
Z3str4: A Solver for
Theories over Strings

by

Murphy Berzish

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Engineering

Waterloo, Ontario, Canada, 2021

c© Murphy Berzish 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/475364846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Loris D’Antoni
Assistant Professor, Dept. of Computer Sciences
University of Wisconsin

Supervisor: Vijay Ganesh
Associate Professor, Dept. of Electrical and Computer Engineering
University of Waterloo

Internal Members: Krzysztof Czarnecki
Professor, Dept. of Electrical and Computer Engineering
University of Waterloo

Derek Rayside
Associate Professor, Dept. of Electrical and Computer Engineering
University of Waterloo

Internal-External Member: Joanne Atlee
Professor, Cheriton School of Computer Science
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Satisfiability Modulo Theories (SMT) solvers supporting rich theories of strings have
facilitated numerous industrial applications with the need to reason about string operations
and predicates that are present in many popular programming languages. Constraints
encountered in practical applications have immense value in inspiring new algorithms and
heuristics that string solvers can take advantage of to tackle new, more difficult problems.
This is especially relevant as the combinations of operators typically supported by string
solvers, or that are encountered in program analysis constraints, quickly result in theories
whose satisfiability problems are undecidable.

I present a number of theoretical and practical contributions in the domain of string
solving. On the theoretical side, I illustrate decidability and undecidability results related
to different relevant theories which include strings. On the practical side, I describe a
collection of algorithms and heuristics designed to address challenges encountered in ap-
plications of string solvers, culminating with the introduction of Z3str4, a state-of-the-art
solver for theories over strings. Z3str4 incorporates many improvements over its predeces-
sor Z3str3, including an algorithm selection architecture that takes advantage of multiple
solving algorithms in order to leverage the strengths of diverse string solving procedures
against formulas they are predicted to be able to solve efficiently. I also present a back-
end model construction algorithm for Z3str4 which is a hybrid between word-based and
unfolding-based algorithms. Furthermore, I showcase the power of Z3str4 against other
state-of-the-art tools in an empirical evaluation over a large and diverse collection of
benchmarks. Additionally, I describe algorithms and heuristics specific to solving regu-
lar expression constraints, and demonstrate their effectiveness in a detailed and focused
empirical evaluation.

iv

Acknowledgements

This thesis and the work I discuss here would not have been possible without the sup-
port, guidance, and encouragement of my supervisor Dr. Vijay Ganesh. I am tremendously
thankful for his suggestions, ideas, and feedback in all of the work I have presented.

I am deeply grateful to my collaborator Mitja Kulczynski for his tireless efforts in
contributing to Z3str4 and providing computing power and support to run the experiments
I present here, and for his valuable feedback on this thesis.

I am also deeply grateful to my collaborator Federico Mora for his contributions to
Z3str4 and the numerous ideas and suggestions he has made to improve the tool, and for
his valuable feedback on this thesis.

I am very happy to have had the opportunity to work with an amazing Ph.D committee
at the University of Waterloo in Drs. Joanne Atlee, Krzysztof Czarnecki, and Derek
Rayside, and would especially like to thank my external committee member Dr. Loris
D’Antoni for participating in my thesis defence.

I am very grateful to Florin Manea, Dirk Nowotka, and Joel Day for their coauthorship
and collaboration on previous papers related to Z3str4.

Finally, I am thankful for the feedback and suggestions provided by the many anony-
mous readers and reviewers of the submitted and accepted papers upon which my work
was based, whose comments have assisted me in preparing stronger papers.

v

Dedication

This thesis is dedicated to my parents.

vi

Table of Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Applications of String Solvers . 2

1.2 Related Work . 3

1.2.1 Theory . 3

1.2.2 Practice . 4

1.3 Contributions . 5

2 Background 7

2.1 Syntax of Z3str4’s Input Language . 7

2.2 Definitions and Semantics . 7

2.2.1 Satisfiability, Complexity, and Decidability 10

3 (Un)decidability Results for Theories over Strings 12

3.1 Undecidability of the Theory of Strings with String-Number Conversion . . 13

3.1.1 The Theory of Power Arithmetic Tp and Büchi’s Results 13

3.1.2 Proof of Undecidability of TL,n,c . 13

vii

3.1.3 Expressibility of π(x, y, z) . 15

3.2 Decidability of the Theory of Strings with Length and Regular Expression
Constraints . 17

4 Z3str4: A Solver for Theories Over Strings 21

4.1 Motivation . 21

4.2 Architecture of Z3str4 . 22

4.3 Algorithm Selection . 23

4.4 Length Abstraction Solver . 27

4.4.1 MultisetCheck Subroutine . 29

4.5 Fixed-Length Model Construction . 29

4.5.1 Solving Strings via Arrangements 31

4.5.2 A Bit-Vector Backend for Solving String Constraints 33

4.6 Theory-Aware Heuristics . 36

4.6.1 Theory-Aware Branching . 37

4.6.2 Theory-Aware Case Split . 38

4.7 Clause Sharing . 40

4.8 Empirical Evaluation . 41

4.8.1 Empirical Setup and Solvers Used 41

4.8.2 Benchmarks Used . 42

4.8.3 Results and Analysis . 44

4.8.4 Performance Analysis of Components of Z3str4 44

5 Algorithms and Heuristics for Theories over Regular Expressions and
Linear Arithmetic over String Length 53

5.1 Background and Motivation . 53

5.2 Algorithm for Solving Regex, Length, and Linear Arithmetic Constraints . 56

5.3 Length-Aware Heuristics for Solving Regular Expression Constraints 58

5.3.1 Computing Length Information from Regexes 59

viii

5.3.2 Optimizing Automata Operations via Length Information 59

5.3.3 Leveraging Length Information to Optimize Search 60

5.3.4 Constructing Over-Approximated Prefixes/Suffixes to Find Empty
Intersections . 60

5.4 Empirical Evaluation . 62

5.4.1 Empirical Setup and Solvers Used 62

5.4.2 Benchmarks . 63

5.4.3 Comparison and Scoring Methods 68

5.4.4 Analysis of Empirical Results . 69

5.4.5 Detailed Experimental Results . 71

5.4.6 Analysis of Individual Heuristics and Results 71

6 Observations and Future Work 73

6.1 Future Work . 73

6.1.1 Theoretical Results . 73

6.1.2 Algorithm Selection . 74

6.1.3 Solving Regular Expression Constraints 74

6.1.4 Theory-Aware Heuristics . 75

6.1.5 Applications of String Solvers . 75

6.2 Conclusion . 76

References 77

ix

List of Figures

1.1 How an SMT solver can be used in program analysis applications. 3

2.1 Syntax of input formulas accepted by Z3str4. 8

3.1 General form of length automaton with stem length s and period length p.
All transitions are on the symbol ‘1’. 18

4.1 Architecture of the Z3str4 tool. 23

4.2 The three-tiered probe used by Z3str4 to perform arm selection. 26

4.3 Possible arrangements of A ·B = X · Y . 32

4.4 Illustration of an overlapping variable X in 0 ·X = X · 0. 32

4.5 Architecture of Z3str4’s fixed-length model construction algorithm. 33

4.6 Cactus plot showing performance of string solvers on combined benchmarks. 43

4.7 All three component solvers on queries in the conjunctive fragment. 46

4.8 All three component solvers on queries outside the conjunctive fragment. . 48

4.9 Cactus plot of string solvers on all benchmarks. Timeout=20 s. Timeout,
unknown, and error instances excluded. 48

4.10 Performance of all three component solvers on queries in the “few word
equations” fragment . 50

4.11 Performance of all three component solvers on queries in the “many word
equations” fragment . 51

4.12 Cactus plot of Z3str4 on all benchmarks with clause sharing enabled/disabled.
Timeout=20 s. Timeout, unknown, and error instances excluded. 51

x

5.1 Architecture of Z3str4’s regular expression solving algorithm. 58

5.2 Cactus plot summarizing detailed performance on Automatark benchmark. 65

5.3 Cactus plot showing detailed results for the StringFuzz-regex-generated bench-
mark. 66

5.4 Cactus plot showing detailed results for the StringFuzz-regex-transformed
benchmark. 67

5.5 Cactus plot showing detailed performance for the RegEx-collected benchmark. 68

5.6 Cactus plot summarizing performance on all benchmarks. Z3str4 has the
best overall performance. 69

5.7 Cactus plot comparing performance by disabling individual heuristics on all
benchmarks. 72

xi

List of Tables

4.1 Table showing detailed results of string solvers on combined benchmarks. . 43

4.2 All three component solvers on queries in the conjunctive fragment. 45

4.3 All three component solvers on queries outside the conjunctive fragment. . 47

4.4 Cumulative Results. Timeout=20 s. Total time includes all solved, timeout,
unknown and error instances. 49

4.5 All three component solvers on queries in the “few word equations” fragment. 49

4.6 Performance of all three component solvers on queries in the “many word
equations” fragment. 50

4.7 Cumulative results for Z3str4 with clause sharing enabled/disabled. Time-
out=20 s. Total time includes all solved, timeout, unknown and error in-
stances. 52

5.1 Detailed results for the Automatark benchmark. Z3str4 has the biggest lead
with a score of 1.01. 65

5.2 Detailed results for the StringFuzz-regex-generated benchmark. Z3str4 has
the biggest lead with a score of 1.25. 66

5.3 Detailed results for the StringFuzz-regex-transformed benchmark. Z3str4
has the biggest lead with a score of 1.0. 67

5.4 Detailed results for the RegEx-collected benchmark. CVC4 has the biggest
lead with a score of 1.03. 68

5.5 Combined results of string solvers on all benchmarks. Z3str4 has the
best overall performance on all benchmarks compared to CVC4, OSTRICH,
Z3seq, Z3str3, and Z3-trau and the biggest lead with a score of 1.02. 70

xii

5.6 Comparison of different regular expression heuristics in Z3str4 on all bench-
marks. 72

xiii

Chapter 1

Introduction

In this chapter, I explain the motivation for studying the theoretical and practical as-
pects of reasoning about strings, describe some related work in the field, and outline the
contributions that embody the remainder of the thesis.

1.1 Motivation

Support for strings in automated theorem provers for satisfiability modulo theories (SMT)
has enabled numerous applications in the context of program analysis, automated reason-
ing, verification, and security. Common to all of these applications is the requirement for
an automated reasoning procedure supporting a rich first-order theory over strings, inte-
ger arithmetic, string length, regular expressions, and string terms and predicates such as
substr, contains, and indexof which encode string manipulations in many popular pro-
gramming languages. This, in turn, is complicated by the fact that many theories including
strings that are relevant to program analysis are undecidable, such as the theory of strings
with string-number conversion (Chapter 3). Additionally, reasoning about quantifier-free
word equations alone is in nondeterministic LINSPACE [37, 38], and many elementary
operations over automata, which can be used to reason about regular expression member-
ship constraints, are PSPACE-complete. Thus, the task of creating efficient automated
reasoning tools handling theories over strings, or less formally “string solvers”, remains a
very difficult challenge.

Modern string solvers implement a diverse collection of algorithms and heuristics for
reasoning about strings. Conversely, new industrial applications continue to challenge the

1

performance of these algorithms and open the potential to introduce new heuristics and
advanced algorithms for handling constraints that are practically relevant.

Solving arbitrary string instances is, of course, not tractable. However, industrial ap-
plications of string solvers typically generate and verify constraints that follow certain
patterns, use certain operators in combination, and have particular structure correspond-
ing to the task they perform. This motivates the development of string solving algorithms
and heuristics that target the types of constraints commonly encountered in industrial
instances, while still being able to solve as broad a set of instances as possible. In con-
trast with random instances, industrial string instances often contain a wealth of implicit
information that can be used to guide the search and prune the search space in order to
find a solution more efficiently, and algorithms and heuristics that take advantage of this
information have the potential to be highly effective. This was demonstrated by the im-
provements of the Z3str2 string solver over its predecessor, Z3-str [72]. Both string solvers
use the same fundamental search algorithm to reason about strings. The key difference
is that Z3str2 leverages length information from the arithmetic solver during the search
to prune unsatisfiable branches in the string solver, and asserts additional facts about the
lengths of strings to the the arithmetic solver in order to guide the search in the inte-
ger domain. These heuristics enabled Z3str2 to achieve a 14x speedup in terms of total
solving time over Z3-str, according to the empirical evaluation done in the same paper.
Thus, the introduction of carefully designed, broadly applicable algorithms and heuristics
which enable tools to take advantage of implicit information in industrial instances is of
immense value in improving the capabilities of string solvers. Furthermore, the diversity of
string solving algorithms can be leveraged from the point of view of an algorithm selection
approach in order to leverage different algorithms based on properties of the input.

In this thesis, I advance the state of the art of string solving with both theoretical and
practical contributions, culminating in the introduction of Z3str4, a string solver for a stan-
dardized theory of strings that is relevant to industrial applications. Z3str4 incorporates
a multitude of new algorithms and heuristics that are directly motivated by industrial in-
stances and practical challenges encountered when solving strings. As I will demonstrate,
its performance improves upon that of several state-of-the-art string solvers, and it can
solve more instances in less time than other competing tools while maintaining correctness
and stability – both of which are necessities for industrial applications of such tools.

1.1.1 Applications of String Solvers

String solvers (and, more broadly, SMT solvers in general) are typically integrated as a
back-end component in a larger architecture involving a program analysis or automated

2

Program Specification

Program Analysis Tool SMT Solver

Logic formulas

SAT/UNSAT

Program is correct
Generate
counterexamples
(test cases)

Figure 1.1: How an SMT solver can be used in program analysis applications.

reasoning tool, as illustrated in Figure 1.1. Input to the tool typically consists of a program
and a specification. The program analysis tool then generates logical formulas based on
the input. These formulas may correspond to program paths to be explored, input cases
to be checked, etc. The SMT solver is then asked to solve these formulas and answer SAT
or UNSAT for each one. Based on the answer, the tool may generate additional queries
to the solver. Eventually, the tool can either conclude that the program is correct with
respect to the given specification, or it can output one or more counterexamples in which
the specification was not met.

The Kaluza symbolic execution engine [59] and Jalangi analysis framework [61] both use
string solvers to encode string terms and predicates that are encountered during analysis
of JavaScript programs for web application vulnerability scanning. IBM’s PISA [65] and
AppScan [1] tools use string solvers to perform security analysis of application binaries and
web applications respectively. Amazon Web Services uses string solvers to reason about
security policies for cloud applications as part of the AWS Zelkova service [10]. String
solvers have also been used in many other symbolic execution and verification tools [16, 57].

1.2 Related Work

1.2.1 Theory

Makanin showed in 1977 that the theory of quantifier-free word equations was decid-
able [48]. Plandowski later showed that this problem was in PSPACE [54, 55], and Jeż later
expanded this result to show that it is in nondeterministic LINSPACE [37, 38]. Schulz [60]

3

extended Makanin’s algorithm to word equations with regex constraints. Continuing the
aforementioned thread of research, Ganesh et al. proved that satisfiability for quanti-
fied word equations with a single quantifier alternation is undecidable [33]. There exist
many extensions to the theory of word equations whose (un)decidability has been estab-
lished [48, 55, 37, 25, 47, 32]. However, the status of the quantifier-free theory of word
equations with integer length remains an open problem, and has been unsettled for several
decades [48, 55, 33, 49].

1.2.2 Practice

In a recent survey paper, Amadini [8] classifies approaches to string constraint solv-
ing into three main categories: automata-based, word-based, and unfolding-based ap-
proaches. Automata-based approaches use finite automata to represent string variables
and constraints. Word-based approaches reason about systems of word equations directly.
Unfolding-based approaches expand string variables over the sequences of characters they
represent. All three approaches have different strengths and weaknesses. The solver I
present in this thesis, Z3str4, uses a combination of all three approaches identified by
Amadini, and as I describe in Chapters 4 and 5, such a hybrid approach may be better
than any single one.

The foundational HAMPI solver [41] used an unfolding-based approach to reduce fixed-
length string constraints to bit-vectors. However, HAMPI does not support unbounded
string variables. Many tools that followed HAMPI use different strategies to support
unbounded string variables.

The Z3 theorem prover [27] is a DPLL(T) word-based SMT solver for theory combina-
tions over first-order logic. Z3 includes an arithmetic solver for linear integer arithmetic,
and a sequence solver that supports word-based reasoning over strings. Z3str4 is built on
top of Z3, and Z3’s sequence solver is included in algorithm selection. Z3str3 [15] is based
on Z3 and Z3str2 [72]. It is also word-based and uses a reduction known as “arrangements”.
I explain this reduction in more detail in Section 4.5 as it is also part of Z3str4. Z3str4 is
the latest solver in the Z3-str family, and the successor to Z3str3.

The CVC4 solver [44] handles constraints over the theory of strings and arithmetic using
a word-based approach, and uses a similar DPLL(T) architecture to Z3. Norn [6] is an
automata-based solver that solves integer arithmetic constraints using finite automata and
then represents word equations with finite automata that have been restricted with respect
to concrete length constraints. Stranger [71] is another automata-based approach, but
based on a static analysis technique that determines possible solutions of a string variable

4

while traversing an automaton. [21] implemented another technique using transducers to
solving string constraints in their tool called Ostrich. Ostrich implements a reduction from
straight-line string constraints 1 to the emptiness problem of alternating finite automata.
The Trau solver [4] looks for simple patterns inside the input formula within a CEGAR
framework. A newer version of Trau, called Z3-Trau [3], was also implemented within the
Z3 theorem prover and includes several enhancements such as a more efficient handling of
string-number conversion.

1.3 Contributions

I present the following theoretical and practical contributions related to solving strings:

Contribution 1: (Un)decidability results for theories over strings. In Chap-
ter 3, I establish a number of theoretical results related to decidability and undecidability
of various theories over strings. In particular, I show that the quantifier-free first-order
theory of strings with word equations, concatenation, string length, linear integer arith-
metic, and string-number conversion is undecidable, and I demonstrate the decidability
of the theory of strings with length and regular expression constraints via an elementary
automata-based decision procedure. Establishing such results is relevant not only in ad-
vancing the theoretical understanding of string logics, but also in motivating the design
of algorithms and heuristics used in string solvers. For example, the decidability result
directly informs the design of the length-aware regular expression algorithm I present in
Chapter 5. Conversely, understanding that a relevant theory combination is undecidable
in turn inspires new heuristics geared towards solving instances that occur in practice.
Additionally, establishing the border of decidability and undecidability brings us closer to
addressing long-standing open problems, such as whether the theory of strings with integer
length alone is decidable – a question that, as previously mentioned, has remained open
for many years.

Contribution 2: Z3str4, a solver for theories over strings. In Chapter 4, I
present Z3str4, an SMT solver for the theory of strings, built on top of the open-source
Z3 theorem prover [27] by Microsoft Research. Z3str4 contains new architectural improve-
ments and algorithmic enhancements that enable it to achieve performance competitive
with existing state-of-the-art tools.

1The “straight-line” restriction is similar in principle to the concept of “solved form” introduced by
Z3-str [74] and explained in Section 4.5.

5

I introduce a novel three-tiered algorithm selection procedure that enables Z3str4 to
leverage the strengths of different string solving algorithms against instances where they
are likely to perform very well. This enables Z3str4 to achieve greater performance than
could be obtained by using any of these algorithms alone.

