework. As a result, the fair fees of the VA policy under the HWM fee structure
are obtained.

3.2.1 Guaranteed Benefits

We consider a VA policy with maturity T > 0. At inception of the contract, the PH pays
an initial premium P which is invested in a predetermined basket of funds, namely the
policy fund. The insurer sets up an investment account F to track the performance of the
underlying policy fund with F0 = P . The VA policy is assumed to have the following two
embedded guarantees:

• Guaranteed minimum death benefit (GMDB): in the event of PH death at
time t ∈ (0, T ), the policy stipulates that the death benefit is the greater of the
investment account Ft and guaranteed amount Gt;

• Guaranteed minimum maturity benefit (GMMB): at policy maturity T , a
payment equal to the greater of the investment account FT and guaranteed amount
GT is made to the PH.

In what follows, the guaranteed amount is assumed to roll up continuously at a rate g ≥ 0
before the contract matures, i.e.,

Gt = F0e
gt, for t ∈ [0, T ]. (3.1)
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Note that the roll-up rate g should be no greater than the risk-free rate r to exclude
arbitrage opportunities.

Meanwhile, the PH is allowed to surrender the VA at any time before maturity. If this
surrender right is exercised, no guarantees are applicable and a penalty κ is levied on the
balance of the investment account. Thus, upon surrender, the PH is entitled to receive
(1−κt)Ft at t ∈ [0, T ). To disincentivize early surrender behavior, the surrender penalty κt
is usually assumed to decrease with time. Note that the VA under consideration does not
allow for partial withdrawals from the investment account as guarantees. In other words,
the only ways for the PH (or their beneficiary) to access funds in the VA are to hold the
contract to maturity, pass away holding the contract, or fully surrender the contract.

3.2.2 HWM Fee Structure and Investment Account Dynamics

Suppose the probability space (Ω,F ,Q) with filtration {Ft}0≤t≤T satisfies the usual con-
ditions, where Q is an equivalent martingale measure. Under the Q measure, we assume
that the policy fund value process S follows a geometric Brownian motion with dynamics

dSt
St

= rdt+ σdWQ
t ,

where r > 0, σ > 0 and {WQ}t≥0 is a Brownian motion under Q.

Under the HWM fee structure, the insurance fee has two components, namely a constant
fee of rate c ≥ 0 and an HWM fee of rate α ≥ 0. More precisely, the constant fee c is
continuously charged as a fixed percentage of the investment account F whenever the
investment account is lower than a certain predetermined threshold θ. Alternatively, the
HWM fee α is levied as a proportion of the increase of the investment account’s HWM
only when the investment account is above the threshold θ 3. In other words, the HWM
fee α is not charged continuously, and for it to become effective, the investment account F
has to be above the threshold θ and reach new record highs. In light of the above, under
Q, the dynamics of the investment account under the HWM fee structure is assumed to be

dFt = (r − c1{Ft≤θ})Ftdt+ σFtdW
Q
t − α1{Ft≥θ}dMt, (3.2)

where
Mt = sup

0≤s≤t
Fs

3The HWM fee structure can be generalized to the case with two thresholds, for example θ1 and θ2.
Only the constant fee c is effective when the investment account is lower than θ1 and only the HWM fee
is effective when the investment account reaches new record highs above θ2.
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denotes the HWM of the investment account at time t.

Note that the above HWM fee structure is to a certain extent related to the fee struc-
ture of some VAs in the market. Indeed, apart from insurance fees, it is also customary
for insurers to charge performance-based fees for the underlying policy fund. These per-
formance fees are normally higher for high returns of the policy fund and smaller for low
returns (see, for instance, page 11 of Prudential (2020) for details), which resembles the
mechanism of the HWM fee structure. Therefore, the HWM fee structure can be regarded
as the union of “insurance fees” (c) and “performance fees” (α).

For comparative purposes, we also introduce the dynamics of the investment account
under two other fee structures for VAs:

• A constant fee structure:

dFt = (r − c)Ftdt+ σFtdW
Q
t ;

• A state-dependent fee structure (Bernard et al. (2014)):

dFt = (r − c1{Ft≤θ})Ftdt+ σFtdW
Q
t .

Note that, for notational convenience, we use the same parameter c to represent the con-
stant fee in all three fee structures. However, under the risk-neutral pricing model, the
parameter c in the HWM fee structure will be different from the ones in the constant or
state-dependent fee structures.

A graphical illustration of the mechanism of the three fee structures is presented in
Figure 3.1. Note that the HWM fee structure is a generalization of both the constant
and state-dependent fee structures. Indeed, the HWM fee structure reduces to the state-
dependent fee structure if α = 0. Also, the constant fee structure can be viewed as a
limiting case of the HWM fee structure when θ →∞.

3.2.3 Mortality Model

From the inclusion of the GMDB, the insurer is exposed to mortality risk. Trading only
stocks and bonds cannot fully replicate mortality-related insurance claims since mortality-
based assets are scarce in the financial market (see Møller (1998) for more details). This
gives rise to market incompleteness. To deal with this, it is common in the actuarial
literature to make the following two assumptions: independence between financial market
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Figure 3.1: A graphical illustration of fee mechanisms for constant, state-
dependent and HWM fee structures.

risk and mortality risk, and risk-neutrality of the insurer to mortality risk; see, for instance,
Aase & Persson (1994) and Bauer et al. (2008). With these two assumptions, the mortality
risk of each PH can be diversified by measuring the expected value of mortality-based claims
for a group of insured lives. In this chapter, we abide by this convention for VA pricing.
Hence, the risk-neutral measure of the financial and insurance markets combined is the
product measure of Q and the physical measure of mortality risk. With slight abuse of
notation, we henceforth denote this product measure by Q.

For convenience, let ρx denote the future lifetime of an x-year-old PH with survival
function

spx = P(ρx > s) = e−
∫ s
0 λx+udu, for s ≥ 0,

where λx+u is the PH’s force of mortality at age x + u. In what follows, we omit the
subscript x of ρx for brevity. For illustrative purposes, we consider the same Makeham
mortality model as in MacKay et al. (2017) i.e.,

λx = A+B · Cx, for x > 0,

with A = 0.0001, B = 0.00035, and C = 1.075.
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3.2.4 Fair Fees

To obtain the fair fees for the VA policy, we make use of its resemblance to American-type
financial derivatives and apply the risk-neutral pricing approach. More specifically, within
the risk-neutral pricing framework, the insurer is able to replicate every possible VA cash
payout, and they assume a PH that maximizes the EPV of the future cash payouts for
risk management purposes as this corresponds to the insurer’s worst-case scenario from a
liability standpoint (see Bauer et al. (2017) for more details). In light of the above, we
formulate the pricing of the VA policy within a continuous-time stochastic optimal stopping
framework where the PH is assumed to surrender the contract optimally to maximize the
EPV of the future cash payouts.

For the HWM fee structure, the VA’s cash payouts depend on the HWM of the invest-
ment account. Therefore, a state variable m, defined as

m := Mt = sup
0≤s≤t

Fs,

is further added to preserve the Markov property. Denote the set of all stopping times τ
valued in [t, T ] by T[t,T ], and let Ō be the closure of the setO = {(F,m) ∈ R2

+ : 0 < F < m}.
The pricing value function V of the VA policy at time t over the domain (t, F,m) ∈ [0, T ]×Ō
is:

V (t, F,m) = sup
τ∈T[t,T ]

EQ
t,F,m

τ−tpx+tψ(τ, Fτ )e
−r(τ−t)︸ ︷︷ ︸

(a)

+

∫ τ

t
s−tpx+tλx+s max(Fs, Gs)e

−r(s−t)︸ ︷︷ ︸
(b)

ds

 ,
(3.3)

where

ψ(t, Ft) =

(1− κt)Ft, 0 ≤ t < T,

max(GT , FT ), t = T,
(3.4)

corresponds to the surrender value or the maturity payout of the VA policy, and Gs is the
guaranteed amount defined in Eq. (3.1). Note that, in Eq. (3.3), (a) contains the surrender
and maturity payouts while (b) contains the payout triggered by the PH’s death. Define

LV = (r − c1{F<θ})FVF +
1

2
σ2F 2VFF − (λx+t + r)V,

where Vt, VF , and VFF are the first-order derivatives of V with respect to t and F , and
the second-order derivative with respect to F , respectively. By the dynamic programming

22



principle (as in Fleming & Soner (2006)), the pricing value function V over the domain
[0, T ]× Ō satisfies the following variational inequality

min {−Vt − LV − λx+t max (F,G), V − ψ} = 0, (3.5)

with boundary conditions

V (T, F,m) = max(F,GT ), for (F,m) ∈ [0,m]× [0,∞),

Vt
∣∣
F=0

= (λx+t + r)V
∣∣
F=0
− λx+tG, for (t,m) ∈ [0, T )× [0,∞),

∂V
∂m

∣∣
F=m

= α1{F≥θ}
∂V
∂F

∣∣
F=m

, for (t,m) ∈ [0, T )× [0,∞),

limm→∞ V (t,m,m) = ψ(t,m), for t ∈ [0, T ).

(3.6)

The first boundary condition in Eq. (3.6) corresponds to the maturity payout of the VA
policy (GMMB). The second boundary condition corresponds to the case in which the
investment account is ruined, i.e. the degeneration of Eq. (3.5) when F = 0. The third
boundary condition reflects the continuity of the value function V before and after the
investment account F adjusts for a new HWM. Heuristically, when the investment account
is above the threshold θ and reaches a new HWM from m to m + ∆m, a portion α ·∆m
of the increase is deducted as the HWM fee, namely

V (t,m+ ∆m,m) = V (t,m+ ∆m−α1{F≥θ} ·∆m︸ ︷︷ ︸
HWM fee deduction

, m+ ∆m︸ ︷︷ ︸
HWM update

). (3.7)

Taking the limit as ∆m approaches zero and applying Taylor’s expansion on Eq. (3.7)
yields the third boundary condition. A similar condition can also be found in Goetzmann
et al. (2003), Panageas & Westerfield (2009), and Lan et al. (2013). The last boundary
condition holds as it is optimal for the PH to surrender the contract for large investment
account values when the HWM fee α is positive (α > 0)4.

Note that state variables F and m in the partial differential equation (PDE) (3.5) are
such that F ≤ m, which makes PDE (3.5) undesirable to solve numerically. To disentangle
the dependence between these two variables, we consider the following change of variable:

z =
F

m
, (3.8)

4For the state-dependent fee structure (α = 0), it is optimal for the PH to hold the VA for large
investment account values as suggested in MacKay et al. (2017). Therefore, the last boundary condition
in Eq. (3.6) becomes limm→∞ V (t,m,m) = m.
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where z ∈ [0, 1]. Evidently, the term 1− z represents a drawdown5 measure of the invest-
ment account with respect to its HWM. Define a function

J(t, z,m) = V (t, F,m),

and it is not difficult to see that Eq. (3.5) becomes

min {−Jt − LJ − λx+t max (mz,G), J − ψ(t,mz)} = 0, (3.9)

with boundary conditions

J(T, z,m) = max (zm,G), for (z,m) ∈ [0, 1]× [0,∞),

Jt
∣∣
z=0

= (λx+t + r)J
∣∣
z=0
− λx+tG, for (t,m) ∈ [0, T )× [0,∞),

∂J
∂m

∣∣
z=1

=
α1{m≥θ}+1

m
∂J
∂z

∣∣
z=1

, for (t,m) ∈ [0, T )× [0,∞),

limm→∞ J(t, 1,m) = ψ(t,m), for t ∈ [0, T ),

(3.10)

where LJ = (r − c1{mz<θ})zJz + 1
2
σ2z2Jzz − (λx+t + r)J . We propose numerically solving

PDE (3.9) with boundary conditions (3.10) to obtain the fair fees for the VA under the
HWM fee structure.

For a VA policy, a fair fee is one that makes the EPV of the cash inflows and outflows
perfectly balanced. Specifically, we present the following definition of fair insurance fees
for a VA with an HWM fee structure.

Definition 3. For a VA with the HWM fee structure, (c, α) ∈ [0, 1]2 is called a pair of fair
fees if it satisfies

V (0, F0, F0; c, α) = F0. (3.11)

To determine a pair of fair insurance fees (c, α) under the HWM fee structure, we
fix the HWM fee α ∈ [0, 1] and derive the state-dependent constant fee c ∈ [0, 1] (if
it exists) such that Eq. (3.11) is satisfied. The parameter inputs are as specified in
Table 3.1. Note that the roll-up rate g is zero, which means the guarantees are effectively
return-of-initial-premium (Gt = F0 for t ∈ [0, T ]). The threshold is set to be θ = 125
in the following numerical analysis but other values could have as easily been considered.
The surrender penalty is chosen to be a decreasing smooth function to generate smooth

5Drawdown is a risk metric measuring the magnitude of the decline in portfolio value relative to its
historic HWM.
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Description Parameter Base Case Sensitivity Analysis

Contract length T 10

PH’s age x 60

Initial premium F0 100

Roll-up rate g 0

Threshold for HWM fee θ 125

Surrender penalty κt 0.05× (1− t
T

)3

Interest rate r 2% 1%, 3%

Expected return µ 8% 10%

Volatility σ 15% 20%

Table 3.1: Parameter inputs

surrender regions. The same surrender penalty function is also applied in MacKay et al.
(2017) as it simulates market surrender penalties which start high and dip rapidly in the
later years of the contract. For parameters r, µ, and σ, we conduct sensitivity tests in
addition to the base case to comprehensively investigate their impact on the fair fees and
the PH’s valuation of the VA contract.

A list of fair fees under different fee structures with various risk-free rates is summarized
in Table 3.2: where “Constant” corresponds to the constant fee structure and “SD” to the
state-dependent fee structure (the case α = 0). We also consider four other levels of HWM
fee α, namely 0.05, 0.2, 0.35 and 0.5, and derive the corresponding constant fee c. As
expected, we first observe that the constant fee c decreases as the HWM fee α increases for
all three risk-free rates r and two different volatilities σ. This is immediate from Definition
3. Now focusing on the risk-free rate effect, we note that, for a given HWM fee α, the fair
constant fee c decreases from the case r = 1% to r = 3%. This is intuitive as the value
of these guarantees tends to decrease with the interest rate. Lastly, for the same HWM
fee α, higher volatility corresponds to a higher constant fee c (all else being equal). This
confirms the intuition that more fees are needed to finance the guarantees in more volatile
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r = 1% r = 2% r = 3%

Fee Structure σ = 15% σ = 20% σ = 15% σ = 20% σ = 15% σ = 20%

Constant 0.0584 0.1008 0.0290 0.0541 0.0163 0.0332

SD (α = 0) 0.0593 0.1028 0.0320 0.0587 0.0203 0.0400

α = 0.05 0.0587 0.1015 0.0298 0.0549 0.0174 0.0352

α = 0.2 0.0582 0.1003 0.0281 0.0525 0.0142 0.0304

α = 0.35 0.0579 0.0994 0.0275 0.0513 0.0133 0.0287

α = 0.5 0.0576 0.0988 0.0271 0.0504 0.0126 0.0275

Table 3.2: Fair constant fees c under different fee structures. “Constant”
corresponds to the constant fee structure and “SD” to the state-dependent fee
structure (the case α = 0). We also consider four other levels of HWM fee α,
namely 0.05, 0.2, 0.35 and 0.5. Observe that the constant fee c decreases as the
HWM fee α increases for all cases. Also, a higher risk-free rate corresponds to
a lower constant fee and higher volatility corresponds to a higher constant fee.

market conditions.

3.3 Policyholder’s Welfare

In this section, we examine PH welfare from holding the VA with an HWM fee struc-
ture under an MV preference model in a potentially incomplete market. For comparative
purposes, we also consider PH welfare under VAs with constant and state-dependent fee
structures. Note that we assume the insurer still prices the VA using risk-neutral pricing
and the fair fees are as given in Section 3.2 when measuring PH welfare. In contrast to
the insurer, it is appropriate to assume the PH faces an incomplete market as they might
not be able replicate every VA payout (e.g., they cannot replicate mortality-based claims
through diversification).
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3.3.1 Model Setup

In what follows, we formulate the MV preference of the PH to quantify the welfare from
holding the VA with an HWM fee structure. Specifically, the PH is assumed to adopt an
MV objective function with a state-dependent risk aversion function.

Suppose that the dynamics of the underlying policy fund under a physical probability
measure P follows a geometric Brownian motion,

dSt
St

= µdt+ σdWt, (3.12)

where {Wt}{t≥0} is a Brownian motion under measure P. As mentioned above, the PH is
assumed to optimally surrender the VA contract to maximize the following MV objective
function with a state-dependent risk aversion function:

V (t, F,m) = sup
τ∈T[t,T ]

{
Et,F,m

[
H(Fτ∧ρ)

∣∣ρ > t
]
− γ(F )

2
Vart,F,m

[
H(Fτ∧ρ)

∣∣ρ > t
]}

(3.13)

for (t, F,m) ∈ [0, T ]× Ō, where H corresponds to the VA payout defined as

H(Fτ∧ρ) =


(1− κτ )Fτ , τ < ρ ∧ T,

max(Gρ, Fρ), ρ < τ ∧ T,

max(GT , FT ), T < τ ∧ ρ,

(3.14)

T[t,T ] denotes the set of all stopping times τ valued in [t, T ], ρ stands for the future lifetime
of an x-year-old PH, and the risk aversion function γ(F ) 6 is given as

γ(F ) =
γ

max(F,G)
. (3.15)

Note that the risk aversion function γ(F ) can be regarded as a measure of PH aversion to
the variance of the VA payout. The choice of state-dependent risk aversion ensures that
good performances of the investment account are penalized less than poor performances,

6The state term max(F,G) in Eq. (3.15) can be replaced by F or (1 − κ)F with little change to the
results. This is because it is not optimal for the PH to surrender if the fund value is lower than the
guaranteed amount, and the probability of early surrender is accordingly very small (see Section 3.3.4).
Therefore, the state term max(F,G) can be interpreted as a simple approximation of the real-time value
of the VA.
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which is an improvement on the standard constant risk aversion MV preference model with
symmetric risk penalty. As can be seen from Eq. (3.15), higher investment account values
reduce penalties associated with the variance term in the MV objective function (3.13).
Moreover, the functional form of γ(F ) tailors to the VA with embedded guarantees. State-
dependent risk aversion also guarantees the value function is state-homogeneous, namely
V (0, F0, F0) = F0·V (0, 1, 1), a property that further ensures the comparison between the VA
and aforementioned alternative investments is robust with respect to the initial investment
F0 (for a detailed discussion, see Appendix A.3). Interested readers are referred to see
Björk et al. (2014) for a more comprehensive discussion on the MV preference model with
state-dependent risk aversion.

Note that a stochastic optimal stopping problem can be viewed as an optimal con-
trol problem with binary controls (see, e.g., Tan et al. (2018) and Ebert et al. (2020)).
Therefore, we can regard our optimal stopping problem as an optimal control problem by
introducing the following stopping rule.

Definition 4. A stopping rule is a measurable function u : [0, T ] × Ō → {0, 1} where 0
corresponds to continuation and 1 corresponds to stopping.

More specifically, our setup’s continuation and stopping regions at time t ∈ [0, T ) are
defined as Ct = {(F,m) ∈ Ō : u(t, F,m) = 0},

St = {(F,m) ∈ Ō : u(t, F,m) = 1},

with corresponding stopping time τu defined as

τu = inf{s ≥ t : u(s, Fs,Ms) = 1}.

In light of the above, the optimal value function in Eq. (3.13) can be rewritten as

V (t, F,m) = sup
u∈A

{
Et,F,m

[
H (Fτu∧ρ)

∣∣ρ > t
]
− γ(F )

2
Vart,F,m

[
H (Fτu∧ρ)

∣∣ρ > t
]}

:= sup
u∈A
J (t, F,m; τu) , (3.16)

where A is the admissible set of stopping rules.

One of the major intricacies of the stochastic MV optimization problem (3.16) is the
well-known issue of time inconsistency (see, e.g., Basak & Chabakauri (2010), and Björk
& Murgoci (2014)). To deal with this, we adopt the game theoretic approach proposed in
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Björk & Murgoci (2010) and derive an equilibrium stopping strategy by solving a system of
extended Hamilton-Jacobi-Bellman (EHJB) equations. Nevertheless, deriving the system
of EHJB equations is much more complicated in this case than a standard MV optimization
problem since the MV optimization problem (3.16) has two state variables (F and m) with
a random time horizon (due to the PH’s future lifetime ρ).

To derive the system of EHJB equations, we next define an equilibrium stopping rule
over a random horizon by extending the definition introduced in Landriault et al. (2018).

Definition 5. For a fixed point (t, F,m) ∈ [0, T ) × Ō, a small ε > 0, and an admissible
stopping rule û = {ûs}s∈[t,T ) conditional on ρ > t, define a stopping rule uε by

uε(s, y, z) =

u ∈ {0, 1}, for t ≤ s < (t+ ε) ∧ ρ,

û(s, y, z), for (t+ ε) ∧ ρ ≤ s < T ∧ ρ,

in which (y, z) ∈ [0,m]× [0,∞). If

lim inf
ε↓0

J (t, F,m; τ û)− J (t, F,m; τu
ε
)

ε
≥ 0

for all (t, F,m) ∈ [0, T )×Ō, then û is called an equilibrium feedback stopping rule and the
corresponding equilibrium value function V is given by V (t, F,m) = J (t, F,m; τ û).

Via a formal verification theorem, which can be found in Appendix A.1, we show that
the PH value function (a.k.a. optimal welfare) V (t, F,m) can be determined by solving the
system of EHJB equations (A.1)-(A.7). We resort to numerically solving this system of
EHJB equations which corresponds to an optimal stopping problem with a finite horizon.
We point out that computing numerical solutions for the system of EHJB equations is
a challenging task. Indeed, the system of equations displays a highly complex form and
involves three state variables (the additional state variable stems from the state-dependent
risk aversion function). In this case, standard finite difference methods would be extremely
time-consuming to determine an equilibrium stopping strategy.