I describe a major extension which I implemented in Z3str4’s arrangement solver in or-
der to improve the process of model construction. Efficiency in this procedure is paramount
to solving practical string instances, as it is always called at least once when solving any
satisfiable formula, and often several times. The algorithm I describe is a combination
of both word-based and unfolding-based approaches that achieves the benefits of both
individual approaches without the major limitations of either.

I outline two so-called “theory-aware” heuristics which allow the string theory solver
in Z3str4 to influence the branching decisions made by Z3’s core solver. Allowing theory
solvers to provide more information to the core solver in a CDCL(T)-style SMT solver is
an interesting and natural extension of the standard architecture and potentially allows
the core solver to make better branching decisions or to avoid combinations of Boolean
literals that are infeasible under theory semantics without needing extra clauses to block
those assignments.

To conclude this chapter, I present the results of a detailed empirical evaluation against
these tools over a large and diverse benchmark of industrial, hand-crafted, and randomly-
generated string instances. To the best of my knowledge, this is the largest and most
comprehensive collection of string instances that has been used for testing string solvers
to date.

Contribution 3: Algorithms and heuristics for theories over regular expres-
sions and linear arithmetic over string length. In Chapter 5, I focus on algorithms
and heuristics related to a particular facet of string solving: regular expression constraints.
Regex constraints are very common when reasoning about formulas that describe sanitizers
or input validation procedures. I illustrate some of the challenges related to reasoning about
regex constraints efficiently, and describe an algorithm and several heuristics designed to
address these challenges in practical settings. I also present the results of an empirical
evaluation specifically targeting regex solving and compare Z3str4 to other state-of-the-art
tools on a regex-heavy benchmark in order to showcase the power of this algorithm and
these heuristics.

6

Chapter 2

Background

2.1 Syntax of Z3str4’s Input Language

Z3str4 accepts input in the SMT-LIB format [14] following the currently published standard
for the theory of strings. It can handle quantifier-free formulas over Boolean combinations
of string, integer, and regular expression formulas and terms. Atomic formulas handled by
the string solver include string equalities and disequalities, regular expression membership
constraints, and extended string predicates such as contains, prefixof, suffixof, etc.
Atomic formulas over integers, which may include inequalities, are handled by Z3’s arith-
metic solver. Z3str4 supports additional integer-sorted terms that integrate with strings,
such as str.len and str.to int. Boolean combinations of atomic formulas are handled
by Z3’s core solver in conjunction with the string and arithmetic solvers in a DPLL(T)-
style approach. A summary of the basic syntax of Z3str4’s input language is presented
in Figure 2.1. Constr and ConZ denote the set of all string constants and integer con-
stants, respectively, over a fixed-length alphabet (practically, ASCII or Unicode). V arstr
and V arint denote the infinite sets of all string variables and integer variables, respectively.

2.2 Definitions and Semantics

In this section, I outline a number of common definitions used in the results to follow, and
define the semantics of terms in the input language and theories considered in this thesis
and in accordance with the SMT-LIB standard for strings [14].

7

F ::= Atom | F ∧ F | F ∨ F | ¬F
Atom ::= tstr = tstr | tstr 6= tstr | Aint |

Aext | Are
Are ::= tstr ∈ tre
Aint ::= tint = tint | tint < tint
Aext ::= str.contains(tstr, tstr) | str.prefixof(tstr, tstr) |

str.suffixof(tstr, tstr)
tint ::= m | v | len(tstr) | tint + tint |m · tint |

str.indexof(tstr, tstr, tint) | str.to int(tstr)
where m ∈ ConZ , v ∈ V arint

tstr ::= s | v | tstr · tstr |
str.from int(tint) | str.replace(tstr, tstr, tstr) |
str.at(tstr, tint) | str.substr(tstr, tint, tint)
where s ∈ Constr , v ∈ V arstr

tre ::= “Constr” | tre · tre | tre ∪ tre | t∗re | t̄re

Figure 2.1: Syntax of input formulas accepted by Z3str4.

A string is an ordered sequence of zero or more elements, or characters, taken from
a set Σ called an alphabet. The alphabet Σ is taken to be finite unless otherwise stated.
The set of all strings over a given alphabet Σ is denoted by Σ∗. The empty string,
denoted ε, is the unique string consisting of zero characters. Two strings are equal if they
consist of the same characters appearing in the same order.

The positions of characters in a string are numbered with non-negative integers, and
are zero-based. The first character of a non-empty string occurs at position 0. The str.at

function extracts the character at position I from a string S and returns it as a string of
length 1; if I is not in the range [0, len(S)), then the function’s value is defined to be the
empty string. 1

The length of a string is the number of characters it contains. The empty string has
length 0. The string length function, denoted len, is a function from strings to non-negative
integers.

The concatenation of two strings A and B is another string consisting of all of the

1The SMT-LIB standard defines str.at – and many other operators – in this fashion because all
functions must be total, and therefore must be well-defined for all possible values of their domain, even if
those values correspond to semantics that are not ordinarily considered meaningful. As a more extreme
example, integer and real division by zero are not inherently considered “errors” in those theories.

8

characters in A in the same order followed by all of the characters in B in the same
order. Concatenation, denoted ·, is typically written as an infix operator (i.e. A ·B is the
concatenation of A followed by B). 2

The prefix and suffix predicates str.prefix of and str.suffix of are defined as
follows: X is a prefix (resp. suffix) of Y iff there exists a (possibly empty) string T such
that Y = X ·T (resp. Y = T ·X). Y contains X (str.contains) iff there exist (possibly
empty) strings T1, T2 such that Y = T1 ·X · T2.

The index of a string in another is defined as follows: str.indexof(A,B, I) is the
integer position, counting from 0, of the first occurrence of the string B in the string A at
or after the character at position I of A, if it exists; otherwise, it is -1.

A substring of a string is a continuous sequence of characters extracted from that
string starting from a given position and of a given length. str.substr(X, I,N) is defined
as the longest continuous sequence of characters of length at most N that can be taken
from X starting at position I. If fewer than N characters can be taken, as many as possible
are taken. In the case where N is negative or I is not in the range [0, len(X)), the substring
is defined to be the empty string.

The replace function over a string is defined as follows: str.replace(S, T, T ′) is
defined as the string obtained by replacing the first occurrence of T in S with T ′. If T does
not occur in S, then S is returned unmodified. In the special case where T is the empty
string, the result is defined as T ′ · S.

The regular expression membership predicate, written infix as S ∈ R for string
term S and regular expression R, is true if S is in the regular language described by
R. Without exception, R must be grounded and cannot contain variables. The se-
mantics of regular expression membership are defined by structural recursion as follows:
S ∈ “w” iff S = w (where w is a string constant)
S ∈ R1 ·R2 iff there exist strings S1, S2 with S = S1 · S2, S1 ∈ R1, S2 ∈ R2

S ∈ R1 ∪R2 iff either S ∈ R1 or S ∈ R2

S ∈ R∗ iff either S = ε or there exists a positive integer n such that
S = S1 · S2 · . . . · Sn and Si ∈ R for each i = 1 . . . n

S ∈ R iff S 6∈ R (that is, S ∈ R is false)

The string to integer conversion str.to int(S) is defined as the non-negative integer
denoted by S interpreted as a base-10 representation. Note that S may contain leading
zeroes. If S is empty or contains non-digits, the result is defined to be -1. The integer to
string conversion str.from int(I) is defined as the string corresponding to the base-10

2The SMT-LIB standard uses the operator name str.++ for concatenation.

9

representation of I with no leading zeroes. If I is negative, the result is defined to be the
empty string.

For the purposes of illustrating several theoretical results more easily, I also define a
non-standard string-number conversion predicate numstr. This predicate has the
following semantics: numstr(n, s) is true for a given integer n and string s iff s is a valid
binary representation of the number n (possibly with leading zeros) and n is a non-negative

integer, that is, s only contains the characters 0 and 1, and
∑len(s)−1

i=0 s′[i]2len(s)−i−1 = n,
where s′[i] is 0 if the ith character in s is ‘0’ and 1 if that character is ‘1’. Please note that
this predicate is defined over base-2 representations of integers, whereas the standardized
string-integer conversion functions are defined over base-10 representations.

2.2.1 Satisfiability, Complexity, and Decidability

Given a formula φ, an assignment (or model) for φ with respect to an alphabet Σ is a
map from the set of free variables in φ to Σ∗ ∪N such that string variables are mapped to
string constants in Σ∗ and integer variables are mapped to integer constants in N. If the
assertions made by φ with respect to an assignment are true, then we say that φ is true
under that assignment.

A formula φ is satisfiable iff there exists some assignment under which φ is true. If no
such assignment exists, we say that φ is unsatisfiable. A formula φ is valid if it is true
under all possible assignments. For two formulas φ, ψ, if it is the case that φ is satisfiable
iff ψ is satisfiable, then we say that φ and ψ are equisatisfiable. Note that this definition
is deliberately very broad; φ and ψ may have different numbers of satisfying assignments
and need not even be from the same language.

The satisfiability problem for a set S of formulas is the problem of deciding whether
any given formula in S is satisfiable. The satisfiability problem for S is decidable if there
exists an algorithm (or decision procedure) that correctly decides the satisfiability of every
formula in S. Conversely, a problem is undecidable if it can be demonstrated that no
decision procedure for that problem can possibly be constructed. For example, the “halting
problem” for Turing machines is known to be undecidable. Demonstrating undecidability
can be done by showing how a supposed decision procedure for one problem could be used
to construct a decision procedure for a problem that is already known to be undecidable.

A decision procedure for S must have three properties: soundness, completeness,
and termination. An algorithm is sound if whenever it returns that an input formula
is satisfiable, the input formula really is satisfiable. An algorithm is complete if for any

10

input formula that is satisfiable, the algorithm returns that it is satisfiable. An algorithm is
terminating if it returns an answer in finite time for all inputs. In practice, the completeness
and termination requirements may be relaxed for the sake of improved typical performance.
(The soundness requirement is almost never relaxed as otherwise, practically speaking, the
user would not be able to trust the answer given by the algorithm.)

Computer programs that are designed to solve the Boolean satisfiability problem are
called SAT solvers. In this thesis, I primarily consider extensions of SAT to the domain
of Satisfiability Modulo Theories (SMT). The SMT problem is a decision problem
for formulas of first-order logic with equality that are additionally expressed with respect
to one or more “theories”. These theories include, for example, the theory of integers, the
theory of reals, the theory of bit-vectors, and most relevant here, the theory of strings 3. A
computer program that handles SMT formulas is called an SMT solver. Different SMT
solvers are available and may offer support for different combinations of theories that can
be used. The typical architecture of an SMT solver includes a core solver that handles
Boolean constraint propagation, Boolean satisfiability solving, and conflict clause learning,
and which interacts with one or more theory solvers which are responsible for checking
the consistency of the Boolean abstraction of the input formula with respect to the logical
theories they handle. This combination is sometimes referred to as DPLL(T) or CDCL(T),
referring to the combination of DPLL/CDCL procedures for solving Boolean satisfiability
with the extension over theories T .

We can further classify decidable problems into classes based on their time/space com-
plexity. The complexity class NP is the set of all decision problems for which a “yes”
answer can be verified in polynomial time (with respect to the size of the input) by a
non-deterministic Turing machine. A decision problem is NP-complete if that problem
is in NP and every other problem in NP is reducible to that one in polynomial time. The
most fundamental NP-complete problem is the Boolean satisfiability problem, as estab-
lished by the Cook-Levin theorem. A decision problem is NP-hard if every other problem
in NP is reducible in polynomial time to that one (but the original problem need not be
in NP itself). The class PSPACE is the set of all decision problems that can be solved
by a Turing machine using a polynomial amount of space (with respect to the size of the
input). It is known that NP is contained in PSPACE, thus making problems in PSPACE
informally “harder than” problems in NP. A decision problem is PSPACE-complete if it
is in PSPACE and every other problem in PSPACE is reducible to that one in polynomial
time. The class LINSPACE is the set of all decision problems that can be solved by a
Turing machine in linear space. It can be shown that NP 6= LINSPACE.

3Not to be confused with the theoretical framework of “string theory” in physics.

11

Chapter 3

(Un)decidability Results for Theories
over Strings

In this chapter, I present a number of decidability, undecidability, and complexity results for
various theories over strings. Establishing decidability or undecidability of a logic informs
the types of approaches that can be taken when solving instances of formulas in that logic
which occur in practice (i.e. from applications). On the one hand, an undecidability result
immediately implies that we cannot hope to have an efficient general-purpose algorithm
that can handle all problems in that logic. This means that we should turn our attention
to developing heuristics and special-purpose algorithms that can tackle as broad a space
of problems as possible which we are most interested in solving. On the other hand,
establishing decidability or showing a decision procedure that can be constructed in a new
way motivates the integration of this decision procedure with SMT solvers. As a practical
example, the decision procedure for length and regex constraints I derive in Section 3.2
directly establishes and shows the correctness of the practical algorithm I illustrate in
Section 5.2. Finally, from a theoretical perspective, such results are interesting because
they bring the state of the art closer, if even by steps, to tackling long-standing open
problems such as decidability of quantifier-free word equations with length (as previously
mentioned, this problem has been unresolved for decades).

12

3.1 Undecidability of the Theory of Strings with String-

Number Conversion

In this section, I establish a number of results related to the undecidability of the quantifier-
free first-order theory TL,n,c of word equations, concatenation, linear integer arithmetic,
string length, and string-number conversion. 1

3.1.1 The Theory of Power Arithmetic Tp and Büchi’s Results

I first present a preliminary result due to Büchi [20] for a theory Tp known as “power
arithmetic”. The theory Tp has the structure 〈N, 0, 1,+, π, <n,=n〉 where N is the set of
natural numbers, 0 and 1 are distinct natural number constants, + is the two-operand
addition function, <n and =n are the two-operand comparison and equality predicates,
and π is a three-operand predicate defined as π(x, y, z) ⇐⇒ z = x2y. Note that only
the quantifier-free fragment of this theory is considered (and in particular the satisfiability
problem for the existential closure over quantifier-free formulas of Tp).

With these definitions it is possible to present the necessary context for Büchi’s un-
decidability result for Tp. Lemmas 1 and 2, as well as the statement of Theorem 3, are
adapted from [20] where they were originally presented.

Lemma 1. (Julia Robinson’s divisibility lemma) If m ≤ n, l > 2n2, and l + m, l −
m|l2 − n, then m2 = n. (Refer to Lemma 5 in [20].)

Lemma 2. (Büchi’s Lemma) In Tp = 〈N, 0, 1,+, π〉 it is possible to existentially define
addition and multiplication on N. (Refer to Lemma 6 in [20].)

Theorem 3. (Büchi’s Undecidability Theorem) The existential theory of Tp = 〈N, 0, 1,+, π〉
is undecidable. (Corollary 5 in [20].)

3.1.2 Proof of Undecidability of TL,n,c

Recall that the satisfiability problem for the theory of quantifier free string equations with
string length remains open. Knowing whether that theory is decidable would be of value
in many program analysis applications. The theory TL,n,c I consider here is also inspired

1These results were obtained jointly with Vijay Ganesh, Florin Manea, and Joel Day.

13

by program analysis, and is a simple extension that covers an operation that is very com-
monly used in programming languages. The string-numeric conversion predicate models
common API functions such as JavaScript’s parseInt and toNumber methods which per-
form integer-string and string-integer conversion. Supporting string concatenation, string
comparison/assignment (via equality), and conversion to and from integers represents a
minimal but expressive and useful theory for practical applications. However, as I will
demonstrate, even this simple extension is enough to establish undecidability.

The structure of TL,n,c is 〈Σ∗,N, 0s, 1s, ·, 0n, 1n,+, len, numstr, =s,=n, <n〉 where Σ∗ is
the set of all string constants, N is the set of all natural numbers, · is the string concate-
nation function, + is the two-operand addition function for natural numbers, len is the
string length function, numstr is the string-number conversion predicate, =s and =n de-
note equality over strings and natural numbers respectively, and <n is the natural number
comparison (less-than) predicate.

With this definition and the results of Theorem 3 I can now show undecidability of the
theory TL,n,c in Theorem 4.

Theorem 4. The satisfiability problem for the theory TL,n,c is undecidable.

Proof. The proof is shown via a recursive reduction from the theory Tp (Büchi’s power
arithmetic) to theory TL,n,c, i.e., any quantifier-free formula in Tp can be equisatisfiably
reduced to a quantifier-free formula in TL,n,c. Thus, if the satisfiability problem for TL,n,c
is decidable then so is the satisfiability problem for Tp. By Büchi’s theorem [20] the
satisfiability problem for Tp is undecidable, and hence so is the satisfiability problem for
TL,n,c.

The Reduction from Tp to TL,n,c. We reduce each constant, function, predicate, and
atomic formula of Tp to TL,n,c by applying the following rules recursively over the input
formula:

1. Each natural number in N is represented directly as a constant in TL,n,c.

2. Variables in Tp are represented directly as variables of numeric sort in TL,n,c.

3. Addition of two terms t1 +t2 is represented directly as addition over natural numbers,
t1 + t2, in TL,n,c.

4. Equality of terms in Tp is represented directly via a recursive reduction as equality
t1 =n t2 of terms of numeric sort.

14

5. The less-than predicate in Tp is represented directly as comparison of natural num-
bers, t1 <n t2.

6. The predicate π(p, x, y) is expressible as follows: ∃z : str,∃xs : str : (“0” · z =
z · “0” ∧ len(z) = y ∧ numstr(p, xs · z) ∧ numstr(x, xs)). The interpretation of the
π predicate is p = x × 2y. The variables z and xs are string variables, and z is a
string of the “0” character of length equal to y. The xs variable is the string binary
representation of the natural number x. The concatenation of xs followed by z is
a binary representation of p. It is easy to verify that the given formula over free
numeric variables x, y, p is satisfiable iff π(p, x, y) is satisfiable.

The reduction can easily be extended to arbitrary quantifier-free formulas in Tp. It is easy
to verify that the reduction is sound, complete, and terminating for all inputs.

This result is quite surprising, as numstr is not generally thought of as a powerful
operator – certainly not as powerful as, say, replaceAll. However, the fact that string-
number conversion can be used to encode arbitrary multiplication in this theory, as I
just demonstrated, highlights the deep and subtle power of string-number conversion and
suggests a potential source of complexity for automated reasoning about this operator.

3.1.3 Expressibility of π(x, y, z)

In this section I establish that the π(p, x, y) and numstr predicates are expressible in terms
of each other. I define a new theory Tπ (different from Tp), which is the same as TL,n,c except
that numstr is removed and replaced by the π(p, x, y) predicate. From Section 3.1.2 it is
clear that any formula involving the π(p, x, y) predicate can be reduced to some formula in
TL,n,c using some Boolean combination of numstr predicate, string equations, and length
function. This shows that a reduction exists from Tπ to TL,n,c. I now show that a reduction
in the opposite direction exists; that is, the numstr predicate can be expressed in terms
of quantified formulas over the π(p, x, y) predicate, word equations, and length function.

The value of these two recursive reductions is that it suggests that the π predicate is
expressible using string equations and length function iff numstr is. Expressibility results
are very useful tools in constructing reductions, distinguishing the expressive powers of var-
ious theories, and establishing (un)-decidability results. Additionally, these expressibility
results suggest that the numstr predicate is much more complex, both from a theoretical
and a practical point of view, than it seems at first glance.

15

Definition 5. A predicate P is expressible in some theory T having language LT if there
exists an LT -formula φ(x1, . . . , xn) such that for all interpretations m1, . . . ,mn of x1, . . . , xn
allowed by T and such that φ(m1, . . . ,mn) is well-sorted, it follows that P (m1, . . . ,mn) is
true iff φ(m1, . . . ,mn) is true.

The fact that π(p, x, y) is expressible in terms of numstr(i, s) in the theory TL,n,c follows
immediately from the reduction from Tp to TL,n,c used to establish the undecidability theo-
rem in the previous section. It remains to show the reverse direction, i.e., that numstr(i, s)
is expressible in terms of π(p, x, y). 2

Theorem 6. numstr(i, s) is expressible in terms of π(p, x, y) in Tπ.

Proof. We represent numstr(i, s) as a formula that asserts the non-existence of a witness
for one of two kinds of error in the conversion. The first kind of error relates to the
maximum possible value of i. Suppose s is a binary string of length n. Then s cannot
represent a natural number greater than or equal to 2n. The second error is a discrepancy
between the binary representation of i and the binary string s. To check bit t of the number
i, decompose i into h2t+1 + x2t + l where x is the tth bit of i and so x = 0 ∨ x = 1, and
l is the numeric representation of bits t − 1 through 0 and so l < 2t. Then if x = 0 and
s[len(s)− 1− t] = “1”, or if x = 1 and s[len(s)− 1− t] = “0”, there is an error. This gives
us the following sentence:

numstr(i, s) ⇐⇒ ∀n, p, t, h, ph, x, px, l, lu, sh, sx, sl :

¬(len(s) = n ∧ π(p, 1, n) ∧ i ≥ p)

∧ ¬(π(ph, h, t+ 1) ∧ π(px, x, t)

∧ i = ph + px + l ∧ π(lu, 1, t) ∧ l < lu

∧ s = sh · sx · sl ∧ len(sl) = t ∧ len(sx) = 1

∧ ((x = 0 ∧ sx = “1”) ∨ (x = 1 ∧ sx = “0”)))

We can apply this rule recursively to the input formula, along with similar rules to the
ones presented previously, to obtain a reduction from TL,n,c to Tπ.

2Note that I do not present a reduction from TL,n,c to Tp. However, I conjecture that one exists, due to
the possibility of mapping the countably infinite set of string constants onto the countably infinite set of
natural numbers and then constructing string functions and predicates as operators over natural numbers.

16

3.2 Decidability of the Theory of Strings with Length

and Regular Expression Constraints

In this section, I present an elementary automata-theoretic decision procedure for the
quantifier-free first-order theory TLRE of strings, linear integer arithmetic, string length,
and regular expression membership predicate.

The structure of the theory TLRE is given as 〈Σ∗,N, RE,+, len,∈,=n, <n〉 where Σ∗

is the set of all string constants, N is the set of all natural numbers, RE is the set of all
grounded regular expressions, + is the two-operand addition function for natural numbers,
len is the string length function, ∈ is the regular expression membership predicate, and =n

and <n are the natural number equality and comparison predicates. Note that this theory
does not include concatenation of strings, nor does it include equality between strings
(word equations).

I demonstrate that the satisfiability problem for TLRE is decidable by illustrating a
decision procedure. Although the decidability of this theory is implied by other results [45,
6], the construction of a decision procedure I show here is novel and is based on elementary
principles of automata theory. This decision procedure is also a key inspiration for the
practical regular expression solver I describe in Chapter 5. The proof in this section
outlines a simple, constructive, and intuitive automata-based approach to simultaneously
reason about regex and linear integer arithmetic constraints.

Theorem 7. The satisfiability problem for the quantifier-free first-order theory TLRE is
decidable.

Proof. Decidability is shown by describing a decision procedure for TLRE and demonstrat-
ing that it is sound, complete, and terminating. The input to the decision procedure is a
conjunction of (possibly negated) atoms, each of which is either:

• a regular language constraint, S ∈ R, for a string variable S and constant regular
expression R

• a linear arithmetic constraint of the form c1v1 ± c2v2 ± . . . ± ckvk ± ck+1len(S1) ±
ck+2len(S2)± . . .± ck+nlen(Sn) ./ C, where each vi is an integer variable, each term
len(Si) represents the length of a string variable, C and each ci are integer constants,
and ./ stands for either equality, disequality, or inequality.

17

q1 r0

r1
q0 qs−1 rp−1

.

Figure 3.1: General form of length automaton with stem length s and period length p. All
transitions are on the symbol ‘1’.

Consider each string variable Si which appears in one or more regular language con-
straints. The decision procedure first constructs the product automaton Ri correspond-
ing to the intersection of all regular languages over which Si is constrained, that is,
Ri =

⋂n
x=1 Rx ∩

⋂n+m
y=n+1Ry if S ∈ R1, S ∈ R2, etc. and S 6∈ Rn+1, S 6∈ Rn+2, etc.

Note that any value of Si which is in the language Ri automatically satisfies all regular
language constraints on Si, because Ri is the intersection of all such languages. Conversely,
if Ri is empty, the decision procedure can immediately return UNSAT, since this implies
that there is no string which simultaneously satisfies all regular language constraints on
Si.

After constructing each product automaton Ri, the decision procedure constructs the
corresponding unary automaton Li by replacing all letters in the alphabet of Ri with
the character ‘1’ and otherwise leaving the rest of the automaton unchanged. Now, Li
is an automaton whose language is the set of all unary numbers corresponding to the
lengths of all strings in Ri. In general, this automaton is non-deterministic and may
have ε-moves. The decision procedure then constructs a deterministic finite automaton
L′i from Li and minimizes it. From a result shown by Eilenberg [29], L′i must have the
form illustrated in Figure 3.1 with some states q0, . . . , qs−1, r0, . . . , rp−1 final and where the
values s and p are the “stem” and “period” of the automaton. The same result from [29]
also gives that the unary numbers accepted by this automaton correspond to a finite union
of arithmetic progressions. These progressions may be found as follows: for each final state
qi ∈ {q0, q1, . . . , qs−1}, the corresponding unary number 1i is accepted by the automaton,
which in turn corresponds to the integer i (which is trivially an arithmetic progression with
period 0); and for each final state rj ∈ {r0, r1, . . . , rp−1}, the unary numbers of the form
1s(1p)∗1j are accepted by the automaton, which correspond to the integers enumerated by
the arithmetic progression (s+ j) + np with n ≥ 0.

From each automaton L′i the decision procedure derives a finite collection of arithmetic
progressions, the solutions of which in union are all possible valid lengths of a string
Si ∈ Ri. Furthermore, as each arithmetic progression is of the form a + nb, for constant
a, b and a fresh integer variable n, the implied length constraints can be expressed as
a collection of terms in Presburger arithmetic. From here, the decision procedure can

18

take the original system of length constraints and augment it with the implied length
constraints for each string variable as follows. For each string variable Si, suppose the set
of arithmetic progressions is given by Li = {a1 +n1b1, a2 +n2b2, . . . , ax +nxbx}. Then add
the disjunction of atomic formulas given by (a1+n1b1)−len(Si) = 0∨(a2+n2b2)−len(Si) =
0 ∨ . . . ∨ (ax + nxbx) − len(Si) = 0. Additionally, add a constraint of the form ni ≥ 0 for
each fresh variable n in each arithmetic progression; and add a constraint of the form
len(Si) ≥ 0, since the length of any string is non-negative by definition. The resulting
augmented system of integer constraints (including string length terms) is a system of
quantifier-free Presburger inequalities, so at this point the decision procedure can solve it
and either find that there are no solutions, or that there is some solution. If the augmented
system has no solutions, this implies that there are no lengths of strings which satisfy the
original length constraints plus the length constraints implied by the regular language
membership constraints, so the decision procedure returns UNSAT. Otherwise, it finds
a solution which gives (in particular) a value for each length term len(Si). Because the
solution to the augmented system satisfies one of the terms in each disjunction of arithmetic
progressions, the value of len(Si) in the solution corresponds to the length of a solution in
Ri. Now for each Si, it can find any string having this length in Ri, e.g. by depth-first search
over the automaton, for each Si. This solution satisfies all regular language constraints
on Si because of how Ri is constructed, and additionally satisfies all length constraints on
len(Si). At this point the decision procedure returns SAT and has produced a certificate
consisting of the solution to the augmented system of length constraints plus the string
value chosen for each Si.

It is easy to see that the above algorithm always terminates, given a decision procedure
for quantifier-free Presburger arithmetic. I demonstrate soundness and completeness of
the above algorithm as follows. There are two places in which this algorithm can return
UNSAT: either upon finding that some intersection of regular expression constraints Ri is
empty, or upon finding that the augmented system of length constraints has no solutions.
By the construction of Ri as an intersection of all regular language constraints on each
corresponding string variable, if this intersection is empty then the original constraints
cannot all be satisfied simultaneously, hence the input formula is unsatisfiable. If the
augmented system of length constraints has no solutions, then by the construction of the
length automaton L′i there is no string whose length satisfies the length constraints given
in the input formula while simultaneously satisfying the implied length constraints from
the regular expression terms, hence the input formula is unsatisfiable in this case as well.
Similarly, as already illustrated in the description of the algorithm, when the algorithm
returns SAT, the solution to the system of length constraints plus the string values Si
derived from these length values and the intersection automata Ri satisfy the original

19

formula, hence the input formula is satisfiable. Therefore, the algorithm presented above
is sound, complete, and terminating, hence it is a decision procedure for the quantifier-free
theory of regular language constraints and Presburger arithmetic over the lengths of words.

The decision procedure is also in PSPACE, as the construction of all necessary au-
tomata, computation of their intersections, and construction of length constraints can be
performed in PSPACE, solving the system of arithmetic constraints can be performed in
PSPACE (in fact this is NP-complete), and production of the satisfying string assignments
once the arithmetic constraints have been solved can also be done in PSPACE. There-
fore, the decision problem for the quantifier-free theory of regular language constraints and
arithmetic on length constraints is PSPACE-complete, because the equivalence problem
for finite automata trivially reduces to the decision problem for this theory, for which I
have just shown a PSPACE decision procedure.

20

Chapter 4

Z3str4: A Solver for Theories Over
Strings

In this chapter, I describe the architecture and implementation of the Z3str4 string solver.
I begin in Section 4.1 by motivating the algorithm selection approach and explaining why
diverse solving algorithms are key to achieving greater performance in solving string con-
straints. I then illustrate the architecture of Z3str4 in Section 4.2, highlighting the different
algorithm combinations that it uses and showing the control flow and data flow between
different modules in the implementation. I explain the procedure by which Z3str4 per-
forms algorithm selection in Section 4.3. I also explain several of the novel algorithms in
Z3str4, including the length abstraction solver (LAS) in Section 4.4, the fixed-length model
construction procedure in Section 4.5, theory-aware heuristics related to string solving in
Section 4.6, and the clause sharing heuristic in Section 4.7. I conclude the chapter by
presenting a detailed empirical evaluation of Z3str4 against other state-of-the-art string
solvers in Section 4.8.

4.1 Motivation

As is evident from both theory and practice, reasoning about the quantifier-free first-
order theory of word equations, functions such as concat and substring, predicates such
as contains, regular expression membership constraints, string-integer conversion func-
tions, and linear integer arithmetic over string length is hard (see Chapter 3). Despite
these difficulties, much research has been done on practical algorithms for solving string

21

constraints obtained from many real-world analysis, testing, verification, and synthesis ap-
plications [59, 30, 68, 46]. Examples of such solvers include HAMPI [41], Stranger [71],
Z3’s sequence solver (Z3seq) [27], CVC4 [44], Norn [6], Trau [4], S3 [67], and the Z3-str
family of solvers upon which Z3str4 is based, whose predecessors include Z3str2 [72] and
Z3str3 [15]. Each tool has varying strengths and weaknesses. Precisely because solving
string formulas is hard in general – and is still hard or even undecidable for many spe-
cific theory combinations relevant to program analysis – solver designers have come up
with a diverse set of practical algorithms that incorporate a variety of tradeoffs. Some of
these methods work well for pure word equations, but not so well for integer constraints
over string length. Other methods work well for a mix of word equations and integer
constraints, but perform poorly on more complicated constraints involving functions such
as substring or predicates like contains. This diversity of algorithms for solving string
constraints immediately presents an opportunity from an algorithm selection perspective.
The key challenges involved in algorithm selection for string instances relate to predicting
the performance of a given algorithm on a particular input formula. So-called “features”
of formulas which correlate well with solving difficulty or algorithm performance have been
studied for some time in the case of Boolean satisfiability solving (SAT), and algorithm
selection techniques have shown strong results when trained against empirical hardness
models for SAT solvers [69]. Algorithm selection techniques have also been applied using
machine learning algorithms over different standalone SMT solvers [56]. As feature identi-
fication and hardness models have not been developed specifically for theories over strings,
development of Z3str4 has provided an opportunity to approach a better understanding
of what might make some string instances harder to solve than others, and how different
algorithms could be developed to handle different kinds of inputs.

4.2 Architecture of Z3str4

In this section, I describe the architecture of Z3str4 and show how its components and novel
algorithms work together at a high level. An architectural diagram of Z3str4 is shown in
Figure 4.1, illustrating its control and data flow.

Input to the Z3str4 solver is given as a formula in SMT-LIB syntax as described in
Chapter 2, and the output is one of SAT, UNSAT, or UNKNOWN. Z3str4 is built on
top of Z3 and reuses its parser and core architecture. Once parsed, the formula is then
passed on to Z3str4’s arm selection procedure, which is described in detail in Section 4.3.
This procedure makes use of a series of static “probes” to analyze the formula and decide
which of its arms is the most appropriate for the given input. Each arm calls the length

22

SMT2 Parser

Rewriter/Simplifier

Arm Selection Syntactic Probes

SEQ LAS

ARR

SEQ

SEQ

ARR

LAS

ARR

SEQ

Conjunctive Arm Non-Conjunctive Arm

Regex Arm

Non-Word
Equation

Arm

Figure 4.1: Architecture of the Z3str4 tool.

abstraction solver (Section 4.4), the arrangement solver (Section 4.5), and Z3’s sequence
solver in some predetermined order, as shown in Figure 4.1. The method by which the
probes perform arm selection is described in more detail in Section 4.3.

The length abstraction solver and arrangement solver are able to share certain learned
constraints between invocations, even though they are called independently. This allows
solvers to benefit from the work done by earlier ones in the sequence determined by an
arm. I discuss this mechanism in Section 4.7.

4.3 Algorithm Selection

In this section, I describe the arm selection procedure used by Z3str4 to choose the series
of algorithms that are applied to solve an input formula.

23

Algorithm 1: Z3str4’s arm selection procedure.
Data: formula φ of quantifier-free string and arithmetic constraints in conjunctive

normal form
1 φ← Simplify(φ)
2 if φ contains regex constraints then
3 ArrangementSolver()

4 SequenceSolver()

5 else
6 if majority of top-level formulas in φ are word equations then
7 if ConjunctiveFragment(φ, TRUE) then
8 LengthAbstractionSolver()

9 ArrangementSolver()

10 SequenceSolver()

11 else
12 SequenceSolver()

13 ArrangementSolver()

14 LengthAbstractionSolver()

15 end

16 else
17 SequenceSolver()

18 end

19 end

The arm selection method uses static features of the instance to determine which of the
three solver algorithms – the length abstraction solver, the arrangement solver, and Z3’s
sequence solver – are invoked and in what order. The pseudocode for the arm selection
procedure is shown in Algorithm 1, and the conjunctive probe subroutine is illustrated in
Algorithm 2. The conjunctive probe subroutine was developed by Federico Mora [50].

The input formula φ is first passed to Z3’s simplifier and term rewriting procedure
(line 1). The algorithm selection procedure then follows a three-tiered sequence of checks
for static features (lines 2–19). This sequence of checks is illustrated in Figure 4.2. The
order and choice of solvers to use was determined by a combination of empirical results and
experimentation. For example, by observing that the arrangement solver has superior per-
formance on industrial instances with many regex constraints, I determined that it would
be preferable for Z3str4 to leverage it when regex constraints are present in general. The
sequence of decisions made is as follows. First, if any regex constraints appear in the input
formula φ, the arrangement solver is used. Otherwise, if a majority of top-level formulas

24

Algorithm 2: Z3str4’s conjunctive fragment probe.

1 Subroutine ConjunctiveFragment
2

Input : formula φ to check, Boolean sign indicating polarity of φ
Output : TRUE if φ is in the conjunctive fragment and FALSE otherwise

3 while φ matches Not(ψ) do
4 sign ← ¬(sign)
5 φ← ψ

6 end
7 if φ matches X = Y and sign is FALSE and X is a string term then
8 return FALSE
9 end

10 if (φ matches prefixof(X,Y) or φ matches suffixof(X,Y)) and sign is FALSE then
11 return FALSE
12 end
13 if φ matches contains(X,Y) or φ matches regexIn(X,R) or φ matches

replace(X,Y, Z) then
14 return FALSE
15 end
16 for a ∈ arguments of φ do
17 if ConjunctiveFragment(a, sign) = FALSE then
18 return FALSE
19 end

20 end
21 return TRUE

25

Contains regex constraints?

ARR Contains word equations?

yes no

SEQ Conjunctive fragment? SEQ

yes no

LAS

ARR

SEQ

yes

SEQ

ARR

LAS

no

Figure 4.2: The three-tiered probe used by Z3str4 to perform arm selection.

in the input are not word equations, the sequence solver is used. Finally, the algorithm
selection procedure calls the ConjunctiveFragment subroutine on line 7. This subroutine
traverses the AST of φ and checks whether any of the following expressions appear in the
input formula: string disequalities, negated str.prefixof and str.suffixof predicates,
or any str.contains, str.replace, or regex membership terms. The intuition used here
is that the terms checked for are relatively hard for the bit-vector solver to handle af-
ter ReduceToBV is applied, due to disjunctions of bit-vector constraints in the reduction.
(I explain this in more detail in Section 4.5. For example, str.contains reduces to a
disjunction of equalities between characters under a fixed-length interpretation.) Thus,
if the probe returns TRUE, Z3str4 can call the length abstraction solver first with the
expectation that it will exhibit the best performance, followed by the arrangement solver
and the sequence solver. Otherwise, it will call the sequence solver first, followed by the
arrangement solver and LAS.

The procedure uses the information from the probe to choose between multiple different
arms that are used to solve the formula. An “arm” here refers to a fixed ordering of the

26

following algorithms: the length abstraction solver, discussed in Section 4.4; the arrange-
ment solver, discussed in Section 4.5; and Z3’s sequence solver. The arm configuration
specifies how these algorithms are called and in which order. Each solver is called with
a static set of parameters and a timeout that is computed based on the total time limit
given to the tool. The first solver in the selected arm that successfully answers SAT or
UNSAT causes the procedure to return that answer and terminate. If a solver times out or
gives up, the next solver in the arm is called. If no solver returns an answer, the procedure
returns UNKNOWN if there was time remaining or TIMEOUT otherwise.