To circumvent these difficulties in solving the system of EHJB equations, we develop
an efficient algorithm based on Wang & Forsyth (2011) tailored to MV optimal control
problems. We additionally go one step further by formally establishing a connection be-
tween the system of EHJB equations (A.1)-(A.7) and the algorithm. More specifically, we
show that a solution derived by this algorithm is indeed a solution to the system of EHJB
equations (A.1)-(A.7). The details of the algorithm and the proof of this connection are
relegated to Appendix A.2.
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3.3.2 Compatible Set of Risk Aversions

In this section, we evaluate the welfare effects of holding a VA with different fee structures
in comparison to holding two alternative investment options, namely a risk-free bond and a
pure fund. In line with the MV preference model with state-dependent risk aversion given
by Eq. (3.13), PH welfare from holding the risk-free bond at time t ∈ [0, T ] is given by

VRFB(t, R) = E
[
R · (1 + r)(T∧ρ)−t∣∣ρ > t

]
− γ

2R
Var

[
R · (1 + r)(T∧ρ)−t∣∣ρ > t

]
, R ∈ [0,∞),

(3.17)
where r is the risk-free rate, and R denotes the amount of money invested in the risk-free
bond at time t. Similarly, the welfare effect of holding the pure fund7 at time t ∈ [0, T ] is
given by

VPF(t, S) = Et,S
[
ST∧ρ

∣∣ρ > t
]
− γ

2S
Vart,S

[
ST∧ρ

∣∣ρ > t
]
, S ∈ [0,∞), (3.18)

where S is the pure fund value at time t, and its value process is assumed to follow the
same dynamics as the policy fund given by Eq. (3.12). Note that, for proper comparison,
we consider the same investment horizon T ∧ ρ for the alternative investments as with
the VA. Similarly, we impose the same amount of initial input for each of the VA and the
alternative investments, i.e., F0 = R0 = S0.

Figure 3.2 presents PH welfare at time t = 0 from holding the VA under the constant
and the state-dependent fee structures and compares them with that of holding the risk-
free bond and the pure fund. The left panel is the constant fee structure case where “VA
(Constant Fee)” corresponds to PH welfare under the constant fee structure. The right
panel is the state-dependent fee structure case where “VA (SD α = 0)” represents PH
welfare under the state-dependent fee structure. The parameter inputs are those of the
base case scenario in Table 3.1.

From the left panel, it is evident that, under the constant fee structure, PHs whose levels
of risk aversion γ are in a region of approximately [1.33, 1.7] would find the VA generating
higher welfare than both of the alternative investments. In other words, a rational PH in
this region should prefer the VA to the alternative investments. This observation offers
one a rough idea of the VA’s target clientele, namely PHs who are sufficiently risk-averse
(γ ≥ 1.33) to prefer the VA over the pure fund but are not too risk-averse (γ ≤ 1.7) to
choose the risk-free bond over the VA.

7The pure fund can be regarded as a mutual fund that invests in a portfolio of both risky and risk-free
assets.
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Figure 3.2: PH time-0 welfare of holding a risk-free bond, pure fund, or VA
under constant or state-dependent fee structures in the base case parameter
setting. The left panel is the constant fee structure case, and the right panel is
the state-dependent fee structure case. Observe that the VA with the constant
fee structure is preferable to the alternative investments for PHs with levels of
risk aversion within the set [1.33, 1.7]. With the state-dependent fee structure,
the set is [1.28, 1.59].

From the right panel, we see that PHs with a level of risk aversion in the set [1.28, 1.59]
would prefer the VA with the state-dependent fee structure, over the two alternative in-
vestments. The set of risk aversions for the state-dependent fee structure is narrower than
that of using the constant fee structure (of size 1.59 − 1.28 = 0.31 vs. 1.7 − 1.33 = 0.37,
respectively), meaning that the state-dependent fee structure may even impair the VA’s
marketability. Further, we observe that the set for the state-dependent fee structure is
located to the left of that of the constant fee structure (in the vicinity of [1.28, 1.59] vs.
[1.33, 1.7], respectively). This indicates that the VA’s target clientele becomes less risk-
averse under the state-dependent fee structure. One can attribute these two observations
to the inherent design of the state-dependent fee structure. Specifically, the fee struc-
ture charges more insurance fees for low values of the investment account and none for
high values. This mechanism largely increases the uncertainty of the VA payout as the
investment account is more likely to achieve extreme highs or extreme lows, consequently
making the VA a less desirable investment for more risk-averse PHs and impeding the VA’s
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marketability.

In light of the above discussion, we formally propose a novel concept called compatible
set of risk aversions (compatible set, for short), to quantify the marketability of various
VA fee structures.

Definition 6. The compatible set of a given fee structure is a collection of risk aversions
such that, for any γ within this set, the PH time-0 welfare of holding the VA is higher than
that of holding either the risk-free bond or the pure fund, i.e.{

γ ≥ 0 : V (0, F0, F0; γ) ≥ max
(
VRFB(0, R0; γ), VPF(0, S0; γ)

)}
.

First, a compatible set, if not empty, should be of an interval form. That is, holding a
pure fund offers a lower bound for the compatible set, while holding a risk-free bond offers
an upper bound. On the one hand, a PH with a sufficiently high level of risk aversion (i.e.,
a large γ) would prefer the risk-free bond to the VA since the VA is essentially a risky
investment. On the other hand, a PH with a low level of risk aversion (i.e., a small γ)
would choose the pure fund over the VA because the latter charges fees which lower its
expected return rate.

Second, the compatible set offers a benchmark to measure the marketability of the
VA under different fee structures. A wider compatible set implies that the corresponding
fee structure makes the VA more appealing to a broader range of PHs with various risk
appetites.

Third, the compatible set also helps one locate the VA’s target clientele, which in
turn, should help to provide a better understanding of the VA market. Indeed, as the
compatible set provides an interval of risk aversions γ where the VA is preferred over the
alternative investments, it clearly reveals information about the risk appetite of VA-holding
PHs. As will be shown later, we can also discover some interesting implications on VA
marketability based on changes in the compatible set’s location and width when market
conditions change.

Lastly, results on the compatible set are independent of the scale of the initial invest-
ment F0 due to the choice of the state-dependent MV model. We formally establish this
statement via Theorem 9, which we relegate to Appendix A.3.

Through the lens of the compatible set of risk aversions, we now investigate how the
inclusion of the HWM fee α affects the marketability of the VA. In Figure 3.3, we present
PH welfare from holding the VA under three different fee structures as well as from holding
the two alternative investments. The parameters are those of the base case scenario. We
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Figure 3.3: PH time-0 welfare of holding a risk-free bond, pure fund, or VA
under different fee structures in the base case parameter setting. “VA (HWM
Fee α = 0.5)” corresponds to PH time-0 welfare under the HWM fee structure
with α = 0.5. We can observe that the HWM fee structure records a wider
compatible set than the other two fee structures.

observe that the HWM fee structure with α = 0.5 records a noticeably wider compatible
set (roughly γ ∈ [1.25, 2.15]) than either the constant or state-dependent fee structures.
And this set fully covers the ones generated by the other two fee structures. The main
reason behind this observation rests on the mechanism of the fee structure. Specifically, the
HWM fee structure purposefully contains the growth rate of the investment account to aid
in its recovery from poor performance through a lowered state-dependent constant fee when
the value of the investment account is low. Hence, the HWM fee structure contains the
volatility of the investment account, and as such, reduces the uncertainty of the VA payout,
a virtue for risk-averse PHs. In line with the previous discussion, a wider compatible set
implies that the introduction of an HWM fee does improve VA marketability.
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Fee Structure Location Width

Constant [1.3322, 1.7022] 0.3700

SD (α = 0) [1.2862, 1.5946] 0.3084

α = 0.05 [1.2302, 1.6590] 0.4288

α = 0.2 [1.2185, 1.8096] 0.5911

α = 0.35 [1.2334, 1.9718] 0.7384

α = 0.5 [1.2525,2.1500] 0.8975

Table 3.3: Compatible sets for different fee structures. This table presents
the location and width of compatible sets for different fee structures in the
base case parameter setting. Observe that a HWM fee of α = 0.5 produces the
widest compatible set.

Moreover, from Figure 3.3, we notice that the state-dependent fee structure displays
a shortcoming called risk-aversion mismatch. We observe that the state-dependent fee
structure generates higher welfare than the constant and HWM fee structures for PHs with
a level of risk aversion γ approximately below 1.2. This means that the state-dependent fee
structure’s target clientele is less risk-averse. Nevertheless, the pure fund produces higher
welfare than the VA in this region. In other words, PHs would choose the pure fund over
the VA with the state-dependent fee structure.

Table 3.3 displays the specific location and width of compatible sets for different levels
of HWM fees and compares them with those of the constant and state-dependent fee
structures. Again, the parameters are as given by the base case. Comparing the width of
compatible sets with those of the constant and state-dependent fee structures, we find that
the HWM fee structure makes the VA the preferred option over the alternative investments
for a broader range of PHs. Furthermore, we observe that increasing the HWM fee α
increases the width of the compatible set and all four levels of HWM fee α generate a
compatible set that fully covers the ones corresponding to the other two fee structures.
However, we stress that this relationship does not hold in general (as will be shown in the
sensitivity analysis).

From the numerical examples above, we observe that all fee structures produce a non-
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Welfare

Risk Aversion Compatible α α∗ α∗ Constant SD (α = 0)

γ = 1.3 [0, 0.5] 0.2 131.13 127.66 128.95

γ = 1.4 [0, 0.5] 0.35 129.14 125.28 125.26

γ = 1.5 [0, 0.5] 0.5 127.62 122.90 121.58

γ = 1.6 [0.05, 0.5] 0.5 126.11 120.51 117.90

Table 3.4: Optimal HWM fee and welfare comparison. This table summarizes
sets of the HWM fees α (i.e., “Compatible α”) that make given levels of risk
aversion γ belong to the corresponding compatible sets as well as the optimal
HWM fee α∗ that maximizes PH welfare in the base case parameter setting.
We observe that the HWM fee structure generates the highest welfare for the
PH when the VA is preferred to the alternative investments under all three fee
structures.

empty compatible set. Therefore, it is also interesting to search for the optimal fee structure
in terms of PH welfare. Table 3.4 presents sets of HWM fees α that make given levels of
risk aversion γ belong to the corresponding compatible sets as well as the optimal HWM fee
α∗ that maximizes PH welfare under the base case parameter inputs. It is apparent that,
when the VA is preferable to the alternative investments (i.e., PH level of risk aversion
γ belongs to the compatible set) under more than one fee structure (including the HWM
fee structure), the HWM fee structure generates the highest welfare for the PH. Also, we
see that PHs with a higher level of risk aversion prefer a higher HWM fee α, which is not
surprising as a higher HWM fee further reduces the uncertainty of VA payout.

3.3.3 Sensitivity Analysis

In this section, we conduct a sensitivity analysis of the results of Section 3.3.2 under
different parameter settings. Specifically, we first examine the impact of the risk-free
rate r on the compatible sets for the VA under different fee structures (Table 3.5). We
then investigate how the performance of the underlying policy fund (µ and σ) affects the
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r = 1% r = 2% r = 3%

Fee Structure Location Width Location Width Location Width

Constant ∅ 0 [1.3322, 1.7022] 0.3700 [1.0511, 1.5295] 0.4784

SD (α = 0) ∅ 0 [1.2862, 1.5946] 0.3084 [0.9151, 1.4990] 0.5839

α = 0.05 ∅ 0 [1.2302, 1.6590] 0.4288 [0.9077, 1.5565] 0.6488

α = 0.2 [1.6365, 1.6904] 0.0539 [1.2185, 1.8096] 0.5911 [0.9887, 1.6701] 0.6814

α = 0.35 [1.5656, 1.8691] 0.3035 [1.2334, 1.9718] 0.7384 [1.0568, 1.7667] 0.7099

α = 0.5 [1.5350,2.0655] 0.5305 [1.2525,2.1500] 0.8975 [1.1055,1.8572] 0.7517

Table 3.5: Compatible sets for different risk-free rates. This table summarizes
the location and width of compatible sets under different fee structures for
different risk-free rates r. Observe that only the HWM fee structure generates
a non-empty compatible set when the risk-free rate is low (i.e., r = 1%), and
the HWM fee structure still has the widest compatible set.

corresponding results (Table 3.6). Lastly, we determine the optimal fee structure in terms
of PH welfare from holding the VA under different parameter settings (Table 3.7). The
aim of this section is to explore how introducing the HWM fee affects VA marketability in
various market conditions.

Table 3.5 presents the compatible sets for the VA with different fee structures under
different risk-free rates. All other parameters are as given in the base case.

First, consistent with Section 3.3.2, we observe that the HWM fee structure generates
the widest compatible set under all three risk-free rates (in comparison to the constant and
state-dependent fee structures). Second, when the risk-free rate decreases from the base
case (i.e., when r decreases from 2% to, say, 1%), all compatible sets shrink, and only the
HWM fee structure generates a noticeably non-empty compatible set. Not surprisingly,
in a low interest rate market, “savings instruments” such as annuities and VAs become
less appealing to investors. The mechanism of the HWM fee structure is closer to the fee
scheme adopted in risky fund investment (e.g. mutual funds or hedge funds), and hence can
be helpful for improving VA marketability in the current low risk-free rate environment.
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(µ, σ) = (8%, 20%) (µ, σ) = (8%, 15%) (µ, σ) = (10%, 15%)

Fee Structure Location Width Location Width Location Width

Constant [0.7726, 0.9787] 0.2061 [1.3322, 1.7022] 0.3700 [1.0900, 1.9459] 0.8559

SD (α = 0) [0.6445, 1.0638] 0.4193 [1.2862, 1.5946] 0.3084 [0.8780, 1.8715] 0.9935

α = 0.05 [0.6427,1.0950] 0.4523 [1.2302, 1.6590] 0.4288 [0.8981, 1.9274] 1.0293

α = 0.2 [0.6843, 1.1201] 0.4358 [1.2185, 1.8096] 0.5911 [0.9896, 2.0658] 1.0762

α = 0.35 [0.7151, 1.1453] 0.4302 [1.2334, 1.9718] 0.7384 [1.0492, 2.2422] 1.1930

α = 0.5 [0.7371, 1.1731] 0.4360 [1.2525,2.1500] 0.8975 [1.0898,2.4613] 1.3715

Table 3.6: Compatible sets for different performance of the policy fund. This
table summarizes the location and width of compatible sets of the VA with
different fee structures for different performance of the underlying policy fund.
For a more volatile policy fund, the compatible set shifts to the left and a
HWM fee of 0.05 generates the widest set. For a policy fund with a higher
return, compatible sets become wider.

Third, as the risk-free rate increases, the compatible set shifts to the left (compare, e.g.,
columns r = 2% and r = 3%). When the risk-free rate is larger, the VA, as a risky asset,
is only preferable for PHs who are less risk-averse, since its risk-free alternative could
generate higher welfare. Moreover, the compatible set also shrinks when the risk-free rate
r increases from the base case. This can be attributed to the fact that only a smaller group
of PHs would still prefer holding the VA, given that the opportunity cost of holding the
VA increases as holding the risk-free bond generates higher returns.

To investigate how the performance of the underlying policy fund affects VA marketabil-
ity, Table 3.6 provides the compatible sets (of the VA with different fee structures) under
different expected returns and volatilities of the underlying policy fund. We compare the
base case with a case of higher volatility (i.e., σ = 20%, implying a lower Sharpe ratio)
and a case of higher expected return (i.e., µ = 10%, implying a higher Sharpe ratio).

We first compare the base case (µ = 8%, σ = 15%) with the case of a more volatile
policy fund (µ = 8%, σ = 20%). First, for a given fee structure, the compatible set shifts
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to the left when the policy fund is more volatile. With higher volatility σ, VA payout
becomes more uncertain. Hence, for a PH with a given risk appetite, the VA becomes
less favorable against the risk-free bond, and compared to the base case, only PHs with
lower risk aversion would prefer the VA. Second, we observe that the widest compatible set
appears at a low HWM fee of α = 0.05 when the policy fund is more volatile. Notice that
this is different from the base case (see Table 3.3), where a higher HWM fee α corresponds
to a wider compatible set. This can be explained as follows: For a highly volatile policy
fund, only PHs with low risk aversion would prefer the VA over the risk-free bond, and
these PHs would prefer the state-dependent fee structure (α = 0) or a low HWM fee α as
they generate higher rates of return.

Next, we compare the base case (µ = 8%, σ = 15%) with the case where the policy fund
has a higher expected return (µ = 10%, σ = 15%). We see that every fee structure has
a compatible set that fully covers that of the base case, where the policy fund’s expected
return µ is higher. This is not surprising as the VA becomes more favorable when the
policy fund performs better.

Another observation from Table 3.6 worth mentioning is that, for a policy fund with
either higher volatility σ or higher expected return µ, the state-dependent fee structure
generates a compatible set with larger width than the constant fee structure, which is
different from the base case where the opposite conclusion was observed (see Table 3.3).
The reason is that, with either a more volatile or a more performant policy fund, the
investment account is more likely to grow to exceed the threshold θ beyond which no
insurance fee is charged under the state-dependent fee structure. Therefore, in these two
cases, the state-dependent fee structure can be seen as improving VA marketability from the
constant fee structure. However, the improvement is relatively marginal and the compatible
set of the state-dependent fee structure is still narrower than that of the HWM fee structure.

From the previous numerical analysis, we see that all fee structures generate a non-
empty compatible set except for r = 1%. Therefore, it is interesting to search for the
optimal fee structure in terms of PH welfare in the other cases (higher interest r = 3%,
higher volatility σ = 20%, and higher return µ = 10%). Table 3.7 presents sets of HWM
fees α that make given levels of risk aversion γ belong to corresponding compatible sets
as well as the optimal HWM fee α∗ that maximizes PH welfare. Consistent with the base
case in Table 3.4, we observe that the HWM fee structure generates the highest PH welfare
under various levels of risk aversion.
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Welfare

Risk Aversion Compatible α α∗ α∗ Constant SD (α = 0)

r = 3%

γ = 1.2 [0, 0.5] 0.05 140.40 138.03 139.36

γ = 1.4 [0, 0.5] 0.35 135.32 131.99 131.82

γ = 1.6 [0.2, 0.5] 0.5 131.86 125.95 124.29

σ = 20%

γ = 0.7 [0, 0.2] 0.05 133.45 123.96 133.19

γ = 0.8 [0, 0.5] 0.05 129.58 121.89 129.07

γ = 0.9 [0, 0.5] 0.05 125.72 119.83 124.95

µ = 10%

γ = 1.2 [0, 0.5] 0.05 150.20 143.33 149.96

γ = 1.5 [0, 0.5] 0.5 138.33 133.15 135.70

γ = 1.8 [0, 0.5] 0.5 131.94 122.98 121.45

Table 3.7: Optimal HWM fee and welfare comparison under various market
conditions. This table summarizes sets of HWM fees α that make given levels of
risk aversion γ belong to corresponding compatible sets as well as the optimal
HWM fee α∗ that maximizes PH welfare under various market conditions.
Observe that the HWM fee structure generates the highest PH welfare under
various levels of risk aversion (in the corresponding compatible sets).

39



Constant Fee, t=3

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1
z

S

C

Constant Fee, t=9

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1

z

S

C

SD ( =0), t=3

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1

z

S

C

SD ( =0), t=9

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1

z

S

C

HWM Fee =0.2, t=3

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1

z

C

S

HWM Fee =0.2, t=9

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1

z

S

C

HWM Fee =0.5, t=3

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1

z C

S

HWM Fee =0.5, t=9

375 380 385 390 395 400

m

0.9

0.92

0.94

0.96

0.98

1

z

S

C

Figure 3.4: Optimal surrender regions under different fee structures at t = 3
and t = 9. The symbol “c” corresponds to the continuation region and “s”
to the surrender region. The horizontal axis “m” stands for the HWM of
the investment account and the vertical axis “z” stands for the state variable
introduced in Eq. (3.8). The surrender risk is insignificant, and surrender only
occurs when the investment account value is very large.
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3.3.4 Surrender Behavior

Figure 3.4 presents the optimal surrender behavior of the PH holding the VA with MV
preferences under different fee structures. In this figure, “c” corresponds to the contin-
uation region and “s” to the surrender region. The x-axis “m” stands for the HWM of
the investment account, and the y-axis “z” stands for the state variable introduced in Eq.
(3.8).

The left and right panels of this figure are for times t = 3 and t = 9, respectively. The
risk aversion parameter γ is taken as 1.7, the expected return rate µ is 10%, and the other
parameters are as in the base case. We shall mention that the parameters in Figure 3.4 are
chosen so that all fee structures under consideration are compatible to the market in the
sense that holding the VA with these fee structures offers greater welfare for the PH than
holding the risk-free bond or the pure fund. In this way, the comparison for the surrender
behavior is meaningful.

There are a few noteworthy observations. First and foremost, the surrender risk is
insignificant when all three fee structures are compatible to the market, and surrender
only occurs when the investment account value is very large. As can be seen, all optimal
surrender regions are located in the upper right corner of each panel, namely, when the
investment account value F = m · z is very large. Note that the initial account value is
F0 = 100, and the expected return on the investment account is µ = 10% without insurance
fees. Hence, the odds of entering the surrender regions (roughly F3 > 390 or F9 > 375) are
slim.

This behavior is not surprising. On the one hand, when the VAs are preferred over the
alternative investments, rational PHs have little incentive to surrender such good assets,
let alone the presence of surrender charges that further disincentivize surrender. On the
other hand, it is still opportune for PHs to surrender when the investment account reaches
higher levels because the variance of the VA payout increases simultaneously with the
account level. This surrender behavior is also in line with the empirical study in Knoller
et al. (2016), which indicates that surrender is more likely when the investment account
value becomes greater than the guaranteed amount and, in turn, helps justify the selection
of the state-dependent MV preference model.

Second, the HWM fee structure slightly increases the surrender risk only when the VA
is approaching maturity. From the left panels of Figure 3.4, we can see that, when t = 3,
the difference of the surrender regions under different fee structures is negligible. From the
last three panels on the right, it is shown that, when t = 9, the surrender region slightly
increases with respect to the HWM fee α. This is also very intuitive because charging more
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HWM fees in “rich” states will encourage surrender. However, as shown in this figure, the
incentive to surrender is very little. HWM fees are charged only when the investment
account reaches a new historical peak. Even for an HWM fee of α = 0.5, PHs can still
receive 50% in an HWM increase, while surrender means PHs will have to forego these
profits.