4.4 Length Abstraction Solver

In this section, I briefly describe the length abstraction solver used by Z3str4. 1

The length abstraction solver (LAS) takes in a conjunction φ of string literals, and
either returns an assignment that satisfies φ, returns UNSAT, or returns UNKNOWN.
As the algorithm operates on an approximation of length constraints, it is prohibitively
expensive to allow too many “guesses” to be made. A maximum iteration count is fixed
when the algorithm begins, and if this count is reached before either finding a satisfying
assignment or finding UNSAT, the algorithm terminates and returns UNKNOWN. LAS
begins by calling MultisetCheck at line 1. This subroutine can quickly determine UNSAT
for many kinds of string constraints, described in more detail in Section 4.4.1. If this
check does not determine that the input is UNSAT, then LAS constructs L̂, a length
abstraction over the input string constraints in φ, and enters the main solving loop. Each
iteration of the loop checks the satisfiability of the current abstraction L̂. If this is ever
unsatisfiable, then the implicit and explicit integer constraints in φ are also unsatisfiable,
and the algorithm returns UNSAT. Otherwise, a candidate model ML is found for L̂ and
this model is used to construct a system of fixed-length bit-vector character constraints for
the string constraints in φ by the methods described in Section 4.5. This system is denoted
as φbv. The algorithm then checks the satisfiability of φbv. If it is satisfiable, the satisfying
assignment to this system can be translated back into a model for the string constraints in φ,
and the algorithm returns SAT. Otherwise, the algorithm increments an iteration counter,
terminating if this exceeds a maximum number of iterations, and otherwise learning a
conflict clause ψ blocking the current length assignment in L̂ and looping. The limit
on iterations is necessary to ensure that the algorithm always terminates. As a result,
LAS is inherently incomplete, but this is not a drawback in practice – Z3str4 never calls

1The LAS algorithm was developed by Federico Mora [50], and I illustrate it here for the sake of a
complete presentation of Z3str4.

27

Algorithm 3: Z3str4’s length abstraction solver (LAS).

Data: Conjunction of theory literals φ
Result: SAT, UNSAT, or UNKNOWN

1 if MultisetCheck(φ) returns FALSE then
2 return UNSAT

3 end

4 L̂← length abstraction over φ

5 while L̂ satisfiable do

6 ML ← candidate arithmetic model for L̂
7 φbv ← fixed-length bit-vector constraints for φ with respect to ML

8 if φbv satisfiable then
9 MS ← string model from satisfying assignment to φbv

10 return SAT

11 else
12 iteration count + = 1
13 if maximum iteration count reached then
14 return UNKNOWN
15 end
16 ψ ← learned conflict clause from φbv
17 L̂← L̂ ∧ ψ
18 end

19 end
20 return UNSAT

28

LAS by itself, and it is always followed by either the arrangement solver or the sequence
solver. The purpose of LAS is to be an efficient “pre-solver” for instances where the
fixed-length reduction is expected to perform well without much overhead (in other words,
for instances in the conjunctive fragment, as described above). LAS operates at its best
for instances that can be solved without needing the full power of the sequence solver or
arrangement reduction, and for instances where the sequence solver or arrangement solver
might encounter too much overhead in reasoning about many subformulas (for example, if
the arrangement solver needs to process a large number of arrangements in order to make
any progress).

4.4.1 MultisetCheck Subroutine

The subroutine MultisetCheck is a heuristic that analyzes a simple static property of
atomic string formulas, and returns false if these formulas are unsatisfiable based on this.
The check performed here constructs the Parikh image [53] of a word equation with respect
to the characters and variables that it contains and checks whether it is consistent. As an
illustrative example, consider the word equation a · X = X · b. In order for these strings
to be equal, the number of occurrences of each character on the left-hand side must be the
same as the number of occurrences on the right-hand side. Therefore, if some character has
a different number of occurrences on either side of an equality, then the given terms cannot
be equal to each other. Consider the character “a”. On the left-hand side of this equation,
the number of occurrences of “a” is one, for the constant string, plus however many times
it occurs in X – call this Xa. On the right-hand side, the number of occurrences of “a” is
just Xa. If some model for X satisfied a · X = X · b, it must also satisfy the abstraction
1 + Xa = Xa for however many occurrences of “a” it contained. However, it is easy to
check that this abstraction has no solution for Xa. There is no way to assign X such
that both sides have the same number of “a”s, and therefore the original word equation is
unsatisfiable.

4.5 Fixed-Length Model Construction

In this section, I describe extensions that I made to the arrangement solver in order to inte-
grate a powerful and efficient bit-vector backend for solving character constraints and con-
structing models for string formulas. Z3str4 uses this reduction as part of an abstraction-
refinement loop to handle low-level string formulas and integrates with the arithmetic

29

solver to refute candidate length assignments that have no valid solutions over the string
constraints.

During the process of reasoning in an SMT solver, if an input formula is believed to
be satisfiable, each theory solver must construct a model for it. With respect to strings,
a model is a mapping from string variables to string constants such that all string con-
straints (word equations and string predicates) are satisfied with respect to the Boolean
abstraction explored by the core solver. Additionally, the model must satisfy constraints
in other domains, in particular arithmetic constraints that involve the lengths of strings.
Although arithmetic constraints are not handled directly by the string theory solver, it
must nevertheless be aware of them and avoid constructing models that contradict known
facts about the lengths of strings.

Previous versions of Z3str3, as well as Z3-str and Z3str2, used a näıve brute-force
method to construct models over string variables during the final phase of the search. The
method performed a linear search over all possible lengths n of each string variable, starting
from 0, and a second linear search over all possible string constants of length n for each
string variable, starting from “an” and trying all possibilities in increasing lexicographical
order. This algorithm is extremely inefficient for several reasons. First, the linear search
for lengths of string variables proceeds independently of facts that might be known by the
arithmetic solver, such as potential lower/upper bounds on the lengths of strings. This
can mean that the string solver tries length assignments that have already been shown to
be unsatisfiable. Second, the search over string constants of a fixed length has exponential
complexity, as there are 256n possible ASCII strings of length n (and this is even worse
for other alphabets, such as Unicode). Solving even trivial formulas whose solutions have
strings of lengths longer than a few characters – for example, len(X) > 100 – would time
out. Third, each string constant is searched for independently, regardless of any facts that
may be known about the variables that are involved. For example, if A is known to be
a prefix of B, the method used here will still consider all possible models for A and B,
including models where the string constant assigned to A is not a prefix of the one assigned
to B. Finally, since individual models are checked one at a time, if a model is found to be
in conflict with the asserted constraints, the string solver is extremely limited in what it
can learn from this conflict in order to prune the search space. Only one possible model
can be blocked at a time, when it might be more desirable to block larger parts of the
search space if more can be learned from a given conflict.

In identifying the limitations of this existing approach, it is clear that a more sophis-
ticated model construction algorithm is necessary, and that it should take advantage of
both length constraints and string constraints as well as leveraging facts about conflicts
to construct richer conflict clauses to prune the search space. This brings to mind tech-

30

niques such as the fixed-length unfolding approach used by foundational string solvers
such as HAMPI [41]. As previously mentioned, approaches to string constraint solving can
be classified into automata-based, word-based, and unfolding-based techniques [8]. Tools
such as HAMPI which use unfolding-based approaches often have a limitation wherein the
maximum length of each string variable must be fixed a priori. However, unfolding-based
approaches allow reasoning directly over the characters that make up each string variable,
which is very efficient. The model construction architecture I describe and implement
in this chapter is a hybrid approach that combines the efficiency of an unfolding-based
strategy (reduction of fixed-length string equations to bit-vectors) with the generality of a
word-based algorithm to reason about unbounded strings. This idea is similar to principles
explored by Karhumäki et al. [39], in particular the concept of “unfixed parts” of string
variables which can be filled arbitrarily when constructing a solution.

4.5.1 Solving Strings via Arrangements

I first briefly describe the “arrangement” algorithm for solving string constraints. This
algorithm was first implemented in the original Z3-str solver [74, 72] by Zheng, Zhang, and
Ganesh, upon which Z3str4 (and Z3str3) are based.

The core idea behind the arrangement technique is the reduction of string equations
to simpler string equations until the formula is in a so-called “solved form”, wherein every
string variable appears on one side of an equality by itself and the other side is either a
string constant, a single variable, or a concatenation of two variables. When considering an
equality between strings, the arrangement technique introduces a disjunction of formulas
describing the possible relationships between variables on the left-hand side and right-hand
side of the equation. For example, consider the equality A · B = X · Y . In this formula,
there are three possible relationships between A and X: either A and X have the same
length, or A is shorter than X, or A is longer than X 2. These possible arrangements are
illustrated in Figure 4.3. The arrangement technique expresses the possible relationships
with the following implied formulas. In the first case, A = X and B = Y . In the second
case, A·X1 = X and B = X1 ·Y , for a fresh string variable X1. In the third case, A = X ·X2

and X2 · B = Y , for a fresh string variable X2. These three formulas are asserted as a
disjunction to the core solver, which chooses one branch to explore. The solver reduces the
resulting formulas even further until no more reductions are possible, at which point the
formula is in solved form.

2This is a restatement of a fact also referred to as Levi’s Lemma [43].

31

Figure 4.3: Possible arrangements of A ·B = X · Y .

Figure 4.4: Illustration of an overlapping variable X in 0 ·X = X · 0.

An important weakness of Z3str3’s arrangement solver is that it cannot handle word
equations which have the same variable occurring on both the left-hand and right-hand side
of an equation, referred to as an “overlapping variable”. Consider the equation 0·X = X ·0,
as illustrated in Figure 4.4. Z3str3’s arrangement solver would detect the existence of
an overlapping variable and return UNKNOWN because X appears on both sides. The
reason for not handling these equations is as follows. Suppose that len(X) > 1; then
the arrangement constructed is 0 · X1 = X and X = X1 · 0, for a fresh variable X1,
following the pattern of the second case described above. Since these terms are both equal
to X, we now have the word equation 0 · X1 = X1 · 0. However, observe that this is
identical to the equation we started with except that X has been replaced with X1. If the
solver continues generating such arrangements, it can enter an infinite loop and become
unable to make any further progress. Thus, the original design of Z3str2 incorporated an
algorithm to detect such arrangements which contained overlapping variables and terminate
the search upon encountering them; Z3str3 includes the same algorithm. Handling such
equations is an additional motivation for using the more sophisticated reduction to bit-
vector character constraints. Observe that once string variable lengths have been fixed,
any arrangement with overlapping variables is now merely a bit-vector equation and an
appropriate bit-vector solver can be invoked on it to decide its satisfiability. For example,
again considering 0 · X = X · 0, if the arithmetic solver proposes the candidate model

32

Figure 4.5: Architecture of Z3str4’s fixed-length model construction algorithm.

len(X) = 2, the string-to-bit-vector reduction would reduce X to the 8-bit bit-vector
characters x1x2 and solve the bit-vector equation 0x1x2 = x1x20, finding it satisfiable with
solution X = 00. Therefore, when implementing the bit-vector reduction described in the
following sections, Z3str4 does not immediately return UNKNOWN when encountering
overlapping variables, although it still detects them and stops constructing arrangements
for such equations (as the problem of infinite reductions must still be handled). In other
words, this hybrid approach allows Z3str4 to take advantage of a word-based reduction
for as long as it is useful, and dynamically switch to an unfolding-based approach once
no further progress can be made using the arrangement technique. The only compromise
that must be made is that the formula may not be in solved form once the arrangement
reduction completes; in practice, this is not a limitation for the bit-vector solver, for which
this was never a requirement.

4.5.2 A Bit-Vector Backend for Solving String Constraints

With the limitations and motivations clearly identified, I now describe the fixed-length
model construction procedure used by Z3str4 for solving string constraints. This procedure
is used in Z3str4’s arrangement solver and LAS (length abstraction solver) as part of the
final check performed before answering that a formula is satisfiable and outputting a model

33

for the string variables. The intuition behind this procedure is as follows. In a CDCL(T)
SMT solver architecture, such as Z3, each theory solver is responsible for verifying whether
the Boolean abstraction of the input formula is consistent with the semantics of the theory
it handles, and if so, constructing a model that satisfies the input formula with respect to
this theory. For instance, the core solver may set a Boolean literal corresponding to the
equality len(X) = len(Y) to true; it only sees a Boolean literal and does not understand
the semantics of that equality. This is left to the theory solvers to handle. In this case,
the integer theory solver must construct a model for len(X) and len(Y) consistent with
this equality (if possible). In turn, the string theory solver must also construct a model for
X and Y consistent with this. The key idea here is that the string solver can leverage the
model constructed by the integer solver to guide its own model construction. The search
space of all possible string assignments becomes finite once the length of each string is
fixed. Although trying every possible solution would be theoretically feasible, this can be
handled much more efficiently by using existing methods for finite domain reasoning, such
as Z3’s bit-vector solver. In this way, the string solver can rely on the arithmetic solver to
handle the length constraints as though they were an abstraction of the string formula and
attempt to refine this abstraction with respect to the string constraints, either discovering
a satisfying assignment for the string variables with respect to this length assignment or
asserting a conflict clause that blocks the current length assignment and continuing the
search.

The core idea behind the bit-vector backend, illustrated in Algorithm 4, is the following:
for a given string formula φ over which the arrangement reduction technique described
previously has run to completion, the method first queries Z3’s integer solver to obtain
a consistent length assignment to all string variables in φ. Once such an assignment has
been obtained, each string variable can be interpreted as a fixed-length ordered sequence
of, for example, 8-bit bit-vectors each representing an ASCII character3. This immediately
suggests a very natural reduction from strings to bit-vectors (such as HAMPI [41] uses).
Z3str4 implements exactly such a reduction from strings to bit-vectors and uses Z3’s native
bit-vector solver to solve the resulting constraints. If Z3’s bit-vector solver returns SAT, it
follows that the input string constraints are also satisfiable. However, if it returns UNSAT,
then Z3str4 blocks the corresponding length assignment and asks the core solver to continue
the search, in the manner of conflict-driven clause learning. This allows the core solver and
arithmetic solver to prune the search space further with respect to the blocked assignment.
This process repeats until either Z3str4 converges to the correct answer and returns SAT,
the core solver finds a top-level conflict and returns UNSAT, or the solver runs out of time

3New versions of Z3str4 also support Unicode via exactly the same procedure described here; the only
difference is that the characters have more than 8 bits.

34

Algorithm 4: Z3str4’s string-to-bit-vector algorithm
Input : formula φ of quantifier-free string and arithmetic constraints in conjunctive

normal form
Output : SAT or CONTINUE

1 if arithmetic solver has no candidate model then
2 return CONTINUE
3 end
4 ψ ← candidate model from arithmetic solver
5 φbv ← empty formula
6 for f ∈ φ do
7 if f matches X = Y and X,Y are string terms then
8 Xbv ← bit-vector representation of X wrt. ψ
9 Ybv ← bit-vector representation of Y wrt. ψ

10 if Xbv and Ybv have differing widths then
11 assert X = Y → len(X) = len(Y)
12 return CONTINUE

13 end
14 φbv ← φbv ∧Xbv = Ybv
15 end

16 end
17 if φbv satisfiable then
18 ψbv ← model from bit-vector solver
19 for v ∈ V ars(φ) do
20 assert v = ψbv(v)
21 end
22 return SAT

23 else
24 assert ¬ψ
25 return CONTINUE

26 end

or resources. A schematic view of Algorithm 4 is also shown in Figure 4.5.

Algorithm 4 is called during the final check callback which is invoked by Z3’s core
solver once no further propagation or branching needs to be done. First, the algorithm
queries the arithmetic theory solver for a candidate model, that is, a satisfying assignment
to every arithmetic term in the instance. If the arithmetic solver has not yet found such an
assignment, it instructs the core solver to continue the search. Otherwise, model construc-
tion proceeds using the candidate arithmetic model. The algorithm fixes the length of every

35

string variable that appears in the current assignment using the candidate model provided
by the arithmetic solver and reduces every string term to a fixed-length sequence of 8-bit
bit-vectors representing the ASCII characters of that term. The algorithm performs this
reduction for string equalities and disequalities, string predicates such as str.contains,
and regex membership constraints. For string equalities and disequalities, both sides of
the equation are reduced to character terms, then corresponding characters are asserted
to be equal to each other. String predicates are reduced according to their semantics un-
der a fixed-length character-based interpretation (for example, str.contains reduces to
a disjunction of character equality predicates, each of which asserts that the characters of
the strings being compared are equal at a different fixed position). For regex membership
constraints, the algorithm reduces the regex to a nondeterministic finite automaton (NFA)
and enumerates each path through the automaton of the appropriate length ending in an
accepting state.

The bit-vector constraints are not asserted into the main context of Z3, but are instead
asserted into an isolated sub-context that is solved independently. This is done in order to
solve the system of bit-vector constraints without polluting the main string context with
extraneous axioms and conflict clauses that are not needed after the search completes.
Once all reductions have been performed, the algorithm queries the bit-vector sub-solver
for a satisfying assignment. If the sub-solver returns SAT, the model can be translated
back to a model over strings by concatenating the character assignments and mapping
them back to the original string terms. This model is then asserted as a candidate solution
to the main solver. If the sub-solver returns UNSAT, a conflict clause is asserted in the
main solver that blocks the length assignment found by the arithmetic solver from being
searched again.

A conflict can also occur if the length information provided by the arithmetic solver
is in conflict with the axioms of strings. For example, a regex membership constraint
may have no solutions of the given length. Should this occur, the algorithm asserts a
conflict clause blocking the length-string constraint pair in the main solver, and continues
the search without calling the bit-vector solver. Such conflict clauses are desirable because
they are very short and directly relate to the facts that are in conflict, rather than blocking
an assignment which may include terms unrelated to the actual conflict.

4.6 Theory-Aware Heuristics

In this section, I describe the theory-aware branching and theory-aware case split heuristics
implemented in Z3str4. These heuristics involve changes to Z3’s core solver, which han-

36

dles the Boolean structure of the formula and performs propagation and branching. The
intuition behind so-called “theory-aware” heuristics is that in a CDCL(T) architecture,
the core solver, which handles the Boolean abstraction, normally does so unaware of the
semantics of the terms it is handling. For example, it can set a literal corresponding to the
equality len(X) = len(Y) to true while being unaware of the semantics of this equality.
As previously mentioned, the arithmetic theory solver and string theory solver would be
responsible for checking the consistency of this equality with the semantics of their respec-
tive theories. Furthermore, the amount of information that theory solvers can provide to
the core solver to guide the search is usually very limited, normally limited to asserting
axioms or implied facts and asserting that the current partial assignment is inconsistent.
Theory-aware heuristics expand the ability of theory solvers to provide information to the
core solver to guide the search in new ways. The heuristics I present here both modify
the way that Z3’s core solver computes branching information, which is crucial to imple-
menting a performant tool and which normally is done without any interaction with theory
solvers at all.

4.6.1 Theory-Aware Branching

Consider the case where the solver learns the equality X ·Y = A ·B for non-constant terms
X, Y,A,B. Z3str4, as described in Section 4.5.1, handles this equality by considering a
disjunction of three possible arrangements:

Arrangement 1: X = A and Y = B

Arrangement 2: X = A · s1 and s1 · Y = B for a fresh non-empty string variable s1

Arrangement 3: X · s2 = A and Y = s2 ·B for a fresh non-empty string variable s2

Of the three possible arrangements, the first is the simplest to check because it does not
introduce any new variables and only asserts equalities between existing terms. Therefore,
it is intuitively desirable for Z3’s core solver to prioritize checking this arrangement before
the others. This directly motivates the implementation of the theory-aware branching
heuristic, which allows theory solvers to give certain literals increased or decreased branch-
ing priority in the core solver during the search. The advantage gained by theory-aware
branching is the ability to give the core solver information regarding the relative impor-
tance of each branch, allowing the theory solver to exert additional control over the search.
Simpler branches are always prioritized over more complex ones.

37

Theory-aware branching is implemented as a modification of the branching heuristic
in Z3. The default branching heuristic in Z3 is activity-based, similar to VSIDS [51].
The core solver will branch on the literal with the highest activity that has not yet been
assigned. Activity is increased additively when a literal appears in a conflict clause, and
decayed multiplicatively at regular intervals. There has been some work in taking domain-
specific knowledge into account in the context of branching heuristics and custom decision
strategies [31, 52, 28] although this has as of yet not been applied to specific theory activities
in an SMT solver.

The theory-aware branching technique computes the activity of a literal A as the sum
of two terms Ab and At, wherein the term Ab is the “base activity”, which is the standard
activity of the literal as computed and handled by Z3’s core solver. The term At is the
“theory-aware activity”. The value of this term is provided for individual literals by theory
solvers, and is taken to be 0 if no theory-aware branching information has been provided.
This modification causes the core solver to branch on the literal with the highest overall
activity A, taking into account both the standard activity value and the theory-aware
activity. Therefore, assigning a (small) positive theory-aware activity to a literal will cause
it to have higher activity than usual, making it more likely for the core solver to choose
it to branch on. Conversely, assigning a (small) negative theory-aware activity will deter
the core solver from choosing that literal. Theory-aware branching in Z3str3 modifies the
activities of theory literals as follows:

1. Literals corresponding to arrangements that do not create new variables (as in Ar-
rangement 1 above) are given a large (0.5) At. Other arrangements in the same case
are given a small (0.1) At.

2. Arrangements that allow a variable to become equal to a constant string are given a
small (0.2) At.

The values of At were chosen to be similar in scale to the initial activity values assigned
to literals by the default branching heuristic. Although this technique is currently used by
the string solver component, theory-aware branching is also useful in many other contexts
where new search paths may have unequal importance, such as non-linear arithmetic.

4.6.2 Theory-Aware Case Split

During the search, a theory solver can create terms which encode a disjunction of Boolean
literals that are pairwise mutually exclusive, i.e., exactly one of the literals must be assigned

38

true and the others must be assigned false. This is referred to as a theory case split. As an
example, consider the word equation X ·Y = c1 . . . cn, where X, Y are string variables and
c1 . . . cn are characters of a string constant. There are n+ 1 possible ways to split c over X
and Y such that X ·Y = c: either X = ε, Y = c1c2 . . . cn, or X = c1, Y = c2c3 . . . cn, etc., or
finally X = c1c2 . . . cn, Y = ε. Note that each of these equations represents a case that can
be explored by the solver, and also that all of these cases are mutually exclusive (as clearly
X cannot be equal to both ε and c1 simultaneously, etc.). However, the Boolean abstraction
constructed over theory literals hides the fact that these are mutually exclusive cases, and
so it is reasonable to expect that the search performance can be improved by preventing
the core solver from considering more than one of these cases simultaneously. A näıve
solution is to encode O(n2) extra mutual exclusion Boolean clauses over these variables.
This, of course, results in quadratic blowup in formula size and can result in very poor
performance. Alternatively, we can do nothing and let the congruence closure solver in the
Z3 core discover the mutual exclusivity of these Boolean variables on its own. However,
this can result in unnecessary backtracking, unnecessary calls to congruence closure, and,
in the worst case, reduces to the same set of mutual exclusion clauses being learned in the
form of conflict clauses. It also does not actually prevent the core solver from exploring
multiple mutually exclusive branches at least once, since it must do so in order to learn
that these clauses cannot be true simultaneously.

The means of handling such cardinality constraints efficiently has been well-studied;
previous work has investigated the possibility of alternate encodings, e.g. totalizers [11]
and lazy cardinality [7]. The implementation in Z3str4, by contrast, shows a way to
handle these constraints in the inner loop of the SAT solver in a theory-aware manner.
This means that theory solvers do not have to perform rewriting or assert extra clauses to
enforce mutual exclusivity of choices. Instead, they can provide this information directly to
the core solver, which can use these facts during the search. This saves on the propagation
effort of the DPLL(T) framework. My implementation of this technique is as follows:

1. The theory solver provides the core solver with a set S of mutually exclusive literals
that correspond to a theory case-split. This set is maintained by the core solver in a
list of all such sets.

2. During branching, the core solver checks if the current branching literal belongs to
some such set S. If it does, the current branching literal is assigned true and all other
theory case-split literals in S are assigned false. Otherwise, the default branching
behaviour is used.

3. During propagation, the core solver may assign a truth value to a literal l in some
set S of theory case-split literals. If so, the theory case-split check is invoked, i.e.,

39

the core solver checks whether two literals l1, l2 in the same set S have been assigned
the value true. If this is the case, the core solver immediately generates the conflict
clause (¬l1 ∨ ¬l2).

4.7 Clause Sharing

As Z3str4 invokes various solvers in a selected arm, it may happen that one of the invoked
algorithms either times out or fails to find a solution. For example, if the length abstraction
solver reaches the maximum iteration count without either finding a satisfying assignment
or deciding unsatisfiability, it will give up and return UNKNOWN. In a typical tactic-based
SMT solving approach, the next tactic will be tried, or else UNKNOWN will be returned
if no tactic is successful. However, this method has a weakness, in that each tactic is tried
in isolation and from scratch. Any information learned by previous solvers, in the form of
conflict clauses or facts derived from the input formula, is lost once the next algorithm is
called. This can result in redundant effort being expended by solvers in checking branches
of the search tree that have already been explored and found to be unsatisfiable by previous
solvers. In the extreme worst case, every solver could get “stuck” exploring the same search
space.

To address this, I implemented a mechanism in Z3’s SMT architecture wherein a theory
solver can indicate during the search that one or more constraints are to be shared to future
solvers in the event that it fails. The length abstraction solver and arrangement solver both
share blocked length assignments learned during the search with subsequent solvers. The
requirement which must be met in order for this to remain sound and complete is that
each shared constraint must be implied by the original input formula and cannot contain
any new variables that do not appear in the original formula. Any SAT or UNSAT answer
to this augmented formula is then equisatisfiable with the original formula.

Clause sharing has been implemented previously in parallelized satisfiability solvers
such as ManySAT [35], and is most effective when small, general clauses can be shared. In
this instance, the different arms of Z3str4 are invoked sequentially, but clause sharing is
still beneficial since both the length abstraction solver and arrangement solver rely heavily
on length information during the search. Thus, it may be possible that without clause
sharing, both algorithms could check the same candidate length assignments during the
search. If a combination of lengths was already shown to be unsatisfiable by a previous
solver, blocking that assignment, at the very least, prevents subsequent algorithms from
expending redundant effort in checking that assignment again.

40

4.8 Empirical Evaluation

In this section, I report on the overall performance of Z3str4 over 20 different benchmark
suites obtained from industrial applications, fuzz testing, and solver developers. Detailed
evaluation of the tool is crucial to understand the extent of any potential increase in
performance and ability to solve string instances, and to compare it to existing tools to
understand where it stands with respect to the state of the art. This allows me to validate
the effectiveness of the techniques I have presented so far, and to demonstrate correctness
(empirically).

4.8.1 Empirical Setup and Solvers Used

Z3str4 is compared against three other leading string solvers available today. CVC4 [44]
is a general-purpose SMT solver which uses algebraic methods to reason about strings.
Z3str3 [15] is the previous solver in the Z3-str family, and uses the arrangement reduction
technique previously described here. Z3seq [62] is the Z3 sequence solver, implemented
by Nikolaj Bjørner and others at Microsoft Research, as part of the Z3 theorem prover.
This evaluation used CVC4’s binary version 1.8, commit 59e9c87 of Z3str3, and the se-
quence solver included in Z3’s binary version 4.8.9. In order to evaluate the effectiveness of
Z3str4’s probe technique, I also present results for two other configurations of probes and
arms of Z3str4. The first configuration, labelled “Z3str4-1probe”, only uses the final probe
(for the conjunctive fragment) and arms illustrated in Figure 4.2. The second configura-
tion, labelled “Z3str4-2probe”, uses the final two probes (word equations and conjunctive
fragment). The configuration labelled “Z3str4” uses all three probes.

I did not compare against the Z3str2 [73] or Norn [6] solvers as neither tool supports
the full SMT-LIB version 2.6 standard. Z3str2 in particular is missing support for the
str.to int and str.from int terms for string-integer conversion. Norn is missing support
for many high-level string terms such as str.indexof or str.substr which are used in the
benchmarks. The ABC [9] solver handles string and length constraints by conversion to
automata. However, their method over-approximates the solution set of the input formula,
which may be unsound. Thus, I excluded ABC from the evaluation. I was also unable to
evaluate against Trau [5] as the provided source code did not compile. Finally, I did not
evaluate against the OSTRICH [21] or Z3-Trau [3] solvers as they do not support the full
SMT-LIB version 2.6 standard for strings, and additionally both of these tools encountered
significant runtime issues during empirical evaluation of the regex fragment (as described
later in Section 5.4).

41

All evaluations were performed on a server running Ubuntu 18.04.4 LTS with two
AMD EPYC 7742 processors and 2TB of memory using the ZaligVinder [42] benchmarking
framework. A 20 second timeout was used. The models generated by each solver for
satisfiable instances were cross-validated against all competing solvers. If a competing
solver reported that a claimed model was not a valid satisfying assignment to the input
formula, this was recorded in the results as a soundness error. In the case where a solver
reported “UNSAT” for an instance on which a competing solver found a valid satisfying
assignment, the “UNSAT” answer was treated as incorrect and recorded as a soundness
error. If at least one solver answered “UNSAT” for a given instance and no competing
solvers answered “SAT”, this was treated as a correct answer. This is necessary because
the tools considered either do not produce proofs that can be checked, or the proofs they
produce are incompatible with the input format expected by competing solvers. With
respect to the results presented here, I was careful to conduct multiple runs and to cross-
validate results both within and between runs. The presented figures are typical of the
performance of the tools I evaluated over multiple runs. For a random single query, the
sample variance in execution time for 100 independent runs was 0.001 (0.07% of average
execution time). For the full set of benchmarks used, the variance is negligible.

4.8.2 Benchmarks Used

I evaluated the efficiency of Z3str4 and competing solvers over 20 different benchmark
suites containing over 120000 instances and covering a wide range of applications and
input terms. To the best of my knowledge, this is the largest and most comprehensive
collection of string instances that has been used for testing string solvers to date. Most of
these suites were obtained from industrial applications and solver developers.

Of the 20 suites I used to conduct the evaluation, 16 are from previously published
sources, comprising over 70% of the total number of instances. The BanditFuzz suite
was obtained via private communication with the authors. The Automatark, StringFuzz-
regex-generated, and StringFuzz-regex-transformed benchmarks are regex-heavy bench-
marks which I generated for the purpose of evaluating regular expression performance of
Z3str4 and other SMT solvers; I describe these benchmarks (and evaluate them in isolation)
in Section 5.4.2.

The following benchmark suites are derived from previously published applications:
PyEx [58], SMTLIB25 [13], IBM PISA [65], Norn [6], Trau Light [4], Leetcode [4], IBM
AppScan [1, 72], Sloth [36], Woorpje [24], Kaluza [59], StringFuzz [17], Z3str3 regres-
sion [15], Cashew [18], JOACO [66], Stranger [70], and Kausler [40, 2].

42

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000

0

20,000

40,000

Solved instances

T
im

e
(s

ec
on

d
s)

CVC4 Z3seq Z3str3
Z3str4 virtualBest

Figure 4.6: Cactus plot showing performance of string solvers on combined benchmarks.

CVC4 Z3seq Z3str3 Z3str4 Virtual Best

sat 68386 69853 59663 71842 74001
unsat 43897 43783 41198 44597 44659

unknown 40 50 949 170 454
timeout 8043 6680 18556 3757 1241

soundness error 0 0 9 0 0
program crashes 0 0 0 0 0

Total correct 112283 113636 100852 116439 118660
Time (s) 187941.021 176134.056 391379.159 107456.964 50993.467

Time w/o timeouts (s) 27080.148 42534.056 20259.159 32316.964 23840.060

Table 4.1: Table showing detailed results of string solvers on combined benchmarks.

43

4.8.3 Results and Analysis

A summary of the results is presented in Figure 4.6 and Table 4.1. The cactus plot in
Figure 4.6 shows the cumulative time taken by each solver on all cases in increasing order
of runtime. Solvers that are further to the right and closer to the bottom of the plot
have better performance. A series for the “virtual best solver” is also shown, which is
calculated by simulating perfect arm selection, that is, using the arm of Z3str4 with the
best individual performance on each instance.

Overall, Z3str4 outperforms CVC4, Z3str3, and Z3seq, solving more instances and
having a lower total solving time than every other solver and with no errors or crashes.
Z3str4 solves 4156 more cases than CVC4, 2803 more cases than Z3seq, and 15587 more
cases than Z3str3. Including timeouts, Z3str4 is 42.8% faster than CVC4, 39.0% faster
than Z3seq, and 72.5% faster than Z3str3. Furthermore, Z3str4 approaches the virtual
best solver in terms of number of queries solved (98.1%) and comes the closest in terms
of total time taken (210.7%). The overall results indicate that Z3str4 is highly effective at
solving a wide variety of practical string instances.

The experimental results make clear the effectiveness of using algorithm selection to
solve a wide variety of string problems, and highlight the significant performance improve-
ment obtained over using either Z3str3 or Z3seq alone. The results also highlight the
advantages of using multiple static feature probes to perform algorithm selection.

4.8.4 Performance Analysis of Components of Z3str4

To evaluate the architecture of Z3str4 and better understand its component algorithms, I
categorize the queries by the arm they are assigned to and compare these algorithms on
the queries they are meant to do well on versus the queries they are not meant to do well
on. Across the entire set of benchmarks used for evaluation, there are 35345 regex queries,
42522 higher-order queries, 15113 conjunctive queries, and 23643 non-conjunctive queries.
I exclude 3743 queries that are solved by the simplifier.

LAS Performance Analysis

I hypothesize that LAS will do comparatively better in the conjunctive fragment because
it will learn more general lessons and its underlying bit-vector solver will be quicker every
iteration. Empirically this hypothesis holds: LAS solves comparatively more queries per
second than the arrangement solver in the conjunctive fragment (1128.5%) than it does

44

Z3str4-las Z3str4-arr Z3str4-seq

sat 11693 11887 12115
unsat 2479 2592 2532

unknown 941 90 1
timeout 0 544 465

soundness error 0 8 0
program crashes 0 0 0

Total correct 14172 14471 14647
Time (s) 1089.591 12555.877 10056.023

Time w/o timeouts (s) 1089.591 1675.877 756.023

Table 4.2: All three component solvers on queries in the conjunctive fragment.

outside the conjunctive fragment (904.6%). Overall, LAS is extremely effective in the
conjunctive fragment, especially when used as the first solver in an arm.

To analyze the performance of LAS and the conjunctive fragment probe, I identify all
queries that do not have regular expressions and do not mostly consist of word equations,
divide these remaining benchmarks into two categories – conjunctive fragment and non-
conjunctive fragment – and then compare the performance of all three component solvers
on both sets.

Conjunctive Fragment. In the conjunctive fragment, there are 15113 queries. The full
results are summarized in Table 4.2 and Figure 4.7.

Non-Conjunctive Fragment. In the non-conjunctive fragment, there are 23643 queries.
The full results are summarized in Table 4.3 and Figure 4.8.

Arrangement Solver Performance Analysis

The arrangement solver with the bit-vector backend significantly improves performance
over the arrangement solver without the bit-vector backend, both in terms of time and

45

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

0

200

400

600

800

1,000

1,200

Solved instances

T
im

e
(s

ec
on

d
s)

Z3str4-las Z3str4-arr
Z3str4-seq

Figure 4.7: All three component solvers on queries in the conjunctive fragment.

number of instances solved. Without the bit-vector backend, the arrangement solver solves
72417 instances in 423949.163 seconds; with the bit-vector backend, the arrangement solver
solves 107401 instances (148.3% of the queries without) in 262047.893 seconds (61.8% of
the time without).

To analyze the performance of the bit-vector backend in the arrangement solver, I run
the solver on all queries with the bit-vector backend enabled and disabled, and compare.
Cumulative data is visualised in Table 4.4 and Figure 4.9.

Sequence Solver Performance Analysis

Empirically, the sequence solver is best when most constraints are not word equations.
In this fragment, the sequence solver solves 39639 cases in 74565.085 seconds, while the
next best solver, the arrangement solver, solves only 31376 (79.1%) in 220076.933 seconds
(295.1% of the sequence solver’s time).

To analyze the performance of the sequence solver and the word equations probe, I find
all queries that do not have regular expressions and divide these into those which have
mostly word equations and those that do not, then compare the performance of all three
component solvers on both sets.

46

Z3str4-las Z3str4-arr Z3str4-seq

sat 13478 13611 13740
unsat 8988 9509 9341

unknown 1177 51 1
timeout 0 472 561

soundness error 0 0 0
program crashes 0 0 0

Total correct 22466 23120 23081
Time (s) 1139.155 10604.341 12013.431

Time w/o timeouts (s) 1139.155 1164.341 793.431

Table 4.3: All three component solvers on queries outside the conjunctive fragment.

Few Word Equations. In the “few word equations” fragment, there are 42522 queries.
The full results are summarized in Table 4.5 and Figure 4.10.

Many word Equations. In the “many word equations” fragment, there are 38756
queries. The full results are summarized in Table 4.6 and Figure 4.11.

Impact of Clause Sharing

Clause sharing significantly reduces the amount of time taken and slightly increases the
number of solved instances. In particular, over all benchmarks, with clause sharing turned
off, Z3str4 solves 15 fewer cases and takes 2201.790 more seconds (102% of the time taken
with clause sharing).

To analyze the performance of clause sharing, I run the full Z3str4 solver on all queries
with clause sharing enabled and disabled. Cumulative data is visualised in Table 4.7 and
Figure 4.12.

47

−2,000 0 2,0004,0006,0008,00010,00012,00014,00016,00018,00020,00022,00024,000

0

200

400

600

800

Solved instances

T
im

e
(s

ec
on

d
s)

Z3str4-las Z3str4-arr
Z3str4-seq

Figure 4.8: All three component solvers on queries outside the conjunctive fragment.

−10,000 0 10,00020,00030,00040,00050,00060,00070,00080,00090,0001 · 1051.1 · 105

0

2,000

4,000

6,000

8,000

10,000

12,000

Solved instances

T
im

e
(s

ec
on

d
s)

Arrangement solver w/o bit-vectors Arrangement solver with bit-vectors

Figure 4.9: Cactus plot of string solvers on all benchmarks. Timeout=20 s. Timeout,
unknown, and error instances excluded.

48

Without BV Backend With BV Backend

sat 65073 63095
unsat 29583 44314

unknown 5707 525
timeout 20003 12432

soundness error 22239 8
program crashes 3 0

Total correct 72417 107401
Time (s) 423949.163 262047.893

Time w/o timeouts (s) 23889.163 13407.893

Table 4.4: Cumulative Results. Timeout=20 s. Total time includes all solved, timeout,
unknown and error instances.