Third, although not presented, we should mention that all surrender regions for earlier
times (t < 3) are of a similar shape but even smaller. In other words, the early surrender
risk is rather small across the board. This is favorable for the insurer because there might
exist some initial policy acquisition expenses in practice which may be recovered through
collecting long-term fee streams.

Fourth, the constant (resp. state-dependent) fee structure generates a larger (resp.
smaller) surrender region than the HWM fee structure, though the difference is very small.
Note that the state-dependent fee structure also generates a non-empty surrender region
for MV PHs, which differs from MacKay et al. (2017) showing that the state-dependent fee
structure can completely eliminate the surrender risk for risk-neutral PHs in a complete
market.

Finally, we should mention that similar surrender regions (a.k.a. maximizers) do not
imply similar PH welfare (a.k.a. value functions), because different fee structures generate
different dynamics of the investment account values. This does not contradict welfare
improvement from the HWM fee structure.

3.4 Conclusion

This chapter introduces a novel HWM fee structure and show its merits with respect to
improving VA marketability with the aim of possibly addressing issues related to declining
demand.

For the analysis, we first determine various pairs of fair fees for the VA under the
HWM fee structure by adopting the conventional risk-neutral pricing framework. We later
conduct a comprehensive analysis of PH welfare from holding the VA, which is quantified
by an MV preference model. More importantly, we introduce the concept of a compatible
set as an innovative measure to quantitatively assess VA marketability under a certain fee
structure. By comparing the corresponding compatible sets in various market conditions,
we find that the HWM fee structure improves VA marketability relative to the constant
and state-dependent fee structures.
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Chapter 4

Gamma Discounting in Variable
Annuities with Guaranteed Minimum
Death and Maturity Benefits

4.1 Introduction

As alluded to in Chapter 1, the popularity of VAs has catalyzed an extensive amount of
research papers looking into their valuation. To name a few, Milevsky & Posner (2001)
investigate the valuation of VAs with guaranteed minimum death benefits; Milevsky &
Salisbury (2006) and Dai et al. (2008) focus on the risk-neutral pricing of VAs with guar-
anteed minimum withdrawal benefits; Steinorth & Mitchell (2015) discuss how risk-averse
policyholders (PHs) value VAs with guaranteed minimum lifetime withdrawal benefits in a
life-cycle consumption model. While these papers offer useful techniques and insightful im-
plications on valuation of VAs with various embedded guarantees, they fail to incorporate
PHs’ time preferences into the analysis. However, there is substantial evidence that indi-
viduals’ time preferences are of significant importance when making investment decisions,
and it has been well documented that individuals’ time preferences are time-inconsistent
(i.e., non-constant discount rates), especially in the long run.

Time inconsistency in time preference has been widely observed for decision makers
in a group when valuing long-term investment. For example, Weitzman (2001) attempts
to address the “perennial dilemma of what discount rate to use” and conducts a survey
from over 2000 economists (including 52 Nobel Laureates). The result shows a significantly
dispersed discount rate distribution (see Figure 1 in Weitzman (2001)). Similar evidence
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is also found in Frederick et al. (2002) and Falk et al. (2015). In addition to group hetero-
geneity in discounting preference, inconsistency in time preference has also been spotted
for individuals in the sense that they are uncertain about what discount rate to use (i.e.,
intra-personal disagreement). In fact, Grenadier & Wang (2007) believe that individuals
are “more prone to time-inconsistent behavior than firms”. In line with this, Laibson
(1997) investigates the consumption decisions made by a hyperbolic discounting consumer,
Brocas & Carrillo (2004) assume hyperbolic discounting entrepreneurs, and DellaVigna &
Malmendier (2004) consider time-inconsistent individuals but time-consistent firms. With
the strong evidence in the existing literature, it is of great importance to study VAs, typi-
cal long-term investment/savings vehicles, considering that PHs are uncertain about what
discount rate to use.

In light of the above, we consider risk-averse PHs whose subjective discount rates
follow a Gamma distribution in this chapter. More specifically, we determine the impact
of Gamma discounting on PHs’ welfare and surrender behavior of holding a VA policy.
Moreover, we investigate the impact on the profit of an insurer issuing the policy. Our
analysis shows that, when PHs share the same expected discount rate, Gamma discounting
PHs delay surrender behavior and value the VA policy more than exponential discounting
PHs. And, the more uncertain they are with respect to the discount rate, the less likely
they will surrender the policy and the more they will value the VA policy. Moreover,
the insurer makes higher profit when PHs are Gamma discounting than when they are
exponential discounting, and the insurer’s profit increases as PH discount rate uncertainty
increases.

Our results are consistent with findings obtained in the real option settings which
indicate that a higher level of discount rate uncertainty (for the same expected discount
rate) generates a larger investment threshold (i.e., later investment time); see, for example,
Ebert et al. (2020). More importantly, our results are in line with the empirical phenomena
that PHs exercise their options embedded in VAs less frequently than risk-neutral pricing
approaches suggested and market fee rates are lower than the risk-neural insurance fees.
We deem that, in addition to market friction (i.e., taxes) suggested by Moenig & Bauer
(2015), PHs’ inconsistency in time preferences might offer an alternative explanation to
the above market phenomena.

As for the analysis, we consider a VA policy with two embedded guarantees, namely
guaranteed minimum death benefits and guaranteed minimum maturity benefit. We first
adopt the risk-neutral pricing approach to determine the fair insurance fee for this policy
(a conventional approach adopted in the literature, e.g. Bauer et al. (2008)). We then
consider Gamma discounting PHs whose welfare from holding the VA policy is quantified by
a constant relative risk aversion utility function. Since PHs’ subjective discount rates follow

44



a Gamma distribution, the corresponding discount function is no longer exponential and
consequently incurs a time-inconsistent optimal stopping problem with a random horizon.
We adopt the game theoretic framework proposed by Björk & Murgoci (2010) to derive a
system of extended Hamilton-Jacobi-Bellman (EHJB) equations. Numerically solving this
system of equations, we obtain PHs’ welfare and surrender behavior from holding the VA
policy under Gamma discounting. Lastly, under PHs’ surrender behavior, we compute the
insurer’s profit quantified by total fees collected deducting the VA payout.

The main contribution of this chapter is in the following. First, we incorporate un-
certainty in discount rates into the analysis of VAs. Second, overcoming the challenge of
high dimensionality of the state space, we investigate the effect of Gamma discounting
on the insurer’s profit. Last, in addition to market friction (i.e., taxes), our results show
that Gamma discounting can offer an alternative explanation for the discrepancy between
theoretical PH behavior and market fee rates and empirically observed ones.

The remainder of this chapter is organized as follows. Section 4.2 formally introduces
the VA policy and determines the corresponding fair insurance fee. Section 4.3 sets up a
utility-based framework to quantify Gamma discounting PHs’ welfare from holding the VA
and characterize their corresponding surrender behavior. Section 4.4 presents the insurer’s
profit under Gamma discounting PHs’ surrender behavior. Section 4.5 concludes. The
proof of a verification theorem for the system of EHJB equations corresponding to the
time-inconsistent optimal stopping problem and the derivation of the partial differential
equation (PDE) satisfied by the insurer’s profit are relegated to Appendix B.

4.2 Valuation of Fair Fees

In this chapter, we consider the same VA policy as in Chapter 3 with the constant fee
structure. Therefore, we again formulate its risk-neutral pricing model within a continuous-
time stochastic optimal stopping framework and obtain the fair fee of this policy.

Applying the same mortality model and assuming the same dynamics for the underlying
policy fund under the risk-neutral measure Q, the pricing value function V of the VA policy
is similar to the one in Chapter 3:

V (t, F ) = sup
τ∈T[t,T ]

EQ
t,F

[
τ−tpx+tψ(τ, Fτ )e

−r(τ−t) +

∫ τ

t
s−tpx+tλx+s max(Fs, Gs)e

−r(s−t)ds

]
(4.1)
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over the domain O = {F ∈ R+ : 0 < F <∞}, where

ψ(t, Ft) =

{
(1− κt)Ft, 0 ≤ t < T,
max(GT , FT ), t = T,

corresponds to the surrender value or the maturity payout of the VA policy. Define

LV := (r − c)FVF +
1

2
σ2F 2VFF − (λx+t + r)V,

where Vt, VF , and VFF are the first-order derivative of V with respect to t, F , and second-
order derivative with respect to F , respectively. By dynamic programming principle (see,
e.g. Fleming & Soner (2006)), pricing value function V over the domain [0, T ]×Ō satisfies
the following variational inequality

min {−Vt − LV − λx+t max (F,G), V − ψ} = 0, (4.2)

with boundary conditions
V (T, F ) = max(F,GT ), for F ∈ [0,∞),

Vt
∣∣
F=0

= (λx+t + r)V
∣∣
F=0
− λx+tG, for t ∈ [0, T ),

limF→∞ V (t, F ) = ψ(t, F ), for t ∈ [0, T ).

(4.3)

As in Chapter 3, we propose to numerically solve Eq. (4.2) with boundary conditions
(4.3) to obtain the fair fees for the VA policy. Again, we solve for constant fee cf ∈ [0, 1]
such that

V (0, F0; cf) = F0. (4.4)

Parameter inputs are as specified in Table 4.1. Different from Chapter 3, we consider
a VA policy that matures in 15 years and suppose a PH who enters the VA policy at age
50. We also take higher values for both the volatility σ and the risk-free rate r than their
counterparts in Chapter 3. Solving Eq. (4.4), the fair fee under the parameter settings
specified in Table 4.1 is

cf = 0.0186. (4.5)
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Description Parameter Base Case

Contract length T 15

PH’s age y 50

Initial premium F0 100

Roll-up rate g 0

Surrender penalty κt 0.05× (1− t
T

)3

Interest rate r 3%

Volatility σ 20%

Table 4.1: Parameter inputs

4.3 Policyholder with Gamma Discounting

In this section, we investigate PHs’ valuation of the VA policy when they are uncertain
about what discount rates to use in a potentially incomplete market. More specifically,
inspired by the seminal work of Weitzman (2001), we consider that PHs’ subjective discount
rates follow a Gamma distribution and we evaluate PHs’ welfare from holding the VA policy
in a utility-based framework. As in the spirit of last chapter, we assume that the insurer
still adopts the risk-neutral pricing approach to price the VA policy and charges the fair fee
cf as given in Eq. (4.5). Different from the insurer, it is opportune to assume an incomplete
market for PHs as they might not be able replicate every VA payout (e.g., mortality-based
payouts or claims related to time-inconsistent time preferences).

4.3.1 Model Setup

In what follows, we set up the utility model to quantify PHs’ welfare from holding the VA
policy when their discount rates follow a Gamma distribution.

Suppose that, under the physical measure, the dynamics of the investment account F
follows

dFt = (µ− c)Ftdt+ σFtdWt,
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where µ > 0 and {Wt}{t≥0} is a Brownian motion under measure P. As alluded to above,
a PH’s subjective discount rate β ≥ 0, when evaluating the VA policy, follows a Gamma
distribution Γ(k, θ) where k > 0 corresponds to the shape parameter and θ > 0 to the scale
parameter. Different choices of the parameters k and θ reflect different time preferences of
PHs, which will be discussed in detail in the next section. Thereafter, we refer to the PH
as a Gamma discounting PH. Note that, for a standard exponential discounting PH, the
subjective discount rate β is just a fixed constant. Let h denote the discount function of
the Gamma discounting PH with subjective discount rate β such that

h(t) = E
[
e−βt

]
=

∫ ∞
0

e−xtf(x; k, θ)dx = (1 + θt)−k, for t ∈ [0, T ], (4.6)

where f(x; k, θ) = xk−1

Γ(k)θk
e−

x
θ for x > 0 represents the probability density function (pdf) of

the subjective discount rate β, and Γ(k) =
∫∞

0
zk−1e−zdz represents the Gamma function

valued at k. Comparatively, for an exponential discounting PH, h(t) = e−βt with β being
a fixed constant for t ∈ [0, T ]. Effectively, h(t) stands for the expected present value of a
monetary unit at time t. As for PHs’ risk preferences, we consider a constant relative risk
aversion (CRRA) utility function

U(X) =


X1−γ−1

1−γ , for γ ≥ 0 and γ 6= 1,

ln(X), for γ = 1,
for X > 0,

where γ is the coefficient of relative risk aversion. Note that, in this chapter, we assume
that PHs’ time preferences and risk preferences are independent of each other.

We further assume that PHs optimally surrender the VA policy to maximize the EPV of
the welfare generated by the VA payout. More specifically, PHs are assumed to maximize
the following objective function

J(t, F ; τ) = Et,F
[
h(τ ∧ ρ− t) · U

(
H(Fτ∧ρ)

) ∣∣∣ρ > t
]
, (4.7)

where (t, F ) ∈ [0, T ]×Ō, τ ∈ Tt,T is a stopping time valued in [t, T ], ρ is the future lifetime
of a y-year-old PH, and

H(Fτ∧ρ) =

ψ(τ, Fτ ), for τ < ρ,

max(Fρ, Gρ), for τ ≥ ρ,
(4.8)

represents the VA payout. Note that a stochastic optimal stopping problem can be viewed
as an optimal control problem with binary controls. Therefore, we can regard our optimal
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stopping problem as an optimal control problem by introducing the following stopping rule
(as in Ebert et al. (2020)).

Definition 7. A stopping rule is a measurable function u : [0, T ] × Ō → {0, 1} where 0
corresponds to continuation and 1 corresponds to stopping.

More specifically, in our setup, the continuation and stopping regions at time t ∈ [0, T )
are defined as {

Ct = {F ∈ Ō : u(t, F ) = 0},
St = {F ∈ Ō : u(t, F ) = 1},

(4.9)

with the corresponding stopping time τu defined as

τu = inf{s ≥ t : u(s, Fs) = 1}.

In light of the above, the value function of the objective (4.7) (a.k.a. PHs’ optimal welfare
from holding the VA policy) can be written as

V (t, F ) = max
u∈A

Et,F
[
h(τu ∧ ρ− t) · U

(
H(Fτu∧ρ)

)∣∣∣ρ > t
]

= max
u∈A

J(t, F ; τu), (4.10)

where A is the admissible set of stopping rules.

It is well-documented that stochastic optimal control problems with non-exponential
discounting functions display the well-known issue of time inconsistency. We tackle this
issue by adopting the game theoretic approach proposed in Björk & Murgoci (2010) and
deriving an equilibrium stopping strategy via solving a system of extended Hamilton-
Jacobi-Bellman (EHJB) equations.

Nevertheless, deriving the system of EHJB equations is much more complicated in this
case due to a random time horizon (through a PH’s future lifetime ρ). To deal with this, we
next define an equilibrium stopping rule over a random horizon by extending the definition
introduced in Landriault et al. (2018) and Chapter 3.

Definition 8. For a fixed point (t, F ) ∈ [0, T ) × Ō), a small ε > 0, and an admissible
stopping rule û = {ûs}s∈[t,T ) conditional on ρ > t, define a stopping rule uε by

uε,a(s, z) =

{
a ∈ {0, 1}, for t ≤ s < (t+ ε) ∧ ρ,
û(s, z), for (t+ ε) ∧ ρ ≤ s < T ∧ ρ,

in which z ∈ Ō. Suppose that

lim inf
ε↓0

J(t, F ; τû)− J(t, F ; τuε,a)

ε
≥ 0 (4.11)
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for all (t, x) ∈ [0, T ) × [0,∞), then û is called an equilibrium feedback stopping rule and
the corresponding equilibrium value function V is given by V (t, F ) = J(t, F ; τû).

Via a formal verification theorem, we show that the value function (a.k.a. PHs’ optimal
welfare) V (t, F ) can be determined by solving the system of EHJB equations (4.12)-(4.16).
The proof of the theorem is relegated to Appendix B.1.

Theorem 6 (Verification Theorem). Consider the discount function (4.6), a stopping rule
û, and functions 

g(t, F ;x) = Et,F
[
e−x(τû∧ρ−t) · U

(
H(Fτû∧ρ)

)∣∣∣ρ > t
]
,

V (t, F ) =
∫∞

0
g(t, F ;x) · f(x; k, θ)dx.

Let Lf(t, F ) = ft + (µ− c)FfF + 1
2
F 2σ2fFF and suppose that (V, g, û) solves

max{LV (t, F )−
∫ ∞

0

(x+λy+t)·g(t, F ;x)·f(x; k, θ)dx+λy+t·U
(

max(F,G)
)
, U
(
ψ(t, F )

)
−V (t, F )} = 0

(4.12)
with boundary conditions

V (T, F ) = U
(

max(F,GT )
)
,

Vt
∣∣
F=0
−
∫∞

0
(x+ λy+t) · g(t, 0;x) · f(x; k, θ)dx+ λy+t · U(G) = 0,

limF→∞ V (t, F ) = U [ψ(t, F )] ,

(4.13)

û(t, F ) =


1, if V (t, F ) = U

(
ψ(t, F )

)
,

0, otherwise,

(4.14)

and for each x ∈ [0,∞),

Lg(t, F ;x)− (λy+t + x) · g(t, F ;x) + λy+t · U
(

max(F,G)
)

= 0 (4.15)

with boundary conditions
g(T, F ) = U

(
max(F,GT )

)
,

gt
∣∣
F=0
− (λy+t + x)g(t, 0;x) + λy+tU(G) = 0,

limF→∞ g(t, F ;x) = U [ψ(t, F )] .

(4.16)
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Description Parameter Base Case Sensitivity Analysis

Expected Return µ 8%

Risk Aversion γ 0.35

Expected Discount Rate E[β] 4% 3%, 5%

Gamma Distribution (k, θ) (2, 2%) (4, 1%), (1, 4%), (1.13, 2.67%), (3.13, 1.6%)

Table 4.2: Parameter inputs under Gamma discounting

Then û is an equilibrium stopping rule and the value function of (4.10) is given by

V (t, F ) = Et,F
[
h(τû ∧ ρ− t) · U

(
H(Fτû∧ρ)

)∣∣∣ρ > t
]
.

4.3.2 Policyholders’ Time Preferences and Welfare

As alluded to above, with the subjective discount rate β following a Gamma distribution,
PHs’ time preferences can be reflected by different choices of the parameters k and θ of
the distribution. In this section, we discuss PHs’ welfare and surrender behavior under
different time preferences.

We present the relevant parameter inputs in a Gamma discounting context in Table 4.2.
Note that the expected subjective discount rate is taken to be 4% for a Gamma discounting
PH. Similarly, the subjective discount rate of an exponential discounting PH is also taken
to be β = 4%. Moreover, the base case Gamma distribution is taken to be Γ(2, 2%).
This is calibrated from “2160 replies from economists in 48 countries” summarized Table
1 in Weitzman (2001). To conduct more comprehensive analysis, we also test different
subjective discount rates and different parameters of a Gamma distribution. Lastly, the
risk aversion parameter γ is taken as 0.35 to be consistent with findings in Holt & Laury
(2002) indicating that the risk aversion level γ is “centered around the 0.3− 0.5 range”.

For the rest of this section, we analyze effects of Gamma discounting on PHs’ welfare
and surrender behavior. We first compare cases in which they have the same discount
rate expectation but different discount rate variance from the base case (see Table 4.3
and Figure 4.2). We then compare the base case with cases in which PHs have the same
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Distribution of β E[β] Var[β] V (0, F0)

E.D. 4% 0 29.2402

Γ(4, 1%) 4% 0.04% 30.1665

Γ(2, 2%) 4% 0.08% 30.8932

Γ(1, 4%) 4% 0.16% 32.2254

Table 4.3: PHs’ time-0 welfare with increasing uncertainty of β. Note that
E[β] = 4% is kept the same for all four cases and Var[β] is increasing. “E.D.”
is short for “exponential discounting PHs”. Observe that Gamma discounting
PHs value the VA policy more than exponential discounting ones, and the
larger variance a PH’s subjective discount rate has, the more the PH will value
the VA policy.

discount rate variance but different discount rate expectation (see Table 4.4 and Figure
4.3).

Table 4.3 summarizes PHs’ time-0 welfare (a.k.a. V (0, F0)) when they are more and
more uncertain about the subjective discount rate β. In this table, we adjust the param-
eters k and θ simultaneously to make sure E[β] = 4% is kept the same for all four cases,
and we use Var[β] to quantitatively measure the uncertainty level of PHs with respect to
the discount rate β. Note that “E.D.” is short for “exponential discounting PHs” in this
table and for the rest of this chapter.

It is evident from Table 4.3 that, when having the same belief towards the expectation
of the discount rate β, Gamma discounting PHs value the VA more than exponential
discounting ones, and the more uncertain (i.e. larger Var[β]) a PH is with respect to the
discount rate β, the more they will value the VA policy. This can be attributed to the
fact that, when E[β] remains the same, a higher Var[β] corresponds to a higher discount
function h(t) for t ∈ [0, T ] (not hard to deduce from Eq. (4.6)). For a typical long-term
investment like VA, it is opportune to assume Gamma distributed time preferences other
than standard exponential ones since PHs are likely to be uncertain about their discount
rates in the long run. Therefore, the observation might help one justify the popularity of
VAs as Gamma discounting PHs value the VA policy more than exponential discounting
PHs do when having the same expected discount rate. The observation also helps explain
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Figure 4.1: Decreasing impatience for exponential and Gamma discounting
PHs with the same discount rate expectation. Observe that Gamma discount-
ing PHs display a decreasing impatience level while exponential discounting
PHs exhibit a constant impatience level. Also, Gamma discounting PHs have
a higher level of decreasing impatience than that of exponential discounting
PHs.

why the VA market has seen significant net assets and sales even with relatively high fees.

To compare PHs’ surrender behavior under different time preferences, we first present
the concept of decreasing impatience in the Gamma discounting context. This concept was
initially introduced in Prelec (2004), and it is defined as

DI(t) = −(log h(t))′′

(log h(t))′
=

θ

1 + θt
, for t ∈ [0, T ], (4.17)

when the subjective discount rate β follows a Gamma distribution. Decreasing impatience
measures an investor’s impatience level of making an investment decision over time t. A
decreasing impatience level indicates that the investor focuses more on the near future
than on the distant future. More specifically, the investor is more impatient on making
investment decisions in the short run than in the long run. And a higher decreasing
impatience level indicates a more patient investor.
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Figure 4.2: Optimal surrender regions for PHs with four levels of discount rate
uncertainty as above. “S” corresponds to the surrender region and “C” to the
continuation region. For each curve in the figure, the upper right part is the
surrender region and the lower left part the continuation region. Observe that,
when having the same expected discount rate, Gamma discounting PHs are
less likely to surrender the VA policy than exponential discounting PHs, and
the more uncertain PHs are regarding the discount rate, the less likely they
will surrender the policy.