Z3str4-las Z3str4-arr Z3str4-seq

sat 13185 14937 23187
unsat 15805 16439 16452

unknown 13532 314 83
timeout 0 10832 2800

soundness error 0 0 0
program crashes 141 0 0

Total correct 28990 31376 39639
Time (s) 12088.081 220076.933 74565.085

Time w/o timeouts (s) 12088.081 3436.933 18565.085

Table 4.5: All three component solvers on queries in the “few word equations” fragment.

49

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

0

5,000

10,000

15,000

Solved instances

T
im

e
(s

ec
on

d
s)

SeqFragment
Z3str4-las Z3str4-arr
Z3str4-seq

Figure 4.10: Performance of all three component solvers on queries in the “few word
equations” fragment

Z3str4-las Z3str4-arr Z3str4-seq

sat 25171 25498 25855
unsat 11467 12101 11873

unknown 2118 141 2
timeout 0 1016 1026

soundness error 0 8 0
program crashes 0 0 0

Total correct 36638 37591 37728
Time (s) 2228.746 23160.218 22069.454

Time w/o timeouts (s) 2228.746 2840.218 1549.454

Table 4.6: Performance of all three component solvers on queries in the “many word
equations” fragment.

50

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

0

500

1,000

1,500

2,000

Solved instances

T
im

e
(s

ec
on

d
s)

Total
Z3str4-las Z3str4-arr
Z3str4-seq

Figure 4.11: Performance of all three component solvers on queries in the “many word
equations” fragment

−10,000 0 10,00020,00030,00040,00050,00060,00070,00080,00090,0001 · 1051.1 · 1051.2 · 105

0

10,000

20,000

30,000

Solved instances

T
im

e
(s

ec
on

d
s)

Total

Z3str4 w/o clause sharing Z3str4

Figure 4.12: Cactus plot of Z3str4 on all benchmarks with clause sharing enabled/disabled.
Timeout=20 s. Timeout, unknown, and error instances excluded.

51

Clause sharing off Clause sharing on

sat 71827 71842
unsat 44595 44597

unknown 159 170
timeout 3785 3757

soundness error 0 0
program crashes 1 0

Total correct 116422 116439
Time (s) 109658.754 107456.964

Time w/o timeouts (s) 33958.754 323169.64

Table 4.7: Cumulative results for Z3str4 with clause sharing enabled/disabled. Time-
out=20 s. Total time includes all solved, timeout, unknown and error instances.

52

Chapter 5

Algorithms and Heuristics for
Theories over Regular Expressions
and Linear Arithmetic over String
Length

In this chapter, I describe the algorithms and heuristics used by Z3str4 to solve constraints
in the theory TLRE, which include regular expression constraints, linear integer arithmetic
constraints, and string length. In Section 5.1 I begin by explaining the motivation for new
algorithms and heuristics to reason about this theory. I then present the main algorithm
used by Z3str4 to solve the fragment TLRE in Section 5.2. I describe a number of novel
and general heuristics which Z3str4 uses to reason about these constraints more efficiently
in Section 5.3. Finally, in Section 5.4, I demonstrate the power of this algorithm and these
heuristics via an extensive empirical evaluation over a large and diverse benchmark of 57256
regex-heavy instances. Z3str4’s regex solver outperforms five other state-of-the-art string
solvers, namely CVC4, OSTRICH, Z3seq, Z3str3, and Z3-Trau over this benchmark.

5.1 Background and Motivation

SMT solvers that support theories over regular expression (regex) membership predicates
and linear arithmetic over length of strings have enabled many important applications in
the context of analysis of string-intensive programs. Examples include symbolic execution

53

Algorithm 5: The length-aware algorithm for the theory TLRE of regex and
integer constraints

Input : Conjunction φ of constraints of the form S ∈ RE, and conjunction ψ of linear integer arithmetic
constraints

Output : SAT or UNSAT
1 forall constraints S ∈ RE in φ do
2 LS ← ComputeLengthAbstraction(S) ;
3 LRE ← ComputeLengthAbstraction(RE) ;
4 if ψ ∪ LS ∪ LRE inconsistent then
5 return UNSAT

6 end
7 refine LS as tightly as possible with respect to LRE ;

8 end
9 forall strings Si occurring in φ do

10 let R be the set of all regexes RE in all terms Si ∈ RE ;
11 I ← intersection of all regular expressions in R ;
12 if I is empty then
13 return UNSAT
14 else
15 LI ← ComputeLengthAbstraction(I) ;
16 end

17 end
18 LS ← the union of all length abstractions LS ;
19 LRE ← the union of all length abstractions LRE ;
20 LI ← the union of all length abstractions LI ;
21 if ψ ∪ LS ∪ LRE ∪ LI has any solution M then
22 forall strings S occurring in φ do
23 obtain len(S) from M ;
24 let A be the set of all automata for all regexes RE in all terms S ∈ RE ;
25 Automaton J ← intersection of all terms in A ;
26 S ← any string of length len(S) in J ;

27 end
28 return SAT

29 else
30 return UNSAT
31 end

and path analysis [16, 57], as well as security analyzers that make use of string and regex
constraints for input sanitization and validation [10, 59, 61]. Common to all these appli-
cations is the requirement for a rich quantifier-free (QF) first-order theory over strings,
regexes, and integer arithmetic. Unfortunately, as shown in Chapter 3, the quantifier-free
first-order theory of strings containing regex constraints, linear integer arithmetic on string
length, string-number conversion, and string concatenation (even without word equations)
is undecidable. Additionally, many non-trivial fragments of this theory containing regu-
lar expression constraints are hard to decide; they typically have exponential-space lower
bounds or are PSPACE-complete. The task of creating efficient solvers and algorithms that
handle practical constraints belonging to fragments of this theory remains a very difficult
challenge.

54

Many modern solvers handle regex constraints via an automata-based approach. Such
methods are powerful and intuitive, as regular expressions can be converted to determinis-
tic or non-deterministic finite automata and automata-based representations and compu-
tations involving them such as intersection, emptiness, etc. are well-established. However,
solvers must handle two key practical challenges in this context.

The first challenge is that many automata operations, such as intersection, are compu-
tationally expensive, yet handling these operations is required in order to solve constraints
that are relevant to real-world applications. For example, given an input formula contain-
ing the constraints X ∈ R1 ∧ X ∈ R2, for a string term X and regex terms R1, R2, if
the languages R1 and R2 have no common strings, then computing, or somehow reasoning
about, the intersection R1 ∩ R2 will be required for the solver to show unsatisfibility of
these constraints. Deciding whether this intersection is empty is PSPACE-complete in
general [63].

The second challenge relates to the integration of length information with regex con-
straints. The lengths of all possible strings accepted by an automaton can be represented
as a finite union of arithmetic progressions[22, 34]. This implies a disjunction of linear
length constraints that must be satisfied. These constraints are often more challenging for
solvers to handle than a conjunction. Additionally, other “implied” length constraints of-
ten exist in practical instances. For example, an equality between two string terms X = Y
implies that X and Y have the same length. If the input formula further constrains
X ∈ R1 ∧ Y ∈ R2, the solver can no longer reason about R1 or R2 in isolation as there is
an additional constraint on the lengths of X and Y that limits the possible solutions that
can be considered.

The challenges of using automata-based methods can be addressed via the use of lazy
extraction of implied length constraints and lazy regex heuristics in order to avoid per-
forming expensive automata operations when possible. In the remainder of this chapter,
I introduce a length-aware automata-based algorithm for solving regex constraints and
linear integer arithmetic over length of string terms, and several length-aware heuristics
that enable efficient reasoning about practical regex constraints. I also present the results
of an empirical evaluation of this algorithm and these heuristics on a large collection of
randomized and industrial instances against other state-of-the-art SMT solvers.

55

5.2 Algorithm for Solving Regex, Length, and Linear

Arithmetic Constraints

In this section, I present a novel decision procedure for the quantifier-free first-order theory
TLRE over regex membership predicate and linear integer arithmetic over string length.

The pseudocode presented in Algorithm 5 is shown at a high level that captures the
essence of the procedure being performed. Implementation-specific details are omitted
for clarity. Z3str4 incorporates a version of this algorithm as part of a DPLL(T) theory
combination with Z3’s core solver for Boolean formulas and arithmetic solver for integer
arithmetic constraints. A high-level architectural view of this algorithm is also illustrated
in Figure 5.1.

The algorithm takes as input a conjunction φ of regex membership constraints and a
conjunction ψ of linear integer arithmetic constraints over the lengths of string variables
appearing in φ. Without loss of generality, it is assumed that all constraints in φ are
positive; negative constraints S 6∈ RE can be replaced with the positive complement
S ∈ RE. The algorithm returns SAT if there is a satisfying assignment to all string
variables consistent with the regex constraints φ and length constraints ψ. It is assumed
that the algorithm has access to a procedure for checking the consistency of linear integer
arithmetic constraints and for obtaining satisfying assignments to these constraints (in our
implementation, this is fulfilled by Z3’s arithmetic solver).

Lines 1–8 check whether the length information implied by φ is consistent with ψ. The
function ComputeLengthAbstraction takes as input either a string term S or a regex
RE and computes a system of length constraints corresponding to either an abstrac-
tion of derived length information from string constraints or an abstraction of length
information derived from the regex RE. For example, given the regex (abc)∗ as in-
put, ComputeLengthAbstraction would construct the length abstraction S ∈ (abc)∗ →
len(S) = 3n, n ≥ 0 for a fresh integer variable n. If the length abstractions are inconsis-
tent with the given length constraints, there can be no solution which satisfies both the
length and regex constraints, and hence the algorithm returns UNSAT. Otherwise, line 7
refines the length abstraction LS with respect to the regex RE. This improves the efficiency
of finding solutions to the augmented system of length constraints later in the algorithm.
In our implementation, the lower and upper bounds of the length of S are checked against
the lengths of accepting paths in the automaton for RE. For instance, if LS implies that
len(S) ≥ 5, but the shortest accepting path in the automaton has length 7, the lower
bound is refined to len(S) ≥ 7.

Lines 9–17 check that the intersection of all automata constraining each string vari-

56

able is non-empty. Although intersecting automata is relatively expensive (as it runs in
quadratic time w.r.t. the size of the intersected automata), it is still more efficient to do
this before enumerating length assignments, and taking the intersection here is necessary
to maintain soundness. (The heuristics in Section 5.3 illustrate some methods by which
this computation can be made more efficient or even avoided.) If the length information
is consistent, the algorithm adds a length abstraction constraint LI encoding the lengths
of all possible solutions to the intersection I.

By construction of ψ ∪ LS ∪ LRE ∪ LI , the input formula is satisfiable iff this system
of integer constraints has a solution. If such a solution M exists, lines 22–28 construct
an assignment for each string variable with respect to its length assignment. A solution
must exist as the lengths of strings considered are limited to those lengths for which the
intersection of the corresponding automata is non-empty; the solution is consistent by
construction with both the input length constraints and string constraints. If a solution
M does not exist, then the constraints φ ∧ ψ are not jointly satisfiable, and the algorithm
returns UNSAT.

I demonstrate soundness, completeness, and termination of Algorithm 5 as follows. On
line 4 the algorithm checks whether ψ∪LS∪LRE is satisfiable. If not, it returns UNSAT on
line 5. Lines 9–17 check whether the intersection of regex constraints for each string variable
is empty. If so, it returns UNSAT; otherwise, it adds an additional constraint encoding
the lengths of all strings in this intersection. Therefore, ψ ∪ LS ∪ LRE ∪ LI has a solution
iff there exists an assignment to each string variable that is consistent with the arithmetic
constraints ψ and that corresponds to the length of a solution in the intersection of its regex
constraints LI . Lines 22–28 construct this solution if it exists. Therefore, Algorithm 5 is
a decision procedure for the QF first-order theory of regex constraints, string length, and
linear integer arithmetic.

As previously mentioned, Z3str4 supports other high-level operations that are not part
of this theory via existing support in the arrangement solver. An extension to this algorithm
provides support for including these operations, which may render the theory undecidable.
These terms are not in Algorithm 5 because their inclusion would make the algorithm
incomplete (see Chapter 3). Algorithm 5 describes the part of the implementation which
is novel and complete.

57

Figure 5.1: Architecture of Z3str4’s regular expression solving algorithm.

5.3 Length-Aware Heuristics for Solving Regular Ex-

pression Constraints

In this section, I describe several length-aware heuristics used by Z3str4 to improve the
efficiency of regular expression reasoning. The idea of length-aware heuristics was discussed
in Section 4.5, where I illustrated the fixed-length model construction procedure used in
Z3str4 and mentioned the improvements achieved by Z3str2 over Z3-str by using length
information to guide the search in the string and integer theory solvers. With respect
to regular expressions, similar approaches can be used to obtain length information from
regex constraints and use existing length facts to determine whether regex constraints are
satisfiable.

58

5.3.1 Computing Length Information from Regexes

The first length-aware heuristic used is when constructing the length abstraction on line 3.
If the regex can be easily converted to a system of equations describing the lengths of all
possible solutions (for instance, in the case when it does not contain any complements
or intersections), this system can be returned as the abstraction without constructing the
automaton for RE yet. As previously illustrated, for example, given the regex (abc)∗ as
input, ComputeLengthAbstraction would construct the length abstraction S ∈ (abc)∗ →
len(S) = 3n, n ≥ 0 for a fresh integer variable n. Note that this can be done from the
syntax of the regex without converting it to an automaton. Deriving length information
from the automaton would be simple by, for example, constructing a corresponding unary
automaton and converting to Chrobak normal form [22]. However, performing automata
construction lazily means that the algorithm cannot rely on having an automaton in all
cases; this technique also provides length information even when constructing an automaton
would be expensive.

In cases where the length abstraction cannot be inferred directly, the heuristic will
fix a lower bound on the length of words in RE, and possibly an upper bound if it ex-
ists. Reasoning about the length abstraction early in the procedure gives the algorithm
the opportunity to detect inconsistencies before expensive automaton operations are per-
formed. This gives the arithmetic solver more opportunities to propagate facts discovered
by refinement and potentially more chances to find inconsistencies or learn further derived
facts.

5.3.2 Optimizing Automata Operations via Length Information

Similarly, computing the intersection I in line 11 is done lazily in the implementation
of Z3str4 and over several iterations of the algorithm. The most expensive intersection
operations can be performed at the end of the search, after as much other information as
possible has been learned. The following heuristics are applied recursively to estimate the
“cost” of each operation without actually constructing any automata:

• For a string constant, the estimated cost is the length of the string.

• For a concatenation or a union of two regex terms X and Y , the estimated cost is
the sum of the estimates for X and Y .

• For a regex term X∗, the estimated cost is twice the estimate for X.

59

• For a regex term X under complement, the estimated cost is the product of the
estimates obtained from subterms of X.

In essence, the constructions which “blow up” the least are expected to be the least
expensive and are performed first. In the best-case scenario, this could mean avoiding the
most expensive operations completely if an intersection of smaller automata ends up being
empty. In the worst case, all intersections are computed eventually, as this is necessary to
maintain the soundness of this approach.

5.3.3 Leveraging Length Information to Optimize Search

The algorithm communicates integer assignments and lower/upper bounds with the exter-
nal arithmetic solver in order to prune the search space. The search for length assignments
is done in practice as an abstraction-refinement loop involving Z3’s arithmetic solver – for
instance, by the methods described in Section 4.5. The arithmetic solver proposes a sin-
gle candidate model for the system of arithmetic constraints; the regex algorithm checks
whether that model has a corresponding solution over the regex constraints. If it does
not, it asserts a conflict clause blocking that combination of length assignments and regex
constraints from being considered again. This is necessary in a CDCL(T)-style solver such
as Z3 in order to handle Boolean structure in the input formula.

5.3.4 Constructing Over-Approximated Prefixes/Suffixes to Find
Empty Intersections

As previously mentioned, computing automata intersections is expensive, but in many
cases it is necessary in order to prove that a set of intersecting regex constraints has no
solution. In some cases, this can be done “by inspection” from the syntax of the regex
terms without constructing or intersecting any automata. From the structure of a regular
expression, it is easy to determine the first letter of all possible accepted strings that it
matches. If several regexes would be intersected over the same string term, this is used
to check whether these regexes have a prefix of length one in common. If they do not,
their intersection cannot contain any strings other than the empty string (the heuristic
also checks whether the empty string could be accepted by a similar syntactic approach).
A similar construction for suffixes of length 1 is also used. In this way, the heuristic can
infer that the intersection of several regex constraints is either empty, resulting in a conflict
clause, or can only contain the empty string, resulting in a new fact and a simplification of

60

the formula – without actually constructing the intersection or, in fact, constructing any
automata for these regexes.

For example, consider the following regex constraints on a variable X:

X ∈ (abc)∗

X ∈ a+ | b+

The prefix/suffix heuristic would proceed as follows. In the first constraint, the pattern
abc is matched zero or more times, and could be empty; therefore, either X is empty or
it must start with a and end with c. In the second constraint, each pattern is matched
at least once, and cannot be empty; therefore X must start with a or b, end with a or
b, and cannot be the empty string. Observe that according to the prefix heuristic, these
constraints are consistent, since a is a valid prefix of both regexes; however, according to
the suffix heuristic, they are inconsistent, as the possible suffixes a and b of the second
regex do not include c, and the empty string is not a solution to both constraints. Hence it
follows that these constraints are not jointly satisfiable. At this point, the heuristic would
assert a conflict clause.

As demonstrated, all of these facts are derived from the syntax of the regular expression;
the heuristic does not need to construct an automaton for either constraint in order to
reason about them. By constructing an over-approximation of the possible solutions of X
allowed by regex constraints, the heuristic can determine that their intersection is empty
(or can only contain the empty string) without computing it precisely (which, as previously
mentioned, is expensive to do and also requires constructing automata first). The heuristic
is limited to prefixes and suffixes of length 1 as each additional letter causes the space
required to keep track of these prefixes/suffixes to increase exponentially.

As an observation, this heuristic is inspired partly by the work of Brzozowski on regex
derivatives [19]. The actual heuristic introduced here is conceptually different as it exam-
ines possible prefixes (and suffixes) of strings that could be accepted by a regex in order to
demonstrate unsatisfiability, rather than examining the set of all possible suffixes given a
fixed prefix in order to demonstrate satisfiability. This heuristic computes suffixes as well,
whereas Brzozowski derivatives are traditionally computed with respect to prefixes of a
string. Newer versions of Z3seq, including the one used in the empirical evaluation, use an
algorithm based on symbolic derivatives to reason about regular expressions [62].

61

5.4 Empirical Evaluation

In this section, I describe the empirical evaluation of the regular expression algorithm
and heuristics presented in this chapter as part of Z3str4. The aim of this evaluation is
too validate the effectiveness of the techniques presented, as well as the correctness and
efficiency of the implementation against other solvers. Additionally, I evaluate different
configurations of the tool in order to demonstrate the efficacy of the heuristics I present.