Figure 4.1 presents levels of decreasing impatience for exponential and Gamma dis-
counting (i.e., β follows Γ(2, 2%)) PHs with the same discount rate expectation. We can
observe that Gamma discounting PHs display a decreasing impatience level while exponen-
tial discounting PHs exhibit a constant impatience level (meaning that exponential PHs
have the same impatience level over time). Furthermore, Gamma discounting PHs have
a higher level of decreasing impatience than that of exponential discounting PHs. This
means that exponential discounting PHs are more impatient, especially in the long run,
than Gamma discounting PHs. Gamma discounting PHs might be more likely to pro-
crastinate on making surrender decisions; similar procrastination behavior of hyperbolic
discounting agents is also observed in O’Donoghue & Rabin (1999a) and O’Donoghue &
Rabin (1999b).
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Distribution of β E[β] Var[β] V (0, F0)

Γ(1.13, 2.67%) 3% 0.08% 34.7954

Γ(2, 2%) 4% 0.08% 30.8932

Γ(3.13, 1.6%) 5% 0.08% 29.0169

Table 4.4: Time-0 welfare of PHs with increasing discount rate expectation. We
compare the base case with those that PHs have the same discount rate variance
but different discount rate expectation. Observe that the higher discount rate
expectation PHs have, the lower their time-0 welfare becomes.

Figure 4.2 shows PHs’ optimal surrender regions under four levels of discount rate
uncertainty as above. In this figure, “S” corresponds to the surrender region and “C” to
the continuation region. For each curve, the upper right part is the surrender region and
the lower left part the continuation region.

As can be seen from Figure 4.2, when PHs share the same discount rate expectation,
Gamma discounting PHs are less likely to surrender the VA policy than exponential dis-
counting PHs. In other words, Gamma discounting PHs are more likely to procrastinate
on making surrender decisions than exponential discounting PHs, which is consistent with
similar findings in O’Donoghue & Rabin (1999a) and O’Donoghue & Rabin (1999b), and
consistent with the decreasing impatience observation in Figure 4.1. This observation also
echoes the empirical phenomenon that PHs surrender the VA policy less often than op-
tion pricing approaches suggest (see Moenig & Bauer (2015) for more details) as Gamma
distributed time preferences are more reasonable than exponential ones, especially for long-
term investments such as VAs.

Also, we can observe that the more uncertain they are regarding the discount rate β,
the less likely they will surrender the VA policy. This reason is that, when sharing the same
expected discount rate, a higher level of discount rate uncertainty corresponds to higher
welfare from the VA policy (see Table 4.3), and makes PHs more reluctant to surrender
the policy.

Table 4.4 summarizes cases in which PHs have the same level of discount rate uncer-
tainty (variance) but different discount rate expectations. We observe that, when PHs
share the same level of uncertainty with respect to the discount rate, the higher the dis-
count rate expectation they have, the lower they value the VA policy. This is because
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Figure 4.3: Optimal surrender regions for three kinds of PHs as in Table 4.4.
Note that, PHs whose discount rate follows Γ(1.13, 2.67%) do not surrender in
this domain. Observe that, when having the same level discount rate uncer-
tainty, PHs with a higher discount rate expectation are more likely to surrender
the VA policy.

a higher discount rate expectation corresponds to a lower discount function (not hard to
check from Eq. (4.6)), which decreases PHs’ welfare.

Figure 4.3 presents optimal surrender regions for PHs with the same level of discount
rate uncertainty but different discount rate expectations (the same three cases as in Table
4.4). Note that PHs whose discount rates follow Γ(1.13, 2.67%) do not surrender in this
domain. We can observe that PHs with a higher discount rate expectation are more likely
to surrender the VA policy. When the level of discount rate uncertainty is the same, a
higher expectation corresponds to a lower value for the parameter θ, which indicates a
lower discount function, reduces PHs’ welfare from the VA policy (see Table 4.4), and
consequently stimulates earlier surrender.
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4.4 Insurer’s Profit

In the previous section we demonstrated how Gamma discounting affects PHs’ welfare and
surrender behavior from holding the VA policy. It is natural to also determine how the
insurer is impacted by PHs’ time preferences. Therefore, in this section, we investigate
the insurer’s profit from issuing the VA policy when PHs’ subjective discount rates follow
Gamma distributions. The aim is to determine the effect of PHs’ time preferences on the
insurer’s profit and on the fees the insurer deems sufficient to charge. However, obtaining
the insurer’s profit is complicated as it involves numerically solving a PDE with two state
variables.

We assume that the insurer is risk-neutral and their profit is measured by the total
fees collected deducting the payout to PHs (specified by Eq. (4.8)). For a certain fixed
insurance fee c, PHs’ optimal surrender times τ̂ , which affect the VA payout, are determined
by Eq. (4.10). Moreover, since the insurer’s profit depends on the total fees collected, we
add a state variable to preserve the Markov property, i.e.,

ωt =

∫ t

0

cFsds = ω,

where ωt denotes the total fees collected by the insurer at time t under the insurance fee
c. In light of the above, the insurer’s profit at time t can be written as

I(t, ω, F ; c) = Et,ω,F
[∫ τ̂

t
s−tpx+tλx+s (ωs − (Gs − Fs)+) ds+ τ̂−tpx+tφ (τ̂ , ωτ̂ , Fτ̂ )

]
, (4.18)

where

φ(t, ωt, Ft) =

ωt + κtFt, t ∈ [0, T ),

ωT − (GT − FT )+, t = T,

denotes the insurer’s profit upon PHs’ surrender (i.e., t ∈ [0, T )) or the policy maturity
(i.e., t = T ). Indeed, when a PH surrenders the VA policy, the insurer’s profit is the total
fees collected plus the surrender penalty income (since no guarantees are applicable), while
the insurer’s profit is the total fees collected deducting the GMMB payment1 at maturity
T . Moreover, if the PH dies prematurely, the insurer’s profit is the total fees collected
deducting the GMDB payment, which corresponds to the integral part in Eq. (4.18).
Define

LI := F (µ− c)IF +
1

2
F 2σ2IFF + cFIω − λx+tI. (4.19)

1Note that the insurer only needs to pay for the difference of the guaranteed amount G and the balance
of the investment account F when G is larger than F (i.e., when the guarantee is “in-the-money”).
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The PDE satisfied by I in Eq. (4.18) is

It + LI + λx+t (ω −max(0, (G− F ))) = 0, (4.20)

with boundary conditions
I(T, ω, F ) = ω − (GT − F )+, for (ω, F ) ∈ [0,∞)× [0,∞),

It

∣∣∣
F=0

= λx+tI
∣∣∣
F=0
− λx+t (ω −G) , for (t, ω) ∈ [0, T )× [0,∞),

I(t, ω, F ) = ω + κtF, for (t, ω, F ) ∈ [0, T )× [0,∞)× [F̂ ,∞),

limω→∞ I(t, ω, F ) = ω, for (t, F ) ∈ [0, T )× [0,∞),

(4.21)

where
F̂ = min {F ∈ [0,∞) : F ∈ St}

denotes the PHs’ optimal surrender boundary at time t and St is the PHs’ optimal surrender
region defined in Eq. (4.9). Derivation of Eq. (4.20) is relegated to Appendix B.2. The first
boundary condition in Eq. (4.21) corresponds to the insurer’s terminal profit. The second
condition is the degeneration of Eq. (4.20) when F = 0. The third condition corresponds
to the insurer’s profit when a PH surrenders the VA policy. The last condition holds since
the insurer’s profit converges to the total fees collected as they approach to infinity. In
what follows, we numerically solve PDE (4.20) with boundary conditions (4.21) to analyze
the impact of PHs’ time preferences on the insurer’s profit.

Table 4.5 presents the insurer’s profit at point (t, ω, F ) = (0, 0, F0) 2 when PHs have
the same discount rate expectation (i.e., E[β] = 4%) but different levels of discount rate
uncertainty (the same four cases as in Table 4.3). The insurer’s profit is calculated under
the fair insurance fee cf = 0.0186 obtained in Eq. (4.5) and parameter inputs are given by
Table 4.1 and the base case in Table 4.2.

It is evident that the insurer enjoys significantly positive profit when charging the fair
insurance fee for PHs with four different discount rate uncertainty levels. And from Figure
4.2, PHs with these discount rate uncertainty levels will participate in the VA policy (in
other words, not surrender the policy) at the point (t, ω, F ) = (0, 0, F0), which means the
insurer’s profit will be realized. This observation indicates that the insurer might even
make a profit from the VA policy after paying some policy-related initial expenses (e.g.
administration costs and agent commission) out of their own pocket (which is common in
VA practice). This means that it might be sufficient to charge a lower fee than the fair
insurance fee for the insurer to make a profit.

2Note that at time t = 0, the total fees collected by the insurer is 0, i.e., ω0 = 0.
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Distribution of β E[β] Var[β] I(0, ω0, F0)

E.D. 4% 0 13.9478

Γ(4, 1%) 4% 0.04% 18.0184

Γ(2, 2%) 4% 0.08% 20.0935

Γ(1, 4%) 4% 0.16% 23.2538

Table 4.5: Insurer’s profit valuated at (t, ω, F ) = (0, 0, F0) when PHs have the
same expected discount rate but different discount rate variance. The insurer
charges the fair fee cf = 0.0186 obtained in Eq. (4.5). Parameter inputs are
given by Table 4.1 and the base case in Table 4.2. Observe that the insurer
generates a higher profit when PHs are Gamma discounting than exponential
discounting, and the profit is higher when PHs have a higher level of discount
rate uncertainty.

More importantly, we observe that the insurer makes a higher profit when PHs are
Gamma discounting than exponential discounting, and the profit becomes higher when
PHs are more uncertain with respect to the discount rate. This is because, when sharing
the same discount rate expectation, PHs are less likely to surrender the VA policy (as
shown in Figure 4.2) if they are less certain regarding the discount rate, which means the
insurer can collect more insurance fees. This observation indicates that the insurer might
have more room to adjust the insurance fee and still make a profit when PHs are Gamma
discounting.

Figure 4.4 presents the insurer’s profit over a range of insurance fees below the fair
insurance fee cf when PHs have the same expected discount rate but different discount rate
variance. In this figure, c∗ denotes the insurance fee that generates the highest profit for
the insurer.

We first observe from Figure 4.4 that the insurer can make a positive profit for a wide
range of insurance fees below the fair fee cf (roughly from 0.0016 to 0.0186). Note that
this might not hold in general if initial costs are incorporated into the consideration, which
might likely lift the insurance fee at which the insurer makes zero profit (i.e., c = 0.0016
in this figure). However, this observation still indicates that the insurer has the room to
reduce the insurance fee below the fair fee and still make a profit.
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Figure 4.4: Insurer’s profit over a range of insurance fees below the fair fee
cf when PHs have the same expected discount rate but different discount rate
variance. c∗ denotes the insurance fee that generates the highest profit for the
insurer. Observe that the insurer has a higher profit and a higher c∗ when PHs
have higher discount rate uncertainty.

Second, for small insurance fees (c ≤ 0.012), the insurer makes the same profit regardless
of PHs’ discount rate uncertainty levels, while, for larger insurance fees (c ∈ [0.012, 0.0186]),
the insurer has a higher profit when PHs have higher discount rate uncertainty. For small
insurance fees, PHs do not surrender the VA policy for all three cases, and therefore the
insurer makes the same profit. For larger insurance fees, PHs’ surrender behavior starts
to differ (surrendering less likely for PHs with higher discount rate uncertainty) and the
observation regarding the insurer’s profit is consistent with that in Table 4.5.

Third, under the base case (i.e., Γ(2, 2%)), the insurer’s highest profit is achieved
roughly at c∗ = 0.013, which is lower than the fair fee cf = 0.0186. In other words, it
is beneficial for the insurer to charge a lower insurance fee than the fair fee. This obser-
vation is in line with the empirical finding that the market fees of VAs are lower than the
fair fees, which consequently justifies the adoption of Gamma discounting when evaluating
the VA policy.

Last, we observe that, when PHs have the same discount rate expectation, the insurer’s

60



Distribution of β E[β] Var[β] I(0, ω0, F0)

Γ(1.13, 2.67%) 3% 0.08% 30.6466

Γ(2, 2%) 4% 0.08% 20.0935

Γ(3.13, 1.6%) 5% 0.08% 9.1507

Table 4.6: Insurer’s profit when PHs have the same discount rate variance but
different discount rate expectations. The insurer charges the fair fee cf = 0.0186.
Observe that the insurer’s profit is reduced if PHs have higher discount rate
expectations.

c∗ is higher when PHs have higher discount rate uncertainty (i.e., approximately c∗ = 0.012
when PHs are exponential discounting and c∗ = cf when discount rate β follows Γ(1, 4%)).
PHs with higher discount rate uncertainty are less likely to surrender the VA policy, and
the insurer can charge a higher insurance fee and still make a higher profit.

Table 4.6 summarizes the insurer’s profit when PHs have the same discount rate variance
but different discount rate expectations (the same three cases as in Table 4.4). Note that
the insurer charges the fair fee cf = 0.0186. We can observe that the insurer’s profit is
reduced when PHs have a higher expected discount rate. This is because PHs who have a
higher expected discount rate are more likely to surrender the VA policy (see Figure 4.3),
which decreases the insurer’s total fees collected.

Figure 4.5 displays the insurer’s profit over a range of insurance fees below the fair fee cf

when PHs have the same discount rate variance but different discount rate expectation. It
is evident that, in general, the insurer has a higher profit when PHs have a lower discount
rate expectation. The reason is that PHs are more likely to surrender the VA policy when
they have a higher expected discount rate (see Figure 4.3) and this reduces the total fees
collected. Note that exceptions occur for very low insurance fees (when c ≤ 0.003) where
a higher discount rate expectation incurs a higher insurer’s profit. This might be because
the case where the discount rate β follows Γ(3.13, 1.6%) generates a moderate surrender
region for extremely low insurance fees while the other two cases do not, and for extremely
low insurance fees, the income from surrender penalties surpasses that from the insurance
fees.
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Figure 4.5: Insurer’s profit over a range of insurance fees below the fair fee cf

when PHs have the same different discount rate variance but different discount
rate expectations. Observe that the insurer in general has a lower profit when
PHs have a higher discount rate expectation for a range of insurance fees.

4.5 Conclusion

In this chapter, we study the impact of Gamma discounting on PHs’ welfare and surrender
behavior from holding the VA policy as well as on the insurer’s profit from the policy.

For the analysis, we set up a utility-based framework to quantify PHs’ welfare and
the corresponding surrender behavior from holding the VA policy when their subjective
discount rates follow a Gamma distribution. By numerically solving a PDE with two state
variables, we also compute the insurer’s profit from the VA policy when PHs are Gamma
discounting. We find that discount rate uncertainty makes PHs value the VA contract more,
delays their surrender behavior, and increases the insurer’s profit. Our results indicate
that Gamma discounting can offer an alternative explanation for the discrepancy between
theoretical PH behavior and market fee rates and empirically observed ones.
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Chapter 5

Gamma Discounting in Variable
Annuities with Guaranteed Minimum
Withdrawal Benefits

5.1 Introduction

A guaranteed minimum withdrawal benefit (GMWB) offers a policyholder (PH) the right to
withdraw the initial premium from a variable annuity (VA) policy over the life of the policy
regardless of the performance of the investment. This guarantee is extremely prevalent.
Specifically, a GMWB is included in roughly 70% of all VAs issued in 2004 (see Brothers
(2005) for more details). In fact, withdrawal guarantees (also including guaranteed lifetime
withdrawal benefit) in VAs have been the most popular guarantees over the past two
decades among various guaranteed living benefits which have significantly expanded ever
since late 1990s (see Bauer et al. (2008)).

The prevalence of GMWBs has sparked great interest from academics. For exam-
ple, Milevsky & Salisbury (2006) and Dai et al. (2008) investigate the pricing of VAs with
GMWB. While the latter formulates the pricing within a singular stochastic optimal control
framework, the former points out that the market insurance fee is significantly below the
one obtained from a risk-neutral pricing approach. The seminal work of Moenig & Bauer
(2015) demonstrates that this under-priced phenomenon can be explained by a market fric-
tion: taxes. The reason is that the tax-deferral treatment can stimulate PHs to withdraw
less frequently from VA policies. Among many others, Horneff et al. (2015) and Steinorth
& Mitchell (2015) incorporate the analysis of GMWB into a life-cycle consumption model.
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As in the spirit of Chapter 4, we study the time-inconsistent time preferences for VA
PHs with GMWB in this chapter. More specifically, we consider risk-neutral PHs whose
subjective discount rates follow a Gamma distribution, and determine how this will impact
their welfare and withdrawal behavior from holding the VA policy.

Consistent with their counterparts in Chapter 4, our results show that, when having
the same expected discount rate, Gamma discounting PHs value the VA policy more and
withdraw less often than exponential discounting PHs. Also, we observe that when the
variability of the discount rate increases (for a given mean), PHs value the policy more
and they tend to make fewer withdrawals from the VA policy. Our findings indicate
that Gamma discounting can offer an alternative explanation, in addition to the effect of
taxes, to the phenomenon that PHs withdraw less frequently than the risk-neutral pricing
approach suggests.

As for the analysis, we first adopt the conventional risk-neutral pricing approach and
formulate the pricing of a VA with GMWB within a singular stochastic optimal control
framework as in Dai et al. (2008). The fair fee of the VA policy is numerically determined
via the penalty method in Huang & Forsyth (2012). We later consider risk-neutral PHs
whose subjective discount rates follow a Gamma distribution. The reasons to consider
risk-neutral PHs are two-fold. First, the impact of PHs’ risk preferences is not significant
for products with downside protection such as VAs. Second, incorporating a utility-based
framework into the analysis would causes us some technical difficulties, e.g., we might
lose bang-bangness of PHs’ optimal withdrawal strategies, which might massively increase
computational cost. Therefore, we consider risk-neutral PHs which are a simplification
of risk-averse PHs, and we deem that the results on the effect of Gamma discounting are
unlikely to be different.

To analyze PHs’ welfare and withdrawal behavior, we set up a time-inconsistent stochas-
tic optimal control model. To deal with the time-inconsistency from the non-exponential
discount function, we adopt the game theoretic framework proposed by Björk & Murgoci
(2010) to derive a system of extended Hamilton-Jacobi-Bellman (EHJB) equations. Due
to the absence of explicit solutions, we resort to numerically solving the system of equa-
tions. However, numerically solving this system using standard finite difference methods is
extremely challenging due to its complex form and time-consuming iterative procedure to
attain an equilibrium withdrawal strategy. We circumvent these difficulties by proposing
an efficient algorithm, and show that an optimal withdrawal strategy obtained from this
algorithm is indeed an equilibrium withdrawal strategy from the system of equations.

The main contribution of this chapter is as follows. First, we incorporate time in-
consistency of PHs’ time preferences into the analysis of VAs with GMWB. Second, our
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results indicate that Gamma discounting can offer an alternative explanation (to the effect
of taxes) to the phenomenon that PHs withdraw less often from VAs. Last, we propose
an efficient numerical algorithm to solve the system of EHJB equations and establish the
connection between the algorithm and the system.

The remainder of this chapter is organized as follows. Section 5.2 formally introduces
the VA policy and determines the corresponding fair insurance fee. Section 5.3 sets up
a time-inconsistent stochastic optimal control model and presents numerical examples to
analyze the welfare and withdrawal behavior of PHs whose subjective discount rates follow
a Gamma distribution. Section 5.4 concludes. Derivation of the system of EHJB equations,
the algorithm, and a proof that establishes the connection between the algorithm and the
system are relegated to Appendix C.

5.2 Valuation of Fair Fees

In this section, we describe the VA policy under consideration in detail and formulate
its risk-neutral pricing model within a continuous-time singular stochastic optimal control
framework (as in Dai et al. (2008)). Consequently, we obtain the fair fee of the VA policy.

5.2.1 Pricing Model

We consider a T -year VA policy with guaranteed minimum withdrawal benefit (GMWB).
Suppose the probability space (Ω,F ,Q) with a filtration {Ft}0≤t≤T satisfies the usual
conditions, where Q is a risk-neutral measure. Under the measure Q, we assume that
the value process of the underlying policy fund of the VA policy S follows a geometric
Brownian motion with dynamics

dSt
St

= rdt+ σdWQ
t ,

where r > 0 is the risk-free rate, σ > 0 represents the policy fund volatility, and {WQ}t≥0

stands for the standard Brownian motion under Q.

The GMWB stipulates that the VA policy returns initial premium P to a PH via
withdrawals. Specifically, the PH can continuously withdraw from the policy up to the
amount of the upfront initial premium before the policy matures.1 In light of the above,

1Note that the time value of each withdrawal is not considered.
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we introduce At to denote the balance of the guarantee account at time t ∈ [0, T ], which
records the cash value left in the guarantee account that the PH is still eligible to withdraw.
At the inception of the policy, A0 equals P , and At decreases over the life of the policy as
withdrawal continues. Once At hits 0, the PH can no longer withdraw from the policy. In
view of this, At is a non-negative and non-increasing process which is right-continuous with
left limit. Similar to Dai et al. (2008), we first consider a restricted class of withdrawal
policies where At is constrained to be absolutely continuous with bounded derivatives, i.e.,

At = A0 −
∫ t

0

γsds, 0 ≤ γs ≤ λ, (5.1)

where γs represents the withdrawal rate at time s. Note that we take the penalty approx-
imation approach by imposing an upper bound for the continuous withdrawal rate γ. We
later take the limit λ→∞ to establish the singular stochastic control formulation for the
pricing of the VA policy (as in Dai et al. (2008)).

To fund the guarantees, the insurer is assumed to continuously charge a constant in-
surance fee with rate c as a fixed percentage against investment account F . Therefore, the
dynamics of the investment account follows{

dFt = (r − c)Ftdt+ σFtdW
Q
t + dAt,

F0 = P.
(5.2)

Effectively, the value of the investment account is affected by the performance of the
underlying policy fund, the insurance fee, and PHs’ withdrawal behavior. The initial value
of the investment account F0 is equal to the initial premium P .