5.4.1 Empirical Setup and Solvers Used

Z3str4 is compared against five other leading string solvers available today. CVC4 [44] is
a general-purpose SMT solver which reasons about strings and regular expressions alge-
braically. Z3str3 [15] is the previous solver in the Z3-str family, and uses a reduction to
word equations to reason about regular expressions. Z3seq [62] is the Z3 sequence solver,
implemented by Nikolaj Bjørner and others at Microsoft Research, as part of the Z3 theo-
rem prover. Z3seq uses a new theory of derivatives for solving extended regular expressions.
Z3-Trau [3] is also based on Z3 and uses an automata-based approach known as “flat au-
tomata” with both under- and over-approximations. OSTRICH [21] uses a reduction from
string functions (including word equations) to a model-checking problem that is solved
using the SLOTH tool and an implementation of IC3. This evaluation used CVC4’s binary
version 1.8, commit 59e9c87 of Z3str3, the sequence solver included in Z3’s binary version
4.8.9, Z3-Trau commit 1628747, and OSTRICH version 1.0.1. CVC4, Z3seq, Z3str3, and
Z3str4 support the latest full SMT-LIB standard for strings. Z3-Trau and OSTRICH do
not support the entire SMT-LIB version 2.6 standard for strings, but they do support
enough of the fragment used in this set of benchmarks to be considered in the evaluation.

I did not compare against the Z3str2 [73] or Norn [6] solvers as neither tool supports
the str.to int or str.from int terms which represent string-number conversion, which
are used in some sanitizer benchmarks. Additionally, Norn does not support many of the
other high-level string terms such as indexof or substr which are used in the benchmarks.
The ABC [9] solver handles string and length constraints by conversion to automata. How-
ever, their method over-approximates the solution set of the input formula, which may be
unsound. Thus, I excluded ABC from the evaluation. I was also unable to evaluate against
Trau [5] as the provided source code did not compile. All evaluations were performed on
a server running Ubuntu 18.04.4 LTS with two AMD EPYC 7742 processors and 2TB of
memory using the ZaligVinder [42] benchmarking framework. A 20 second timeout was
used. The models generated by each solver for satisfiable instances were cross-validated

62

against all competing solvers. If a competing solver reported that a claimed model was
not a valid satisfying assignment to the input formula, this was recorded in the results
as a soundness error. In the case where a solver reported “UNSAT” for an instance on
which a competing solver found a valid satisfying assignment, the “UNSAT” answer was
treated as incorrect and recorded as a soundness error. If at least one solver answered
“UNSAT” for a given instance and no competing solvers answered “SAT”, this was treated
as a correct answer. This is necessary because the tools considered either do not produce
proofs that can be checked, or the proofs they produce are incompatible with the input
format expected by competing solvers.

Note that since the regular expression algorithm in Z3str4 is the central focus of this
evaluation, other features of Z3str4 that are not part of the regex algorithm or heuristics,
including algorithm selection and the length abstraction solver, are disabled, and Z3str4 is
run in a mode that uses the arrangement solver only.

5.4.2 Benchmarks

The comparison was performed on four suites of regex-based benchmarks with a total
of 57256 instances. In total, almost 75% of the instances in this evaluation came from
previously published industrial benchmarks or other solver developers. In the following
paragraphs, I briefly describe each benchmark’s origin and composition.

AutomatArk is a set of 19979 benchmarks based on a collection of real-world regex
queries collected by Loris D’Antoni from the University of Wisconsin, Madison, USA. I
translated the provided regexes [23] into SMT-LIB syntax resulting in two sets of instances:
a “simple” set with a single regex membership predicate per instance, and a “complex”
set with 2–5 regex membership predicates (possibly negated) over a single variable per
instance. The instances in this benchmark are evenly divided between simple and complex
problems.

RegEx-Collected is a set of 22425 instances taken from existing benchmarks with the
purpose of evaluating the performance of solvers against real-world regex instances. This
benchmark includes all instances from the AppScan [72], BanditFuzz,1 JOACO [66], Kaluza [59],
Norn [6], Sloth [36], Stranger [70], and Z3str3-regression [15] benchmarks in which at least
one regex membership constraint appears.2 No additional restrictions are placed on which

1The BanditFuzz benchmark is an unpublished suite obtained via private communication with the
authors.

2Other benchmark suites available to me, including the PyEx, PISA, and Kausler benchmarks, did not
include any regex membership constraints.

63

instances were chosen besides the presence of at least one regex membership predicate. I
chose to evaluate against this benchmark in order to test the performance of solvers against
instances that are already known to be challenging to solve and that have appeared in pre-
viously published and widely distributed benchmark suites. Additionally, these instances
may contain regex terms in any context and with any other supported string operators.
As a result, the benchmark is also exemplary of how string solvers perform in the presence
of operations and predicates that are relevant to program analysis.

StringFuzz-regex-generated is a set of 4170 problems generated by the StringFuzz string
instance fuzzing tool [17]. These instances only contain regular expression and linear arith-
metic constraints. The motivation in choosing this benchmark is to isolate and evaluate
the regex performance of a string solver in the context of mixed regex and arithmetic
constraints. Tools with better regex and arithmetic solvers should perform better. Fuzz
testing, as performed in the StringFuzz-regex-generated benchmark, has been shown
to be extremely productive in discovering bugs and performance issues in SMT solvers. I
chose to include these instances because they enable us to isolate the performance of the
solver on regex-heavy constraints in a way that the industrial benchmarks or instances
obtained from other solver developers cannot.

StringFuzz-regex-transformed is a set of 10682 instances which were produced by trans-
forming existing industrial instances with StringFuzz. To create the StringFuzz-regex-
transformed benchmark, I applied StringFuzz’s transformers to instances supplied by
Amazon Web Services related to security policy validation, handcrafted instances which
are inspired by real-world input validation vulnerabilities, and the regex test cases included
in Z3str3’s regression test suite. The instances in this suite include regex constraints, arith-
metic constraints on string length, string-number conversion (numstr), string concatena-
tion, word equations, and other high-level string operations such as charAt, indexof, and
substr. As is typical for fuzzing in software testing, the goal is to create a suite of tests
from a given input that are similar in structure but that explore interesting behaviour not
captured by a “typical” industrial instance. These transformed instances are often harder
than the original industrial ones.

64

0 2,000 4,000 6,000 8,000 10,00012,00014,00016,00018,00020,00022,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Solved instances

T
im

e
(s

ec
on

d
s)

Automatark
CVC4 Z3Seq

OSTRICH Z3-Trau
Z3str3 Z3str4

Figure 5.2: Cactus plot summarizing detailed performance on Automatark benchmark.
CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str4

sat 14376 14204 11461 8157 9151 14459
unsat 5304 5290 5381 3817 4385 5450

unknown 1 0 15 5045 406 5
timeout 298 485 3122 2960 6037 69

soundness error 0 0 0 1300 0 0
program crashes 0 0 0 1063 2 0

Total correct 19680 19494 16842 10674 13536 19905
Contribution score 1.0 1.0 2.0 – 0.0 0.5

Time (s) 8789.425 18718.425 158910.126 80021.352 126825.967 4331.419
Time w/o timeouts (s) 2829.425 9018.425 96470.126 20821.352 6085.967 2951.419

Table 5.1: Detailed results for the Automatark benchmark. Z3str4 has the biggest lead
with a score of 1.01.

65

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0

1,000

2,000

3,000

4,000

5,000

6,000

Solved instances

T
im

e
(s

ec
on

d
s)

Stringfuzz RegEx Generated

CVC4 Z3Seq
OSTRICH Z3-Trau

Z3str3 Z3str4

Figure 5.3: Cactus plot showing detailed results for the StringFuzz-regex-generated bench-
mark.

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str4

sat 2316 2001 2005 1590 3227 3282
unsat 442 697 819 824 32 830

unknown 0 0 1 192 0 7
timeout 1412 1472 1345 1564 911 51

soundness error 0 0 0 8 0 0
program crashes 0 0 0 192 0 0

Total correct 2758 2698 2824 2406 3259 4112
Contribution score 0.0 3.17 2.0 – 0.0 0.17

Time (s) 31236.207 35409.000 51571.800 37323.550 22031.636 7563.818
Time w/o timeouts (s) 2996.207 5969.000 24671.800 6043.550 3811.636 6543.818

Table 5.2: Detailed results for the StringFuzz-regex-generated benchmark. Z3str4 has the
biggest lead with a score of 1.25.

66

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,00011,000

0

200

400

600

800

1,000

Solved instances

T
im

e
(s

ec
on

d
s)

Stringfuzz RegEx Transformed
CVC4 Z3Seq

OSTRICH Z3-Trau
Z3str3 Z3str4

Figure 5.4: Cactus plot showing detailed results for the StringFuzz-regex-transformed
benchmark.

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str4

sat 4541 4633 3899 3672 4417 4617
unsat 6016 5976 4549 6282 4817 6062

unknown 0 0 2233 721 0 64
timeout 125 73 1 7 1448 3

soundness error 0 0 5 1241 0 0
program crashes 0 0 0 718 0 0

Total correct 10557 10609 8443 8713 9234 10615
Contribution score 0.5 0.0 – – 0.0 4.83

Time (s) 2969.643 2066.935 23094.737 722.545 29788.245 479.585
Time w/o timeouts (s) 469.643 606.935 23074.737 582.545 828.245 419.585

Table 5.3: Detailed results for the StringFuzz-regex-transformed benchmark. Z3str4 has
the biggest lead with a score of 1.0.

67

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Solved instances

T
im

e
(s

ec
on

d
s)

RegEx Collected CVC4 Z3Seq
OSTRICH Z3-Trau

Z3str3 Z3str4

Figure 5.5: Cactus plot showing detailed performance for the RegEx-collected benchmark.
CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str4

sat 12077 10712 5134 10714 10768 11358
unsat 10135 9448 8532 10115 9332 10146

unknown 0 0 8652 546 758 125
timeout 213 2265 107 1050 1567 799

soundness error 0 0 23 2776 13 0
program crashes 0 0 0 504 0 0

Total correct 22212 20160 13643 18053 20087 21502
Contribution score 91.06 3.51 – – – 14.54

Time (s) 14610.224 47293.484 71666.750 32220.939 35053.106 20314.643
Time w/o timeouts (s) 10350.224 1993.484 69526.750 11220.939 3713.106 4334.643

Table 5.4: Detailed results for the RegEx-collected benchmark. CVC4 has the biggest lead
with a score of 1.03.

5.4.3 Comparison and Scoring Methods

Solvers are compared directly against the total number of correctly solved cases, total time
with and without timeouts, and total number of soundness errors and program crashes.

68

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000

0

5,000

10,000

15,000

20,000

25,000

Solved instances

T
im

e
(s

ec
on

d
s)

CVC4 Z3Seq
OSTRICH Z3-Trau

Z3str3 Z3str4

Figure 5.6: Cactus plot summarizing performance on all benchmarks. Z3str4 has the best
overall performance.

I also computed the biggest lead winner and largest contribution ranking following the
scoring system used by the SMT Competition [12]. Briefly, the biggest lead measures the
proportion of correct answers of the leading tool to correct answers of the next ranking tool,
and the contribution score measures what proportion of instances were solved the fastest
by that solver. In accordance with the SMT Competition guidelines, a solver receives no
contribution score (denoted as –) if it produces any incorrect answers on a given benchmark.
In both cases, higher scores are better.

5.4.4 Analysis of Empirical Results

The cactus plot in Figure 5.6 shows the cumulative time taken by each solver on all cases in
increasing order of runtime. Solvers that are further to the right and closer to the bottom
of the plot have better performance.

Overall Z3str4 solves more instances and performs better than all competing solvers.
Across all benchmarks, Z3str4 is over 1.7x faster than CVC4, 3.2x faster than Z3seq, 4.6x
faster than Z3-Trau, 6.5x faster than Z3str3, and 9.3x faster than OSTRICH (including
timeouts). Additionally, Z3str4 has fewer combined timeouts and unknowns than other

69

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str4

sat 33310 31550 22499 24133 27563 33716
unsat 21897 21411 19281 21038 18566 22488

unknown 0 0 10901 6504 1164 201
timeout 2049 4295 4575 5581 9963 922

soundness error 0 0 28 5325 13 0
program crashes 0 0 0 2477 2 0

Total correct 55207 52961 41752 39846 46116 56134
Contribution score 95.99 19.87 – – – 145.07

Time (s) 57625.499 103487.844 305243.413 150288.386 213698.954 32689.465
Time w/o timeouts (s) 16645.499 17587.844 213743.413 38668.386 14438.954 14249.465

Table 5.5: Combined results of string solvers on all benchmarks. Z3str4 has the best
overall performance on all benchmarks compared to CVC4, OSTRICH, Z3seq, Z3str3, and
Z3-trau and the biggest lead with a score of 1.02.

tools considered, and no soundness errors or crashes. These results are summarized in Table
5.5. Notably, both Z3-Trau [3] and OSTRICH [21] had significant runtime issues in these
experiments. Z3-Trau produced 5325 soundness errors and 2477 crashes on the benchmarks
(13% of all instances), which is significantly higher than other tools used. OSTRICH
produced 10901 “unknown” responses on the benchmarks (19% of all instances), due to
both unsupported features and crashes, and also produced 28 soundness errors. According
to SMT Competition scoring, Z3str4 won the division across all benchmarks with a lead
of 1.02, and had the largest contribution to the division with a score of 145.07. CVC4 had
a contribution score of 95.99, and Z3seq had a score of 19.87. OSTRICH, Z3-Trau, and
Z3str3 received no contribution score as they each returned at least one incorrect answer.

The empirical results make clear the efficacy of length-aware automata-based techniques
for regular expression constraints when accompanied with length constraints (which is
typical for industrial instances). The effectiveness of the techniques illustrated in this
chapter is demonstrated particularly by comparing Z3str4 with Z3str3. With the extra
features of Z3str4 disabled as described above, the only differences between these tools are
the length-aware regex algorithm and heuristics implemented in Z3str4 and bug fixes. By
improving the regex algorithm and applying new heuristics, Z3str4 achieved a speedup of
over 9x and solved over 10000 more cases than Z3str3.

70

5.4.5 Detailed Experimental Results

Figure 5.2 and Table 5.1 show the detailed results for the AutomatArk benchmark.
In this benchmark, Z3str4 solves more instances than all other solvers, has the fewest
timeouts/unknowns, and has the fastest overall running time. Including timeouts, Z3str4
is 2.2x faster than CVC4, 4.7x faster than Z3seq, 40.4x faster than OSTRICH, 20.4x faster
than Z3-Trau, and 32.3x faster than Z3str3.

Figure 5.3 and Table 5.2 show the detailed results for the StringFuzz-regex-generated
benchmark. Z3str4 solves more instances than all other solvers, has over 90% fewer time-
outs than other solvers, no unknowns, and has the fastest overall running time. Including
timeouts, Z3str4 is 6.1x faster than CVC4, 6.9x faster than Z3seq, 10x faster than OS-
TRICH, 7.3x faster than Z3-Trau, and 4.3x faster than Z3str3.

Figure 5.4 and Table 5.3 show the detailed results for the StringFuzz-regex-transformed
benchmark. Z3str4 solves more instances in total than all other solvers and has the lowest
total running time without timeouts. Including timeouts, Z3str4 is 2.7x faster than CVC4,
1.9x faster than Z3seq, 21x faster than OSTRICH, and 27x faster than Z3str3. Although
Z3-Trau is 1.5x faster than Z3str4 on this benchmark, including timeouts, Z3-Trau also
produces 1241 answers with soundness errors and crashes on 718 other cases. Z3str4 pro-
duces no wrong answers or soundness errors on the benchmark. Z3-Trau also solves 1923
fewer cases correctly in total than Z3str4.

Figure 5.5 and Table 5.4 show the detailed results for the RegEx-Collected bench-
mark. Z3str4 outperforms Z3seq, Z3str3, OSTRICH, and Z3-Trau on this benchmark and
is competitive with CVC4 both in terms of total number of instances correctly solved and
total running time. CVC4 solves 609 more instances than Z3str4 on this benchmark, but
Z3str4 is 1.1x faster overall (including timeouts). Z3str4 is 3.6x faster than Z3seq, 5.4x
faster than OSTRICH, 2.4x faster than Z3-Trau, and 2.6x faster than Z3str3.

5.4.6 Analysis of Individual Heuristics and Results

To demonstrate the effectiveness of individual heuristics described in Section 5.3 and
implemented in Z3str4, I evaluated different configurations of the tool in which one or
more heuristics were disabled. Figure 5.7 and Table 5.6 show the results. The plot line
“Z3str3RE” shows the baseline performance of the tool with all heuristics enabled. The
plot line “All heuristics off” shows the performance with all heuristics disabled. Each
other series shows the performance with the named heuristic disabled and all others en-
abled. From the plots and table, it is clear that Z3str4 performs best with all heuristics

71

46,000 47,000 48,000 49,000 50,000 51,000 52,000 53,000 54,000 55,000 56,000
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Solved instances

T
im

e
(s

ec
on

d
s)

All heuristics off
Lazy intersections off

Prefix/suffix heuristic off
Automata length info off

Arithmetic solver integration off
Z3str4 (all heuristics on)

Figure 5.7: Cactus plot comparing performance by disabling individual heuristics on all
benchmarks.

All off
Lazy intersection

off
Prefix/suffix

off
Automata length

info off
Arith. solver

integ. off
Z3str4

sat 31046 31486 33817 33816 33804 33820
unsat 22090 22085 21880 22264 22131 22339

unknown 313 323 287 285 283 291
timeout 3807 3362 1272 891 1038 806

soundness error 0 0 0 0 0 0
program crashes 42 39 0 1 0 0

Total correct 53136 53571 55697 56080 55935 56159
Time (s) 102102.388 101799.263 40068.501 27178.746 30006.857 23339.266

Time w/o timeouts (s) 25962.388 34559.263 1462.8501 9358.746 9246.857 7219.266

Table 5.6: Comparison of different regular expression heuristics in Z3str4 on all bench-
marks.

enabled and is 4.4x faster than using none. Every other configuration performs significantly
worse relative to having all heuristics enabled. These results demonstrate empirically that
every heuristic increases total solved instances and lowers total solver runtime, and that
all heuristics can be used simultaneously for maximum efficacy.

72

Chapter 6

Observations and Future Work

In this chapter, I describe some opportunities for future theoretical and practical work
related to the topics I have discussed in this thesis, and conclude with a summarization of
the contributions I have presented.

6.1 Future Work

6.1.1 Theoretical Results

The results I have presented in this thesis come closer to an understanding of the decid-
ability of the quantifier-free theory of word equations with length constraints, although
they do not address it directly. It may be the case that new methods of reasoning or
formulations are required to show decidability or undecidability of this theory.

Two additional restrictions of theories over strings with regular expressions are relevant:
the quantifier-free theory of word equations with regular expression constraints, string-
number conversion, and concatenation – but not length – and the quantifier-free theory
of word equations with regular expression constraints, string length, and string-number
conversion. The decidability of these theories remains open, even though (as shown in this
thesis and in previous work) (un)decidability of directly stronger/weaker theories is known.

73

6.1.2 Algorithm Selection

The natural extension of the arm selection method described in Chapter 4 is a machine
learning based algorithm selection. This brings to mind systems such as SATZilla [69],
which uses a portfolio-based algorithm selection strategy that trains a machine learning
model on features of a SAT formula in order to predict the performance of several different
standalone solvers. Such features are fairly well understood for SAT formulas, but have
not been explored in the broader context of SMT. An empirical hardness model for string
formulas would be highly valuable both practically in developing predictive models for
SMT solvers, and theoretically in understanding what makes certain string instances easy
or hard to solve.