Moreover, the policy imposes a contractual withdrawal rateG, and a withdrawal penalty
κ is applied on the part of a withdrawal γ above G. More specifically, when a withdrawal γ
is higher than the contractual rate G, the net amount received by a PH is G+(1−κ)(γ−G).
In light of the above, denote the rate of cash flow received by the PH by f(γ), and we then
have

f(γ) =

{
γ, for 0 ≤ γ ≤ G,

G+ (1− κ)(γ −G), for G ≤ γ ≤ λ.
(5.3)

Before the policy matures, the PH receives this withdrawal cash flow f(γ), and at maturity
T , the maximum between the balance of the investment account and the balance of the
guarantee account is paid to the PH, subject to the withdrawal penalty, i.e., the maturity
payout of the VA policy is max (FT , AT )− κAT .2

2We adopt the terminal payout introduced by Huang & Kwok (2014) instead of Dai et al. (2008). Note
that the one in the latter is simply a special case of the one in the former.
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We adopt the risk-neutral pricing framework to obtain the fair fee of the VA policy.
Specifically, within this framework, the insurer is able to replicate every possible VA cash
payout, and they assume a PH that chooses the optimal withdrawal strategy to maxi-
mize the expected present value (EPV) of cash flows generated by holding the VA policy.
Therefore, the risk-neutral pricing value function V is given by

V (t, F, A) = max
γ

EQ
t,F,A

[∫ T

t

e−r(s−t)f(γs)ds+ e−r(T−t)M(FT , AT )

]
, (5.4)

where Ft = F , At = A, γ is the control variable that maximizes Eq. (5.4), and

M(F,A) = max (F,A)− κA (5.5)

denotes the terminal payout function of the VA policy. By the dynamic programming
principle (see, e.g. Fleming & Soner (2006) for more details), the Hamilton-Jacobi-Bellman
(HJB) equation satisfied by Eq. (5.4) is

Vt + LV + max
γ

h(γ) = 0, (5.6)

where

LV = (r − c)FVF +
1

2
F 2σ2VFF − rV,

and

h(γ) = f(γ)− γVF − γVA =

{
(1− VF − VA)γ, for 0 ≤ γ < G,

κG+ (1− κ− VF − VA)γ, for G ≤ γ ≤ λ.
(5.7)

Note that Vt, VF , and VFF correspond to the partial derivatives of V with respect to t and
F . As can be observed from Eq. (5.7), the function h(γ) is piece-wise linear with respect
to γ. Hence, maxγ h(γ) will only be achieved at γ = 0, γ = G, or γ = λ, and

max
γ

h(γ) =


κG+ (1− κ− VF − VA)λ, for 1− VF − VA ≥ κ,

(1− VF − VA)G, for 0 < 1− VF − VA < κ,

0, for 1− VF − VA ≤ 0.

By taking the limit λ→∞ in Eq. (5.6), we obtain the linear complementarity formulation
of the pricing value function V (as in Dai et al. (2008)) in the following,

min {−Vt − LV −max(1− VF − VA, 0)G, VF + VA − (1− κ)} = 0, (5.8)
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where 0 < t < T , F > 0, and 0 < A < P . Note that Eq. (5.6) is a penalty approximation
of Eq. (5.8). The terminal and boundary conditions for Eq. (5.8) are summarized in the
following: 

V (T, F,A) = max (F,A)− κA, for (F,A) ∈ [0,∞)× [0, P ],

V (t, F, 0) = e−c(T−t)F, for (t, F ) ∈ [0, T )× (0,∞),

limF→∞ V (t, F, A) = e−c(T−t)F, for (t, A) ∈ [0, T )× (0, P ],

(5.9)

and for (t, A) ∈ [0, T )× (0, P ] when F = 0, Eq. (5.8) degenerates to{
min

{
Vt
∣∣
F=0

+ rV
∣∣
F=0
−max(1− VA

∣∣
F=0

, 0)G, VA
∣∣
F=0
− (1− κ)

}
= 0,

V (T,A)
∣∣
F=0

= (1− κ)A, and V (t, 0)
∣∣
F=0

= 0.
(5.10)

The first equation in Eq. (5.9) is the terminal condition which can be easily obtained from
Eq. (5.4) by letting t = T . The second equation in Eq. (5.9) holds since the PH can
no longer withdraw from the VA policy and the risk-neutral value function V will only
be discounted with the insurance fee rate c before maturity. The third equation holds
because the withdrawal guarantee is negligible when F becomes very large and therefore it
is similar to the second equation. Eq. (5.10) corresponds to the degeneration of Eq. (5.8)
when F = 0.

Since it is difficult to solve Eq. (5.8) with boundary conditions (5.9) and (5.10), we
solve for its penalty approximation Eq. (5.6), which is the penalty method proposed in
Dai et al. (2008) and Huang & Forsyth (2012). Similar to the last two chapters, we solve
for the fair insurance fee cf which satisfies

V (0, F0, A0; cf) = F0. (5.11)

Parameters required to obtain the fair fee of the VA policy are summarized in Table
5.1. We consider a VA policy that matures in 15 years. The contractual withdrawal rate,
withdrawal penalty, and the upper bound for the withdrawal rate are taken the same as
in Huang & Forsyth (2012). Adopting the penalty method to numerically solve Eq. (5.6)
with boundary conditions (5.9) and (5.10) such that Eq. (5.11) is satisfied, we obtain the
fair insurance fee

cf = 0.0184. (5.12)

5.3 Policyholder with Gamma Discounting

In this section, we consider risk-neutral PHs whose subjective discount rates follow a
Gamma distribution, and determine the impact of their time preferences on the welfare and
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Description Parameter Base Case

Contract length T 15

Initial premium P 100

Contractual withdrawal rate G 10

Withdrawal penalty κ 0.1

Interest rate r 3%

Volatility σ 20%

Upper bound of withdrawal rate λ 10−5

Table 5.1: Parameter inputs

withdrawal behaviour from holding the VA policy with GMWB. We consider risk-neutral
PHs for the following two reasons. First, we can avoid the expensive computational cost
that might stem from a utility-based framework. Second, we deem that the results on the
effect of Gamma discounting are unlikely to be different under a utility-based framework.
As in the spirit of the last two chapters, we assume that the insurer still adopts the risk-
neutral pricing approach to price the policy and charges the fair fee cf as given in Eq.
(5.12).

5.3.1 Model Setup

In what follows, we setup the model to quantify risk-neutral PHs’ welfare from holding the
VA policy when their subjective discount rates follow a Gamma distribution.

Suppose that, under the physical measure P, the dynamics of the investment account
F follows

dFt = (µ− c)Ftdt+ σFtdWt + dAt,

where µ > 0 denotes the expected return rate of the underlying policy fund and {Wt}t≥0

is a Brownian motion under P. Similar to Chapter 4, PHs’ subjective discount rates β
follow a Gamma distribution Γ(k, θ) with k > 0 and θ > 0 being the shape and scale
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parameters, respectively. We refer to these PHs as Gamma discounting PHs as in Chapter
4. Comparatively, PHs who discount with a fixed rate β are referred to as exponential
discounting PHs. The discount function h of the Gamma discounting PH with subjective
discount rate β is

h(t) = E
[
e−βt

]
= (1 + θt)−k, for t ∈ [0, T ]. (5.13)

For exponential discounting PHs, h(t) = e−βt for t ∈ [0, T ].

We further assume that PHs are risk-neutral and optimally withdraw from the VA
policy to maximize the following objective function representing their welfare

J(t, F, A; γ) = Et
[∫ T

t

h(s− t) · f(γs)ds+ h(T − t) ·M(FT , AT )

]
, (5.14)

where the terminal payout function M is defined in Eq. (5.5). Since we now face a stochas-
tic optimal control problem with a non-exponential discount function which possesses the
well-known issue of time inconsistency, we adopt the game theoretic approach proposed
in Björk & Murgoci (2010) and derive an equilibrium withdrawal strategy via solving a
system of extended Hamilton-Jacobi-Bellman (EHJB) equations. In light of the above, we
first define an equilibrium withdrawal law in the following.

Definition 9. Consider a withdrawal law γ̂. Choose a fixed γ ∈ [0, λ], and a fixed real
number ε > 0. Also, fix an arbitrary chosen initial point (t, F, A) ∈ [0, T )× [0,∞)× [0, P ].
Define a withdrawal law γ by

γ(s, y, z) =

{
γ, for t ≤ s < t+ ε,

γ̂(s, y, z), for t+ ε ≤ s < T,

in which (y, z) ∈ [0,∞)× [0, P ]. If

lim inf
ε→0

J(t, F, A; γ̂)− J(t, F, A;γ)

ε
≥ 0,

for all γ ∈ [0, λ], we say that γ̂ is an equilibrium withdrawal law. The equilibrium value
function is defined by

V (t, F, A) = J(t, F, A; γ̂).

Before presenting the system of EHJB equations, we first define auxiliary functions in
the following. Suppose that an equilibrium withdrawal law γ̂ exists. For each s ∈ [t, T ],
we define

ks(t, F, A) := Et,F,A
[
f(γ̂(s, F γ̂s , A

γ̂
s ))
]
, for 0 ≤ t ≤ s.
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As for the terminal payout of the VA policy, we define

H(t, F, A) = Et,F,A
[
M(F γ̂T , A

γ̂
T )
]
, for 0 ≤ t ≤ T.

Note that, under this equilibrium withdrawal law, each ks function corresponds to the
instantaneous expected cash flow rate at time s ∈ [t, T ], which gives us infinitely many
ks functions, and the function H corresponds to the expected terminal payout of the VA
policy. Therefore, under an equilibrium withdrawal law γ̂, the system of EHJB equations
satisfied by (V, ks, H) is:

• V satisfies

Vt+AV+

∫ T

t

h′(s−t)·ks(t, F, A)du+h′(T−t)·H(t, F, A)+sup
γ
{f(γ)− γVF − γVA} = 0,

(5.15)
with boundary conditions

V (T, F,A) = max (F,A)− κA, for (F,A) ∈ [0,∞)× [0, P ],

V (t, F, 0) = F · h(T − t) · e(µ−c)(T−t), for (t, F ) ∈ [0, T )× (0,∞),

limF→∞ V (t, F, A) = F · h(T − t) · e(µ−c)(T−t), for (t, A) ∈ [0, T )× (0, P ],

(5.16)
and with the boundary condition when F = 0 for (t, A) ∈ [0, T )× (0, P ] such that

Vt

∣∣∣
F=0

+

∫ T

t

h′(s−t) ·ks(t, 0, A)ds+h′(T−t) ·H(t, 0, A)+sup
γ

{
f(γ)− γVA

∣∣∣
F=0

}
= 0,

(5.17)
with conditions V (T,A)

∣∣∣
F=0

= (1− κ)A, for A ∈ [0, P ],

V (t, 0)
∣∣∣
F=0

= 0, for t ∈ [0, T ),
(5.18)

where AV = (µ− c)FVF + 1
2
σ2F 2VFF and h′(t) = dh(t)

dt
;

• For each s ∈ [0, T ), ks satisfies

kst +Aks − (ksF + ksA)γ̂ = 0, (5.19)
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with boundary conditions

ks(s, F,A) = f(γ̂s), for (F,A) ∈ [0,∞)× [0, P ],

ks(t, F, 0) = 0, for (t, F ) ∈ [0, s)× (0,∞),

limF→∞ k
s(t, F, A) = 0, for (t, A)× [0, s)× (0, P ],

kst

∣∣∣
F=0
− γ̂ · ksA

∣∣∣
F=0

= 0, for (t, A)× [0, s)× (0, P ],

ks(s, A)
∣∣∣
F=0

= f(γ̂s), for A ∈ (0, P ],

ks(t, 0)
∣∣∣
F=0

= 0, for s ∈ [0, s),

(5.20)

where Aks = (µ− c)FksF + 1
2
σ2F 2ksFF ;

• H satisfies
Ht +AH − (HF +HA)γ̂ = 0, (5.21)

with boundary conditions

H(T, F,A) = max (F,A)− κA, for (F,A) ∈ [0,∞)× [0, P ],

H(t, F, 0) = Fe(µ−c)(T−t), for (t, F ) ∈ [0, T )× (0,∞),

limF→∞H(t, F, A) = Fe(µ−c)(T−t), for (t, A) ∈ [0, T )× (0, P ],

Ht

∣∣∣
F=0
− γ̂HA

∣∣∣
F=0

= 0, for (t, A)× [0, T )× (0, P ],

H(T,A)
∣∣∣
F=0

= (1− κ)A, for A ∈ (0, P ],

H(t, 0)
∣∣∣
F=0

= 0, for t ∈ [0, T ),

(5.22)

where AH = (µ− c)FHF + 1
2
σ2F 2HFF .

This system of EHJB equations contains one partial differential equation (PDE) for V ,
infinitely many PDEs for ks (one for each s ∈ [t, T ]), and one PDE for H. The derivation
of this system is relegated to Appendix C.1. Note that, in this system, PDEs (5.19) and
(5.21) corresponding to ks and H are under an equilibrium withdrawal strategy γ̂, and
γ̂ is determined by Eq. (5.15). Similar to Eq. (5.6), we can observe from Eq. (5.15)
that the expression f(γ)− γVF − γVA is piece-wise linear in γ. Therefore, an equilibrium
withdrawal strategy can only be taken from {0, G, λ}. Again, by taking the limit λ→∞,
we can obtain a linear complementary formulation for the value function V (a.k.a. PHs’
optimal welfare) similar to Eq. (5.8). However, it is difficult to solve for this formulation.
Hence, we solve for its penalty approximation Eq. (5.15) instead.
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Description Parameter Base Case Sensitivity Analysis

Expected Return µ 8%

Expected Discount Rate E[β] 4% 3%, 5%

Gamma Distribution (k, θ) (2, 2%) (4, 1%), (1, 4%), (1.13, 2.67%), (3.13, 1.6%)

Table 5.2: Parameter inputs under Gamma discounting

Using a standard finite difference approach to numerically solve the system of EHJB
equations (5.15)-(5.22) is extremely challenging due to its complex form, high dimensional-
ity (i.e., two state variables F and A), and a time-consuming iterative procedure to achieve
an equilibrium withdrawal strategy γ̂ in Eq. (5.15). To circumvent these difficulties, we
propose an efficient algorithm to solve this system. Moreover, we show that a solution de-
rived by this algorithm is indeed a solution to the system of EHJB equations (5.15)-(5.22).
The details of the algorithm are relegated to Appendix C.2.

5.3.2 Policyholders’ Time Preferences and Welfare

In what follows, we give out numerical examples to illustrate how PHs’ time preferences
(a.k.a. Gamma discounting) affect their welfare and withdrawal behavior from holding the
VA policy. We adopt similar parameter inputs for Gamma discounting PHs as in Chapter
4. The only difference is that PHs are now assumed to be risk-neutral. We reiterate
that the base case Gamma distribution Γ(2, 2%) is calibrated from Table 1 in Weitzman
(2001). For the rest of this section, we first present the welfare and withdrawal behavior
of PHs with the same discount rate expectation but different discount rate uncertainty
(i.e., variance); see Table 5.3 and Figure 5.1. We then display the welfare and withdrawal
behavior of PHs with the same discount rate uncertainty but different expected discount
rate; see Table 5.4 and Figure 5.2.

Table 5.3 summarizes time-0 welfare of PHs with the same discount rate expectation
but different discount rate uncertainty. “E.D.” represents exponential discounting PHs
in this table. It is evident that, when sharing the same expected discount rate, Gamma
discounting PHs value the VA policy higher than exponential discounting PHs, and the
higher level of discount rate uncertainty PHs have, the more they will value the VA policy.
The reason is that, when having the same expected discount rate, a higher discount rate
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Distribution of β E[β] Var[β] V (0, F0, A0)

E.D. 4% 0 139.0549

Γ(4, 1%) 4% 0.04% 144.3018

Γ(2, 2%) 4% 0.08% 148.9121

Γ(1, 4%) 4% 0.16% 156.6813

Table 5.3: PHs’ time-0 welfare with increasing uncertainty of β. Note that
E[β] = 4% is kept the same for all four cases and Var[β] is increasing. “E.D.” is
short for “exponential discounting PH”. Observe that Gamma discounting PHs
value the VA policy more than exponential discounting ones, and the larger
variance a PH’s subjective discount rate has, the more the PH will value the
VA policy.

uncertainty level corresponds to a higher discount function h, which consequently increases
PHs’ welfare. Note that these findings are consistent with those in Chapter 4. And these
results also imply that Gamma discounting might help justify the popularity of VAs with
withdrawal-type guarantees.

Figure 5.1 displays withdrawal regions for exponential discounting PHs (blue), Gamma
discounting PHs of Γ(2, 2%) (red), and Gamma discounting PHs of Γ(1, 4%) (pink) at
time t = 1 (the left two panels) and at time t = 13 (the right two panels) when they have
the same discount rate expectation. We summarize some important observations in the
following.

First, as alluded to above, the optimal regions of PHs are consist of three withdrawal
strategies, namely no withdrawal (γ = 0), withdraw at the contractual withdrawal rate
(γ = G), or instantaneously withdraw with a discrete amount (γ = ∞). Note that these
results are consistent with literature on withdrawal rates of GMWBs (e.g. Huang & Forsyth
(2012)).

Second, our results show that PHs do not withdraw from the VA policy very often, in
particular when the policy is at the early stage (the left two panels). As can be seen at time
t = 1 from this figure, PHs only withdraw from the policy when the investment account is
very small (which is similar to the withdrawal behavior found in Moenig & Bauer (2015))
and when the balance of the guarantee account A is approximately two times higher than
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Figure 5.1: Contour graph of withdrawal regions for exponential discounting
PHs (blue), Gamma discounting PHs of Γ(2, 2%) (red), and Gamma discount-
ing PHs of Γ(1, 4%) (pink) with the same expected discount rate at time t = 1
(left two panels) and time t = 13 (right two panels). Observe that Gamma dis-
counting PHs withdraw less from the VA policy than exponential discounting
PHs.
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the balance of the investment account F (i.e., A > 2F ). In the case that PHs do withdraw
from the policy, they withdraw at contractual rate G when the balance of the guarantee
account is approximately below 60, i.e., when both guarantee and investment accounts
are small. This is because the guarantee is not too out-of-the-money when both accounts
are small and PHs still expect the investment account to grow higher than the guarantee
account. Therefore, they refrain from withdrawing too much. Nevertheless, PHs withdraw
at a discrete amount instantaneously (γ = ∞), when the guarantee account is roughly
higher than 60, i.e., when the guarantee account is much higher than the investment
account. The reason is that, when the guarantee is too out-of-the-money, PHs no longer
expect the investment account to grow higher than the guarantee account in the future.
Hence, to avoid future insurance fee charges and further value depreciation of the policy
due to discounting, PHs opt to withdraw as much as possible.

Note that when the investment account grows higher (roughly when F > 1
2
A), PHs

do not withdraw from the policy. This is different from the findings in Huang & Forsyth
(2012) and Huang & Kwok (2014), where non-zero withdrawal regions could be observed
for large investment account value. The reason is that we consider an incomplete market
where PHs might not be able to replicate the VA payouts corresponding to their time
preferences. With a high expected return rate (i.e., µ = 8%) of the underlying policy fund,
the VA policy is more attractive than that in a complete market.

Third, we observe that PHs withdraw more from the policy as it approaches maturity.
From the right panel of this figure, the contractual withdrawal rate region and region of
withdrawing with a discrete amount are enlarged, while no withdrawal region is reduced. In
particular, when the investment account becomes larger and the balance of the guarantee
account is approximately between 25 and 90, PHs withdraw at the contractual withdrawal
rate G. This is because, at the late stage of the policy, PHs do not anticipate significant
growth of the investment account. Therefore, it is opportune for them to withdraw from
the policy to avoid the penalty at maturity. Withdrawal penalty is also the reason for
them to only withdraw at rate G but not higher.

Last, as for the difference of withdrawal behavior between exponential discounting PHs
and Gamma discounting PHs, we see that Gamma discounting PHs withdraw less from the
VA policy. Indeed, at time t = 1, Gamma discounting PHs have a larger no withdrawal
region and a smaller non-zero withdrawal region (a combination region of γ = G and
γ = ∞) than exponential discounting PHs. Note that this difference is more evident for
Gamma discounting PHs with a higher discount rate uncertainty (i.e., Γ(1, 4%)). This
can be attributed to the fact that Gamma discounting PHs enjoy higher welfare than
exponential PHs (see Table 5.3), and are therefore more reluctant to withdraw from the
policy. Moreover, similar to Chapter 4, this can also be explained by the procrastination
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Distribution of β E[β] Var[β] V (0, F0)

Γ(1.13, 2.67%) 3% 0.08% 171.4610

Γ(2, 2%) 4% 0.08% 148.9121

Γ(3.13, 1.6%) 5% 0.08% 129.6498

Table 5.4: Time-0 welfare of PHs with increasing discount rate expectation. We
compare the base case with those that have the same discount rate variance
but different discount rate expectation. Observe that the higher discount rate
expectation PHs have, the lower their time-0 welfare becomes.

effect for PHs with time-inconsistent time preferences (a.k.a. Gamma discounting) who
are more likely to delay investment decisions. Our results also resonate with the empirical
finding that PHs withdraw less often than option pricing approaches suggest, indicating
that Gamma discounting can be an alternative explanation to this mismatch (in addition
to the effect of taxes suggested by Moenig & Bauer (2015)).

However, we observe that the difference in withdrawal behavior between exponential
discounting PHs and Gamma discounting PHs is reduced when the policy approaches to
maturity. Indeed, from the right two panels of Figure 5.1, regions of γ = G and γ = ∞
are almost the same when the balance of the investment account is small for Gamma
discounting and exponential discounting PHs. The difference is only evident when the
investment account is large, where a slightly larger no withdrawal region (resp. smaller
contractual withdrawal rate region) can be observed for Gamma discounting PHs. The
reason is that, in the short term, the impact of PHs’ time preferences on the welfare and
withdrawal behavior from holding the VA policy also becomes smaller than in the long
term (e.g. the difference in the discount functions is smaller).

For the reminder of this section, we present PHs’ welfare and withdrawal behavior when
they have the same discount uncertainty but different expected discount rates. Table 5.4
summarizes PHs’ time-0 welfare when they share the same discount rate variance but
different discount rate expectation. Similar to Chapter 4, we observe that the higher
expected discount rates PHs have, the lower their welfare from holding the VA policy will
be. This is not surprising since, when having the same discount rate uncertainty, a higher
discount rate expectation corresponds to a lower discount function h, which decreases PHs’
welfare.
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Figure 5.2: Contour graph of withdrawal regions at time t = 1 for PHs with
the same discount rate uncertainty but different discount rate expectation.
The left panel compares the base case (red) to the case with a lower expected
discount rate (blue), and the right panel compares the base case to the case
with a higher expected discount rate (black). Observe that the higher discount
rate expectation PHs have, the more they will withdraw from the VA policy.

Figure 5.2 presents PHs’ withdrawal regions at time t = 1 when they have the same
discount rate uncertainty but different discount rate expectation. The left panel com-
pares the base case (i.e., Γ(2, 2%)) with the case of a lower expected discount rate (i.e.,
Γ(1.13, 2.67%)), while the right panel compares the base case with the case of a higher
expected discount rate (i.e., Γ(3.13, 1.6%)).

It is apparent that a higher expected discount rate corresponds to a smaller no with-
drawal region and a larger region of non-zero withdrawal. Not surprisingly, as can be
seen from Table 5.4, a higher expected discount rate produces lower welfare for PHs given
the corresponding lower discount function h, which means the VA policy becomes less
attractive and stimulates PHs to withdraw more from the policy.
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5.4 Conclusion

In this chapter, we study the impact of Gamma discounting on the welfare and withdrawal
behavior for risk-neutral PHs of VAs with GMWB.

For the analysis, we set up a time-inconsistent stochastic optimal control model and
present numerical examples to analyze the welfare and withdrawal behavior of PHs whose
subjective discount rates follow a Gamma distribution. We propose an efficient numerical
algorithm to circumvent the difficulties of solving the system of EHJB equations using
standard finite difference methods.

Our results show that Gamma discounting PHs value the VA policy more and withdraw
less often than their exponential discounting counterparts. And, when having the same
expected discount rate, the higher discount rate variance PHs have, the more they will
value the policy and the less often they withdraw from the policy. Our findings indicate
that Gamma discounting can offer an alternative explanation to the phenomenon that
PHs withdraw less often than the risk-neutral pricing approach suggests, in addition to the
effect of taxes.
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Chapter 6

Conclusion and Future Work

The main objective of this thesis is centered around proposing potential remedies and
alternative explanations to two current VA phenomena: declining demand for VA products
and existence of discordance between some theoretical and empirical findings in the VA
market, most notably those pertaining to insurance fees and PH behavior. We hope the
work of this thesis can contribute to better VA contract design and better understanding
of PH behavior.

More specifically, Chapter 3 proposes a VA with a novel HWM fee structure and evalu-
ates PH welfare with the VA. We introduce an innovative quantitative measure to assess the
impact of fee structure on VA marketability. A system of EHJB equations corresponding
to an MV optimal stopping problem with two state variables over a random time hori-
zon is derived. Moreover, we propose a numerical algorithm to solve the system of EHJB
equations and establish the connection between the algorithm and the system. Our results
show that the HWM fee structure can generally improve VA marketability.

Chapters 4 and 5 incorporate Gamma discounting into the analysis of VAs with various
guarantees. In these two chapters, we solve both a time-inconsistent optimal stopping
and a time-inconsistent stochastic control problem. The impact of Gamma discounting on
the insurer’s profit is investigated in Chapter 4, and an efficient algorithm is proposed to
numerically obtain an equilibrium withdrawal strategy for risk-neutral PHs in Chapter 5.
Consistent results are obtained in these chapters regarding PH welfare and PH surrender
and withdrawal behavior. Collectively, these results indicate that Gamma discounting can
offer an alternative explanation, in addition to the effect of taxes, to the aforementioned
discordance between theoretical and empirical insurance fees and PH behavior.

While there are many potential directions to extend the work of this thesis, we list
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some future research avenues that are most relevant in the following:

• For Chapter 3, it would be interesting to incorporate more practical features such
as initial expenses (see, e.g., Bernard & Moenig (2019)) and VA tax benefits (see,
e.g., Moenig & Bauer (2015)) into our model. The presence of initial expenses would
increase total fees of VAs which could impair the resulting VA marketability. How-
ever, this is likely offset by VA tax benefits. It could also be interesting to look
into the question of lapse-and-reentry (see, e.g., Moenig & Zhu (2018)) and examine
its impact on the performance of the HWM fee structure. Moreover, exploring the
influence of the HWM fee structure on withdrawal type guarantees (see, e.g., Dai
et al. (2008)) remains an open and very relevant research problem.

• For Chapter 4, it would be interesting to investigate the impact of Gamma discount-
ing within a principal-agent framework. Specifically, we can determine the partici-
pant constraints for both PHs and insurers by figuring out the set of insurance fees
that both parties would be willing to participate in the contract and examining how
Gamma discounting would affect this set. A reasonable conjecture would be that
Gamma discounting will enlarge this set.

• For Chapter 5, it would be interesting to relax the assumption of risk-neutral PHs and
establish an expected utility model to quantify PH welfare. Although this relaxation
is unlikely to provide significantly different implications on the impact of Gamma
discounting, the results would be more general (with the interplay of PHs’ time and
risk preferences). Another relevant future direction is to also consider insurers’ profit
for VAs with GMWB. However, this is very challenging as it involves numerically
solving a PDE with three state variables.

Essentially, when addressing the decreasing demand of the VA market by improving VA
contract design, it would be meaningful to also incorporate practical features and market
friction into the analysis. Moreover, when trying to better understand PH behavior, it
would also be important to consider the problem within an equilibrium framework (i.e.,
consider interactions of interest of both insurers and PHs in a VA policy).
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Appendix A

Appendix for Chapter 3

A.1 Verification Theorem for Optimization Problem

(3.16)

Theorem 7. Suppose that there exist functions V, g ∈ C1,2,1([0, T ]×Ō), f ∈ C1,2,1,2([0, T ]×
Ō × [0,m]) and a stopping rule û satisfying the following conditions:

• For any (t, F,m) ∈ [0, T ]× Ō, V solves

min
{
− Vt −

(
µ− c1{F≤θ}

)
F
(
VF − fy −

γF
2
g2
)
− 1

2
σ2F 2

(
VFF − fyy − 2fFy −

γFF
2
g2

− γ(F )g2
F − 2γFggF

)
+
λx+tγ(F )

2
(g −max(F,G))2 + λx+tV

− λx+t max(F,G), V − ψ
}

= 0,

(A.1)

with boundary conditions
V (T, F,m) = max(F,G), for (F,m) ∈ Ō,
Vt
∣∣
F=0

= λx+tγ(0)
2

(g
∣∣
F=0
−G)2 + λx+tV

∣∣
F=0
− λx+tG, for (t,m) ∈ [0, T )× [0,∞),

Vm
∣∣
F=m

= α1{F≥θ}
(
VF
∣∣
F=m
− fy

∣∣
F=m
− γF

2
g2
∣∣
F=m

)
, for (t,m) ∈ [0, T )× [0,∞),

limm→∞ V (t,m,m) = ψ(t,m), for t ∈ [0, T ).

(A.2)
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• For any (t, F,m) ∈ [0, T )× Ō,

û(t, F,m) =

{
1, if V (t, F,m) = ψ(t, F ),

0, otherwise.
(A.3)

• For fixed y ∈ [0,m] and for any (t, F,m) ∈ [0, T ]× Ō s.t. û = 0, f solves

ft+
(
µ− c1{F≤θ}

)
FfF+

1

2
σ2F 2fFF−λx+tf+λx+t

[
max(F,G)− γ(y)

2
max(F,G)2

]
= 0,

(A.4)
with boundary conditions
f(T, F,m, y) = max(F,G)− γ(y)

2
max(F,G)2, for (F,m, y) ∈ Ō × [0,m],

ft
∣∣
F=0

= λx+tf
∣∣
F=0
− λx+t

(
G− γ(y)

2
G2
)
, for (t,m, y) ∈ [0, T )× [0,∞)× [0,m],

fm
∣∣
F=m

= α1{F≥θ}fF
∣∣
F=m

, for (t,m, y) ∈ [0, T )× [0,∞)× [0,m],

limm→∞ f(t,m,m, y) = ψ(t,m)− γ(y)
2
ψ2(t,m), for t ∈ [0, T ),

(A.5)

and for û = 1, f(t, F,m, y) = ψ(t, F )− γ(y)
2
ψ2(t, F ).

• For any (t, F,m) ∈ [0, T ]× Ō s.t. û = 0, g solves

gt +
(
µ− c1{F≤θ}

)
FgF +

1

2
σ2F 2gFF − λx+tg + λx+t max(F,G) = 0, (A.6)

with boundary conditions
g(T, F,m) = max(F,G), for (F,m) ∈ Ō,
gt
∣∣
F=0

= λx+tg
∣∣
F=0
− λx+tG, for (t,m) ∈ [0, T )× [0,∞),

gm
∣∣
F=m

= α1{F≥θ}gF
∣∣
F=m

, for (t,m) ∈ [0, T )× [0,∞),

limm→∞ g(t,m,m) = ψ(t,m), for t ∈ [0, T ),

(A.7)

and for û = 1, g(t, F,m) = ψ(t, F ).

Then û is an equilibrium stopping rule such that
V (t, F,m) = J (t, F,m; τ û)

g(t, F,m) = Et,F,m
[
H
(
Fτ û∧ρ

) ∣∣ρ > t
]

f(t, F,m, y) = Et,F,m
[
H
(
Fτ û∧ρ

) ∣∣ρ > t
]
− γ(y)

2
Et,F,m

[
H
(
Fτ û∧ρ

)2 ∣∣ρ > t
]
.

(A.8)

91



This system of EHJB equations corresponds to a high dimensional free boundary prob-
lem with three unknown functions, V , f , and g, where û = 0 corresponds to the continua-
tion region and û = 1 to the stopping region.

To prove Theorem 7, we first introduce some notation and results for brevity of illus-
tration.

• Et,F,m[·] = Et[·] and Vart,F,m[·] = Vart[·]

• Lh(t, F,m) := ht+(µ−c1{F<θ})FhF+1
2
σ2F 2hFF for a function h s.t. h ∈ C1,2,1([0, T ]×

Ō)

• Lf(t, F,m, y) := ft + (µ− c1{F<θ})(FfF + yfy) + 1
2
σ2(F 2fFF + y2fyy) + fFyFyσ

2 for
a function f s.t. f ∈ C1,2,1,2([0, T ]× Ō × [0,m])

• Et [h(t+ ε, Ft+ε,Mt+ε)] = h(t, F,m)+εLh(t, F,m)+Et
[∫ t+ε

t
(hm − α1{F≥θ}hF )dMs

]
+

o(ε)

• Et [f(t+ ε, Ft+ε,Mt+ε, yt+ε)] = f(t, F,m, y) + εLf(t, F,m, y)

+ Et
[∫ t+ε

t
fm − (fF + fy)α1{F≥θ}dMs

]
+ o(ε)

Proof. The proof of Theorem 7 can be divided into two parts. In part one, we prove that V ,
g, and f are indeed the solution of their probabilistic interpretation (A.8) under stopping
rule û. In part two, we prove that û is an equilibrium stopping rule. First, we prove that

g(t, F,m) = Et
[
H(Fτ û∧ρ)

∣∣ρ > t
]

= Et

[
e−

∫ τû
t λx+uduψ(τ û, Fτ û) +

∫ τ û

t

e−
∫ s
t λx+uduλx+s max(Fs, Gs)ds

]
,

where

H(Fτ û∧ρ) =

{
max(Fρ, Gρ), if ρ < τ û,

ψ(τ û, Fτ û), if ρ ≥ τ û.

Suppose that g ∈ C1,2,1([0, T ] × Ô) satisfies Eq. (A.6) with boundary conditions (A.7),
and define a sequence of stopping times

τnt := τ û ∧ inf
{
s > t : |F t,F

s − F | > n
}
.
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Applying Itô’s formula to e−
∫ s
0 λudug(s, Fs,Ms), we get

e−
∫ τnt
t λx+udug(τnt , Fτnt ,Mτnt

)− g(t, F,m)

=

∫ τnt

t

e−
∫ s
t λx+udu(Lg − λx+sg)ds+

∫ τnt

t

e−
∫ s
t λx+udu(gm − α1{Fs>θ}gF )dMs

+

∫ τnt

t

e−
∫ s
t λx+uduσFsgFdWs.

Taking Et[·] on both sides of the equation and invoking Eq. (A.6) with boundary conditions
(A.7), we obtain

g(t, F,m) = Et
[
e−

∫ τnt
t λx+udug(τnt , Fτnt ,Mτnt

) +

∫ τnt

t

e−
∫ s
t λx+uduλx+s max(Fs, Gs)ds

]
.

Letting n→∞ gives τnt → τ û which further leads to

g(t, F,m) = Et

[
e−

∫ τû
t λx+udug(τ û, Fτ û ,Mτ û) +

∫ τ û

t

e−
∫ s
t λx+uduλx+s max(Fs, Gs)ds

]

= Et

[
e−

∫ τû
t λx+uduψ(τ û, Fτ û) +

∫ τ û

t

e−
∫ s
t λx+uduλx+s max(Fs, Gs)ds

]
= Et

[
H(Fτ û∧ρ)

∣∣ρ > t
]
,

since
τ û = inf{s ≥ t : û(t, F,m) = 1}.

Define f y(t, F,m) := f(t, F,m, y) for a fixed y and similarly, we apply Itô’s formula to
e−

∫ s
0 λx+uduf y(s, Fs,Ms) and obtain

e−
∫ τnt
t λx+uduf y(τnt , Fτnt ,Mτnt

)− f y(t, F,m)

=

∫ τnt

t

e−
∫ s
t λx+udu(Lf y − λx+sf

y)ds+

∫ τnt

t

e−
∫ s
t λx+udu(f ym − α1{Fs>θ}f

y
F )dMs

+

∫ τnt

t

e−
∫ s
t λx+uduσFsf

y
FdWs.

Taking Et[·] on both sides of the equation and invoking Eq. (A.4) with boundary conditions
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(A.5) results in

f y(t, F,m) = Et

[
e−

∫ τnt
t λx+uduf y(τnt , Fτnt ,Mτnt

)

+

∫ τnt

t

e−
∫ s
t λx+uduλx+s

(
max(Fs, Gs)−

γ(y)

2
max(Fs, Gs)

2

)]
.

By letting n→∞, we have τnt → τ û which in turn leads to

f y(t, F,m) = Et

[
e−

∫ τû
t λx+uduf y(τ û, Fτ û ,Mτ û)

+

∫ τ û

t

e−
∫ s
t λx+uduλx+s

(
max(Fs, Gs)ds−

γ(y)

2
max(Fs, Gs)

2

)]

= Et

[
e−

∫ τû
t λx+uduψ(τ û, Fτ û) +

∫ τ û

t

e−
∫ s
t λx+uduλx+s max(Fs, Gs)ds

]

− γ(y)

2
Et

[
e−

∫ τû
t λx+uduψ2(τ û, Fτ û) +

∫ τ û

t

e−
∫ s
t λx+uduλx+s max(Fs, Gs)

2ds

]

= Et
[
H(Fτ û∧ρ)

∣∣ρ > t
]
− γ(y)

2
Et
[
H2(Fτ û∧ρ)

∣∣ρ > t
]
.

To verify the probabilistic interpretation of V , we need to show that

V (t, F,m) =
γ(x)

2
g2(t, F,m) + f(t, F,m, F ).

Since V (T, F,m) = ψ(T, F ), we have τ û ∈ T[t,T ]. Applying Itô’s formula to e−
∫ s
0 λuduV (s, Fs,Ms),

we get

e−
∫ τnt
t λx+uduV (τnt , Fτnt ,Mτnt

)− V (t, F,m)

=

∫ τnt

t

e−
∫ s
t λx+udu(LV − λx+sV )ds+

∫ τnt

t

e−
∫ s
t λx+udu(Vm − α1{Fs>θ}VF )dMs

+

∫ τnt

t

e−
∫ s
t λx+uduσFsVFdWs.
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Since [t, τnt ) ⊂ [t, τ û), we deduce that V > ψ on [t, τnt ). Using Eq. (A.1) for V > ψ, taking
Et[·] on both sides of the equation, and letting n→∞, we obtain

V (t, F,m) = Et
[
e−

∫ τû
t λx+uduV (τ û, Fτ û ,Mτ û)

]
− Et

{∫ τ û

t

e−
∫ s
t λx+udu

[
(µ− c1{Fs<θ})Fs

(
fy +

γF
2
g2
)

+
1

2
σ2F 2

s

(
fyy + 2fFy +

γFF
2
g2 + γ(Fs)g

2
F + 2γFggF

)
+
γ(Fs)

2
λx+s (g −max(Fs, Gs))

2

− λx+s max(Fs, Gs)

]
ds

}
− Et

[∫ τ û

t

e−
∫ s
t λx+udu

(
Vm − α1{Fs≥θVF }

)
dMs

]
.

Now, applying Itô’s formula and conducting operations as above on e−
∫ s
0 λx+uduf(s, Fs,Ms, Fs),

one deduces that

f(t, F,m, F ) = Et
[
e−

∫ τû
t λx+uduf(τ û, Fτ û ,Mτ û , Fτ û)

]
− Et

{∫ τ û

t

e−
∫ s
t λx+udu

[
− λx+s max(Fs, Gs)

+ λx+s
γ(Fs)

2
max(Fs, Gs)

2 + fyFs(µ− 1{Fs<θ}) +
1

2
F 2
s σ

2fyy + F 2
s σ

2fFy

]
ds

}

+ Et

(∫ τ û

t

fyα1{Fs≥θ}dMs

)
.

Again, applying Itô’s formula and proceeding as above on e−
∫ s
0 λx+udu

γ(Fs)
2
g(s, Fs,Ms), we

have

γ(F )

2
g2(t, F,m) = Et

[
e−

∫ τû
t λx+udu

γ(Fτ û)

2
g
(
τ û, Fτ û ,Mτ û

)]
− Et

{∫ τ û

t

e−
∫ s
t λx+udu

[
− γ(Fs)gλx+s max(Fs, Gs) +

γ(Fs)

2
λx+sg

2 +
γ(Fs)

2
g2
Fσ

2F 2
s +

g2
F

2
γF (µ− c1{Fs<θ})Fs

+
1

4
g2γFFσ

2F 2
s + γFσ

2F 2
s ggF )

]
ds

}
+ Et

[∫ τ û

t

e−
∫ s
t λx+udu

γF
2
g2α1{Fs≥θ}dMs

]
.

Combining the expressions for f(t, F,m, F ) and γ(F )
2
g2(t, F,m), it is easy to establish that

V (t, F,m) =
γ(x)

2
g2(t, F,m) + f(t, F,m, F ).
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Now we prove that the stopping rule û defined in Eq. (A.3) is an equilibrium stopping
rule. Recall that we define a stopping rule uε such that

uε(s, y, z) =

u ∈ {0, 1}, for t ≤ s < (t+ ε) ∧ ρ

û(s, y, z), for (t+ ε) ∧ ρ ≤ s < T ∧ ρ.

If u = 1, then J (t, F,m; τu
ε
) = ψ(t, F ) ≤ J (t, F,m; τ û) = V (t, F,m). Therefore, û

automatically satisfies the definition of an equilibrium stopping rule. If u = 0, we have

J (t, F,m; τu
ε

) = Et
[
H(Fτuε∧ρ)

∣∣ρ > t
]
− γ(F )

2
Vart

[
H(Fτuε∧ρ)

∣∣ρ > t
]

= Et
[
H(Fτuε∧ρ)−

γ(F )

2
H2(Fτuε∧ρ)

∣∣ρ > t

]
+
γ(F )

2

{
Et
[
H(Fτuε∧ρ)

∣∣ρ > t
]}2

= e−
∫ t+ε
t λx+uduEt

[
H(Fτuε∧ρ)−

γ(F )

2
H2(Fτuε∧ρ)

∣∣ρ > t+ ε

]
+

∫ t+ε

t

e−
∫ s
t λx+uduλx+sEt

[
H(Fs)−

γ(F )

2
H2(Fs))

]
ds

+
γ(F )

2

{
e−

∫ t+ε
t λx+uduEt

[
H(Fτuε∧ρ)

∣∣ρ > t+ ε
]

+

∫ t+ε

t

e−
∫ s
t λx+uduλx+sEt [H(Fs)]

}2

= (1− λx+tε)Et
{
Et+ε

[
H(Fτ û∧ρ)−

γ(F )

2
H2(Fτ û∧ρ)

∣∣∣ρ > t+ ε

]}
+ ελx+t

[
H(F )− γ(F )

2
H2(F )

]
+
γ(F )

2

{
(1− λx+tε)Et

[
Et+ε

(
H(Fτ û∧ρ)

∣∣∣ρ > t+ ε
)]

+ λx+tεH(F )
}2

+ o(ε).

Also, we have

J (t+ ε, Ft+ε,Mt+ε; τ
û) = Et+ε

[
H(Fτ û∧ρ)−

γ(Ft+ε)

2
H2(Fτ û∧ρ)

∣∣∣ρ > t+ ε

]
+
γ(Ft+ε)

2

{
Et+ε

[
H(Fτ û∧ρ)

∣∣∣ρ > t+ ε
]}2

.