A more powerful “probe” or machine learning based algorithm selection strategy would
also allow more algorithm combinations (arms) to be tested. Currently, Z3str4 is limited to
static arms consisting of a fixed sequence of algorithms to be applied. Although the chosen
arms have generally good performance, there may be other combinations that perform
better than these arms in special cases. Understanding what combinations perform well
and when/how to select them remains open for future development.

As well, Z3str4 uses a number of fixed parameters to different algorithms that are called,
including timeout durations, maximum iteration upper bounds, etc. An interesting avenue
of exploration is allowing these parameters to be tuned either offline via a machine-learning
approach, or online via a dynamic adjustment algorithm.

6.1.3 Solving Regular Expression Constraints

As previously mentioned, newer versions of Z3’s sequence solver use a regular expression
reasoning procedure based on symbolic Boolean derivatives of regular expressions [62]. This
has resulted in a significant performance increase for Z3seq compared to the automata-
based algorithm that was previously used. It stands to reason whether Z3str4’s regex
solver could be improved in a similar way. The key challenges would include adapting
the current automata-based heuristics, including lazy intersections, to a derivative-based
reasoning method, and preserving the ability of the algorithm to extract length information
without constructing automata.

The current length-aware heuristics implemented in Z3str4’s regex solver are limited to
a few operators. Future work could include extending these to more expressive functions
and predicates, including str.indexof, str.substr, str.to int, and str.from int. Ad-
ditionally, more advanced automata-based constructions could be used to extract a more

74

accurate length abstraction from a regex constraint. The benefits of this must be measured
carefully against the overhead of constructing automata in more complex cases.

6.1.4 Theory-Aware Heuristics

The process of learning general length conflicts from the fixed-length model construction
procedure described in Section 4.5 combined with the theory-aware branching and theory-
aware case split heuristics suggests a more powerful idea of theory-aware conflict clause
learning for string solvers. Currently, when the Boolean core solver in an SMT solver
detects an inconsistency, it constructs a conflict clause to block the current partial assign-
ment (and possibly others). In essence, a theory-aware conflict clause would be introduced
by a theory solver when an inconsistency is detected between theory terms. Similar to
how theory-aware branching provides theory-specific information to the core solver that it
is otherwise unaware of, theory-aware conflict clause learning could potentially prune the
search space in ways that are not possible to do with the Boolean abstraction alone. This
could be done following rule-based solving procedures, for example [26].

6.1.5 Applications of String Solvers

String solvers are currently used in several program analysis and symbolic execution en-
gines, and I anticipate that the need for more powerful solvers will only continue to grow
over time as program analysis tools become better able to handle larger programs. I am
especially interested in investigating integrations between strings and other theories, and
examining whether string solvers should be extended with support for additional operators
to provide better support for the way these operators are used in programming languages
and applications. The integration of strings with bit-vector length, instead of integer
length, was explored in a previous version of Z3str2 [64] and handling of strings in this way
facilitates many low-level program analysis and exploit synthesis applications.

Currently, Z3str4 imposes the restriction that regex terms must be grounded, that
is, they cannot contain variables. However, the SMT-LIB standard does permit string
variables to appear in regex terms by way of the str.to re operator. Reasoning about
these so-called “symbolic regular expressions” presents a host of new challenges. Perhaps
chief among them is the fact that a symbolic regex can no longer be so easily converted
to an automaton. However, a novel combination of length-aware heuristics and reductions
that use all available facts about string variables appearing in such regexes may be able to
tackle this problem.

75

6.2 Conclusion

In this thesis, I have outlined numerous theoretical and practical contributions to the
domain of string constraint solving. I demonstrated several theoretical results related to
decidability and undecidability of theories over strings. I described an improved model con-
struction procedure with a bit-vector backend that combines a word-based and unfolding-
based approach for improved efficiency. I then presented the Z3str4 string solver, described
its architecture and components, and illustrated a detailed empirical evaluation showcasing
its performance against other state-of-the-art tools on a large and diverse set of benchmarks.
Finally, I highlighted Z3str4’s regular expression solving algorithm and several heuristics
I implemented to make reasoning about regular expression constraints more efficient and
to take advantage of length information in order to guide the search. I also quantified the
performance of these improvements with in-depth empirical evaluations.

The contributions I have made are valuable from both a theoretical and practical stand-
point. Of course, theoretical understanding of string solvers, decidability and undecidabil-
ity, and algorithmic constructions are all important to improving the depth and breadth of
our knowledge about the field. In addition, the practical contributions I have described in
this thesis are available to the public as open source software, and are part of an industry-
standard tool in the Z3 theorem prover. Applications of string solvers drive innovation and
improvement in both the theory and the practice of string solving. More powerful string
solvers and advancements in the state of the art in turn enable new applications that were
not previously feasible. Indeed, industrial use cases and application-based benchmarks have
motivated many of the contributions I have described here. I hope that users continue to
benefit from Z3str4 in the future and take it beyond the limits of existing applications.

76

References

[1] IBM Security AppScan Tool and Source. URL: http://www-
03.ibm.com/software/products/en/appscan-source.

[2] Kausler Suite.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Julian
Dolby, Petr Jank̊u, Hsin-Hung Lin, Lukáš Hoĺık, and Wei-Cheng Wu. Efficient han-
dling of string-number conversion. In Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 943–957, 2020.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš
Hoĺık, Ahmed Rezine, and Philipp Rümmer. Trau: Smt solver for string constraints.
In 2018 Formal Methods in Computer Aided Design (FMCAD), pages 1–5. IEEE,
2018.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš
Hoĺık, Ahmed Rezine, and Philipp Rümmer. Flatten and conquer: A framework
for efficient analysis of string constraints. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017, pages
602–617, New York, NY, USA, 2017. ACM.

[6] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Hoĺık, Ahmed
Rezine, Philipp Rümmer, and Jari Stenman. String constraints for verification. In
Proceedings of the 26th International Conference on Computer Aided Verification,
CAV’14, pages 150–166, 2014.

[7] Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and
Peter J. Stuckey. To Encode or to Propagate? The Best Choice for Each Constraint
in SAT, pages 97–106. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

77

[8] Roberto Amadini. A survey on string constraint solving, 2020.

[9] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. Automata-based model counting
for string constraints. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer
Aided Verification: 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, pages 255–272, Cham, 2015. Springer
International Publishing.

[10] J. Backes, P. Bolignano, B. Cook, A. Gacek, K. S. Luckow, N. Rungta, M. Schaef,
C. Schlesinger, R. Tanash, C. Varming, and M. Whalen. One-click formal methods.
IEEE Software, 36(6):61–65, 2019.

[11] Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality
Constraints, pages 108–122. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[12] Haniel Barbosa, Jochen Hoenicke, and Antti Hyvarinen. 15th international satisfia-
bility modulo theories competition (smt-comp 2020): Rules and procedures.

[13] Clark Barrett, Pascal Fontaine, Aina Niemetz, Mathias Preiner, and Hans-Jörg Schurr.
Smt-lib benchmarks.

[14] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2016.

[15] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. Z3str3: A string solver with
theory-aware heuristics. In 2017 Formal Methods in Computer Aided Design, FMCAD
2017, Vienna, Austria, October 2-6, 2017, pages 55–59, 2017.

[16] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis for
string-manipulating programs. In Proceedings of the 15th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS ’09,
pages 307–321, 2009.

[17] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. StringFuzz: A fuzzer for string solvers. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer
Science, pages 45–51. Springer, 2018.

78

[18] Tegan Brennan, Nestan Tsiskaridze, Nicolás Rosner, Abdulbaki Aydin, and Tevfik
Bultan. Constraint normalization and parameterized caching for quantitative program
analysis. In Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman,
editors, Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 535–546.
ACM, 2017.

[19] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
October 1964.

[20] J.Richard Büchi and Steven Senger. Definability in the existential theory of concate-
nation and undecidable extensions of this theory. In Saunders Mac Lane and Dirk
Siefkes, editors, The Collected Works of J. Richard Büchi, pages 671–683. Springer
New York, 1990.

[21] Taolue Chen, Matthew Hague, Anthony W Lin, Philipp Rümmer, and Zhilin Wu.
Decision procedures for path feasibility of string-manipulating programs with complex
operations. Proceedings of the ACM on Programming Languages, 3(POPL):1–30, 2019.

[22] Marek Chrobak. Finite automata and unary languages. Theor. Comput. Sci.,
47(3):149–158, 1986.

[23] Loris D’Antoni. Automatark automata benchmark, 2018.

[24] J. D. Day, T. Ehlers, M. Kulczynski, F. Manea, D. Nowotka, and D. B. Poulsen. On
solving word equations using SAT. In Proc. RP, volume 11674 of LNCS, pages 93–106.
Springer, 2019.

[25] Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka. The satisfi-
ability of word equations: Decidable and undecidable theories. In Igor Potapov and
Pierre-Alain Reynier, editors, Reachability Problems - 12th International Conference,
RP 2018, Proceedings, volume 11123 of Lecture Notes in Computer Science, pages
15–29. Springer, 2018.

[26] Joel D. Day, Mitja Kulczynski, Florin Manea, Dirk Nowotka, and Danny Bøgsted
Poulsen. Rule-based word equation solving. In Proceedings of the 8th International
Conference on Formal Methods in Software Engineering, FormaliSE ’20, page 87–97,
New York, NY, USA, 2020. Association for Computing Machinery.

[27] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Proceedings
of the Theory and practice of software, 14th international conference on Tools and

79

algorithms for the construction and analysis of systems, TACAS’08, pages 337–340,
2008.

[28] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-
Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science,
pages 737–744. Springer, July 2014.

[29] Samuel Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
1974.

[30] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database
applications. In ISSTA, pages 151–162, 2007.

[31] Amit Erez and Alexander Nadel. Finding Bounded Path in Graph Using SMT for
Automatic Clock Routing. In Proceedings of the 27th International Conference on
Computer Aided Verification, volume 9207 of Lecture Notes in Computer Science,
pages 20–36. Springer International Publishing, 2015.

[32] Vijay Ganesh and Murphy Berzish. Undecidability of a theory of strings, linear arith-
metic over length, and string-number conversion. CoRR, abs/1605.09442, 2016.

[33] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard. Word equa-
tions with length constraints: what’s decidable? In HVC’12, 2012.

[34] Pawel Gawrychowski. Chrobak normal form revisited, with applications. In Béatrice
Bouchou-Markhoff, Pascal Caron, Jean-Marc Champarnaud, and Denis Maurel, ed-
itors, Implementation and Application of Automata - 16th International Conference,
CIAA 2011, Blois, France, July 13-16, 2011. Proceedings, volume 6807 of Lecture
Notes in Computer Science, pages 142–153. Springer, 2011.

[35] Youssef Hamadi, Säıd Jabbour, and Lakhdar Sais. Manysat: a parallel SAT solver. J.
Satisf. Boolean Model. Comput., 6(4):245–262, 2009.

[36] Lukás Hoĺık, Petr Janku, Anthony W. Lin, Philipp Rümmer, and Tomás Vojnar.
String constraints with concatenation and transducers solved efficiently. PACMPL,
2(POPL):4:1–4:32, 2018.

[37] Artur Jeż. Recompression: Word equations and beyond. In Developments in Language
Theory, Lecture Notes in Computer Science, pages 12–26. 2013.

80

[38] Artur Jeż. Recompression: Technique for word equations and compressed data. In
Alberto Leporati, Carlos Mart́ın-Vide, Dana Shapira, and Claudio Zandron, editors,
Language and Automata Theory and Applications, pages 44–67, Cham, 2020. Springer
International Publishing.

[39] Juhani Karhumäki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of
languages and relations by word equations. J. ACM, 47(3):483–505, May 2000.

[40] Scott Kausler and Elena Sherman. Evaluation of string constraint solvers in the
context of symbolic execution. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 259–270, New York,
NY, USA, 2014. ACM.

[41] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst.
HAMPI: A solver for string constraints. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA ’09, pages 105–116, 2009.

[42] Mitja Kulczynski, Florin Manea, Dirk Nowotka, and Danny Bøgsted Poulsen. The
power of string solving: Simplicity of comparison. In 2020 IEEE/ACM 1st Interna-
tional Conference on Automation of Software Test (AST), pages 85–88. IEEE/ACM,
2020.

[43] F. W. Levi. On semigroups. Bull. Calcutta Math. Soc., 36:141–146, 1944.

[44] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. A
DPLL(T) theory solver for a theory of strings and regular expressions. In Proceedings
of the 26th International Conference on Computer Aided Verification, CAV’14, pages
646–662. Springer-Verlag, 2014.

[45] Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark Bar-
rett. A decision procedure for regular membership and length constraints over un-
bounded strings. In Frontiers of Combining Systems - 10th International Symposium,
FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings, pages 135–150,
2015.

[46] Anthony W. Lin and Rupak Majumdar. Quadratic word equations with length con-
straints, counter systems, and presburger arithmetic with divisibility. In Shuvendu K.
Lahiri and Chao Wang, editors, Automated Technology for Verification and Analy-
sis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October
7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer Science, pages
352–369. Springer, 2018.

81

[47] Anthony Widjaja Lin and Pablo Barceló. String solving with word equations and
transducers: towards a logic for analysing mutation XSS. In Rastislav Bod́ık and
Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 123–136. ACM, 2016.

[48] G.S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik, 103:147–236, 1977. English transl. in Math USSR Sbornik 32 (1977).

[49] Yu. Matiyasevich. Word equations, fibonacci numbers, and Hilbert’s tenth problem.
In Workshop on Fibonacci Words, 2007.

[50] Federico Mora. Private communication, 2021.

[51] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages
530–535. ACM, 2001.

[52] Alexander Nadel. Routing under constraints. In Proceedings of the 16th Conference
on Formal Methods in Computer-Aided Design, FMCAD ’16, pages 125–132, Austin,
TX, 2016. FMCAD Inc.

[53] Rohit J Parikh. Language generating devices. Quarterly Progress Report, 60:199–212,
1961.

[54] Wojciech Plandowski. Satisfiability of word equations with constants is in pspace. J.
ACM, 51(3):483–496, May 2004.

[55] Wojciech Plandowski. An efficient algorithm for solving word equations. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, STOC ’06, pages 467–
476, 2006.

[56] Preiner, Mathias, Niemetz, Aina, Scott, Joseph, and Ganesh, Vijay. Machsmt: A
machine learning-based algorithm selector for smt solvers. 2020.

[57] Gideon Redelinghuys, Willem Visser, and Jaco Geldenhuys. Symbolic execution of
programs with strings. In Proceedings of the South African Institute for Computer
Scientists and Information Technologists Conference, SAICSIT ’12, pages 139–148,
2012.

82

[58] A. Reynolds, M. Woo, C. Barrett, D. Brumley, T. Liang, and C. Tinelli. Scaling up
dpll (t) string solvers using context-dependent simplification. In Proc. CAV, pages
453–474. Springer, 2017.

[59] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and
Dawn Song. A symbolic execution framework for JavaScript. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, pages 513–528, 2010.

[60] K. Schulz. Makanin’s algorithm for word equations-two improvements and a gener-
alization. In K. Schulz, editor, Word Equations and Related Topics, volume 572 of
Lecture Notes in Computer Science, pages 85–150. Springer Berlin / Heidelberg, 1992.

[61] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A
selective record-replay and dynamic analysis framework for JavaScript. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, pages 488–498, New York, NY, USA, 2013. ACM.

[62] Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. Symbolic boolean derivatives
for efficiently solving extended regular expression constraints. Technical Report MSR-
TR-2020-25, Microsoft, August 2020.

[63] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on
Theory of Computing, STOC ’73, page 1–9, New York, NY, USA, 1973. Association
for Computing Machinery.

[64] Sanu Subramanian. Bit-vector Support in Z3-str2 Solver and Automated Exploit
Synthesis. Master’s thesis, University of Waterloo, 2015.

[65] Takaaki Tateishi, Marco Pistoia, and Omer Tripp. Path- and index-sensitive string
analysis based on monadic second-order logic. ACM Trans. Softw. Eng. Methodol.,
22(4):33:1–33:33, October 2013.

[66] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand. An integrated approach for effective
injection vulnerability analysis of web applications through security slicing and hybrid
constraint solving. IEEE TSE, 2018.

[67] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A symbolic string solver for
vulnerability detection in web applications. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages 1232–1243,
2014.

83

[68] G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection
vulnerabilities. In J. Ferrante and K.S. McKinley, editors, PLDI, pages 32–41. ACM,
2007.

[69] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-
based algorithm selection for sat. J. Artif. Int. Res., 32(1):565–606, June 2008.

[70] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis tool
for php. In Proc. TACAS, TACAS’10, pages 154–157. Springer, 2010.

[71] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: an automata-based string
analysis tool for php. In Proceedings of the 16th international conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’10, pages 154–157,
2010.

[72] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy Berzish, Ju-
lian Dolby, and Xiangyu Zhang. Z3str2: an efficient solver for strings, regular ex-
pressions, and length constraints. Formal Methods in System Design, pages 1–40,
2016.

[73] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Julian Dolby, and Xi-
angyu Zhang. Effective search-space pruning for solvers of string equations, regular ex-
pressions and length constraints. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I, pages 235–254, 2015.

[74] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A z3-based string solver for
web application analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, page 114–124, New York, NY, USA, 2013.
Association for Computing Machinery.

84

	List of Figures
	List of Tables
	Introduction
	Motivation
	Applications of String Solvers

	Related Work
	Theory
	Practice

	Contributions

	Background
	Syntax of Z3str4's Input Language
	Definitions and Semantics
	Satisfiability, Complexity, and Decidability

	(Un)decidability Results for Theories over Strings
	Undecidability of the Theory of Strings with String-Number Conversion
	The Theory of Power Arithmetic Tp and Büchi's Results
	Proof of Undecidability of TL,n,c
	Expressibility of pi predicate

	Decidability of the Theory of Strings with Length and Regular Expression Constraints

	Z3str4: A Solver for Theories Over Strings
	Motivation
	Architecture of Z3str4
	Algorithm Selection
	Length Abstraction Solver
	MultisetCheck Subroutine

	Fixed-Length Model Construction
	Solving Strings via Arrangements
	A Bit-Vector Backend for Solving String Constraints

	Theory-Aware Heuristics
	Theory-Aware Branching
	Theory-Aware Case Split

	Clause Sharing
	Empirical Evaluation
	Empirical Setup and Solvers Used
	Benchmarks Used
	Results and Analysis
	Performance Analysis of Components of Z3str4

	Algorithms and Heuristics for Theories over Regular Expressions and Linear Arithmetic over String Length
	Background and Motivation
	Algorithm for Solving Regex, Length, and Linear Arithmetic Constraints
	Length-Aware Heuristics for Solving Regular Expression Constraints
	Computing Length Information from Regexes
	Optimizing Automata Operations via Length Information
	Leveraging Length Information to Optimize Search
	Constructing Over-Approximated Prefixes/Suffixes to Find Empty Intersections

	Empirical Evaluation
	Empirical Setup and Solvers Used
	Benchmarks
	Comparison and Scoring Methods
	Analysis of Empirical Results
	Detailed Experimental Results
	Analysis of Individual Heuristics and Results

	Observations and Future Work
	Future Work
	Theoretical Results
	Algorithm Selection
	Solving Regular Expression Constraints
	Theory-Aware Heuristics
	Applications of String Solvers

	Conclusion

	References