Taking Et[·] on both sides of the equation, we obtain

Et
[
J (t+ ε, Ft+ε,Mt+ε; τ

û)
]

= Et
{
Et+ε

[
H(Fτ û∧ρ)−

γ(Ft+ε)

2
H2(Fτ û∧ρ)

∣∣∣ρ > t+ ε

]}
+ Et

[
γ(Ft+ε)

2

{
Et+ε

[
H(Fτ û∧ρ)

∣∣∣ρ > t+ ε
]}2
]
.
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Therefore,

J (t, F,m; τu
ε

) = (1− λx+tε)Et
{
Et+ε

[
H(Fτ û∧ρ)−

γ(F )

2
H2(Fτ û∧ρ)

∣∣∣ρ > t+ ε

]}
+ ελx+t

[
H(F )− γ(F )

2
H2(F )

]
+
γ(F )

2

{
(1− λx+tε)Et

[
Et+ε

(
H(Fτ û∧ρ)

∣∣∣ρ > t+ ε
)]

+ λx+tεH(F )
}2

+ Et
[
J (t+ ε, Ft+ε,Mt+ε; τ

û)
]
− Et

{
Et+ε

[
H(Fτ û∧ρ)−

γ(Ft+ε)

2
H2(Fτ û∧ρ)

∣∣∣ρ > t+ ε

]}
− Et

[
γ(Ft+ε)

2

{
Et+ε

[
H(Fτ û∧ρ)

∣∣∣ρ > t+ ε
]}2
]

+ o(ε)

= (1− λx+tε)Et [f(t+ ε, Ft+ε,Mt+ε, F )] + ελx+t

[
H(F )− γ(F )

2
H2(F )

]
+
γ(F )

2
{(1− λx+tε)Et [g(t+ ε, Ft+ε,Mt+ε)] + λx+tεH(F )}2 + Et [V (t+ ε, Ft+ε,Mt+ε)]

− Et [f(t+ ε, Ft+ε,Mt+ε, Ft+ε)]− Et
[
γ(Ft+ε)

2
g2(t+ ε, Ft+ε,Mt+ε)

]
+ o(ε).

Thus,

J (t, F,m; τu
ε

)− J (t, F,m; τ û)

= εLV (t, F,m)− ελx+tf
F (t, F,m) + εLfF (t, F,m) + ελx+t

[
H(F )− γ(F )

2
H2(F )

]
− εγ(F )λx+tg

2(t, F,m) + εγ(F )λx+tH(F )g(t, F,m)− εLf(t, F,m, y)− εLγ(F )

2
g2(t, F,m)

+ Et
[∫ t+ε

t

Vm − α1{F≥θ}
(
VF − fy −

γF
2
g2(t, F,m)

)
dMs

]
+ o(ε),

where f y(t, F,m) = f(t, F,m, y) with the fourth variable y fixed. By rearranging the
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equation above, we get

J (t, F,m; τu
ε

)− J (t, F,m; τ û)

= ε

{
Vt + (µ− c1{F≥θ})FVF

(
VF − fy −

γF
2
g2
)

+
1

2

(
VFF − fyy − 2fFy −

γFF
2
g2 − γ(F )g2

F − 2γFggF

)
− λx+tγ(F )

2
(g −max(F,G))2 − λx+tV + λx+t max(F,G)

}

+ Et
[ ∫ t+ε

t

Vm − α1{F≥θ}
(
VF − fy −

γF
2
g2(t, F,m)

)
dMs

]
+ o(ε).

Invoking Eq. (A.1) and (A.2), dividing both sides of the equation by ε, and letting ε go
to 0, we get

lim
ε↓0

J (t, F,m; τu
ε
)− J (t, F,m; τ û)

ε
= lim

ε↓0

o(ε)

ε
= 0.

This completes the proof.

A.2 Algorithm for the System of EHJB Equations

(A.1)-(A.7)

Given the complex nature of the system of EHJB equations (A.1)-(A.7), we propose to
numerically solve it via the development of an algorithm. Inspired by the work of Wang &
Forsyth (2011) on the development of an algorithm for MV optimal control problems, the
proposed algorithm will circumvent the complexity arising from directly solving the system
of EHJB equations (A.1)-(A.7) corresponding to our MV optimal stopping problem. We
go a step further than Wang & Forsyth (2011) by establishing a connection between the
system of EHJB equations (A.1)-(A.7) and the algorithm.

Directly solving the system of EHJB equations (A.1)-(A.7) numerically using a finite
difference method roughly entails the following steps:

1. Partition the interval [0, T ] into N equal sub-intervals each with length ∆t = T
N

, and
endpoints tn = T − n∆t for n = 0, 1, ..., N .
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2. At time tn, solve g numerically using Eq. (A.6) with boundary conditions (A.7) and
solve f numerically for each fixed y ∈ [0,m] using Eq. (A.4) with boundary conditions
(A.5), by assuming that û = 0 (no surrender) over the domains [0,m)× [0,∞).

3. Substitute the resulting f and g in Eq. (A.1) and solve V numerically using Eq.
(A.1) with boundary conditions (A.2) to obtain an equilibrium stopping rule û (or,
equivalently, an equilibrium stopping region).

4. Update f and g so that their values correspond to the equilibrium stopping rule
û. Specifically, if û(tn, F,m) = 0, keep f(tn, F,m, y) and g(tn, F,m) unchanged; if

û(tn, F,m) = 1, let f(tn, F,m, y) = ψ(tn, F )− γ(F )
2
ψ2(t, F ) and g(tn, F,m) = ψ(tn, F ).

5. Substitute the updated f and g into Eq. (A.1) to update V .

6. Repeat steps 4 and 5 until V converges.

7. Move onto time tn+1 and repeat steps 2-6.

The challenges of solving the system of EHJB equations (A.1)-(A.7) numerically using
the above steps are three-fold. First, solving f is time-consuming as it entails solving an
unknown function with two state variables (F and m) for each fixed y ∈ [0,m]. Second,
the complex form of Eq. (A.1) makes the computational process highly non-trivial. Third,
at each tn, a time-consuming iterative procedure is required to solve for V and identify an
equilibrium stopping rule û.

In light of the above, we develop an algorithm based on Wang & Forsyth (2011) to
circumvent the complexity of numerically solving the system of EHJB equations (A.1)-
(A.7) directly. The basic idea is to first represent the mean and variance of VA payouts H
by their first and second moments. Therefore, the value function V in Eq. (3.16) can be
rewritten as

V (t, F,m) = sup
u∈A

{
ν1(t, F,m; τu)− γ(F )

2

[
ν2(t, F,m; τu)−

(
ν1(t, F,m; τu)

)2
]}

, (A.9)

where
νp(t, F,m; τu) = Et,F,m

[
Hp (Fτu∧ρ)

∣∣∣ρ > t
]
, for p = 1, 2 (A.10)

denote the first and second moments of the VA payout function H under a certain stopping
rule u ∈ A, respectively. Furthermore, we observe from Eq. (A.8) that the value functions
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V , f , and g are all combinations of ν1 and ν2 under an equilibrium stopping rule. We also
observe that, over the domain [0, T ]× Ō s.t. û = 0, νp (p = 1, 2) satisfy

∂νp

∂t
+ Lνp + λx+t max (F,G)p = 0, (A.11)

for Lνp = (µ− c1{F<θ})F (νp)F + 1
2
σ2F 2(νp)FF − λx+tν

p, with boundary conditions

νp(T, F,m) = max(F,GT )p, for (F,m) ∈ [0,m]× [0,∞),

∂νp

∂t
|F=0 = (λx+t + γ)νp|F=0 − λx+tG

p, for (t,m) ∈ [0, T )× [0,∞),

∂νp

∂m

∣∣
F=m

= α1{F≥θ}
∂νp

∂F

∣∣
F=m

, for (t,m) ∈ [0, T )× [0,∞),

limm→∞ ν
p(t,m,m) = ψp(t,m), for (t, F ) ∈ [0, T ).

(A.12)

In view of this, instead of numerically solving the system of EHJB equations (A.1)-(A.7)
in a direct manner, one can get ν1 and ν2 by solving their corresponding PDEs to obtain
an optimal stopping rule. We break this procedure into the following steps:

Step 1 At time tn, solve νp (p = 1, 2) numerically using Eq. (A.11) with boundary conditions
(A.12), by assuming that u = 0 (no surrender) over the domain Ō.

Step 2 Obtain an optimal stopping rule û by substituting the corresponding ν1 and ν2 in
Eq. (A.9).

Step 3 Update ν1 and ν2 s.t. if û(tn, F,m) = 0, keep ν1(tn, F,m) and ν2(tn, F,m) unchanged;
if û(tn, F,m) = 1, let ν1(tn, F,m) = ψ(tn, F ) and ν2(tn, F,m) = ψ2(tn, F ).

Step 4 Move onto time tn+1 and repeat Step 1 to Step 3.

This iterative procedure circumvents many of the challenges resulting from solving the
system of EHJB equations (A.1)-(A.7) directly. More specifically, we no longer deal with
the high dimensionality of the function f , and the iterative procedure at each tn has been
eliminated. Also, the determination of an equilibrium stopping rule û from Eq. (A.9)
is much simpler than solving the complex Eq. (A.1). However, since we bypass solving
the system of EHJB equations (A.1)-(A.7) directly by solving for ν1 and ν2 (through their
PDEs), we need to establish that an optimal stopping rule generated by going through Step
1 to Step 4 is the same as an equilibrium stopping rule resulting from the solution of the
system of EHJB equations (A.1)-(A.7). The following theorem establishes this equivalence.
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Theorem 8. Let û be an optimal stopping rule resulting from Step 1 to Step 4. For
any (t, F,m) ∈ [0, T ] × Ō s.t. û = 0, let νp (p = 1, 2) satisfy Eq. (A.11) with boundary
conditions (A.12). For any (t, F,m) ∈ [0, T ]× Ō s.t. û = 1, let ν1(t, F,m) = ψ(t, F ) and
ν2(t, F,m) = ψ2(t, F ). Then,

V (t, F,m) := ν1(t, F,m; τ û)− γ(F )
2

[
ν2(t, F,m; τ û)−

(
ν1(t, F,m; τ û)

)2
]

f(t, F,m, y) := ν1(t, F,m; τ û)− γ(y)
2
ν2(t, F,m; τ û)

g(t, F,m) := ν1(t, F,m; τ û)

(A.13)

satisfy the system of EHJB equations (A.1)-(A.7).

Proof. Recall that, for û = 0, the first two moments νp (p = 1, 2) satisfy Eq. (A.11) with
boundary conditions (A.12). Therefore, the derivatives of V with respect to t, F , and m
can then be expressed in terms of those of ν1 and ν2 as follows:

Vt = ν1
t −

γ(F )
2

(ν2
t − 2ν1ν1

t ) ,

VF = ν1
F −

γF
2

(ν2 − (ν1)2)− γ(F )
2

(ν2
F − 2ν1ν1

F ) ,

VFF = ν1
FF −

γFF
2

(ν2 − (ν1)2)− γF (ν2
F − 2ν1ν1

F )− γ(F )
2

(ν2
FF − 2(ν1

F )2 − 2ν1ν1
FF ) ,

Vm = ν1
m −

γ(F )
2

(ν2
m − 2ν1ν1

m) .

Similarly, for f , its derivatives can be expressed as

ft = ν1
t −

γ(y)
2
ν2
t ,

fF = ν1
F −

γ(y)
2
ν2
F ,

fy
∣∣
y=F

= −γ′(F )
2
ν2,

fFF = ν1
FF −

γ(y)
2
ν2
FF ,

fyy
∣∣
y=F

= −γ′(FF )
2

ν2,

fFy
∣∣
y=F

= −γ′(F )
2
ν2
F ,

fm = ν1
m −

γ(y)
2
ν2
m.

First, we check if linear combination (A.13) solves Eq. (A.1) with boundary conditions
(A.2). For û = 1,

V (t, F,m) = ν1(t, F,m; τ û)− γ(F )

2

[
ν2(t, F,m; τ û)−

(
ν1(t, F,m; τ û)

)2
]

= max(F,G)− γ(F )

2

(
max(F,G)2 −max(F,G)2

)
= max(F,G) = ψ(t, F ).
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For û = 0, we know that

Vt+
(
µ− c1{F≤θ}

)
F
(
VF − fy −

γF
2
g2
)

+
1

2
σ2F 2

(
VFF − fyy − 2fFy −

γFF
2
g2

− γ(F )g2
F − 2γFggF

)
− λx+tγ(F )

2
(g −max(F,G))2 − λx+tV + λx+t max(F,G) = 0.

We plug in the derivatives of V , f , and g in terms of ν1 and ν2 and verify that the equality
still holds:

ν1
t−

γ(F )

2

(
ν2
t − 2ν1ν1

t

)
+
(
µ− c1{F≤θ}

)
F

(
ν1
F −

γ(F )

2
ν2
F + γ(F )ν1ν1

F

)
+

1

2
σ2F 2

(
ν1
FF −

γ(F )

2
ν2
FF + γ(F )ν1ν1

FF

)
− λx+tγ(F )

2

(
ν1 −max(F,G)

)2

− λx+t

[
ν1 − γ(F )

2

(
ν2 − (ν1)2

)]
+ λx+t max(F,G)

=

[
ν1
t +

(
µ− c1{F<θ}

)
Fν1

F +
1

2
σ2F 2ν1

FF − λx+tν
1 + λx+t max(F,G)

]
− γ(F )

2

[
ν2
t +

(
µ− c1{F<θ}

)
Fν2

F +
1

2
σ2F 2ν2

FF − λx+tν
2 + λx+t max(F,G)2

]
+ γ(F )ν1

[
ν1
t +

(
µ− c1{F<θ}

)
Fν1

F +
1

2
σ2F 2ν1

FF − λx+tν
1 + λx+t max(F,G)

]
= 0.

We must now check boundary conditions (A.2):

• for the terminal condition,

V (T, F,m) = ν1(T, F,m; τ û)−γ(F )

2

[
ν2(T, F,m; τ û)− (ν1(T, F,m; τ û)2

]
= max(F,G),
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• for the condition where F = 0,

Vt−
λx+tγ(0)

2

(
ν1 −G

)2 − λx+tV + λx+tG

= ν1
t −

γ(0)

2
ν2
t + γ(0)ν1ν1

t −
λx+tγ(0)

2
(ν1)2 + λx+tγ(0)ν1G− λx+tγ(0)

2
G2

− λx+t

(
ν1 − γ(0)

2
(ν2 − (ν1)2)

)
+ λx+tG

=
(
ν1 − λx+tν

1 + λx+tG
)
− γ(0)

2

(
ν2 − λx+tν

2 + λx+tG
2
)

+ γ(0)ν1
(
ν1 − λx+tν

1 + λx+tG
)

= 0,

• for the condition where F = m,

Vm−α1{F≥θ}
(
VF − fy −

γ′(F )

2
(ν1)2

)
= ν1

m −
γ(F )

2

(
ν2
m − 2ν1ν1

m

)
− α1{F≥θ}

[
ν1
F −

γF
2

(
ν2 − (ν1)2

)
− γ(F )

2

(
ν2
F − 2ν1ν1

F

)
+
γF
2
ν2 − γF

2
(ν1)2

]
= ν1

m −
γ(F )

2

(
ν2
m − 2ν1ν1

m

)
− α1{F≥θ}

[
ν1
F −

γ(F )

2

(
ν2
F − 2ν1ν1

F

)]
=
(
ν1
m − α1{F≥θ}ν1

F

)
− γ(F )

2

(
ν2
m − α1{F≥θ}ν2

F

)
+ γ(F )ν1

(
ν1
m − α1{F≥θ}ν1

F

)
= 0,

• and for the last condition of Eq. (A.2), we have

lim
m→∞

V (t,m,m) = lim
m→∞

{
ν1(T,m,m; τ û)− γ(m)

2

[
ν2(T,m,m; τ û)− (ν1)2(T,m,m; τ û)

]}
= ψ(t,m).

Finally, we check if the function f defined in linear combination (A.13) solves Eq. (A.4)
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with boundary conditions (A.5). For û = 1,

f(t, F,m, y) = ν1(t, F,m; τ û)− γ(y)

2
ν2(t, F,m; τ û)

= max(F,G)− γ(y)

2
max(F,G)2

= ψ(t, F )− γ(y)

2
ψ(t, F ).

For û = 0, one obtains

ft +
(
µ− c1{F≤θ}

)
FfF +

1

2
σ2F 2fFF − λx+tf + λx+t

[
max(F,G)− γ(y)

2
max(F,G)2

]
= 0.

As before, we plug in the derivatives of f in terms of ν1 and ν2 and verify that the equality
still holds:

ν1
t−

γ(y)

2
ν2
t +

(
µ− c1{F≤θ}

)
F

(
ν1
F −

γ(y)

2
ν2
F

)
+

1

2
σ2F 2

(
ν1
FF −

γ(y)

2
ν2
FF

)
− λx+t

(
ν1(t, F,m)− γ(y)

2
ν2(t, F,m)

)
+ λx+t

[
max(F,G)− γ(y)

2
max(F,G)2

]
=

[
ν1
t +

(
µ− c1{F<θ}

)
Fν1

F +
1

2
σ2F 2ν1

FF − λx+tν
1 + λx+t max(F,G)

]
− γ(y)

2

[
ν2
t +

(
µ− c1{F<θ}

)
Fν2

F +
1

2
σ2F 2ν2

FF − λx+tν
2 + λx+t max(F,G)2

]
= 0.

Now, we check boundary conditions (A.5):

• for the terminal condition,

f(T, F,m, y) = ν1(T, F,m; τ û)− γ(y)

2
ν2(T, F,m; τ û) = max(F,G)− γ(y)

2
max(F,G)2,

• for the condition where F = 0,

ft−λx+tf + λx+tG−
γ(y)

2
λx+tG

2

= ν1
t −

γ(y)

2
ν2
t − λx+t

(
ν1 − γ(y)

2
ν2

)
+ λx+tG−

γ(y)

2
λx+tG

2

=
(
ν1 − λx+tν

1 + λx+tG
)
− γ(y)

2

(
ν2 − λx+tν

2 + λx+tG
)

= 0,
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• for the condition where F = m,

fm − α1{F≥θ}fF = ν1
m −

γ(y)

2
ν2
m − α1{F≥θ}

(
ν1
F −

γ(y)

2
ν2
F

)
=
(
ν1
m − α1{F≥θ}ν1

F

)
− γ(y)

2

(
ν2
m − α1{F≥θ}ν2

F

)
= 0,

• and for the last condition of Eq. (A.5), we have

lim
m→∞

f(t,m,m, y) = lim
m→∞

{
ν1(T,m,m; τ û)− γ(y)

2
ν2(T,m,m; τ û)

}
= ψ(t,m)− γ(y)

2
ψ2(t,m).

This completes the proof.

Upon the establishment of Theorem 8, we can determine an equilibrium stopping rule
numerically by going through Step 1 to Step 4. A detailed algorithmic procedure is as
follows.

Partition [0, 1] into K equal intervals each with length ∆z = 1
K

and endpoints zi = i∆z
for i = 0, 1, ..., K. Truncate the domain of m at mmax and partition [0,mmax] into M
equal intervals each with length ∆m = mmax

M
and endpoints mj = j∆m for j = 0, 1, ...,M .

Define V n
i,j := V (tn, zi,mj), (ν1

u)ni,j := ν1(tn, zi,mj; τ
u), (ν2

u)ni,j := ν2(tn, zi,mj; τ
u), and

ψni,j := ψ(tn, zi,mj) for n = 1, ..., N , i = 0, ..., K, j = 0, ...,M , and u ∈ {0, 1}. Moreover, if
u = 1, we have (ν1

u)ni,j = (ν1
1)ni,j = ψni,j and (ν2

u)ni,j = (ν2
1)ni,j = (ψni,j)

2.

A.3 Robustness of Initial Investment F0

In this section, we show that the results of fair fees and compatible sets are independent
of the initial investment F0.

Theorem 9. Define θ0 = θ
F0

as the threshold ratio for the HWM fee. The pair of fair fees
(c, α), in Definition 3, and the compatible set, in Definition 6, are independent of initial
investment F0.
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Algorithm 1 Equilibrium Stopping Rule

1: Set V 0
i,j = zimj ∨ G, (ν1)0

i,j = zimj ∨ G, and (ν2)0
i,j = (zimj ∨ G)2 for i = 0, ..., K and

j = 0, ...,M .
2: for n = 0, ..., N − 1 do
3: Obtain (ν1

0)n+1
i,j and (ν2

0)n+1
i,j for i = 0, ..., K and j = 0, ...,M using a finite difference

method to solve Eq. (A.11) and (A.12) with p = 1, 2 for ν1 and ν2, respectively.

4: Determine û by V n+1
i,j = maxu∈{0,1}

[
(ν1
u)n+1
i,j −

γ(zimj∨G)

2

(
(ν2
u)n+1
i,j − ((ν1

u)n+1
i,j )2

)]
(∗).

5: if û = 0 then
6: (ν1

û)n+1
i,j = (ν1

0)n+1
i,j and (ν2

û)n+1
i,j = (ν2

0)n+1
i,j

7: else
8: (ν1

û)n+1
i,j = ψn+1

i,j and (ν2
û)n+1
i,j = (ψn+1

i,j )2.
9: end if

10: end for

Proof. We first prove that the pair of fair fees (c, α) is independent of the initial investment
F0. Applying Itô’s formula, we can obtain

Ft = F0 · eYt ,

where Yt solves the stochastic integral

Yt =

∫ t

0

(
µ− c1{Ys≤log θ0} −

1

2
σ2

)
ds+ σWt − α

∫ t

0

1{Ys≥log θ0}dY
∗
s ,

and Y ∗t = max0≤s≤t Ys. In light of the above, the pricing value function (3.3) at time t = 0
becomes

V (0, F0, F0; c, α) = sup
τ∈T[0,T ]

EQ
[
τpxψ(τ, F0 · eYτ )e−rτ +

∫ τ

0
spxλx+s max(F0 · eYs , F0 · egs)e−rsds

]
= sup

τ∈T[0,T ]

EQ
[
τpx · F0 · ψ(τ, eYτ )e−rτ + F0 ·

∫ τ

0
spxλx+s max(eYs , egs)e−rsds

]
= F0 · V (0, 1, 1; c, α).

Therefore, by Eq. (3.11), the pair of fair fees (c, α) is determined by

V (0, 1, 1; c, α) = 1,

which is independent of F0.
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Next we show the compatible set is also independent of F0. By Eq. (3.14), PH welfare
from holding the VA is

V (0, F0, F0; γ) = sup
τ∈T[0,T ]

{
E
[
H(F0 · eYτ∧ρ)

]
− γ

2 · F0

Var
[
H(F0 · eYτ∧ρ)

]}
= F0 · sup

τ∈T[0,T ]

{
E
[
H(eYτ∧ρ)

]
− γ

2
Var

[
H(eYτ∧ρ)

]}
= F0 · V (0, 1, 1; γ).

Similarly, PH welfare from holding the two alternative investments are given byVRFB(0, R0; γ) = R0 · VRFB(0, 1; γ),

VPF(0, S0; γ) = S0 · VPF(0, 1; γ).

Since F0 = R0 = S0, the compatible set in Definition 6 can be rewritten as

{γ ≥ 0 : V (0, F0, F0; γ) ≥ max (VRFB(0, R0; γ), VPF(0, S0; γ))}
= {γ ≥ 0 : F0V (0, 1, 1; γ) ≥ F0 max (VRFB(0, 1; γ), VPF(0, 1; γ))}
= {γ ≥ 0 : V (0, 1, 1; γ) ≥ max (VRFB(0, 1; γ), VPF(0, 1; γ))} ,

which is also independent of F0.
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Appendix B

Appendix for Chapter 4

B.1 Proof of Verification Theorem 6

Proof. It is easy to establish that

V (t, F ) =

∫ ∞
0

g(t, F ;x) · f(x; k, θ)dx

=

∫ ∞
0

Et,F
[
e−x(τû∧ρ−t)U [H(Fτû∧ρ)]

∣∣∣ρ > t
]
· f(x; k, θ)dx

= Et,F
[∫ ∞

0

e−x(τû∧ρ−t)f(x; k, θ)dx · U [H(Fτû∧ρ)]
∣∣∣ρ > t

]
= Et,F

[
h(τû ∧ ρ− t) · U [H(Fτû∧ρ)]

∣∣∣ρ > t
]
.

Now we only need to show that û is indeed an equilibrium stopping rule. Note that if a = 1,
then J(t, F,uε,1) = U [ψ(t, F )] ≤ V (t, F ), based on the variational inequality (4.12). It
follows that Eq. (4.11) is automatically satisfied. We turn to the case that a = 0. It
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follows that

J(t, F,uε,0) = Et,F
[
h(τuε,0 ∧ ρ− t) · U [H(Fuε,0∧ρ)]

∣∣∣ρ > t
]

= Et,F
[
h(τuε,0 ∧ ρ− t) · U [H(Fuε,0∧ρ)] · 1{ρ>t+ε}

+ h(τuε,0 ∧ ρ− t) · U [H(Fuε,0∧ρ)] · 1{t≤ρ<t+ε}
∣∣∣ρ > t

]
= e−

∫ t+ε
t λy+uduEt,F

[
h(τuε,0 ∧ ρ− t) · U [H(Fuε,0∧ρ)]

∣∣∣ρ > t+ ε
]

+

∫ t+ε

t

λy+se
−

∫ s
t λy+uduEt,F {h(s− t) · U [H(Fs)]} ds

= (1− λy+tε) · Et,F
{
Et+ε

[
h(τuε,0 ∧ ρ− t) · U [H(Fuε,0∧ρ)]

∣∣∣ρ > t+ ε
]}

+ ελy+t · U [H(F )] + o(ε).

We also have

J(t, Ft+ε,u
ε,0) = Et+ε

[
h(τuε,0 ∧ ρ− t− ε) · U [H(Fuε,0∧ρ)]

∣∣∣ρ > t+ ε
]
.

Grouping them together, we obtain

J(t, F,uε,0) = Et,F [J(t, Ft+ε, û)]

−

{
Et,F

[
Et+ε

[
h(τuε,0 ∧ ρ− t− ε) · U [H(Fuε,0∧ρ)]

∣∣∣ρ > t+ ε
]]

− Et,F
[
Et+ε

[
h(τuε,0 ∧ ρ− t) · U [H(Fuε,0∧ρ)]

∣∣∣ρ > t+ ε
]]}

− λy+tε · Et,F
{
Et+ε

[
h(τuε,0 ∧ ρ− t) · U [H(Fuε,0∧ρ)]

∣∣∣ρ > t+ ε
]}

+ ελy+t · U [H(F )] + o(ε)

= Et,F [V (t+ ε, Ft+ε)]

+

∫ ∞
0

(e−xε − 1)Et,F
[
Et+ε

[
e−x(τû∧ρ−t−ε) · U [H(Fû∧ρ)]

∣∣∣ρ > t+ ε
]]
· f(x; k, θ)dx

− λy+tε ·
∫ ∞

0

e−xεEt,F
[
Et+ε

[
e−x(τû∧ρ−t−ε)U [H(Fû∧ρ)]

∣∣∣ρ > t+ ε
]]
· f(x; k, θ)dx

+ ελy+t · U [H(F )] + o(ε).

Since
g(t, F ;x) = Et,F

[
e−x(τû∧ρ−t) · U [H(Fû∧ρ)]

∣∣∣ρ > t
]
,
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it follows that

J(t, F,uε,0) =Et,F [V (t+ ε, Ft+ε)] +

∫ ∞
0

(e−xε − 1)Et,F [g(t+ ε, Ft+ε;x)] · f(x; k, θ)dx

− λy+tε ·
∫ ∞

0

e−xεEt,F [g(t+ ε, Ft+ε;x)] · f(x; k, θ)dx+ ελy+t · U [H(F )] + o(ε)

= V (t, F ) + ε · LV (t, F ) +

∫ ∞
0

(e−xε − 1)Et,F [g(t+ ε, Ft+ε;x)] · f(x; k, θ)dx

− λy+tε ·
∫ ∞

0

e−xεEt,F [g(t+ ε, Ft+ε;x)] · f(x; k, θ)dx+ ελy+t · U [H(F )] + o(ε).

We can then derive that

lim inf
ε→0

V (t, F )− J(t, F,uε,0)

ε
= −LV (t, F ) +

∫ ∞
0

(x+ λy+t)g(t, F ;x) · f(x; k, θ)dx

− λy+t · U [H(F )] ≥ 0.

B.2 Derivation of Eq. (4.20)

In what follows, we heuristically derive Eq. (4.20) from the insurer’s profit Eq. (4.18). The
statement that a solution of Eq. (4.20) has the form of Eq. (4.18) can be easily established
by Feynman-Kac formula.

For s ∈ [t, τ̂ ], by Itô’s formula, we have

d
(
e−

∫ s
t λx+udsI

)
= e−

∫ s
t λx+uds (Is + LI) ds+ FσIF e

−
∫ s
t λx+udsdWs,

where LI is defined by Eq. (4.19). Taking integral from t to τ̂ and conditional expectation
Et,ω,F [·] on both sides of the equation, we get

−Et,ω,F
[∫ τ̂

t
s−tpx+tλx+s (ωs − (Gs − Fs)+) ds

]
= Et,ω,F

[∫ τ̂

t
s−tpx+t (Is + LI) ds

]
.

The integrand on both sides of the above equation must be equivalent for the equation to
hold. Therefore, we have

It + LI + λx+t (ω − (G− F )+) = 0,

which is the PDE Eq. (4.20) satisfied by the insurer’s profit Eq. (4.18).
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Appendix C

Appendix for Chapter 5

C.1 Derivation of the System of EHJB Equations (5.15)-

(5.22)

In what follows, we derive the system of EHJB equations (5.15)-(5.22). We first assume
that an equilibrium withdrawal law γ̂ exists and we start from the withdrawal law γ defined
in Definition 9. Under the withdrawal law γ, the objective function (5.14) becomes

J(t, F, A;γ) = Et
[∫ T

t

h(u− t) · f [γ(F γu , A
γ
u)] du+ h(T − t) ·M(F γT , A

γ
T )

]
=

∫ T

t

h(u− t)Et [Et+ε (f [γ(F γu , A
γ
u)])] du+ h(T − t) · Et [Et+ε (M(F γT , A

γ
T ))]

=

∫ T

t

h(u− t)Et [kγ,u (t+ ε, F γ
t+ε, A

γ
t+ε)] du+ h(T − t) · Et [Hγ(t+ ε, F γ

t+ε, A
γ
t+ε)] ,

(C.1)
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where Et[·] is short for Et,F,A[·]. Also, at time t+ ε, the objective function becomes

J(t+ ε, F γt+ε, A
γ
t+ε;γ) = Et+ε

[∫ T

t+ε

h(u− t− ε) · f [γ(F γu , A
γ
u)] du+ h(T − t− ε) ·M(F γT , A

γ
T )

]
=

∫ T

t+ε

h(u− t− ε) · Et+ε [f [γ(F γu , A
γ
u)]] du

+ h(T − t− ε) · Et+ε [M(F γT , A
γ
T )]

=

∫ T

t+ε

h(u− t− ε) · kγ,u (t+ ε, F γ
t+ε, A

γ
t+ε) du

+ h(T − t− ε) ·Hγ(t+ ε, F γ
t+ε, A

γ
t+ε).

Since, from time t+ ε, the withdrawal law is equivalent to the equilibrium withdrawal law
(from the definition of γ in Definition 9), the above equation can be written as

V (t+ε, F γ
t+ε, A

γ
t+ε) =

∫ T

t+ε

h(u−t−ε)·ku (t+ ε, F γ
t+ε, A

γ
t+ε) du+h(T−t−ε)·H(t+ε, F γ

t+ε, A
γ
t+ε).

Taking expectation Et on both sides of the above equation, we get

Et [V (t+ ε, F γ
t+ε, A

γ
t+ε)] =

∫ T

t+ε

h(u− t− ε) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

+ h(T − t− ε) · Et [H(t+ ε, F γ
t+ε, A

γ
t+ε)] . (C.2)

Grouping Eq. (C.1) and Eq. (C.2) together, we can obtain

Et [V (t+ ε, F γ
t+ε, A

γ
t+ε)] = J(t, F, A;γ)

−
∫ T

t+ε

(h(u− t)− h(u− t− ε)) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

−
∫ t+ε

t

h(u− t) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

− (h(T − t)− h(T − t− ε)) · Et [H(t+ ε, F γ
t+ε, A

γ
t+ε)] .

By Dynkin’s formula, the left hand side of the above equation becomes

Et [V (t+ ε, F γ
t+ε, A

γ
t+ε)] = V (t, F, A) + ε · Vt(t, F, A) + ε · AγV (t, F, A) + o(ε),

where

AγV (t, F, A) = (µ− c)FVF +
1

2
σ2F 2VFF − γVF − γVA.
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Plugging this in the above equation, we have

V (t, F, A) + ε · Vt(t, F, A) + ε · AγV (t, F, A) + o(ε) = J(t, F, A;γ)

−
∫ T

t+ε

(h(u− t)− h(u− t− ε)) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

−
∫ t+ε

t

h(u− t) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

− (h(T − t)− h(T − t− ε)) · Et [H(t+ ε, F γ
t+ε, A

γ
t+ε)] ,

which, after some rearrangement, becomes

V (t, F, A)− J(t, F, A,γ) = −ε · Vt(t, F, A)− ε · AγV (t, F, A)

−
∫ T

t+ε

(h(u− t)− h(u− t− ε)) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

−
∫ t+ε

t

h(u− t) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

− (h(T − t)− h(T − t− ε)) · Et [H(t+ ε, F γ
t+ε, A

γ
t+ε)] + o(ε).

Dividing both sides of the above equation by ε and taking the limit ε→ 0, we get

lim
ε→0

V (t, F, A)− J(t, F, A,γ)

ε
= −Vt(t, F, A)−AγV (t, F, A)

− lim
ε→0

∫ T
t+ε

(h(u− t)− h(u− t− ε)) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

ε

− lim
ε→0

∫ t+ε
t

h(u− t) · Et [ku (t+ ε, F γ
t+ε, A

γ
t+ε)] du

ε

− lim
ε→0

(h(T − t)− h(T − t− ε)) · Et [H(t+ ε, F γ
t+ε, A

γ
t+ε)]

ε

= −Vt(t, F, A)− AγV (t, F, A)−
∫ T

t

h′(u− t) · ku(t, F, A)du

− f(γ)− h′(T − t) ·H(t, F, A) ≥ 0.

Note that the inequality holds due to the definition of an equilibrium withdrawal law in
Definition 9. Therefore, PHs’ welfare (a.k.a. the value function) V satisfies

Vt+AV +

∫ T

t

h′(s− t) ·ks(t, F, A)du+h′(T − t) ·H(t, F, A)+sup
γ
{f(γ)− γVF − γVA} = 0.

And, under the equilibrium withdrawal law γ̂, PDEs (5.19) and (5.21) satisfied by ks and
H respectively are simply application of Feynman-Kac formula.
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C.2 Algorithm for the System of EHJB Equations

(5.15)-(5.22)

Due to the absence of an explicit solution, we resort to numerically solving the system of
EHJB equations (5.15)-(5.22). Nevertheless, due to its complex form (a PIDE with many
terms in Eq. (5.15)), high dimensionality (i.e., two state variables), and a time-consuming
iterative procedure to attain an equilibrium withdrawal strategy in Eq. (5.15), numerically
solving the system is extremely challenging using standard finite difference methods. In
light of the above, we propose an efficient numerical algorithm that circumvents the afore-
mentioned iterative procedure to obtain an equilibrium withdrawal strategy. We also show
that the solution obtained by the algorithm is indeed an equilibrium withdrawal strategy.

It involves the following steps to numerically solve the system of EHJB equations (5.15)-
(5.22) using a standard finite difference method.

1. Partition the interval [0, T ] into N equal sub-intervals each with length ∆t = T
N

, and
endpoints tn = T − n∆t for n = 0, 1, ..., N .

2. At time tn, fix a withdrawal strategy γ ∈ {0, G, λ}, obtain H(tn, F, A; γ) via Eq.
(5.21) and Eq. (5.22) using a finite difference method, and obtain ks(tn, F, A; γ) for
each s ∈ {t1, ..., tn} via Eq. (5.19) and Eq. (5.20) using finite difference method.

3. Plug the results of H(tn, F, A; γ) and ks(tn, F, A; γ) for each s ∈ {t1, ..., tn} into Eq.
(5.15), and obtain V (tn, F, A) and the corresponding equilibrium withdrawal strategy
γ̂n.

4. Update H and ks so that they become H(tn, F, A; γ̂n) and ks(tn, F, A; γ̂n) for each
s ∈ {t1, ..., tn}.

5. Plug the updated H(tn, F, A; γ̂n) and ks(tn, F, A; γ̂n) for each s ∈ {t1, ..., tn} into Eq.
(5.15) and obtain new values of V (tn, F, A) and a new withdrawal strategy γ̂n.

6. Repeat steps 4 and 5 until the values of V (tn, F, A) converge (i.e., an equilibrium
withdrawal strategy γ̂n is obtained).

7. Move to time tn+1 and repeat steps 2-6.

Note that, in addition to the high dimensionality and complicated form of the PIDE (i.e.,
it is necessary to solve one H function and n functions ks at each time tn), the iterative
procedure steps 4-6 to obtain an equilibrium withdrawal strategy is very time-consuming.
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In light of the above, we propose an efficient algorithm that circumvents this iterative
procedure. The basic idea is that, at time tn, we obtain H(tn, F, A; γ) and ks(tn, F, A; γ)
with each s ∈ {t1, ..., tn} for each γ ∈ {0, G, λ} using a standard finite difference method,
and then determine values of V (tn, F, A) and an optimal withdrawal strategy γ̂n by

V (tn, F, A) = max
γ∈{0,G,λ}

[
t1∑

s=tn

h(s− tn) · ks(tn, F, A; γ) ·∆t+ h(T − tn) ·H(tn, F, A; γ)

]
.

(C.3)
We break this procedure into the following steps:

Step 1 At time tn, obtain H(tn, F, A; γ) and ks(tn, F, A; γ) with each s ∈ {t1, ..., tn} for each
γ ∈ {0, G, λ} using a standard finite difference method.

Step 2 Obtain V (tn, F, A) and an optimal withdrawal strategy γ̂n via Eq. (C.3).

Step 3 Update H and ks such that they become H(tn, F, A; γ̂) and ks(tn, F, A; γ̂) for each
s ∈ {t1, ..., tn}.

Step 4 Move to time tn+1 and repeat Step 1 to Step 3.

The above procedure circumvents the time-consuming iterative procedure to determine an
equilibrium withdrawal strategy using a standard finite difference method. Also, we no
longer handle the complicated PDE (5.15) directly. In what follows, we establish that an
optimal withdrawal strategy generated by going through Step 1 to Step 4 is the same
as an equilibrium withdrawal strategy resulting from the solution of the system of EHJB
equations (5.15)-(5.22). The following theorem establishes this equivalence.

Theorem 10. Let γ̂ be an optimal withdrawal strategy obtained from Step 1-Step 4.
Then 

V (t, F, A) :=
∫ T
t
h(s− t) · ks(t, F, A; γ̂)ds+ h(T − t) ·H(t, F, A; γ̂)

ks(t, F, A; γ̂)

H(t, F, A; γ̂)

satisfy the system of EHJB equations (5.15)-(5.22).

Proof. Under an optimal withdrawal strategy γ̂, it is evident from the Feynman-Kac for-
mula that ks satisfies Eq. (5.19) with boundary conditions (5.20) for each s ∈ [t, T ), and H
satisfies Eq. (5.21) with boundary conditions (5.22). Therefore, we only need to prove that
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Under an optimal withdrawal strategy γ̂, V satisfies Eq. (5.15) with boundary conditions
(5.16)-(5.18).

We first summarize the derivatives of V with respect to t, F and A in terms of those
of ks and H in the following:

VF =
∫ T
t
h(s− t) · ksFds+ h(T − t) ·HF ,

VFF =
∫ T
t
h(s− t) · ksFFds+ h(T − t) ·HFF ,

VA =
∫ T
t
h(s− t) · ksAds+ h(T − t) ·HA,

Vt = −f(γ̂)−
∫ T
t
h′(s− t)ksds+

∫ T
t
h(s− t)kstds− h′(T − t)H + h(T − t)Ht,

where ks and H are short for ks(t, F, A; γ̂) and H(t, F, A; γ̂), respectively. In light of the
above, Eq. (5.15) becomes

Vt + (µ− c)FVF +
1

2
σ2F 2VFF +

∫ T

t

h′(s− t) · ksds+ h′(T − t) ·H + f(γ̂)− γ̂VF − γ̂VA

= −f(γ̂)−
∫ T

t

h′(s− t)ksds+

∫ T

t

h(s− t)kstds− h′(T − t)H + h(T − t)Ht

+ (µ− c)F ·
∫ T

t

h(s− t) · ksFds+ (µ− c)F · h(T − t) ·HF

+
1

2
σ2F 2 ·

∫ T

t

h(s− t) · ksFFds+
1

2
σ2F 2 · h(T − t) ·HFF +

∫ T

t

h′(u− t) · ksds+ h′(T − t) ·H

+ f(γ̂)− γ̂ ·
[∫ T

t

h(s− t) · ksFds+ h(T − t) ·HF

]
− γ̂ ·

[∫ T

t

h(s− t) · ksAds+ h(T − t) ·HA

]
=

∫ T

t

h(s− t)
[
kst + (µ− c)F · ksF +

1

2
σ2F 2 · ksFF − γ̂ · (ksF + ksA)

]
+ h(T − t) ·

[
Ht + (µ− c)F ·HF +

1

2
σ2F 2 ·HFF − γ̂ · (HF +HA)

]
= 0.

Therefore, we can conclude that V (t, F, A) :=
∫ T
t
h(s − t) · ks(t, F, A; γ̂)ds + h(T − t) ·

H(t, F, A; γ̂) satisfies Eq. (5.15). Now we check the boundary conditions. For t = T , we
have

V (T, F,A) =

∫ T

T

h(s− t) · 0ds+ h(T − T ) · [max (F,A)− κA] = max (F,A)− κA.

For A = 0, we have

V (t, F, 0) = 0 + h(T − t) · Fe(µ−c)(T−t) = h(T − t) · Fe(µ−c)(T−t).
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For W →∞, we have

V (t,W,A)→ 0 + h(T − t) · Fe(µ−c)(T−t) = h(T − t) · Fe(µ−c)(T−t).

For W = 0, we have

Vt

∣∣∣
F=0
− γ̂ · VA

∣∣∣
F=0

+ f(γ̂) +

∫ T

t

h′(s− t) · ks
∣∣∣
F=0

ds+ h′(T − t) ·H
∣∣∣
F=0

= −f(γ̂)−
∫ T

t

h′(s− t)ks
∣∣∣
F=0

ds+

∫ T

t

h(s− t)kst
∣∣∣
F=0

)ds− h′(T − t)H
∣∣∣
F=0

+ h(T − t)Ht

∣∣∣
F=0

− γ̂ ·
[∫ T

t

h(s− t) · ksA
∣∣∣
F=0

ds+ h(T − t) ·HA

∣∣∣
F=0

]
+ f(γ̂) +

∫ T

t

h′(u− t) · ks
∣∣∣
F=0

ds

+ h′(T − t) ·H
∣∣∣
F=0

= 0.

This completes the proof.

Upon the establishment of Theorem 10, we can determine an equilibrium withdrawal
strategy numerically by going through Step 1 to Step 4. A detailed algorithmic procedure
is as follows.

Partition [0, P ] into K equal intervals each with length ∆A = 1
K

and endpoints Aj =
j∆A for j = 0, 1, ..., K. Truncate the domain of F at Fmax and partition [0, Fmax] into M
equal intervals each with length ∆F = Fmax

M
and endpoints Fi = i∆F for j = 0, 1, ...,M .

Define V n
i,j := V (tn, Fi, Aj), (ks)n,γi,j := ks(tn, Fi, Aj; γ), and Hn,γ

i,j := H(tn, Fi, Aj; γ).
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Algorithm 2 Equilibrium Withdrawal Strategy

1: Set V 0
i,j = Fi ∨ Aj − κAj, and H0

i,j = Fi ∨ Aj − κAj for i = 0, ...,M and j = 0, ..., K.
2: for n = 0, ..., N − 1 do
3: For each γ ∈ {0, G, λ}, obtain (ks)n+1,γ

i,j for each s ∈ {t1, ..., tn+1} and Hn+1,γ
i,j for

i = 0, ...,M and j = 0, ..., K via Eqs. (5.19) and (5.21) with boundary conditions
(5.20) and (5.22) using a standard finite difference method.

4: Determine V n+1
i,j and γ̂n+1 by

V n+1
i,j = max

γn+1∈{0,G,λ}

[
t1∑

s=tn+1

h(s− tn+1) · (ks)n+1,γ
i,j ·∆t+ h(T − tn+1) ·Hn+1,γ

i,j

]
.

5: Update ks and H so that they become (ks)
n+1,γ̂n+1

i,j for s ∈ {t1, ..., tn+1} and

H
n+1,γ̂n+1

i,j for i = 0, ...,M and j = 0, ..., K.
6: end for
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